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Energy dissipation by fast crystalline defects takes place mainly through the resonant interaction of their
cores with periodic lattice. We show that the resultant effective friction can be reduced to zero by
appropriately tuned acoustic sources located on the boundary of the body. To illustrate the general idea, we
consider three prototypical models describing the main types of strongly discrete defects: dislocations,
cracks, and domain walls. The obtained control protocols, ensuring dissipation-free mobility of topological
defects, can also be used in the design ofmetamaterial systems aimed at transmittingmechanical information.

DOI: 10.1103/PhysRevLett.125.195502

Mobile crystalline defects respond to lattice periodicity
by dynamically adjusting their core structure which leads to
radiation of lattice waves through parametric resonance
[1–5]. Such purely conservative dumping is one of the main
mechanisms of energy loss for fast-moving dislocations
[6,7], crack tips [8,9], and elastic phase or twin boundaries
[10,11]. Similar effective dissipation hinders the mobility
of topological defects in mesoscopic dispersive systems,
from periodically modulated composites [12] to discrete
acoustic metamaterials [13].
While at the macroscale friction is usually diminished by

applying lubricants, at the microscale it may be preferable
to use instead external sources of ultrasound (sonolubricity)
[14]. Correlated mechanical vibrations are also known to
reduce macroscopic friction through acoustic unjamming
[15] as in the case of the remote triggering of earthquakes
[16]. Similarly, more general detachment front tips can be
viewed as macroscopic defects whose mobility in highly
inhomogeneous environments can be controlled by ac
(alternating current) driving [17]. Ultrasound-induced
lubricity is even more relevant for the reduction of friction
at the microscale [18]. It is known, for instance, that the
forming load drops significantly in the presence of appro-
priately tuned time-periodic driving affecting dislocation
friction [19].
The ac-based control of the directed transport in damped

systems was studied extensively in the case when the
sources are distributed in the bulk [20–22]. In this Letter,
we neglect the conventional damping, associated, for
instance, with “phonon wind” [23], and show how in a
purely Hamiltonian setting the effective friction can be
tuned to zero by the special ac driving placed on the system
boundary [24,25].
Since classical continuum models lack the resolution to

describe dynamic defect cores and, therefore, cannot capture
adequately the interaction between a defect and external
microstructure, we use atomistic model which accounts for

the coupling between the defect and the lattice vibrations
while respecting the anharmonicity of interatomic forces.
We build upon the theoretical methodology developed in
Refs. [10,26,27] and show that ac driving can compensate
radiative damping completely, making the discrete system
fully transparent for mobile topological defects.
To highlight ideas, we present a comparative study of the

three snapping-bond-type lattice models originating in
crystal plasticity [Frenkel-Kontorova (FK) model [7] ],
theory of structural phase transitions [bistable Fermi-
Pasta-Ulam (FPU) model [28] ], and fracture mechanics
[Peyrard-Bishop (PB) model [29] ].
In the individual setting of each of these models, we

study the effect of the boundary ac sources on mobility laws
for the corresponding lattice defects. The latter relate the
macroscopic driving force (dynamic generalization of the
Peach-Koehler force in the case of dislocations, the stress
intensity factor in the case of cracks, and the Eshelby force
in the case of phase boundaries) to the velocity of the
defect. We find that in the presence of ac sources such
relations become continuously multivalued. We focus
particularly on designing the ac protocols which ensure
that the steady propagation of a defect takes place under
zero driving force.
In addition to applications in conventional materials

science, the possibility of externally guided radiation-free
propagation of mechanical information is presently of
considerable interest for designing discrete metamaterials
with buckling linkages. Geometric phase transitions gen-
erating information-carrying defects in such systems play
a central role in a multitude of new applications from
recoverable energy harvesting to controlled structural
collapse [30–32].
The FPU model with bistable interactions will be used to

represent the simplest crystal defect, a domain wall [11,33].
In terms of dimensionless particle displacements ujðtÞ, the
dynamics is described by the system
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üjðtÞ ¼ σðujþ1 − ujÞ − σðuj − uj−1Þ: ð1Þ
It will be convenient to use strain variables εjðtÞ ¼
ujþ1ðtÞ − ujðtÞ and introduce the strain energy density
wðεÞ so that σðεjÞ ¼ w0ðεjÞ. For analytical transparency,
we adopt the simplest biquadratic model with w ¼
ð1=2Þε2 − σ0ðε − εcÞHðε − εcÞ, where HðxÞ is the
Heaviside function, εc is the characteristic strain, and σ0
is the stress drop; see Fig. 1(a).
We search for traveling wave (TW) solutions of Eq. (1)

in the form ujðtÞ ¼ uðηÞ, where η ¼ j − Vt and V < 1 is
the normalized velocity of the defect. If we associate
the defect with η ¼ 0, the equation for the strain field
reduces to V2d2ε=dη2 ¼ σðηþ 1Þ þ σðη − 1Þ − 2σðηÞ,
where σðηÞ ¼ εðηÞ − σ0Hð−ηÞ. When this linear equation
is solved, the velocity V is found from the nonlinear
switching condition εð0Þ ¼ εc.
Using the Fourier transform f̂ðkÞ ¼ R

∞
−∞ fðηÞeikηdη,

we can rewrite the main linear problem in the form
LðkÞε̂ðkÞ ¼ σ0ω

2ðkÞ=ð0þ ikÞ, where LðkÞ≡ ω2ðkÞ −
ðkVÞ2 and ω2ðkÞ ¼ 4 sin2 ðk=2Þ is the dispersion relation
represented by a single acoustic branch; see Fig. 1(b). The
strain field εðηÞ can be decomposed into a sum of the term
εinðηÞ, which is due to inhomogeneity (mimicking non-
linearity) and the term εdrðηÞ, due to the combined action of
dc (direct current) and ac driving. The former can be written
explicitly

εinðηÞ ¼
σ0
2π

Z
∞

−∞

ω2ðkÞe−ikη
ð0þ ikÞLðkÞ dk: ð2Þ

The latter must satisfy LðkÞε̂drðkÞ ¼ 0, which in the
physical space gives

εdrðηÞ ¼
XK
j¼1

Aj sin ðkjηþ φjÞ þ C: ð3Þ

The constants Aj and φj describe the amplitude and the
phase, respectively, of the incoming waves generated at the
distant boundaries. They represent the ac driving which is

characterized by the wave numbers kj that are taken among
the positive real roots of the kernel LðkÞ; if ω0ðkjÞ is smaller
(greater) than V, the sources are in front of (behind) the
moving defect. The constant C in (3), representing the root
k0 ¼ 0, controls the uniform strain ahead of the moving
defect and describes the dc driving.
Using the switching condition, we can obtain the

explicit relations for the limiting strains in the form
hεið�∞Þ≡ε�¼ εc∓ 1

2
ðσ0=1−V2Þþσ0Q−

P
K
j¼1Aj sinφj,

where hfi ¼ limT→∞ð1=TÞ
R
T
0 fðsÞds; the expression for

the universal functionQðVÞ can be found in Ref. [34]. It can
be checked that the obtained solution respects the macro-
scopic momentum balance represented by the Rankine-
Hugoniot (RH) condition [39]: V2 ¼ ½σðεþÞ − σðε−Þ�=
ðεþ − ε−Þ. The limiting values of the mass velocity vj ¼
_uj automatically satisfy another (kinematic) RH condi-
tion hvið�∞Þ≡ v� ¼ −Vε�.
We now write the macroscopic energy dissipation on the

moving defects as R ¼ VG ≥ 0, where G is the driving
force. In the absence of the ac driving (Aj ¼ 0), we obtain
G ¼ GM, where

GM ¼ ⟦w⟧ − fσg⟦ε⟧; ð4Þ
and we used the standard notations ⟦f⟧ ¼ fþ − f−
and ffg ¼ ðfþ þ f−Þ=2 [40]. In our case, GM ¼
ðσ0=2Þðεþ þ ε− − 2εcÞ. With the ac driving present, we
obtain R ¼ VðGM þ GmÞ ≥ 0, where the total power
exerted by microscopic sources is

VGm ¼
XK
j¼1

ð1=2ÞA2
j jω0ðkjÞ − Vj ≥ 0: ð5Þ

The implied relation for R can be checked by the
independent computation of the energy carried by the
microscopic radiation away from the moving defect [34].
The dependence of G ¼ GM þ Gm on V for a high-

velocity subset of admissible solutions is shown in
Fig. 2(a). The radiative damping is represented here by a
single wave number k1. The ac driving is tuned to the same
wave number, and its source is placed ahead of the moving
defect (the K ¼ 1 regime). If the ac driving is absent and all
Aj ¼ 0, there is a single value of V for each value of G
within the admissible range �½εc − εðηÞ� > 0 at �η > 0.
Even if only one coefficient A1 ≠ 0, each admissible value
of velocity V can be reached within a finite range of dc
driving amplitudes with the associated phase shift φ1

varying continuously. In this sense, the conventional
singlevalued kinetic relation transforms into a 2D kinetic
domain [see Fig. 2(a)], where by fixing the strength of dc
drive we can either speed up or slow down the defect as we
change the frequency of the ac source.
The possibility of the ac-induced friction reduction is

seen from the fact that for each V there is a range of the
admissible driving forcesG < GðA1 ¼ 0Þwith the minimal

(a) (b)

FIG. 1. (a) Piecewise linear stress-strain relation σ ¼ σðεÞ; the
macroscopic driving force GMðVÞ ¼ S2 − S1. (b) Dispersion
relation ωðkÞ for ImðkÞ ¼ 0 (acoustic branch); kj correspond
to the radiated waves in cases K ¼ 1 and K ¼ 3; see the text.
Green circles correspond to ac sources behind the defect, and
magenta squares ahead of the defect.
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value G�ðVÞ. Moreover, for some V�, such friction can be
eliminated completely if the amplitude A1 reaches beyond a
threshold. We remark that the emergence of friction-free
regimes resembles a second-order phase transition with the
dissipation G� as the order parameter; see Fig. 2(b) and
Ref. [34], where we compute the corresponding critical
exponent. The nondissipative regimes with K ¼ 1 are
naturally antiphase with respect to the radiated waves so
that φ�

1 ¼ π=2; see a typical strain distribution in the insets
in Fig. 2(b). The relation between the ac amplitude and the
defect velocity for such regimes can be written explicitly
A�
1 ¼ σ0V=½V − ω0ðkfÞ�.
In the general case K ≠ 1, the number of dissipative waves

is odd, and the dissipation-free regimes also must have an odd
number of ac sources to cancel each of these waves. Consider,
for instance, the case K ¼ 3, illustrated in Fig. 1(b), where
two dissipative lattice waves (k1 and k3) release energy at−∞
and one wave (k2) at þ∞. To block these dissipative waves,
one must have the sources of ac driving both in front and
behind the defect. The corresponding amplitudes, ensuring
that G�ðVÞ ¼ 0, are A�

j ¼ ð−1Þjσ0V=½ω0ðkjÞ − V� with
j ¼ 1, 2, 3; see Ref. [34] for details.
Our numerical checks suggest that the admissible fric-

tionless regimes exist only for K ¼ 1. To show stability of
the frictionless solutions, we performed numerical experi-
ments using Eq. (3) as an initial condition. The nonsta-
tionary problem was solved while the ends of the chain
were kept free, meaning that ̈ε1 ¼ σðε2Þ − 2σðε1Þ and ̈εN ¼
σðεN−1Þ − 2σðεNÞ. The snapshots of the emerging steady
front are shown in Fig. 3; the transient stage is illustrated in
Supplemental Movie 1 [34].
While our construction above was based on the biquad-

ratic model, allowing complete analytical transparency, the
TW problem can be also solved semianalytically in the case
of a smoother, three-parabola potential containing a spi-
nodal region; see [34] for details.
The simplest FK model [6,41] can be used to study the

frictionless propagation regimes of a moving dislocation;
see Fig. 4(a). If we deal with a single dislocation, it is
sufficient to use only two wells of the on-site periodic
potential. The displacement ujðtÞ, describing horizontal
slip, must solve the equations

üj ¼ uj−1 þ ujþ1 − 2uj − σðujÞ þ τ; ð6Þ

where τ is a uniform load. The corresponding piecewise
linear function σðuÞ is illustrated in Fig. 4(a). It is defined
via the on-site potential wðuÞ ¼ ð1=2Þu2 when −uc < u <
uc and wðuÞ ¼ ð1=2Þu2 − σ0ðu − ucÞ when uc < u < 3uc,
representing the two relevant periods. We again use the TW
ansatz ujðtÞ ¼ uðηÞ; η ¼ j − Vt and apply the same con-
dition of admissibility. Unlike the previous case, the dc
drive τ is now applied in the bulk.
We need to solve the linear equationV2u00ðηÞ¼uðηþ1Þþ

uðη−1Þ−3uðηÞþσ0Hð−ηÞþτ and then find the defect
velocity V using the nonlinear condition uð0Þ ¼ uc. The
solution can be again represented in the form uðηÞ ¼
uinðηÞ þ udrðηÞ. The first term, which is due to inhomoge-
neity (mimicking nonlinearity), now includes the dc
driving τ:

uinðηÞ ¼ τ þ σ0
2π

Z
∞

−∞

e−ikη

ð0þ ikÞLðkÞ dk; ð7Þ

where the operator LðkÞ remains the same as in the
FPU problem but the dispersion relation ω2ðkÞ ¼
4 sin2ðk=2Þ þ 1 is now represented by a single optical
branch. The second term responsible for the ac driving
must satisfy LðkÞûdrðkÞ ¼ 0 and can be again represented
as a combination of linear waves whose phase velocity is
equal to V:

(a) (b)

FIG. 2. (a) Kinetic domain for the case K ¼ 1; open squares
show the selected TW solutions reached numerically [34].
(b) Amplitude dependence of G� and V�; insets show normalized
strains ε̄ðηÞ ¼ εðηÞ=εc. Parameters: σ0 ¼ 2 and εc ¼ 1.

FIG. 3. Steady propagation of the phase transition front
obtained numerically for a finite chain with N ¼ 1000 starting
from the initial data (3) with V ¼ 0.5. Normalized strain ε̄jðtÞ ¼
εjðtÞ=εc is shown at three different moments of time. The inset
shows a comparison with the analytical TW solution (solid line).

(a) (b)

FIG. 4. (a) Dislocation propagation driven by the constant force
τ; macroscopic driving force GMðVÞ ¼ S2 − S1. (b) Dispersion
relation for ImðkÞ ¼ 0 (optical branch). The wave numbers kj
define radiated waves in the cases K ¼ 1 and K ¼ 3.
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udrðηÞ ¼
XK
j¼1

Aj sinðkjηþ φjÞ: ð8Þ

Here kj are again the positive real roots of LðkÞ ¼ 0.
Using the switching condition, we obtain for the time-

averaged displacements at �∞ the values u� ¼ uc ∓
ðσ0=2Þ þ σ0R −

P
j Aj sinφj with the explicit expression

for the universal function RðVÞ given in Ref. [34]. The
analogs of the RH conditions are now uþ ¼ τ and
u− ¼ τ þ σ0.
If we denote the stress in the horizontal bonds by

σ̄ðεÞ ¼ ε, we can write the rate of dissipation at the
macroscale as VGM¼⟦v2=2þε2=2þw−τu⟧Vþ⟦σ̄v⟧.
Applying the kinematic RH condition ⟦v⟧þ V⟦ε⟧ ¼ 0,
we obtain

GM ¼ ⟦w⟧ − τ⟦u⟧: ð9Þ

Since ε� ¼ σ̄ðε�Þ ¼ 0, we can finally write the
macroscopic driving force in the form GM ¼ σ20=2−
σ0ðuc − uþÞ. The contribution to the energy flux due to
ac sources is now

VGm ¼
XK
j¼1

ð1=2ÞA2
jω

2ðkjÞjω0ðkjÞ − Vj ≥ 0: ð10Þ

The continuously multivalued relation RðVÞ ¼ VGðVÞ ¼
GMðVÞ þ GmðVÞ for admissible solutions is illustrated in
Fig. 5(a) for the case K ¼ 1. It is again possible to
completely cancel the lattice friction and obtain regimes
with G�ðV�Þ ¼ 0. In such regimes, illustrated for K ¼ 1 in
Fig. 5(b), the radiated waves are annihilated by the waves
generated by the ac source with the amplitudes A�

j ¼
ð−1Þjσ0V=fωðkjÞ2½ω0ðkjÞ − V�g and phase shifts φ�

j ¼
π=2; see Ref. [34] for details.
Our last example deals with reversible fracture in the

simplest PB-type setting [9,29,42]. The lattice defect is now
a crack tip moving under the action of a transversal force
(from left to right) by consequently breaking the bonds
represented by elastic fuses; see Fig. 6(a).

The equations governing the evolution of the vertical
displacements ujðtÞ are

üj ¼ uj−1 þ ujþ1 − 2uj − γujHðuj − ucÞ; ð11Þ
see Fig. 6(a) for notations—and we again look for solutions
in the TW form ujðtÞ ¼ uðηÞ; η ¼ j − Vt. We need to solve
a linear equation V2u00ðηÞ ¼ uðηþ 1Þ þ uðη − 1Þ −
2uðηÞ − γuðηÞHðηÞ and use the nonlinear switching con-
dition uð0Þ ¼ uc to find the defect velocity V. The
dispersion relations are now represented by one optical
branch ω2þðkÞ ¼ 4 sin2 ðk=2Þ þ γ ahead of and one acoustic
branch ω2

−ðkÞ ¼ 4 sin2 ðk=2Þ behind the defect.
One way to solve this more complex problem is to use

the Wiener-Hopf technique; see Ref. [34] for details.
We can again obtain the decomposition uðηÞ ¼ uinðηÞ þ
udrðηÞ, but now to define the two additive terms we
need to introduce two auxiliary functions L�ðkÞ¼
L∓1=2ðkÞexpð1=2πiR∞

−∞LogLðξÞ=ðk−ξÞdξÞ, where LðkÞ≡
½ω2þðkÞ − ðkVÞ2�=½ω2

−ðkÞ − ðkVÞ2�. Then

uinðηÞ ¼
C
2π

Z
∞

−∞

L�ðkÞe−ikη
0 ∓ ik

dk; �η > 0; ð12Þ

is the contribution due to remotely applied dc force τ which
is modeled by the condition that at η ¼ −∞ the time
average displacements follows the asymptotics uðηÞ ∼ −τη;
we also assumed here that at η ¼ þ∞ the average dis-
placement tends to zero. From these conditions we find that
C ¼ τS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − V2Þ=γ

p
where an explicit expression for the

function SðVÞ is given in Ref. [34]. The contribution due to
the ac driving is

udrðηÞ ¼
1

2π

Z
∞

−∞
L�ðkÞΨ�

drðkÞe−ikηdk; �η > 0; ð13Þ

where

Ψ�
drðkÞ ¼

XK
j¼1

Aj

2

�
e−iðφj−π=2Þ

0 ∓ iðk − kjÞ
þ eiðφj−π=2Þ

0 ∓ iðkþ kjÞ
�
: ð14Þ

(a) (b)

FIG. 5. (a) Kinetic domains for dislocations showing admis-
sible solutions with K ¼ 1. There is only one damping wave in
the big pink domain and more than one in the smaller ones.
(b) The ac amplitude dependence of G�ðV�Þ and V�; insets show
displacements ūðηÞ ¼ uðηÞ=uc. Parameters: σ0 ¼ 2 and uc ¼ 1.

(a) (b)

FIG. 6. (a) Constitutive relation for a mechanical fuse and
schematic representation of a crack propagating with velocity V
under remote load τ; the strain energy jump ⟦w⟧ ¼ −S1.
(b) Dispersion relations ωþðkÞ (optical branch) and ω−ðkÞ
(acoustic branch) for ImðkÞ ¼ 0 characterizing intact and broken
lattices, respectively.
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Here the wave numbers kj ¼ z2j−1 describe the sources
bringing the energy from þ∞, while the wave numbers
kj ¼ p2j correspond to sources bringing the energy from
−∞; for the cases K ¼ 1, 3, the wave numbers z and p are
illustrated in Fig. 6(b).
To compute the driving force GM, we observe that the

macroscopic energy dissipation on the crack tip is
VGM ¼ ⟦v2=2þ ε2=2þ w⟧V þ ⟦σ̄v⟧, where wðuÞ ¼
ð1=2Þγu2 for u < uc and wðuÞ ¼ ð1=2Þγu2c for u > uc.
If we now take into consideration the RH condition
⟦v⟧þ V⟦ε⟧ ¼ 0, we obtain VGM ¼ ⟦w⟧V þ f̄fvg. Here
f̄ ¼ ⟦σ̄⟧ − V2⟦ε⟧ is the moving concentrated force, which
represents the microscopic processes in the tip and also
secures that the linear momentum RH condition is satisfied;
see, e.g., Ref. [43]. We can now write

GM ¼ ⟦w⟧ − f̄⟦ε⟧; ð15Þ

and, substituting the values ε− ¼ −τ, εþ ¼ 0, σ̄ðε�Þ ¼ ε�,
we finally obtain GM ¼ τ2ð1 − V2Þ=2 − ðγu2cÞ=2.
Consider the simplest case when there is only one

radiated wave with k1 ¼ p1. The microscopic power
exerted by a single ac source ahead of the crack (K ¼ 1)
is then

VGm ¼ 1

2
A2
1ω

2þðz1ÞjLþðz1Þj2jω0þðz1Þ − Vj ≥ 0: ð16Þ

The total dissipation RðVÞ ¼ VGðVÞ ¼ V½GMðVÞ þ
GmðVÞ� ≥ 0 is again a multivalued function of V as we
show in Fig. 7(a); the associated functions G�ðV�Þ and V�
at different values of A1 are shown in Fig. 7(b). At a given
V we obtain A�

1 ¼ ucðz21 − p2
1Þ=z21, φ�

1 ¼ π=2, and the
corresponding dissipation-free solution is illustrated in
the inset in Fig. 7(b). Solutions with K > 1 are discussed
in Ref. [34].
In conclusion, we showed that it is possible to fine tune

defect kinetics by carefully engineered ac driving.
Moreover, using special ac sources on the boundary, one
can compensate radiative damping completely, making the
crystal free of internal friction for strongly discrete defects.

We demonstrated this effect for domain boundaries, dis-
locations, and cracks; however, the obtained results also
have important implications for the design of artificial
metamaterials supporting mobile topological defects and
capable of transporting compact units of mechanical
information.
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