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Abstract: Hydrogen evolution reaction (HER) was investigated on reduced graphene oxide (rGO)-
supported Au and PdAu nanoparticles in acid solution. The graphene spread over glassy carbon
(rGO/GC) was used as a support for the spontaneous deposition of Au and Pd. The resulting
Au/rGO and PdAu/rGO electrodes were characterized using atomic force microscopy (AFM) and
X-ray photoelectron spectroscopy (XPS) techniques. Phase AFM images have shown that the edges of
the rGO sheets were active sites for the deposition of both Au and Pd. XPS analysis revealed that the
atomic percentages of both Au and PdAu nanoparticles were slightly higher than 1%. The activity
of the PdAu/rGO electrode for the HER was remarkably high, with the overpotential close to zero.
HER activity was stable over a 3 h testing time, with a low Tafel slope of approx. −46 mV/dec
achieved after prolonged hydrogen evolution at a constant potential.

Keywords: gold; palladium; PdAu nanoparticles; graphene; hydrogen evolution; acid solution

1. Introduction

Platinum group metals (PGM) are the most extensively exploited catalysts for the
studies of hydrogen evolution reaction (HER) from both a fundamental and practical point
of view. Although PGM-based catalysts are expensive and scarce they are still widely used
for hydrogen production, but for practical use their design aims to limit their amount.
Therefore, the synthesis of cost-effective PGM-based catalysts goes in the direction of their
minimum consumption by using bimetallic nanoparticles supported by a conductive and
cheap material [1]. Carbon-based materials are widely used as support owing to their
electrical conductivity and inertness, among which bare carbon black (C) is commonly used
for the preparation of commercial PGM/C catalysts [2]. Most recently, the use of graphene
as a support has gained particular attention due to its contribution to electrocatalytic activity
through the interaction between the support and bimetallic nanoparticles [3]. In addition
to the intrinsic properties of metal nanoparticles, their local geometric and electronic state
are also determined by the support. This plays a crucial role in the adsorption of hydrogen,
and thus the hydrogen evolution reaction rate [4].

A combination of PGM either as bimetallic electrodes or supported bimetallic nanopar-
ticles are widely studied as electrocatalysts, among which the PdAu system is particularly
interesting for the HER. The intrinsic activity of gold is relatively low compared to palla-
dium, which is a good catalyst for the HER [5]. Due to the synergistic effect between Au
and Pd, when the two are combined, the activity for HER becomes significantly enhanced.
Various PdAu nanostructured electrodes, consisting of Au-supported Pd nanoparticles
at submonolayer coverage, have shown the activity approaching that of the most active
platinum [6–8].

The activity for the HER of PdAu nanoparticles supported on carbon-based materials
has already been reported. Low onset potential and high current density for the HER
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in acid solution were reported for graphene oxide nanosheets decorated with Au–Pd
bimetallic nanoparticles [9]. Bimetallic AuPd nanoclusters supported on graphitic carbon
nitride [10], as well as flower-like Au@AuPd nanoparticles supported on reduced graphene
oxide, have also shown high activity for HER [11]. High activity for HER was also reported
for PdAu24 nanoclusters in ref. [12], with the emphasis on the study of the activity of
specific PdAu surface sites for hydrogen adsorption. In our recent work on glassy carbon
(GC)-supported Au and PdAu nanoislands [13], the PdAu/GC catalyst obtained by the
electrochemical deposition of Au on GC, followed by a spontaneous deposition of Pd,
have shown exceptionally high activity for the HER in acid solution. Based on this work
we have chosen to prepare, characterize and examine the activity for HER of graphene thin
layer-supported Au and PdAu nanoparticles.

In this work, we examined the activity of Au and PdAu nanoparticles supported
on reduced graphene oxide (rGO) towards the HER in acid solution. The graphene was
synthesized using electrochemical exfoliation of graphite, and spread using a drop of
suspension over the glassy carbon (GC) support. PdAu nanoparticles were obtained by
a spontaneous deposition of Au on the rGO/GC, followed by a subsequent spontaneous
deposition of Pd. Surface morphology and chemical analysis of rGO/GC, and rGO-
supported Au and PdAu nanoparticles were performed using atomic force microscopy
(AFM), and X-ray photoelectron spectroscopy (XPS). Electrochemical characterization
was performed by cyclic voltammetry (CV) in 0.5 M H2SO4 solution, while linear sweep
voltammetry (LSV) was used to gain insight into the electrocatalytic activity of these
electrodes for HER. Test stability and activity measurements of the electrode consisting of
reduced grapheme oxide-supported PdAu nanoparticles (PdAu/rGO) were performed by
CV, LSV, and chronoamperometry (CA).

2. Results and Discussion
2.1. Characterization of Graphene/GC

AFM images and high-resolution XPS spectra of the substrate electrode, consisting
of the synthesized graphene suspension spread over the glassy carbon disc, are shown in
Figure 1. The image recorded in height mode, Figure 1a, shows the surface morphology of
the graphene/GC electrode, with the graphene sheets densely and randomly distributed
over the GC surface. The average lateral size of graphene sheets is approximately 100 nm,
while the average surface roughness estimated from this image is 18 nm. On such a rough
surface, the individual graphene sheets are better resolved on the AFM image recorded in
phase mode, Figure 1b.

Although the surface is chemically uniform since it is composed of only two elements
(carbon and oxygen), the presence of edges and the difference in the thickness of the
individual sheets contribute to the difference in the elasticity of each particular surface site.
As a result, the difference in color from bright to dark reflects their response according to
the difference in elasticity (or hardness), and the highlighted boundaries.

High-resolution XPS spectra of C 1s and O 1s are shown in Figure 1c,d. The C 1s line,
Figure 1c, is fitted to three components that correspond to carbon atoms in the following
different functional groups: C–C bond (284.7 eV) of sp2 carbon in the basal plane of
graphene oxide, the C–C bond in carbon crystal (285.1 eV) [14], and in C–O–C bonds
(286.7 eV) [15,16]. The O 1s line, Figure 1d, is fitted to three components corresponding
to oxygen atoms in the following different functional groups: C=O (532.3 eV) [15,16],
C–OH (533.4 eV) [15], and C–O–C (534.1 eV) [15]. According to the atomic ratio of carbon
(87.58 at%) to oxygen (12.42 at%) of 7.0, the reduced graphene oxide (further denoted as
rGO) is obtained as a result of the synthesis [17,18].
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Figure 1. Atomic force microscopy (AFM) images, (2 × 2) µm2, and X-ray photoelectron spectros-
copy (XPS) spectra of the graphene/GC electrode. (a) A height image showing the surface mor-
phology (z-range = 200 nm); (b) the corresponding phase image (z-range = 16 deg); (c) a high-reso-
lution XPS spectrum of C 1s line, and (d) a high-resolution XPS spectrum of O 1s line. 

2.2. AFM and XPS Characterization of Au/rGO and PdAu/rGO 
Figure 2 shows phase AFM images of Au/rGO and PdAu/rGO and cross sections 

along the lines denoted in the images. 

 
Figure 2. Phase AFM images, (200 × 200) nm2, and corresponding cross sections of the following: 
(a) reduced grapheme oxide-supported Au (Au/rGO) (z-range = 36 deg), and (b) reduced grapheme 
oxide-supported PdAu (PdAu/rGO) (z-range = 43 deg). 
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Figure 1. Atomic force microscopy (AFM) images, (2 × 2) µm2, and X-ray photoelectron spectroscopy
(XPS) spectra of the graphene/GC electrode. (a) A height image showing the surface morphology
(z-range = 200 nm); (b) the corresponding phase image (z-range = 16 deg); (c) a high-resolution XPS
spectrum of C 1s line, and (d) a high-resolution XPS spectrum of O 1s line.

2.2. AFM and XPS Characterization of Au/rGO and PdAu/rGO

Figure 2 shows phase AFM images of Au/rGO and PdAu/rGO and cross sections
along the lines denoted in the images.
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Figure 2. Phase AFM images, (200 × 200) nm2, and corresponding cross sections of the following:
(a) reduced grapheme oxide-supported Au (Au/rGO) (z-range = 36 deg), and (b) reduced grapheme
oxide-supported PdAu (PdAu/rGO) (z-range = 43 deg).
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In both cases, a few cross sections are only illustrations of the differences in the Au
or PdAu nanoparticles lateral sizes (the distances on the x-axes) and the differences in
elasticity (the phase angles on the y-axes). Due to the difference in the phase angles, it is
possible to highlight the edges of graphene sheets and the deposited nanoparticles. On the
other hand, due to the low amount of the deposited metals, it is impossible to differentiate
Pd from Au in PdAu nanoparticles.

Figure 2a demonstrates that Au nanoparticles deposited on Au/rGO occupy the edges
of the graphene sheets. The size of the Au nanoparticles ranged from 10 to 50 nm. The cross
sections indicate that larger nanoparticles are composed of agglomerated smaller ones.
For PdAu/rGO, Figure 2b shows that after Pd deposition on previously prepared Au/rGO,
the resulting PdAu nanoparticles occupy the edges of the graphene sheets. Although PdAu
nanoparticles cannot be distinguished from bare Au or Pd nanoparticles, they can only
be identified as those with an average lateral size of 20 to 60 nm, which is larger than
the previously deposited Au nanoparticles. A closer analysis of many cross sections
in the images of both samples reveals that the graphene edges are rich in Au or PdAu
nanoparticles. Although the density of the nanoparticles and their size distribution cannot
be determined, their presence provides many surface active sites, and their importance for
HER will be discussed below.

Figure 3 shows XPS survey spectra of rGO/GC, Au/rGO, and PdAu/rGO. The main
photoelectron lines C 1s and O 1s, characteristic of the graphene substrate layer, are visible
in all spectra. Au 4f and Au 4d doublets are visible on both Au/rGO and PdAu/rGO.
For PdAu/rGO, the Au 4f line is lower in intensity than for Au/rGO, indicating a shielding
effect of Pd deposited on top of gold nanoparticles. On the other hand, Au 4d for PdAu/rGO
is higher in intensity than for bare Au/rGO and overlaps with the Pd 3d doublet.

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

In both cases, a few cross sections are only illustrations of the differences in the Au 
or PdAu nanoparticles lateral sizes (the distances on the x-axes) and the differences in 
elasticity (the phase angles on the y-axes). Due to the difference in the phase angles, it is 
possible to highlight the edges of graphene sheets and the deposited nanoparticles. On 
the other hand, due to the low amount of the deposited metals, it is impossible to differ-
entiate Pd from Au in PdAu nanoparticles. 

Figure 2a demonstrates that Au nanoparticles deposited on Au/rGO occupy the 
edges of the graphene sheets. The size of the Au nanoparticles ranged from 10 to 50 nm. 
The cross sections indicate that larger nanoparticles are composed of agglomerated 
smaller ones. For PdAu/rGO, Figure 2b shows that after Pd deposition on previously pre-
pared Au/rGO, the resulting PdAu nanoparticles occupy the edges of the graphene sheets. 
Although PdAu nanoparticles cannot be distinguished from bare Au or Pd nanoparticles, 
they can only be identified as those with an average lateral size of 20 to 60 nm, which is 
larger than the previously deposited Au nanoparticles. A closer analysis of many cross 
sections in the images of both samples reveals that the graphene edges are rich in Au or 
PdAu nanoparticles. Although the density of the nanoparticles and their size distribution 
cannot be determined, their presence provides many surface active sites, and their im-
portance for HER will be discussed below. 

Figure 3 shows XPS survey spectra of rGO/GC, Au/rGO, and PdAu/rGO. The main 
photoelectron lines C 1s and O 1s, characteristic of the graphene substrate layer, are visible 
in all spectra. Au 4f and Au 4d doublets are visible on both Au/rGO and PdAu/rGO. For 
PdAu/rGO, the Au 4f line is lower in intensity than for Au/rGO, indicating a shielding 
effect of Pd deposited on top of gold nanoparticles. On the other hand, Au 4d for 
PdAu/rGO is higher in intensity than for bare Au/rGO and overlaps with the Pd 3d dou-
blet. 

600 500 400 300 200 100 0
0

5

10

15

rGO

Au/rGO

Au 4d + Pd 3d

In
te

ns
ity

(c
ps

) x
 1

04

Binding energy (eV)

O1s

C1s

Au 4d

Au 4f

PdAu/rGO

 
Figure 3. Survey XPS spectra showing the main photoelectron lines of reduced graphene oxide 
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Figure 3. Survey XPS spectra showing the main photoelectron lines of reduced graphene oxide (rGO),
Au/rGO, and PdAu/rGO.

Figure 4 shows high-resolution spectra of Au 4f and Au 4d5/2 lines for Au/rGO,
as well as Au 4f and Au 4d5/2 overlapped with Pd 3d lines for PdAu/rGO. Figure 4a
shows the high-resolution spectrum of the Au 4f doublet for gold in the Au/rGO electrode.
The deconvolution of two 4f photoelectron lines shows that each line consists of the
following two components: the 4f7/2 line consists of one component with a higher intensity
at 84.3 eV and one with a lower intensity at 84.5 eV, and the 4f5/2 line consists of one
component with a higher intensity at 87.9 eV and the other one with lower intensity at
88.0 eV. Similarly, for the PdAu/rGO electrode, Figure 4b, the 4f7/2 line consists of one
component with a higher intensity at 84.2 eV, and the other one with a lower intensity at
84.4 eV. The 4f5/2 line consists of one component with a higher intensity at 87.8 eV and the
other one with a lower intensity at 88.0 eV.
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Figure 4. High-resolution XPS spectra of the following: (a) Au 4f line for Au/rGO; (b) Au 4f line for
PdAu/rGO; (c) Au 4d line for Au/rGO, and (d) Au 4d + Pd 3d lines for PdAu/rGO.

When compared to the previously reported spectra for gold, it can be seen that the
positions of the two lines with higher intensity correspond well to the ones of the bulk
components of bare Au(111), (Au 4f7/2 at 84.4 eV and Au 4f5/2 at 88.07 eV), in its metallic
state, Au0 [19,20]. On the other hand, the two lines of lower intensity correspond to the
surface component of bare Au(111). The significantly lower intensity of both Au 4f peaks
components for PdAu/rGO than for Au/rGO indicates that palladium, which is deposited
on previously prepared Au/rGO, partially shields the underlaying gold nanoparticles.
This also means that Pd is deposited on the top of gold nanoparticles, as well as on their
edges. When Pd partially covers the top of gold nanoparticles, the bulk Au 4f component
becomes significantly lower compared to Au/rGO. On the other hand, the surface com-
ponent becomes wider with relatively higher intensity, meaning that the relative overall
number of gold edges is increased. Apart from the influence of the intrinsic properties of
both Pd and Au, the number of edges as surface active sites is crucial for the activity of
graphene-supported PdAu nanoparticles for HER.

A slight downshift of 0.1 eV for both the bulk and surface components of Au 4f7/2 and
Au 4f5/2 lines in PdAu/GC compared to Au/rGO, indicates the influence of the presence
of the deposited palladium on the electronic state of the deposited gold nanoparticles [21].

Figure 4c shows a broad Au 4d5/2 line for Au/rGO at 335.4 eV, which is downshifted
by 0.3 eV compared to metallic gold (335.7 eV [22]), due to the influence of the rGO support.
Figure 4d shows that the Au 4d5/2 line becomes narrower for PdAu/rGO, and partially
overlaps with the Pd 3d doublet line as the primary one for palladium. Therefore, the Au
4d5/2 binding energy region for Au/rGO consists of overlapped Au 4d5/2 + Pd 3d5/2 lines
for PdAu/rGO. This line is deconvoluted into the following three components: two Pd
3d5/2 at different binding energies, and one Au 4d5/2 component. The peak for the Au 4d5/2
line at 335.3 eV shows that this line is further downshifted by 0.1 eV compared to the same
line for Au/rGO, due to the additional electronic influence of the deposited palladium.

The Pd 3d5/2 photoelectron line at 335.7 eV corresponds to Pd0, but the binding energy
is slightly higher than for polycrystalline Pd [23]. This is in agreement with a positive shift
found for the supported Pd nanoparticles [24,25] caused by the loss of a metal character
of the deposited Pd nanoparticles compared to bulk Pd. The other Pd 3d5/2 component
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at 337.8 eV can be associated with the presence of a smaller fraction of palladium oxide,
although rather to PdO2 [26] than to PdO [27]. The palladium 3d3/2 photoelectron line at
340.8 eV corresponds to the metallic Pd0 (340.5 eV) [23]. The other Pd 3d3/2 line at 342.3 eV
corresponds to PdOx with unspecified stoichiometry [28]. For metallic Pd, the spin–orbit
separation between the two Pd 3d components is 5.32 eV, which agrees with literature data
(∆ = 5.3 eV) [23]. Table 1 shows the atomic percentage (at%) of the elements constituting
Au/rGO and PdAu/rGO electrodes, estimated from high-resolution spectra.

Table 1. Atomic percentage (at%) of the elements constituting Au/rGO and PdAu/rGO electrodes.

Line Au/rGO Electrode
at%

PdAu/rGO Electrode
at%

C 1s 87.37 85.35
O 1s 11.34 13.31

Au 4f7/2 1.18 0.21
Pd 3d5/2 1.13

The presence of partially oxidized Pd, either as PdOx or hydrated PdOx (or even cor-
responding hydroxides) [26], is consistent with the presence of a higher atomic percentage
of oxygen on PdAu/rGO than on Au/rGO (see Table 1).

Taking into account the atomic percentages of Au and Pd and their ratios, it is esti-
mated that PdAu nanoparticles are composed of 15% Au and 85% Pd.

2.3. Electrochemical Measurements
2.3.1. Cyclic Voltammetry of PdAu/rGO

Figure 5 shows cyclic voltammograms of the PdAu/rGO electrode in 0.5 M H2SO4
solution in a wide potential range. The inset illustrates the CV curve of a bare GC-supported
rGO electrode recorded from 0.0 V to 0.7 V, the shape of which indicates a high double-layer
capacity, following reported ones recorded under similar conditions [29,30].
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rGO electrode. The scan rate was 50 mV/s.

Cyclic voltammograms of the PdAu/rGO electrode with the opening of the upper
potential limit from 0.80 V to 1.60 V show that CV features indicating the presence of the
deposit on the rGO substrate appear for the positive limit of 1.2 V and higher. The peaks
that are characteristic of hydrogen adsorption/desorption processes on the deposited palla-
dium cannot be identified clearly due to the early hydrogen evolution/oxidation reactions
(HER/HOR). With the increase of the upper potential limit, peaks for HER/HOR increase,



Catalysts 2021, 11, 481 7 of 12

as well as the double-layer capacity. The low-intensity peak at approx. 0.77 V, which origi-
nates from the reduction in palladium oxides, becomes visible on the CV recorded in the
potential range of 0.00 V to 1.20 V. By increasing the upper limit, the intensity of the Pd
reduction peak increases. At the same time, the peak gradually shifts to more negative
potentials. The second reduction peak at approx. 1.15 V originates from the reduction
in gold oxides. This peak can barely be seen even on the last recorded voltammogram
in the potential range of 0.0 V to 1.6 V, and even in the case of bare Au/rGO (CV not
presented). When the deposited Pd partially covers previously deposited Au nanoparticles,
the presence of the Au oxide reduction peak is almost invisible on the CVs. The exception
is the last recorded CV, where the Au reduction peak appears, but the palladium is most
likely already dissolved to some extent due to high potentials [31]. It is expected to be due
to a small amount of the deposited Au on both Au/rGO and PdAu/rGO as revealed by
XPS (see Table 1).

On the other hand, on the CV recorded in the potential range of 0.0 V to 1.2 V, palla-
dium oxidation/reduction peaks are visible. Therefore, palladium coverage is estimated
from the ratio between the charge passed during Pd oxide reduction on PdAu/rGO and
bare polycrystalline Pd (424 µC/cm2 [32]). The calculated charge of 10.4 µC/cm2 gives the
coverage value of 2.5%, which is in agreement with the XPS results (see Table 1).

2.3.2. Hydrogen Evolution on Au/rGO and PdAu/rGO Electrodes

Figure 6 shows LSV curves and the corresponding Tafel slopes for HER on bare
rGO/GC, Au/rGO, and PdAu/rGO electrodes. Among polarization curves for HER in
Figure 6a, also presented are the ones for PdAu/rGO recorded after holding the potential
at −0.11 V for 10 min, and additionally at −0.04 V for 3 h.
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The onset potential of approx. −0.25 V for HER on rGO/GC is much higher than for
similar carbon-based electrodes [13,33], including various graphene structures [9,34–36].
Besides, higher current densities for a given potential indicate higher activity for HER of
the bare rGO/GC substrate electrode used in this work.

The onset potential of –0.09 V for HER on Au/rGO obtained by a spontaneous de-
position of Au on rGO/GC is the same as for Au/GC prepared by the electrochemical
deposition of Au on bare GC [13], demonstrating similar catalytic activity of both electrodes.

On the other hand, the PdAu/rGO electrode shows an onset potential of approx.
−0.01 V, which is almost equal to the equilibrium potential for HER. This demonstrates the
extraordinarily high activity for HER of the electrode consisting of a low atomic percentage
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of Au and Pd (see Table 1). The PdAu/rGO electrode becomes even more active after
holding the potential during the chronoamperometry measurements (see below), with the
same onset potentials but higher current densities. Comparing the activity for HER of the
Au/rGO for the same current density of −5.0 mA/cm2, the potential for HER is shifted
positively by 240 mV (from −0.33 V for Au/rGO to −0.09 V for PdAu/rGO), and an
additional 30 mV after CA measurements.

Figure 6b shows the corresponding Tafel slopes for HER on the bare and modified
rGO electrodes. The high value of −270 mV/dec for bare rGO indicates a slow reaction
rate, as already reported in the literature [34–36]. The Tafel slope of −130 mV/dec, which is
obtained for Au/rGO, indicates that the Volmer step is the rate-determining step in the
Volmer–Heyrovsky mechanism. This slope is reported for various gold structures [8,37].
The slope of −65 mV/dec for the PdAu/rGO electrode indicates a faster reaction rate,
and a Volmer–Heyrovsky mechanism with a slow Volmer step. The same is obtained in our
previous work for Pd and Au nanoparticles deposited on a GC substrate [13]. The lowest
slope of −46 mV/dec is obtained on PdAu/rGO after CA measurements, which indicates
faster kinetics. The same value is obtained for AuPd nanoclusters supported on graphitic
carbon nitride [10].

This decrease in the Tafel slope in a sequence: rGO/GC > Au/rGO > PdAu/rGO
> activated PdAu/rGO, indicates a respective increase in the reaction rate. In addition,
the change in the rate-determining step, and the reaction mechanism for all investigated
electrodes cannot be determined with certainty due to their dependence on the coverage of
adsorbed hydrogen, as well as on the potential as discussed comprehensively in ref. [38].

2.3.3. Stability and Durability Test for HER on PdAu/rGO Electrode

For the stability and durability test, chronoamperometry curves for HER on PdAu/rGO
were recorded in deaerated 0.5 M H2SO4, at a constant potential and with the electrode ro-
tating at 2500 rpm, and presented in Figure 7. The PdAu/rGO electrode was first subjected
to a potential of −0.11 V for 10 min, insert in Figure 7. High hydrogen evolution current
densities were immediately reached, with visible bubbles on the electrode surface, achiev-
ing a constant value of −22.3 mA/cm2 after 7 min. The LSV curve recorded after shows
improved catalytic properties for HER compared to the one before holding the potential
(see Figure 6a). In the second CA measurement, the holding potential was −0.04 V, and the
duration was 3 h. The activity for HER increased during the first hour then stabilized at
−5.3 mA/cm2. The LSV curve recorded after that shows no difference with the first one
recorded after holding the potential for 10 min at −0.11 V (see Figure 6a). These indicate
that the PdAu/rGO was activated and stabilized after the first CA measurement. Such ac-
tivation of the electrode during prolonged test measurements is commonly found in the
literature [9–11].

Besides, the hydrogen yield was calculated from the LSV curves recorded immediately
after the PdAu/rGO electrode preparation (red curve in Figure 6a) and after CA at a
constant potential of −0.04 V for 3 h (olive curve in Figure 6a). Both curves were integrated
over the potential range from 0.0 to −0.3 V, i.e., for the hydrogen evolution duration of 30 s.
For HER on prepared PdAu/rGO, the amount of evolved hydrogen was 5.2 × 10−10 mol,
while after activation during CA measurement, the hydrogen yield was 12.4 × 10−10 mol.
Finally, the PdAu/rGO electrode activated during prolonged hydrogen evolution is the
most active one concerning both the onset potential and reaction rate.
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constant potential of −0.04 V vs. RHE for 3 h.

We can only speculate about the origin of such high activity for HER of the PdAu/rGO
electrode. Namely, according to AFM analysis, nanosized PdAu nanoparticles are situated
on graphene edges. The XPS study revealed a low atomic percentage of both metals on
the PdAu/rGO surface, and that PdAu nanoparticles consist of 15% Au and 85% Pd.
Besides, the intrinsic Pd activity for HER enhances when diluted with a low amount
of Au. Due to the low amount of both metals on the PdAu/rGO electrode, the density
and size distribution of PdAu nanoparticles cannot be determined precisely. In many
previous studies, the catalytic activity was correlated with the size and composition of
PdAu nanoparticles. The catalytic effect of Au addition to Pd for hydrogen production,
where it prevents Pd deactivation, is reported for formic acid dehydrogenation over a
carbon-supported PdAu catalyst [39]. The effect of the composition on the activity for
HER in an acid solution is reported for PdxAuy nanoparticles supported on carbon-based
materials [12,13,40]. In this case, we can speculate that graphene edges and other defect
sites rich in PdAu nanoparticles provide many active surface sites for proton reduction
and subsequent hydrogen adsorption and evolution. The low content of Au in PdAu
nanoparticles contributes to the dilution of the deposited Pd with Au and the formation of
more active sites suitable for hydrogen adsorption, not only on the edges but also on top of
the PdAu nanoparticles.

The activation of the PdAu/rGO electrode for HER is most likely caused by the
disintegration and rearrangement of PdAu nanoparticles during the hydrogen evolution
reaction, either with prolonged cycling (LSV measurements) or while holding the potential
in the HER potential region (CA measurements). Such disintegration and rearrangement
of the deposited Ru and Os nanoislands spontaneously deposited on Au(111) and induced
by higher potentials are previously reported [41,42], and this most likely occurs during the
hydrogen evolution reaction.

Further studies about surface active sites for hydrogen adsorption of PdAu nanoparti-
cles are needed, including surface characterization after potential cycling or holding the
potential in the hydrogen evolution region.

3. Materials and Methods
3.1. Materials Preparation
3.1.1. Graphene Synthesis

Graphene was synthesized by the electrochemical exfoliation of spectral graphite
(carbon rod 5 mm dia., Specpure, Grade 2, Johnson Matthey Chemicals Ltd., London, UK)
in 1 M H3PO4 solution according to the procedure described in ref. [43]. Graphite rods
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connected to the DC power supply were used as the anode and cathode electrodes. The dis-
tance between the electrodes was about 5 cm. A voltage of 1.0 V was applied for 5 min first,
and after that it was raised to 7.0 V and held for 10 min. The poles of the graphite bars
were changed every 10 min. After exfoliation, the resulting solution was filtered and the
filtrate was washed with water. The graphite filter paper was dried for several hours at
110 ◦C. The resulting powder was dissolved in ethanol and treated in an ultrasonic bath
for about 4 h. A suspension containing 3 g/L of thus synthesized graphene was further
used for graphene/GC electrode preparation.

3.1.2. Preparation of Au/rGO and PdAu/rGO Electrodes

The rGO/GC substrate electrode was prepared by applying the graphene suspen-
sion containing 3 g/L of synthesized graphene dropwise and drying successively to a
total weight of 0.075 mg of graphene on a 5 mm radius GC electrode, i.e., 0.38 mg/cm2.
The Au/rGO electrode was prepared by spontaneous deposition of gold from 1 mM
HAuCl4 + 0.5 M H2SO4 solution for 10 min. The PdAu/rGO electrode was prepared by
depositing palladium spontaneously from 1 mM PdSO4 + 0.05 M H2SO4 solution for 30 min
on the previously obtained Au/rGO electrode. The spontaneous deposition involved the
immersion of the electrodes at the open-circuit potential into the depositing solutions at
room temperature. To produce PdAu nanoparticles consisting of a lower amount of Au than
Pd, the immersion time for Au deposition was lower than for subsequent Pd deposition.

3.2. Materials Characterization

AFM imaging of rGO/GC, Au/rGO, and PdAu/rGO electrodes was performed ex situ
using Multimode Quadrex SPM (Veeco Instruments, Inc., Plainview, NY, USA). The height
and phase AFM images were recorded simultaneously in a tapping mode using a silicon
probe with a radius ≤ 10 nm (Vista probes).

XPS characterization of the electrodes was carried out using the SPECS System with
an XP50M X-ray source for the Focus 500 and PHOIBOS 100/150 analyzer. An AlKα source
(1486.74 eV) at 12.5 kV and 32 mA was used for this study. XPS spectra were obtained at a
pressure of 7 × 10−9 mbar. To minimize the effects of charging on the samples, a SPECS
FG15/40 electron flood gun was used for charge neutralization. All the peak positions were
referenced to C 1s at 284.8 eV. Spectra were collected by SpecsLab data analysis software
and analyzed using the CasaXPS software package, both supplied by the manufacturer.

3.3. Electrochemical Measurements

Electrochemical measurements were performed by Pine potentiostat in a three-electrode cell,
where the working rGO/GC, Au/rGO, or PdAu/rGO electrode was mounted into the
Teflon holder in a rotating disk electrode set up. The counter electrode was a Pt wire, and the
reference electrode was Ag/AgCl, 3 M KCl. All potential scales and all potential values in
the text are given vs. the reference hydrogen electrode (RHE). Electrochemical characteri-
zation of the electrodes was performed by cyclic voltammetry, while their electrocatalytic
activity for HER was examined using linear sweep voltammetry and chronoamperometry,
all in deaerated 0.5 M H2SO4 solution.

3.4. Chemicals

Suprapure H3PO4 (Fisher Chemical, Hampton, NH, USA) was used for graphite
exfoliation, and ethanol (96%, Merck, Darmstadt, Germany) for resulting graphene powder
dissolution. Depositing Au and Pd solutions were prepared using HAuCl4(aq) (MaTeck,
Jülich, Germany), PdSO4·2H2O (Alfa Aesar, Haverhill, MA, USA), and suprapure H2SO4
(Merck). Working electrolyte solutions were prepared using suprapure H2SO4 (Merck).
Milli-pure water was used for all solutions. The electrochemical measurements were
performed in solutions deaerated by N2 (99.9995%, Messer, Frankfurt, Germany).
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4. Conclusions

PdAu/rGO electrode preparation involved successive spontaneous deposition of Au
and Pd. The XPS results revealed that PdAu nanoparticles consist of 85% Pd and 15%
Au. The analysis of phase AFM images showed that 20–50 nm large PdAu nanoparticles
occupy the edges of reduced graphene sheets. The PdAu nanoparticles edges are supposed
to be the active sites for HER. During prolonged hydrogen evolution, PdAu nanoparticles
most likely undergo disintegration and rearrangement. This causes the initial increase and
subsequent stabilization in the activity of the PdAu/rGO electrode for HER. The reaction
begins at −0.01 V, while the Tafel slope after prolonged hydrogen evolution is −46 mV/dec.
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