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ABSTRACT OF DISSERTATION 

RATE TO MEASURE MATHEMATICS TEACHING: 

USING THE MANY-FACET RASCH MODELING TO REEVALUATE THE 

MATHEMATICS CLASSROOM OBSERVATION PROTOCOL FOR PRACTICES 

(MCOP2) 

Rater-mediated classroom observation protocols are increasingly being used for 

teaching performance assessments, which makes identifying and controlling for various 

rater effects a central issue to ensure the rating quality.  A series of validation studies under 

the classical test theory framework, including content validity, interrater reliability, and 

structure analysis, have been completed for the 16-item Mathematics Classroom 

Observation Protocol for Practices (MCOP2). 

However, the MCOP2 data have never been investigated under the Rasch 

framework.  Due to the methodological limitations of the CTT approach for rater-

mediated assessments, it is imperative to examine the MCOP2 validity and reliability using 

the MFRM modeling technique to implement dimensionality analysis, item-level analysis, 

rater effects control, and ratee and rater ability level calibration.   

To that end, two existing samples of the MCOP2 data were obtained and analyzed, 

where twelve raters were asked to rate 237 math classroom observations, using the 

MCOP2 classroom observation protocol.  The data were analyzed under the MFRM 

framework, using Facets 3.83.3.   

Results of the Facets analysis showed that both the MCOP2 subscales (i.e., Student 

Engagement & Teacher Facilitation) were valid, unidimensional, and highly reliable rater-

mediated performance measures across raters, ratees, and study samples.  However, rater-

item bias analyses revealed a type of intra-rater inconsistency, where some raters tended 

to rate more severely than other raters on certain items while more leniently on some other 

items.   

The overall findings are promising in that they provide systematic preliminary 

psychometric evidence for the viability of the MCOP2 protocol to be used for math 

teachers’ self-assessment and/or peer-assessment along with other designated raters in the 

future studies. 
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CHAPTER I: 

 STATEMENT OF THE PROBLEM 

Introduction 

Teaching performance assessment has been managed unscientifically and 

measured poorly for too long.  The various vague, multivariate definitions of effective 

teaching performance that exist in pertinent literature have made accurate 

measurement/assessment of teaching performance nearly impossible, because these 

definitions tend to mix values, emotions, personality, behaviors, processes, teaching 

contexts, and even outcomes into one or more unidimensional latent traits.  To make 

matters worse, teaching performances are often assessed by human raters from different 

backgrounds (e.g., teacher educators, mentors, cooperating classroom teachers, school 

leaders, peer teachers, students, etc.)  Thus, the results of the teaching performance 

assessment are inevitably subject to serious human bias, and cannot be psychometrically 

compared across teacher preparation programs, teaching subjects, student populations, 

schools, and other demographic samples. 

The recent research on teaching performance has shifted the focus from the 

standardization of teaching practice towards the complexity of teacher-student 

interactions in the co-constructed classroom learning environment (Gomez, Kyza & 

Mancevice, 2018).  Consequently, in practice, classroom observation protocols with 

rubric-based rating scales are increasingly used and valued for teaching performance 

assessment to collect rich, real-time data on pedagogical practices.  Such protocols are 

designed to quantify teaching performance on a number of carefully selected, observable 
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behavioral dimensions.  Although this approach may be unable to capture the full 

complexity of teaching through a single statistical measure, it can provide a potential 

common reference framework to assess and compare teaching practices across raters, 

teaching education programs, classrooms, schools, and regions.  Thus, it is critical to 

identify the factors that introduce construct-irrelevant sources of variance and to control 

for their adverse effects upon the validity and reliability of these classroom observation 

protocols.  To that end, the current study applies a Rasch technique (i.e., many-facet 

Rasch modeling) to account for rater variability and other construct-irrelevant variances 

in analyzing data collected via the observational protocols. 

Rater-Mediated Performance Assessment 

In typical performance assessments, examinees are required to create a response 

or perform a task for a particular constructed-response item or task, rather than choose 

the correct answer from the test-given alternatives.  Human raters are then trained and 

employed to analyze, interpret, and evaluate the examinees’ responses/task performances 

to assign scores/ratings that reflect the true proficiency levels for individual examinees as 

intended by the assessment measures.  Naturally, the process of such performance 

assessments mediated by human raters is complex and indirect, and very vulnerable to a 

variety of measurement errors, such as rater variability/effects and other construct-

irrelevant variances (Eckes, 2009; Han, 2019).  

Among others, the validity and reliability of the interpretation and use of ratings 

from rater-mediated performance assessments are primarily threatened by various rater 

effects (Eckes, 2015; Wind, 2019).  To address the challenge, Standard 6.9 in the 

Standards for Educational and Psychological Testing (American Educational Research 
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Association (AERA), American Psychological Association (APA), & National Council 

on Measurement in Education (NCME), 2014) recommend documenting and correcting 

“any systematic source of scoring errors” when using the scores/ratings from rater-

mediated performance assessments (p. 118).  Specifically, the Standards suggest that the 

rating quality in rater-mediated performance assessments should be evaluated and 

analyzed in a way that 

monitors possible effects on scoring accuracy of variables such as scorer, task, 

time, or day of scoring, scoring trainer, scorer pairing, and so on, to inform 

appropriate corrective or preventive actions . . .Systematic scoring errors should 

be corrected, which may involve rescoring responses previously scored, as well as 

correcting the source of the error. (AERA, APA, & NCME, 2014, p. 118) 

Teaching Performance Assessment 

Feiman-Nemser (2012) proposes the notion that teacher learning should be 

viewed as a continuum that extends across the professional lifespan.  In line with this 

conceptualization, related empirical research literature review suggests that appropriate 

usage of teaching performance assessments for both pre-service and in-service teachers 

are promising in improving teacher learning and teacher effectiveness (Darling-

Hammond, Newton, & Wei, 2013; Wei & Pecheone, 2010).  Consequently, a consensus 

within the teaching profession has gradually formed to increase the implementation of 

performance-based assessments for both formative and summative evaluation of teaching 

effectiveness (Knight et al., 2014), because compared to other forms of knowledge-based 

teacher evaluation, teaching performance assessments focus on the 

proficiency/effectiveness of teachers in applying their subject-matter and/or pedagogical 
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content knowledge to the specific classroom contexts during the act of teaching 

(Santagata & Sandholtz, 2019).  

Another unique advantage of teaching performance assessments lie in the fact that 

they are by design linked to established professional teaching standards that acknowledge 

the complexity of actual teaching practice and promote evidence-based effective teaching 

(Darling-Hammond, 2010; NBPTS, 2000; Sato, 2014).  Empirical studies also support 

the positive relationships between scores on a teaching performance assessment (e.g., the 

Performance Assessment for California Teachers [PACT]) and student achievement gains 

(Darling-Hammond et al., 2013). 

Despite the strong potentials of teaching performance assessments as discussed 

above, however, concerns remain among researchers and practitioners regarding the 

validity and reliability of using teaching performance assessments to capture teachers’ 

true teaching quality.  For example, disagreements have been reported in some studies 

between pre-service teachers’ scores on a teaching performance assessment and teacher 

educators’ judgments about their teaching qualifications (Sandholtz & Shea, 2012; 

Tellez, 2016).  Furthermore, researchers also find that some teachers can deliberately 

“tailor” their classroom instruction (often in ways that contradict their everyday teaching 

practice) to cater to the specific standards of classroom observation protocols 

(Meuwissen, Choppin, Cloonan, & Shang-Butler, 2016).  These issues warrant the urgent 

need for further research on the development, validation, and use of teaching 

performance assessments to promote teacher and teaching effectiveness. 

Mathematics Classroom Observation Protocol for Practices   

Developed by a team of math teacher educators at the University of Alabama 
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(Gleason, Zelkowski, Livers, Dantzler, & Khalilian, 2014), the Mathematics Classroom 

Observation Protocol for Practices (MCOP2) is a K-16 mathematics classroom instrument 

designed to measure the degree of alignment of the mathematics classroom with the 

Standards for Mathematical Practice from the Common Core State Standards in 

Mathematics (NGACBP & CCSSO, 2010); “Crossroads” and “Beyond Crossroads” from 

the American Mathematical Association of Two-Year Colleges (AMATYC 1995; 

AMATYC 2006); the Committee on the Undergraduate Program in Mathematics 

Curriculum Guide from the Mathematical Association of America (Barker et al., 2004); 

and the Process Standards of the National Council of Teachers of Mathematics (NCTM, 

2000).  The instrument contains 16 items originally intended to measure three primary 

constructs (student engagement, lesson content, and classroom discourse) as validated by 

a review of over 150 individuals self-identified as mathematics teacher educators from a 

mixture of mathematics departments and departments or colleges of education (Gleason 

et al., 2014).  Each of the 16 items also contains a full description of the item with 

specific requirements for each rating level (Gleason & Cofer, 2014).  

As a teaching performance assessment exclusively designed for math teachers, 

MCOP2 focuses on both direct and dialogic instruction encompassing classroom 

interactions for the development of student math conceptual understanding, specifically 

examining teacher facilitation and student engagement (Watley, 2017; Zelkowski & 

Gleason, 2016; Zelkowski, Gleason, & Livers, 2017).  Presently MCOP2 has gone 

through a series of systematic validation studies under the classical test theory (CTT) 

framework (Gleason, Livers & Zelkowski, 2017), including content validity, interrater 

reliability, and structure analysis.  However, the observation protocol has never been 
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investigated under the Rasch framework for dimensionality, item-level analyses, rater 

effects control, and ratee and rater ability level calibration. 

Many-faceted Rasch Model (MFRM) 

The Many-Facet Rasch model (MFRM) is appropriate for analysis of multiple 

variables or facets at the same time possibly influencing assessment results.  MFRMs 

belong to the family of Rasch models such as rating-scale models (RSM), partial credit 

models (PCM), linear logistic test models (LLTM) (Kubinger, 2009), the mixed Rasch 

model (Baghaei & Carstensen, 2013), and others.  MFRM approach has been used 

extensively in the areas such as language testing, educational and psychological 

measurement, and health sciences.  A typical assessment scenario where MFRM can be 

applied may involve a four-category rating scale and raters to evaluate performance of a 

test taker.   

The scenario described above defines a three-facet situation with test takers, tasks, 

and raters as the three facets.  This three-facet situation can be expressed as follows: 

(1) 

where ppljk is the probability of test taker p receiving a rating of k from rater j on task l; 

ppljk-1 is the probability of test taker p receiving a rating of k-1 from rater j on task l; 

θp is the proficiency of test taker p; δl is the difficulty of task l; αj is the severity of rater j, 

and τk is the difficulty of receiving a rating of k relative to k-1 (threshold parameter).  In 

this three-facet rating scale model (Linacre & Wright, 2002), different facets such as test 

takers, tasks, and raters can be regarded as independent variables (IVs) that affect the log 

odds as dependent variables (DV). 
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Unlike other IRT models where item discrimination is estimated freely on an 

item-by-item basis, the Rasch model scales the discrimination parameters for all items 

equally to 1.  This constraint allows the Rasch models to place both item difficulty and 

person ability on the same equal-interval log-odds (logit) scale.  MFRM extends the 

typical Rasch model (that involves test-takers and items as its only two facets) by 

permitting the addition of facets, or sources of variability.  MFRM can model all these 

facets jointly and analyze the pattern of examinee responses, rater scores, item 

functioning in the form of fit statistics that help detect aberrant behavior on any of the 

facets (Sims et al., 2020). 

MFRM has been readily employed to control for rater effects (Eckes, 2015; 

Engelhard, 1992), and is widely accepted as a robust statistical mechanism that adjusts 

for rater effects and identifies outlying raters or examinees, resulting in a modified “fair 

average score” that represents a more accurate assessment.  Moreover, MFRM can also 

provide scale diagnostic data regarding rater use of the scale in terms of both consistency 

and consensus (Knoch & Chappelle, 2018). 

Another advantage of using MFRM is that they are robust against missing data 

(often resulting from not-fully crossed research designs where not all raters rate all 

examinees) as they are only evaluated for observed data points.  There is no requirement 

to impute for unobserved data (Linacre, 1993, 1995, 2001).  

The Problem Defined 

Rater-mediated classroom observation protocols are increasingly being used for 

teaching performance assessments, which makes identifying and controlling for various 

rater effects a central issue to ensure the rating quality.  Researchers employ two common 
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approaches to evaluate the rating quality in rater-mediated assessment: the number-

correct score approach under the classical test theory (CTT) framework, and the latent 

trait modeling approach under the item response theory (IRT)/Rasch framework.   

For the CTT number-correct score approach, different indices of interrater 

reliability (IRR) are computed and compared, for instance via absolute interrater 

agreement or Cohen’s kappa (Cohen, 1960).  However, empirical research literature 

shows ample evidence that the CTT approach may result in unintended interpretations of 

a scoring rubric (Eckes, 2008), biased ratings due to power dynamics among raters (Hoyt 

& Kerns, 1999), or the need for costly and time-consuming training programs that often 

fail to produce a high degree of agreement (Barrett, 2001).   

Furthermore, Chen and his colleagues (2020) point out two significant theoretical 

flaws with this IRR approach.  First, this approach tends to ignore the unique impacts on 

rating quality resulting from the complex interactions between raters’ expertise, 

observational protocol rubrics, and classroom environments.  Second, this approach 

attributes rater drift (rater scores begin to vary over time or across occasions) to rater 

training (e.g., increased familiarity with the rubrics after practice) or consensus-making 

efforts (e.g., raters who originally assign different scores discuss with each other to reach 

an agreement for a certain examinee on a certain item/task), rather than to important 

differences in the rating data itself (Hoskens & Wilson, 2001). 

A series of validation studies under the CTT framework (Gleason, Livers & 

Zelkowski, 2017), including content validity, interrater reliability, and structure analysis, 

have been completed for the 16-item Mathematics Classroom Observation Protocol for 

Practices (MCOP2).  However, the MCOP2 data have never been investigated under the 
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Rasch framework.  Due to the methodological limitations of the CTT approach for rater-

mediated assessments as discussed above, it is imperative to examine the MCOP2 validity 

and reliability using MFRM.  Thus, the study aims to evaluate the MCOP2 rating quality 

from another psychometric perspective, which employs the MFRM modeling technique 

to implement dimensionality analysis, item-level analysis, rater effects control, and ratee 

and rater ability level calibration. 

Purpose of the Study 

Based on the discussions above, the purpose of this study is to evaluate a math 

classroom observation protocol (MCOP2) under a Rasch measurement framework for 

calibrating rater assessment of math teachers’ instructional performance, which combines 

the Rasch sub-dimensional modeling for internal structure validation and the Many-Facet 

Rasch Model (MFRM) for rater effects control. 

Research Questions 

There is a total of seven empirical research questions (ERQs) based on the above-

mentioned purpose of the study.  This section elaborates on the relationships between the 

research purpose and the related empirical questions. 

Research Questions 1-7 

The research purpose (i.e., to evaluate the validity and reliability of the MCOP2 

classroom observation protocol under the MFRM framework) guides the following seven 

research questions. 

1. To what extent do the observed rating data obtained from the MCOP2

instrument fit the MFRM modeling? This question is evaluated by testing the

MFRM model assumptions, including local independence, unidimensionality,
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overall model fit, rater fit, and item fit. 

2. To what extent does the MCOP2 observation protocol separate observed

teachers into distinct levels of proficiency?  Such a separation is evaluated by

examining the examinee facet in the MFRM analysis.

3. To what extent do raters differ in terms of the relative severity with which

they rate observed teachers?  This question is evaluated by examining the rater

facet in the MFRM analysis.

4. To what extent do raters consistently rate the teaching performance of

observed teachers?  This question is evaluated by investigating possible

interactions between raters and observed teachers using the MFRM analysis.

5. To what extent do raters consistently rate the teaching performance of

observed teachers across the MCOP2 items?  This question is evaluated by

examining investigating possible interactions between raters and the MCOP2

items using the MFRM analysis.

6. To what extent can the score levels of the MCOP2 items be distinguished,

without certain score levels being either underused or overused?  This

question is evaluated by examining both the graphic indicators (i.e., Item

Characteristic Curves, and Item Information Functions) and the statistical

indicators (i.e., item category ordering for individual raters, and rater fit

indices).

7. To what extent are the rater behaviors associated with the professional

background characteristics (i.e., in-service vs. pre-service teachers, schools,

and teaching grade levels) of the observed teachers?  This question is
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evaluated by examining possible interactions between raters and the facets 

indicating observed teachers’ professional background in the MFRM analysis. 

Significance of the Study 

In this section, scholarly significance is discussed in the following two aspects: 

the first aspect focuses on the systematic MFRM-based validation of the MCOP2 

classroom observation protocol for math teachers’ teaching performance, whereas the 

second aspect highlight the important implications of using the MFRM-calibrated 

MCOP2 ratings for promoting efficient and effective teacher peer- and self-assessments. 

MFRM-Based Validation Study 

Various types of psychometric techniques have been applied to identify and 

control for the sources of rater variability in rater-mediated performance assessments.  

Among those, Rasch models (especially MFRM) have gained wide recognition for their 

methodological robustness and easy adaptability for a rich variety of empirical research 

contexts.  For instance, studies on high-stakes assessments (e.g., language assessments) 

have focused on using MFRM analyses to investigate the reliability of rater judgments, 

rater biases, and the relationship between rater bias and rater training (McNamara & 

Knoch, 2012).  Applications of MFRM research in other research fields also include 

outpatient performance assessment (Kramer, Kielhofner, Lee, Ashpole & Castle, 2009), 

creative writing assessment (Barbot, Tan, Randi, Santa-Donato & Grigorenko, 2012), and 

behavior analysis (Mannarini, 2009).   

However, MFRM-based analyses have rarely found their way to rater-mediated 

teaching performance assessments, such as teacher observation protocols; and the 

existing few MFRM-related studies in this field only focus on examining and handling 
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rater effects for a specific sample of rating data (Chen, Yim, Kogen, Stieff, & Superfine, 

2020).  Thus, the current study is one of the first research efforts to adopt the MFRM 

framework to systematically examine the validity and reliability of a rater-mediated 

classroom observation protocol for math teachers: the Mathematics Classroom 

Observation Protocol for Practices (MCOP2). 

Identifying and controlling for rater effects is essential for improving the 

reliability of rating quality obtained from observational protocols.  Rater effects may take 

different forms and can be hidden by or confused for other parts of an assessment system.  

By examining various facets (rater, item, examinee, and others) as well the possible 

interactions among them, and the functioning of the rating scale, the MFRM 

measurement approach is used in this study to verify aspects of the MCOP2 assessment 

system that function as intended, as well as to detect the aspects that are potentially 

problematic.   

As an alternative to the Cohen’s kappa method under the CTT framework, the 

MFRM is applied here to establish interrater reliability and to account for rater variability 

at once.  Such a MFRM approach provides a robust psychometric framework to assess 

and compare teaching based on observational ratings of teacher practices (Johnson, 

Zheng, Crawford, & Moylan, 2019; Jones & Bergin, 2019), which can be used to 

compliment research based on other data sources to present a fuller and more accurate 

characterization of teacher practice (Chen et al., 2020).  In sum, the information gained 

from the findings of this study would hopefully help improve the psychometric properties 

of the MCOP2 observational protocol.  

MFRM-Calibrated Teacher Peer- and Self-Assessments  
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According to Sluijsmans and Prins (2006), teacher peer assessment can be utilized 

as an effective tool for promoting important teacher learning for four reasons.  First, peer 

assessments can motivate peer learning and peer communication among teachers that 

help to form a learning community (Johnson, Johnson, Holubec, & Holubec, 1994; 

Shachar & Sharan, 1994; Verloop & Wubbels, 2000).  Second, peer assessment fosters 

teachers’ critical reflection and analysis and the development of reflection skills 

necessary for making reliable judgments about peers' work (Birenbaum, 1996; Sambell & 

McDowell, 1998).  Third, teachers can readily transfer the skills they have learned from 

peer assessments to their own classroom settings and improve the ability to design 

assessments and make critical judgements about their student performances.  Lastly, 

teachers are expected to rely heavily on their peers’ judgments to estimate the 

effectiveness of their performances in the school setting (Brown, Rust, & Gibbs, 1994).  

Thus, being able to interpret the work of colleagues and peers is a prerequisite for 

professional development and for improving teachers’ functioning in the profession 

(Verloop & Wubbels, 2000). 

Sluijsmans and Prins (2006) proceeds to underline performance assessment as the 

foundation for peer assessment tasks, where judgments are made about the level of 

achievement attained by comparing teacher performance to predetermined standards.  All 

peer teachers attain the standards, whereby they are expected to make their best 

judgments about the performance of their peers and negotiate about appropriate criteria 

for these performances (Boud, 1995; Orsmond, Merry, & Reiling, 1996; 1997; 2000).  

Similarly, Stiggins describes the unique role of peer performance assessments in 

promoting professional learning in teacher education as: "Once students (teachers) 
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internalise performance criteria and see how those criteria come into play in their own 

and each other's performance, students (teachers) often become better performers" (1991, 

p. 38).

However, Cabello and Topping (2020) point out several prominent obstacles in 

effectively implementing peer assessments among teachers, including costs of time and 

resources for the organizers and participants, teachers’ initial reluctance and anxiety to 

participate in peer assessments, and most importantly, the fact that validity, reliability and 

fairness of peer assessments may be threatened by potential effects of teachers’ social 

considerations of friendships, popularity, enmity, and perception of criticism, as well as 

the tendency for the less socially risky option of assigning average scores on peer 

assessments. 

In addition to peer assessment, performance assessments also take the form of 

self-assessment (i.e., a formative assessment process in which students evaluate their own 

studies in accordance with predetermined criteria and goals), enabling learners to take 

more responsibility for their own learning and actively participate in the process of 

“assessment for learning” (Ballantyne, Hughes & Mylonas, 2002; Matsuno, 2009).  Self-

assessment familiarizes learners with well-defined performance criteria against which 

they evaluate their own learning with clear focus and motivate learning from their 

mistakes.  Just as Puhl (1997) argues, the biggest contribution of self-assessment to any 

learning and teaching process can be understood as “one of the important skills that 

should be developed for students to take with them when they leave school and then use 

them for lifelong learning” (p. 28). 

Not unlike peer assessment, however, the validity and reliability of self-
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assessment is also subject to the influences of rater characteristics and rating contexts, 

despite its positive effects on learning and on metacognitive knowledge levels (Topping, 

2009; Yurdabakan & Oğlun, 2011).  Moreover, empirical research shows that low to 

medium correlations are found between self, peer, and teacher assessments and these 

ratings are significantly different from each other, where self-assessments are the most 

lenient while peer assessments are the most severe (Aryadoust, 2015; Farrokhi, Esfandiari 

& Dalili, 2011; Farrokhi, Esfandiari & Schaefer 2012; Karakaya, 2015). 

To tackle the above-mentioned challenges in utilizing self- and peer assessments 

as a valid and reliability learning assessment tool, the Many-facet Rasch Model (MFRM) 

has been recommended to determine the reliability of peer and self-assessment scores and 

mitigate the limitations of classical CTT approaches (Baird, Hayes, Johnson, Johnson & 

Lamprianou, 2013; Kim, Park & Kang, 2012; Linacre, 1996).  The major methodological 

benefits of MFRM include (a) calibrating raw ratings for performance assessments 

affected by rater behavior (Mulqueen, Baker & Dismukes, 2000), (b) identifying the 

interactions between different sources of error (Haiyang, 2010), (c) accounting for more 

than one source of error simultaneously and producing higher ability estimates for 

validity (Ilhan, 2016), and (d) providing diagnostic information at the individual level 

rather than at the group level for raters and ratees (Barkaoui, 2008). 

MFRM has been adopted in limited studies to investigate self- and/or peer 

assessments from various perspectives (Erman Aslanoglu, Karakaya, & Sata, 2020): in 

some research, the MFRM approach is compared to other theoretical frameworks (Guler, 

2008; Macmillan, 2000; Sudweeks, Reeve & Bradshaw, 2005); some researchers use 

MFRM to examine the ratees’ proficiency on the construct/ability assessed as well as the 
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severity/leniency of the raters at the individual level (Akin & Basturk, 2012; Basturk, 

2008; Engelhard & Stone, 1998; McNamara & Adams, 1991; Weigle, 1998; Weigle, 

1999); some studies focus on investigating rater bias and factors affecting it (Aryadaust, 

2015; Cetin & Ilhan 2017, Farrokhi & Esfandiari, 2011; Saito, 2008; Schaefer, 2008); 

and some others aim to examine and compare rater sources (Farrokhi, Esfandiari, & 

Dalili, 2011).  Recently, Erman Aslanoglu, Karakaya, and Sata (2020) conducted a 

MFRM analysis to understand the role of teacher candidates’ participation in the 

assessment process (self- and peer assessment) in improving their scoring behaviors in 

self- and peer assessments.  They found a significant difference in teacher candidates’ 

rating behavior related to the rater types (self vs. peer), in that the raters appear more 

lenient in self-assessments rather than peer assessments.  In addition, raters tend to be 

more biased when they rate individual performances rather than group performances. 

Along this line of MFRM-based research, this research seeks to uniquely 

contribute to the literature by providing a MFRM-based, latent construct framework to 

systematically validate a classroom observation protocol for math teaching performance 

(i.e., MCOP2), and to anchor the parameters of the essential facets involved (i.e., item, 

raters, and ratees) as the basis for rating calibration in the future, wider application of 

MCOP2 in self- and peer assessments among K-16 math teachers. 

Limitations of the Study 

All research has limitations, and this study is no exception. Five major limitations 

are noted in the current investigation.  

First, the study is limited in terms of its generalizability to the total population of 

K-16 math teachers.  Only two samples of the MCOP2 data are used for the purposes of



17 

this study.  To improve the generalizability of the findings, the data from additional test 

administrations should be considered for comparison of the results.  Furthermore, the data 

from the two samples used for this study are collected from the K-16 math classrooms in 

only two states: Alabama and Kentucky.  The same analysis should be run for rating data 

collected from other states or regions for comparison of the results.   Additionally, the 

data from the two samples in the current study heavily focus on the observation and 

assessment of pre-service math teachers, which warrants the need for future research to 

increase the inclusion of in-service math teachers in their study samples.  

A second potential limitation of the study is related to the replicability of the 

MFRM-based validation analysis for other rater-mediated teaching performance 

assessments.  Although the MFRM-based approach appears more methodologically 

robust compared to traditional performance assessment methods (e.g., generalizability 

theory, interrater reliability indices), its application also presents various logistical 

challenges.  Among others, MFRM analyses require up-front planning/rating design, 

relatively large sample sizes (e.g., at least 30-50 persons in a sample for pilot/exploratory 

MFRM analysis according to Linacre, 1994), and specialized knowledge of measurement 

and psychometric principles.  In this sense, the current study may hold reference value for 

measurement and assessment professionals to determine whether the benefits of MFRM 

overwhelm the additional challenges associated with the technique. 

Third, problems with the data quality may affect the findings of the current study.  

These problems may include the way the data were collected, recorded, and stored, 

whether any data were missing when the initial rating was done, the security of the data, 

and possible errors in rating.  All these issues would normally be regarded as limitations 
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of a study, as the data quality issues could affect parameter estimation, such as item, 

rater, and examinee parameters in the MFRM analysis.  

Fourth, the sample size of 159 observed math teachers is relatively small 

compared to other studies applying the MFRM model; and the sample is not randomly 

selected, thus possibly limiting the external validity of the study.     

Finally, an additional limitation of the study concerns the secondary nature of the 

MCOP2 rating data used for the MFRM analyses.  Typically, researchers of any 

secondary data sources may experience difficulty in fully understanding all the data 

subtleties or problems encountered in the original data collection, recording, and storage 

process.  This data knowledge can be instrumental in the accurate interpretation of 

MFRM analysis findings. 
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CHAPTER II 

 REVIEW OF THE LITERATURE 

Introduction 

Chapter I described the recent major trends in the research literature related to 

rater-mediated teaching performance assessments.  Further, the existing gaps in the 

related research literature were identified regarding the understanding and handling of 

construct-irrelevant variances that threaten the validity and reliability of the rater-

mediated assessments.  In line with these identified needs warranting the current study, a 

brief introduction was also provided about the theoretical foundation and empirical 

application of the MFRM based analysis.  To address the research needs, this proposed 

study was designed to further examine the MCOP2 rating quality under the MFRM 

framework and its applicability in self- and peer assessments.   

Guided by the research purpose, seven empirical research questions were 

specified to determine to what extent the construct-irrelevant variance (especially rater 

effects) can be detected and controlled for the MCOP2 performance assessment based on 
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the MFRM analysis. 

The study was expected to make unique contributions to the knowledge base of 

rater-mediated teaching performance assessment by illustrating the application of the 

psychometric technique (i.e., MFRM) to improve the psychometric properties of typical 

classroom observation protocols designed for assessing teaching practices.  However, 

five major limitations of the study were also acknowledged as the issue of 

generalizability, data quality, sample size, modeling restrictions, and limitations 

associated with the researcher’s choice of using secondary data sources.  

In this chapter, a review of the literature was conducted using EBSCOhost, 

ProQuest, and Web of Science accessed through the library at University of Kentucky 

(UK).  Literature was reviewed and reported below on the existing MCOP2 validation and 

empirical studies, and the MFRM analysis as a calibrated framework for rater-mediated 

teaching performance assessments.  The key words Rater-Mediated Performance 

Assessment and MFRM were input for the literature search when using the above-

mentioned databases.  The resources listed in the search findings were then further 

filtered according to their degree of relevance to the current study. 

The first part of Chapter II, Summary of Earlier MCOP2 Validation and 

Empirical Studies, covers the considerations, standards, and procedures in the process of 

developing the MCOP2 classroom observation protocol, existing MCOP2 validation and 

empirical studies, and limitations in the MCOP2 research literature.  The second section 

in the chapter, A Calibrated Framework for Rater-Mediated Assessment (MFRM), 

discusses theoretical framework and empirical application of the MFRM analysis for 

rater-mediated performance assessment including dimensionality analysis, rater effects 
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and drift, interrater variability, and multi-facet calibration controlling for rater effects. 

Summary of Earlier MCOP2 Validation and Empirical Studies 

This section covers detailed discussion on Development of MCOP2, Existing 

MCOP2 Validation Studies, Existing MCOP2 Empirical Studies, and Limitations in 

the Existing MCOP2 Studies.  The end of the section further highlights the need for 

conducting the proposed dissertation study. 

Development of MCOP2  

The Mathematics Classroom Observation Protocol for Practices (MCOP2) was 

initially developed in 2013 by a team of mathematics teacher educators and researchers 

as a classroom observation instrument.  It was primarily designed to measure the degree 

to which a K-16 mathematics classroom aligns with the standards put forth by national 

mathematics organizations.  These standards include the Standards for Mathematical 

Practice from the Common Core State Standards in Mathematics (NGACBP & CCSSO, 

2010), “Crossroads” and “Beyond Crossroads” from the American Mathematical 

Association of Two-Year Colleges (AMATYC 1995; AMATYC 2006), the Committee 

on the Undergraduate Program in Mathematics Curriculum Guide from the Mathematical 

Association of America (Barker et al., 2004), and the Process Standards of the National 

Council of Teachers of Mathematics (NCTM, 2000) (Gleason & Cofer, 2014). 

The research team initially created 18 items focused on the interactions of the 

mathematics classroom understood to promote conceptual understanding.  In this process, 

some items were adapted from other instruments and others were developed to 

incorporate the framework and language of the Standards for Mathematical Practices.  
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The rubrics for the items were developed through an iterative process involving watching 

classroom videos as a group and determining specific criteria for each level in the rubric, 

along with referencing related literature for specific interactions.  This process resulted in 

the development of a user guide with detailed descriptors and rubrics (Gleason, Livers, & 

Zelkowski, 2015), along with an abridged user guide containing only the rubrics. 

The original 18 items in the MCOP2 instrument were intended to measure three 

primary constructs (student engagement, lesson content, and classroom discourse) based 

on the theoretical framework of the Common Core State Standards in Mathematics 

(CCSSM).  The researchers claimed that these three constructs were validated by a 

review of over 150 individuals self-identified as mathematics teacher educators from 

mathematics departments or departments or colleges of education (Gleason, Zelkowski, 

Livers, Dantzler, & Khalilian, 2014).  However, in their initial validation study (Gleason 

& Cofer, 2014), the results of the exploratory factor analysis pointed to a 2-factor model, 

instead of a 3-construct framework as originally planned.  Thus, the two constructs (i.e., 

student engagement and classroom discourse) were merged as one sub-dimension in 

parallel with the “lesson content” sub-dimension. 

The finalization of the MCOP2 development involved a multistage iterative 

process over three years based on the standards for scale development (AERA, APA, & 

NCME, 2014; Bell et al., 2012; DeVellis, 2011).  To determine whether it was essential 

to retain or remove certain items in the instrument, feedback on content validity of the 

items were gleaned from three rounds of expert panels.  The expert panels were 

comprised of a convenience sample of the members of the Association of Mathematics 

Teacher Educators (AMTE), who were invited by the MCOP2 developers to participate in 
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an initial online survey asking for feedback on the initial pool of 18 items and their 

perceived usefulness in measuring various aspects of the mathematics classroom.  The 

initial survey asked the participants to rank the usefulness of the item to measure 

mathematics instruction on a three-point scale (essential, not essential but useful, and not 

necessary) and provide comments about the items. 

The 164 professionals in the initial expert panel completed the online survey.  

Based on their responses and the comments, 16 out of the original 18 items were retained 

with minor edits in the wording of the item, with the largest such change involving 

changing “Students engaged in flexible alternative modes of investigation/problem 

solving” to “Students engaged in exploration/investigation/problem solving.”  One of the 

items removed was “Students explored prior to formal presentation.” for possible biases 

of the item toward specific teaching methods and ambiguity about the meaning of the 

terms in the item.  The second item removed was “The lesson promoted connections 

across the discipline of mathematics,” for its ambiguity as to what constituted another 

area of mathematics. 

The second and third round expert panels were asked to provide further content 

validity feedback regarding how the 16 items should be related to the four theoretical 

factors (i.e., Lesson Design, Lesson Implementation, Student Engagement with the 

Content, and Student Engagement with Peers), the details of which are presented in the 

next section, Existing MCOP2 Validation Studies. 

Theoretically, each of the final 16 MCOP2 items was created to correlate with one 

of the Standards for Mathematical Practice.  For example, Item 8 on the protocol is “The 

lesson provided opportunities to examine elements of abstraction (symbolic notation, 
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patterns, generalizations, conjectures, etc.)”  It matched the second Standard for 

Mathematical Practice that instructors should teach their students: 

“CCSS.Math.Practice.MP2: Reason abstractly and quantitatively” (NGACBP & CCSSO, 

2010).  Furthermore, as cited in Gleason & Cofer (2014), Item 9 was also conceptually 

connected to Part 1 of the CUPM Curriculum Guide which recommends (Barker, et al., 

2004):  

“For instance, one reason students encounter difficulty in applying mathematics to 

problems in other disciplines is that they have trouble identify appropriate 

mathematical procedures when problems are expressed with different symbols 

than those used in the mathematics classroom….instructors can go beyond 

conventional x, y notation to use a larger collection of symbols for both constants 

and variables.” (p. 20)  

Whereas operationally, each of the 16 MCOP2 items contains a full description of 

the item with specific requirements for each rating level on a four-category rating scale 

ranging from 0 to 3.  Again, take Item 8 as an example: to give the highest rating of 3, 

raters must observe “The students have a sufficient amount of time and opportunity to 

look for and make use of mathematical structure or patterns.,” while the lowest rating of 

0 would be justified if raters believe “Students are given no opportunities to explore or 

understand the mathematical structure of a situation.” in the lesson (Gleason, Livers, 

& Zelkowski, 2017). 

The MCOP2 developers and researchers noted four major benefits of the MCOP2 

instrument compared to other preexisting classroom observation protocols related to 

teaching mathematics (Gleason & Cofer, 2014).  First, unlike the MCOP2, many of the 
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other protocols were not created specifically for mathematics classrooms, but instead are 

intended for dual use in both mathematics and science classrooms (Wainwright, Flick, & 

Morrell, 2003; Walkington et al., 2012).  Second, some of the other preexisting protocols 

were not designed in line with the most recent national standards for mathematics 

classrooms.  Third, the rating rubrics of the MCOP2 instrument were written in a clear, 

concise, and accessible way for peer-to-peer reviews and assessments, and thus it was not 

necessary for the MCOP2 raters to receive any special training.  Finally, compared to the 

generic, lengthy, and subjective preexisting protocols that often contained around 50 

items, the finalized MCOP2 instrument only had 16 items and had gone through a three-

year, multi-stage process of robust validation of its psychometric properties. 

Existing MCOP2 Validation Studies 

A pilot study (Gleason & Cofer, 2014) was conducted at a large southern 

university to determine if the data collected aligned with the theoretical constructs 

verified by the expert survey.  Thirty-six math classrooms taught by 28 different 

instructors were observed throughout a semester.  The backgrounds of instructors (e.g., 

graduate teaching assistants, or tenured full professors) and math classrooms (e.g., 

college algebra, or upper division mathematics) both varied across a wide range.  

Based on the expert panel feedback, the 17-item MCOP2 that was used for the 

pilot study was initially designed to measure three constructs (i.e., Student Engagement, 

Lesson Design and Implementation, and Class Culture and Discourse).  Items 1-5 were 

supposed to measure Student Engagement, Items 6-11 were meant for Lesson Content, 

and Items 12-17 were classified under Classroom Culture and Discourse (Gleason & 

Cofer, 2014). 
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However, based on the results of the exploratory factor analysis (EFA), the 

original 3-factor assumption was re-examined after a low eigenvalue loading on the third 

factor.  Consequently, the two factors, Student Engagement and Classroom Culture and 

Discourse, were combined to create a new construct: Student Engagement and Classroom 

Discourse.  The resulting 2-Factor model explained over 50% of the total variance in the 

pilot study data.  

Cronbach's alpha was also calculated for the 17-item protocol as a whole, and for 

the two factors separately.  The overall Cronbach's alpha value for the protocol was .898; 

whereas the Cronbach's alpha values for the sub-scales of Lesson Content and Student 

Engagement and Classroom Discourse were calculated as .779 and .907, respectively.  

Thus, Gleason and Cofer (2014) concluded, “the internal reliabilities are high enough for 

both sub-scales and the entire instrument to be used to measure at the group level, either 

multiple observations of a single classroom or single observations of multiple 

classrooms” (p. 99).   

This pilot study marked the initial phase of a multi-stage, reiterative validation 

process for the MCOP2 instrument over a span of three years.  First, content validity of 

the MCOP2 items were verified with 164 experts in mathematics teaching education.  

These experts were invited to participate in three rounds of online surveys.  The first 

survey provided feedback on the initial 18 MCOP2 items and their usefulness in 

measuring various aspects of the teaching practices in a mathematics classroom (Gleason, 

Livers, & Zelkowski, 2017).  Over 94% of the experts rated the items as either “essential” 

or “not essential, but useful,” rather than “not useful” for measuring the mathematics 

teaching practices.  Based on the first-round expert feedback, two of the original 18 items 
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were removed from the MCOP2 instrument due to ambiguity in wording or definition of 

special terms.  This was followed by a second survey with 26 of the initial 164 experts 

that agreed to provide additional information.  This survey provided the experts with 

detailed description of each item, the associated theoretical constructs, and the intended 

purpose of the MCOP2.  With the information gained from the experts, the structure of 

the MCOP2 instrument was revised. 

Gleason, Livers, and Zelkowski (2017) also calculated the inter-rater reliability 

for using the MCOP2 instrument for math teaching performance assessment.  Five raters 

were chosen from various educational and professional backgrounds.  Among them, two 

had doctorates in mathematics education; one rater had a doctorate in mathematics and 

had been heavily involved in mathematics education research; one rater was a 

mathematics specialist that worked with secondary teachers and had taught at both the 

secondary and introductory college level.  The fifth rater was a graduate student in 

mathematics with minimal background in education other than teaching some 

introductory college math classes. 

Five different classroom videos were rated by all five raters.  Each rater 

independently observed and rated the five video-recorded math classrooms without 

receiving any formal rater training.  The sample of the five videotaped math teaching 

practice was chosen from each of K-2, 3-5, 6-8, 9-12, and undergraduate level math 

classrooms.  Gleason, Livers, and Zelkowski (2017) used the sub-scale score to calculate 

the intra-class correlation (ICC) among the five raters and reported acceptable inter-rater 

reliability. 

As a result of this rigorous validation process, the finalized MCOP2 protocol 
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contains 16 items measuring two primary constructs (i.e., Teacher Facilitation and 

Student Engagement) in an interaction-based, co-constructed math classroom 

environment.  However, before the protocol can be used for undergraduate-level math 

classroom with confidence, the validity and reliability of using the MCOP2 protocol 

needed to be further evaluated in other mathematics classrooms at multiple higher 

education institutions.  Both liberal arts schools and other types of research universities 

should also be included in the validation study samples to increase their 

representativeness to reflect the characteristics of the overall population. 

To that end, Watley (2017) tested the validity and reliability of the MCOP2 

protocol with a different study sample that included 110 college mathematics classrooms 

at the undergraduate level, representing a wide variety of college and university 

classrooms.  In her study, many of the sample classrooms were selected from three large 

southern doctorate-granting universities with enrollments of approximately 18,000 to 

35,000.  Other sample classrooms came from eight southern master's and baccalaureate 

colleges and universities with enrollments between 1,100 to 15,000 students.  All these 

high-education institutions had student populations representing a diversified 

demographic, ethnic, and cultural backgrounds.   

With these selections of institutions, the researcher was able to obtain 46 

observations at doctorate-granting universities, 21 observations at master's universities, 

and 43 observations at baccalaureate college and universities (See Table 5) in this study 

to overcome any potential bias due to the convenience sampling (Watley, 2017).  In this 

study sample, lower-level undergraduate mathematics lessons were taught in 89 

classrooms compared to the 21 upper level classrooms.  Seventy-two mathematics faculty 
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members agreed to participate in this study.  Since some instructors teach two or more 

completely different courses, a total of 110 observations were conducted in the Spring 

2016, Fall 2016, and Spring 2017 semester. 

A confirmatory factor analysis (CFA) was conducted on the rating data drawn 

from the new sample of undergraduate math classrooms, and the findings showed that the 

16-item MCOP2 data fit a two-factor model: Student Engagement and Teacher

Facilitation. Items 1-5 and items 12-15 loaded on Student Engagement, while items 4, 6-

11, 13, and 16 loaded on Teacher Facilitation.  The goodness of fit indices for the 

MCOP2 revealed an acceptable fit for three indices (χ2/df =1.19, SRMR=.08, and 

CFI=.90), and a poor fit for the other indices (RMSEA=.09 and GFI=.81). 

In terms of internal consistency, the Cronbach's alpha values for the two subscales 

of the MCOP2 were .888 for Student Engagement and .812 for Teacher Facilitation, 

respectively.  Both subscales therefore fell within the satisfactory range for basic research 

and were near the acceptable levels for individual measurement (Nunnally, 1978, p. 245-

246). 

 Additionally, simple linear regression analyses were also conducted to estimate 

the relationships between the constructs measured by the Mathematics Classroom 

Observation Protocol for Practices (MCOP2) and the abbreviated Reformed Teaching 

Observation Protocol (aRTOP).  The findings highlighted that Inquiry Orientation 

positively predicts higher ratings in both Teacher Facilitation and Student Engagement 

measured by the MCOP2, while better Teacher Facilitation also positively predicts more 

desirable Student Engagement.  

Existing MCOP2 Empirical Studies 
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Unlike the relatively solid literature on the MCOP2 validation studies, empirical 

research has been scarce concerning direct applications of the protocol in high-stake 

teaching performance assessments, probably due to the administrative and programmatic 

cost/complexities involved in pushing for the change in the evaluation of teacher and 

teaching quality evaluation.  Thus, the existing body of the MCOP2 empirical research 

seems limited to the fields of mathematical instruction reforms (e.g., active learning) and 

teacher education/preparation program evaluation studies.  

Zelkowski and Gleason (2016) conducted a two-year, mixed method study to 

investigate the value of using the MCOP2 in secondary mathematics teacher preparation 

programs (SEMA-TPP) to (a) compliment the generalist observation forms currently 

adopted by teacher educators and local cooperating teachers to assess student teachers’ 

instructional quality, and (b) facilitate preservice teachers’ growth and self-learning, 

especially in their planning of formal observation lessons.  Over the two-year study, the 

researchers examined 59 SEMA-TPP candidates in middle and upper grades mathematics 

classrooms using both observation forms.   

Their findings showed a very strong correlation between scores on the two forms, 

indicating an accurately scored MCOP2 rubric aligned very well to A, B, C, D, F letter 

grades on the generalist observation forms, even when used by raters from very different 

backgrounds (e.g., teacher, supervisor, or university faculty).  Furthermore, the 

researchers also found that eighty-three percent (n=49 of 59) of preservice teachers 

preferred the MCOP2 scoring because they knew what to improve on for the next 

observation; whereas the generalist form was not specific enough without written 

feedback or discussion.  Finally, regarding the MCOP2 impact on student teachers’ lesson 
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planning quality, it was found that 26 of 31 (84%) method student lesson plans from two 

years of MCOP2 were scored higher than in the two years prior to the use of the MCOP2. 

To measure students’ perceptions of active learning opportunities (such as 

forming hypotheses, creating mathematical models and discussing their ideas with 

others), Bowers and Smith (2016) transformed the MCOP2 from a teacher observation 

tool to a student survey to understand what students thought about the active learning labs 

and measure the extent to which these labs engaged students in active learning practices.  

The researchers cut the 16 MCOP2 items in half, to ask the eight questions most relevant 

to student experiences, but then asked each question twice: once about students’ 

experiences in lectures, and once for their experiences in the labs (Bowers & Smith, 

2016).   

The results of their confirmatory factor analysis showed that the MCOP2 student 

survey had the same 2-factor structure as the original observation tool (Teacher 

Facilitation and Student Engagement).  Moreover, analysis of the MCOP2 survey data 

also suggested that the transformed MCOP2 student survey was instrumental in 

identifying student-perceived specific value-added aspects of active learning that the labs 

could offer to augment lecture (Bowers & Smith, 2016). 

Another MCOP2-related empirical research was conducted by Garrett and her 

colleagues as a case study to understand the learning and adaptation that could occur 

when faculty incorporated active learning into existing course structures (Garrett, Guest, 

Tameru, & Karatas, 2016).  In this study, the MCOP2 protocol was only used as a general 

framework to document the key events/activities around the subject of the case study 

related to the activity learning elements in math classroom instruction.  
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Similarly, in a mixed method study, Livers et al. (2020) attempted to use the 

MCOP2 protocol to measure the pre-post changes in Teacher Facilitation and Student 

Engagement after implementing a coaching cycle approach within a larger professional 

development design that focused on infusing high quality mathematics tasks and 

differentiation within inclusive elementary mathematics classrooms.  Their findings 

indicated that classroom observations shifted to a more student-centered practice with an 

increase in co-teaching collaborations and behaviors, in support of the benefit of a 

coaching component to facilitate and sustain teacher growth and professional 

development.   

Limitations in the MCOP2 Research 

Three major limitations are noted in the current MCOP2-related validation and 

empirical research. 

The first major limitation lies in the fact that the existing MCOP2-related 

validation studies exclusively adopt the test score tradition or number-correct approach 

(Engelhard, Wang, & Wind, 2018) under the classical test theory (CTT) framework to 

adjust for the rater bias in the rating data, such as rater agreement indices, intraclass 

correlations, kappa coefficients, and generalizability coefficients (Cronbach, Gleser, 

Nanda, & Rajaratnam, 1972; Johnson, Penny & Gordon, 2008; von Eye, & Von Eye, 

2005).  Employing this test score tradition approach, researchers only need to report the 

percentage of exact and adjacent category usage for operational raters as shown in the 

raw rating/score distributions.  However, this method is based upon a fundamental 

assumption that the observed ratings can be treated as having categories with equal width 

to be modeled as equal intervals by using sum scores, which is never the case for most of 
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the rating scales created and used for rubric-based, rater-mediated performance 

assessments.  For instance, on a 3-catagory rating scale used in a rater-mediated teaching 

performance assessment, student engagement activities in a classroom that receive a 

rating of 3 may clearly display better student on-task behaviors, participation, and 

problem-solving interests than those classrooms rated with a 1 or 2 in terms of student 

engagement.  However, from the psychometric measurement perspective, there is no 

evidence in support of equal distances in their abilities to engage students between the 

classrooms that are given the ratings of 1, 2 or 3.  Therefore, acceptable interrater 

reliability indices such as the ICC or kappa coefficients calculated under the CTT 

framework do not provide sufficient grounds to validate the usage of a rater-mediated 

performance assessment (e.g., classroom observation protocols) free of any rater 

bias/effects.  

As an alternative method to account for and manage the rater variability, 

measurement models based on the scaling tradition (Engelhard, 2013) parameterize the 

structure of rating categories with category coefficients (i.e., thresholds).  Thresholds that 

define rating categories do not need to have equal width (Engelhard & Wind, 2013).  As 

an item response theory (IRT) model specifically designed for rater-mediated 

assessments (Eckes, 2015), the Many-Facet Rasch model (MFRM, Wright & Linacre, 

1989) is a generalized form of the Rasch model that not only adds a rater parameter 

particularly for rater effects control, but also is capable of accommodating other 

construct-irrelevant variances as additional facets in the model for parameter estimation 

and calibration.  The MFRM model has been widely used in the detection and 

management of rater effects.  Additionally, several other rater models have also been 
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proposed, such as the hierarchical rater model (Casabianca, Junker, & Patz, 2016; 

Engelhard, Wang, & Wind, 2018). 

A second limitation in the current MCOP2 research is related to the insufficient 

theoretical, statistical, and empirical support to justify the specific choices that the 

MCOP2 developers made in terms of the rating scale structure (e.g., 4-category scales), 

definition of ratings (e.g., level of agreement vs frequency etc.), observer training (e.g., 2-

day training, online training, no formal training etc.), number of observers needed to code 

a lesson (e.g., 1 or 2 observers), and number of observations needed in order to determine 

quality of mathematics instruction (e.g., 1 to 6 observation per ratee) (Cerezci, 2020). 

Finally, the current MCOP2 research is also lacking in extending the usage of the 

MCOP2 protocol from a scientific, grade-bearing instrument for evaluating teaching 

quality in mathematics classrooms towards a rich teacher professional development 

resource that can promote math teachers’ self-refection, self-evaluation, self-learning, and 

continuous professional growth.  In other words, the potentials of the MCOP2 protocol 

have not been explored and validated in offering detailed diagnostic information for 

individual teachers to understand their own weaknesses and strengths in becoming 

effective math teachers.  Further research can also be conducted to investigate how to 

build an associated coaching model/framework for teacher learning and training by using 

the MCOP2 protocol for the dual purpose of ranking and diagnostic assessments. 

A Calibrated Framework for Rater-Mediated Assessment (MFRM) 

At least two key advantages are present in using the MFRM to evaluate the rating 

quality of any rater-mediated performance assessment.  First, all facets (e.g., examinee, 

rater, rating scale, items/tasks, etc.) are placed on the same logit measurement scale, 
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allowing for comparisons to be made across facets (Bond & Fox, 2015).  Second, the 

MFRM model produces model expected estimates of the true scores/ratings examinees 

should have received, after accounting for measurement errors related to all included 

facets.  Thus, these model-estimated scores and raw scores can be compared to make 

inferences about the extent to which rater-assigned raw scores represent examinees’ true 

scores after correcting for measurement errors (Eckes, 2009; Wu & Tan, 2016). 

Thus, the following review includes MFRM-Based Dimensionality Analysis, 

Rater Effects, Interrater Reliability, and Multi-Facet Calibration Controlling for 

Rater Effects.  This section details both the theoretical foundation and empirical 

application of the MFRM approach. 

MFRM-Based Dimensionality Analysis 

MFRM (e.g., Linacre, 1995, 2007) is an extension of the partial credit modeling 

(PCM) within the Rasch family to rater-mediated assessment settings.  Thus, MFRM can 

be applied to identify and measure all factors/facets (other than examinee ability and item 

difficulty) that can systematically influence examinees’ rating scores (Bond & Fox, 

2007).  However, several key assumptions need to be tested prior to applying MFRM to 

model the data obtained from rater-mediated assessments.  One of these assumptions is 

unidimensionality.  Bond and Fox (2007) define the Rasch unidimensionality assumption 

as “useful measurement involves examination of only one human attribute at a time 

(unidimensionality) on a hierarchical ‘more than/less than’ line of inquiry.” (p. 41) 

Specifically with respect to MFRM, Eckes (2005) further clarifies that the main question 

in rating-based scores is  

whether ratings on one criterion followed a pattern that was markedly different 
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from ratings on the others, indicating that [test-taker] scores related to different 

dimensions, or whether the ratings on one criterion corresponded well to ratings 

on the other criteria, indicating unidimensionality of the data (p. 211).  

In practice, however, researchers have raised concerns about the Rasch 

unidimensionality assumption and its appropriateness in rater-mediated performance 

assessment, since examinees’ performance on a task (e.g., teaching, writing, piano 

performance, etc.) may involves utilizing a variety of abilities/skills, and its 

complexity/multidimensionality cannot be accurately captured by the models assuming 

measurement unidimensionality.  Thus, Rasch models have been criticized for being 

simplistic (or reductionistic) and lacking in validity as they reduce multidimensional 

performance to a single score (Barkaoui, 2013; McNamara, 1996).  To address these 

concerns, Bejar (1983) posits  

unidimensionality does not imply that performance on items is due to a single 

psychological process.  In fact, a variety of psychological processes are involved 

in responding to a set of test items.  However, as long as they are involved in 

unison - that is, performance on each item is affected by the same process and in 

the same form - unidimensionality will hold (p. 31). 

Using a simulation study, Henning (1992) further illustrated that psychological 

unidimensionality may be present in the context of psychometric multidimensionality, 

while psychometric unidimensionality may also be present in the context of 

psychological multidimensionality.  Henning therefore concludes that dimensionality is 

dependent on the samples and supports the application of IRT approaches even in 

measuring a complex, multidimensional latent ability/trait. 
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Empirically, several procedures have been proposed to test the MFRM-based 

unidimensionality assumption, including (a) examining fit statistics, (b) conducting 

Rasch Factor Analysis (RFA) of residuals, and (c) examining Point biserial correlations 

(Barkaoui, 2013).   

First, all facets must have infit and outfit statistics within the acceptable range 

(between 0.5 and 1.5) to uphold the unidimensionality assumption (Eckes, 2005; Linacre, 

1998; Smith, 2002).   

Next, it is recommended for researchers to perform a factor analysis on the 

residuals that remain after conducting a regular Rasch analysis (Bond & Fox, 2007; 

Linacre, 1998).  This approach is referred to as Rasch Factor Analysis (RFA) or Principal 

Component Analysis (PCAR) of the standardized residuals.  Unlike traditional CTT-

based factor analysis based on raw scores, RFA is conducted with interval data in the 

form of logit measures (Bond & Fox, 2007; Linacre, 1998; Smith, 2002).  The purpose of 

RFA is to determine if one or more other factors (than the measured latent ability/trait) 

explain the residual variance.  If RFA identifies one or more factors suggesting a strong 

correlation between the item residuals left over from the variances explained by the latent 

trait, the presence of secondary structures or sub-dimensions within the data will be 

supported and the unidimensionality assumption cannot be upheld.  In this case, 

researcher should consider modeling separate measures for the dimensions.  Regarding 

the operational criteria in interpreting the RFA results, Smith and Miao (1994) propose 

that eigenvalues smaller than 1.4 are at the random level and can be ignored, while 

Linacre (2004) suggests that if the first residual factors explain less than 3.0 units of 

residual variance, the unidimensionality assumption should be considered met.  Other 
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criteria include that (a) the variance explained by the latent trait be at least 40%, and (b) 

the variance explained by the first principal component of the residuals be no more than 

15% (Linacre, 2006).  

Last, Smith (2000) suggests that median point-biserial correlations should be 

positive and below .30 to support the assumption of unidimensionality.  The presence of 

several median point-biserial correlations greater than .30 would be another indicator of 

multidimensionality, such as raters defining and using the rating scale in different ways. 

Rater Effects 

The rating quality obtained from any rater-mediated performance assessment is 

under the inevitable influence of rater judgment (Eckes, 2009; Myford & Wolfe, 2003), 

since the ratings directly represent raters’ perceptions of examinees’ work/performance, 

interpretations of the rubric, and analysis to determine to what extent the examinees’ 

work/performance aligns with the rubric (Engelhard, 2002).  Raters’ personal 

understanding of the rubric and its application in judging examinees’ work/performance 

may very likely disagree with the intended interpretations and uses of the rubric. 

Systematic errors in raters’ scores that reflect raters’ personal characteristics 

and/or personal interpretations of the rubric is known as rater effects (Bond & Fox, 2015; 

Eckes, 2009; Myford & Wolfe, 2003; Scullen, Mount, & Goff, 2000).  Various forms of 

targeted rating training programs are often created and implemented to mitigate the 

adverse impact of these rater effects on the rating quality.  Unfortunately, research on 

rater training reveal that the effects of rater training are very limited in changing the 

behavior of raters who exhibit rater effects (Knoch, Read, & von Randow, 2007; 

Raczynski, Cohen, Engelhard, & Lu, 2015; Weigle, 1998). 
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To systematically examine the impacts of rater effects on student achievement 

estimates and on classification decisions, Wind (2019) conducts a simulation study and 

finds that when as few as 10% of the raters exhibit any type of rater effects, substantial 

changes will be identified in students’ classifications within rating scale categories 

compared with their classifications when no raters exhibited the effects; and as the 

proportions of “problematic” raters increase, changes in the values of the student 

achievement estimates and the rank orderings of students will become more pronounced. 

Therefore, this section of literature review focuses on three most common types 

of rater effects: rater severity, rater centrality, and rater misfit (Myford & Wolfe, 2003). 

Rater severity. Rater severity/leniency (also called rater harshness or the hawk 

effect) refers to a rater’s tendency to systematically assign lower or higher ratings to 

student performances, respectively, than one would expect if the rater applied the scoring 

rubric appropriately (Eckes, 2009, 2015; Engelhard, 1992; Saal et al., 1980).  Raters are 

considered severe if they consistently assign low scores across all examinees, and lenient 

if they consistently assign high scores across all examinees (Bond & Fox, 2015; Eckes, 

2015; Wolfe, 2004). 

Severe raters are problematic because when they score examinee performances, 

examinees tend to receive ratings that underestimate their latent ability/proficiency.  

Similarly, lenient raters are problematic because they tend to assign ratings to examinees 

that overestimate their ability/proficiency (Myford & Wolfe, 2003).  Regrettably, raters 

are often found to vary drastically from one another in their severity (Eckes, 2005; Han, 

2015; Lunz & Stahl, 1990), contrary to the common assumption held by many 

researchers of rater-mediated assessments that raters are of similar rating severity after 
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training and practice (Lunz, Wright, & Linacre, 1990). 

Raters’ leniency or severity may also change across rating occasions over a 

period.  Related literature indicates that raters tend to become more severe over time, 

especially across rating periods of several days or more (Leckie & Baird, 2011; de Moira, 

Massey, Baird, & Morrissy, 2002).  However, in a study evaluating rater effects in AP 

English Literature and Composition essays, Wolfe and his colleagues (2007) find that 

only 5% of the raters become more severe over time, whereas 16% of the raters actually 

become more lenient.  Hence, it seems that the direction of raters’ changes in their 

leniency and severity may not always be the same and predictable across rating 

occasions.  

 Raters’ leniency and severity may also vary across rubric dimensions.  

Specifically, raters may rate more severely on some rubric dimensions compared to other 

dimensions.  For instance, Eckes (2005) find that more than one-third of raters exhibit 

differential severity across rubric elements the writing assessment in the Test of German 

as a Foreign Language.  Such interactions between rater leniency/severity and rubric 

elements/dimensions are also referred to as differential rater functioning or bias (Eckes, 

2015).  Such rater bias can be particularly problematic in compensatory models where 

examinees are given differential credits by rubric elements/dimensions. 

 Furthermore, raters’ leniency and severity may not always be constant across 

scoring levels.  In a study related to an Oral English Proficiency Test, Yan (2014) finds 

that raters differ in their severity or leniency depending on scoring levels: raters agree 

more with one another for tests that score on the passing side of the score levels than for 

tests that score on the failing side of the score levels.  Consequently, raters are unable to 
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rate consistently in line with the intended scoring criteria across score levels.  This effect 

may seriously threaten the validity and reliability of the ratings in pass-or-fail 

performance assessment settings.   

  In sum, rater severity and severity drift effects can vary dramatically across 

rating occasions, raters, samples, rubric elements/dimensions, and assessment settings, 

and need to be investigated and handled very carefully in practice.   

Rater centrality.  Range restriction effects are evident if raters systematically 

limit their ratings to a subset of the available rating scale categories which fails to capture 

the true variability of examinee performances across all the rating categories.  Range 

restriction effects can take various forms of raters’ overuse of the lowest, middle, or 

highest categories of a rating scale.  Among others, the most frequently discussed type of 

range restriction effects in related literature is centrality (also referred to as central 

tendency), or raters’ tendency to limit their ratings to the middle category or categories of 

a rating scale (Wind, 2019; Wolfe & Song, 2015).  These central tendency raters tend to 

assign ratings which underestimate the examinees’ latent ability/skill/proficiency when 

their performances warrant ratings in the highest category.  Similarly, those examinees 

whose performances warrant ratings in the lowest category instead receive ratings from 

these effects raters that overestimate their ability/skill/proficiency (Wind, 2019). 

As cited in Leckie and Baird (2011, p. 400), central tendency is a well-

documented phenomenon across various contexts including in the assessment of 

Advanced Placement English Literature and Composition essays (Myford & Wolfe, 

2009), school writing examinations in Georgia (Engelhard, 1994), English as a second 

language (Knoch, Read, & von Randow, 2007), and writing and speaking in German as a 
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foreign language (Eckes, 2005).  For instance, Knoch et al. (2007) find that rater training 

and practice increase the central tendency effect of the raters in their scoring of an 

English writing examination in a New Zealand university.  A possible explanation they 

provide for this phenomenon is that raters are more likely to exhibit central tendency 

when they are aware that they are being monitored closely.  Wolfe et al. (2007) refer to 

this rater psychological state as a "play-it-safe" effect because raters know that their 

ratings will be less likely to be questioned if they avoid using the extreme categories of 

the scale.  

Raters may show centrality effects if they are unable to differentiate between the 

scoring criteria across score levels, especially when scoring criteria are ambiguously 

worded (Myford & Wolfe, 2003).  If raters cannot fully appreciate and apply the scoring 

criteria differences across score levels with confidence, they may tend to assign ratings 

around the mid-range of the scoring levels.  Consequently, like the halo effect, centrality 

may also threaten the validity of the rating data by limiting the variability of examinees’ 

ratings.  However, unlike the halo effect which often affects the ratings assigned to 

certain individual performances and results in limited score variability across rubric 

dimensions for those individual examinees, centrality effect can impact the ratings for all 

examinees, which results in limited score variability either within or across any of the 

examinees.   

However, it is important to note that the presence of high amount of middle-

category scores/ratings does not necessarily indicate rater centrality, since it could reflect 

the actual distribution of examinees’ moderate abilities.  To determine if rater centrality is 

indeed a problem, the variability of ratings across all examinees on each rubric 
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element/dimension can be evaluated for any individual rater showing a potential central 

tendency effect.  First, the mean rating can be calculated by averaging all examinee 

scores on each rubric element.  Next, a standard deviation around the mean rating can be 

computed for each rubric element (Saal et al., 1980).  A mean rating close to the mid-

range of the rating categories with a small standard deviation would indicate the presence 

of a central tendency effect for that particular rater on the particular rubric element in 

question.  

Rater misfit.  Rater misfit occurs when a rater interprets the scoring rubric very 

differently from the way it is intended to be used, giving rise to a large discrepancy 

between this rater’s ratings and the expected ratings if that rater had applied the rubric 

appropriately.  Such rater misfit effects are also referred to as rater inaccuracy (Wolfe & 

McVay, 2012), noisy ratings (Wind & Engelhard, 2013), or within-rater rating category 

disordering (Wind & Engelhard, 2017).   

In rater-mediated performance assessments, empirical verification of the intended 

ordering of the rating scale categories for each rater is as important as the detection of 

various rater effects in ensuring measure stability and accuracy (fit) (Linacre, 2002, 2010; 

Wind, 2014).  Especially when raters are trained to assign scores according to a set of 

ambiguously worded rubrics, cross-rater differences in understanding and interpreting 

each of the defined rating categories can be concerning and cause individual rating 

category disordering. 

According to Barkaoui (2013), rater misfit may pose a more serious threat to 

general test validity than overfit or test-taker misfit because it indicates divergent 

behavior from the norm on the part of the raters, and its effect on all other facet measure 
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estimates can be strong (Bonk & Ockey, 2003).  To make matters worse, Rasch models 

do not adjust scores for rater misfit as they do for rater severity (Bonk & Ockey, 2003, p. 

101; Myford & Wolfe, 2000, 2003, 2009).   

To address this issue, the divide-by-total IRT models based on adjacent-categories 

probabilities are appropriate for investigating category disordering.  In particular, the 

Rasch-MFRM partial credit models can be used to yield threshold location estimates for 

each individual rater, an important indicator of possible rating scale category disordering 

under the polytomous Rasch framework (Andrich, 2004, 2013, 2015; Andrich, de Jong, 

& Sheridan, 1997).  However, this long-standing diagnostic practice has been strongly 

questioned, since it is recently found that disordered categories can have both ordered or 

disordered threshold estimates, and threshold disordering often only reflects the irregular 

distribution of observations in certain response categories (Adams, Wu, & Wilson, 2012; 

García-Pérez, 2017; Linacre, 2002, 2012).   

Linacre suggests examining the ordering of average category measures (ACMs) 

as well as their associated outfit indices instead for detecting disordered rating categories 

for individual raters, when polytomous Rasch models are estimated using the joint 

maximum likelihood method (e.g., in Winsteps and Facets).  Alternative indicators are 

also proposed for other divide-by-total IRT models, including overall model-data-fit and 

graphical indices of the option response functions (ORFs)/ item step response functions 

(ISRFs) among others (García-Pérez, 2017; Muraki, 1993; Wind & Peterson, 2018). 

Interrater Reliability 

In rater-mediated performance assessments, it is vital to understand how each of 

the interrater reliability (IRR) indices works to support the validity and reliability of the 
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rating data.  Special caution must be exerted in distinguishing the interrater reliability 

indices under the CTT framework from those based on the MFRM method, as well as the 

associated methodological benefits and limitations. 

Under the CTT framework, interrater reliability (IRR) can be conceptualized in 

many different ways (Bramley, 2007; Hayes & Krippendorff, 2007).  Among those, two 

most commonly used classes of IRR indices include a consensus index of interrater 

agreement and a consistency index of interrater reliability.  A consensus index of 

interrater reliability refers to the degree to which independent raters assign number-

identical ratings to a particular examinee on a particular item/task (absolute 

correspondence of ratings).  While a consistency index of interrater reliability refers to 

the degree to which independent raters assign ratings so that the performance of all 

examinees is ordered or ranked in an identical way (relative correspondence of ratings) 

(Eckes, 2011).   

Following the CTT approach, two IRR indices can be computed in practice.  For 

consensus indices, exact interrater agreement index (i.e., the number of examinees 

awarded identical ratings on a particular item/task divided by the total number of 

examinees commonly rated by the raters) and Cohen’s weighted kappa (i.e., this index 

corrects the interrater agreement for agreement based on chance alone).  The weighted 

kappa should be selected for computing the IRR for ordered categories on the rating scale 

(Cohen, 1968), where the higher disagreement (two ratings further apart across the rating 

categories, such as 0 and 4 on a 5-point scale) leads to the higher weight assigned.  The 

values of weighted kappa normally range between 1(agreement is perfect) and 0 

(agreement is no better than by chance alone).   Negative values of weighted kappa 
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suggest worse-than-chance agreements among raters (Mun, 2005). 

For consistency indices, the product-moment correlation (Pearson’s r) or 

Kendall’s tau-b coefficients can be calculated.  Pearson’s r represents the linear 

relationship between two raters’ ratings.  Kendall’s tau-b represents the degree of relative 

correspondence between rank orderings of examinee performances assigned by two 

raters.  The values of both Pearson’s r and Kendall’s tau-b fall within the [-1,1] range, 

with higher values indicating stronger correlation between two raters’ ratings. 

However, contrary to the common assumption pervasive in the CTT-based 

validation research on rater-mediated performance assessments, high IRR values (as 

mentioned above) alone do not provide sufficient evidence in support of the psychometric 

quality of the rating data.  In other words, a conclusion cannot be drawn solely based on 

high CTT-based IRR values that raters are expected to assign ratings accurate enough to 

reflect examinees’ “true” latent ability/skill/proficiency when applying a rater-mediated 

performance assessment instrument. 

To further clarify the limitations of using the CTT-based IRR indices in rater-

mediated performance assessment validation studies, Eckes (2011) proposes a term 

“agreement accuracy paradox”, referring to the fact that high agreement and/or high 

consistency only reflect the homogeneity of raters and ratings to a certain extent, and 

should not be considered as equal to high rating accuracy (Henning, 1996).  On the other 

hand, low consensus and/or low consistency may only reflect heterogeneity of raters and 

ratings unrelated to the misuse of the measure/rubric and does not necessarily indicate 

inferior rating data quality.  Such false assumption can even lead to severe consequences 

such as dismissing or replacing the raters deemed “unreliable/problematic”, which may 



47 

negatively affect the overall rating data quality. 

In contrast, the rater-related reliability indices based on the MFRM analysis are 

conceptualized very differently from the CTT-based IRRs.  First, the reliability index 

associated with the rater facet does not refer to the traditional index of inter-rater 

agreement; instead, it indicates the ability of the MFRM analysis to reliably/consistently 

separate raters into different levels of severity.  Therefore, a low reliability index close or 

equal to zero is quite desirable, as it suggests that raters rate examinee performances at 

about the same level of severity and they are interchangeable in the rating process 

(McNamara, 1996; Weigle, 1999).  Similar to the rater-facet reliability, a low separation 

index also indicates that the assumption of equivalence among raters is upheld after 

calibrating the estimated measures of all facets in the MFRM model (Lunz et al., 1996; 

Weigle, 1998).  Fixed χ2 values associated with the rater facet can also be used to test the 

assumption that all raters are equal in their level of severity, where a low χ2 value shows 

that raters are closely aligned in terms of severity (Weigle, 1998).    

Further, the MFRM analysis also yields statistical reports on the observed and 

expected percentages of exact rater agreements.  Empirically, both these interrater 

agreement indices are calculated just like the CTT-based interrater agreement index, 

referring to the proportion of examinees who receive number-identical observed or 

expected ratings from their common raters.  If the observed agreement rate is too low 

compared to the expected agreement rate, the MFRM model should not be used for 

predicting interrater agreement with confidence.  Whereas if the observed agreement rate 

is much higher than the expected rate, it could be possible that raters are under the 

influence of external circumstances (e.g., being trained to avoid too much disagreement 
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with other raters) to force agreement with each other, which may lead to compromised 

quality of independent ratings for those raters (Linacre, 1989).   

Finally, the point-biserial correlation for each rater (also referred to as the “single 

rater—rest of the raters” (SR/ROR) correlation) measures the correspondence between 

that rater’s ratings and the total ratings of all other raters that rated the same examinees’ 

performances.  The mathematical formula used to compute this correlation coefficient is 

a many-facet version of the Pearson product-moment correlation (Linacre, 2001).   

Myford and Wolfe (2003) clearly explain the empirical standards in interpreting 

the point-biserial (SR/ROR) correlation coefficients:  

SR/ROR correlations less than .30 are considered to be somewhat low, while 

correlations greater than .70 are considered to be high for a rating scale composed 

of several categories.  However, as the number of rating scale categories 

decreases, these rule-of-thumb values should be relaxed.  For example, it is not 

uncommon to see SR/ROR correlations no higher than .20 in dichotomous 

ratings.  If a SR/ROR correlation is near zero or negative for a given rater, then 

that rater rank orders ratees in a manner different from the other raters’ rank 

ordering (p. 410). 

Multi-Facet Calibration Controlling for Rater Effects 

The MFRM model is an extension of the single-facet rating scale Rasch model 

(Andrich, 1978) and single-facet partial-credit Rasch model (Masters, 1982), which 

allows for multiple facets to be included in the evaluation of polytomous-scored 

assessment items.  Specifically in rater-mediated performance assessments, the rater 

facet, item/task facet, and other facets that contribute to the construct-irrelevant variances 
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of the measurement can all be added to the original examinee ability/skill/proficiency 

facet in the MFRM model to systematically evaluate the rating scores.  

In a MFRM analysis, the log-odds of each transition between adjacent rating scale 

categories are estimated as one parameter that can represent the level of performance 

proficiency (for ratees), severity (for raters), and difficulty (for traits, and for rating scale 

categories).  Mathematically, a MFRM version of the rating scale model takes the 

following basic form (Linacre, 1990): 

ln[Pnijk / Pnijk-1] = Bn – Di – Cj – Fk, (2) 

where Pnijk denotes the probability of examinee n being rated k on item/task i by rater j, 

while Pnijk-1 refers to the probability of examinee n being rated k - 1 on item/task i by rater 

j. Bn represents level of performance proficiency for examinee n, and Di means difficulty

of item/task i.  Rater parameter Cj denotes severity of rater j, and Fk refers to difficulty of 

scale category k relative to scale category k – 1 (i.e., thresholds). 

When the rating category thresholds are not assumed to be equal across all 

categories and for all raters, a MFRM version of the partial credit model may be defined 

based on the adaptation of Equation (1) as below: 

ln[Pnijk / Pnijk-1] = Bn – Di – Cj – Fikj, (3) 

where Pnijk denotes the probability of examinee n being rated k on item/task i by rater j, 

while Pnijk-1 refers to the probability of examinee n being rated k - 1 on item/task i by rater 

j. Bn represents level of performance proficiency for examinee n, and Di means difficulty

of item/task i.  Rater parameter Cj denotes severity of rater j.   Fikj still represents 

difficulty of scale category k relative to scale category k – 1 but is free here to vary across 

item/task i and rater j (Eckes, 2015).  
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A partial credit model is specified based on the assumption that each rater 

interprets and uses each rubric element/dimension in their own individual ways.  Thus, 

the partial credit model is a more complex model than the rating scale model and allows 

for the estimation of additional parameters for both raters and rubric element thresholds 

(Bond & Fox, 2015; Eckes, 2015; Myford & Wolfe, 2003). 

The MFRM analysis allows researchers to evaluate the impact of each facet on 

the measurement process by estimating its unique parameter (e.g., level of severity for 

each rater), and then to compute the overall probability of any examinee performing on 

any item/task for any score category threshold and for any rater, after accounting for the 

estimated parameters of all facets (Bond & Fox, 2007).  It is in this sense that MFRM is 

fully capable of modeling various facets in the assessment setting, estimating their effects 

on ratings, and placing them on the same logit scale for comparison.  Each facet is 

calibrated from the potentially ordinal raw ratings (as rating scales are often used in rater-

mediated performance assessments), and all facets (examinee, task, rater, etc.) are placed 

on a single common linear scale called a variable or facets map.  Thus, MFRM treats 

each rating as a function of the interaction between examinee ability, task difficulty, 

criterion difficulty, rater severity, and possibly the effects of other external, 

measurement-irrelevant factors (Barkaoui, 2013: McNamara, 1996).  

Myford and Wolfe (2003) concisely summarize the benefits of a MFRM approach 

in detecting and controlling for rater effects compared to other traditional CTT methods.  

Similar to an ANOVA-based approach, MFRM can be applied to investigate group-level 

rater effects (i.e., main effects), as well as rater-effect interactions.  However, unlike 

ANOVA, the MFRM analysis does not allow possible interaction effects to contaminate 
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main effects, making the interpretation of main effects difficult.   Furthermore, the 

MFRM approach is not only capable of detecting main effects and interaction effects but 

is also very effective in identifying individual-level rater effects, an important 

methodological advantage that can be utilized for the diagnosis and intervention of rater 

effects in rater-mediated performance assessment. 

For each element of each facet, the MFRM analysis produces a measure (a logit 

estimates of the calibration), a standard error (information about the precision of that logit 

estimate), and fit indices (information about how well the observed scores associated 

with this parameter fit the expected scores of the measurement model).  Besides these 

individual level statistical indicators, MFRM also provides several group-level statistical 

indicators useful for detecting pervasive trends in the data (e.g., separation statistics, 

fixed effect chi-square tests, summary fit statistics).  Details are further discussed in 

CHAPTER III: METHOD regarding how to obtain and interpret these MFRM-based 

statistical indicators.  
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CHAPTER III 

METHOD 

Introduction 

Recent increasing use of rater-mediated performance assessments (RMPA) for 

teaching and learning in mathematics classrooms (e.g., classroom observation protocols) 

calls for rigorous research to be conducted regarding the instrument validation, 

interpretation of assessment results (e.g., rater-assigned scores/ratings for teachers under 

observation), extended usage across educational contexts, and implications for facilitating 

future math teacher learning and training.   The involvement of various rater effects/bias 

in such performance assessments further complicates the issues such as how to detect and 

control for measurement errors originated from construct-irrelevant variance sources (i.e., 

rater, examinee, test, and other external factors).  Traditional approaches under the 

classical test theory (CTT) framework (e.g., factor analysis such as EFA and CFA, 

content validity, internal consistency such as Cronbach’s alpha, interrater agreement and 

reliability, ect.) are proven theoretically and methodologically limited in effectively 

handling these issues.  Consequently, rater-mediated performance assessments for 

teaching mathematics have mostly been used as a type of formative rather than 

summative assessment measures, since the numeric results yielded from the RMPA 
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process (e.g., rater-assigned ratings) cannot be reliably compared across teaching 

contexts as effective indicators of more or less teaching proficiency. 

Thus, the purpose of this study is to evaluate the rating quality obtained from a K-

16 math classroom observation protocol (MCOP2) under a MFRM framework for rater 

effects detection and control. 

The remainder of this chapter is divided into eight sections.  First, the Research 

Questions are identified, followed by the explanation about the Research Design.  The 

Participants are then described.  Next, the Instrumentation (i.e., MCOP2) is discussed 

in detail. The Data Analysis addresses description of the data analysis plan for each of 

the seven research questions. Then Ethical Standards reviews principles of research 

procedures and behaviors with respect to human subjects’ protection. This chapter ends 

with a brief Summary.  

Research Questions 

This study seeks to answer seven research questions regarding how to control the 

construct-irrelevant measurement errors of the MCOP2 protocol using a MFRM analysis. 

The specific research questions are repeated here as follows from CHAPTER I, for the 

convenience of the readers. 

1. To what extent do the observed rating data obtained from the MCOP2

instrument fit the MFRM modeling?

2. To what extent does the MCOP2 observation protocol separate observed

teachers into distinct levels of proficiency?

3. To what extent do raters differ in terms of the relative severity with which

they rate observed teachers?
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4. To what extent do raters consistently rate the teaching performance of

observed teachers?

5. To what extent do raters consistently rate the teaching performance of

observed teachers across the MCOP2 items?

6. To what extent can the score levels of the MCOP2 items be distinguished,

without certain score levels being either underused or overused?

7. To what extent are the rater behaviors associated with the professional

background characteristics (i.e., in-service vs. pre-service teachers, schools,

and teaching grade levels) of the observed teachers?

Research Design 

This study essentially consists of a validation study of the MCOP2 protocol within 

a Rasch framework using the MFRM analysis, including the investigation of 

dimensionality, examinee fit, item fit, rater fit, overall data-model-fit, as well as possible 

interactions between any of the modeled facets/factors.  The key lies in systematically 

calibrating the measures of all the involved facets (e.g., test item, examinee, raters, and 

other external factors) on a common continuum scale, so that the construct-irrelevant 

measurement errors (especially rater bias) can be effectively identified and accounted for.  

The calibrated teacher ratings/scores after the MFRM analysis can theoretically be 

compared with confidence across different classroom teaching contexts.    

Participants 

This section describes the demographic and/or professional characteristics of the 

three groups of human subjects involved in this study: teachers of the math classrooms 

observed (i.e., ratees) in the MCOP2 sample data used in the study, and raters recruited to 
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rate the math teachers’ teaching practices based on the MCOP2 rubric. 

Ratees 

The MCOP2 rating data used in this study draws from two secondary data sources 

with the permission of the data owners:  the first MCOP2 sample consists of a cross-

sectional (i.e., one-time classroom observation) dataset collected by the MCOP2 

development and research team at University of Alabama in 2016 for their final MCOP2 

validation study (Gleason, Livers, & Zelkowski, 2017); while the second MCOP2 sample 

is comprised of longitudinal data complied over a period of three years by the teacher 

educators at University of Kentucky from 2017 to 2020.  For the convenience of writing, 

the first secondary dataset is hereby referred to as Sample AL, and the second as Sample 

KY. 

Sample AL results from observations of 40 elementary, 53 secondary, and 36 

tertiary mathematics classrooms in the southeastern United States.  The classrooms 

observed at each grade level include math teachers with experience ranging from 0 to 40 

years, a mixture of gender matching national norms for each grade band, and a mixture of 

direct and dialogical instruction in the lessons (Gleason, Livers, & Zelkowski, 2017).  

Sample AL include classroom observations of both in-service teachers (n = 101) and 

preservice teachers (n = 28). 

Sample KY consists of observations of 108 K-16 mathematics classrooms in the 

neighboring school districts surrounding the Lexington, Kentucky area, involving 30 

preservice teachers enrolled in a pedagogical methods course near the end of their teacher 

education programs.  The MCOP2-based classroom observations in Sample KY were 

conducted mainly as a type of formative assessment associated with the methods course 
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to evaluate and guide the student teachers’ professional learning in general classroom 

instruction and implementation of specific pedagogical strategies.  Therefore, most of the 

student teachers provided four classroom observations each, which were rated by the 

same rater (i.e., student teachers’ field study supervisors) usually spanning a period of 

two to three months in a semester.  No other demographic information (e.g., gender, 

ethnicity, etc.) was provided for the preservice teachers in Sample KY (College of 

Education, UK, 2020). 

Raters 

For Sample AL, a total of five raters were asked to observe and rate the math 

teachers’ classroom teaching performance.  Prior to observing classes, the raters were 

arranged to analyze five different classroom videos to determine the interrater reliability 

of the MCOP2 instrument.   

Gleason, Livers, and Zelkowski (2017) note that the five raters vary in their 

educational and professional backgrounds.  Two of the raters hold doctorates in 

mathematics education (one elementary-focused and the other secondary-focused), one 

rater holds a doctorate in mathematics with heavy involvement in the mathematics 

education community (both elementary and secondary), one rater works as a mathematics 

specialist with secondary teachers and has taught at both the secondary and 

postsecondary levels, and the fifth rater is a graduate student in mathematics with 

minimal background in education other than teaching some introductory college math 

classes.   

All raters received the detailed descriptions of the items with the rubric prior to 

observing classes and asked some clarification questions prior to the observations.  



57 

However, no formal training on the use of the instrument occurred, simulating the 

probable future uses. 

While for Sample KY, a total of seven raters were employed to observe and rate 

the math teachers’ classroom teaching performance.  No formal or informal rater training 

was documented to have been arranged for the raters prior to observing classes.     

The seven raters in Sample KY all served as student teacher supervisors and/or 

university-based faculty members (e.g., instructors of a pedagogical methods course) 

during the data collection period.  They also come from various educational and 

professional backgrounds.  However, no further detailed information is available in 

Sample KY to describe each rater’s demographic and/or professional profile (College of 

Education, University of Kentucky, 2020).   

Just like the raters in Sample AL, all seven raters in Sample KY also received the 

detailed descriptions of the items with the rubric prior to observing classes. 

Mathematics Classroom Observation Protocol for Practices (MCOP2) 

The Mathematics Classroom Observation Protocol for Practices (MCOP2) is 

designed to be implemented in K-16 mathematics classrooms to measure the activities 

occurring in a mathematics classroom during a single lesson.  Based on the confirmatory 

factor analyses findings (Gleason, Livers, & Zelkowski, 2017), the MCOP2 measures two 

primary constructs (i.e., teacher facilitation and student engagement) with a total of 

sixteen items with full descriptions (the content validity of the 16 MCOP2 items are 

supported by the feedback of 164 experts in mathematics education).  The factorial 

structure of the MCOP2 is depicted in Figure 1.  The double arrows between the two 

theoretical constructs indicate the correlation of these two factors.  The model also 
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includes residual error terms to account for unknown measurement errors in the model. 

Figure 1. The MCOP2 Theoretical Model 

Operationally regarding the scoring guidelines derived from the factor structure 

shown above, the MCOP2 measures two distinct factors of Teacher Facilitation and 

Student Engagement through two subscales of 9 items each (Gleason, Livers, & 

Zelkowski, 2015).  It is worth noting that the MCOP2 is not designed to get a single score 

of a classroom.   

The Teacher Facilitation subscale (Cronbach alpha of 0.850) measures the role of 

the teacher as the one who provides structure for the lesson and guides the problem-

solving process and classroom discourse.  To calculate the score for the Teacher 

Facilitation subscale, one would add the scores for items 4, 6-11, 13, and 16.  While the 

Student Engagement subscale (Cronbach alpha of 0.897) measures the role of the student 
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in the classroom and their engagement in the learning process.  To calculate the score for 

the Student Engagement subscale, one would add the scores for items 1-5 and 12-15 

(Gleason, Livers, & Zelkowski, 2015).  Figure 2 outlines the MCOP2 scoring roadmap. 

Figure 2. The MCOP2 Scoring Roadmap 

In addition, other psychometric properties of the MCOP2 within the CTT 

framework, such as interrater reliability (IRR), have also been calculated with a panel of 

five raters of various backgrounds without any formal training.  This results in the intra-

class correlation (ICC) of 0.669 for the Teacher Facilitation Sub-scale and 0.616 for the 

Student Engagement Sub-scale, indicating acceptable interrater reliability for using 

MCOP2 in classroom observations (Gleason et al., 2017). 

Finally, as Gleason, Livers, and Zelkowski (2015) recommend in the MCOP2 

Descriptors Manual, it is important to note that in using the MCOP2 for classroom 

observation and teaching performance assessments, if one desires to measure the overall 

activities of a class, the form should be used to measure at least three different class 
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settings.  An important item to remember is that while all of the items in the observation 

protocol are desired qualities of a mathematics classroom, not all of them are expected to 

be observed during a single lesson.  It is expected that this instrument be used in a 

formative manner on single observations. Summatively, 3-6 observations are ideal in 

evaluating classroom instruction (p. 1). 

Data Analysis 

The two secondary MCOP2 sample datasets (i.e., Sample AL and Sample KY) are 

combined as a final empirical study sample (n = 237) involving observations of 237 K-16 

classrooms of different subjects, grade bands, and schools in the southeastern region of 

the United States, 159 in-service and preservice math teachers from various demographic 

and professional backgrounds, and 12 independent raters who are university 

instructors/researchers of mathematics teacher education, K-16 school teacher leaders, 

and/or student teaching supervisors.   

Since the two sample datasets (i.e., Sample AL and Sample KY) are disconnected 

(i.e., there is zero rater-ratee overlap between the two samples), an anchoring technique 

is employed to link the two sample datasets so that the measures estimated in the 

combined sample MFRM analysis for each facet (especially the rater facet) are directly 

comparable: first, the MFRM analysis is performed only for Sample AL; and then the 

estimated measures for the raters in Sample AL are used for anchor values in the ensuing 

MFRM analysis for the combined sample dataset (Linacre, 2012).  Unlike the group-

anchoring technique, the anchor values for Sample AL raters do not need to sum up to 

zero.  When such element-anchoring technique is used, Linacre (2012) strongly 

recommends that at least one facet is unanchored and non-centered, or the analysis will 
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be over-constrained, and will not estimate correctly.  If the subsets are linked/connected 

after the element-anchoring procedures, the FACETS program will yield relevant 

diagnostic information such as “Subset connection O.K.”; otherwise, system warnings 

will be given (e.g., “Warning! There may be 2 disjoint subsets”). 

 MFRM analysis is applied to the study sample data to address Research 

Questions 1-7 for the purpose of (a) validating the MCOP2 protocol within the Rasch 

framework and (b) calibrating the measures of all involved facets to account for any 

construct-irrelevant variances.  All MFRM analyses in this study are implemented using 

the software program Facets, version 3.83.3 (Linacre, 2020). 

Analyses Plan for Research Question One  

Research Question 1 (i.e., To what extent do the observed rating data obtained 

from the MCOP2 instrument fit the MFRM modeling?) is evaluated by testing the MFRM 

modeling assumptions, including local independence, unidimensionality, overall model 

fit, rater fit, and item fit.  

Local independence.  Local independence (LID) refers to the assumption that 

item responses are independent from one another after controlling for the construct of 

interest (DeMars, 2010).  Therefore, there should not be any correlation between two 

items after controlling for the underlying trait.  In other words, the items should only be 

correlated through the latent trait that the test is measuring (Lord and Novick, 1968).  

However, this LID assumption is almost always violated to various extents in empirical 

applications.  In the case of significant item residuals correlations, the items in a test can 

be regarded as locally dependent on each other, or there might exist to a secondary 

dimension in the measurement not accounted for by the main dimension trait.   
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Violations of local independence (LD) are problematic because they may 

influence parameter estimates (Li, Li, & Wang, 2010; Smith, 2005) as well as inflate 

reliability estimates (Marais & Andrich, 2008; Wainer & Thissen, 1996; Wang, Cheng, & 

Wilson, 2005), since locally dependent items always cause substantial information loss 

for IRT modeling (Chen & Thissen, 1997).   

 Among the variety of methods for identifying LD that have been proposed in the 

related literature, the most widely used approach is based on Yen’s Q3 (1984, 1993) 

statistics through computing item residuals (observed item responses minus their 

expected values), and then correlating these residuals.  Thus, in practice, LD is detected 

through observing the correlation matrix of item residuals based on estimated item and 

person parameters, and residual correlations above a certain cut-off value are pinpointed 

as the items that appear to be locally dependent.  

Although no single critical cut-off value of Q3 statistics is appropriate across all 

situations, simulation studies show that the Q3 critical value appears to be reasonably 

stable around a value of 0.2 above the average residual correlation (Marais, 2013).  That 

is to say, any item residual correlation that is 0.2 above the average residual correlation 

would appear to indicate LD, and any residual correlation of independent items that is 0.3 

above the average correlation would seem unlikely (Christensen, Makransky, & Horton, 

2017).  

The Yen’s Q3 (1984, 1993) statistics for the MCOP2 data used in this study can be 

calculated and investigated as part of the Principal Component Analysis of Residuals 

(PCAR) conducted in the Winsteps software program, version 4.7.0 (Linacre, 2020), 

where Table 23.99 (i.e., Largest residual correlations for items) can be obtained for 
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pairwise, item-level residual correlations by specifying the command of “PRCOMP = R” 

in the control file.  

Unidimensionality.  Unidimensionality is related to local independence and 

refers to the assumption that all assessment items measure only one, common construct 

(Bandalos, 2018; DeMars, 2010).  Unidimensionality is evaluated by conducting a 

Principal Components Analysis (PCA) on the standardized residuals (PCAR) following 

the analysis of a basic 4-facet MFRM analysis (i.e., ratees + MCOP2 items + raters + 

classrooms) in Facets.  The PCAR was conducted using the Winsteps software program, 

version 4.7.0 (Linacre, 2020). 

Standardized residuals were estimated as 

(4) 

where 𝑥𝑛𝑖𝑗 is the observed rating for student n on element i assigned by rater j; 𝑒𝑛𝑖𝑗 is the 

expected rating for student n on element i assigned by rater j, given the model; and 𝑤𝑛𝑖𝑗 is 

the variability of the observed rating around its expected rating, given the model, 

otherwise known as model variance (Eckes, 2015). 

The expected rating may be further defined as 

  (5) 

where k is a rating and 𝑝𝑛𝑖𝑗𝑘 is the probability of student n obtaining rating k on element i 

from rater j, given a specified MFRM model (Eckes, 2015).  In the same fashion, the 

model variance may be further defined as 

(6) 

which can be used to calculate the square root of the model variance, the statistical 
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information contributed by a particular rating (Myford & Wolfe, 2003). 

The procedures of conducting a PCAR analysis in Winsteps are as follows: (a) a 

basic 4-facet MFRM analysis (i.e., ratees + MCOP2 items + raters + classrooms) is 

carried out in Facets to produce the measures of all the four facets, and (b) a rectangular 

data output file is exported from Facets into Winsteps, containing the MCOP2 items as its 

columns and “ratees + raters” combined as its rows for a PCAR analysis in the Rasch 

framework. 

PCAR analyses are used to evaluate whether there are systematic patterns in the 

item-level standardized residuals.  If there are patterns in the residuals, a secondary 

dimension (i.e., a contrast) may be present.   It is assumed that all items should be loaded 

on the first contrast of the Rasch dimension, and the PCAR specifically tests whether any 

items group on secondary contrasts.  Each contrast has an associated eigenvalue, and the 

eigenvalues represent the number of items that make up the respective contrast.  If 

eigenvalues for secondary contrasts are less than 2.0 (indicating there are fewer than two 

elements on the secondary contrasts), the unidimensionality assumption is met.   

However, if eigenvalues for any of the secondary contrasts are greater than 2.0, it 

is recommended to further examine the disattenuated correlations between the person 

measures on the suspect cluster of items and the person measures on the other items.  If 

the correlations are greater than 0.70, the suspect cluster of items is probably only 

measuring a secondary strand of the main Rasch dimension and should not be considered 

as a different dimension.  By contrast, disattenuated correlations less than 0.30 or even 

negative values indicate that the suspect cluster of items is measuring something different 

than the construct of interests, and multidimensionality may become an issue (Linacre, 
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2012). 

Overall model fit.  To evaluate the overall model fit of the MFRM analysis, the 

absolute values of the standardized residuals are examined.  Standardized residuals 

represent the number of standard deviations the observed score/rating deviates from the 

expected score/rating.  For instance, standardized residuals of |2.0| indicate that the 

observed score deviates by two standard deviations from the expected score.  Thus, the 

related model-fit evaluation standard is that standardized residuals greater than |2.0| 

indicate highly unexpected scores, and they should be expected to appear less than 5% of 

the time in data that fit well with the chosen MFRM model (Bond & Fox, 2015; Eckes, 

2015; Myford & Wolfe, 2003; Wright & Masters, 1982).  In this study, data are deemed 

to have good overall model-fit in the MFRM analysis, if fewer than 5% of the 

standardized residuals appear greater than or equal to |2.0|. 

Rater fit and item fit.  Mean Square outfit and Mean Square infit statistics (also 

referred to as MSU and MSW) are calculated and investigated (Bond & Fox, 2015; 

Eckes, 2005; Engelhard, 1994, 2002; Myford & Wolfe, 2003) to evaluate rater fit or item 

fit (Bond & Fox, 2015; Eckes, 2005; Engelhard, 1994, 2002; Myford & Wolfe, 2003). 

For raters, the unweighted mean square (MSU) index (i.e., MnSq outfit statistics) 

refers to an average of raters’ squared standardized residuals for all examinees and items; 

while the weighted mean square (MSW) values (i.e., MnSq infit statistics) are weighted 

by statistical information, resulting in differential weighting of ratings.  Specifically, 

ratings assigned in score levels further from the examinees’ ability are weighted less 

heavily than ratings assigned to the other score levels, as less information is contributed 

to the model by these extreme scores (Bond & Fox, 2015; Eckes, 2015).  Similarly, the 
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MnSq outfit and infit statistics for items are calculated as a (unweighted or weighted) 

average of the items’ squared standardized residuals for all examinees and raters, 

respectively. 

MnSq outfit and infit indices range from 0 to positive infinity, with values of 1.0 

indicating perfect fit of the data to the model (Linacre, 2003).  Values less than 1.0 

indicate that the observed ratings are closer to the model-implied ratings than would be 

predicted by the model (i.e., overfit of the model), and values greater than 1.0 indicate 

that the observed ratings are less similar to the model-implied ratings than would be 

predicted by the model (i.e., underfit of the model) (Eckes, 2015; Linacre, 2003). 

Various benchmarks have been proposed for acceptable fit based on MnSq outfit 

and infit indices.  Linacre (2003) proposes that outfit and infit values between 0.5 and 1.5 

can indicate acceptable fit.  However, Bond and Fox (2015) suggest that narrower limits 

between 0.7 and 1.3 are appropriate.  Since the MCOP2 ratings are often used for 

relatively low stakes performance assessments, the MnSq outfit and infit values between 

0.5 and 1.5 are considered acceptable. 

After all the above assumptions are evaluated for the MFRM modeling, data can 

be analyzed to address each research question.  In all analyses, facets are oriented such 

that greater logits for examinee ability represent higher ability than lower logits; greater 

rater logits, however, indicate higher severity level in rating than lower logits, while 

greater item logits suggest higher difficulty level than lower logits.  The average logits of 

the rater and item facets are centered to 0 so that the average examinee ability measures 

can be freely estimated. 

Analyses Plan for Research Question Two 
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Research Question 2 (i.e., To what extent does the MCOP2 observation protocol 

separate observed teachers into distinct levels of proficiency?) is addressed by examining 

the examinee facet in the MFRM analysis. 

First, the MFRM analysis conducted using Facets yields (a) a measure of the 

examinee ability parameter on a logit scale for each individual teacher together with (b) a 

SE that indicates the uncertainty of (i.e., error associated with) that parameter estimate.  

The examinee ability measures are examined for the overall range/spread to determine 

how varied the teachers’ teaching practices are based on the MCOP2 assessments in this 

study sample.  In addition, the average examinee ability measure can also be calculated as 

the average proficiency/effectiveness of the observed teachers.  A relatively low (close to 

0) or even negative mean examinee ability measure would suggest the MCOP2

assessment is slightly too difficult for this sample of observed teachers.  Whereas a 

relatively low SE value is desired, as it indicates low measurement errors associated with 

the examinee ability measures and high level of precision in estimating these measures.  

The Separation Index for the examinee facet indicates the number of teaching 

proficiency levels among the observed math teachers, while the Reliability of Separation 

indicates the degree to which the MFRM analysis reliably distinguishes between different 

levels of math teaching proficiency.  Fixed χ2 tests the null hypothesis that all the 

observed teachers are equal in their math teaching proficiency/effectiveness.  Thus, a 

significant fixed χ2 value with p < 0.50 would indicates that the teachers are not equal in 

their teaching performances. 

A high separation index indicates that the variance among the observed math 

teachers is substantially larger than the error of estimates; and that the MCOP2 ratings are 
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highly capable of separating the teachers into a number of statistically distinct levels or 

strata in terms of the math teaching proficiency being measured.  A higher reliability 

statistic indicates that the same ranking of the observed teachers in terms of their teaching 

proficiency would be more likely to obtain if their classes were to be observed and rated 

again based on the MCOP2 protocol.   

In sum, high examinee separation and reliability indices suggest that the 

assessment distinguishes between examinees in terms of the ability being measured, 

indicating a high level of replicability of examinee placement across other tasks or tests 

that measure the same construct (Bond & Fox, 2007). This means greater confidence can 

be placed in the consistency of score-based inferences.  

Analyses Plan for Research Question Three 

Research Question 3 (i.e., To what extent do raters differ in terms of the relative 

severity with which they rate observed teachers?) is evaluated by examining the rater 

facet in the MFRM analysis. 

First, the fixed χ2 for the rater facet is evaluated as a global test of whether 

leniency/severity differs across raters.  The fixed effect χ2 is estimated to evaluate the null 

hypothesis that there are no differences in rater severity after controlling for measurement 

error.  A statistically significant χ2 (p<.05) suggests that at least two raters are statistically 

significantly different in their leniency/severity measures (Myford & Wolfe, 2004). 

Next, the rater separation index and reliability of rater separation are evaluated for 

the rater facet.  The rater separation index is estimated, representing the number of 

statistically significantly different levels of rater leniency/severity (Myford & Wolfe, 

2004).  A small rater separation index is desirable, as smaller values indicate fewer 
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statistically distinct levels of rater leniency/severity compared to larger values (Myford & 

Wolfe, 2004). 

The rater reliability of separation is also estimated for raters, reflecting how 

reliably raters can be separated along the severity continuum (Myford & Wolfe, 2003).  A 

low rater reliability of separation is desired, suggesting that raters have similar 

leniency/severity measures and thus cannot be reliably separated along the ability 

continuum (Myford & Wolfe, 2003; Myford & Wolfe, 2004). 

In addition, individual raters’ leniency/severity measures are evaluated via visual 

inspection with a Wright map, also known as a vertical ruler or variable map (Bond & 

Fox, 2015; Eckes, 2015).  The Wright map offers a visual depiction of raters’ 

leniency/severity and the rank-ordering of raters by their leniency/severity measures.  

Ideally, raters should be clustered close around a logit score of 0 (i.e., average 

leniency/severity) on the Wright Map.  If raters are dispersed across the logit continuum, 

it suggests that raters differ widely in their level of leniency/severity.  Raters with 

leniency/severity measures greater than 0, and thus located higher above the center logit 

value at 0 on the Wright map, are regarded more severe than the average rater.  By 

contrast, raters with severity measures less than 0, and thus located lower below the 

center value at 0 on the Wright map, are considered more lenient than the average rater 

(Eckes, 2015; Linacre, 2017). 

In sum, rater leniency/severity are evaluated overall via the fixed chi square, rater 

separation index, and rater reliability of separation.  Each of these global indices indicate 

the degree to which raters differ in their leniency/severity.  After assessing rater 

leniency/severity differences globally, individual raters (anonymously coded as Rater 1, 
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Rater 2, Rater 3, etc.) are then evaluated visually via the Wright map. 

Analyses Plan for Research Question Four 

Research Question 4 (i.e., To what extent do raters consistently rate the teaching 

performance of observed teachers?) is evaluated by investigating possible interactions 

between raters and observed teachers using the MFRM analysis. 

Rater fit statistics indicate the degree to which (a) a rater is internally self-

consistent across examinees, items, and other factors, and (b) is able to implement the 

rating scale to make distinctions among examinees’ performances (Bond & Fox, 2007; 

Weigle, 1998).  Rater fit statistics close to the expected value of 1.0 suggests that a rater 

uses the rating scale consistently and thus maintains his/her personal level of severity 

across examinees, items, and other factors (i.e., intra-rater agreement).  By contrast, rater 

misfit could indicate (a) that the rater exhibits more variation in their ratings than 

expected, (b) that their ranking of the examinees in terms of their measured latent ability 

is not reliable, and (c) that they are unable to use the rating scale consistently across items 

and examinees.  The ratings of misfit raters tend to be “noisy”, probably due to a 

tendency to overuse the extreme scale levels.  Rater misfit can be detected by evaluating 

the rater outfit and infit indices for which acceptable values range from 0.5 to 1.5.  A 

rater outfit and/or infit statistics greater than 1.5 would be considered to suggest rater 

misfit (Linacre, 2002; McNamara, 1996). 

By contrast, rater overfit indicates that the rater shows less than expected 

variation in their ratings, even after controlling for measurement errors.  The ratings of 

overfit raters tend to be “muted”, probably because they are being unusually consistent or 

overly cautious in using the upper and lower levels of the rating scale (i.e., a central 
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tendency) (McNamara, 1996; Myford & Wolfe, 2000).  Rater overfit can also be 

identified by evaluating the rater outfit and infit indices for which acceptable values 

range from 0.5 to 1.5.  A rater outfit and/or infit statistics less than 0.5 would be 

considered to suggest rater overfit (Linacre, 2002). 

Rater misfit is a more serious threat to general test validity than overfit or 

examinee misfit because it indicates divergent behavior from the norm on the part of the 

raters, and its effect on all other facet measure estimates can be strong (Bonk & Ockey, 

2003).  This is also why Rasch models do not adjust examinee scores/ratings as they can 

in the case of rater severity (Bonk & Ockey, 2003, p. 101; Myford & Wolfe, 2000, 2004). 

Analyses Plan for Research Question Five 

Research Question 5 (i.e., To what extent do raters consistently rate the teaching 

performance of observed teachers across the MCOP2 items?) is evaluated by 

investigating possible interactions between raters and the MCOP2 items using the MFRM 

analysis. 

 The 4-facet MFRM model (i.e., ratees + MCOP2 items + raters + classrooms) is 

modified to include an interaction term between the rater facet and the MCOP2 item facet 

to evaluate this research question.  When evaluating interactions in the MFRM 

framework (also referred to as bias analysis in Facets language), interactions may be 

tested in an exploratory or confirmatory manner (Eckes, 2015).  Exploratory interaction 

analyses are appropriate with no a priori hypotheses about the nature of the interactions.   

Since no a priori hypotheses exist about possible interactions between the MCOP2 items 

and rater leniency/severity, an exploratory interaction analysis is conducted.  

MFRM-based bias analysis in Facets investigates whether a particular aspect of 
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the assessment setting elicits a consistently biased pattern of scores/ratings.  As 

McNamara (1996) put it, “The basic idea in bias analysis is to further analyze the 

residuals to see if any further sub-patterns emerge.” (p. 141)  After estimating the main 

effects respectively for the rater severity (across all tasks), MCOP2 item difficulty (across 

all raters), and examinee ability (across all items and raters), the MFRM analysis 

estimates the most likely score for each examinee with a given rater on a specific task, if 

the rater’s rating behavior remains consistent across all MCOP2 items.  These individual 

examinee scores are totaled across all examinees to produce a total expected score given 

by each rater on each item.  This expected total score is then compared to the observed 

total score for all the examinees on the same item.   

If the observed score for a given MCOP2 item is higher than the expected score, 

this item seems to have elicited more lenient behavior than usual on the part of the raters.  

Fit statistics of the bias analysis summarize for each rater, item, and examinee the extent 

to which the differences between expected and observed values are within a normal range 

(expressed in standard deviations from the mean fit statistics). 

MFRM-based bias analysis in Facets outputs a file (i.e., Table 13) that provides 

detailed statistical information to identify significantly biased rater-by-item interactions.   

Specifically, Table 13 reports the following statistics among others (Kondo-Brown, 2002; 

Lynch & McNamara, 1998; McNamara, 1996): (a) Observed Score (observed total raw 

score for this criterion-rater combination), (b) Expected Score (predicted total raw score 

for this criterion-rater combination), (c) Observed-Expected Average (the average 

difference between the observed and expected scores), (d) Bias (extent of any 

discrepancy between the average of the observed and expected values expressed as 



73 

logits), (e) Z-score (likelihood of this discrepancy occurring by chance), and (f) Mean 

Square Fit (fit tells us how consistent this pattern of bias is across all the test-takers 

involved on this criterion with this rater) (Barkaoui, 2013; Linacre, 2002). 

All Z-scores should ideally be equal to zero.  Z-score values larger than +2 or less 

than -2 indicate significantly biased interactions.  Positive Z-score values indicate that the 

rater is more severe on that particular item, while negative z-values suggest that the rater 

is more lenient when rating that criterion.  While with respect to the mean square fit 

indices for the biased interactions, infit mean square values within the range of two 

standard deviations around the mean of infit indicate that raters are consistent in the 

identified patterns of bias across all examinees (Barkaoui, 2013; McNamara, 1996). 

McNamara (1996) and Kondo-Brown (2002) both recommend that only biased 

interactions with Z-values equal to or higher than the absolute value of 2, plus MnSq infit 

values within the range of two standard deviations around the mean of infit should be 

considered.   

Analyses Plan for Research Question Six 

Research Question 6 (i.e., To what extent can the score levels of the MCOP2 

items be distinguished, without certain score levels being either underused or overused?) 

is evaluated by examining both the graphic indicators (i.e., Item Characteristic Curves, 

and Item Information Functions) and the statistical indicators (i.e., item category ordering 

for individual raters, and rater fit indices). 

Scale functioning analysis assesses the quality of the rating scale by examining 

how the scale levels/categories are functioning and whether the thresholds indicate a 

hierarchical pattern to the rating scale (Bond & Fox, 2007; Davidson, 1991; North, 2003). 
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Descriptive statistics such as counts and percentages of scores in each category 

are first examined.  Bond and Fox (2007) suggest that, as a rule of thumb, each category 

should be assigned to at least 10 ratings/observations to allow scale diagnostics (Linacre, 

2003). 

Next, Probability Category Curves (PCCs), Item Characteristic Curves (ICCs), 

Item Information Functions (IFFs), and Category Information Curves (CICs) are also 

examined to determine possible overuse or underuse of specific categories.  For PCCs, 

thresholds with flat curves are problematic.  Davidson (1991) points out that such scale-

steps are “operationally worthless” as they are never the most probable rater scale-step 

choice on any point along overall test-taker ability (p. 159).  Thus, he suggests three ways 

to address this problem: (a) rewriting the level descriptors to clarify what the level is 

intended to measure, (b) removing that step from the scale if it is not needed, and/or (c) 

providing rater training to explain the meaning of the underused step.  

For CICs, the wider the curves (capturing a wider range of values), the more 

popular the category would be, signifying overuse.  For IIFs, the more dissimilar the 

shapes (sizes) of curves are, the more evidence there would be that the curves are 

conveying different amounts of information. 

The results of MFRM-based scale functioning analysis in Facets are all included 

in a Facets output file (i.e., Table 6).  Table 6 includes a variety of diagnostic information 

to examine scale functioning.   

For instance, Column 4 in Table 6 reports the (observed) average examinee ability 

measure associated with each category. This is computed by averaging the examinee 

ability measures (in logits) for all examinees in the sample who are assigned that 
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particular score.  These measures are expected to increase monotonically in size as the 

latent ability being measured increases, indicating that, on average, those with higher 

ability will be assigned to the higher scores (Bond & Fox, 2007; Linacre, 2003).  If a 

score level violates the monotonicity pattern, it will be automatically flagged. 

Column 6 reports the outfit mean square index for each category.  The expected 

value of this index is 1.0, indicating that the observed and expected examinee ability 

measures are equal.  The larger the difference between the observed and expected 

measures, the larger the outfit mean-square index will be.  An outfit mean-square index 

greater than 2.0 suggests that a rating in that level for one or more classroom observations 

may not be contributing to meaningful measurement of the latent trait (Linacre, 1999).  

The last two columns in Table 6 report step- or threshold-calibrations, 

representing difficulties estimated for choosing one response category over another 

(Davidson, 1991; Linacre, 2002).  Bond and Fox (2007) explain that “threshold distances 

should indicate that each step defines a distinct position on the variable” and that they 

should be neither too close together nor too far apart on the logit scale.  As a rule of 

thumb, “thresholds should increase by at least 1.4 logits, to show distinction between, but 

not more than 5 logits, so as to avoid large gaps in the variable” (Bond & Fox, 2007, p. 

163). 

Analyses Plan for Research Question Seven 

Research Question 7 (i.e., To what extent are the rater behaviors associated with 

the professional background characteristics (i.e., in-service vs. pre-service teachers, study 

cites, and teaching grade levels) of the observed teachers?) is evaluated by examining 

possible interactions between raters and the facets indicating observed teachers’ 
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professional background in the MFRM analysis. 

For each of the three external facets (i.e., in-service vs. pre-service teachers, study 

cites, and teaching grade levels), the original 4-facet MFRM model (i.e., ratees + MCOP2 

items + raters + classrooms) is modified to include an interaction term between the rater 

facet and the particular external facet to implement a MFRM-based bias analysis in 

Facets, respectively.   

The data analysis plans for these three MFRM-based bias analyses follows the 

same procedures and decision-making guidelines as detailed in the previous Analyses 

Plan for Research Question Five. 

Ethical Standards 

Because this study involved human subjects, the University of Kentucky (UK) 

Institutional Review Board (IRB) clearance is required.  After the approval process was 

finalized (for acquiring and using the MCOP2 secondary data sources), data acquisition 

and analyses proceeded as described above (see the relevant sections in CHAPTER III: 

METHOD).  Written permissions from the original data owners were acquired before 

any data analyses, and adherence to the rules of privacy safeguarding participant 

information was followed as required by law.  

Protocol for research on human subjects, per the Institutional Review Board (IRB) 

at the University of Kentucky research department, was strictly followed.  The researcher 

of this study had complied with all requirements related thereto.  After permission was 

gained, the IRB approval letter was filed and approved (see Appendix A).  
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CHAPTER IV 

RESULTS 

Introduction 

The purpose of this study was to evaluate a math classroom observation protocol 

(MCOP2) under a Rasch measurement framework for calibrating rater assessment of 

math teachers’ classroom instructional performance, featuring the Many-Facet Rasch 

Model (MFRM) for rater effects control.  Gleason, Zelkowski, and their colleagues 

(2016, 2017, 2018) conducted several validation studies under the CTT framework for 

the 16-item Mathematics Classroom Observation Protocol for Practices (MCOP2).  

Among which, exploratory/confirmatory factor analysis and interrater reliability analysis 

were performed on the MCOP2 raw data for internal structure analysis and rater effects 

control, respectively.  However, the methodological limitations of the CTT approach for 

rater-mediated assessments were discussed above, such as causing unintended 

interpretations of a scoring rubric (Eckes, 2008), biased ratings due to power dynamics 

among raters (Hoyt & Kerns, 1999), or the need for costly and time-consuming training 

programs that often fail to produce a high degree of rater agreement (Barrett, 2001).  

Thus, it is highly necessary to use the MFRM modeling technique for furthering the 

investigation and evaluation of the MCOP2 validity and reliability, including 

dimensionality analysis, item-level analysis, rater effects control, and ratee and rater 

ability level calibration. 

The previous three chapters introduced the key concepts of rater-mediated 

performance assessment and the Many-Facet Rasch Model (MFRM), reviewed the 

literature related to earlier MCOP2 validation and empirical studies, MFRM modeling, 
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interrater reliability, and multi-facet calibration techniques for controlling rater effects, 

and outlined the methodology utilized in the current study.  This chapter presents the 

results of the MFRM-based data analysis that pertain to three parts: (a) evaluation of the 

overall model fit of the sampled MCOP2 rating data under the MFRM framework; (b) 

examination of the psychometric properties of the rater, ratee, and item facets under the 

MFRM framework, respectively; (c) contingent upon acceptable overall model fit, 

investigation of possible interaction bias among the key facets under the MFRM 

framework (e.g., raters, ratees, and their professional background characteristics).  

Descriptive statistics are discussed first, followed by the analysis results of each of the 

seven empirical research questions.  

Research Questions 

This study investigated the following seven questions: 

1. To what extent do the observed rating data obtained from the MCOP2

instrument fit the MFRM modeling? This question is evaluated by testing the

MFRM model assumptions, including local independence, unidimensionality,

overall model fit, rater fit, and item fit.

2. To what extent does the MCOP2 observation protocol separate observed

teachers into distinct levels of proficiency?  Such a separation is evaluated by

examining the examinee facet in the MFRM analysis.

3. To what extent do raters differ in terms of the relative severity with which

they rate observed teachers?  This question is evaluated by examining the rater

facet in the MFRM analysis.

4. To what extent do raters consistently rate the teaching performance of
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observed teachers?  This question is evaluated by investigating possible 

interactions between raters and observed teachers using the MFRM analysis. 

5. To what extent do raters consistently rate the teaching performance of

observed teachers across the MCOP2 items?  This question is evaluated by

examining investigating possible interactions between raters and the MCOP2

items using the MFRM analysis.

6. To what extent can the score levels of the MCOP2 items be distinguished,

without certain score levels being either underused or overused?  This

question is evaluated by examining both the graphic indicators (i.e., Item

Characteristic Curves, and Item Information Functions) and the statistical

indicators (i.e., item category ordering for individual raters, and rater fit

indices).

7. To what extent are the rater behaviors associated with the professional

background characteristics (i.e., in-service vs. pre-service teachers, schools,

and teaching grade levels) of the observed teachers?  This question is

evaluated by examining possible interactions between raters and the facets

indicating observed teachers’ professional background in the MFRM analysis.

The results of the statistical analyses related to each of these questions are presented in 

the order of the research questions.  The implications are discussed in the next chapter. 

Descriptive Statistics 

The population for this study is formed by all pre- and in-service teachers who 

teach math in P-12 classrooms. The specific study sample drawn from this population is 

composed of 129 pre- and/or in-service math teachers from the neighboring school 
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districts around the University of Alabama (i.e., Sample AL) and thirty pre-service math 

teachers from the University of Kentucky (i.e., Sample UK) whose teaching 

performances were observed and rated according to the MCOP2 rubrics in the P-12 

classrooms across the elementary, secondary, and post-secondary levels.  All the 159 

math teachers in the combined sample were observed and rated by a single rater who had 

received formal or informal training on how to observe and give scores on the sixteen 

MCOP2 items. 

Since Sample AL contains cross-sectional data collected at a single time point, 

each of the 129 math teachers was observed and rated only once by one of the four AL 

raters, and each observation record is unique on the rater, ratee, and classroom facet.  In 

contrast, the thirty pre-service math teachers in Sample UK were enrolled in their 

respective pedagogy courses (e.g., SEM435 or SEM746) near the end of their teacher 

education program, and their student teaching performances had been observed and rated 

by their university faculty supervisors (seven raters in total) using the MCOP2 protocol 

three to four times over the time span of about four months.  In order to combine Sample 

AL and Sample UK for overall cross-sectional data analysis, only the chronologically 

most recent observation record was retained for each of the thirty UK pre-service 

teachers in the combined sample (For example, a pre-service teacher was observed and 

rated four times throughout the course of SEM435 on February 1st, February 7th, April 

10th, and April 15th, 2019, only his/her MCOP2 observation ratings on April 15th, 2019 

was retained and included in the combined study sample).  Consequently, the final 

combined study sample contains 2,534 valid responses based on the sixteen MCOP2 

items, unique for each of the 159 pre- and/or in-service math teachers.  Missing data (n = 



82 

13) accounted for less than 1% of all ratings.

As shown in Table 1, the demographic/background features of the math teachers 

(n = 159) in the combined study sample are detailed by the four demographic variables, 

namely, Study Site, MCOP2 Raters, Classroom Grade Level, and Service Type (i.e., Pre-

Service or In-Service).  One important difference to note concerns the specification of the 

classroom grade level for each math teacher between the AL and UK samples: because 

no information was provided for the thirty pre-service math teachers concerning their 

classroom grade levels in the original UK sample, the numeric value “99” were filled in 

for the UK observations to indicate missing or unspecified values. 

Table 1  

Descriptive Statistics for Demographic Variables in the Combined Sample (N = 159) 

Variable Response N % 

Study Site Sample AL 129 81 

Sample UK 30 19 

Raters AL Raters (1-4) 4 36 

UK Raters (5-11) 7 64 

Classroom Grade Levela 1 (LE: Lower Elementary) 27 17 

2 (UE: Upper Elementary) 13 8 

3 (MS: Middle School) 12 7 

4 (HS: High School) 25 16 

5 (Sec: Secondary) 16 10 

6 (UG: Tertiary) 36 23 

99 (Unspecified) 30 19 

Pre- or In-Service 1 (In-Service Teachers) 101 64 

2 (Pre-Service Teachers) 58 36 

Notes. aRegarding Classroom Grade Level, Sample UK fails to provide any specific 

information; thus, the numeric value “99” were filled in for the UK observations to 

indicate missing or unspecified values.  
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The subscale total ratings on Student Engagement (including nine items) and 

Teacher Facilitation (including nine items), as well as the MCOP2 total scores (including 

sixteen items) were examined for all the 159 math teachers as a whole and for teachers in 

each of the two original study samples (i.e., Sample AL and Sample UK), respectively.  

The full range of ratings, from 0 = most unsatisfactory performance to 3 = most 

satisfactory performance, were used for all the items in the above-listed subscales, 

although the specific descriptors on the four rating levels are unique for each of the 

sixteen items based on the MCOP2 rubric. Table 2 provide a range of descriptive statistics 

for the raw ratings on the total MCOP2 protocol and for each of its two subscales. 

Table 2 

Descriptive Statistics for Participants’ MCOP2 Raw Scores in the Respective AL, UK, & 

Combined Samples 

Descriptive 

Statistics 

Sample 

AL UK Combined 

SEa 
(N = 

127) 

TFb 
(N = 

127) 

Totalc 
(N = 

125) 

SE  
(N = 

28) 

TF  
(N = 

29) 

Total 
(N = 

28) 

SE  
(N = 

155) 

TF  
(N = 

156) 

Total 
(N = 

153) 

Mean 1.55 1.56 1.56 1.69 1.33 1.51 1.57 1.52 1.55 

Median 1.56 1.56 1.50 1.67 1.33 1.50 1.56 1.44 1.50 

Mode 1.56 1.33 1.00 1.67 1.33 1.50 1.56 1.33 1.00 

SD .72 .62 .60 .48 .48 .42 .69 .60 .57 

Min .33 .44 .44 .78 .33 .69 .33 .33 .44 

Max 3.00 3.00 3.00 2.56 2.33 2.44 3.00 3.00 3.00 

Range 2.67 2.56 2.56 1.78 2.00 1.75 2.67 2.67 2.56 

Notes. athe total score of the Student Engagement Subscale; bthe total score of the 

Teacher Facilitation Subscale; cthe average score of all 16 items in the MCOP2 

instrument. 

As shown in Table 2, comparing the raw ratings of Sample AL and Sample UK 
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math teachers’ on the two MCOP2 subscales (i.e. Student Engagement and Teacher 

Facility), three tendencies were worth noting: (a) the pre-service math teachers in Sample 

UK were rated significantly lower on Teacher Facilitation than the math teachers in 

Sample AL (M diff = .236, t = 2.251, p = .029, Cohen’s d = .395); (b) on average, the pre-

service math teachers in Sample UK received much lower ratings on Teacher Facilitation 

(M =1.33, SD = .48) than their ratings on Student Engagement (M =1.69, SD = .48); and 

(c) the raw ratings of the pre- or in-service teachers in Sample AL were about equal on

the two subscales of Teacher Facilitation (M =1.56, SD = .62) and Student Engagement 

(M =1.55, SD = .72). 

These differences in the mean comparisons of the MCOP2 raw scores may lead to 

interesting interpretations from the psychometric perspective: if the MCOP2 protocol is 

deemed valid and reliable, the significant differences between the Teacher Facilitation 

ratings received by the pre-service math teachers in Sample UK and those received by the 

math teachers in Sample AL (78% are in-service math teachers) may reflect the extent to 

which the MCOP2 protocol can distinguish math teachers’ true levels of teaching 

effectiveness across study samples.  However, because the CTT approach of calculating 

interrater reliability is sample sensitive and cannot effectively control for various rater 

effects, the possibility cannot be eliminated that such mean differences may be attributed 

to differences in rater severity/leniency across study samples.     

Analyses for Research Question One 

Research Question 1 (i.e., To what extent do the observed rating data obtained 

from the MCOP2 instrument fit the MFRM modeling?) was evaluated by testing the 

MFRM modeling assumptions, including local independence, unidimensionality, overall 



85 

model fit, rater fit, and item fit.  

Local Independence 

Local independence (LID) refers to the assumption that item responses are 

independent from one another after controlling for the construct of interest (DeMars, 

2010).  This LID assumption is, however, almost always violated to various extents in 

empirical applications.  The most widely used method for identifying LD is based on 

Yen’s Q3 (1984, 1993) statistics through computing item residuals (observed item 

responses minus their expected values), and then correlating these residuals.  

 The Yen’s Q3 (1984, 1993) statistics for the MCOP2 data used in this study can 

be calculated and investigated as part of the Principal Component Analysis of Residuals 

(PCAR) conducted in the Winsteps software program, version 4.7.0 (Linacre, 2020), 

where Table 23.99 (i.e., Largest residual correlations for items) can be obtained for 

pairwise, item-level residual correlations by specifying the command of “PRCOMP = R” 

in the control file.  

Simulations show that any item residual correlation that is 0.2 above the average 

residual correlation would appear to indicate LD, and any residual correlation of 

independent items that is 0.3 above the average correlation would seem unlikely 

(Christensen, Makransky, & Horton, 2017; Marais, 2013).  

Table 3 below shows that (a) the 16-item MCOP2 scale indicate serious LD 

issues, with 5 pairs of item residual correlation well above the average residual 

correlation (.24 to .38 above the average Q3 .17); (b) the 9-item Student Engagement 

subscale suggests slight LD problems with 3 pairs of item residual correlation notably 

above the average residual correlation (.21 to .26 above the average Q3 .11); and (c) no 
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LD-related concerns are identified for the 9-item Teacher Facilitation subscale where 

none of the pairs of item residual correlation is 0.2 above the average Q3 .11.   
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Table 3 

Summary of the Local Independence (Yen’s Q3) Statistics for the MCOP2 Protocol, Student Engagement Subscale, and Teacher 

Facilitation Subscale 

Yen’s Q3 
MCOP2 Scale 

(16 items) 
Yen’s Q3 

Student Engagement 

(9 items) 
Yen’s Q3 

Teacher Facilitation 

(9 Items) 

Avg Q3 = .17 Pairs of Correlated Items Avg Q3 = .11 Pairs of Correlated Items Avg Q3 = .10 Pairs of Correlated Items 

.55** Item 1 Item 5 .37* Item 3     Item 12 .26 Item 11 Item 16 

.50** Item 3   Item 12 .36* Item 1   Item 5 .22 Item 13 Item 16 

.45*   Item 12   Item 15 -.32*   Item 14     Item 15 -.19     Item 4     Item 6 

-.42* Item 3 Item 6 .25   Item 12     Item 15 .19     Item 8 Item 11 

.41* Item 1   Item 15 -.22 Item 2   Item 5 -.18 Item 10 Item 13 

Note. *0.2 to 0.3 above the average item residual correlation; **0.3 or greater above the average item residual correlation. 
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Unidimensionality 

Unidimensionality is related to local independence and refers to the assumption 

that all assessment items measure only one, common construct (Bandalos, 2018; DeMars, 

2010).  Unidimensionality is evaluated by conducting a Principal Components Analysis 

(PCA) on the standardized residuals (PCAR) following the analysis of a basic 4-facet 

MFRM analysis (i.e., ratees + MCOP2 items + raters + classrooms) in Facets.  The PCAR 

was conducted using the Winsteps software program, version 4.7.0 (Linacre, 2020). 

It is assumed that all items should be loaded on the first contrast of the Rasch 

dimension, and the PCAR specifically tests whether any items group on secondary 

contrasts.  Each contrast has an associated eigenvalue, and the eigenvalues represent the 

number of items that make up the respective contrast.  If eigenvalues for secondary 

contrasts are less than 2.0 (indicating there are fewer than two elements on the secondary 

contrasts), the unidimensionality assumption is met.   

However, if eigenvalues for any of the secondary contrasts are greater than 2.0, it 

is recommended to further examine the disattenuated correlations between the person 

measures on the suspect cluster of items and the person measures on the other items.  If 

the correlations are greater than 0.70, the suspect cluster of items is probably only 

measuring a secondary strand of the main Rasch dimension and should not be considered 

as a different dimension.  By contrast, disattenuated correlations less than 0.30 or even 

negative values indicate that the suspect cluster of items is measuring something different 

than the construct of interests, and multidimensionality may become an issue (Linacre, 

2012). 
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Table 4 

Summary of the PCA Statistics for the MCOP2 Protocol, Student Engagement Subscale, and Teacher Facilitation Subscale 

PCA Statistics 

MCOP2 Scale 

(16 items) 

Student Engagement 

(9 items) 

Teacher Facilitation 

(9 Items) 

Eigenvalue Observed Expected Eigenvalue Observed Expected Eigenvalue Observed Expected 

Total Variance 28.99 100% 100% 21.30 100% 100% 17.92 100% 100% 

Variance by Measure 12.99 44.8% 44.6% 12.30 57.7% 57.7% 8.92 49.8% 49.2% 

Variance by Persons 5.77 19.9% 19.8% 7.03 33.0% 33.0% 4.52 25.2% 24.9% 

Variance by Items 7.22 24.9% 24.8% 5.27 24.7% 24.7% 4.40 24.5% 24.2% 

Total Unexplained 

Variance 
16.00 55.2% 55.4% 9.00 42.3% 42.3% 9.00 50.2% 50.8% 

Unexplained 1st Contrast 3.75* 12.9% - 2.01* 9.4% - 1.66 9.3% - 

Unexplained 2nd Contrast 1.67 5.8% - 1.56 7.3% - 1.40 7.8% - 

Unexplained 3rd Contrast 1.51 5.2% - 1.24 5.8% - 1.23 6.9% - 

Unexplained 4th Contrast 1.25 4.3% - 1.19 5.6% - 1.20 6.7% - 

Unexplained 5th Contrast 1.12 3.9% - 1.08 5.1% - 1.02 5.7% - 

Note. *Eigenvalues for secondary contrasts are greater than 2.0, indicating there are more than two elements on the secondary 

contrasts, and the unidimensionality assumption is violated. 
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As illustrated in Table 4 above, the PCA results showed that (a) the 16-item 

MCOP2 protocol used as one single scale failed to uphold the unidimesionality 

assumption, as the residual variances of more than two items (eigenvalue = 3.75) 

clustered on a different dimension in addition to the variances explained by the MCOP2 

measure; (b) the unidimensionality assumption was better met for the 9-item Student 

Engagement subscale, with just about two item residuals loaded on a dimension other 

than the latent trait measured (eigenvalue = 2.01); and since less than two item residuals 

(eigenvalue = 1.66) were strongly correlated to form any contrast/factor apart from the 

variances explained by the measure, the 9-item Teacher Facilitation subscale successfully 

met the unidimensionality assumption. 

To further investigate the unidimensionality issues revealed in the above PCA 

analyses, the disattenuated correlations were also examined between the person measures 

on the suspect cluster of items and the person measures on the other items for the 16-item 

MCOP2 protocol and the 9-item Student Engagement subscale, respectively.  It was 

found that for the 16-item MCOP2 protocol, the person measure disattenuated 

correlations between the 1st and 3rd cluster of items fell between the cut-off value range of 

0.30 - 0.70 (r = 0.48), suggesting that the cluster of items on the suspect 1st contrast were 

measuring a secondary strand of the main Rasch dimension probably warranting separate 

investigation.  However, for the 9-item Student Engagement subscale, all the 

disattenuated correlations were well above the upper bound of the cut-off value range 

(0.70), indicating that the suspect cluster of items was only measuring an insignificant 

secondary strand of the latent trait of interests and should not be considered as a different 

dimension (Linacre, 2012).  
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Overall Model Fit 

To evaluate the overall model fit of the MFRM analysis, the absolute values of 

the standardized residuals were examined for the 9-item Student Engagement subscale 

and the 9-item Teacher Facilitation subscale, respectively.  In this study, data are deemed 

to have good overall model-fit in the MFRM analysis, if fewer than 5% of the 

standardized residuals appear greater than or equal to |2.0| and about 0.3% or less of 

standardized residuals are greater than or equal to |3.0| (Linacre, 2004).  

In the 9-item Student Engagement subscale dataset analyzed with the MFRM, 

there were a total of 1,423 valid responses, of which 58 (4.08%) were associated with 

(absolute) standardized residuals greater than or equal to 2, and 4 responses (0.28%) 

associated with (absolute) standardized residuals of greater than or equal to 3.  Whereas 

based on the MFRM analysis of the 9-item Teacher Facilitation subscale dataset, among 

the total 1,428 valid responses, 50 (3.50%) were associated with (absolute) standardized 

residuals greater than or equal to 2, and 6 responses (0.42%) associated with (absolute) 

standardized residuals of greater than or equal to 3.  Taken together, these results were 

indicative of a satisfactory overall model fit for both subscales.   

Additional methods for assessing the fit of the MFRM to the MCOP2 data (e.g., 

rater fit statistics) were presented later in the following sections.  

Rater Fit and Item Fit 

Mean Square outfit and Mean Square infit statistics (also referred to as MSU and 

MSW) were calculated and investigated (Bond & Fox, 2015; Eckes, 2005; Engelhard, 

1994, 2002; Myford & Wolfe, 2003) to evaluate rater fit and/or item fit (Bond & Fox, 

2015; Eckes, 2005; Engelhard, 1994, 2002; Myford & Wolfe, 2003).  Linacre (2003) 
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proposes that outfit and infit values between 0.5 and 1.5 can indicate acceptable fit.  

Since the MCOP2 ratings are often used for relatively low stakes performance 

assessments, the MnSq outfit and infit values between 0.5 and 1.5 were considered 

acceptable.  The overfitting raters would have muted ratings that suggested a central 

tendency or, alternatively, a halo effect (see Engelhard, 2002; Myford & Wolfe, 2004).  

While the underfitting raters would suggest their ratings show off-target deviations/noise 

from the way the measure is intended to be used, and thus are unproductive (or even 

degrading in case of a serious extent of rater underfit) for construction of measurement.  

Table 5.1 

Percentages of Rater Mean-Square Fit Statistics for the Student Engagement Subscale 

and the Teacher Facilitation Subscale 

Fit Range 
Student Engagement Teacher Facilitation 

Infit Outfit Infit Outfit 

fit < 0.50 (overfit) 9% 9% 0% 0% 

0.50 ≤ fit ≤ 1.50 73% 73% 91% 91% 

fit > 1.50 (misfit) 18% 18% 9% 9% 

Table 5.1 above displayed percentages of rater fit values falling into overfit, 

acceptable fit, and misfit categories, using the relatively wide range of upper and lower 

control limits (0.50 ≤ fit ≤ 1.50).  Based on the infit values, one rater showed overfit 

(9%) and two raters fell into the misfit category (18%), when using the 9-item Student 

Engagement subscale.  Since the percentage of raters showing acceptable fit (73%) for 

using the Student Engagement subscale fell well below 90%, it was concluded that the 
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raters were internally inconsistent in using the 4-point rating scale, or the raters might not 

have used the Student Engagement rating scale appropriately.  

In comparison, when using the 9-item Teacher Facilitation subscale, more raters 

fell into the desirable category between 0.50 and 1.50 (91%) meaning that the number of 

overfitting and underfitting raters was minimal (only one out of the eleven raters showed 

underfit).  Since the percentage of raters showing acceptable fit was above 90%, it could 

be concluded that the raters were internally consistent and used the 4-point Teacher 

Facilitation rating scale appropriately. 

Table 5.2 

Percentages of Item Mean-Square Fit Statistics for the Student Engagement Subscale and 

the Teacher Facilitation Subscale 

Fit Range 
Student Engagement Teacher Facilitation 

Infit Outfit Infit Outfit 

fit < 0.50 (overfit) 0% 0% 0% 0% 

0.50 ≤ fit ≤ 1.50 89% 100% 89% 100% 

fit > 1.50 (misfit) 11% 0% 11% 0% 

Table 5.2 above displayed percentages of item fit values falling into overfit, 

acceptable fit, and misfit categories, using the relatively wide range of upper and lower 

control limits (0.50 ≤ fit ≤ 1.50).  Based on the infit and outfit values, only one item 

showed underfit (11%) for both the 9-item Student Engagement subscale and the 9-item 

Teacher Facilitation subscale.  Since the percentage of items showing acceptable fit 

(89%) for both the subscale were very close to 90%, it could be concluded that the nine 
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items on either the Student Engagement or the Teacher Facilitation subscale were 

internally consistent and can be used to measure the latent traits of interests appropriately. 

Analyses for Research Question Two 

Research Question 2 (i.e., To what extent does the MCOP2 observation protocol 

separate observed teachers into distinct levels of proficiency?) was addressed by 

examining the examinee facet in the MFRM analysis. 

Figures 3.1 and 3.2 displayed variable maps (also referred to as Wright maps) 

visualizing the calibrations of raters, ratees, items, and the 4-point rating scales for the 

Student Engagement and Teacher Facilitation data, respectively. The item facets had 

been centered and therefore, constrained to have a mean element of zero.  However, the 

measures for the ratee facets were freed to float because extreme values had been 

included in the analyses (both maximum-possible and minimum-possible scores) as 

suggested by Linacre (2011).  It should be noted, though, that the extreme scores would 

make no difference to the estimates of the other elements, or to their fit statistics, and are 

usually preferred to be included in an analysis. 

Figures 3.1 and 3.2 below illustrated the Wright maps with calibrated rater, ratee, 

item, and rating scale facets for the Student Engagement and Teacher Facilitation 

subscales, respectively.  It revealed that (a) for the Student Engagement subscale, the 

variability across ratees in their level of proficiency seemed substantial, with their 

proficiency estimates forming a 7.61-logit range (-2.06 ~ 5.55); and (b) the similar 

pattern was also present for the Teacher Facilitation subscale, with the ratees’ level of 

proficiency falling into the logit range between -2.35 and 5.39. 
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Figure 3.1   

The Student Engagement Subscale Wright Map 

+---------------------------------------------------------------------------------------+ 

|Measr|+Math Teachers|-Raters  |-Items  |Scale| 

|-----+--------------+---------------------------------+--------------------------+-----| 

| 6 + .  +      +  + (3) | 

| |  | |  | | 

| |  |  |  |  | 

| |  | |  | | 

| | .  | |  | | 

| 5 +  +   +         + | 

| |  | |  |  | 

| |  | |  | | 

| |  | |  | | 

| | .  | |   |  | 

| 4 +  +   +         + | 

| | *  | |  | | 

| |  |  |  |  | 

| | .  | |  | | 

| |  | |  | | 

| 3 + **.  + +  +  | 

| |  | |  | | 

| | .  | |  | | 

| | *  |  |  |  | 

| | ****.  | |  | --- | 

| 2 +  +   +         + | 

| | **  |  |  |  | 

| | *  | |  | | 

| | *  | |  |  | 

| | ***  | | SE_Item5 | | 

| 1 + ***.   +      + SETF_Item4 + 2  | 

| | **  | UA Rater4 |   |  | 

| | ****   | |  | | 

| | ******.  | UK Rater2 | SE_Item2 | | 

| | ******.  | UK Rater6  |  |  | 

* 0 * ***. * UA Rater1  UK Rater1  * SE_Item15 * --- *

| | ****   | UK Rater3  UK Rater4  UK Rater7 | SE_Item1 SE_Item12 | | 

| | **.  | UA Rater2  UA Rater3  UK Rater5 | SE_Item14 | | 

| | ***.   | | SETF_Item13  | | 

| | *****  | |  |  | 

|  -1 + ******.  + +  +  1  | 

| | *****  | |  | | 

| | **  | | SE_Item3  |  | 

| | *****  | |  | | 

| | .  | |  | | 

|  -2 + *  + +  +  | 

| |  | |  | --- | 

| |  | |  | | 

| |  |  |  |  | 

| |  | |  | | 

|  -3 + +  + + (0) | 

|-----+--------------+---------------------------------+--------------------------+-----| 

|Measr| * = 2  |-Raters  |-Items  |Scale| 

+---------------------------------------------------------------------------------------+ 
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Figure 3.2   

The Teacher Facilitation Subscale Wright Map 

+---------------------------------------------------------------------------------------+ 

|Measr|+Math Teachers|-Raters  |-Items  |Scale| 

|-----+--------------+---------------------------------+--------------------------+-----| 

| 5 + .  +      +  + (3) | 

| |  | |  | | 

| |  |  |  |  | 

| |  | |  | | 

| |  | |  | | 

| | *.  |  |  |  | 

| 4 + *  +      +  + | 

| |  | |  | | 

| |  | |  | | 

| |  | |  |  | 

| | .  | |  | | 

| |  | |  | | 

| 3 +  +   +  +  | 

| |  | |  | | 

| | *  | |  | | 

| |  |  |  |  | 

| | .  | |  | | 

| | .  | |  | --- | 

| 2 + .  + +  +  | 

| | *  | |  | | 

| | *  | |  | | 

| | ***  |  |  |  | 

| | **  | |  | | 

| | **.  | |  | | 

| 1 + ***. + UK Rater2 + TF_Item7 + 2  | 

| | *  | |  | | 

| | ****   | | SETF_Item4 |  | 

| | *.  | UK Rater7 |  | | 

| | ****   | | TF_Item8 TF_Item9 | | 

| | **.  | UK Rater1  UK Rater3  UK Rater4 |   |  | 

* 0 * ****. * UA Rater1  UA Rater3  UA Rater4 *         * --- * 

| | ********.  | UA Rater2 | TF_Item11 TF_Item16 | | 

| | ******  | UK Rater5  UK Rater6   | TF_Item6  |  | 

| | *****.  | |  | | 

| | *  | | SETF_Item13  | | 

| | ***  | |  | | 

|  -1 + ****.  + +  +  1  | 

| | ****.  | | TF_Item10 |  | 

| | *  | |  | | 

| | ***  | |  | | 

| | ***  | |   |  | 

| | *.  | |  | | 

|  -2 + +  + +  | 

| | .  |  |  | --- | 

| | *  | |  | | 

| |  | |  | | 

| |  |  |  |  | 

| |  | |  | | 

|  -3 + +  + + (0) | 

|-----+--------------+---------------------------------+--------------------------+-----| 
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These findings were further supported by the statistics given in Tables 6.1 and 

6.2.  Specifically, for the Student Engagement data, the standard deviation of the 

estimated proficiencies of the ratees was 1.46.  The RMSE value for the ratee proficiency 

estimates was 0.55 (the highest of all three facets), indicating that these ratee measures 

were estimated with a relatively high error component.  Comparing the ratee facet with 

the other two facets, the item facet showed the lowest RMSE (0.12), indicating that these 

item measures were estimated with a particularly low error component.  Such a difference 

was probably because the estimation of the item measures was based on a much larger 

number of observations.  It could also explain why the item facet received the highest 

value (out of the 3 facets) of separation ratio (G = 6.04, as compared to 0.49 and 2.35 for 

rater and ratee facets respectively).  The chi-square statistic testing the hypothesis that all 

ratees had the same proficiency was highly significant, suggesting that all ratees did not 

share the same proficiency level (after allowing for measurement error).  The ratee 

separation index (H) estimates that, within this sample of ratees there were about 3 (3.47) 

statistically distinct strata of proficiency.  The separation ratio (G) for the ratee facet was 

2.35, indicating that the true standard deviation of ratee proficiency measures was about 2 

times greater than their standard error of measurement.  The separation reliability of the 

ratee proficiency estimates was 0.85.  For ratees, this reliability statistic provided 

information about how well one could differentiate among the ratees in terms of their 

levels of proficiency.  The ratee separation reliability indicated how different the ratee 

proficiency measures were.  Since the purpose of most performance assessments is to 

differentiate ratees in terms of their proficiency as well as possible, a high value of 

separation statistic is desired.  It seemed that for Student Engagement, this statistic was 
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relatively high, implying that the Student Engagement subscale could differentiate well 

among the ratees (i.e., math teachers) in terms of their classroom teaching performance to 

engage students. 

Table 6.1 

Summary of the MFRM Analysis Statistics for the Student Engagement Subscale 

MFRM Statistics Rater Ratee Item 

M (measure) -.02 .26 0.00a 

SD (measure) .36 1.46 .76 

M SE .10 .30 .01 

RMSE .32 .55 .12 

Adj. (true) SD .16 1.29 .75 

χ2 124.1*** 794.5*** 320.4*** 

df 10 158 8 

Separation ratio (G) .49 2.35 6.04 

Separation (strata) index (H) .99 3.47 8.39 

Separation reliability (R) .19 .85 .97 

Note. aThe item facet was constrained to have a mean estimate of zero for the Rasch 

model-based analysis. M SE = Mean-square measurement error. RMSE = Root mean-

square measurement error. *** p <.001. 

Similarly, as shown in Table 6.2 below, for the Teacher Facilitation data, the 

standard deviation of the estimated proficiencies of the ratees was 1.37.  The RMSE value 

for the ratee proficiency estimates was 0.52 (the highest of all three facets), indicating 

that these ratee measures were estimated with a relatively high error component.  The 

chi-square statistic testing the hypothesis that all ratees had the same proficiency was 

highly significant, suggesting that all ratees did not share the same proficiency level (after 

allowing for measurement error).  The ratee separation index (H) estimates that, within 

this sample of ratees there were about 3 (3.39) statistically distinct strata of proficiency.  
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The separation ratio (G) for the ratee facet was 2.29, indicating that the true standard 

deviation of ratee proficiency measures was about 2 times greater than their standard 

error of measurement.  The separation reliability of the ratee proficiency estimates was 

0.84.  For ratees, this reliability statistic provided information about how well one could 

differentiate among the ratees in terms of their levels of proficiency.  The ratee separation 

reliability indicated how different the ratee proficiency measures were.  It seemed that for 

Teacher Facilitation, this statistic was relatively high, implying that the Teacher 

Facilitation subscale could differentiate well among the ratees (i.e., math teachers) in 

terms of their teacher facilitation performance. 

Table 6.2 

Summary of the MFRM Analysis Statistics for the Teacher Facilitation Subscale 

MFRM Statistics Rater Ratee Item 

M (measure) .12 .09 0.00a 

SD (measure) .37 1.37 .63 

M SE .08 .27 .01 

RMSE .28 .52 .12 

Adj. (true) SD .24 1.19 .61 

χ2 27.4*** 730.1*** 244.6*** 

df 10 158 8 

Separation ratio (G) .85 2.29 5.22 

Separation (strata) index (H) 1.47 3.39 7.29 

Separation reliability (R) .42 .84 .96 

Note. aThe item facet was constrained to have a mean estimate of zero for the Rasch 

model-based analysis. M SE = Mean-square measurement error. RMSE = Root mean-

square measurement error. *** p <.001. 
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Analyses for Research Question Three 

Research Question 3 (i.e., To what extent do raters differ in terms of the relative 

severity with which they rate observed teachers?) was evaluated by examining the rater 

facet in the MFRM analysis. 

Rater leniency/severity were evaluated overall via the fixed chi square, rater 

separation index, and rater reliability of separation.  Each of these global indices 

indicated the degree to which raters differ in their leniency/severity.  After assessing rater 

leniency/severity differences globally, individual raters (anonymously coded as Rater 1, 

Rater 2, Rater 3, etc.) were then evaluated visually via the Wright maps. 

Examining the Wright maps in Figures 3.1 and 3.2, it was noted that the 

variability across raters in the level of the severity with which items were rated was not 

substantial for both the Student Engagement and Teacher Facilitation subscale.  The rater 

severity estimates showed a relatively narrow spread of 1.24 logits and 1.36 logits for 

Student Engagement and Teacher Facilitation, respectively.  This finding was also 

supported by examining the relevant statistics in Tables 6.1 and 6.2.  The mean estimated 

severity of all the eleven raters was -0.02 with a standard deviation of 0.36 for Student 

Engagement and 0.12 with a standard deviation of 0.37 for Teacher Facilitation.  (The 

rater facets were not centered and therefore, were not constrained to have a mean element 

measure of 0.)  The RMSE values were 0.32 and 0.28 for Student Engagement and 

Teacher Facilitation respectively, indicating that these rater measures were estimated 

with a relatively low error component.  

The fixed chi-square statistics testing the hypothesis that all raters have the same 

severity were highly significant for both the subscales, indicating that at least two raters 
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were statistically significantly different in their leniency/severity measures (Myford & 

Wolfe, 2004).  However, the rater separation indices (H) showed that within this group of 

eleven raters there was only 1 (0.49 for Student Engagement and 0.85 for Teacher 

Facilitation) statistically distinct strata of severity.  The separation ratios (G) for the rater 

facets were 0.99 for Student Engagement and 1.47 for Teacher Facilitation, indicating 

that the true standard deviations of rater severity measures were only about 1 time greater 

than their standard error of measurement.  The reliability statistics of rater separation also 

attested to a relatively low dissimilarity degree in rater severity (0.19 for Student 

Engagement and 0.42 for Teacher Facilitation).  Low rater separation reliability (such as 

in this study) is generally desirable as this would indicate that raters were approaching the 

ideal of being interchangeable.   The rater separation reliability should not be confused 

with interrater reliability (which is the index of how similar raters are with respect to their 

severity).  Rater separation reliability is an index of how different severity measures are 

based on Rasch modeling.  The results of this study showed that the estimated mean 

severity of the Sample AL raters was 0.035 compared with the mean severity for Sample 

UK raters of -0.059 when using the Student Engagement subscale, indicating that Sample 

AL raters were about 0.1 logit more severe than the Sample UK raters (e.g., the most 

severe rater on Student Engagement was identified as Rater 4 from Sample AL).  In 

contrast, when using the Teacher Facilitation subscale, the estimated mean severity of the 

Sample AL raters was -0.042 compared with the mean severity for Sample UK raters of 

0.209, suggesting that Sample AL raters were about 0.3 logit more lenient than the 

Sample UK raters (e.g., the most severe rater on Teacher Facilitation was identified as 

Rater 2 from Sample UK).   
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Analyses for Research Question Four 

Research Question 4 (i.e., To what extent do raters consistently rate the teaching 

performance of observed teachers?) was evaluated by investigating possible interactions 

between raters and observed teachers (i.e., rater fit indices) using the MFRM analysis. 

Rater fit statistics indicate the degree to which (a) a rater is internally self-

consistent across examinees, items, and other factors, and (b) is able to implement the 

rating scale to make distinctions among examinees’ performances (Bond & Fox, 2007; 

Weigle, 1998).  Rater fit statistics close to the expected value of 1.0 suggests that a rater 

uses the rating scale consistently and thus maintains his/her personal level of severity 

across examinees, items, and other factors (i.e., intra-rater agreement). 

 FACETS program provides two types of mean-square statistics that are indicative 

of data-model fit for each rater, namely, rater infit and rater outfit.  The infit statistic is 

usually sensitive to an accumulation of unexpected ratings.  On the other hand, the outfit 

statistic is sensitive to individual unexpected ratings.  Both the infit and the outfit 

statistics can range from 0 to infinity and have an expected value of 1 (Linacre, 2002; 

Myford & Wolfe, 2003).  

Rater misfit (i.e., judged upon the rater outfit statistics) is considered a more 

serious threat to general test validity than rater overfit (i.e., judged upon the rater infit 

statistics) or examinee misfit because it indicates divergent behavior from the norm on 

the part of the raters, and its effect on all other facet measure estimates can be strong 

(Bonk & Ockey, 2003).   

Referring back to Table 5.1 in the previous Analyses for Research Question 

One which displayed percentages of rater fit values falling into overfit, acceptable fit, 
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and misfit categories, one rater showed overfit (9%) and two raters fell into the misfit 

category (18%), when using the 9-item Student Engagement subscale.  Since the 

percentage of raters showing acceptable fit (73%) for using the Student Engagement 

subscale fell well below 90%, it was concluded that the raters were internally inconsistent 

in using the 4-point rating scale, or the raters might not have used the Student 

Engagement rating scale appropriately.  All misfitting and/or overfitting raters were 

identified coming from Sample UK as Rater 7, 1 and 3. 

In comparison, when using the 9-item Teacher Facilitation subscale, more raters 

fell into the desirable category between 0.50 and 1.50 (91%) meaning that the number of 

overfitting and underfitting raters was minimal (only one out of the eleven raters showed 

underfit).  Since the percentage of raters showing acceptable fit was above 90%, it could 

be concluded that the raters were internally consistent and used the 4-point Teacher 

Facilitation rating scale appropriately.  The one misfitting rater was identified as Rater 1 

from Sample UK. 

Analyses for Research Question Five 

Research Question 5 (i.e., To what extent do raters consistently rate the teaching 

performance of observed teachers across the MCOP2 items?) was evaluated by 

investigating possible interactions between raters and the MCOP2 items using the MFRM 

analysis. 

Since no a priori hypotheses exist about possible interactions between the MCOP2 

items and rater leniency/severity, an exploratory interaction analysis was conducted.  

MFRM-based bias analysis in FACETS investigates whether a particular aspect of the 

assessment setting elicits a consistently biased pattern of scores/ratings.  As McNamara 
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(1996) put it, “The basic idea in bias analysis is to further analyze the residuals to see if 

any further sub-patterns emerge.” (p. 141) 

If the observed score for a given MCOP2 item is higher than the expected score, 

this item seems to have elicited more lenient behavior than usual on the part of the raters.  

Fit statistics of the bias analysis summarize for each rater, item, and examinee the extent 

to which the differences between expected and observed values are within a normal range 

(expressed in standard deviations from the mean fit statistics). 

MFRM-based bias analysis in Facets outputs a file (i.e., Table 13) that provides 

detailed statistical information to identify significantly biased rater-by-item interactions.   

Specifically, Table 13 reports the following statistics among others (Kondo-Brown, 2002; 

Lynch & McNamara, 1998; McNamara, 1996): (a) Observed Score (observed total raw 

score for this criterion-rater combination), (b) Expected Score (predicted total raw score 

for this criterion-rater combination), (c) Observed-Expected Average (the average 

difference between the observed and expected scores), (d) Bias (extent of any 

discrepancy between the average of the observed and expected values expressed as 

logits), (e) Z-score (or t statistics) (likelihood of this discrepancy occurring by chance), 

and (f) Mean Square Fit (fit tells us how consistent this pattern of bias is across all the 

test-takers involved on this criterion with this rater) (Barkaoui, 2013; Linacre, 2002). 

All Z-scores (or t statistics) should ideally be equal to zero.  Z-score values (or t 

statistics) larger than +2 or less than -2 indicate significantly biased interactions.  Positive 

Z-score values (or t statistics) indicate that the rater is more severe on that particular item,

while negative Z-values (or t statistics) suggest that the rater is more lenient when rating 

that criterion.  While with respect to the mean square fit indices for the biased 
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interactions, infit mean square values within the range of two standard deviations around 

the mean of infit indicate that raters are consistent in the identified patterns of bias across 

all examinees (Barkaoui, 2013; McNamara, 1996). 

McNamara (1996) and Kondo-Brown (2002) both recommend that only biased 

interactions with Z-values equal to or higher than the absolute value of 2, plus MnSq infit 

values within the range of two standard deviations around the mean of infit should be 

considered. 

To investigate whether each rater maintained a uniform level of severity across 

the nine items on the Student Engagement subscale, or whether particular raters gave 

ratings on some items more severely or leniently than expected, a two-way interaction 

analysis of Raters by Items was performed.  Similarly, interaction analyses (i.e., Raters 

by Sites, Raters by Service Types, and Raters by Grade Levels) to test for patterns of 

unexpected ratings related to particular study sites, service types, and classroom grade 

levels were also performed.   

Table 7.1 below listed the total number of combinations of facet elements 

considered in each interaction analysis, the percent of absolute t-scores equal to or greater 

than 2, minimum and maximum t-values along with their degrees of freedom, the means 

and standard deviations of the bias sizes, fixed chi-square statistics, as well as the 

percentages of variances in the Student Engagement data explained by the bias terms.   

Regarding the rater by item interaction, about one fifth of the combinations 

(21.28%) yielded statistically significant t-scores.  This means that some raters tended to 

alternate between more severe ratings on one item and more lenient ratings on another 

item.  Furthermore, for these significantly biased interactions, the majority of the 
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associated infit mean square values fell within the range of two standard deviations 

around the mean of infit, indicating that raters appeared consistent in the identified 

patterns of bias across all ratees (Barkaoui, 2013).  This relatively high percentage of 

significant rater by item biased interactions altogether contributed to 8.75% of the total 

raw variances in the Student Engagement data. 

Table 7.1 

Summary Statistics of the Interaction Analysis for the Student Engagement Subscale 

Statistic Rater by Item Rater by Site 
Rater by 

Service Type 

Rater by Grade 

Level 

N combinations 94 11 12 0 

% large t-scoresa 21.28 0.00 0.00 - 

Min-t(df) -3.46(35)** -.02(303) -.02(107) - 

Max-t(df) 4.74(35)*** .01(359) .02(203) - 

M -.02 0.00 0.00 - 

SD 94 0.00 0.00 - 

χ2 (df) 274.00(94)*** 0.00(11) 0.00(12) - 

Variance by Bias 8.75% 0.00% 0.00% - 

 Note. aPercentage of absolute t-scores equal or greater than 2.00 

Figure 4.1 below plotted the individual rater by item biased interactions.  As 

highlighted in yellow, five significant biased interactions (i.e., rater absolute measure 

equal to or greater than 2 logits above the mean rater measure) were noted involving 

Rater 1, Rater 2, and Rater 7 from Sample UK, as well as Rater 2 and Rater 4 from 

Sample AL.  Specifically, Raters 1, 2, and 7 from Sample UK and Rater 4 from Sample 

AL rated more leniently than expected on SE_Item3, SETF_Item4, SE_Item2, and 

SE_Item5, respectively; while Rater 2 from Sample AL rated more severely than 

expected on SE_Item3. 
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Figure 4.1 

Plot Illustrating the Rater by Item Bias Interactions for the Student Engagement Subscale 

Similarly, Table 7.2 below listed the total number of combinations of facet 

elements considered in each interaction analysis, the percent of absolute t-scores equal to 

or greater than 2, minimum and maximum t-values along with their degrees of freedom, 

the means and standard deviations of the bias sizes, fixed chi-square statistics, as well as 

the percentages of variances in the Teacher Facilitation data explained by the bias terms.  

Regarding the rater by item interaction, a relatively lower percentage of the 

combinations (13.27%) yielded statistically significant t-scores compared to those 

produced for the Student Engagement subscale, suggesting that fewer raters tended to 

alternate between more severe ratings on one item and more lenient ratings on another 

item.  Furthermore, for these significantly biased interactions, the majority of the 



106 

associated infit mean square values fell within the range of two standard deviations 

around the mean of infit, indicating that raters appeared consistent in the identified 

patterns of bias across all ratees.  The slightly lower percentage of significant rater by 

item biased interactions still contributed to 7.06% of the total raw variances in the 

Teacher Facilitation data. 

Table 7.2 

Summary Statistics of the Interaction Analysis for the Teacher Facilitation Subscale 

Statistic Rater by Item Rater by Site 
Rater by 

Service Type 

Rater by Grade 

Level 

N combinations 98 11 12 0 

% large t-scoresa 13.27 0.00 0.00 - 

Min-t(df) -3.16(15)** -.01(321) -.02(106) - 

Max-t(df) 3.80(12)** 0.00(62) .00(62) - 

M -.03 0.00 0.00 - 

SD .96 0.00 0.00 - 

χ2 (df) 162.8(98)*** 0.00(11) 0.00(12) - 

Variance by Bias 7.06% 0.00% 0.00% - 

 Note. aPercentage of absolute t-scores equal or greater than 2.00 

Figure 4.2 below plotted the individual rater by item biased interactions for 

Teacher Facilitation.  Highlighted in yellow, nine significant biased interactions (i.e., 

rater absolute measure equal to or greater than 2 logits above the mean rater measure) 

were noted involving Rater 1, Rater 2, Rater 6, and Rater 7 from Sample UK.  

Specifically, Raters 2, 6, and 7 from Sample UK rated more leniently than expected on 

SETF_Item4, TF_Item9, TF_Item16, TF_Item10, and TF_Item6, respectively; while 

Rater 1 from Sample UK rated more severely than expected on TF_Item7. 
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Figure 4.2 

Plot Illustrating the Rater by Item Bias Interactions for the Teacher Facilitation Subscale 

Analyses for Research Question Six 

Research Question 6 (i.e., To what extent can the score levels of the MCOP2 

items be distinguished, without certain score levels being either underused or overused?) 

was evaluated by examining both the graphic indicators (i.e., Item Characteristic Curves, 

and Item Information Functions) and the statistical indicators (i.e., item category ordering 

for individual raters, and rater fit indices). 

Descriptive statistics such as counts and percentages of scores in each category 

are first examined.  Bond and Fox (2007) suggest that, as a rule of thumb, each category 

should be assigned to at least 10 ratings/observations to allow scale diagnostics (Linacre, 

2003). 



108 

Figure 5.1 

Summary Statistics of the Rating Scale Functioning for the Student Engagement Subscale 

As shown in the above Figure 5.1, the Student Engagement 4-point scale 

functioning was examined based on a variety of diagnostic information, and the 

following findings were noted: (a) counts and percentages of scores in each of the four 

categories (highlighted in yellow) confirmed that each rating level had well above the 

minimum cut-off number (i.e., 10) of ratings/observations (ranging from 226 to 456 

observations) to allow scale diagnostics (Linacre, 2003); (b) the (observed) average 

examinee ability measure associated with each category (highlighted in green) appeared 

to increase monotonically in size as the latent trait being measured increases, indicating 

that, on average, those with higher ability would be assigned to the higher scores (Bond 

& Fox, 2007; Linacre, 2003); (c) the outfit mean square index for each of the four 

categories (highlighted in blue) were all observed to be the ideal value 1.0, indicating that 

the observed and expected ratee ability measures were equal; and finally (d) step- or 

threshold-calibrations were reported in the highlighted red box representing difficulties 

estimated for choosing one response category over another, and they showed step 

increase as expected between 1.4 and 5 logits (Bond & Fox, 2007, p. 163).   

+-----------------------------------------------------------------------------------------------------------+ 

|  DATA   |   QUALITY CONTROL |RASCH-ANDRICH|  EXPECTATION  |  MOST  |  RASCH-  | Cat| 

|   Category Counts   Cum.|  Avge  Exp. OUTFIT| Thresholds  |  Measure at   |PROBABLE| THURSTONE|PEAK| 

|Score Total   Used  %    % |  Meas  Meas  MnSq |Measure  S.E.|Category  -0.5 |  from  |Thresholds|Prob| 

|--------------------------------+-------------------+-------------+---------------+--------+----------+----| 

|  0     226       226   16%  16%| -1.84  -1.81  1.0 |  |( -3.08)  |   low  |   low   |100%| 

|  1   448  448   32%  48%|  -.60   -.62  1.0 | -1.91  .09|  -1.00  -2.19|  -1.91 |  -2.03   | 56%| 

|  2   456  456   32%  80%|   .66    .67  1.0 | -.01  .07|   1.00   .00|   -.01 |   .00   | 56%| 

|  3   293  284   20% 100%|  2.29   2.28  1.0 | 1.91  .09|(  3.09)   2.20|   1.91 |   2.03   |100%| 

+---------------------------------------------------------------------(Mean)---------(Modal)--(Median)------+ 
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Figure 6.1 

Summary Statistics of the Rating Scale Functioning for the Teacher Facilitation Subscale 

The above Figure 6.1 displayed highly similar diagnostic information regarding 

the Teacher Facilitation 4-point scale functioning: (a) counts and percentages of scores in 

each of the four categories (highlighted in yellow) confirmed that each rating level had 

well above the minimum cut-off number (i.e., 10) of ratings/observations (ranging from 

224 to 488 observations) to allow scale diagnostics (Linacre, 2003); (b) the (observed) 

average examinee ability measure associated with each category (highlighted in green) 

appeared to increase monotonically in size as the latent trait being measured increases, 

indicating that, on average, those with higher ability would be assigned to the higher 

scores (Bond & Fox, 2007; Linacre, 2003); (c) the outfit mean square index for each of 

the four categories (highlighted in blue) were all observed to be equal or very close to 

(e.g., 0.9) the ideal value 1.0, indicating that the observed and expected ratee ability 

measures were equal; and finally (d) step- or threshold-calibrations were reported in the 

highlighted red box representing difficulties estimated for choosing one response 

category over another, and they showed step increase as expected within the 1.4 to 5 

logits range (Bond & Fox, 2007, p. 163).   
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Figure 5.2 

The Student Engagement Subscale Probability Category Curves (PCCs) 

Figure 6.2 

The Teacher Facilitation Subscale Probability Category Curves (PCCs) 
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Figures 5.2 and 6.2 above displayed a graphical representation of the Student 

Engagement and Teacher Facilitation subscale rating scales and the way they were used 

by the raters.  From the graphs, it was clear that the raters were using all the categories of 

the two rating scales (0 through 3).  The horizontal axis represented the ratee proficiency 

in logits and the vertical axis (from 0 to 1) represented the ratees’ probability of being 

scored on a certain rating level.  The scale category probability curves are labeled as 0, 1, 

2, and 3, since both the SE and TD subscales used a 4-point rating scale.   

It is important to discern whether there is a separate peak for each rating scale 

category probability curve, and whether the curves appear as an evenly spaced series of 

hills (Park, 2004).  Each separate peak of a scale category curve indicates that, for ratees 

in a specific portion of the ratee proficiency distribution, that category is the most likely 

rating for their teaching performances.  The absence of a separate peak would mean that 

the category is never the most probable rating for any clearly designated portion of the 

ratee proficiency distribution.  As Davidson (1991) points out, such flat scale-steps are 

“operationally worthless” as they are never the most probable rater scale-step choice on 

any point along overall ratee ability (p. 159).   

Examining Figures 5.2 and 6.2, the probability curves for the 4 ratings on both the 

SE and TF subscales were represented by a fairly evenly spaced series of hills.  For each 

rating category there was a clearly designated portion of the ratee proficiency distribution 

for which that category would be the most probable rating given.  Categories 0 and 3, as 

compared to the other categories, however, seems to be relatively underused.   
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Figure 7.1 

The Student Engagement Subscale Category Information Function (CIF) 

Figure 7.2 

The Teacher Facilitation Subscale Category Information Function (CIF) 
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Figures 7.1 and 7.2 above showed a graphical representation of category 

information functions (CICs) for the Student Engagement and Teacher Facilitation 

subscales, respectively.  For CICs, the wider the curves (capturing a wider range of 

values), the more popular the category would be, signifying overuse.  It was found that 

for both the subscales, categories 1 and 2 gave the most information as they displayed the 

highest peaks (at the expense of the neighboring categories 0 and 3).  Ideally, all these 

curves for all the categories should be of an equal height and spacing.   

Figures 8.1 and 8.2 below presented a graphical representation of the item 

information functions (IIFs) for the Student Engagement and Teacher Facilitation 

subscales, respectively.  For IIFs, the more dissimilar the shapes (sizes) of curves are, the 

more evidence there would be that the curves are conveying different amounts of 

information.  The peaks occur where the categories intersect and where the item is doing 

best in discriminating between test taker proficiencies.  For the MFRM analysis, any item 

would be most informative for ratees whose ability is equal to the difficulty level of the 

item.  As shown in Figures 7.1 and 7.2, on both the SE and TF scales, the general pattern 

seemed to suggest that the items tended to give the most information (where the peaks 

were located) when the ratees’ ability levels fell into the range between -1 and 1 logits.    
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Figure 8.1 

The Student Engagement Subscale Item Information Functions (IIFs) 

Figure 8.2 

The Teacher Facilitation Subscale Item Information Function (IIF) 



115 

Analyses for Research Question Seven 

Research Question 7 (i.e., To what extent are the rater behaviors associated with 

the professional background characteristics (i.e., in-service vs. pre-service teachers, study 

cites, and teaching grade levels) of the observed teachers?) was evaluated by examining 

possible interactions between raters and the facets indicating observed teachers’ 

professional background in the MFRM analysis. 

For each of the three external facets (i.e., in-service vs. pre-service teachers, study 

cites, and teaching grade levels), the original 4-facet MFRM model (i.e., ratees + MCOP2 

items + raters + classrooms) was modified to include an interaction term between the 

rater facet and the particular external facet to implement a MFRM-based bias analysis in 

Facets, respectively.   

These three MFRM-based interaction analyses were performed following the 

same procedures and decision-making guidelines as detailed in the previous Analyses for 

Research Question Five. 

Referring back to Tables 8.1 and 8.2 under Analyses for Research Question 

Five, a variety of the biased interaction information were presented including the total 

number of combinations of facet elements considered in each interaction analysis, the 

percent of absolute t-scores equal to or greater than 2, minimum and maximum t-values 

along with their degrees of freedom, the means and standard deviations of the bias sizes, 

fixed chi-square statistics, as well as the percentages of variances in the Student 

Engagement and/or Teacher Facilitation data explained by the bias terms.   

However, the results showed that none of the interaction combinations in the three 

types of bias analyses yielded statistically significant t-scores.  This means that raters did 
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not alternate between more severe ratings and more lenient ratings as a function of Sites, 

Service Types, or Classroom Grade Levels.  Thus, all these interactions contributed to 

0.00% of the total raw variances in the Student Engagement and/or Teacher Facilitation 

data and their effects on the overall MFRM analysis should be ignored. 

Since the findings suggested that the MCOP2 raters were not biased (i.e., either 

inappropriately increasing or decreasing their scores) towards certain types of candidates 

as related to their Sites, Service Types, or Classroom Grade Levels, the MFRM analysis 

calibration could successfully provide fair average scores for each ratee after adjusting 

for the rater effects and the above-mentioned three types of contextual factors in the 

observed raw ratings. 

Table 8.1 below presented descriptive statistics of the observed and fair scores on 

Student Engagement the math teachers received across the various groups defined by 

their Sites, Service Types, or Classroom Grade Levels.  An overall high correlation (r = 

0.987) was observed between the observed and fair scores, suggesting a strong positive 

linear relationship between the observed and fair scores given to the math teachers in 

terms of Student Engagement.  However, it was also evident that the MFRM-calibrated 

fair average scores substantially changed the raw score cross-group mean differences in 

Student Engagement after controlling for the contextual effects of Sites (i.e., from -.13 to 

-.06), Service Types (i.e., from -.07 to .06), or Classroom Grade Levels (e.g., raised the 

Tertiary Level raw score of .88 to 1.23 in its fair average score form). 

Table 8.1 

Ratees’ Observed and Fair Scores on Student Engagement by Sites, Service Types, or 

Classroom Grade Levels 
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N 
Observed Scores 

M(SD) 

Fair Scores 

M(SD) 

Site 

Sample AL 129 1.56 (.72) 1.59 (.65) 

Sample UK 30 1.69 (.46) 1.65 (.45) 

Service Type 

In-Service 101 1.55 (.77) 1.62 (.68) 

Pre-Service 58 1.62 (.50) 1.56 (.49) 

Grade Levels 

Lower Elementary 27 1.88 (.61)*** 1.74 (.66)** 

Upper Elementary 13 1.88 (.57)*** 1.74 (.62) 

Middle School 12 1.81 (.78)*** 1.83 (.80) 

High School 25 1.63 (.65)*** 1.64 (.66) 

Secondary 16 1.87 (.11)*** 1.75 (.48)** 

Tertiary 36 .88 (.09)*** 1.23 (.56)** 

Unspecified 30 1.69 (.46)*** 1.65 (.45)** 

Note. **p < 0.01 in cross-group mean comparison; ***p < 0.001 in cross-group mean 

comparison. 

Similar trends were also observed in the MFRM analysis of the Teacher 

Facilitation data.  An overall high correlation (r = 0.985) was observed between the 

observed and fair scores, suggesting a strong positive linear relationship between the 

observed and fair scores given to the math teachers regarding Teacher Facilitation.  

Again, it was noted that the MFRM-calibrated fair average scores substantially changed 

the raw score cross-group mean differences in Teacher Facilitation after controlling for 

the contextual effects of Sites (i.e., from .23 to .12), Service Types (i.e., from .27 to .20), 

or Classroom Grade Levels (e.g., decreased the Tertiary Level raw score of 1.52 to 1.46 

in its fair average score form). 
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Table 8.2 

Ratees’ Observed and Fair Scores on Teacher Facilitation by Sites, Service Types, or 

Classroom Grade Levels 

N 
Observed Scores 

M(SD) 

Fair Scores 

M(SD) 

Site 

Sample AL 129 1.57 (.63)* 1.49 (.65) 

Sample UK 30 1.34 (.48)* 1.37 (.36) 

Service Type 

In-Service 101 1.62 (.64)** 1.54 (.66)* 

Pre-Service 58 1.35 (.51)** 1.34 (.46)* 

Grade Levels 

Lower Elementary 27 1.62 (.56) 1.49 (.58) 

Upper Elementary 13 1.70 (.80) 1.59 (.84) 

Middle School 12 1.40 (.70) 1.34 (.72) 

High School 25 1.63 (.70) 1.58 (.73) 

Secondary 16 1.52 (.59) 1.46 (.61) 

Tertiary 36 1.52 (.56) 1.46 (.58) 

Unspecified 30 1.34 (.48) 1.37 (.36) 

Note. *p < 0.05 in cross-group mean comparison; **p < 0.01 in cross-group mean 

comparison; ***p < 0.001 in cross-group mean comparison. 

Summary 

This study evaluated the rating quality obtained from a K-16 math classroom 

observation protocol (MCOP2) under a MFRM framework for the detection and control 

of rater effects and the effects of other potential construct-irrelevant factors during the 

rating processes. The data analyses (Research Question 1) testing the model-data fit of 

the MCOP2 rating data to the MFRM analysis framework yielded results that (a) the CTT 
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factor analysis findings from the previous validation studies were further confirmed 

regarding the 2-factor structure for the 16-item MCOP2 protocol; (b) raters appeared 

more internally consistent in using the 4-point rating scale appropriately for Teacher 

Facilitation than for Student Engagement; and (c) the nine items on both the Student 

Engagement and Teacher Facilitation subscales showed overall acceptable model-data fit, 

indicating that all subscale items were able to provide meaningful information on the 

latent trait being measured.  

To investigate how well the ratings data for the two MCOP2 subscales (i.e., 

Student Engagement and Teacher Facilitation) differentiate raters and ratees (Research 

Questions 2-3), the respective MFRM analyses suggested: (a) ratees measured by both 

the MCOP2 subscales were separated into about 3 statistically distinct strata in terms of 

their performance on Student Engagement and Teacher Facilitation, respectively 

(Research Question 2); and (b) in contrast, raters using the two MCOP2 subscales showed 

insubstantial cross-rater variability, although at least two raters were identified as 

significantly different from each other in the level of their severity/leniency (Research 

Question 3).  These findings are further explored in Chapter V. 

MFRM analysis was also used to study 2-way interactions between raters and 

ratees (Research Question 4), raters and items (Research Question 5), as well as raters 

and other contextual (construct-irrelevant) characteristics (Research Question 7).  

Regarding the rater-ratee interaction, the results showed that (a) raters were internally 

inconsistent in using the Student Engagement 4-point rating scale, or some raters might 

not have used the Student Engagement rating scale appropriately; and (b) for the Teacher 

Facilitation Subscale, raters were internally consistent and used its 4-point rating scale 
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appropriately.  

While with respect to the rater-item interaction, it was found that (a) not all raters 

maintained a uniform level of severity across the nine items on the Student Engagement 

subscale, and the identified significant rater-item biases altogether contributed to 8.75% 

of the total raw variances in the Student Engagement data; while (b) when using for the 

Teacher Facilitation Subscale, a slightly lower percentage of significant rater by item 

biased interactions were identified, which still contributed to 7.06% of the total raw 

variances in the Teacher Facilitation data. 

Based on the findings evaluating the interactions between raters and ratee 

background characteristics such as Study Sites (i.e., Sample AL vs. Sample UK), Service 

Types (i.e., In-Service Teachers vs. Pre-Service Teachers), and Classroom Grade Levels, 

raters are not biased towards certain types of ratees (i.e., math teachers under 

observation), either inappropriately increasing or decreasing their scores when using the 

two MCOP2 subscales (i.e., Student Engagement & Teacher Facilitation). 

The quality of the 4-point Likert scale functioning used in the MCOP2 protocol 

for Student Engagement and Teacher Facilitation respectively was also systematically 

evaluated in the MFRM analysis for category ordering, fit indices, and/or possible 

underuse/overuse of some categories over others (Research Question 6).  The findings 

highlighted that raters were using all the categories of the 4-point rating scale (0 through 

3) in the expected/intended ranking order for Student Engagement and Teacher

Facilitation respectively, with categories 0 and 3 appearing slightly relatively underused 

as compared to the other categories.  Again, these findings are further discussed in 

Chapter V. 
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CHAPTER V 

 DISCUSSION AND CONCLUSION 

The Study in Brief 

In this chapter, the results obtained in this study were revisited and interpreted.  

First, a brief review of the purpose and rationale of the study was presented to provide the 

overarching research background for the following sections.  The Discussion section was 

written following the same sequence of the seven research questions addressed in the 

RESULTS section.  Next, the strengths and limitations of the current study were 

discussed in detail.  Finally, implications for future research were explored. 

This research sought to use the Many-Facet Rasch Model (MFRM) analysis for a 

systematic re-examination of the psychometric properties of a math classroom 

observation protocol (MCOP2), in which raw ratings of math teachers’ classroom 

instructional performance were able to be calibrated after controlling for rater effects and 

other construct-irrelevant factors (i.e., math teachers’ background characteristics).  The 

findings of this study were expected to (a) address the methodological limitations 

displayed in the previous MCOP2 validation studies where factor analysis was conducted, 

and interrater reliability statistics were calculated under the classical test theory (CTT) 

framework; and (b) transform and calibrate the MCOP2 raw ratings of the math teachers 

on a common Rasch scale to produce observation scores that could be compared across 

ratees, raters, classrooms, and study samples, especially in self- and/or peer-performance 



122 

assessments. 

Discussion 

This section discusses the meanings and connotations of the main findings for 

each of the seven research questions plus descriptive statistics of the study samples based 

on the data analysis results described in Chapter IV.  Such interpretations were tied back 

to the research literature reviewed in Chapter II, with reference to the related theoretical 

and empirical studies as deemed necessary. 

Sample Characteristics 

The results concerning descriptive statistics first defined the population for this 

study as all pre- and in-service teachers who teach math in P-12 classrooms.  While the 

two study samples drawn from this population were specified as 129 pre- and/or in-

service math teachers from the neighboring school districts around the University of 

Alabama (i.e., Sample AL) and thirty pre-service math teachers from the University of 

Kentucky (i.e., Sample UK) whose teaching performances were observed and rated 

according to the MCOP2 rubrics in the P-12 classrooms across the elementary, secondary, 

tertiary, and/or post-secondary levels.  All the 159 math teachers in the combined sample 

were observed and rated by a single rater who had received formal or informal training 

on how to observe and give scores on the sixteen MCOP2 items.  The demographic 

background features of the math teachers (n = 159) in the combined study sample were 

defined by the four variables, namely, Study Site, MCOP2 Raters, Classroom Grade 

Level, and Service Type (i.e., Pre-Service or In-Service). 

Next, the descriptive statistics analysis highlighted various degrees of uneven 

distribution among the ratees (i.e., the math teachers under observation) grouped by the 
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four background variables.  For example, only 19% of the participants in the combined 

study sample came from Sample UK, compared to 81% from Sample AL; Sample AL 

had fewer raters (n = 4) than Sample UK (n = 7); and more in-service math teachers (n = 

101) were represented than pre-service teachers (n = 58) in the final combined sample,

etc.  Such varying background characteristics of the participants in the MCOP2 samples 

reflected to a certain extent the true contextual complexities with which classroom 

observations (such as MCOP2) were typically implemented, including but not limited to 

school climate, teacher and teaching characteristics, the grade level, teaching topic, 

classroom dynamics, student academic achievements, and student demographic 

characteristics (Bell, Dobbelaer, & Klette, 2018; Grossman, Cohen, & Brown, 2014).  

Thus, it was vital to test the validity and reliability assumptions of the classroom 

observation protocols across different observation contexts, so that the observation 

ratings could be compared meaningfully in self- and/or peer-performance assessments 

longitudinally over the time and/or simultaneously with other classrooms (Mikeska, 

Holtzman, McCaffrey, Liu, & Shattuck, 2019).  Without such sample-independent 

validation of the observation protocols, direct comparisons of the raw observation ratings 

could be very hard to interpret, and the resulting conclusions might be invalid, or even 

misleading (Gage & Needels, 1989; Medley, Coker, & Soar, 1984; Waxman, Tharp, & 

Hilberg, 2004). 

To better understand the above-mentioned methodological concerns empirically, 

the raw MCOP2 ratings obtained for Student Engagement and Teacher Facilitation 

respectively in the combined study sample in this research were directly compared for 

possible statistically significant cross-group differences by Study Site, MCOP2 Raters, 
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Classroom Grade Level, and Service Type (i.e., Pre-Service or In-Service). 

Such comparisons yielded findings in three aspects: (a) the pre-service math 

teachers in Sample UK were rated significantly lower on Teacher Facilitation than the 

math teachers in Sample AL; (b) on average, within Sample UK, the pre-service math 

teachers received much lower ratings on Teacher Facilitation than their ratings on Student 

Engagement; and (c) within Sample AL, the raw ratings of the pre- or in-service teachers 

were about equal on the two subscales of Teacher Facilitation and Student Engagement. 

These differences in the mean comparisons of the MCOP2 raw scores might lead 

to interesting interpretations from the psychometric perspective.  For example, if the 

MCOP2 protocol was deemed valid and reliable across Sample UK and Sample AL, the 

significant cross-group differences in the math teachers’ Teacher Facilitation ratings 

might reflect the extent to which the MCOP2 protocol could distinguish math teachers’ 

true levels of teaching effectiveness across study samples.  Because an overwhelming 

78% of the ratees in Sample AL were identified as in-service teachers, compared to 

Sample UK containing 100% pre-service math teachers, one would expect that compared 

to the pre-service teachers, the in-service teachers would be more experienced in teaching 

math and thus should perform notably better in facilitating student learning in their 

classrooms.   

However, because the CTT approach of calculating interrater reliability is sample 

sensitive and cannot effectively control for various rater effects, the possibility could not 

be eliminated that such cross-sample differences might be mainly attributed to 

differences in rater severity/leniency levels and/or other rater bias across the study 

samples (Hilberg, Waxman, & Tharp, 2004; Ho & Kane, 2013).     
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Research Questions 1 

The first research question investigated the overall model-data fit of the MCOP2

ratings to the MFRM model, systematically evaluating the MFRM-based assumptions 

such as local independence, unidimensionality, overall model fit, rater fit, and item fit.  

Specifically, testing the first two assumptions (i.e., local independence and 

unidimensionality) would provide further empirical evidence under the MFRM 

framework for the internal factorial structure and internal consistency of the 16-item 

MCOP2 protocol and the two suggested subscales (i.e., Student Engagement and Teacher 

Facilitation) respectively.  While the examination of the overall model fit, rater fit, and 

item fit of the MCOP2 ratings were expected to offer unique MFRM-based diagnostic 

information on how the dynamic combination of raters, ratees, and the MCOP2 items 

function in observing and assessing the P-12 math classrooms in terms of Student 

Engagement and Teacher Facilitation.  

First, the findings regarding the local independence tests suggested that (a) the 16-

item MCOP2 scale indicated serious local dependency (LD) issues, with 5 pairs of item 

residual correlation well above the average residual correlation; (b) the 9-item Student 

Engagement subscale suggested slight LD problems with 3 pairs of item residual 

correlation notably above the average residual correlation; and (c) no LD-related 

concerns were identified for the 9-item Teacher Facilitation subscale where none of the 

pairs of item residual correlation is 0.2 above the average Q3 .11.   

The manifestation of LD-related issues in an instrument implied that apart from 

the variance explained by the latent construct of interest in the item responses, the 

remaining (i.e., residual) variances of some items were clustered on one or more possible 
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independent secondary factor(s) (Christensen, Markransky, & Horton, 2017; DeMars, 

2010).  To put it simply, strong evidence for LD concerns in various types of Rasch 

analysis warrants further investigation of multi-dimensionality problems.  Thus, the LD-

related findings for the 16-item MCOP2 protocol strongly indicated the 16 items together 

measured more than one latent construct, generally consistent with the previous CTT 

factor analysis that resulted in a two-factor model for 16-item MCOP2 scale (Gleason & 

Cofer, 2014).  While mixed results were yielded for the two established 9-item subscales 

(i.e., Student Engagement and Teacher Facilitation) in terms of local independence, with 

the Student Engagement subscale showing slight LD concerns.  Similar problems for the 

Student Engagement subscale were not identified or mentioned in the previous MCOP2 

validation studies (Gleason & Cofer, 2014; Gleason, Livers, & Zelkowski, 2017).  

However, since the extent of the item residual clustering on Student Engagement was not 

alarmingly notable (all less than 0.3 above the average item residual correlation), the 

manifested local dependency might be due to random noise in the MCOP2 data, not 

necessarily indicating the existence of a secondary dimension apart from the latent 

construct of Student Engagement. 

Second, with regard to the MFRM-based unidimensionality analyses (i.e., 

Principal Components Analysis on the standardized residuals), results highlighted that (a) 

the 16-item MCOP2 protocol used as one single scale failed to uphold the 

unidimesionality assumption, as the residual variances of more than two items 

(eigenvalue = 3.75) clustered on a different dimension in addition to the variances 

explained by the MCOP2 measure; (b) the unidimensionality assumption was better met 

for the 9-item Student Engagement subscale, with just about two item residuals loaded on 
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a dimension other than the latent trait measured (eigenvalue = 2.01); and (c) since less 

than two item residuals (eigenvalue = 1.66) were strongly correlated to form any 

contrast/factor apart from the variances explained by the measure, the 9-item Teacher 

Facilitation subscale successfully met the unidimensionality assumption. 

To further evaluate whether the item residuals really clustered on a secondary 

dimension apart from the construct(s) of interest, the disattenuated correlations were also 

examined between the person measures on the suspect cluster of items and the person 

measures on the other items for the 16-item MCOP2 protocol and the 9-item Student 

Engagement subscale, respectively.  It was found that for the 16-item MCOP2 protocol, 

the person measure disattenuated correlations between the 1st and 3rd cluster of items fell 

between the cut-off value range of 0.30 - 0.70 (r = 0.48), suggesting that the cluster of 

items on the suspect 1st contrast were measuring a secondary strand of the main Rasch 

dimension probably warranting separate investigation.  However, for the 9-item Student 

Engagement subscale, all the disattenuated correlations were well above the upper bound 

of the cut-off value range (0.70), indicating that the suspect cluster of items was only 

measuring an insignificant secondary strand of the latent trait of interests and should not 

be considered as a different dimension (Linacre, 2013). 

These unidimensionality findings again appeared to be in accordance with 

Gleason and his colleagues’ (2014, 2017) MCOP2 validation studies where factor 

analysis was conducted and yielded a two-factor model for the 16 MCOP2 items.  

However, compared to the previous CTT factor analysis approach, the current MFRM-

based dimensionality analysis had unique methodological advantages and thus offered 

more meaningful diagnostic information and more valid recommendations concerning the 
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MCOP2 psychometric properties.  

As Boone (2016) clearly outlined, CTT factor analysis was useful in describing 

the sample-dependent data with all its variety and intricacies to “evaluate the strength of 

the inferences drawn from instruments and to compute respondents’ (e.g., student, 

teacher) performances”; while Rasch dimensionality analysis (e.g., PCA of item 

residuals) was a sample-independent, prescriptive approach allowing researchers to 

identify subtle departures in the data from the ideal by fitting the Rasch model to the data 

in the process of constructing instruments (p. 1).  Specifically, factor analysis might be 

able to identify different factors where clusters of certain items were loaded on but 

provided little help in the decision as to whether these factors could hang together to 

measure one overall latent construct.  Additionally, factor analysis also tended to assign 

items in different difficulty strata to different factors, which often gave rise to misleading 

findings.  In other words, inter-item correlations and item loadings in factor analysis 

could be affected by item difficulties, where the factor analysis of a pool of items 

containing both easy and difficult items could mistakenly produce two factors, even if all 

the items were supposed to measure one construct (Duncan, 1984).  Therefore, the 

MFRM-based dimensionality analysis results in the current study provided strong 

psychometric evidence in support of the developers’ recommendation on the proper use 

of MCOP2 protocol: the MCOP2 was not designed to get a single score of a classroom; 

instead, it was used to measure two distinct (unidimensional) factors of Teacher 

Facilitation and Student Engagement through two subscales of 9 items each (Gleason, 

Livers, & Zelkowski, 2015). 

The overall model-data fit was thus evaluated for the Student Engagement and 
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Teacher Facilitation subscales, respectively.  In this study, data were deemed to have 

good overall model-fit in the MFRM analysis, if fewer than 5% of the standardized 

residuals appeared greater than or equal to |2.0| and about 0.3% or less of standardized 

residuals are greater than or equal to |3.0| (Linacre, 2004).  The results indicated a 

satisfactory overall model fit for both subscales based on these criteria. 

Further, the overall rater fit and item fit were examined for the two subscales, 

respectively.  Mean Square outfit and Mean Square infit statistics (also referred to as 

MSU and MSW) were calculated and investigated (Bond & Fox, 2015; Eckes, 2005; 

Engelhard, 1994, 2002; Myford & Wolfe, 2003) to evaluate rater fit and/or item fit (Bond 

& Fox, 2015; Eckes, 2005; Engelhard, 1994, 2002; Myford & Wolfe, 2003).  Linacre 

(2003) proposes that outfit and infit values between 0.5 and 1.5 can indicate acceptable 

fit.  Results showed that one rater showed overfit (9%) and two raters fell into the misfit 

category (18%), when using the 9-item Student Engagement subscale.  Since the 

percentage of raters showing acceptable fit (73%) for using the Student Engagement 

subscale fell well below 90%, it was concluded that the raters were internally inconsistent 

in using the 4-point rating scale, or the raters might not have used the Student 

Engagement rating scale appropriately.  In comparison, when using the 9-item Teacher 

Facilitation subscale, more raters fell into the desirable category between 0.50 and 1.50 

(91%) meaning that the number of overfitting and underfitting raters was minimal (only 

one out of the eleven raters showed underfit).  Since the percentage of raters showing 

acceptable fit was above 90%, it could be concluded that the raters were internally 

consistent and used the 4-point Teacher Facilitation rating scale appropriately.   

According to Eckes (2009), rater fit refers to the extent to which a given rater is 
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associated with unexpected ratings, summarized over ratees and items.  Thus, overfitting 

raters would have muted ratings that suggested a central tendency or, alternatively, a halo 

effect (Engelhard, 2002; Myford & Wolfe, 2004).  The underfitting/misfitting raters 

would suggest their ratings show off-target deviations/noise from the way the measure 

was intended to be used, and thus were unproductive (or even degrading in case of a 

serious extent of rater underfit/misfit) for construction of measurement.  

The systematic diagnosis of rater fit in the MFRM analysis can be used to 

effectively address the methodological limitations noted in the standard approach of 

calculating interrater reliability (IRR) statistics to identify rater variability.  First, a 

variety of existing IRR indices conceptualize interrater reliability differently (Bramley, 

2007; Hayes & Krippendorff, 2007; LeBreton & Senter, 2008).  For example, two broad 

classes of IRR indices (consensus indices and consistency indices) are widely used in the 

CTT validation studies of rater-mediated performance assessments (Stemler & Tsai, 

2008).  Specifically, a consensus index of IRR (also called interrater agreement) refers to 

the extent to which independent raters provide the identical rating of a particular person 

or object (absolute correspondence of ratings); whereas a consistency index of IRR refers 

to the extent to which independent raters provide the same relative ordering or ranking of 

the persons or objects being rated (relative correspondence of ratings) (Eckes, 2009).  

Whether one type of IRR index is chosen over the other, or both indices were reported in 

research related to rater-mediated performance assessments, high IRR statistics do not 

equal accurate ratings because (a) it is theoretically and empirically possible to observe 

low interrater consensus and high interrater consistency at the same time (and vice versa), 

and (b) even when the interrater consensus and consistency indices show the same trend 
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(i.e., both low or both high), the possibility of inaccurate ratings still cannot be eliminated 

as neither consensus and consistency indices could diagnose raters’ use of the rating scale 

(e.g., overuse and/or underuse of certain response categories) or individual raters’ 

severity/leniency levels (Eckes, 2009, 2011, 2012).   

Second, in most social science measurement research, ordinal data are obtained 

from Likert-type scales, and too often researchers treat raw scores that are ordinal by 

nature (e.g., numeric values 0 to 3 are assigned to the response category levels in order of 

strongly disagree, disagree, agree, and strongly agree) as interval data in various 

statistical tests and analyses (including the calculation of interrater reliability 

coefficients).  As Wright and Linacre (1989) rightfully point out, raw scores are NOT 

measures, since ordinal raw scores are limited due to “inequality of the units” counted as 

well as the resulting non-linearity in its distributions with strong ceiling and floor effects 

(Thorndike, 1904).  Rasch modeling for ordinal observation raw scores can solve these 

problems by (a) confirming that raw scores can indeed be used for measuring the latent 

variable additively where a higher score indicates more of the latent variable than a lower 

score, and (b) transforming the non-linear ordinal raw scores into equal interval logits 

illustrating how much more of the latent variable one more score-point indicates at 

different locations along the latent variable (Wright & Stone, 1979).  

In Gleason and his colleagues’ MCOP2 validation study (2017), a two-way mixed, 

absolute agreement intraclass correlation (ICC) were computed to assess the degree that 

raters provided consistent MCOP2 ratings of the classrooms across subjects.  The 

resulting single-measure ICCs for the student engagement subscale (0.669) and the 

teacher facilitation subscale (0.616) both fell within the “good” range (Cicchetti, 1994), 
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indicating a high degree of agreement among raters on both subscales (Gleason et al., 

2017, p. 8).  However, as mentioned above, these high ICC coefficients alone are not 

sufficient to support the assumption of accurate ratings.  Moreover, such high ICC 

indices can hardly be replicated across different samples with different rating design 

(unlike the fully crossed model in the validation study where all raters rated all 

classrooms) and with different proportions and mechanisms of missing data for 

computing the ICC coefficients. 

With respect to the overall item fit analysis, Results showed that based on the infit 

and outfit values, only one item showed underfit (11%) for both the 9-item Student 

Engagement subscale and the 9-item Teacher Facilitation subscale.  Since the percentage 

of items showing acceptable fit (89%) for both the subscale were very close to 90%, it 

could be concluded that the nine items on either the Student Engagement or the Teacher 

Facilitation subscale were internally consistent and can be used to measure the latent 

traits of interests appropriately. 

Although both the Student Engagement and Teacher Facilitation subscale items 

showed high internal consistency as the Cronbach’s alpha values were both greater than 

0.85 in Gleason and his colleagues (2017)’s validation studies, it does not sufficiently 

support the claims that these two subscales can be used for “effectively measuring 

differences at the group level, or at the individual level with at least three observations” 

due to a series of major methodological limitations related to the CTT internal 

consistency analysis methods (Gleason et al., 2017, p. 7). 

Most reliability coefficients (e.g., Cronbach’s alpha) are based on correlational 

statistical models of group-level information that treats individual items on a scale as 
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separate variables. Thus, the computation of Cronbach’s alpha coefficient incorporates a 

single standard error estimated from that proportion of the variance not attributable to a 

common factor, assumably the latent construct of interest (Fisher Jr, Elbaum, & Coulter, 

2010).  In practice, Cronbach’s alpha is more often used as a measure of a scale’s internal 

consistency than as an estimate of reliability.  However, significant methodological 

problems exist for Cronbach’s alpha to be used in both circumstances.  When used as a 

measure of internal consistency, Sijtsma (2009) posits that alpha is actually unrelated to 

the internal structure of a scale: since a 1-factor scale can have any alpha value as shown 

in numerous empirical studies, and vice versa, different scales of varying factorial 

composition may have the same alpha value, it would be safe to conclude that the alpha 

value is not indicative of unidimensionality and provides little psychometric information 

regarding a scale’s internal structure.  Similarly, when used as an estimate of reliability 

(i.e., repeatability of individual test performance described by the individual’s propensity 

distribution), alpha statistics based on a single test administration cannot reflect the 

accuracy of individuals’ test performance, because according to Molenaar (2004), “a 

single-administration sample of test scores does not contain information about the 

individuals’ propensity distributions unless both types of distributions—between 

individuals as in single-administration data and within individuals as in propensity 

distributions—obey restrictive distributional properties” (as cited in Sijtsma, 2009, p. 

117).  

In contrast, measurement models of individual-level response processes employ 

individual-level error estimates (such as MFRM and other Rasch-based models), not 

correlational group-level residual variance estimates (as in the case of computing 
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Cronbach’s alpha).  The individual-level measurement errors are statistically equivalent 

to sampling confidence intervals.  Measurement errors and confidence intervals both 

decline at the same rate with larger numbers of item responses per person, or larger 

numbers of person responses per item, which leads to improved measurement precision 

(Fisher Jr, Elbaum, & Coulter, 2010).  Consequently, the MFRM analysis of item fit in 

the current study provided unique systematic diagnosis (including item difficulty, item 

functioning, item information, item measurement precision and reliability, item 

measurement invariance, various interaction effects between items and other facets, etc.) 

of the Student Engagement and Teacher Facilitation subscales at the individual item and 

scale/test level to evaluate the psychometric properties of each individual item in 

measuring the latent construct of interest.   

To sum up, the findings for Research Question 1 laid the foundation for 

addressing the following research questions by analyzing the internal structure and 

consistency of the MCOP2 items as a measurement of Student Engagement and Teacher 

Facilitation in K-16 math classrooms under the MFRM framework.  Specifically, key 

results related to local independence, unidimesionality, overall model-data fit, overall 

rater fit and item fit were presented and interpreted, respectively.  In addition, the 

methodological advantages of each aspect of the above-mentioned MFRM analysis in 

comparison with its corresponding CTT method were discussed in detail, highlighting the 

unique contributions of the current study to the MCOP2-related validation and empirical 

research. 

Research Question 2 

Research Question 2 (i.e., To what extent does the MCOP2 observation protocol 
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separate observed teachers into distinct levels of proficiency?) was addressed by 

examining the examinee facet in the MFRM analysis.  Variable maps (also referred to as 

Wright maps) were first examined closely visualizing the calibrations of raters, ratees, 

items, and the 4-point rating scales for the Student Engagement and Teacher Facilitation 

data, respectively.  In addition, a series of MFRM analysis statistics related to the ratee 

facet were also investigated: standard deviations (SDs) of the estimated ratees’ 

proficiencies, RMSE values for the ratee proficiency estimates indicating measurement 

errors, chi-square statistics testing the hypothesis that all ratees had the same proficiency, 

ratee separation index (H) estimates indicating the number of statistically distinct strata of 

measured ratee proficiency, separation ratio (G) estimates indicating that how many times 

greater the true standard deviation of ratee proficiency measures were than their standard 

error of measurement, and finally, separation reliability of the ratee proficiency estimates 

indicating how different the ratee proficiency measures were. 

Results suggested (a) for both the Student Engagement and Teacher Facilitation 

subscales, the variability across ratees in their level of proficiency seemed substantial, 

with their proficiency estimates forming a wide range covering roughly seven logits; (b) 

the chi-square statistics were highly significant for both subscales, suggesting that 

overall, ratees significantly differ in terms of their proficiency level (after allowing for 

measurement error); (c) the ratee separation index (H) estimates showed that within this 

sample of ratees, there were about 3 statistically distinct strata of proficiency for both 

Student Engagement and Teacher Facilitation; and (d) The separation reliability statistics 

of the ratee proficiency estimates for both subscales were considerably high (i.e., 0.85 

and 0.84 for Student Engagement and Teacher Facilitation, respectively), implying that 
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both subscales could differentiate very well among the ratees in terms of their levels of 

proficiency.  

Taken together all the above-listed findings about the ratee facet, the MFRM 

analysis provided compelling (both visual and statistical information) psychometric 

evidence that both the 9-item Student Engagement and Teacher Facilitation subscales 

could effectively measure and differentiate the math teachers’ performances along their 

respective latent constructs roughly into three proficiency level groups: those who fell 

below the expected performance standards, just meet the standards, and exceed the 

standards.  Individual math teachers varied greatly within a wide, 7-logit range based on 

their MCOP2 performance ratings.  

Research Question 3 

Research Question 3 (i.e., To what extent do raters differ in terms of the relative 

severity with which they rate observed teachers?) was evaluated by examining the rater 

facet in the MFRM analysis.  Each of the global indices (i.e., the fixed chi square, rater 

separation index, and rater reliability of separation) were first examined that indicated the 

degree to which raters differed in their leniency/severity.  After assessing rater 

leniency/severity differences globally, individual raters (anonymously coded as Rater 1, 

Rater 2, Rater 3, etc.) were then evaluated visually via the Wright maps. 

It was found that (a) the fixed chi-square statistics testing the hypothesis that all 

raters have the same severity were highly significant for both the Student Engagement 

and Teacher Facilitation subscales, indicating that at least two raters were statistically 

significantly different in their leniency/severity measures; (b) however, the variability 

across raters in the level of the severity with which items were rated was not substantial 
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(i.e., only 1 statistically distinct strata of rater severity) for both the subscales; (c) Sample 

AL raters were about 0.1 logit more severe than the Sample UK raters (e.g., the most 

severe rater on Student Engagement was identified as Rater 4 from Sample AL); and (d) 

when using the Teacher Facilitation subscale, Sample AL raters were about 0.3 logit 

more lenient than the Sample UK raters (e.g., the most severe rater on Teacher 

Facilitation was identified as Rater 2 from Sample UK). 

It was important to note that for the combined study sample used in the current 

study, each of the ratees was observed and scored by only one rater, and none of the 11 

raters’ ratings overlapped on any of the ratees.  Thus, unlike the fully crossed study 

sample used in Gleason et al. (2017) validation study to compute the interrater reliability 

index, each set of the ratings on the 16 MCOP2 items in the current study represented a 

unique case by rater and by ratee, and the interrater absolute agreement was 0% since 

there was zero rater overlap on the ratees.  This kind of rating designs seem extremely ill-

structured - also referred to as ill-structured measurement designs (ISMDs) in the 

literature - and are usually shunned in measurement research; however, it was not 

uncommon in empirical administrations of many classroom observation protocols in self- 

and/or peer-performance assessments due to limited resources and/or time (Conway, 

Jako, & Goodman, 1995; Hoyt, 2000; McCloy & Putka, 2004; Putka, Le, & McCloy, 

2008).   

The traditional CTT approach of interrater reliability analysis was very limited in 

its capacity of handling such ISMDs which would only magnify the already existing 

methodological issues of the traditional IRR methods.  By contrast, the MFRM approach 

showed great potentials in calibrating raters’ ratings in a common reference framework 
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even when the rating design was ill-structured/incomplete and missing data were 

inevitably present.  The key lies in the use of the anchoring method within the MFRM 

framework to manage the placement of raters in non-fully crossed rating design.  The 

MFRM anchoring method can be applied under any incomplete rating design for a 

combined dataset that is sufficiently connected (with sufficient links among every 

element, such as ratee, rater, and item, included in an observation case) (Eckes, 2009; 

Engelhard, 1997; Linacre & Wright, 2002; Wright & Stone, 1979).  Group anchoring is a 

Rasch anchoring technique widely used in the literature, which is to set the average 

measure of the groups within one facet, such as raters, test-takers, or tasks, to zero logits 

(Linacre, 2012, 2017).  The basic assumption underlying Rasch group anchoring is that 

the elements within that group-anchored facet (e.g., individual ratees or raters) are 

essentially exchangeable (Wind & Stager, 2019).  Since the primary purpose of this study 

was to examine how well the MCOP2 as a measurement could differentiate math 

teachers’ performances while holding the rater effects stable, I chose to group-anchor the 

two groups (i.e., Sample AL and Sample UK raters) in the rater facet rather than those in 

the ratee facets. 

The analysis highlighted that some raters significantly differ from each other in 

their levels of severity despite training.  Specifically, Sample AL raters were 0.1 logit 

more severe than Sample UK raters on Student Engagement, and 0.3 logit more lenient 

than Sample UK ratters on Teacher Facilitation.  These differences might be attributed to 

several possible factors: (a) compared to Sample AL raters, the raters from Sample UK 

only received a limited amount of informal training on how to use MCOP2, and did not 

go through a rigorous rating calibration process prior to the classroom observations; and 
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(b) Sample UK contained 100% pre-service math teachers observed and scored by their

respective faculty supervisors during their student teaching, which might make the UK 

raters to rate more severely on Teacher Facilitation for the teacher training purposes.  

However, despite these rater severity level differences, low rater separation reliability 

(such as in this study) statistics were noted for both the Student Engagement and Teacher 

Facilitation subscales, which was generally desirable as this would indicate that raters 

were approaching the ideal of being interchangeable. 

Research Question 4 

Research Question 4 (i.e., To what extent do raters consistently rate the teaching 

performance of observed teachers?) was evaluated by investigating possible interactions 

between raters and observed teachers (i.e., rater fit indices) using the MFRM analysis.  If 

the previous Research Question 3 addressed the interrater comparisons among the raters, 

this research question sought to investigate the intra-rater consistency and rating 

behaviors. 

 Rater fit statistics were first examined to understand the degree to which a rater 

(a) was internally self-consistent across examinees, items, and other factors, and (b) was

able to implement the rating scale to make distinctions among ratees’ performances 

(Bond & Fox, 2007; Weigle, 1998).  Rater fit statistics close to the expected value of 1.0 

suggested that a rater used the rating scale consistently and thus maintained his/her 

personal level of severity across ratees, items, and other factors (also referred to as intra-

rater agreement). 

Results showed that (a) some raters (i.e., Sample UK Rater 7, 1 and 3) were 

internally inconsistent in using the 4-point rating scale, or these raters might not have 
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used the Student Engagement rating scale appropriately; and (b) most raters (except for 

Sample UK Rater 1) were internally consistent and used the 4-point Teacher Facilitation 

rating scale appropriately.   

Most of the CTT intra-rater reliability calculation methods are indirect and 

inaccurate estimates of the rating quality of the average rater in a sample or of individual 

raters.  Thus, intra-rater reliability can be reported as a single index for a whole 

assessment project or for each of the raters in isolation.  The single average intra-rater 

reliability index for a group of raters was often indexed by an average of the individual 

rater reliabilities, by an intra-class-correlation (ICC) or by an index of generalizability of 

the retesting facet that referred to the whole group of raters but not to individual raters.  

Whereas an individual rater’s intra-rater reliability was usually reported as Cohen’s 

kappa statistic, or as a correlation coefficient between two readings of the same set of 

essays (Shohamy et al., 1992).  This type of intra-rater reliability is mathematically 

equivalent to the test-retest reliability of a single test-form.  However, using these inter-

rater reliability indices may bias the estimate of measurement error upwards or 

downwards (Cohen, 2017; Oberle, 2018; Rossi, 2017). 

To address the issue of rater errors, some researchers has recommended another 

CTT analysis approach based on Generalizability Theory (Brennan, 2001), where the 

effects of multiple sources of rating errors are simultaneously investigated.  With respect 

to the intra-rater reliability, researchers can limit the Generalizability Theory (GT) 

analysis only to one source of measurement error that is caused by the inconsistency of 

each rater by him/herself (Cohen & Allalouf, 2016; Cohen, 2017).  However, compared 

to both the correlation-based intra-rater reliability analysis and the GT approach, the 
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MFRM approach possesses several methodological benefits in analyzing the raters’ rating 

behavior and internal consistency.  As Kim and Wilson (2009) point out, while G theory 

provides a general summary for all raters involved (including an estimation of the relative 

influence of each facet on a measure and the reliability of a decision based on the data), 

MFRM is able to (a) diagnose the individual rater’s rating behavior systematically, (b) 

provide as fair a measure as it is possible to derive from the data, and (c) present 

summary information (e.g., reliability indices, the main effects of each facet, as well as 

any possible interaction effects among the facets).  Therefore, the MFRM analysis related 

to Research Question 4 made unique contribution in terms of providing direct and 

systematic insights into the individual MCOP2 raters’ rating behavior and if such rating 

behavior was held consistent/stable across ratees without rater drifts.  

Research Question 5 

Research Question 5 (i.e., To what extent do raters consistently rate the teaching 

performance of observed teachers across the MCOP2 items?) was evaluated by 

investigating possible interactions between raters and the MCOP2 items using the MFRM 

analysis. 

To investigate whether each rater maintained a uniform level of severity across 

the nine items on the Student Engagement subscale, or whether particular raters gave 

ratings on some items more severely or leniently than expected, a two-way interaction 

analysis of Raters by Items was performed.  MFRM-based bias analysis in Facets output 

a file (i.e., Table 13) with detailed statistical information to identify significantly biased 

rater-by-item interactions.   McNamara (1996) and Kondo-Brown (2002) both 

recommend that only biased interactions with Z-values equal to or higher than the 
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absolute value of 2, plus MnSq infit values within the range of two standard deviations 

around the mean of infit should be considered. 

Results showed that for Student Engagement, (a) about one fifth of the rater by 

item interaction combinations (21.28%) yielded statistically significant t-scores, 

suggesting that some raters tended to alternate between more severe ratings on one item 

and more lenient ratings on another item; (b) the majority of these significantly biased 

rater by item interactions appeared consistent in the identified patterns of bias across all 

ratees; and (c) this relatively high percentage of significant rater by item biased 

interactions altogether contributed to 8.75% of the total raw variances in the Student 

Engagement data. 

While for Teacher Facilitation, it was found that (a) a relatively lower percentage 

of the rater by item interaction combinations (13.27%) yielded statistically significant t-

scores compared to those produced for the Student Engagement subscale; (b) the majority 

of these significantly biased interactions appeared consistent in the identified patterns of 

bias across all ratees; and (c) the slightly lower percentage of significant rater by item 

biased interactions still contributed to 7.06% of the total raw variances in the Teacher 

Facilitation data. 

The biased individual-level rater by item interactions were plotted and could be 

directly examined visually: (a) for Student Engagement, Raters 1, 2, and 7 from Sample 

UK and Rater 4 from Sample AL rated more leniently than expected on SE_Item3, 

SETF_Item4, SE_Item2, and SE_Item5, respectively; while Rater 2 from Sample AL 

rated more severely than expected on SE_Item3; while (b) for Teacher Facilitation, 

Raters 2, 6, and 7 from Sample UK rated more leniently than expected on SETF_Item4, 
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TF_Item9, TF_Item16, TF_Item10, and TF_Item6, respectively; while Rater 1 from 

Sample UK rated more severely than expected on TF_Item7. 

Taken together all the above-listed findings, it seemed that some raters tended to 

interpret the scoring rubric on certain MCOP2 items quite differently from each other, 

leading to the final variations in their rating severity/leniency levels on these items.  

These rater by item biases contributed to an unignorable proportion of the variances in 

the rating responses for both Student Engagement and Teacher Facilitation, and they 

could be the major factors causing the occurrences of rater misfits/overfits, especially on 

the Student Engagement subscale as previously illustrated under Research Question 3. 

Wigglesworth (1993) believed that bias analysis could reveal systematic sub-

patterns of rater behavior, and this notion was illustrated and supported in this MFRM 

study.  Although the rater by item bias patterns discussed above only affected some, not 

all raters, they still suggested the presence of factors other than the latent constructs 

measured (i.e., Student Engagement and Teacher Facilitation) which would influence 

rater judgment when using the two MCOP2 subscales.  The identification of systematic 

sub-patterns to these factors could offer very important practical implications for further 

rater training and warrants future investigation.  The findings related to Research 

Question 5 also demonstrated the powerful potential of MFRM in pinpointing the sources 

of rater bias, and in making rater-mediated performance assessments fairer, more 

equitable, and more informative (O’Neill & Lunz, 1997; Schaefer, 2008; Wigglesworth, 

1993). 

Research Question 6 

Research Question 6 (i.e., To what extent can the score levels of the MCOP2 
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items be distinguished, without certain score levels being either underused or overused?) 

was evaluated by examining both the graphic indicators (i.e., Item Characteristic Curves, 

and Item Information Functions) and the statistical indicators (i.e., item category ordering 

for individual raters, and rater fit indices). 

The 4-point scale functioning was examined for Student Engagement and Teacher 

Facilitation respectively based on a variety of diagnostic information, and the following 

findings were noted: (a) counts and percentages of scores in each of the four categories 

confirmed that each rating level had well above the minimum cut-off number (i.e., 10) of 

ratings/observations (ranging from 224 to 488 observations) to allow scale diagnostics; 

(b) the (observed) average examinee ability measure associated with each category

appeared to increase monotonically in size as the latent trait being measured increases, 

indicating that, on average, those with higher ability would be assigned to the higher 

scores; (c) the outfit mean square index for each of the four categories were all observed 

to be equal or very close to the ideal value 1.0, indicating that the observed and expected 

ratee ability measures were equal; and finally (d) step- or threshold-calibrations were 

reported representing difficulties estimated for choosing one response category over 

another, and they showed step increase as expected between 1.4 and 5 logits. 

Furthermore, the Probability Category Curves (PCCs) displayed a graphical 

representation of the Student Engagement and Teacher Facilitation subscale rating scales 

and the ways they were used by the raters.  From the graphs, it was clear that the raters 

were using all the categories of the two rating scales (0 through 3).  The PCCs for both 

subscales were represented by a fairly evenly spaced series of hills.  For each rating 

category there was a clearly designated portion of the ratee proficiency distribution for 
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which that category would be the most probable rating given.  Categories 0 and 3, as 

compared to the other categories, however, seems to be relatively underused.  

Based on a graphical representation of category information functions (CICs) for 

the Student Engagement and Teacher Facilitation subscales, it was found that for both the 

subscales, categories 1 and 2 gave the most information as they displayed the highest 

peaks (at the expense of the neighboring categories 0 and 3), supporting the related 

findings from the previous examination of the PCCs.  Ideally, all these curves for all the 

categories should be of an equal height and spacing. 

Additionally, a graphical representation of the item information functions (IIFs) 

for the Student Engagement and Teacher Facilitation subscales showed that the items 

tended to give the most information (where the peaks were located) when the ratees’ 

ability levels fell into the range between -1 and 1 logits. 

All these findings concurred with each other, together supporting the notion from 

different perspectives that the 4-point rating scales for Student Engagement and Teacher 

Facilitation functioned reliably with this combined group of raters, who, with different 

experiences and training, were largely able to use the MCOP2 rating scales to assess K-16 

math classrooms to a satisfactory standard (despite the presence of some misfitting 

raters). 

Research Question 7 

Research Question 7 (i.e., To what extent are the rater behaviors associated with 

the professional background characteristics, namely, in-service vs. pre-service teachers, 

study cites, and teaching grade levels, of the observed teachers?) was evaluated by 

examining possible interactions between raters and the facets indicating observed 



146 

teachers’ professional background in the MFRM analysis. 

For each of the three external facets (i.e., in-service vs. pre-service teachers, study 

sites, and teaching grade levels), the original 4-facet MFRM model (i.e., ratees + MCOP2 

items + raters + classrooms) was modified to include an interaction term between the 

rater facet and the particular external facet to implement a MFRM-based bias analysis in 

Facets, respectively. 

A variety of the biased interaction information were examined including the total 

number of combinations of facet elements considered in each interaction analysis, the 

percent of absolute t-scores equal to or greater than 2, minimum and maximum t-values 

along with their degrees of freedom, the means and standard deviations of the bias sizes, 

fixed chi-square statistics, as well as the percentages of variances in the Student 

Engagement and/or Teacher Facilitation data explained by the bias terms. 

The findings suggested that the MCOP2 raters were not biased (i.e., either 

inappropriately increasing or decreasing their scores) towards certain types of candidates 

as related to their Sites, Service Types, or Classroom Grade Levels.  Thus, the MFRM 

analysis calibration could successfully provide fair average scores for each ratee after 

adjusting for the rater effects and the above-mentioned three types of contextual factors 

in the observed raw ratings. 

The impact of the MFRM calibration was then evaluated by investigating 

descriptive statistics of the observed and fair scores on Student Engagement and Teacher 

Facilitation the math teachers received across the various groups defined by their Sites, 

Service Types, or Classroom Grade Levels.  Results showed that for both Student 

Engagement and Teacher Facilitation, (a) an overall high correlation (above 0.98) was 
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observed between the observed and fair scores, suggesting a strong positive linear 

relationship between the observed and fair scores given to the math teachers; and (b) the 

MFRM-calibrated fair average scores for ratees substantially changed the raw score 

cross-group mean differences after controlling for the rater effects, as well as the three 

contextual effects, namely, Sites, Service Types, and Classroom Grade Levels. 

As Eckes (2009) noted, a key issue with observed average scores was that they 

tended to confound ratee proficiency and rater severity, as well other construct-irrelevant 

factors.  For example, when a particular ratee’s observed average score was notably 

lower than other ratees’ observed averages, this could be because he/she got a more 

severe rater than the other raters, or because this ratee belonged to a group rated by 

inexperienced raters.  Fair averages produced by the MFRM calibration analysis could 

effectively resolve this problem.  Fair averages thus disentangled rater severity from ratee 

proficiency so that the MFRM calibrated scores could be compared across samples, 

raters, and other grouping variables with more confidence than raw scores, a major 

methodological benefit of using the MFRM approach to analyze rater-mediated 

performance assessment data (Engelhard & Myford, 2003; Johnson, Penny, & Gordon, 

2009; Linacre, 2012; Weigle, 1998; Wright & Mok, 2004). 

Implications 

In typical rater-mediated performance assessments such as classroom observation 

protocols, the process of obtaining assessment data mediated by human raters is complex 

and indirect, and very vulnerable to a variety of measurement errors, such as rater 

variability/effects and other construct-irrelevant variances (Eckes, 2015).  Consequently, 

the observation data obtained using these classroom observation protocols confound ratee 
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ability/proficiency with rater severity and other construct-irrelevant effects.  To separate 

the proportion of data variances directly attributed to the latent construct measured (i.e., 

true ratee ability/proficiency) from the residual variances caused by any construct-

irrelevant factors, new modeling and statistical approaches are needed for validation and 

empirical research in rater-mediated performance assessments, and they should be 

different from the traditional methods and techniques under the classical test (CTT) 

theory framework that only work with raw scores/observed ratings. 

To meet such needs, this study employed the many-facet Rasch measurement 

(MFRM) approach to (a) re-evaluate the psychometric properties of a classroom 

observation protocol, namely, the Mathematics Classroom Observation Protocol for 

Practices (MCOP2), as a valid and reliable measurement; (b) to demonstrate how MFRM 

could be used as a more robust methodological approach to validate the two MCOP2 

subscales in terms of internal structure and internal consistency, as well as to detect 

potential deficiencies of rater effects in MCOP2 assessments; and (c) to reveal the 

powerful potentials of MFRM in calibrating observation ratings for rater effects to be 

used in multiple-site, large-scale self- and/or peer-performance assessments.  

Therefore, this study had two important implications for future validation and 

empirical research in rater-mediated performance assessments.  First, the systematic 

comparison was conducted between MFRM and the traditional CTT validation methods 

(e.g., factor analysis, interrater reliability), and the methodological pros and cons for each 

method were first discussed in theory, and then demonstrated empirically in the various 

elements of the MFRM analysis performed for the two MCOP2 subscales.  For example, 

factor analysis under the CTT framework may assist in identifying clusters of items 
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which threaten the invariance of the measurement system, but it is indirect and inexact (in 

some cases, these methodological limitations may even lead to misleading conclusions) 

compared with Rasch-based identification of anomalies in the data (Boone, 2016).  In 

contrast, Rasch modeling (including MFRM) identifies departures in the data for persons, 

items, and other facets from the ideal of unidimensional structure of a measure.  These 

deviations are reported with fit statistics that can guide the improvement of the 

instrument at the individual item level and point out possible flaws in the data.   Under 

the Rasch framework, the most widely used technique for identifying multi-

dimensionality in the data is Principal Component Analysis of Item Residuals (PCAR), 

which can be viewed as a form of Rasch-based factor analysis, but methodologically 

superior to its CTT counterpart (Linacre, 2009, 2012, 2014). 

Second, the empirical implication of this MFRM study provided systematic 

diagnostic information to evaluate the psychometric properties of the two MCOP2 

subscales as a valid and reliable measure of Student Engagement and Teacher 

Facilitation, respectively.  Psychometric evidence was examined for unidimensionality, 

overall model-data fit, rater fit, item fit, rating scale functioning, as well as rater bias 

across items and across groups of ratees as defined by Study Sites, Teacher Service 

Types, and Classroom Grade Levels.   

In terms of the internal structure, the MFRM analysis results showed that (a) the 

overall MFRM findings appeared consistent with the conclusions reached in the previous 

CTT factor analysis (Gleason et al., 2017), namely, the nine items on the two MCOP2 

subscales were able to uphold the unidimensionality assumptions respectively for Student 

Engagement and Teacher Facilitation; (b) raters seemed more internally consistent in 
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using the 4-point rating scale appropriately for Teacher Facilitation than for Student 

Engagement; and (c) the nine items on both the Student Engagement and Teacher 

Facilitation subscales showed overall acceptable model-data fit, indicating that all 

subscale items were able to provide meaningful information on the latent trait being 

measured. 

Furthermore, regarding how well the ratings data obtained on the two MCOP2 

subscales could reliably differentiate raters and ratees, the related MFRM findings 

highlighted that (a) ratees measured by both the MCOP2 subscales were separated into 

about 3 statistically distinct strata in terms of their performance on Student Engagement 

and Teacher Facilitation; while (b) in contrast, raters using the two MCOP2 subscales 

showed insubstantial cross-rater variability, although at least two raters were identified as 

significantly different from each other in the level of their severity/leniency.  These 

findings, together with the findings on interaction analyses and rating scale functioning, 

strongly supported the general notion that both MCOP2 subscales were highly reliable 

rater-mediated performance measures across raters, ratees, and study samples. 

However, rater bias analyses yielded mixed results: although no significant rater 

bias was identified across the groups of ratees as defined by Study Sites, Service Types, 

and Classroom Grade Levels, rater bias on certain items from both subscales seemed to 

constitute a substantial proportion of the total variance in the MCOP2 data.  This implied 

a type of intra-rater inconsistency, where some raters tended to rate more severely than 

other raters on certain items while more leniently on some other items.  MFRM analysis 

were able to provide detailed diagnostic information, both statistically and graphically, 

for targeted revision/rewording of the subscale item descriptors and/or enhanced training 
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for specific raters. 

Limitations 

In addition to the five major potential limitations listed in Chapter I (see pp. 16-

18) including issues related to generalizability, replicability, data quality, small sample

size, and secondary data sources, two additional limitations were noted upon the 

completion of the current study. 

The first limitation concerned rater types.  In the current study, although the 

eleven raters involved came from two study sites and had distinct experiences and forms 

of training in using the MCOP2 subscales, they were all university faculty, independent 

researchers, or teacher educators.  Thus, they could only conduct classroom observation 

and provide ratings on the MCOP2 subscales from the supervisor’s and/or the third-party 

perspective, which, according to the related research literature, is markedly different from 

self- and/or peer-performance assessment in terms of rater severity and rating behavior 

(Aryadoust, 2015; Farrokhi, Esfandiari & Dalili 2011; Farrokhi, Esfandiari & Schaefer 

2012; Karakaya, 2015).  For further investigation of the validity and reliability of the 

MCOP2 subscales to be used in self- and/or peer-assessments, it would be critical to 

include a considerable number of self- and peer-raters in the future MFRM analyses of 

the MCOP2 rating data. 

The second limitation is related to the lack of the MFRM-based investigation of 

the MCOP2 rating data over time and across parallel individual classroom contexts per 

teacher.  The combined sample examined in the current study involved only cross-

sectional data.  However, as recommended by the MCOP2 developers (Gleason et al., 

2014), a single time MCOP2-based observation should only be used for formative 
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assessment; while for summative assessment, a minimum of 3 to 6 classroom 

observations should be conducted and recorded for each mathematics teacher.  MFRM 

analysis of longitudinal observation data and parallel observation data would provide 

important insights into (a) the performance of the MCOP2 subscales in measuring the 

ratees’ changes over time, and (b) the ways the frequency of classroom observations 

could impact the validity and reliability of MCOP2-based summative 

assessment/evaluation for K-16 math teachers.  

Future Research 

Corresponding to the limitations discussed in the previous sections, three 

suggestions are proposed for future research on MFRM studies of MCOP2 rating data. 

First, future researchers might want to include self- and peer-raters in their 

MFRM modeling so that the rater severity and rating behaviors of these two types of 

raters can be calibrated and compared with other types of raters (e.g., supervisors, faculty 

mentors, school administrators, and internal and external evaluators and/or researchers) in 

a Rasch-based common reference framework.   

Second, future researchers could expand the MCOP2 rating datasets to include 

more study samples from diverse backgrounds (e.g., different types of schools, school 

districts, states, and math teachers trained in different teacher education/preparation 

programs) for further MFRM analysis to pinpoint any potential significantly biased 

interactions among raters, ratees, items, and contextual factors.  For example, if 

significantly biased interactions are identified between some items and some contextual 

factors describing the ratees’ personal or professional backgrounds, it would be 

considered differential item functioning (DIF) under the MFRM framework which 
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warrants further investigation. 

Finally, future researchers could also attempt using/modeling the MCOP2-based 

ratings from the cognitive perspective, where a selected DCM model can be applied to 

provide detailed diagnostic information on individual teachers’ weaknesses and strengths 

in terms of their mastery of cognitive attributes/skills necessary to perform effective 

classroom teaching.  A dearth of research literature highlighting individual teachers’ 

cognitive diagnosis exists in the field of rater-mediated teaching performance assessment; 

and in the limited number of studies exploring the underlying cognitive attribute/skills 

that facilitate the development of teacher proficiency in classroom instruction, 

researchers almost exclusively choose various qualitative methods (e.g., interviews and 

focus groups) to glean feedback from teacher educators, in-service and pre-service 

teachers, school administrators, or policy-makers (Leong, 2015; Wasserman & Ham, 

2013; Wilson, 2005).  While these exploratory studies may offer valuable opinions from 

different stakeholders within the teaching profession, their conclusions have never been 

validated psychometrically with real data, and thus lack the theoretical and empirical 

grounds for wide application in teacher assessment, learning, and training. 
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APPENDIX A: IRB APPROVAL LETTER 



155 

APPENDIX B: MATHEMATICS CLASSROOM OBSERVATION PROTOCOL FOR 

PRACTICES  
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APPENDIX C: MATHEMATICS CLASSROOM OBSERVATION PROTOCOL FOR 

PRACTICES: DESCRIPTORS MANUAL 
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