
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Lewis Honors College Capstone Collection Lewis Honors College

2021

Using Semialgebraic Parametric Analysis by Metaprogramming in Using Semialgebraic Parametric Analysis by Metaprogramming in

Portfolio Optimization Portfolio Optimization

Philip Blaine Meersman
University of Kentucky, philip@themeersmans.com

Follow this and additional works at: https://uknowledge.uky.edu/honprog

 Part of the Analysis Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Meersman, Philip Blaine, "Using Semialgebraic Parametric Analysis by Metaprogramming in Portfolio
Optimization" (2021). Lewis Honors College Capstone Collection. 55.
https://uknowledge.uky.edu/honprog/55

This Article is brought to you for free and open access by the Lewis Honors College at UKnowledge. It has been
accepted for inclusion in Lewis Honors College Capstone Collection by an authorized administrator of UKnowledge.
For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/honprog
https://uknowledge.uky.edu/honors
https://uknowledge.uky.edu/honprog?utm_source=uknowledge.uky.edu%2Fhonprog%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=uknowledge.uky.edu%2Fhonprog%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/honprog/55?utm_source=uknowledge.uky.edu%2Fhonprog%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu

Using Semialgebraic Parametric Analysis by
Metaprogramming in Portfolio Optimization

Submitted as the Culmination of
Undergraduate Research in Mathematics

Philip Meersman

Abstract

One classic problem in quantitative finance is portfolio optimization, which
consists of assigning weights to assets in a portfolio to maximize one’s ex-
pected return while keeping the level of risk at a desired level. This problem
can be modeled as a linear program (LP), using a risk aversion parameter
mu. For a given single value of mu, the LP can be solved using any standard
LP solver. In this work, however, the problem is considered parametrically:
the optimal solution is sought for every possible value of mu. This describes
how weights to the portfolio assets would be assigned from the timid investor
to the bold. This is accomplished by applying the novel technique of semial-
gebraic parametric analysis by metaprogramming (SPAM). Demonstrated in
this talk is the method of applying SPAM to a textbook example of portfolio
optimization. Generated in this way are numerical and symbolic representa-
tions of the solution set as well as a graphical representation of these results.

University of Kentucky
Lewis Honors College

Bachelor of Science in Mathematics
Under the supervision of Dr. Yuan Zhou

May 2021

Contents

Abstract

1 Introduction 1

2 Traditional Portfolio Optimization 1
2.1 Vanderbei’s Formulation . 1
2.2 Parametric Simplex Method 4

3 SageMath 7
3.1 SageMath Setup . 7
3.2 SPAM . 7
3.3 Requisite Properties of P . 7
3.4 Example: Positive Definite Matrix 8
3.5 Example: Reducing System of Inequalities 10

4 Rediscovery of Textbook Results 13
4.1 Demonstration on Small Dataset 13
4.2 Hybrid Backend . 15
4.3 Proof Cell Complex for LP 16
4.4 Checking Parametric Simplex Method vs SPAM 18
4.5 Nine Assets and 24 Time Periods 22
4.6 Rediscovery of Efficient Frontier 22
4.7 Real World Data . 23

5 Appendix 24
5.1 Possible Extensions: Mixed Strategies in Zero-Sum Games . . 24
5.2 SageMath code . 26
5.3 Figures . 27
5.4 Historical Data . 30

1 Introduction

Computer assistance in solving economic problems has recently become com-
monplace. In undergraduate economics courses students now learn to use Mi-
crosoft Excel, JMP, Stata, and other statistical software packages to expedite
the once-tedious process of estimating regressions and computing variance,
among other applications. One area of research benefiting from the propa-
gation of computer programming is that of computer-assisted proofs. One
such method of generating computer-assisted proofs is termed semialgebraic
parametric analysis by metaprogramming (SPAM).

This paper first introduces a few toy examples demonstrating and de-
scribing the functionality of SPAM before illustrating its utility in two trivial
applications from economics. Finally, the majority of the paper is spent
discussing a more interesting economic application of SPAM: portfolio op-
timization. Note that we consider portfolio optimization in the context of
Vanderbei’s Linear Programming [11].

While the topics in this paper are somewhat interesting and do demon-
strate the capability of SPAM, they in no way attempt to capture its com-
plete power. SageMath terminal and notebook output are provided in the
Appendix, while certain useful figures are included throughout the paper.

2 Traditional Portfolio Optimization

One common undergraduate problem in financial economics is that of choos-
ing weights to assign to assets in a portfolio to maximize one’s expected
return. In our experience this problem is first presented while involving two
assets to choose from: one safe and one risky. The problem setup often speci-
fies that the risky asset has a higher expected return than its safe counterpart,
but with some non-zero probability may manifest a negative return. In solv-
ing problems of portfolio optimization it is important for one to keep in mind
the type of problem they are solving. Depending on the formulation and
desired format of solution, these problems can involve a variety of different
variables, constraints, parameters, types of optimization, and conventions of
notation. In this paper we use the framework detailed in Vanderbei [9], and
specifically his section on the parametric simplex method.

2.1 Vanderbei’s Formulation

This simple formulation of the portfolio optimization problem naturally ex-
tends to the slightly more complicated problem of assigning weights to assets
in a portfolio when each asset has its own, unique, expected value and unique
level of risk. We consider a problem proposed by Vanderbei in which nine

1

risky assets are considered as possible portfolio pieces and their associated
levels of risk are computed using historical data from 24 time periods. His-
torical data can be found in the Appendix.

Adopting Vanderbei’s notation, let the potential assets be indexed from 1
to n and let Rj denote the return on investment j, with j = 1, ..., n. Note that
this Rj is a random variable. A portfolio is comprised of a series of fractions
of one’s wealth that are assigned to some or all of the assets available. Let
xj with j = 1, ..., n denote the fraction of one’s wealth invested in asset j.
Importantly, we must have that

∑n
j=1 xj = 1. Then let the total return

garnered by any given portfolio be:

R =
∑n
j=1 xjRj

While the reward associated with this portfolio is defined in terms of the
expected return:

E(R) =
∑n
j=1 xjE(Rj)

It is important to recognize the context of these portfolio optimization
problems. For one, if the investor cares not about risk, then she will simply
put all of her money into the asset with the highest expected return. This
problem, while perhaps sometimes descriptive, is not interesting for use with
SPAM. Instead, we consider a risk-averse decision maker. While there are
several different interpretations and associated implications for what it means
to measure risk aversion, we will adopt Vanderbei’s basic metric: any number.
Let µ ∈ [0,∞) be one’s level of risk aversion (their importance of risk relative
to reward), with lower µ corresponding to a less risk-averse decision maker and
higher µ corresponding to a more risk-loving decision maker. Intuitively, as
µ approaches∞ this problem becomes more and more similar to the problem
involving someone who does not care at all about risk. In the case of extremely
large µ the decision maker will choose the asset with the highest expected
return.

Just as there are many definitions of measures of risk-aversion, so too are
there many definitions for risk itself. Vanderbei considers for this application
the mean absolute deviation from the mean (MAD) as a definition for risk:

E|(R−E(R))| = E(
∣∣∣∑n

j=1 xj(Rj −E(Rj)
∣∣∣)

Now having a measure of risk to consider, we are interested in the individ-
ual trying to maximize expected return subject to whatever constraint their
level of risk aversion imposes on them. Risk and reward can be combined
with the risk aversion parameter µ to produce:

ζ = µ
∑
j xjE(Rj)−E(

∣∣∣∑j xj(Rj −E(Rj)))
∣∣∣

2

This defines the decision maker’s objective function, valuing reward and
disliking risk. Notice that as µ tends toward ∞ the positive reward term will
dominate the negative risk term, consistent with the description above.

Note: In this chapter Vanderbei briefly describes the hedging process. For our
purposes, hedging can simply be thought of as reducing risk without
reducing expected reward, and if such an opportunity exists one would
take it. This obviously has many extensions in financial economics but
is not a focus of our work.

In order to evaluate ζ it appears one must know the joint distribution
of the Rj ’s. While this could be given as part of a problem’s description,
generally distributions of financial data are not known with certainty, but
can be estimated using historical financial data. This is what Vanderbei does.
Located in the Appendix is a table of historical data used by Vanderbei in
his example. This data will be used to estimate the expected returns of each
asset for the purposes of portfolio optimization.

Now, let Rj(t) be the return on investment j during time period t with
t ∈ T = {1, 2, ..., 24}. Using the average of the historical returns for each
asset, the expected return for each is denoted:

E(Rj) = 1
T

∑T
t=1Rj(t)

This problem can be compiled to the form:

maximize µ
∑
j

xjrj −
1

T

T∑
t=1

∣∣∣∣∣∣
∑
j

xj(Rj(t)− rj)

∣∣∣∣∣∣
such that

∑
j

xj = 1

xj ≥ 0 j = 1, 2, ..., n

with

rj = 1
T

∑T
t=1Rj(t)

This problem includes several absolute values in the objective function,
which are inconvenient. In order to work around this, Vanderbei introduces a
new variable, yt, to replace each absolute value. By imposing new inequality
constraints on yt, the absolute values can be accurately represented in the

linear program. As stated, replace
∣∣∣∑j xj(Rj(t)− rj)

∣∣∣ with yt to obtain our

problem as

3

maximize µ
∑
j

xjrj −
1

T

T∑
t=1

yt

such that
∑
j

xj = 1

−yt ≤
∑
j

xj(Rj(t)− rj) ≤ yt t = 1, 2, ..., T

yt ≥ 0 j = 1, 2, ..., n

xj ≥ 0 j = 1, 2, ..., n

This problem can be solved for any desired value of µ. However, we have
tools to systematically solve this parametric linear program for every value
of µ using the parametric simplex method. This is the manual process that
SPAM expedites and automates.

Note: In this context, a problem of portfolio optimization is defined by the
number of assets available, their historical data, and µ. This is all that
is necessary to define such a problem.

2.2 Parametric Simplex Method

To use the parametric simplex method, one must choose a starting value of the
parameter. It is desirable to choose a value for µ that results in an ”obvious”
basic optimal solution. If this is possible we can then begin experimenting
with changes in the parameter value. In the case of a portfolio optimization
problem, it is natural to choose a value for µ that will result in x∗j = 1 (if
possible) where j∗ is the asset with highest expected return. To perform the
parametric simplex method Vanderbei introduces slack variables w+

t and w−t
and rewrites the problem in dictionary form:

4

maximize µ
∑
j

xjrj −
1

T

T∑
t=1

yt

such that −yt −
∑
j

xj(Rj(t)− rj) + w−t = 0

−yt +
∑
j

xj(Rj(t)− rj) + w+
t = 0

∑
j

xj = 1

yt ≥ 0 j = 1, 2, ..., n

xj ≥ 0 j = 1, 2, ..., n

Still assuming that we have chosen µ such that x∗j = 1, the other xj ’s
disappear. Remaining variables that are positive are considered basic and
the rest are considered nonbasic. So, x∗j is basic, while the rest of the xj ’s are

nonbasic. Also, yt’s are nonzero and thus basic. For each t, one of w+
t or w−t

is basic while its counterpart is nonbasic. To state which is basic, Vanderbei
introduces some more notation. Let

Dtj = Rj(t)− rj

Then if Dt
∗
j > 0, w−t is basic. If Dt

∗
j < 0, w+

t is basic. If it occurs that
Dt
∗
j = 0, one can arbitrarily decide while of the wt is basic. Let

T+ =

{
t : Dt

∗
j > 0} and T− = {t : Dt

∗
j < 0}

and

εt = {1 for t ∈ T+

εt = {−1 for t ∈ T−

Then after solving this via parametric simplex method, the optimal dic-
tionary is:

ζ = 1
T

∑T
t=1 εtDt

∗
j − 1

T

∑
j 6=j∗

∑T
t=1 εt(Dtj −Dt

∗
j)xj

− 1
T

∑
t∈T− w

−
t − 1

T

∑
t∈T+ w

+
t + µr∗j + µ

∑
j 6=j∗(rj − r∗j)xj

5

with

yt = −Dt
∗
j −

∑
j 6=j∗

(Dtj −Dtj∗)xj +w−t t ∈ T−

w−t = 2Dt
∗
j + 2

∑
j 6=j∗

(Dtj −Dtj∗)xj +w+
t t ∈ T−

yt = Dt
∗
j +

∑
j 6=j∗

(Dtj −Dtj∗)xj +w+
t t ∈ T−

w+
t = −2Dt

∗
j − 2

∑
j 6=j∗

(Dtj −Dtj∗)xj +w−t t ∈ T−

x∗j = 1 −
∑
j 6=j∗

xj

For large values of µ, it is easy to check that this dictionary is optimal.
The objective coefficients on w−t and w+

t in the objective function are both
negative. Coefficients on xj ’s in the first row of the objective function can be
positive or negative depending on the differences Dtj −Dt

∗
j , but for a µ large

enough, the coefficients on xj ’s in the second row will grow dominant over
the first row coefficients. This forces the coefficients on xj ’s negative. From
Vanderbei’s definition of T− and T+, all basic variables here are positive.

Notice that as µ is allowed to vary (decrease, in this case) the coeffi-
cients on some xj ’s will eventually become zero and then positive. As this
happens, the parametric simplex method sends the xj corresponding to the
now-positive coefficient into the basis. As usual, the ratio test is conducted
on coefficients containing µ in the old dictionary to determine which variable
will leave the basis. Once this pivot has been performed, we are left with a
new dictionary corresponding to a new value of µ. The µ value for which one
coefficient on the xj ’s changes from negative to positive is a possible boundary
value for µ at which the objective value (and hence optimal solution to the
linear program) changes. This process can be repeated as many times as nec-
essary until µ becomes 0. In general, the parametric simplex method is not
bounded by a parameter value of 0, but in this case of portfolio optimization
µ < 0 does not make sense.

After performing the parametric simplex method to completion, one has a
series of µ-intervals. Each µ-interval is bounded by values of µ for which the
objective function value changes. Within any given µ-interval, any value of µ
will result in the same objective value and optimal solution. This is the result
of the parametric simplex method. In the (still generalized) case of portfolio
optimization, one also obtains the objective value and associated optimal
solution for each µ-interval. If thought of as percentages, the xj ’s can be

6

plotted against the list of µ-intervals to produce a graphical representation of
the solution set for any given problem. This, along with the so-called efficient
frontier, is what is rediscovered using SPAM.

3 SageMath

Now that Vanderbei’s method is understood, we will introduce our work with
SPAM and the problem of portfolio optimization. Just as any problem must
be translated from plain text to function in a programming language, so too
must our problem. Personally, I began this project with little knowledge
of Python and no knowledge of SageMath, so there was much time spent
familiarizing ourselves with the two.

3.1 SageMath Setup

For our project we used SageMath from source (various versions between 8.9
and 9.3.beta6) via Ubuntu on the Windows Subsystem for Linux. We used
SageMath both in terminal and in Jupyter notebook. Most of our work in
the terminal was done by loading .sage files from our local machine to the
terminal each session. We saved output often as .txt files and stored them
locally. Work in notebooks was also done using .ipynb files saved locally. In
most cases we pushed/pulled changes using GitHub Desktop, although we did
also use git version control from the Linux terminal (this was necessary to pull
ticket changes from SageTrac before they were published in a stable release of
SageMath). While I did attempt to work on SageMath development, I found
this less interesting and more alien than using SageMath, so most of our time
was spent working with the software.

3.2 SPAM

Originally developed to automate the discovery of new cut-generating func-
tions in linear programming [7], SPAM is an algorithm applied to an existing
program, P , which exhibits certain nice properties. Without a standalone
program to feed as input into SPAM, it does nothing on its own.

3.3 Requisite Properties of P

First, the mathematical problem being solved by P must be parameterized.
One or more parameters of interest must appear in P , otherwise P simply
solves one concrete problem and there is nothing interesting to be gained
from SPAM. The parameters are often grouped in a fixed tuple, σ. These
parameters are explicitly declared as elements of a Parametric Real Field,

7

K. Creating such a field indicates to SPAM which parameters to recognize
throughout the execution of P .

Second, P must rely only on algebraic operations, branches, and com-
parisons. Specifically, the algebraic operations conducive for use with SPAM
are elementary algebraic operations on real numbers. Branches allowed are
traditional if-then-else statements and loops. These properties ensure that
the set of parameters where SPAM returns any particular outcome is a semi-
algebraic set. This is necessary for SPAM, and rules out programs relying on
more sophisticated operations.

Also important to note, SPAM is formatted for Python, and specifically
within the SageMath computer algebra software [10]. Naturally, programs we
discuss and introduce are written in Python and are all executed in SageMath.
This paper contains a combination of programs previously existing in Python
libraries, programs written by Dr. Zhou, and programs written by myself.

In short, there are three components required for an effective use of the
SPAM algorithm.

1. A program (algorithm) which acts on a parameter tuple, P (σ)

2. A proof cell generated by metaprogramming, SPAM(P (σ))

3. A proof cell complex combining every proof cell generated by the SPAM
algorithm, SPAM∗(P)

In short, this constitutes the process of using SPAM by applying it to an
existing Python program. The result can vary from problem to problem, but
is usually depicted in graphical form in some capacity. Since SPAM records
comparisons in the form of inequalities, it is natural to plot those inequalities
to separate proof cells by output value.

Note: In order to use SPAM to generate precise inequality comparisons, we
use rational-valued numbers in computation. Because of the approx-
imation involved in computing with floating point numbers, rationals
are more appropriate for SPAM. We refer to numbers used within our
programs in fractional form.

3.4 Example: Positive Definite Matrix

Consider a program P which takes a matrix as input and yields as output a
Boolean True if the matrix is positive definite and False otherwise. In Python
this program is actually the is positive definite method from class Matrix.
This is a very elementary program but does well to illustrate the use of SPAM
without having to digest mathematics simultaneously. Consider the matrix

A =

[
1
3 a
a b

]

8

One may ask the question “For which values (a, b) is this matrix positive
definite?” In this example one can compute the principal minor of A and
generate an inequality solution to this question by hand. Since this is not
a complicated question, one might suggest an answer in the form of a the-
orem. Theorem 1: A is positive definite if and only if the following holds

b
3 − a

2 > 0

We now hope that SPAM can provide some sort of proof of this theo-
rem. To accomplish this, we can use is positive definite, as it relies only
on algebraic operations and is parameterized here by (a, b). In handling each
iteration of is positive definite, recall that SPAM records both numerical
comparisons (which are generally unseen by the user) as well as the associ-
ated symbolic representation of each inequality along the way. These will
become the basis for our proof cell complex.

A complete proof cell will contain, at minimum, a list of symbolic expres-
sions corresponding to the inequalities recorded during the execution of P
and an optimal solution value corresponding to every parameter value within
the proof cell. In Figure 1 each proof cell is distinguished in color by the
output of P when given parameter tuple (a, b) with a concrete value. Red
cells correspond to matrices that are not positive definite (P output False)
while blue cells correspond to matrices that are positive definite (P output
True).

The proof cell complex associated with matrix A and is positive definite.

In this case, the proof cell complex shows all combinations of parameter

9

values that result in a positive definite matrix. This “proves” Theorem 1. So,
the usefulness of SPAM here is in creating a comprehensive solution to the
parametric problem characterized by the matrix A. The two small white dots
(one in the blue region and one in the red) indicate the test points that were
used by SPAM to generate their cells. Instead of having to solve this problem
for the infinitely many values of (a, b), one can employ SPAM to generate
this proof cell complex describing the solution for every tuple of parameter
values. This is the value SPAM adds, an algorithm that provides complete
solutions to parameterized problems.

3.5 Example: Reducing System of Inequalities

Once we understood the basic principle of SPAM, we looked for possible
applications in economics. My first attempt in applying SPAM to an economic
problem was in reducing a redundant system of inequalities generated by a
game of Cournot competition.

The classical two-player game modeling the actions taken between mem-
bers of a duopoly is solved by obtaining a Nash-Cournot equilibrium. Specif-
ically, this analysis is focused on the old problem concerned with finding
optimal levels of research and development in a two-firm setting. This is
achieved with restrictions on the five parameters (a, A, β, b, γ) within the
d’Aspremont-Jacquemin duopoly model [3]. In their paper three different
scenarios are presented, with three different sets of inequalities bounding the
parameters. We will focus on their first example here. Six inequalities con-
stitute these restrictions, and are summarized here for reference:

1. 0 < A < a

2. 0 < β < 1

3. (a−A)(2−β)
4.5bγ−(2−β)(1+β) > 0

4. 2(a−A)(4.5bγ)
3b(4.5bγ−(2−β)(1+β)) > 0

5. (a−A)(2−β)(1+β)
4.5bγ−(2−β)(1+β) < A

6. 2
9 (2− β)2 < bγ

If this system is satisfied by values of all five parameters, then the opti-
mal level of research and development as well as the optimal level of profit
have meaningful values in this problem. These are enumerated explicitly by
d’Aspremont and Jacquemin.

In order to utilize SPAM, one must create (or obtain) a ”point-wise
prover” program. This program must only function using semialgebraic oper-
ations in order to remain suitable for SPAM. For this application, we created

10

a point-wise prover of our own, dubbed ”ineq2” [3]. Ineq2 is a simple program
designed to test values for each of the five parameters of interest and then
return True if the system of inequalities is satisfied and return False if they
are not. This simple operation of checking inequalities preserves the desired
properties of a semialgebraic solution set.

Once verifying this program’s validity, we used it as an input for SPAM.
This process involves giving ineq a concrete set of arguments to pass. In our
case, we chose to use (a, b, A, β, γ) = (2, 1, 1, 1/2, 10) as the starting point
for SPAM. All of our analysis takes place in the five-dimensional parameter
space. We chose these parameter values because they yield a result of True
when passed through ineq and thus satisfy the original set of inequalities from
above.

Once SPAM has this concrete-valued tuple it begins its work. We used the
breadth-first search (BFS) method from SPAM. With this method, the BFS
first executes ineq with the given tuple and records both the Boolean result
from ineq as well as the inequalities that are checked. This data is stored in a
proof cell by SPAM and eventually constitutes one cell of the complex. Once
BFS completion is achieved, analysis of the proof cell complex can begin. In
this paper, the description of a proof cell is identical to the set of inequalities
which define it, and vice versa.

Upon BFS completion a proof cell complex is yielded. This complex of
cells defined by sets of inequalities lives in the parameter space, and each cell
is either defined as ”True” or ”False”, depending on the return value from
ineq when components of those cells are passed through. In this case five
proof cells are generated. One of these cells is ”True”. This is the cell we are
interested in, we will refer to it as ”Cell 0”.

It is simple enough, once SPAM has finished its work, to access the data
stored for each cell in the complex. Cell 0 is described by a system of inequal-
ities, which are listed here:

1. 0 < γ

2. 0 < β < 1

3. 0 < A < a

4. 0 < b

5. −2β2 − 9bγ + 2β + 4 < 0

6. 2β2 − 9bγ − 8β + 8 < 0

7. −2aβ2 − 9bAγ + 2aβ + 4a < 0

We were cautious to accept that these two sets of inequalities were equiv-
alent. After all, there are additional linear inequalities as well as one fewer

11

high-degree inequality in this cell than in the original one. To test for equiva-
lency of these two cells we first created a separate program designed to check
this, called ”ineq check”. As before, let our new set of inequalities be ”Cell
0” and the original set be ”Cell 1”. Ineq check works in the following way:

1. Generate a tuple in the parameter space with random values for each
parameter.

2. Initialize a list to store truth values for each execution.

3. Check this newly generated tuple for membership in Cell 1.

4. Check again for membership in Cell 0.

5. If this tuple is a member of Cell 1 and Cell 0 add ”True” to the list.

6. If this tuple is not in Cell 1 and also not in Cell 0, add ”True” to the
list.

7. If this tuple is a member of one cell but not the other, add ”False” to
the list.

8. Repeat the above steps 100,000 times.

9. Check the list for any instances of ”False”. Return False if so.

10. If no instances of ”False” in the list, return True.

After running this program many times and getting a result of True every
time, we began to suspect the two cells were identical. Every point we had
randomly generated and tested was either contained in both cells or neither
cell. We suspected that, with some algebra and rearranging of terms, the
following inequalities are implied between the two cells. Inequalities (5), (6),
and (7) from Cell 0 are the same as inequalities (4), (6), and (5) from Cell 1:

−2β2 − 9bγ + 2β + 4 < 0 ≡ 2(a−A)(4.5bγ)

3b(4.5bγ − (2− β)(1 + β))
> 0 (1)

2β2 − 9bγ − 8β + 8 < 0 ≡ 2

9
(2− β)2 < bγ (2)

−2aβ2 − 9bAγ + 2aβ + 4a < 0 ≡ (a−A)(2− β)(1 + β)

4.5bγ − (2− β)(1 + β)
< A (3)

In some sense, Cell 0 is a “simpler” description of the original set of
inequalities. It contains one fewer high-degree inequality. However, Cell 0
does impose new constraints on γ and b. This is the trade-off. In using this
method for reducing systems of inequalities, one must decide whether they

12

desire fewer high-degree inequalities or fewer total inequalities. In either case,
this project has provided an alternative description of the set of inequalities
bounding the parameters in d’Aspremont and Jacquemin’s analysis of two-
firm games.

4 Rediscovery of Textbook Results

4.1 Demonstration on Small Dataset

Prior to discussing the results from the full nine-asset 24-period problem
that Vanderbei uses, we introduce a small three-asset two-period model for
demonstration. Consider “historical data”:

Time period j=1 j=2 j=3
1 5

3
7
3 1

2 2
3

1
3

3
4

This data can also be represented as a triplet of tuples

((5
3 ,

2
3), (7

3 ,
1
3), (1, 34))

with each tuple representing the historical returns for its associated as-
set. Using dictionary notation and combining coefficients on like terms, this
example can be formatted as a linear program:

maximize
7

6
µx1 +

4

3
µx2 +

7

8
µx3 −

1

2
x4 −

1

2
x5

such that
1

2
x1 + x2 +

1

8
x3 − x4 ≤ 0

−1

2
x1 − x2 −

1

8
x3 − x4 ≤ 0

LP = −1

2
x1 − x2 −

1

8
x3 − x5 ≤ 0

1

2
x1 + x2 +

1

8
x3 − x5 ≤ 0

x1 + x2 + x3 = 1

xj ≥ 0 j = 1, 2, 3

13

Where x1, x2, x3 are weights on assets 1, 2, 3, respectively and x4, x5 are
variables representing the absolute value terms mentioned earlier. The linear
program is not explicitly set up with slack variables included, those are added
by the SageMath solver when the program is solved. We wrote a program
setup portfolio lp which takes, as input, a tuple containing historical data
and a value for µ, which together define a portfolio optimization problem.

For example, this is the SageMath command and output when
setup portfolio lp is called on this small example with µ = 5:

sage: hist_data = ((5/3,2/3),(7/3,1/3),(1,3/4))

sage: mu = 5

sage: lp = setup_portfolio_lp(hist_data, mu)

sage: lp

Linear Program (maximization, 4 variables, 5 constraints)

sage: lp.show()

Maximization:

35/6 x_0 + 20/3 x_1 + 35/8 x_2 - 1/2 x_3 - 1/2 x_4

Constraints:

x_0 + x_1 + x_2 = 1

1/2 x_0 + x_1 + 1/8 x_2 - x_3 <= 0

-1/2 x_0 - x_1 - 1/8 x_2 - x_3 <= 0

-1/2 x_0 - x_1 - 1/8 x_2 - x_4 <= 0

1/2 x_0 + x_1 - 1/8 x_2 - x_4 <= 0

Variables:

x_0 is a continuous variable (min=0, max=+infty)

x_1 is a continuous variable (min=0, max=+infty)

x_2 is a continuous variable (min=0, max=+infty)

x_3 is a continuous variable (min=0, max=+infty)

x_4 is a continuous variable (min=0, max=+infty)

This problem is written with a concrete value for µ in mind, so it does not
appear explicitly in the problem. Further, setup portfolio lp simplifies this
type of linear program by reducing the number of variables. Since we have
the constraint

∑
j xj = 1, we can arbitrarily choose one of the xj ’s as x∗j =

14

∑
j 6=j∗ xj . This new constraint is then included in the linear program and x∗j

is defined in terms of the other xj ’s. This reduces the number of variables by
one and thus creates a problem that is solved more efficiently. In this case x3
is written as x3 = 1−x1−x2 and the problem is rewritten accordingly. This
problem is only presented to demonstrate setup portfolio lp, we will want
µ as a parameter for the portfolio optimization problem of interest.

This program is first instantiated as an instance of the MixedIntegerLin-
earProgram (MILP) class in SageMath, a common class for setting up linear
programs. This class allows for the use of different solvers and has a wide
array of methods built in. For example, the GNU Linear Programming Kit
(GLPK) solver is relatively fast and we use this for many of our information
computations. However, this solver operates with floating point numbers,
and in order to preserve the exact rational solution we desire, this solver is
not adequate. Thankfully, there exists a solver within SageMath that does
solve linear programs exactly, InteractiveLP. InteractiveLP could serve as an
exact, rational solver compatible with SPAM, and at first this is what we
attempted to use. However, InteractiveLP is relatively very slow, too slow to
use for the full portfolio optimization problem. This is because InteractiveLP,
when used as a solver with a MILP, generates and outputs LaTeX code along
the way. This way, a user could copy and paste (or view in a notebook) the
simplex method solving process for educational purposes. All these lines of
LaTeX code being generated at the same time as InteractiveLP was solving a
problem exactly contributed to the significantly longer execution time. Time
comparisons between GLPK and InteractiveLP solvers are provided in the
Appendix. This posed a problem.

4.2 Hybrid Backend

At this point in the project, Dr. Zhou referred me to a SageTrac ticket (Sage
ticket 18735) in progress, one in which a so-called HybridBackend was being
built. This is where our extremely short-lived stint in SageMath development
began, as per Dr. Zhou’s recommendation I tried to work on this ticket. The
purpose with which HybridBackend was being developed was to create a faster
exact solver. In order to accomplish this, HybridBackend was intended to first
solve the MILP inexactly using the GLPK (or another inexact solver). Once
this was done, HybridBackend would extract the basic variables from the
GLPK-solved problem and create another MILP instance using InteractiveLP,
injecting the necessary basic variables into the exact MILP and performing
one final pivot to reach an optimal solution. This way, InteractiveLP is not
solving an entire linear program from start to finish, but is instead solving
a “warmstarted” MILP. In this way, HybridBackend could solve a problem
to optimality while preserving an exact rational solution much faster than
InteractiveLP alone could.

15

Having never attempted to develop a software before, I was inundated
with unfamiliar terms and workflows. I spent time combing through the
annals of SageMath development guides, forums, SageMath developer help
groups, and Python tutorials to try and understand the process. Quickly my
confusion accumulated and we were spending most of my time learning about
development instead of the project itself. After a few weeks without making
significant progress on finishing HybridBackend Dr. Zhou agreed that she
would complete the ticket and I would return to working on the portfolio
optimization problem.

This is not where our struggles with SageTrac ended, as once the Hybrid-
Backend was completed we had to pull in this resolved ticket to our local copy
of SageMath. Because we used SageMath through the Windows Subsystem
for Linux, we managed files with two sets of directories and system paths. One
way to pull in changes from a SageTrac ticket is using the git trac command
within the system terminal. After consulting the SageMath developer guide
once again for installing and using git trac we thought we were prepared to
pull these changes. However, we encountered permission errors when trying
to access the resolved ticket. After trying to configure git trac using SSH keys
and token authentication with no success, we reached out to the SageMath
developer Google group for help. It was recommended that instead of using
git trac we simply use plain git from our system terminal. This worked, and
finally we had HybridBackend working on our local machine.

4.3 Proof Cell Complex for LP

Solving LP using HybridBackend was fast and correct. Moreover, Hybrid-
Backend was suitable for use with SPAM, and so the process of discovering the
proof cell complex began. One method for discovering a proof cell complex is
to first create an instance of class SemialgebraicComplex. From the paramet-
ric.sage file in the repository cutgeneratingfunctionology where SPAM code is
stored, SemialgebraicComplex creates an empty proof cell complex. A Semi-
algebraicComplex takes multiple arguments when instantiated, including:

• A family of functions that will be executed (i.e. a program P) poten-
tially many times

• Symbolic representations for each parameter

• find region type: A function defining the value of each proof cell in
order to compare one to another

• default var bound: Default variables bounds (an interval within which
SPAM will test parameter values

16

There are other, optional, arguments which SemialgebraicComplex can
take, which we list in the Appendix. Once instantiated, this proof cell complex
can be completed by using a breadth-first-search (BFS) method. This method
takes multiple arguments as well:

• var value: Variable values (numerical values for each parameter at which
the bfs will begin)

• wall crossing method: Wall-crossing method (here a “wall” is an in-
equality that defines the border of one proof cell), because we did not
have access to Mathematica we used the heuristic wall-crossing method

• goto lower dim: A Boolean informing bfs whether to check lower-dimensional
cells or not (inour case we have only one parameter of interest, so all
cells will be one-dimensional along the number line)

The BFS process involves several steps:

1. P is executed while SPAM records both the numerical and symbolic
representation of any internal comparisons made involving the param-
eter(s) of interest

2. SPAM then generates one proof cell for P defined by the parameter in-
equalities at the given parameter values and the output of find region result

3. SPAM crosses one wall defining the previous proof cell, choosing a test
point not already covered by any existing proof cell

4. P is executed again with the new test point values of the parameters

5. This process is repeated until (hopefully) the entire parameter space
is covered by proof cells, at which point the SemialgebraicComplex is
populated and SPAM stops running

This process is not exact, especially while using the heuristic wall-crossing
method. There are variable execution times depending on the specific test
points chosen by SPAM throughout the course of execution. If this is ac-
complished successfully (which is not a trivial assumption, we learned) the
problem of solving P for any set of parameter values can be answered by
simply inspecting the proof cell complex. We will describe instances in which
SPAM finished executing without completing the proof cell complex and our
remedies for this problem in a later section.

This is the basic idea behind SPAM. As stated, all of this code is found
in the mkoeppe/cutgeneratingfunctionology repository on GitHub.

Here is the setup commands and SageMath output for the proof cell com-
plex generated by LP :

17

This proof cell complex is comprised of three distinct cells. Each cell is
defined by a µ-interval. By construction of the proof cells, we can make the
following deductions:

• Within any proof cell, each value of µ within the µ-interval defining it
will yield the same objective function value

• Within any proof cell, the optimal solutions to any portfolio optimiza-
tion problem with a µ value in the µ-interval will be the same

• Since the union of the proof cells is the interval (0∞), we know that the
proof cell complex is complete

So this is the desired outcome. SPAM produced a proof cell complex
describing the different possible solutions to LP for any value of the risk-
aversion parameter µ. As stated, we include a brief discussion about problems
with BFS and manual steps one can take to produce a complete proof cell
complex when BFS fails on its own.

This process will be replicated for the full problem of portfolio optimiza-
tion that Vanderbei considers. Before that, however, we provide a descrip-
tion of a manual comparison between the Vanderbei method by hand and the
SPAM method.

4.4 Checking Parametric Simplex Method vs SPAM

In order to reproduce the parametric simplex method results from Vanderbei,
the MILP LP must first be translated. As mentioned previously, MILP has
no support for dictionary investigation, so we used the Interactive Simplex
Method module within SageMath. Using an InteractiveLPProblem object
from this module, it is possible to display, define, and change dictionaries
manually. Since this is the defining characteristic of the parametric simplex
method, this module will work well here. Provided here is the construction
of LP as an InteractiveLPProblem object, which we define as ILP :

Notice that in the construction of ILP one must explicitly define a Para-
metricRealField, K. K represents the parent field of the parameter µ, and is
necessary to define before working with SPAM. However, earlier when LP
was solved using BFS, the construction of SemialgebraicComplex takes care
of setup of K for us. So it was not necessary to directly create a Parametri-
cRealField earlier.

The construction of ILP looks different from the construction of LP be-
cause MILP and InteractiveLPProblem objects are from different modules
and are associated with different methods. Notice that in creating ILP one
must define the coefficient matrix A, the RHS constraint coefficient vector
b, and the objective function c, whereas in constructing LP we only needed

18

historical data and µ. ILP variables y1 and y2 are the variables replacing the
absolute value terms from before, renamed here to match Vanderbei.

When displayed, ILP looks like this:

max 7
6µx1 + 4

3µx2 + 7
8µx3 −

1
2y1 −

1
2y2

x1 + x2 + x3 ≤ 1
− x1 − x2 − x3 ≤ −1

1
2x1 + x2 + 1

8x3 − y1 ≤ 0
− 1

2x1 − x2 − 1
8x3 − y1 ≤ 0

− 1
2x1 − x2 − 1

8x3 − y2 ≤ 0
1
2x1 + x2 + 1

8x3 − y2 ≤ 0
x1, x2, x3, y1, y2 ≥ 0

This looks similar to LP , but is not exactly the same. Here the equal-
ity constraint x1 + x2 + x3 = 1 is rewritten as the first two constraints in
ILP . InteractiveLPProblem creates linear programs with ≤ constraints, so
the equality constraint was necessarily modified. Now having ILP formu-
lated, one can convert it to standard form using standard form from Inter-
activeLPProblem. This is necessary because InteractiveLPProblem in general
has no run simplex method method, which we need to generate a final dic-
tionary. This simply solves the standard form of ILP to optimality using the
simplex method, we are not yet comparing the manual computation of the
parametric simplex method to SPAM. Once run simplex method has been
called on the standard form of ILP one can look into the final dictionary.
This is done via the final dictionary method of InteractiveLPProblemStan-
dardForm. We chose to begin with µ = 10, since this is sufficiently large to
guarantee all of the portfolio weight will be on one asset. This will also be the
starting point for the full portfolio optimization example for the same rea-
son. By doing so, the final dictionary from the solved standard form of ILP is:

x7 = 0 − x6

y2 = 1 − x6 − 1
2x1 −

7
8x3 + x11

x2 = 1 − x6 − x1 − x3

x9 = 2 − 2x6 + x8 − x1 − 7
4x3

x10 = 2 − 2x6 − x1 − 7
4x3 + x11

y1 = 1 − x6 + x8 − 1
2x1 −

7
8x3

z = 4
3µ− 1 − 4

3µ− 1x6 − 1
2x8 −

1
6µ−

1
2x1 −

11
24µ−

7
8x3 −

1
2x11

Now having the final dictionary we can begin the parametric simplex
method. As described by Vanderbei, this is done by inspecting the sign of

19

coefficients on non-constant terms containing µ within the objective function.
Those coefficients are:

1. (4
3µ− 1) on variable x6

2. (1
6µ−

1
2) on variable x1

3. (11
24µ−

7
8) on variable x3

As variables affected by the value of µ, one of these will become the
entering variable in the first step of the parametric simplex method. We
would like to find values for µ in which those coefficients become negative,
per Vanderbei’s technique. Doing so will provide µ values at which the basic
variables change, a result of the now-negative coefficient’s variable entering
the basis. As usual, the ratio test is applied to determine which basic variable
will leave. In other words, we are interested in the µ values defined by:

1. 4
3µ− 1 = 0

2. 1
6µ−

1
2 = 0

3. 11
24µ−

7
8 = 0

As these are the µ values that will result in a sign change from their
respective coefficients. The corresponding µ values are µ = 3

4 , µ = 3, and
µ = 21

11 . According to Vanderbei, this process begins with a large enough
µ value, in this case 10, and methodically lowers this value until we reach
µ = 0. In this case, of the three possible µ values that will change the
optimal solution, µ = 3 is the closest to 10, and so we will choose x1 (the
variable associated with this coefficient) as the entering variable for the first
pivot of the parametric simplex method. By the ratio test x2 leaves the basis
in place of x1. While not listed explicitly here, this process is repeated until
all of the coefficients containing µ in the objective function are positive. We
will list the objective function resulting from x1 entering and x2 leaving the
basis:

ζ = 7
6µ−

1
2 − (7

6µ−
1
2)x6 − 1

2x8 + (1
6µ−

1
2)x2 − (7

24µ−
3
8)x3 − 1

2x11

From this we see that now there are only two coefficients containing µ
that are negative,

1. (7
6µ−

1
2) on variable x2

2. (7
24µ−

3
8) on variable x3

20

In the same way as before, we can solve these for µ to get µ = 3
7 and

µ = 9
7 , respectively. Since 9

7 is larger, this is the next interval breakpoint and
so its associated variable, x3, enters the basis. This results in x1 leaving the
basis and a new objective function:

ζ = 7
8µ−

1
8 − (7

8µ−
1
8)x6 − 1

2x8 + (11
24µ−

7
8)x2 + (7

24µ−
3
8)x1 − 1

2x11

Now there is only one negative coefficient containing µ, resulting in a µ
value of µ = 1

7 . This corresponds to variable x6, which enters in place of x7,
which leaves. Finally, after this pivot we are left with the objective function:

ζ = 7
8µ−

1
8 + (7

8µ−
1
8)x7 − 1

2x8 + (11
24µ−

7
8)x2 + (7

24µ−
3
8)x1 − 1

2x11

Notice that each coefficient on a non-constant containing µ is positive. By
the parametric simplex method, we are done. The optimal solution will not
change for any µ value lower than 1

7 . Hence, we have manually completed
the parametric simplex method. The µ values we encountered along the way
that resulted in a change in basis are recorded, and are actually endpoints
for intervals in the proof cell complex. These intervals are (0, 17], (1

7 ,
9
7], (9

7 , 3],
and (3,∞). The union of these intervals covers the entire positive number
line, so we know this is complete. Note that the endpoints of intervals result
in a change in sign of objective coefficients (from positive to 0) and thus
change the optimal solution and are included as closed boundaries on cells
with smaller µ values than them.

This may appear complete and correct, but there is another check to be
done. Now one can investigate the objective value for each interval to check
for consistency. When this is done, every interval appears fine except for
(0, 17]. The change in µ from µ > 1

7 to µ < 1
7 does not result in a change in

objective value or optimal solution. The explanation for this is not obvious,
but is known. During the pivot that resulted in the generation of µ = 1

7 , the
variable that entered was x6, and x7 left. These are both auxiliary variables
generated by run simplex method, and so their movement in and out of
the basis does not affect the objective value or optimal solution. In the first
few pivots, variables x1, x3, and x2 moved in and out of the basis, and since
those are the decision variables of interest, the µ values generated from their
coefficients were meaningful to the change in objective value and optimal
solution.

So, the refined proof cell complex generated from manual computation of
the parametric simplex method can be defined by the list here, organized as
interval; optimal solution; objective value:

1. (0, 97]; (0, 0, 1); 7
8µ−

1
8

2. (9
7 , 3]; (1, 0, 0); 7

6µ−
1
2

21

3. (3,∞); (0, 1, 0); 4
3µ− 1

In validating the proof cell complex via manual computation this suggests
that SPAM will work successfully with the large portfolio optimization prob-
lem, as the format of the problem is the same. The difference between this
small example and the large example is merely a difference in size of problem.

4.5 Nine Assets and 24 Time Periods

Now to demonstrate SPAM on the textbook example. In applying the same
techniques as in the small toy example, we are able to replicate the results
from Vanderbei. Our graphical representation of results (located in the ap-
pendix) from SPAM matches with the textbook results, as expected after
confirming the validity of our method. While this example is not the most
exciting or realistic, it demonstrates the ability of SPAM to match and re-
discover the existing textbook method results. As SPAM is a relatively new
development we expect many more potential applications with SPAM in eco-
nomics.

4.6 Rediscovery of Efficient Frontier

This section contains a discussion of the rediscovery of the efficient frontier
from Vanderbei’s example with SPAM. An efficient frontier is the set of all
risk-reward combinations that dominate every other risk-reward combinations
possible from a given set of assets. Each point on the efficient frontier (in
this case a curve) represents either the maximum expected return subject
to a given level of risk or the minimum risk subject to a certain level of
expected return. Any investor would aim to locate their portfolio on an
efficient frontier, as choosing a portfolio on the interior of the frontier is
irrational. They could increase their expected return with their current level
of risk or reduce their risk without altering expected reward by moving to
the frontier. This concept in finance is important, and is used in several
applications of the field.

The historical data that Vanderbei uses can be found in the Appendix.
For ease of reference and computational convenience we will refer to them
as assets and by their index rather than their actual sector name. This is
monthly data describing the expected return and risk associated with each
asset. This, along with our parameter µ, is all we need to proceed. To
discover the efficient frontier, the process is as simple as computing the risk
and expected reward of every optimal portfolio (optimal portfolios discovered
via SPAM). Then each portfolio is plotted on the risk-reward plane. the
piecewise function joining the points represents the efficient frontier itself,
and every point above the frontier is every possible portfolio. These results
are listed in the appendix.

22

We also included the portfolios consisting of xj = 1 for j = 1, 2, ..., 9. It
is interesting to note that most of these portfolios do not lie on the efficient
frontier. That is, unless you are choosing to invest for maximum reward
(energy) an investor would not invest their entire portfolio into a single asset.

Note: the dotted lines extending from the efficient frontier itself indicate
where the minimum risk and maximum expected return lie. At a certain point
it becomes impossible to reduce risk past a given level while selecting from
the same group of investments. Likewise, it becomes impossible to increase
expected return past a certain point without searching for other assets.

4.7 Real World Data

Beyond the textbook we collected our own data, from Yahoo Finance, on
historical returns from 9 real-world assets. These are Tesla, Apple, Microsoft,
Bitcoin, Nike, Facebook, 5YR Corporate Bonds, Ford, and General Electric.
We used the same techniques (parametric simplex method, SPAM, efficient
frontier discovery) to produce results for these assets also. Results are listed in
the Appendix and real historical data can be found on our GitHub repository
for this project. These real-world data produce an interesting result - every
optimal portfolio includes some investment in Bitcoin. This is expected, as
its return over the past several years has been high.

23

5 Appendix

Listed here are possible extensions, links to our SageMath code, figures, and
historical data we used for this project.

5.1 Possible Extensions: Mixed Strategies in Zero-Sum
Games

In this possible extension we consider a two-player zero-sum simultaneous
game of perfect information. This could be compatible with SPAM by formu-
lating this game as a linear program and solving the program using SageMath
methods. For reference to basic game theory terminology, we provide brief de-
scriptions in terms of monetary payouts. A two-player game is an interaction
between two agents in which they both must make a decision simultaneously.
A zero-sum game is one in which Player 1’s payout is exactly the negative
of Player 2’s payout. One can think of this game as a game in which the
losing player pays the winning player. A game of perfect information is one
in which the possible payouts are known by both players.

Note that these games are considered in strategic form [4]. A game in
strategic form is described as a triplet (X,Y,A), where

1. X is a nonempty set representing the possible strategies for Player 1

2. Y is a nonempty set representing the possible strategies for Player 2

3. A is a real-valued function with A(x, y) defining the payoff determined
by x ∈ X, y ∈ Y

Depending on what a player would like to optimize, there are different
objectives when solving that player’s problem. In this case, let the optimal
mixed strategy for a player be that player’s minimax solution. In some sense
this is choosing a strategy such that (without loss of generality) Player 1
maximizes her expected payout while knowing her opponent can choose from
multiple actions. Her opponent faces a similar problem, minimizing the ex-
pected payout of Player 1. Let us first inspect this game intuitively. Let p
be the proportion of times Player 1 chooses x. We would like to find p such
that Player 1 wins the same expected amount whether Player 2 chooses x or
y. So, when Player 2 chooses x Player 1’s expected payout is −2p+ 3(1− p).
Similarly, when Player 2 chooses y Player 1’s expected payout is 3p−4(1−p).
Player 1, wanting to earn the same expected payout in either case, sets these
equal and solves the problem

−2p+ 3(1− p) = 3p− 4(1− p)

with solution p = 7
12

24

That is, if choosing a minimax strategy, Player 1 would choose x with
probability 7

12 and y with probability 1− 7
12 = 5

12 . This results in an expected
payout in either case of

−2(7
12) + 3(5

12) = 1
12

So, if Player 1 chooses this minimax strategy, she has a positive expected
payout. This is the value of this game. As denoted by its name, pri-
mal solver solves a primal linear program, arbitrarily chosen here as Player
1’s problem. In this case of a two-player game, one player will face the dual
problem of the other. Let Player 2’s problem be the dual of Player 1’s. For
the above game, Player 1’s optimal strategy is defined as the solution to the
linear program

(P) =

max x3

x1 + x2 ≤ 1

− x1 − x2 ≤ -1

− x1 ≤ 0

− x2 ≤ 0

2x1 − 3x2 + x3 ≤ 0

− 3x1 + 4x2 + x3 ≤ 0

x1, x2, x3 ≥ 0

Where x1 and x2 are probabilities that Player 1 chooses x and y, respec-
tively. If either x1 or x2 is 1, this strategy is called pure. A pure strategy
is one in which Player 1 chooses the same action with certainty. If both
x1, x2 6= 0 then this defines a mixed strategy, one in which Player 1 assigns
probabilities to each action and then chooses with those probabilities. In this
case, the solution to (P) is (7

12 ,
5
12). Expectedly, this solution is the same as

the solution by inspection earlier. That is, with probability 7
12 Player 1 would

choose action x and with probability 5
12 Player 1 would choose y. This will

maximize his minimum payout.
This game, parameterized by the probabilities assigned to each action,

could theoretically function within the SPAM framework. Unfortunately we
were unsuccessful in doing so, and our attempts are documented in the Ap-
pendix. In the future this is something that could be investigated further,
although we do not know how interesting of a question discovering optimal
mixed strategies is, at least on this scale.

25

5.2 SageMath code

Our SageMath programs/code and test examples can be found at:

https://github.com/yuan-zhou/portfolio-optimization

26

5.3 Figures

Figure 1: Textbook example portfolio weights plotted against µ.

27

pe
rc

en
ta

ge
 o

f p
or

tfo
lio

µ

Energy

Bonds

Staples

Financial

Materials

Utilities

Figure 2: Real-world data portfolio weights plotted against µ.

28

Bitcoin

Tesla

Microsoft

Nike

Bonds

pe
rc

en
ta

ge
 o

f p
or

tfo
lio

µ

Figure 3: Efficient frontier for textbook data.

Figure 4: Efficient frontier for real-world data.

29

5.4 Historical Data

Time period j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

2007-04 1.000 1.044 1.068 1.016 1.035 1.032 1.004 0.987 1.014

2007-03 1.003 1.015 1.051 1.039 1.046 1.047 1.028 1.049 1.073

2007-02 1.005 1.024 1.062 0.994 1.008 1.010 1.021 1.036 1.002

2007-01 1.007 1.027 0.980 0.971 0.989 0.973 0.985 1.053 0.977

2006-12 1.002 1.040 0.991 1.009 1.021 1.020 1.020 0.996 1.030

2006-11 1.001 0.995 0.969 1.030 0.997 0.989 1.020 0.999 1.007

2006-10 1.005 1.044 1.086 1.007 1.024 1.028 0.991 1.026 0.999

2006-09 1.004 1.060 1.043 1.023 1.028 1.040 1.018 1.053 1.003

2006-08 1.004 1.000 0.963 1.040 1.038 1.040 0.999 0.985 1.015

2006-07 1.008 1.030 0.949 1.012 1.011 1.070 1.039 1.028 1.029

2006-06 1.007 0.963 1.034 1.023 0.943 0.974 1.016 1.048 1.055

2006-05 1.002 1.005 1.022 0.995 0.999 0.995 1.018 1.023 1.000

2006-04 1.002 0.960 0.972 0.962 0.983 0.935 1.002 1.016 0.979

2006-03 1.002 1.035 1.050 1.043 1.021 0.987 1.010 1.016 0.969

2006-02 1.002 1.047 1.042 1.003 1.044 1.023 1.008 0.954 0.987

2006-01 1.000 0.978 0.908 1.021 1.031 1.002 1.008 1.013 1.012

2005-12 1.002 1.048 1.146 1.009 1.003 1.034 1.002 1.024 1.013

2005-11 1.004 1.029 1.018 1.000 1.005 0.969 1.001 1.009 1.035

2005-10 1.004 1.076 1.015 1.048 1.058 1.063 1.009 0.999 1.012

2005-09 0.999 1.002 0.909 1.030 0.986 0.977 0.996 0.936 0.969

2005-08 0.997 1.008 1.063 1.009 1.017 1.002 1.014 1.042 0.995

2005-07 1.007 0.958 1.064 0.983 0.976 0.991 0.983 1.006 0.996

2005-06 0.996 1.056 1.071 1.016 1.038 1.057 1.032 1.023 1.023

2005-05 1.002 0.980 1.070 1.012 0.974 0.987 0.981 1.059 0.994

Textbook example of 24 monthly returns per dollar for nine different assets.

30

References

[1] Bard, G.: Sage for Undergraduates. Mathematics Subject Classification.
(2010)

[2] Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math-
ematical programming. 112, 3-34 (2008)

[3] d’Aspremont, C., Jacquemin, A.: Cooperative and Noncooperative R&D
in Duopoly with Spillovers. The American Economic Review. 78, 1133–
1137 (1988)

[4] Ferguson, T.: A Course in Game Theory. (2020)

[5] Flesch, J., Predtetchinkski, A.: Parameterized games of perfect informa-
tion. Annals of Operations Research. 287, 683-699 (2018)

[6] Goemans, M.: Linear Programming and Polyhedral Combinatorics. Com-
binatorial Optimization. (2017)

[7] Köeppe, M., Zhou, Y., Hong, C.Y., and Wang, J.: cutgenerating-
functionology. https://github.com/mkoeppe/cutgeneratingfunctionology.
(2021)

[8] Pak, I.: Lectures on Discrete and Polyhedral Geometry. (2010)

[9] Prisner, E.: Game Theory through Examples. Mathematical Association
of America. (2014)

[10] SageMath, the Sage Mathematics Software System (Version 9.3.beta6),
The Sage Developers, 2021, https://www.sagemath.org.

[11] Vanderbei, R.: Linear Programming, 4e. International Series in Opera-
tions Research and Management Science. 196, (2014)

[12] Zhou, Y.: portfolio-optimization. https://github.com/yuan-
zhou/portfolio-optimization. (2021)

	Using Semialgebraic Parametric Analysis by Metaprogramming in Portfolio Optimization
	Recommended Citation

	tmp.1621604018.pdf.fztz3

