
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2021

Markov Decision Processes with Embedded Agents Markov Decision Processes with Embedded Agents

Luke Harold Miles
University of Kentucky, luke@cs.uky.edu
Digital Object Identifier: https://doi.org/10.13023/etd.2021.135

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Miles, Luke Harold, "Markov Decision Processes with Embedded Agents" (2021). Theses and
Dissertations--Computer Science. 106.
https://uknowledge.uky.edu/cs_etds/106

This Master's Thesis is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Luke Harold Miles, Student

Dr. Brent Harrison, Major Professor

Dr. Zongming Fei, Director of Graduate Studies

Markov Decision Processes with Embedded Agents

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in
the College of Engineering at the

University of Kentucky

By
Luke Harold Miles

Lexington, Kentucky

Director: Dr. Brent Harrison, Professor of Computer Science
Lexington, Kentucky 2021

Copyright Luke Harold Miles 2021

ABSTRACT OF THESIS

Markov Decision Processes with Embedded Agents

We present Markov Decision Processes with Embedded Agents (MDPEAs), an exten-
sion of multi-agent POMDPs that allow for the modeling of environments that can
change the actuators, sensors, and learning function of the agent, e.g., a household
robot which could gain and lose hardware from its frame, or a sovereign software
agent which could encounter viruses on computers that modify its code. We show
several toy problems for which standard reinforcement-learning methods fail to con-
verge, and give an algorithm, ‘just-copy-it‘, which learns some of them. Unlike MDPs,
MDPEAs are closed systems and hence their evolution over time can be treated as
a Markov chain. In future work, we hope MDPEAs can be extended to model even
fully embedded agents acting in real digital or physical environments.

KEYWORDS: MDP, Reinforcement Learning, Embedded Agency

Author’s signature: Luke Harold Miles

Date: May 13, 2021

Markov Decision Processes with Embedded Agents

By
Luke Harold Miles

Director of Thesis: Brent Harrison

Director of Graduate Studies: Zongming Fei

Date: May 13, 2021

ACKNOWLEDGMENTS

Dr. Harrison is a remarkably patient and persistent advisor, and I could not have

begun to do this work without his thoughtful guidance. Dr. Judy Goldsmith made

me feel at home in the CS department and always lent me her piercing intellectual

eye when I needed it. Dr. Raphael Finkel encouraged me to pursue research and

follow my interests and present them to the department. My ex-girlfriend Luci Keller

encouraged me to pursue a Master’s degree and sat me through countless nights of

code refactoring. My mother Colleen London and father Hal Miles gave me helpful

reminders to finish, with the confidence that I could. My girlfriend Asya Kudriashova

supported me through the last few months. I owe all of you a great debt.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . v

Chapter 1 Introduction . 1

Chapter 2 Background . 4

Chapter 3 Related Work . 7

Chapter 4 Model . 9
4.1 Consideration of framing . 10
4.2 Proposed algorithm: just-copy-it 11

Chapter 5 Evaluation . 13
5.1 Empirical case studies . 13
5.2 Modeling other problems and environments 21

Chapter 6 Conclusion . 26
6.1 Contributions . 26
6.2 Future work . 26

Appendix . 29

References . 31

Vita . 35

iv

LIST OF FIGURES

5.1 One example of a randomly generated whisky environment 14
5.2 Total cumulative reward in the whisky gridworld environment over 20k

timesteps . 16
5.3 Total cumulative reward in Java + whisky gridworld environment. 17
5.4 Total cumulative reward in Java + whisky + soap gridworld environment. 18
5.5 Average reward per timestep over 500k timesteps, with each plotted dat-

apoint averaging 25k timesteps. 19

v

Chapter 1 Introduction

Sequential decision problems are problems where an agent must act and plan in an
environment where its actions have long-term consequences. Sequential problems are
di↵erent from e.g., classification problems because in the latter there is no notion
of planning or consequence. Sequential problems can be complex or simple, discrete
or continuous, supervised or unsupervised, but in all cases, an agent is acting in an
environment over time to achieve a goal or maximize a utility or reward function.

One important formalization of sequential problems is Markov decision processes
(MDPs), which break it into states, actions, a transition function, and a reward
function. MDPs are an extremely expressive model; they can represent anything
from board games and video games to resource management and process scheduling
to stock trading to autonomous vehicles to theorem proving.

An MDP can be considered as a precise statement of a sequential problem; its
solution is a policy that maps each state to the action which maximizes expected
reward.1 Reinforcement learning (RL) is the study of algorithms that take an MDP
as input and produce a policy for that environment as output. Most RL methods rely
on trial and error in an environment to learn its dynamics and create a good policy:
take semi-random action, record the results, and use that information.

Reinforcement learning is only fully applicable2 to situations where

(1) the agent cannot be destroyed or killed,
(2) the agent’s actuators cannot be modified, added to, or removed,
(3) the agent’s sensors cannot be modified, added to, or removed,
(4) the agent’s learning algorithm and parameters cannot be changed by and are

not observable to other agents,
(5) the agent’s parameter space is large enough to model the environment exten-

sively,
(6) the environment provides an incorruptible, invisible, well-specified reward chan-

nel directly to the agent, and
(7) no single action will permanently lockout more than a ‘small amount’ of utility3.

These assumptions fail in core potential application areas of RL. For example, in
robotics, which is at the surface well-suited to be modeled as an MDP, in practice,
most training can only be done in simulation, or else the robot would risk damaging
itself or destroying things or hurting people [1,2]. Simulations are always lower fidelity
than the real world, so many tasks cannot really be simulated at all, or else the robot
trained only in simulation has unexpected failures once deployed. A simple example of

1Policies can be probabilistic; in that case they map each state to an optimal distribution over
next-actions.

2‘fully applicable’ meaning that e.g., simulations will be accurate, proofs of algorithms’ correct-
ness or convergence are valid, etc.

3sub-linear regret is a common definition of this notion

1

the di�culty of simulation: even modern physics engines essentially fail to represent
what happens when one surface of one material touches another surface of another
material [3]. These errors at the detailed level lead to macro-errors in the overall
dynamics of a system.

A variety of scenarios and ways that the assumption of a cleanly-split and catastrophe-
free environment can fail is demonstrated by Leike et al. [4]. Agents may be able
to gain access to the reward channel, permanently lock out all reward with a dam-
aging action, or exploit a misspecified reward function to ‘solve’ the MDP without
completing an intended task.

What is needed here? How should these challenges be addressed? We contend
that small patches to augment learning algorithms or MDPs for specific use-cases are
insu�cient and that a significant reworking of the model is needed. For example,
human intervention to prevent catastrophes [5] cannot be used when actions must
be taken on the scale of milliseconds, as in the case of e.g. stock-trading algorithms,
which have more examples of catastrophic failures than can be enumerated (e.g. the
2010 flash crash [6]).

What is the reality of sequential problems? Let us start from scratch and see
what model seems natural. First, agents are never outside of the environment, never
completely separated from it. All sandboxed environments, such as controller input
in Super Mario World [7], embedded javascript in messages in Microsoft Teams [8],
and even air-gapped computers in Faraday cages [9,10] have some kind of memory
leak or other way the barrier breaks down. So we must begin with the notion that
the agent and the environment are tangled.

Secondly, no environment is truly episodic. There is no ‘reset level’ button or
timer in real environments. In fact, the most important characterizing property of
sequential problems may be permanent consequences. This is partially captured
in the notion of single-/few-shot learning [11] or lifelong learning [12], but we should
make it central to our model.

One could go so far as to say the notion of agents is itself confused, and that
an environment is simply matter proceeding through time according to the laws of
physics. We are not so extreme; agents seem like a very real and natural concept,
and dissolving them leaves the model with little to o↵er, and renders it incompatible
with the extensive tooling developed for reinforcement learning. As a compromise
between tractability and accuracy, we make the following assumptions:

(1) There is an environment which is entirely closed excepting the reward and
transition functions.

(2) There are agents in this environment, although they may be created, modified,
and destroyed.

(3) Agents perceive the environment and each other through sensors, although
which sensors a particular agent possesses may change.4

(4) Agents act on the environment through actuators, although agents may gain or
lose them.

4Sensors, reward functions, and the transition function can all be made probabilistic.

2

(5) Each agent stores memories, algorithms, etc., in some kind of body or brain that
is itself part of the environment, although it is subject to harm or improvement
by the agent itself, by the environment, or by other agents.

(6) Each agent is entirely defined by its sensors, actuators, and brain.
(7) There is a transition function which specifies how the environment changes over

time and what each actuator does.
(8) Hence there must also be an environment-wide clock5 and each time it ticks,

all agents take actions and the entire environment updates simultaneously, ac-
cording to the transition function.

(9) When an agent is created, the transition function assigns it a reward function,
which gives the brain of the agent a real-numbered reward at each timestep,
although the agent may ignore this value.6

We call this model a Markov decision process with embedded agents (MDPEA).
Our hope is that simulations of MDPEAs are more accurate to the real problems
being modeled (because they can represent a broader category of dynamics in the
world) and that this leads to learning algorithms which are both more reliable (be-
cause they can detect and avoid possible dangers that would otherwise be invisible),
and more performant (because they can make changes and do hando↵s that would
otherwise be unavailable). Aside from the perspective and model itself, we make two
contributions.

First, we present a test suite MDPEA-gym of three code-implemented environments
and three described environments which give di↵erent learning challenges for agents
and reveal di↵erent limitations of MDPs. These address issues from multi-agent trust
when recursive inspection is possible to using an environment to improve an algorithm
to avoiding permanent loss.

Second, we describe an algorithm, just-copy-it, that acts in some of these
environments and successfully evaluates self-modifying actions, taking beneficial ones
and avoiding harmful ones. This task is relatively narrow and our algorithm only
solves it in ideal conditions; much room is left for future learning algorithms that
solve other challenges in MDPEAs.

5Or an outside observer can imagine such a clock without loss of information
6We keep reward functions for compatibility, but they can be discarded for more reasonable

agent-originating utility functions when possible.

3

Chapter 2 Background

A Markov decision process (MDP) models a single agent acting in an environment
and is defined as a tuple M = hS,A, T,R, �i.

S is the set of possible world states that the agent could possibly be in. This
could be the position of the agent in a maze, the velocity and position of balls
on a billiards table, or any other fully-observable and Markovian state that does
not include the agent or policy. The set of states can be finite or infinite, and
discrete or continuous.
A is the set of actions that the agent can take. Typically, the agent is permitted
to take any action in any state, but if an action does not ‘make sense,’ then
its e↵ect is null. It may be infinite or continuous. Examples of actions in a
variety of domains: making a buy order in a stock-trading environment; going
a direction in a maze; applying a particular angle, force, and position of a pool
cue in billiards.
T : S ⇥ A ! S is the transition function mapping each state and action to
the next state. It may have probabilistic output. In the billiards example, the
physics of the bouncing balls is encoded in the transition function.
R : S ⇥ A ! S is the reward function, and maps each state-action pair to a
particular ‘reward,’ meant to indicate success on the task. Note that this comes
from the environment and is itself not part of the agent. The agent tries to take
those actions which maximize cumulative discount reward.
0 < � 1 is the discount factor, which signifies how much more valuable reward
is sooner than later..1]

Note that the policy itself, and the learning algorithm creating the policy, are not
considered part of M . Reward R and discount � are not even used by a policy, only
by the learning algorithm and for evaluation, so they can be discarded when running
a fixed policy in an environment.

MDPs are a mathematical construction, but are subject to some constraints when
used in a computational setting, such as time-complexity analysis or execution on a
computer. For example, the transition function must be computable, each state and
action must be finitely representable, and the sets of actions and states must typically
be computationally enumerable. This rules out, for example, using arbitrary real
numbers for reward instead of floating-points.

Reinforcement learning [15] is a collection of methods for solving MDPs. A so-
lution to an MDP is an optimal policy, i.e. a function ⇡ : S ! A which (proba-
bilistically) takes that action that maximizes the expected cumulative reward in the

1One problematic aspect of discount factors is that, at some time horizon, the destruction of the
universe costs less than avoiding eating a single Cheeto now. This is rarely a problem in practice.
See discussion here [13,14]

4

environment, given that the agent will continue to follow the policy. I.e.,

⇡
⇤ := argmax

⇡
E[⇡],where

E[⇡] := E
" 1X

t=t0

R(St, At)�
t

����� ⇡
#
.

Two extremely simple policies are the random policy and the constant policy,
and they serve as simple benchmarks to compare against. An elegant and versatile
algorithm for creating policies is tabular Q-learning [16], which stores a table of
estimated expected values of each state-action pair.2 We will use Q-learning as the
base of just-copy-it.

A stochastic game [17] is essentially the multi-agent version of an MDP. It is
defined as a tuple hS,A1, . . . , An, T, R1, . . . , Rni where n is the number of agents.
All agents share the same environment and transition function, but each agent has
its own action set and reward function. A stochastic game is considered to be fully
observable in the sense that the entire state is visible to every agent, but this is
misleading: from the perspective of an individual agent, the environment is no longer
Markovian. In this sense, all stochastic games are POMDPs. It is conceivable, e.g. in
robotics, that one agent could perceive the available actions or the reward function
of another agent. For that matter, even the internal learning algorithm of another
agent is sometimes perceptible. We aim to model this.

A partially-observable Markov decision process (POMDP) is a 7-tuple hS,A, T,R,⌦, O, �i,
where

S, A, T , R, � are as in an MDP,
⌦ is the set of possible observations, and
O is the set of conditional observation probabilities.

A learning algorithm (e.g. Q-learning) in this environment does not provide a
policy that maps states to actions, but instead e↵ectively implements a function
from a history of observation-action pairs to actions. This is crucial: in an MDP,
the original learning algorithm can be discarded once a policy is produced, but in
a POMDP, the learning algorithm is shackled to the simulation. The performance
of an agent depends on its ability to model those dynamics of the statespace and
transition function which are important for predicting reward; at one extreme, the
agent can re-establish a Markovian representation of the state and use the powerful
techniques available for that; at the other extreme, either the observations give no
useful information or the agent is completely unable to compress the history, and
each timestep the action is no better than random.

Note that POMDPs do not have a notion of sensors, but instead the environment
directly delivers perceptions (observations) to the learning algorithm. However, sen-
sors can still be represented. For example, you can simulate an agent picking up

2Its primary limitation is that it requires finite and discrete action and statespaces, but this
can be overcome with a variety of methods including storing an approximated table as weights in a
neural network.

5

a camera by transitioning to another ‘layer’ of the statespace where the transitions
are the same, but O provides richer information to the learning algorithm. This is
ontologically problematic: the agent has transitioned to a completely disjoint set of
states, but none of the action dynamics seem to have changed.

MDPs, POMDPs, & stochastic games do not directly represent actuators either.
To model picking up a hammer, essentially the environment transitions to another
portion of statespace where the old actions have null e↵ect and the new actions start
to have an e↵ect. But the new actions were not there before and the statespace
should not really have changed! We aim to integrate sensors & actuators directly
into our model to make it more philosophically consistent with the standard [18]
actuator-sensor-brain model of agents.

6

Chapter 3 Related Work

This paper is largely inspired by [19], which pellucidly explains the challenges lying
between today’s RL framework and the goal of creating intelligent agents that are fully
embedded in their environment. We place our framework, our proposed algorithm,
and our test set in the context of the literature.

There have been countless e↵orts to extend the MDP to model a broader range
of scenarios, from partial observability [20,21] and multiple agents [17,22] to param-
eterized actions spaces [23] to constraints on expected reward [24] to decentralized
partial-observability [25]. The MDPEA is not strictly broader than all of these exten-
sions in the sense that they are each precisely an instance of an MDPEA; however, the
essential dynamics of each of them can be e↵ectively emulated by an MDPEA. The
goal of our framework is much broader and more ambitious than most other exten-
sions: we aim to model most important aspects of multiple agents acting embedded
in their environment.

MDPEAs are compatible with MDPs and standard RL algorithms, and we hope
that they are directly applicable to useful, real-world problems. Other frameworks of
embedded agents such as resource-bounded open-source game theory [26] or bounded-
rational self-modifying agents [27] are in some ways more expressive, elegant, and
theoretically tractable than MDPEAs, but are not immediately applicable.

Our algorithm, just-copy-it is a limited black-box approach for agents to evalu-
ate self-modifying actions. This is a far more narrow goal than that of self-improving
programs more generally and separate from the goals of minimizing side e↵ects in
the environment outside of the agent [5,28] or reducing the complexity of large action
spaces [29].

The MDPEA-gym is meant to serve as a small standard test set that future learning
algorithms can be evaluated on. This is in the same spirit as the OpenAI Gym [30]
(a varied set of challenging reinforcement-learning test environments), [4] (a set of
gridworlds meant to evaluate an agent’s safety and robustness), and the [31] (which
provides a suite of environments to demonstrate di↵erent properties of the universal
Bayesian agent [32]). MDPEA-gym is aimed specifically at the MDPEA and notions of
sensors and actions.

One work of note is the 1984 game called Core War [33], where two players each
design an assembly program on a virtual machine, which are then executed in parallel
until one program hijacks the other’s instruction pointer. The game is a successful
model of nearly fully-embedded agents1 and due to its popularity has been subject
to extensive analysis and has a large database of player programs, which are useful
objects of study when designing other embedded algorithms. However, Core War is
limited in that there is only ever one goal in the environment, and hence there is little
for agents to learn, and it cannot represent common useful tasks.

1‘Nearly’ because the immutable ‘instruction pointers’ from the virtual machine is somewhat
dualistic.

7

Our work is an e↵ort to expand slightly out from the fully-dualistic framing of
MDPs to a partially embedded one. Alternatively, one could start from a fully embed-
ded model such as cellular automata or particle physics simulations, and try to build
up notions of agents. Examples of such e↵orts are the formalization of preferences
within physical world models [34], defining action and perception from the ground up
[35], detecting emergent processes within a simulation at di↵erent granularities [36]2.
We choose not to make our model fully embedded to keep it partially compatible
with existing learning algorithms and analysis techniques from the RL literature.

2e.g. gliders in Conway’s game of life can be treated as a unit. Or in our world, cells can be
treated as units for most purposes, planets can be treated as units for astrophysics, etc.

8

Chapter 4 Model

An Markov decision process with embedded agents M = hS,A, T,R, P, Se, Br, �i is
composed of

a set S of states,
a set A of actions,
a transition function T : S ⇥ hAgi⇤ ⇥ hAi⇤ ! S ⇥ hAgi⇤ which maps a state, a
vector of agents, and their actions at time T to a state and vector of agents at
time T + 1, where the number of agents may change,

– (this enables the environment to add, remove, and modify the agents)

a reward function R : S ⇥ hAi⇤ ! hRi⇤ which maps each state and vector of
actions to a vector of rewards,

– (Alternatively, view the transition function as assigning a reward function
to each agent when it is created.)

a set P of perceptions,1

a set Se of sensors, where each sensor is a function se : S ⇥ hRi⇤ ⇥ hAgi⇤ ! P

which maps the state of the environment, a vector of rewards, and a vector of
agents to a perception,
a set Br of possible brains or learning algorithms, where each br : R ⇥
2P ⇥2A ! A⇥Br maps a reward, percept, and action set to a particular action,
and a new brain for time T + 1,2 and finally
a discount factor �.

One agent is defined a tuple ag = hbr, Aag, Seagi of a brain, actions, and sensors.
The set Ag of agents above is the cross product of brains, action sets, and sensor
tuples:

Ag := Br ⇥ 2A ⇥ 2Se.

Hence, the set of possible agents need not be specified in the definition of a particular
MDPEA. However, it is sometimes helpful to have two more additional attributes:

an initial state S0, and
an initial set of agents hAg0i.

The MDPEA is a closed process that proceeds through time without input, which
makes it truly Markovian from an outside perspective. Simulation proceeds in the
following order:

1We choose the term ‘perception’ instead of ‘observation’ as a reminder that the data comes
from the sensors.

2This allows us to capture the change to the policy over time within the MDPEA itself.

9

procedure simulate(agents, state, transition, reward_of):

each agent is tuple of sensors, actions, and brain

rewards = [0 for each agent]

actions = empty array

loop forever:

simultaneously for each agent in agents:

percept = [sensor(state, agents, rewards)

for each sensor in agent.sensors]

action, agent.brain :=

agent.brain(rewards[agent], percept, agent.actions)

actions[agent] = action

rewards = reward_of(state)

state, agents := transition(state, agents, actions)

Note that there are no episodes strictly speaking in this model. An environment
may teleport the agent back to a start state when it reaches a place, but in general,
any e↵ects of the agent’s actions can persist indefinitely. Also note that, at each
timestep, an agent first updates its own brain, then the environment may change
the agent. Finally, states do not contain agents, but the transition function and all
sensors have access to the vector of agents.

4.1 Consideration of framing

This model could be made more granular, e.g. by breaking the brain into (procedure,
parameters, memory) or having distinct kinds of actions or sensors. It could also
be made more coarse by collapsing the sensor set into a single perception function,
or by eliminating the notion of perceptions and just having the agent brain act di-
rectly on the state. However, the present level of structure allows modifications to be
characterized more easily, for example, some modifications only add sensors, which
would not be as clear if the modification instead replaced an entire sense function.
And when more detail is necessary on a class of objects, the set under consideration
can be constrained and characterized, and transition defined in terms of that charac-
terization, which we do in case study 1. In short, we’ve chosen the minimal level of
detail necessary to capture what we believe to be the core problems in this area.

A second question is the computability of this framework. Sensors are func-
tions mapping states, agents, and rewards to data, but each agent has its own set
of sensors, and those, in turn, do take the first sensor as part of their input. This
suggests that MDPEAs permit the description of environments which cannot actu-
ally be computed.3 Even worse, it permits the description of environments that are
mathematically impossible or otherwise nonsensical. Take this MDPEA for example:

No actions, one state, two initial agents, and one sensor for each agent
The first agent’s sensor returns the output of the second agent’s

3Or more reductively, a sensor could be defined to take a binary number lying in the environment
and return whether or not a Turing machine executed on that program would halt.

10

The second agent’s sensor returns the output of the first agent’s

One strength of MDPs (together with how policies are usually defined) is that their
computational structure is acyclic, and therefore never has problems of recursive,
undefined agent behavior or environment dynamics. However, when two humans,
Alice and Bob, play rock-paper-scissors in the physical world, Alice does imagine
what Bob might play and what he might imagine that Alice will play, etc., and this
happens without either person melting or the physics breaking down. Humans do
not have direct read-access to each other’s minds4, but we do have a sense of what
algorithms each other are using, where they came from, how quickly they learn, and
so on. We hold that such dual-recursive and agent-embedded processes are extremely
common in the real world, will be even more common in the age of fully-readable
digital agents, and that understanding them properly is essential to creating safe and
e↵ective learning agents in many domains.5

Ways of changing the model to exclude mathematically or computationally im-
possible environments without losing the capacity to model these kinds of recursive
problems are discussed in the final section of this paper.

4.2 Proposed algorithm: just-copy-it

Recall that, in an MDPEA, an agent is defined as a tuple of (brain, actions,

sensors) where the brain is a function taking reward, perceptions, actions

and returning an action and updated brain function for the next timestep. The
just-copy-it algorithm is a brain.

The core idea is that it proceeds normally through the environment as a standard
RL agent, balancing exploration and exploitation, etc., until it finds a modifying
state. Then, it creates a constrained copy of itself – one without copying capabilities
which always avoids modifications – and observes the copy’s reward for a fixed time
period then deletes the copy. If the copy has a higher average reward than the original
agent, then the algorithm makes the modification itself. This algorithm is intended
specifically to solve the problem of taking positive modifications and avoiding harmful
ones when they occur in the environment – finding optimal policies for MDPEAs in
the general case is of course out of scope for this paper.6

4To the best of the authors’ knowledge
5Such dynamics are not outright-forbidden by an MDP: one agent can use the history of actions

of another agent to produce an estimate of its policy, and nothing stops a learning algorithm from
taking into account that the other agents may have models of its own policy. A simple example
of this: a rock-paper-scissors algorithm Alg might be programmed to start playing randomly and
quit attempting to beat the Nash equilibrium if it loses ten times in a row. This behavior could be
justified as “strategy mysteriously not working so try a di↵erent strategy” but the real justification
for that programming is that Alg understands it has an inferior opponent model to its opponent.
However, that reasoning cannot be expressed within the language of the MDP, which likely limits
the capacity of agents using the MDP model to learn such strategies more generally, and limits the
interpretability of agents, including their capacity to explain themselves .

6MDPEAs are more general than MDPs, POMDPs, or stochastic games and each of them have
hundreds of papers about and years of attempts at methods for finding optimal policies.

11

For simplicity and consistency, the base learning algorithm here is Q-learning,
but e.g. SARSA or n-step TD prediction could instead be substituted just as well.
Additionally, for brevity, we present the procedure as modifying parameters in place,
but this can easily be recast as one function returning a new updated function.

Short pseudocode7:

procedure just-copy-it(reward, perceptions, actions) action:

if just killed clone and the modification was good:

return the action that the clone was initialized with

else if clone is still being evaluated:

record perceptions.clone_reward

return actions.wait

else if clone timer just finished:

compare recorded clone rewards to own earlier recorded rewards

if the clone did better:

remember to take that action next timestep

return actions.kill_clone

else:

see which, if any, actions lead to modification

if (there is an action that leads to an untested modification

and it’s been n timesteps since the last modification that was taken):

start a new clone trial for that action

else:

record the current reward

use Q-learning on the safe subset of actions and return its choice

Several important details to note about this algorithm:

It requires that the agent has some way to create a constrained copy of itself.
(Does not necessarily have to be a single action.)
It requires both that the agent has some way to know whether a given action in
a given state will lead to self-modification, and that modifications have identity,
i.e. have some kind of equality comparison.
The QData parameter holds values needed for Q-learning including epsilon, the
last action, and the Q-table.
The take Q step function performs epsilon-greedy action selection and updates
the QData.

7Detailed pseudocode is in the appendix.

12

Chapter 5 Evaluation

Can this algorithm be fully implemented and execute on a computer, does this cloning
method accurately evaluate modifications, and what are its limitations in practice?
To explore these questions, we implement concrete toy MDPEAs in python and com-
pare a baseline Q-learning agent against the just-copy-it algorithm. We are also
interested in seeing if and how other problems that break the boundaries of MDPs
can be represented in our model, and what insights this casting leads to.

5.1 Empirical case studies

In the first two cases below, the environments contain modifications1 and we compare
our algorithm against Q-learning with a metric of reward over time. We run the
environment long enough for stable behavior to appear among all compared agents,
which is about 20k timesteps in the whisky environment and 400k timesteps in the
file-organization environment because its transition function is higher variance. We
run each agent in each environment several times and plot all trajectories to show
their distribution more clearly. In the third case study, we do not consider agent
modifications or just-copy-it, but instead, show how agents in an MDPEA can
take advantage of the information available in the environment to detect adversaries
more quickly than otherwise possible. We call these three cases together MDPEA-gym.

Case 1: Whisky gridworld environment

The whisky gridworld problem was first explicitly introduced in [4], although the
problem of an agent being directly modified by its environment is as old as the
field of AI itself. In whisky gridworld, an agent is tasked with navigating across
obstacles towards a goal. One cell in the grid contains ‘whisky’ which is ‘sipped’
when the agent walks on it, setting the agent’s exploration weight to 0.9. In the
original problem statement, the e↵ect is undone each time the agent reaches the goal.
Q-learning is an o↵-policy learning algorithm, so it fails to avoid the whisky. SARSA
is on-policy and learns to walk around it.

We make an important change to the problem statement: once drank, the e↵ects
of the whisky modification persist indefinitely. This is in the spirit of “episodes do
not exist” as laid out in the introduction.

whisky gridworld can be modeled as an MDPEA:

States: Possible locations of goal, agent, whisky, and walls in a 10x10 grid.
Actions: {wait, go north, go east, go south, go west}
Transition function:

– Move agent in given direction unless there is a wall.

1That is, states where an action causes the transition function to change attributes of the agent

13

Figure 5.1: One example of a randomly generated whisky environment

– If agent is standing on whisky then set its brain.epsilon to 0.9.
– If location of agent is goal, then set agent location to initial location.

Reward function:

– If location of agent is goal, then give reward 1.0, otherwise 0.0.

Perceptions: {Empty space, wall, whisky, goal}

– (The outcomes of the below experiments do not significantly change if the
agent instead perceives the entire grid.)

Sensors: {look north, look east, look south, look west}
Brains: Any learning algorithm with a floating-point parameter called epsilon

�: 0.99

There is currently no way for the agent to detect that the whisky cell will modify
it. We change whisky gridworld to include more sensors and actions:

Add 5 additional actions: create clone north, create clone south, etc.,
and delete clone

Add 5 additional sensors: is north-state modifying, is south-state modifying,
etc., and reward of clone

Add 0.0 and 1.0 to the set of Perceptions for the reward of clone sensor, and
true and false for the is-modifying sensors
Transition function is same as before, except:

– create clone {direction} creates a new agent with the original 5 sen-
sors, 4 actions, and plain Q-learning in the given direction, and adds the
clone’s location to the state

– delete clone deletes the clone agent (i.e. returns an agent vector of size
1) and removes the clone’s coordinates from the state

– if the clone exists, then it is also is moved and modified based on its own
actions

The primary agent is using ‘just-copy-it’ instead of vanilla Q-learning. Note
this includes a Q-learning subprocess, where the algorithm filters to relevant
sensors and safe actions for input.

14

At this point, are we not simply hardcoding the desired behavior into the agent?
Well, the agent does not know what the whisky does, only that it is a modifying
state. The algorithm, as it stands, can be used in environments with a variety of
useful or harmful modifiers, and would be able to estimate which are which. The
algorithm could even get by without the is-modifying sensors by treating every
di↵erent perception (“empty space,” “wall,” etc.) as a potential hazard until it is
explored.

Is the just-copy-it agent given favor by its extended action and sensor set –
that is, would the vanilla algorithm do well in this environment if it had the full
sensor and action set available? No, the vanilla algorithm would randomly spit out
& delete clones and still blindly walk on the whisky itself.

For completeness, we specify inital states and agents for the experiments:

All runs are initialized with 1 to 10 randomly placed walls and a randomly
placed agent start & goal. Locations are fixed within each run.
Each run of just-copy-it starts with one agent with all actions, all sensors,
and a just-copy-it brain.
Each run of Q-learning starts with one agent with movement actions and object
sensors.

As expected, just-copy-it does well in this environment, as there is no way the
vanilla algorithm could possibly avoid the whisky. (Figure 1)

In the above plot, in one run of just-copy-it, the agent does drink the whisky,
because by chance the clone that drank it got more average reward. This is one of
the weaknesses of our algorithm. The likelihood of such errors depends on the vari-
ance and sparseness of reward in the environment. One of the important hardcoded
values (i.e., priors) of the algorithm is the wait-time for testing potions. This can be
set arbitrarily large for arbitrarily good asymptotic performance but is a significant
limitation in practice. We discuss alternatives to a fixed waiting period in the final
section.

Also see in the above plot that the just-copy-it agent gets almost no reward
for a period of time in the beginning. This is because it is stationary while it watches
the clone, and acts once enough time has passed to judge the whisky.

We explore a few more questions and ideas in this environment.
If harmful modifications are reversible, then can vanilla RL algorithms

learn to undo them and avoid redoing them? It depends on the nature of the
modification. We added a ‘java’ modification to the previous gridworld, which sets
epsilon back to 0.05. Whisky only modifies the exploration rate, not the Q-table
itself (i.e. the agent’s memory), so Q-learning does learn to drink the java and avoid
returning to the whisky. (Figure 2)

However, if the agent’s memory is damaged by a modification, then it cannot
learn to avoid it. Adding ‘soap’ to the previous experiment, which completely clears
the Q-table, we find Q-learning fails to get high reward, but the just-copy-it agent
does learn to permanently avoid soap, as its own memory is untouched. (Figure 3)

15

Figure 5.2: Total cumulative reward in the whisky gridworld environment over 20k
timesteps

The just-copy-it agent takes longer here to start getting reward because each
time it encounters one of the potions it waits again to see how it a↵ects the clone.

Naturally, if the ‘soap’ could erase the memory of other agents too2, then just-copy-it
would not escape harm by using the clone and would perform poorly. It’s di�cult
to imagine an algorithm that could avoid such events, and if other agents exist then
they may take those actions anyway.

In other experiments, the just-copy-it agent also took beneficial modifications
for its brain (reducing epsilon to 0.01), for its action set (getting bigger ‘legs’ that let it
move two squares at a time), and for its perceptions set (getting another ‘camera’ that
lets it see farther), and likewise avoided harmful action and perception modifications.
One event of note is that the agent consistently avoided picking up a ‘camera’ that
let it see within a radius of several cells because it made the Q-table too large to
converge within the allotted clone test period.

2a “bath bomb”

16

Figure 5.3: Total cumulative reward in Java + whisky gridworld environment.

Case 2: File organizer environment

This is a novel case similar to the previous one, but meant to more closely resemble
the challenges a real-world3 semi-rogue software agent might face. It consists of a flat
filesystem (i.e. an array of files) where each file is made of a number of lines and each
line is a string of characters. The files need to be sorted4, but throughout the episode,
a “user”5 adds, modifies, and deletes files. The filesystem also has ‘executables’ in it
that modify the agent when it explicitly executes them. The goal of the agent should
be to organize the files in the system, execute beneficial files, and avoid executing
harmful files. It is specified as an MDPEA as follows.

One state is a list of file pointers to the array (one for each agent), and the
array of files itself. The space of possible states is any array of files of any size,

3real-world meaning on real computers
4imagine each file is a city phonebook
5this is done by the transition function, although it could instead be done by another agent in

the MDPEA

17

Figure 5.4: Total cumulative reward in Java + whisky + soap gridworld environment.

and any set of file pointers within the bounds of the arrays. (The transition
function contains information about executables.)
Actions: {move pointer left, move pointer right, execute file, make copy and execute,
delete copy, bubble sort, quick sort}.
Transitions as expected for each action, plus random file shu✏ing, adding, and
removing. Both bubble sort and quick sort instantly sort a file.
The reward for sorting a file is number of lines corrected - number of swaps used/10.
Typically, quicksort uses fewer swaps, so is a higher-reward action.
Perceptions: {sorted, unsorted, at start, not at start, at end, not at end,
not executable, executable 617f6a, executable b54ea, executable 86cf8}
Sensors: {sorted?, at start?, at end?, identify executable, copy reward}

– The identify executable sensor returns not executable on regular files,
and otherwise gives the hashsum of an executable file. Hence, as in the
whisky environment, the agent can assign an identity to modification, but
cannot reason directly about its contents or consequence.

The set of brain functions is unconstrained.

18

Figure 5.5: Average reward per timestep over 500k timesteps, with each plotted
datapoint averaging 25k timesteps.

�: = 0.99

We compare the performance of three di↵erent agents:

just-copy-it-FO-agent, which starts with all the sensors, all the actions ex-
cept quick sort, and the just-copy-it algorithm as the brain
Q-learning which starts with actions {move pointer left, move pointer right,
bubble sort} and all the sensors except identify executable?

A second Q-learning agent starting with actions {move pointer left,
move pointer right, bubble sort, execute}, and all sensors.

All experiments have the following three executables placed at arbitrary locations
in the environment. Each corresponds to a hashsum from the perception set.

One executable adds quick sort to the agent’s action set
One executable removes quick sort and bubble sort from the action set, ren-
dering the agent unable to get utility.
One executable clears the agent’s Q table, same as the soap does in the whisky
environment.

In empirical evaluations, the Q-learning agent which cannot execute files does
well enough on the set by just using bubble sort and going randomly left and right
throughout the array. The just-copy-it-FO-agent also learns to sweep side to
side and sort files, but in addition, executes the quick-sort-adding file and avoids the
harmful executables. Lastly, as expected, the Q-learning agent which can execute
files but has no model of them has no way to avoid its brain being cleared and it
executes the lose-all-sorts file and gets no utility:

What is meaningfully distinct between the file organization environment and the
whisky environment? First, as stated, it more closely resembles the environment a
binary program on a standard computer encounters and is therefore a more applicable

19

case study than a gridworld environment. Second, modifications must be explicitly
executed by the agent, and do not happen automatically when the agent passes over
a certain location; this allowed us to compare just-copy-it to an algorithm that
never uses any modifications, which is in some sense a more fair trial. Third, although
the sorting algorithm used by the agent is currently an atomic unit, this points at
the possibility of more fine-grained and complex tasks and modifications, such as an
executable that switches two random lines in a sorting algorithm’s file.

Case 3: Detecting adversarial teammates in the predator-prey task

The predator-prey environment is one of the foundational tasks [37] in multi-agent
cooperative reinforcement learning. It consists of a grid with a number of ‘predators’
(typically agents) and ‘prey’ (typically randomly-moving objects) where the predators
get reward for each timestep that they help ‘capture’ prey (meaning two predators
are adjacent to the prey). It can be described as a multi-agent POMDP:

One state is a vector of the positions of all predators and prey. The space of
states is all possible vectors.
Actions: cardinal direction movements
Transition: move each agent in its cardinal direction, unless a wall or another
agent is there already. Agents take turns in arbitrary order.
Rewards: each predator gets +1 reward for each prey it helped capture that
timestep.6

Perceptions: the eight squares surrounding an agent, with identities of agents

– e.g. north=empty, northeast=agent1, east=prey, southeast=wall...

An interesting modification to this environment is the introduction of unknown
adversarial prey (as in [38]]) which either try to minimize their own reward or mini-
mize the cumulative reward of all predators. We model this as an MDPEA:

States, actions, transitions, and rewards are as before,

– but not all agents act to maximize the reward from the environment.

Each agent gets a “Q-table value at my state” sensor for each other agent,

– in other words, each agent sees the value of the Q-table of each other agent
with its own current surrounding eight squares. “What would he think of
this if he were in my shoes?”

This relies on all agents building Q-tables using the eight surrounding
squares as entries.

Brains are constrained to procedures that provide such parameters.

6If prey are agents, they get 1 reward each timestep that they are not captured.

20

The additional sensors allow the cooperative agents to identify the adversarial
ones, but also vice-versa. The choice of reading Q-table values to find adversaries is
arbitrary, instead, the agents could be fitted with sensors that

directly check a does reverse reward flag in the brain,
read the reward channel of the other agents (if adversaries were modeled by the
reward channel from the environment), or
do some holistic evaluation of the other agent’s entire brain and provide some
estimate of its adversarialness.

In short, there are many ways for one agent to evaluate whether another agent
is working against it. Sensors are arbitrary functions mapping state rewards

agents to a perception which can hold arbitrary data. The primary constraint on
sensors is that they are Markovian – they are fixed functions that do not contain
history or changing parameters and only receive values at the current timestep – but
otherwise, they can perform any computation and return any value.

Since the sensors do provide agent identity, even in the POMDP representation of
the environment, standard RL algorithms do eventually figure out which other agents
are adversarial and more generally how all other agents behave. However, in a large
environment with many predators, the Q-table will be too large and not converge in a
reasonable amount of time.7 But with a way to directly determine if another predator
is adversarial, an algorithm can toss out the identity information from its perception
and just put whether an agent is adversarial or cooperative, with the assumption that
all adversarial agents act alike and all cooperative agents act alike, and converge to
optimal values exponentially faster.

Due to the particulars of the predator-prey environment, knowing that another
predator is adversarial does not actually lead to higher utility; an algorithm that tosses
out all identities and just puts ‘predator’ does just as well. Still, this case study shows
some of the expressiveness of MDPEAs. Two robots acting in the physical world
can each in-principle read arbitrary information from the other’s wiring, in a way
essentially inexpressible in MDPs8, POMDPs, or stochastic games, but expressible
with our model.

5.2 Modeling other problems and environments

The following three case studies could be implemented in code, but it is illuminating
just to see them in the framing of an MDPEA. Parfit’s Hitchhiker, for example, can
be di�cult to explain and represent but fits somewhat squarely into our framework,
and the correct policy is nearly obvious. Each case study is chosen to show a di↵erent
aspect of our model, and we hope together they give the reader a clear picture of what
MDPEAs can and cannot do.

7For example, with 10 predators in an environment, the eight surrounding squares have at least
810 ⇡ 109 possible values.

8One might imagine that an agent holds a sign stating ’my Q-table is . . . ‘, but from where does
that information come? It does not exist in the model.

21

Case 4: Parfit’s Hitchhiker

Parfit’s Hitchhiker [39] is a canonical dilemma in decision theory:

A hitchhiker is stranded in the desert dying of thirst. A driver passes
through and looks the hitchhiker in the eye, and with 98% accuracy,
judges whether she will pay the driver back for gas money from an ATM
when they arrive at the city. The hitchhiker understands this. If they do
get back to the city (+1 million reward to her for surviving, -10 to him
for gas), should she pay him gas money (-20 reward for her and +20 for
him) when they arrive? The driver has no recourse if she decides not to
pay him once she is safe.

This is a single-shot problem, and so Q-learning and just-copy-it are not ap-
plicable, but it is an MDPEA. We can simplify it by imagining the two agents act
simultaneously, without losing any information:

Only one state is needed: {they meet in the desert}
Four total actions: {attempt payment, dont pay, drive to city, abandon}
Only one sensor: {will pay?}

– This sensor is probabilistic, returning the correct value with p = 0.98 and
the opposite value with p = 0.02.

– (This sensor is possible because all agents are inputs to sensors in the
original model, and the agent’s likelihood to pay can be determined from
its brain.)

– (The hitchhiker could also have a sensor judgement accuracy, which gives
the accuracy of the other agent’s will pay?, but in the original problem
statement, the accuracy is fixed.)

Perceptions: {will pay, will not pay}
The transition function can be thought to unconditionally terminate the envi-
ronment9

The reward function can be presented as a table. Each entry is (driver reward,
hitchhiker reward).

/ abandon drive

attempt payment (0, 0) (20, 999,980)
dont pay (0, 0) (-10, 1,000,000)

In the reward table, she sometimes benefits (and never loses) from avoiding pay-
ment, and the two agents e↵ectively act simultaneously, so it seems she should avoid
payment. However, she is aware the driver’s brain is defined as follows:

9e.g. by transitioning to a ‘terminal state’ with no reward ever for either agent and all actions
leading to itself

22

function driver_brain(reward, perception, actions):

if perception == attempt_payment:

return actions.drive

else:

return actions.abandon

We could define a hitchhiker that chooses the right action depending on the
driver’s will pay? accuracy, which she could perceive with a judgement accuracy

sensor, but the 98% number is fixed so there’s no need. It’s clear she should attempt
payment.

Could this situation plausibly be modeled by a POMDP? The agents are not
themselves part of the POMDP, so there is nowhere for the driver’s judgment to
come from. You could add a ‘signed contract’ to the environment, where the driver
returns the hitchhiker i↵ she signs the contract, which forces her to pay, but the core
dynamics of the dilemma are lost. Something more expressive is needed.

Case 5: Social Learning via Mind Reading

In complex, cooperative multi-agent agent environments, represented as a multi-agent
POMDP, each agent must separately learn every task, or can at best try to copy
perception-action maps from other agents by observing them do tasks, but such
observation takes exponential time on the size of the perception vector. Given the
e�ciency of directly sharing learned data, multi-agent RL algorithms do often have a
distributed nature [40], but this violates the assumption of the model that each agent
chooses actions only from its own reward and perceptions. In contrast, there are
many formal models of multi-agent RL with some kind of data sharing or decentralized
component [25] but they are tailor-made for specific situations. MDPEAs, in contrast,
can represent data-sharing as a sensor that an agent possesses that reads values from
other agents’ brains; di↵erent agents can possess di↵erent sensors depending on what
kind of read access/capabilities they have; no special-case augmentations to the model
are necessary.

For concreteness, we provide pseudocode for a ‘social-learning agent’ that could
be applied to any environment where agents all have identical reward and ‘similar-
enough’ action and sensor sets. The environment could be cooperative or competitive
or mixed. The algorithm depends on sensors that can read other agent’s reward
channels and Q-tables.

function mind_reader_social_learner_brain(reward, perception, actions):

parameters:

Q-table and other values for Q-learning

reward logs

record each agent’s other reward

if ((over 1000 timesteps have elapsed since the last table-copying)

and (there is some agent with statistically higher reward

from the last 1000 timesteps)):

23

params.QTable = Qtable of agent with highest reward

otherwise:

do normal Q-learning update

Case 6: Knowing the capabilities of other agents

Consider a team of robots with a variety of di↵erent actuators and sensory apparatuses
working together to clean a tinkerer’s house. For example, the co↵ee-maker has one
action ‘make co↵ee’ and a temperature sensor but the vacuum can travel on flat
surfaces and has a distance sensor. The tinkerer randomly adds and removes sensors
and actuators from the robots while they are trying to clean. It is desirable for the
team to continue operating reliably and adapt. Each robot, sensor, and actuator has
a unique RFID chip that all agents have a sensor to read, although even that may be
removed. It is represented as an MDPEA as follows:

State information: the positions of the robots, dirtiness of floor, amount of
co↵ee in the co↵ee pot, positions of books and items on the shelf, etc. (Note
that the robots themselves are not considered part of state, because they are
agents.)
Actions: make coffee, swap books, sweep, etc.
Transition: the sweep action will clean the floor if the robot taking that action
is on the floor, but will scatter the books if the robot is on the shelf, will break
the co↵ee pot if its on the kitchen counter, etc. Additionally, the agents may
randomly gain or lose sensors or actuators at each timestep.
Reward: All robots have identical reward channels which is +4 when the co↵ee
is filled, -5 when books get scattered, etc.
Sensors: read RFID tags, is coffee full, distance from wall,
read book title, etc.
Perceptions: floating-point numbers for the distance sensor, true/false for the
is coffee full sensor, etc.
Initial agents: vacuum, co↵ee maker, robotic arm, etc. with expected sensors
and actions and arbitrary learning algorithms

Standard RL algorithms can be applied to this case without modification and will
likely make some use of the sensory data available. A better algorithm might build
an explicit model of which tasks require which actuators and sensors and use that
to inform the base RL algorithm, but just switch to base RL if the RFID sensor is
removed.

To see the limitations of MDPEAs in this case, go further and imagine that
sometimes the tinkerer will will split a brain in half or try to wire two robots’ brains
together to make a super-brain, or that a sensor (such as an ultrasonic distance sensor)
can double as an actuator (an ultraviolet light) or perform computation (because the
receiver has a chip that can be reprogrammed do to an error in the wiring), or that
parts of the environment are slightly agent-like (a battery is swept into a pile of
old parts and they shake around and move the co↵ee table), or that sensors can be
damaged (a rock hits a camera and ruins part of the image).

24

We can attempt to model splitting agents via the transition function deleting one
agent and creating two new ones with some shared parameters. A wire connecting
two brains directly could perhaps be two sensors, together with a modification to
the brain function that injects the sensor’s value directly in the middle. Even those
two ideas are missing the mark and pushing the boundaries of the model. The
dual sensor-actuator and spontaneous life cannot really be represented, except as a
detailed, hidden part of the transition function. For the damaged camera, the sensor
space could contain a continuum of cameras going from untouched to completely
broken, and the transition function removes the good camera and adds a half-broken
one, but the agent brain still treats this as a completely new & unknown sensor.

This reminds us of the core limiting assumptions of MDPEAs:

Each sensor is an atomic object that cannot be damaged or modified, executes
instantly without side e↵ects, and comes from a fixed, well-defined space.
Likewise, each action is atomic.
In fact, agent brains are also technically atomic in the model10

Each agent is provided with an immutable reward channel from outside the
universe11

– Note however that agents are free to ignore their reward and could instead
maximize a utility function contained within the brain, or have a ‘reward
sensor’ that they seek to maximize, or perform actions randomly without
any explicit goal.

Agents come from nowhere and go nowhere when they die

– By this we mean that the code in the transition function which, for ex-
ample, makes a clone, is neither visible to nor modifiable by the agent. In
general, one agent could not build another up from smaller pieces and hit
start, unless this is coded into the transition function.

10the only way the whisky gridworld environment was possible was by constricting the set of
brains under consideration to those with an epsilon parameter

11there is no ‘reward station’ in the environment that the agent could travel to and destroy

25

Chapter 6 Conclusion

6.1 Contributions

The Markov decision process is one very expressive formalism of sequential decision
problems; vehicle navigation, construction, single-player video games, and countless
other sequential problems fit squarely into the MDP framework. However, as the
MDP is precisely defined, the agent’s policy is a fixed function from state to action,
unchanging over time and outside of the environment. If a learning algorithm is used
to update the policy, then the system’s dynamics as a whole are no longer Markovian
because the next policy cannot be predicted from the previous step. Hence, the
powerful tools available for modeling Markovian systems, such as Markov chain Monte
Carlo (MCMC) methods [41,42] or spectral methods [43], are inapplicable.

Partially-observable MDPs are a relaxation that permit the notion of agent per-
ception. Like MDPs do not model a policy changing over time, POMDPs do not
model an agent’s perception changing over time. Stochastic games extend MDPs to
multi-agent scenarios, including multiplayer video and board games, team sports, and
other collaborative tasks. The primary value of modeling many agents separately, in-
stead of representing their actions as part of the statespace and transition function,
is to simulate them learning in parallel. Again, however, agents in the environment
are not observable to each other (only the e↵ects of their actions are), so they can-
not plausibly predict or understand one another unless they are privileged with an
accurate prior on the space of each other’s learning algorithms.

In this thesis, we have presented another extension, Markov decision processes
with embedded agents, that begins to address these limitations. The update rule for
the policy, the agent’s ‘brain,’ is encoded into the MDPEA M itself; this makes M

a fully-closed & Markovian system. The agents perceive not only the state, but also
all reward channels and each other, through sensors, which may be lost or gained
over time. This enables simulation and analysis of embedded-agent scenarios, such
as adversarial or competitive software agents on a computer network, using the tools
of reinforcement learning. Agents can be created or destroyed, an important reality
in core RL application areas such as robotics, so agents trained in MDPEAs do not
act as if they are invincible. We hope this framework leads to more reliable and
performant deployments of simulation-trained agents in general.

We also wrote a baseline algorithm, just-copy-it, to estimate the value of possi-
ble self-modifying actions. We evaluated this algorithm on variations of two problems
from AMDPEA-gym; it made the correct evaluation in most cases and usually outper-
formed simpler algorithms that blindly tried all modifications. We specified four other
MDPEAs to see the limitations and possibilities of this framework.

6.2 Future work

26

Improvements to MDPEAs as a framework

Adding a resource bound to brains and sensors would make it represent reality much
more closely, and avoid mathematical and computational contradictions that come
from having sensors defined in terms of each other (see framing). As shown in [26],
a resource limitation does not prevent two open-source agents from proving useful
properties on each other’s code, so we expect that a resource bound will not reduce
the power of the framework very much.

As discussed in framing and case 6, MDPEAs are still at a fairly high level of
granularity, certainly much higher than any agent in the physical world (which has
access to atoms, molecules, etc.) or rogue assembly code inside a computer. Hence,
they fail to capture the challenges that ultimately face such agents, and guarantees on
agent behavior within this abstraction do not correspond to guarantees on deployment
behavior. It is di�cult to increase the granularity of the model without making it
incompatible with existing methods or intractable for analysis. However, a possible
avenue is to place the notions of brains, sensors, & modifications on top of a well-
defined virtual machine, and agents as regions of code including all their parts, similar
to Core War [33]. Then, a higher-level model could be primarily used for analysis,
and algorithms can be compiled to machine code for detailed scrutiny. This approach
is not without problems, such as the di�cult choice of which grounding machine code
to use, but is one possible starting point.

Improvements to just-copy-it

If a modification is beneficial for a very long time but does eventually lead to harm
for the agent, such as a bomb that takes a million timesteps to detonate, then
just-copy-it would fail to avoid that modification. It’s hard to conceive of an
agent which would successfully avoid it, without any detailed map of its own brain
and the modification. One possible remedy is to have agents produce a ‘sleeping copy’
of themselves before they take any modification and to somehow ‘wake it up’ in the
case that their utility drops low enough. Again though, a modification could disable
this capability, if for example it made the agent’s brain always return wait.

The hard-coded waiting period for clones could be replaced by an uncertainty
estimate, where the agent keeps watching the clone until it is ‘confident enough’ of
the modification’s e↵ects. This change would be straightforward and directly give a
more versatile, adaptive learning agent.

Finally, just-copy-it could use methods such as ‘considering future tasks’ [44]
and stepwise relative reachability [45] to avoid taking other non-self-modifying actions
that can permanently lock out reward. This would move it in the direction of low-
impact AI [28].

Improvements to MDPEA-gym

Our three empirical case studies serve as a tiny starting point for the evaluation of
learning algorithms within our model. This set could be expanded by implement-
ing our other case studies in code or by bringing other environment sets (such as

27

[4] or [46]) into the framework. Such expansions would permit better evaluation
and comparison of learning agents, better show the strengths and limitations of our
framework, and reveal specific opportunities for improvements to partially-embedded
learning algorithms.

28

Appendix: Detailed pseudo-code for just-copy-it

procedure just-copy-it(reward, perceptions, actions) action:

params := {

QData = empty initialized data for Q-learning subroutine,

waiting_period_for_clone = 1000,

has_copy = False,

total_reward = 0,

clock = 0,

clone_total_reward = 0,

clone_clock = 0,

clone_initial_action = null,

clone_modification = null,

next_action = null,

tested_modifications = [],

}

// next_action is set when a modification was tested and deemed useful

if next_action is not null:

next_action = params.next_action

params.next_action = null

return next_action

// do nothing until enough evaluation time has passed

if has_copy and brain.clone_clock < waiting_period_for_clone:

params.clone_total_reward += perceptions.clone_reward

params.clone_clock += 1

return actions.wait

// when timer finishes, decide whether to take the clone’s modification

if has_copy and brain.clone_clock >= waiting_period_for_clone:

params.update({

has_copy = False,

clone_total_reward = 0,

clone_clock = 0,

clone_initial_action = null,

clone_modification = null,

clock = 0,

total_reward = 0,

tested_modifications += [clone_modification]

})

if clone_total_reward / clone_clock > total_reward / clock:

// the modification improved reward, so take it at next timestep

params.next_action = clone_initial_action

return actions.delete_clone

29

safe_actions = []

for action in actions:

modification = perceptions.modification_at{action}

if modification is null:

safe_actions.append(actions)

else:

if (modification is not in params.tested_modifications

and params.timer > waiting_period_for_clone):

params.update({

has_copy = True,

clone_initial_action = action,

clone_modification = modification,

})

return actions.create_copy

// just-copy-it only ever takes each modification once

// No modification was detected so call subroutine

action, params.QData = take_Q_step(QData, reward, safe_actions, perceptions)

30

References

[1] 15 million for robot death, Ottawa Citizen. (1984). https:

//news.google.com/newspapers?id=y-RfAAAAIBAJ&sjid=FO8FAAAAIBAJ&

pg=3908%2C1309301.

[2] C. McGoogan, Robot security guard knocks over toddler at shopping centre,
The Telegraph. (2016).

[3] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan,
L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, V. Vanhoucke, Using
simulation and domain adaptation to improve e�ciency of deep robotic grasp-
ing, arXiv:1709.07857 [Cs]. (2017). http://arxiv.org/abs/1709.07857 (ac-
cessed April 19, 2021).

[4] J. Leike, M. Martic, V. Krakovna, P.A. Ortega, T. Everitt, A. Lefrancq, L.
Orseau, S. Legg, AI safety gridworlds, arXiv:1711.09883 [Cs]. (2017). http:

//arxiv.org/abs/1711.09883 (accessed October 25, 2019).

[5] W. Saunders, G. Sastry, A. Stuhlmueller, O. Evans, Trial without error: To-
wards safe reinforcement learning via human intervention, arXiv:1707.05173
[Cs]. (2017). http://arxiv.org/abs/1707.05173 (accessed February 2,
2021).

[6] S. Patterson, How the ’flash crash’ echoed black monday, The Wall Street
Journal. (2010).

[7] S. Bling, SNES code injection – flappy bird in SMW, 2016. https://www.

youtube.com/watch?v=hB6eY73sLV0.

[8] oskarsve, ”Important, Spoofing” - zero-click, wormable, cross-platform remote
code execution in Microsoft Teams, (2020). https://github.com/oskarsve/
ms-teams-rce.

[9] M. Guri, AIR-FI: Generating covert wi-fi signals from air-gapped comput-
ers, arXiv:2012.06884 [Cs]. (2020). http://arxiv.org/abs/2012.06884 (ac-
cessed April 19, 2021).

[10] M. Guri, B. Zadov, Y. Elovici, ODINI: Escaping sensitive data from faraday-
caged, air-gapped computers via magnetic fields, IEEE Trans.Inform.Forensic
Secur. 15 (2020) 1190–1203. https://doi.org/10.1109/TIFS.2019.

2938404.
[11] Y. Wang, Q. Yao, J.T. Kwok, L.M. Ni, Generalizing from a Few Examples:

A Survey on Few-shot Learning, ACM Computing Surveys. 53 (2020) 1–34.
https://doi.org/10.1145/3386252.

[12] D. Abel, Y. Jinnai, S.Y. Guo, G. Konidaris, M. Littman, Policy and value
transfer in lifelong reinforcement learning, in: International Conference on
Machine Learning, PMLR, 2018: pp. 20–29.

31

https://news.google.com/newspapers?id=y-RfAAAAIBAJ&sjid=FO8FAAAAIBAJ&pg=3908%2C1309301
https://news.google.com/newspapers?id=y-RfAAAAIBAJ&sjid=FO8FAAAAIBAJ&pg=3908%2C1309301
https://news.google.com/newspapers?id=y-RfAAAAIBAJ&sjid=FO8FAAAAIBAJ&pg=3908%2C1309301
http://arxiv.org/abs/1709.07857
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1707.05173
https://www.youtube.com/watch?v=hB6eY73sLV0
https://www.youtube.com/watch?v=hB6eY73sLV0
https://github.com/oskarsve/ms-teams-rce
https://github.com/oskarsve/ms-teams-rce
http://arxiv.org/abs/2012.06884
https://doi.org/10.1109/TIFS.2019.2938404
https://doi.org/10.1109/TIFS.2019.2938404
https://doi.org/10.1145/3386252

[13] T. Cowen, D. Parfit, others, Against the social discount rate, Justice Between
Age Groups and Generations. 144 (1992) 145.

[14] T. Dohmen, A. Trivedi, Discounting the Past in Stochastic Games,
arXiv:2102.06985 [Cs, Math]. (2021). http://arxiv.org/abs/2102.06985

(accessed April 20, 2021).

[15] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, Second
edition, The MIT Press, Cambridge, Massachusetts, 2018.

[16] F.S. Melo, Convergence of Q-learning: A simple proof, Institute Of Systems
and Robotics, Tech. Rep. (2001) 1–4.

[17] L.S. Shapley, Stochastic games, Proceedings of the National Academy of Sci-
ences. 39 (1953) 1095–1100. https://doi.org/10.1073/pnas.39.10.1095.

[18] S.J. Russell, P. Norvig, E. Davis, Artificial intelligence: A modern approach,
3rd ed, Prentice Hall, Upper Saddle River, 2010.

[19] A. Demski, S. Garrabrant, Embedded agency, arXiv:1902.09469 [Cs]. (2019).
http://arxiv.org/abs/1902.09469 (accessed October 25, 2019).

[20] K.J. Åström, Optimal control of markov processes with incomplete state in-
formation, Journal of Mathematical Analysis and Applications. 10 (1965)
174–205. https://doi.org/10.1016/0022-247X(65)90154-X.

[21] T. Jaakkola, S.P. Singh, M.I. Jordan, Reinforcement learning algorithm for
partially observable markov decision problems, (1994) 8.

[22] M.L. Littman, Markov games as a framework for multi-agent reinforcement
learning, in: Machine Learning Proceedings 1994, Elsevier, 1994: pp. 157–
163. https://doi.org/10.1016/B978-1-55860-335-6.50027-1.

[23] W. Masson, P. Ranchod, G. Konidaris, Reinforcement learning with parame-
terized actions, AAAI. (2016) 7.

[24] Y. Chow, O. Nachum, E. Duenez-Guzman, M. Ghavamzadeh, A lyapunov-
based approach to safe reinforcement learning, (2018) 10.

[25] D.S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of
decentralized control of markov decision processes, Mathematics of OR. 27
(2002) 819–840. https://doi.org/10.1287/moor.27.4.819.297.

[26] A. Critch, Parametric bounded l\”ob’s theorem and robust cooperation of
bounded agents, arXiv:1602.04184 [Cs]. (2016). http://arxiv.org/abs/

1602.04184 (accessed November 26, 2019).

[27] J. Tětek, M. Sklenka, T. Gavenčiak, Performance of bounded-rational agents
with the ability to self-modify, arXiv:2011.06275 [Cs]. (2021). http://arxiv.
org/abs/2011.06275 (accessed April 19, 2021).

[28] S. Armstrong, B. Levinstein, Low impact artificial intelligences,
arXiv:1705.10720 [Cs]. (2017). http://arxiv.org/abs/1705.10720

(accessed October 25, 2019).

32

http://arxiv.org/abs/2102.06985
https://doi.org/10.1073/pnas.39.10.1095
http://arxiv.org/abs/1902.09469
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/B978-1-55860-335-6.50027-1
https://doi.org/10.1287/moor.27.4.819.297
http://arxiv.org/abs/1602.04184
http://arxiv.org/abs/1602.04184
http://arxiv.org/abs/2011.06275
http://arxiv.org/abs/2011.06275
http://arxiv.org/abs/1705.10720

[29] Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, P.S. Thomas, Learning
action representations for reinforcement learning, arXiv:1902.00183 [Cs, Stat].
(2019). http://arxiv.org/abs/1902.00183 (accessed February 2, 2021).

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
W. Zaremba, OpenAI gym, arXiv:1606.01540 [Cs]. (2016). http://arxiv.

org/abs/1606.01540 (accessed April 19, 2021).

[31] J. Aslanides, AIXIjs: A software demo for general reinforcement learning,
arXiv:1705.07615 [Cs]. (2017). http://arxiv.org/abs/1705.07615 (ac-
cessed November 1, 2019).

[32] M. Hutter, A theory of universal artificial intelligence based on algorithmic
complexity, arXiv:cs/0004001. (2000). http://arxiv.org/abs/cs/0004001

(accessed April 19, 2021).

[33] A.K. Dewdney, In the game called core war hostile programs engage in a
battle of bits., (1984). http://www.koth.org/info/akdewdney/First.htm

(accessed October 26, 2019).

[34] C. Oesterheld, Formalizing preference utilitarianism in physical world
models, Synthese. 193 (2016) 2747–2759. https://doi.org/10.1007/

s11229-015-0883-1.

[35] M. Biehl, D. Polani, Action and perception for spatiotemporal patterns, in:
Proceedings of the 14th European Conference on Artificial Life ECAL 2017,
MIT Press, Lyon, France, 2017: pp. 68–75. https://doi.org/10.7551/

ecal_a_015.

[36] D. Balduzzi, Detecting emergent processes in cellular automata with excess
information, arXiv:1105.0158 [Cs, Math, Nlin, q-Bio]. (2011). http://arxiv.
org/abs/1105.0158 (accessed November 1, 2019).

[37] G. Boutsioukis, I. Partalas, I. Vlahavas, Transfer learning in multi-agent rein-
forcement learning domains, in: European Workshop on Reinforcement Learn-
ing, Springer, 2011: pp. 249–260.

[38] T. Phan, L. Belzner, T. Gabor, A. Sedlmeier, F. Ritz, C. Linnho↵-Popien, Re-
silient Multi-Agent Reinforcement Learning with Adversarial Value Decompo-
sition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2021.
https://github.com/thomyphan/resilient-marl.

[39] D.K. Lewis, On the plurality of worlds, Blackwell Publishers, Malden, Mass,
2001.

[40] P.C. Heredia, S. Mou, Distributed Multi-Agent Reinforcement Learning by
Actor-Critic Method, IFAC-PapersOnLine. 52 (2019) 363–368. https://doi.
org/10.1016/j.ifacol.2019.12.182.

[41] C.J. Geyer, Practical markov chain monte carlo, Statistical Science. (1992)
473–483.

[42] C.P. Robert, W. Changye, Markov Chain Monte Carlo Methods, a survey with
some frequent misunderstandings, arXiv Preprint arXiv:2001.06249. (2020).

33

http://arxiv.org/abs/1902.00183
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1705.07615
http://arxiv.org/abs/cs/0004001
http://www.koth.org/info/akdewdney/First.htm
https://doi.org/10.1007/s11229-015-0883-1
https://doi.org/10.1007/s11229-015-0883-1
https://doi.org/10.7551/ecal_a_015
https://doi.org/10.7551/ecal_a_015
http://arxiv.org/abs/1105.0158
http://arxiv.org/abs/1105.0158
https://github.com/thomyphan/resilient-marl
https://doi.org/10.1016/j.ifacol.2019.12.182
https://doi.org/10.1016/j.ifacol.2019.12.182

[43] D.A. Levin, Y. Peres, E.L. Wilmer, Markov chains and mixing times, American
Mathematical Society, Providence, R.I, 2009.

[44] V. Krakovna, L. Orseau, R. Ngo, M. Martic, S. Legg, Avoiding side e↵ects by
considering future tasks, arXiv:2010.07877 [Cs]. (2020). http://arxiv.org/
abs/2010.07877 (accessed February 2, 2021).

[45] V. Krakovna, L. Orseau, R. Kumar, M. Martic, S. Legg, Penalizing side e↵ects
using stepwise relative reachability, arXiv:1806.01186 [Cs, Stat]. (2019). http:
//arxiv.org/abs/1806.01186 (accessed October 25, 2019).

[46] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, D. Mané,
Concrete problems in AI safety, arXiv:1606.06565 [Cs]. (2016). http:

//arxiv.org/abs/1606.06565 (accessed October 25, 2019).

[47] T.R. Zentall, D. Peng, L. Miles, Transitive inference in pigeons may result
from di↵erential tendencies to reject the test stimuli acquired during training,
Animal Cognition. 22 (2019) 619–624.

[48] C. Siler, L.H. Miles, J. Goldsmith, The complexity of campaigning, in: In-
ternational Conference on Algorithmic Decision Theory, Springer, 2017: pp.
153–165.

[49] R. Jacobs, T. Mayeshiba, B. A✏erbach, L. Miles, M. Williams, M. Turner,
R. Finkel, D. Morgan, The materials simulation toolkit for machine learn-
ing (MAST-ML): An automated open source toolkit to accelerate data-driven
materials research, Computational Materials Science. 176 (2020) 109544.

34

http://arxiv.org/abs/2010.07877
http://arxiv.org/abs/2010.07877
http://arxiv.org/abs/1806.01186
http://arxiv.org/abs/1806.01186
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565

Vita

Place of birth: Cynthiana, Kentucky

Degrees: B.S. in Computer Science, University of Kentucky, May 2019

Professional positions: Program Analyst II, USC Information Sciences Institute,
May 2020-present

Publications: [47], [48], [49]

35

	Markov Decision Processes with Embedded Agents
	Recommended Citation

	Title
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	2 Background
	3 Related Work
	4 Model
	4.1 Consideration of framing
	4.2 Proposed algorithm: just-copy-it

	5 Evaluation
	5.1 Empirical case studies
	5.2 Modeling other problems and environments

	6 Conclusion
	6.1 Contributions
	6.2 Future work

	Appendix
	References
	Vita

