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ABSTRACT OF DISSERTATION

SCALABLE APPROACHES FOR AUDITING THE COMPLETENESS OF
BIOMEDICAL ONTOLOGIES

An ontology provides a formalized representation of knowledge within a domain. In
biomedicine, ontologies have been widely used in modern biomedical applications to
enable semantic interoperability and facilitate data exchange. Given the important
roles that biomedical ontologies play, quality issues such as incompleteness, if not
addressed, can affect the quality of downstream ontology-driven applications. How-
ever, biomedical ontologies often have large sizes and complex structures. Thus, it is
infeasible to uncover potential quality issues through manual effort. In this disserta-
tion, we introduce automated and scalable approaches for auditing the completeness
of biomedical ontologies. We mainly focus on two incompleteness issues – missing hi-
erarchical relations and missing concepts. To identify missing hierarchical relations,
we develop three approaches: a lexical-based approach, a hybrid approach utiliz-
ing both lexical features and logical definitions, and an approach based on concept
name transformation. To identify missing concepts, a lexical-based Formal Concept
Analysis (FCA) method is proposed for concept enrichment. We also predict proper
concept names for the missing concepts using deep learning techniques. Manual re-
view by domain experts is performed to evaluate these approaches. In addition, we
leverage extrinsic knowledge (i.e., external ontologies) to help validate the detected
incompleteness issues. The auditing approaches have been applied to a variety of
biomedical ontologies, including the SNOMED CT, National Cancer Institute (NCI)
Thesaurus and Gene Ontology.

In the first lexical-based approach to identify missing hierarchical relations, each
concept is modeled with an enriched set of lexical features, leveraging words and noun
phrases in the name of the concept itself and the concept’s ancestors. Given a pair of
concepts that are not linked by a hierarchical relation, if the enriched lexical attributes
of one concept is a superset of the other’s, a potentially missing hierarchical relation
will be suggested. Applying this approach to the September 2017 release of SNOMED
CT (US edition) suggested 38,615 potentially missing hierarchical relations. A domain
expert reviewed a random sample of 100 potentially missing ones, and confirmed 90
are valid (a precision of 90%).

In the second work, a hybrid approach is proposed to detect missing hierarchical



relations in non-lattice subgraphs. For each concept, its lexical features are harmo-
nized with role definitions to provide a more comprehensive semantic model. Then a
two-step subsumption testing is performed to automatically suggest potentially miss-
ing hierarchical relations. This approach identified 55 potentially missing hierarchical
relations in the 19.08d version of the NCI Thesaurus. 29 out of 55 were confirmed as
valid by the curators from the NCI Enterprise Vocabulary Service (EVS) and have
been incorporated in the newer versions of the NCI Thesaurus. 7 out of 55 further
revealed incorrect existing hierarchical relations in the NCI Thesaurus.

In the third work, we introduce a transformation-based method that leverages the
Unified Medical Language System (UMLS) knowledge to identify missing hierarchi-
cal relations in its source ontologies. Given a concept name, noun chunks within it
are identified and replaced by their more general counterparts to generate new con-
cept names that are supposed to be more general than the original one. Applying
this method to the UMLS (2019AB release), a total of 39,359 potentially missing
hierarchical relations were detected in 13 source ontologies. Domain experts evalu-
ated a random sample of 200 potentially missing hierarchical relations identified in
the SNOMED CT (US edition), and 100 in the Gene Ontology. 173 out of 200 and
63 out of 100 potentially missing hierarchical relations were confirmed by domain ex-
perts, indicating our method achieved a precision of 86.5% and 63% for the SNOMED
CT and Gene Ontology, respectively.

In the work of concept enrichment, we introduce a lexical method based on FCA
to identify potentially missing concepts. Lexical features (i.e., words appearing in
the concept names) are considered as FCA attributes while generating formal con-
text. Applying multistage intersection on FCA attributes results in newly formalized
concepts along with bags of words that can be utilized to name the concepts. This
method was applied to the Disease or Disorder sub-hierarchy in the 19.08d version of
the NCI Thesaurus and identified 8,983 potentially missing concepts. We performed
a preliminary evaluation and validated that 592 out of 8,983 potentially missing con-
cepts were included in external ontologies in the UMLS.

After obtaining new concepts and their relevant bags of words, we further devel-
oped deep learning-based approaches to automatically predict concept names that
comply with the naming convention of a specific ontology. We explored simple neu-
ral network, Long Short-Term Memory (LSTM), and Convolutional Neural Network
(CNN) combined with LSTM. Our experiments showed that the LSTM-based ap-
proach achieved the best performance with an F1 score of 63.41% for predicting
names for newly added concepts in the March 2018 release of SNOMED CT (US Edi-
tion) and an F1 score of 73.95% for naming missing concepts revealed by our previous
work.

In the last part of this dissertation, extrinsic knowledge is leveraged to collect sup-
porting evidence for the detected incompleteness issues. We present a work in which
cross-ontology evaluation based on extrinsic knowledge from the UMLS is utilized to
help validate potentially missing hierarchical relations, aiming at relieving the heavy
workload of manual review.
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CHAPTER 1. Introduction

1.1 Motivation

An ontology (or terminology) provides formalized representation of knowledge within

a domain, including a set of objects and the describable relationships among them.

It provides a shared and common understanding of a domain that can be commu-

nicated between people and heterogeneous applications. In biomedicine, ontologies

that ensure data consistency and interoperability, have played important roles in vari-

ous biomedical research and applications, including biomedical data annotation, data

integration and exchange, data analysis, information retrieval, natural language pro-

cessing (NLP), and clinical decision support [1, 2]. For instance, the National Cancer

Institute (NCI) Thesaurus [3], covering knowledge of cancers, genes and therapies

has been widely used as a standard for biomedical coding, knowledge reference, and

public reporting for many NCI and other systems [4–6]. SNOMED CT [7], the most

comprehensive clinical healthcare terminology product in the world, facilitates the

exchange of healthcare information among disparate healthcare providers and elec-

tronic health records (EHRs), leading to higher quality, consistency and safety in

healthcare delivery [8, 9].

Biomedical ontologies are often incomplete and constantly evolving due to the

growing knowledge in biomedicine, new requirements from emerging biomedical ap-

plications and the progressive nature of ontological engineering [10, 11]. Typically,

ontology management involves the addition of new concepts along with their defi-

nitions and missing relations among concepts, as well as deprecation and deactiva-

tion of obsolete ones. For example, SNOMED CT is released regularly in every six

months [12]. In the January 2019 release of SNOMED CT (International Edition),

11,903 new concepts were added and 3,035 concepts were inactivated; 20,294 changes

were made to the stated concept definitions regarding relations between concepts. An-
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other example is that NCI Thesaurus is updated every month with averaging roughly

700 new concepts in each release [13].

The lack of completeness, however, not only reduces the correctness and coverage

of biomedical ontologies in modeling domain knowledge, but also affects the qual-

ity of downstream ontology-driven applications such as leading to valid conclusions

being missed [11, 14]. For instance, in ontology-based search engines for patient co-

hort identification, queries are refined and expanded by moving up and down the

hierarchy of concepts, thus incomplete ontology hierarchy will impact the quality of

query results. As an example, value sets of SNOMED CT (consisting of subsets of

SNOMED CT concepts) have been widely used for EHR decision support, quality

reporting, and cohort selection. A value set can be defined as a list of concepts shar-

ing some common features, e.g., all descendants of “Carcinoma of larynx”. However,

“Primary adenosquamous cell carcinoma of larynx” is currently not listed as one of

its descendants (i.e., missing hierarchical relation). Therefore, patients with “Pri-

mary adenosquamous cell carcinoma of larynx” will not be selected for the cohort of

patients with “Carcinoma of larynx” which decreases the recall of the query result.

Due to the sheer size and complexity of modern biomedical ontologies, it becomes

impractical to entirely rely on human effort to uncover quality issues, such as miss-

ing hierarchical relations and missing concepts [15]. Therefore, computational and

automated quality assurance approaches are highly desired.

1.2 Contributions

Auditing the completeness of biomedical ontologies has been an active research area

given its importance. Researchers proposed various methods to reveal quality issues

in biomedical ontologies such as missing concepts [16–23] and missing hierarchical

relations [22–32]. However, the ever-growing size and structural complexity make the

quality assurance of biomedical ontologies a challenging task. As a result, existing
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approaches are often limited to sub-hierarchies or part of the hierarchies, and do not

scale to the entire ontology. Another limitation of many existing approaches is that

they either suggest potential missing concepts or relations purely based on extrinsic

knowledge source neglecting the sophisticated intrinsic knowledge [17, 33, 34]; or only

indicate potential areas of quality issues based on intrinsic knowledge and then require

domain experts’ manual review to come up with the actual issues and solutions, which

is time-consuming and labor-intensive [35, 36].

In this dissertation, we develop automated and scalable approaches for detecting

potential incompleteness issues, validating the suggested incompleteness issues and

providing remediations. Both intrinsic and extrinsic knowledge are utilized. Partic-

ularly, the dissertation introduces three approaches in detecting missing hierarchical

relations, a Formal Concept Analysis (FCA)-based method to detect missing con-

cepts, a deep learning-based approach to predict concept names and a validation

method in which extrinsic knowledge is adopted to collect supporting evidence for

the uncovered incompleteness issues.

This dissertation interpolates material from six papers first authored by the au-

thor [37–42] and one paper co-authored [28]. Chapter 3 uses material from Refer-

ence [37]. Chapter 4 uses material from References [38, 39]. Chapter 5 uses material

from Reference [40]. Material from Reference [41] is used in Chapter 6. Material from

Reference [42] is used in Chapter 7. Chapter 8 uses material from Reference [28].

An overview of the dissertation is shown in Figure 1.1. In the following, the

contribution of each component is discussed.

The semantic meanings of concepts determine if there should be any subsumption

relations among concepts. Lexical-based methods have shown great potential in de-

tecting missing hierarchical relations [25, 26, 43]. However, most of them adopt the

bag-of-words model, which purely uses single words appearing in the concept name

to represent the meanings of concepts. In the first work, we introduce the use of a
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Figure 1.1: An overview of the auditing approaches introduced in the dissertation.

linguistic feature “noun phrase” which groups a modifier and its corresponding noun

as a single feature. It helps reduce the false positives caused by the scenarios when

an adjective modifies different nouns in the subconcept and superconcept, which can

not be handled by the traditional bag-of-words model.

Besides lexical features, most biomedical ontologies nowadays provide formally

defined logical definitions (or role definitions) that refine the meanings of concepts.

However, logical definitions are sometimes incomplete, making them impractical to

be solely used in representing semantic meanings. In the second hybrid approach

applied to the NCI Thesaurus, to model each concept, we combine its lexical features

and logical definitions to provide a more comprehensive semantic model. Then a two-

step subsumption testing is performed to automatically suggest potentially missing

hierarchical relations.

4



To identify missing hierarchical relations, concepts are usually represented us-

ing intrinsic knowledge such as concept names and logical definitions (e.g., in the

format of embeddings or feature sets). The effectiveness of these methods to some

extent relies on the integrity of the ontology itself (e.g., requires well-defined logical

definitions [38]). In the third work, we develop a method based on concept name

transformation which also utilizes extrinsic knowledge to identify missing hierarchical

relations in the Unified Medical Language System (UMLS) source ontologies. Given

a concept, we replace the noun chunks in its name with more general terms to con-

stitute new concept names that are supposed to be more general than the original

one. If a new concept name coincides with the name of an existing concept, a hierar-

chical relation should be established between the two concepts corresponding to the

original and new concept names. During this process, knowledge from the audited

ontology as well as external ontologies in the UMLS (i.e., both intrinsic and extrinsic

knowledge) are leveraged to provide replacement candidates. This results in newly

identified missing hierarchical relations that would not be uncovered by only looking

into one or two individual ontologies. Also, compared with previous work that usu-

ally audit one ontology at a time, this method enables the auditing of multiple source

ontologies at the same time.

When it comes to concept enrichment, we propose a lexical-based FCA method to

identify missing concepts in the NCI Thesaurus. Existing FCA-based methods [18, 19]

mainly utilize logical definitions to search for new or missing concepts. However,

the missing concepts they identified only involve logical definitions and no clues are

provided on how to name the missing concepts. Therefore, the validation process

is laborious. To relieve this, we consider lexical features – words appearing in the

concept names as FCA attributes to construct the formal context. In this case,

formalizing new concepts also provides bags of words that can be used to name

the concepts which are more convenient to validate compared with sets of logical
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definitions.

Given bags of words, we further explore deep learning-based approaches to auto-

matically predict concept names that comply with the naming convention of a specific

ontology. The task is completed in two parts. In the first part, we adopt three types

of neural networks including a simple neural network, a Long Short-Term Memory

(LSTM) neural network and a combination of convolutional neural network (CNN)

and LSTM as binary classifiers to determine if a given sequence of words is valid or

not. In the second part, given a bag of words, pre-trained models are utilized to

predict the valid sequence by classifying and filtering all the possible permutations.

To the best of our knowledge, this is the first work that automatically predicts names

for new or missing concepts in biomedical ontologies.

In general, after identifying incompleteness issues, the results will be manually

reviewed by domain experts to evaluate the effectiveness of an auditing method. To

relieve the manual burden, in this dissertation, we also present a work that shows the

possibility of leveraging extrinsic knowledge (e.g., external ontologies in the UMLS) to

validate the detected incompleteness issues. Concepts from the SNOMED CT, NCI

Thesaurus and Gene Ontology are mapped to Concept Unique Identifiers (CUIs)

in the UMLS and hierarchical relations from multiple source ontoloiges construct

transitive paths to provide supporting evidence for the uncovered missing hierarchical

relations.

Several evaluation approaches were adopted to validate the effectiveness of our au-

diting methods. Random samples (or all the result) of potential incompleteness issues

obtained by the three approaches for auditing hierarchical relations and the method

for naming missing concepts have been reviewed by domain experts. The performance

of each auditing approach is reported in terms of precision, and the performance of

the deep learning-based approach is reported in precision, recall and F1-score. The

FCA-based concept enrichment method is evaluated by checking whether the new
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concepts (i.e., bags of words) are included in any external ontologies in the UMLS.

The incompleteness issues uncovered in this dissertation will be handed over to

respective ontology curators so that where appropriate, they could be incorporated

into the respective ontologies. Note that the valid results from the hybrid approach

have already been added into the newer versions of the NCI Thesaurus.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces

some background about the biomedical ontologies we audited, materials we used

and related work in auditing biomedical ontologies. Chapter 3 presents a lexical-

based approach to exhaustively detect potentially missing hierarchical relations in the

SNOMED CT. Chapter 4 discusses a hybrid approach that combines lexical features

and role definitions of concepts to identify potentially missing hierarchical relations

within non-lattice subgraphs in the NCI Thesaurus. Chapter 5 introduces a concept

name transformation-based method that leverages the UMLS knowledge to identify

potentially missing hierarchical relations in its source ontologies. Chapter 6 introduces

a lexical- and FCA-based method to identify potentially missing concepts in the NCI

Thesaurus. Chapter 7 shows several deep learning models that can be utilized to

predict concept names for the missing concepts based on bags of words. Chapter 8

presents a work in which cross-ontology verification based on extrinsic knowledge

from the UMLS is used to validate the missing hierarchical relations automatically.

Chapter 9 concludes this dissertation and discusses future research directions.
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CHAPTER 2. Background

This chapter first introduces the biomedical ontologies audited in this dissertation,

including the SNOMED CT, NCI Thesaurus and Gene Ontology. Computational

techniques and an external knowledge source used for supporting quality assurance

are then briefly introduced. In addition, this chapter reviews some previous related

work in quality assurance of biomedical ontologies.

2.1 Biomedical ontologies

Modern ontologies were developed in Artificial Intelligence (AI) to facilitate knowl-

edge representation, knowledge management and knowledge sharing [44]. In biomedicine,

biomedical ontologies serve as the semantic scaffolding for us to fully capitalize on

the transformative opportunities of the increasingly large amount of digital data pro-

duced by the biomedical research enterprise. For example, the BioPortal [45–47], the

world’s most comprehensive repository of biomedical ontologies, contains 835 ontolo-

gies and over 9 million concepts that have been used to support a wide spectrum of

scientific projects.

The principal components of a biomedical ontology are concepts and relations. A

concept represents a class of entities within a domain and a relation describes the

interaction between concepts. To constrain the interpretation and well-formed use of

concepts, biomedical ontologies usually provide human-readable text describing their

meanings (e.g., preferred names and synonyms), as well as formally defined prop-

erties, features and relations that entities belonging to a concept must have (i.e.,

logical definitions) [48]. In most cases, the curators of biomedical ontologies state

an initial collection of logical definitions for concepts on which DL reasoners such

as ELK [49] and Snorocket [50] will further perform reasoning to ensure the con-

sistency of ontologies and achieve more profound inferred definitions (e.g., inferring
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subclass/hierarchical relations between concepts based on their stated logical defini-

tions). The inferred hierarchical relations altogether form an inferred hierarchy on

which quality assurance (e.g., identifying missing concepts and missing hierarchical

relations between concepts) is usually performed.

In this dissertation, we focus on auditing the completeness of three leading biomed-

ical ontologies: SNOMED CT, NCI Thesaurus and Gene Ontology. We will mainly

use SNOMED CT community’s nomenclature for further explaining ontological mod-

eling activities and components.

2.1.1 SNOMED CT

SNOMED CT is the most comprehensive, multilingual clinical healthcare terminology

in the world. It contains more than 300,000 concepts connected by over 1.5 million

relations. SNOMED CT has a broad coverage of health-related topics and it orga-

nizes clinical meanings (concepts) into 19 sub-hierarchies, including Clinical finding,

Procedure, Body structure, etc [51].

2.1.1.1 Logical model

The SNOMED CT logical model specifies a standardized representation of the

concepts, the descriptions of concepts, and the relations between concepts.

Each concept in the SNOMED CT represents a unique clinical meaning and has a

unique concept identifier (e.g., 282765009 ). A fully specified name (FSN) is assigned

to each concept providing a unique, unambiguous description of the concept. For

instance, concept 282765009 ’s FSN is “Upper back injury (disorder)” with a seman-

tic tag “disorder” in parentheses at the end. Synonyms are also provided for each

concept. For example, “Lumbar region injury” is a synonym of “Upper back injury

(disorder).”

A relation represents an association between two concepts. There are mainly two
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types of relations: subtype (or IS-A) relations and attribute relations. The meaning

of a concept can be logically defined using subtype and attribute relations. When a

concept’s definition comprises a number of defining relations, SNOMED CT will put

them into different groups to avoid ambiguity as to how they apply. For example,

Figure 2.1 shows the stated logical definition of concept “Upper back injury,” con-

sisting of one subtype relation (Is a: Disease) and a group of two attribute relations

((Associated morphology: Traumatic abnormality), (Finding site: Upper back (surface

region))). Each single defining relation can be considered as an attribute-value pair

(attribute: value) for the source concept. Each group of defining relations are treated

as an integration, thus a group of attribute-value pairs. In this example, “Upper back

injury” is considered as the “traumatic abnormality” that happened at “upper back

(surface region).” In the SNOMED CT, there are over 50 attributes that can be

used as the attribute “type” of a defining relation, including “Is a,” “Finding site,”

“Causative agent,” “Clinical course,” and “Laterality.” And the value of an attribute

is another concept in the SNOMED CT.

Figure 2.1: Diagram that shows the stated logical definition of concept Upper back
injury (disorder) (282765009 ) [52] and notations of diagram elements [53].

10



Besides constructing the definitions of concepts, IS-A relations in the SNOMED

CT also organize concepts into a hierarchy. Thus, IS-A relations are also taken as hi-

erarchical relations. The hierarchy organizes the concepts from the more general ones

to the more detailed (or specific) ones. The most general concept in the SNOMED CT

is “SNOMED CT Concept” (138875005 ). Concepts that are more general are usually

placed at the top part of the hierarchy and then at each level down the hierarchy,

the concepts become increasingly more specific. In other words, a concept is more

detailed than its supertype and is more general than its subtype. In the previous

example, “Upper back injury” is a subtype of “Disease.” Therefore, the definition of

“Disease” is more general than that of its subtype “Upper back injury.”

The status of a concept’s definition in the SNOMED CT is either sufficiently/fully

defined or primitive. A concept is considered to be sufficient defined if its definition

is sufficiently to distinguish its meaning from other similar concepts. Otherwise, the

definition status of a concept is primitive. The definition status is usually decided

by the curators of the SNOMED CT. When a concept is sufficiently defined, any

concept whose definition satisfies its defining relations (i.e., whose definition is more

detailed than its) can be considered as being equivalent to or a subtype of the concept.

For example, concept “Upper back injury” is sufficiently defined and therefore, any

concepts satisfying the defining relations in Figure 2.1 are either equivalent to or

subtypes of “Upper back injury.”

2.1.1.2 Stated and inferred logical definitions

The stated definition of a concept in SNOMED CT is a set of relations (grouped

or ungrouped) that the ontology curator has stated to be defining characteristics

of the concept. For instance, the stated definition of concept “Upper back injury”

consists of a subtype relation (Is a: Disease) as well as a group of two attribute

relations (Associated morphology: Traumatic abnormality) and (Finding site: Upper
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back (surface region)).

Inferred concept definitions are sets of non-redundant (most specific) defining

relations derived by the DL reasoners. DL reasoners can check the consistency of

stated relations across the whole ontology and infer a hierarchy of concepts based on

the stated facts (i.e., infer new hierarchical relations). Figure 2.2 shows the inferred

definition of concept “Upper back injury.” Note that (Is a: Disease) is not included

in the inferred definition because it is redundant to (i.e., more general than) other

newly inferred subtype relations, such as (Is a: Injury of trunk).

Figure 2.2: Diagram that shows the inferred logical definition of concept Upper
back injury (disorder) (282765009 ) [52].

2.1.2 National Cancer Institute Thesaurus

NCI Thesaurus covers knowledge across a wide range of cancer research domains, in-

cluding cancer-related diseases, findings and abnormalities; genes and gene products;

therapies, drugs and chemicals, etc. It combines terminologies from numerous cancer

research related domains and provides a way to integrate or link these kinds of infor-

mation together through semantic relations. It has been used in a growing number

of NCI and other systems to facilitate data sharing and interoperability [54, 55].

The 20.12d version of the NCI Thesaurus contains over 150,000 concepts, 120,000
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textual definitions and more than 40,0000 relations between concepts [56]. Figure 2.3

shows the inferred definitions and associations of concept “Benign Skin Neoplasm”

(C2896 ) as they are displayed in the NCITerm Browser [3]. The “role relationships”

are essentially the same as the attribute relations in the SNOMED CT.

Figure 2.3: Inferred defining relations and associations of concept Benign Skin
Neoplasm (C2896 ) in the NCI Thesaurus [3].

2.1.3 Gene Ontology

Developed to address the need for a consistent description of gene products in different

databases, Gene Ontology (GO) strives to provide unified representations of genes,

gene products and sequences [57, 58]. Gene Ontology maintains knowledge in three

main aspects: molecular function, biochemical activity of gene product; biological
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process that is the biological objective to which the gene or gene product contributes;

and cellular component referring to the place in the cell where a gene product is

active [59, 60].

The 01/01/2021 release of Gene Ontology provides over 44,000 GO Terms (i.e.,

concepts) and over 7,000,000 annotations (i.e., relations) [61].

2.2 Techniques and extrinsic knowledge for supporting auditing

In this dissertation, Formal Concept Analysis (FCA) is utilized to identify potentially

missing concepts and deep learning techniques are adopt to predict names for the

missing concepts. Extrinsic knowledge from the UMLS is utilized to detect potentially

missing hierarchical relations and to provide supporting evidence for the uncovered

incompleteness issues.

2.2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical theory concerned with the for-

malization of concepts and conceptual thinking [62]. With FCA, we can generate a

concept hierarchy from a collection of objects and attributes. The input of FCA is

formal context K = (O,A,R), where O is a set of objects, A is a set of attributes,

and R is a binary relation between O and A. The notation (o, a) ∈ R means that

object o has attribute a.

Each formal context K induces two operators: derivation operators ↑: 2O → 2A

and concept-forming operators ↓: 2A → 2O. The operators are defined, for each

X ⊆ O and Y ⊆ A, as follows:

X↑ = {a ∈ A|∀o ∈ X: (o, a) ∈ R},

Y ↓ = {o ∈ O|∀a ∈ Y : (o, a) ∈ R},
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where X↑ is the set of all attributes shared by all objects in X, and Y ↓ is the set of

all objects sharing all attributes in Y .

A formal concept of K is a pair (X, Y ) with X ⊆ O and Y ⊆ A such that X↑ = Y

and Y ↓ = X. The subconcept-superconcept relation between formal concepts is

given by (X1, Y1) ≤ (X2, Y2) iff X1 ⊆ X2 (Y2 ⊆ Y1). All formal concepts derived

from the formal context K together with the subconcept-superconcept relations form

a complete lattice [63]. Note that lattice is a desired property for well-structured

ontologies [64].

Figure 2.4 shows a simple formal context (i.e., the table on the left) constructed by

four geometry figures and four attributes. In this example, formal concept ({1,2},{a})

(i.e., triangle) could be derived since object equilateral triangle and rectangle triangle

share one attribute has 3 vertices ; and inversely, attribute has 3 vertices is only shared

by these two objects. The graph on the right shows the complete lattice formed by all

formal concepts and subconcept-superconcept relations derived from the given formal

context.

Figure 2.4: Example formal context and the complete lattice formed by all for-
mal concepts derived [62]. The formal context is of four geometry figures and four
attributes. Formal concept ({1,2},{a}) is marked by dot in the formal context.

15



2.2.2 Long Short-Term Memory (LSTM)

Deep learning approaches have been widely used in text-related tasks such as language

modeling, textual analysis, information retrieval and sequence generation, and showed

better performance than traditional machine learning methods in these tasks [65].

Among different types of neural networks, LSTM [66] is proven to be suitable for

various sequential tasks such as speech recognition, translation and protein secondary

structure prediction. This is basically because LSTM is able to capture long-term

temporal dependencies efficiently [67]. Many previous works adopted LSTM-based

methods for sequence classification and sequence generation. Graves et al. introduced

bidirectional LSTM (BLSTM) which could learn dependencies both forwardly and

backwardly [68]. He et al. adopt bidirectional LSTM to distinguish varied meanings

of ambiguous biomedical terms in biomedical texts [69]. Zhou et al. combined CNN

and recurrent neural network (RNN) and proposed a unified model called C-LSTM

for sentence representation and text classification [70].

2.2.3 Unified Medical Language System

The UMLS, developed by the US National Library of Medicine, integrates various

health and biomedical vocabularies and standards to enable interoperability between

different applications and systems. It has been used in supporting a wide range of ap-

plications in biomedicine including information retrieval, natural language processing

(NLP), deep learning, phenotyping, and clinical decision support [71–83]. The UMLS

consists of three knowledge sources: the Metathesaurus that contains concepts from

many ontologies, the Semantic Network that contains semantic types and their rela-

tionships, and the SPECIALIST Lexicon and Lexical Tools to facilitate NLP [84–88].

The UMLS Metathesaurus is organized by concept or meaning. Since a concept

can have many different names, the UMLS Metathesaurus links all the names from

different source ontologies that have the same meaning. Every occurrence of a concept
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name (or string) in each source ontology is the basic building block or “atom” of

the UMLS Metathesaurus and assigned a unique atom identifier (AUI). Atoms with

the same meaning are mapped to a concept assigned a concept unique identifier

(CUI). For example, consider a concept in the SNOMED CT with ID 282766005

and preferred name “Lower back injury.” It also has a synonym “Lumbar region

injury [52].” In the UMLS Metathesaurus, the AUI for its preferred name is A3255024

and the AUI for its synonym is A3288211. These two atoms are both mapped to the

same UMLS concept with CUI C0560632, which has a total of 14 atoms mapped from

different source ontologies. The UMLS preserves the relations between concepts from

its source ontologies. For instance, the IS-A relation between the atom “Superficial

injury of lower back” with AUI A28900983 and the atom “Lower back injury” with

AUI A3255024 comes from SNOMED CT.

In addition, each UMLS concept (CUI) is assigned at least one semantic type

in order to provide a consistent categorization of all concepts. For example, the

concept “Lower back injury” (CUI: C0560632 ) is assigned a semantic type “Injury or

Poisoning.” There are currently 127 semantic types in the UMLS such as “Disease

or Syndrome,” and “Therapeutic or Preventive Procedure.”

2.3 Quality assurance of biomedical ontologies

In this section, previous related work in auditing concepts and hierarchical relations

in biomedical ontologies is reviewed.

2.3.1 Auditing concepts

When it comes to quality assurance of concepts, completeness and consistency are

two properties that gained a lot of awareness.
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2.3.1.1 Auditing concept completeness

There are two types of approaches to identify missing or new concepts for the

concept enrichment of biomedical ontologies.

The first type mainly leverages extrinsic knowledge (e.g., imports concepts from

external sources). For instance, Chandar et al. developed a similarity-based method

that suggested extracted phrases from text corpus as new concepts for the SNOMED

CT [20]. Peng et al. analyzed connected matrices from Gene Ontology and biological

network to identify new terms for Gene Ontology [21]. He et al. leveraged alignments

between different ontologies to suggest new concepts for the SNOMED CT [16] and

NCI Thesaurus [17]. For these methods, the sophisticated intrinsic knowledge to some

extend is neglected.

The other type mainly utilizes the intrinsic knowledge within the ontology itself.

Jiang and Chute performed Formal Concept Analysis (FCA) based on logical defini-

tions to search for possible missing concepts in the SNOMED CT [18]. However, due

to the computational limitation, their method was only applied to a small portion of

SNOMED CT concepts. Zhu et al. improved Jiang and Chute’s work by developing

a scalable multistage algorithm called Spark-MCA [19] that enabled an exhaustive

FCA evaluation on all the SNOMED CT concepts. However, a limitation of these two

FCA-based approaches is that the potentially missing concepts identified only involve

logical definitions and no concept names were provided. Therefore, it is difficult to

validate those missing concepts.

Zhang et al. [64, 89] introduced a lattice-based evaluation of ontologies. Lattice

is a desirable property for a well-formed ontology. A pair of concepts is known as a

non-lattice pair, if the two concepts have more than one maximal shared descendant.

A non-lattice subgraph is obtained from a non-lattice pair by reversely computing the

minimal common ancestors of the maximal common descendants of the non-lattice

pair and aggregating all the concepts and edges together. Cui et al. introduced a
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structural-lexical method by mining lexical patterns in non-lattice subgraphs, where

one of the patterns called “Union-Intersection” can automatically identify missing

concepts in the SNOMED CT [22].

2.3.1.2 Auditing concept modeling consistency

Besides auditing the completeness of concepts, previous work also paid attention

to concept modeling consistency throughout the biomedical ontologies.

Burse et al. proposed a stop-word based contextual auditing method to identify

inconsistencies in the modeling of SNOMED CT concepts [90]. They summarized a

few patterns that associated stop words (e.g., “and,” “with,” “and/or”) and content

surrounding stop words with the appearance of logical definitions. Concepts whose

names contain stop words but violate the patterns are signs of inconsistencies.

Verspoor et al. developed a transformation-based clustering methodology to iden-

tify terms in Gene Ontology that express similar semantics but use different linguistic

conventions [91] (e.g., “X Y ” versus “Y of X”). However, much manual effort was

required to review the clusters and uncover potential inconsistent conventions.

2.3.2 Auditing hierarchical relations

Existing approaches for auditing hierarchical relations can be roughly classified into

the following categories: structural-based, lexical-based, structural-lexical-based, and

machine learning-based.

2.3.2.1 Structural-based approaches

Structural-based approaches mainly rely on the relations between concepts to help

reveal potentially missing hierarchical relations.

Abstraction networks (AbNs) [33, 35, 36, 92–95], which group concepts based on

shared outgoing relations, have been extensively studied to identify problematic areas

in ontologies that may contain quality issues, including missing hierarchical relations.
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However, manual review of problematic areas by domain experts is required to locate

and uncover the exact quality issues which is labor-intensive.

Chen et al. presented a recursive method to locate missing hierarchical relations

in the UMLS Metathesaurus [24]. Concepts were first partitioned into semantically

uniform sets based on their semantic types. Then domain experts helped insert

smaller clusters into larger clusters during which process missing hierarchical relations

could be generated. Still, they require domain expert to go through many possible

combinations and come up with the missing hierarchical relations manually.

2.3.2.2 Lexical-based approaches

Lexical-based approaches mainly utilize lexical features or patterns of concepts to

identify missing hierarchical relations.

Quesada-Mart́ınez et al. analyzed concept names in the SNOMED CT to identify

lexical regularities (LR) and suggested missing relations (including missing hierarchi-

cal relations) [29]. However, only a small amount of LR could be used to generate

missing relations.

Abeysinghe et al. introduced a lexical-based inference approach to derive hierar-

chical inconsistencies and uncover missing hierarchical relations in Gene Ontology by

comparing linked and unlinked concepts using words in concept names [27].

Abeysinghe et al. developed a Subsumption-based Sub-term Inference Framework

(SSIF) [96] to detect missing hierarchical relations in Gene Ontology. Concept names

were re-modeled based on the part of speech, concept name inclusion relations and

antonyms appearing in concept names. Three conditional rules were developed for

backward subsumption inference.

Bodenreider considered individual words appearing in concept names (i.e., lexical

features) as logical definitions of concepts, and used DL classifier to automatically

derive hierarchical relations among concepts in the SNOMED CT; and then compared
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the DL-derived hierarchy with the original SNOMED CT hierarchy to detect missing

hierarchical relations [25]. One thing is that individual words may not be sufficient

or accurate in representing the semantic meaning of a concept.

2.3.2.3 Structural-lexical-based approaches

Structural-lexical-based approaches utilize both concepts’ lexical features and re-

lations between concepts. Previously, we have investigated approaches combining

non-lattice subgraphs and lexical features of concepts to automatically suggest miss-

ing hierarchical relations in the SNOMED CT [22, 26] and NCI Thesaurus [23, 43].

Basically, the first step was to extract non-lattice subgraphs (i.e., areas with a higher

possibility to contain quality issues). Then, either lexical patterns among concepts

[22, 23] or enriched lexical features [26, 43] were utilized to identify missing hierar-

chical relations.

2.3.2.4 Machine learning-based approaches

Besides the rule-based approaches mentioned above, recently, machine learning-

based approaches have also been explored to help detect or validate missing hierar-

chical relations in biomedical ontologies [31, 32, 97].

Sun et al. explored deep learning-based approaches to validate incompleteness

detected by non-lattice-based auditing methods [32]. In their work, defining relations

of concepts were converted into embeddings and a CNN classifier is developed to

predict hierarchical relations for given concept pairs.

Liu et al. generated descriptions for concepts based on their structural informa-

tion (e.g., parents, children, siblings) and used Doc2Vec to learn vector represen-

tations of concepts (or concept embeddings) in the NCI Thesaurus. Then a CNN

model was trained to predict if there is any subsumption relations between two given

concepts [31]. In another work [97], Liu et al. employed Bidirectional Encoder Repre-

sentations from Transformers (BERT) to come up with the embeddings for concepts
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and used a similar pipeline for subsumption checking.

One thing is that the performance of machine learning-based approaches highly

relies on the strategy of selecting positive/negative samples for training. For in-

stance, Sun et al. [32] selected training samples based on a combination of features

such as graph similarity, path length to the root, concept name similarity, etc. Liu et

al. [31, 97] trained the model using concept pairs from AbNs satisfying certain struc-

tural relations (e.g., uncle and its nephews). In these cases, although good perfor-

mance has been achieved for hierarchical relation classification on the pre-constructed

training and testing data in the traditional machine learning manner, the trained

model cannot be directly used to uncover missing hierarchical relations due to many

false predictions, and always need extra assistance (e.g., AbNs in [31] and non-lattice

subgraphs in [32]) to provide candidate pairs of concepts to reduce false predictions.
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CHAPTER 3. A Lexical-based Approach for Exhaustive Detection of

Missing Hierarchical IS-A Relations in SNOMED CT

This chapter introduces a lexical-based method to detect missing hierarchical rela-

tions in the SNOMED CT. There are mainly three steps. First, a set of stop words

and antonym pairs are leveraged to avoid potential erroneous missing hierarchical

relations. Then, each concept is modeled as an enriched set of lexical features, which

consists of words and noun phrases in the name of the concept and concept’s an-

cestors. The semantic meaning of a concept is represented by the lexical feature

set. At last, subset inclusion checking between lexical feature sets is performed to

automatically derive missing hierarchical relations.

3.1 Methods

3.1.1 Identifying stop words/phrases and antonym pairs

Stop words/phrases may result in wrongly suggested missing hierarchical relations

(or false positives). Take concepts “Velopharyngeal incompetence due to cleft palate

(disorder)” and “Cleft palate (disorder)” as an example, even though the set of lex-

ical features of the former concept contains that of the latter concept, there should

not be any subsumption relations between these two concepts. Words/phrases such

as “due to” are highly likely to suggest false positives and thus are considered as

stop words/phrases. In this work, we leveraged a list of stop words/phrases used

in previous work [26], including: “and,” “or,” “no,” “not,” “without,” “due to,”

“secondary to,” “except,” “by,” “after,” “co-occurrent,” “bilateral,” “examination,”

“able,” “amputation,” “removal,” “replacement,” “resection,” “excision,” “reaction

to,” “unable,” “failure,” “failed,” “abnormal,” “excluding,” “non,” and “pre.”

Similarly, concept pairs whose lexical features contain antonym pairs are also likely

to generate erroneous suggestions. For instance, considering concepts “Secondary ma-
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lignant neoplasm of right upper lobe of lung (disorder)” and “Neoplasm of right lower

lobe of lung (disorder),” apparently there should not be any subsumption relations

between these two concepts, since the former concept is related to “right upper lobe

of lung” while the latter concept is related to “right lower lobe of lung”. However,

if the former concept inherited a lexical feature “lower” from one of its ancestors

“Malignant neoplasm of lower respiratory tract (disorder),” then the lexical feature

set of the former would subsume that of the latter, as a result of which an incorrect

hierarchical relation between the former and latter would be suggested. To collect

such potential antonym pairs, we adopted a list of adjective antonym pairs from

WordNet [98], including (“open,” “closed”), (“acute,” “chronic”), (“right,” “left”),

etc. We also identified additional antonym pairs that are not included in WordNet,

such as (“upper,” “lower”).

3.1.2 Constructing lexical features for concepts

Most existing lexical-based methods for the identification of missing hierarchical re-

lations use words in concept names as the lexical features of concepts. In this work,

we model concepts not only using words, but also utilizing noun phrases. For each

concept, we first preprocess its fully specified name (FSN) and identify an initial set

of lexical features consisting of words and noun phrases in the concept’s FSN. Then

we enrich the set with more lexical features inherited from the concept’s ancestors.

3.1.2.1 Preprocessing FSNs of concepts

We preprocess the FSNs of concepts before the initialization of lexical feature

sets. For each concept, we split its FSN (by space) into words sequentially and

remove its semantic tag (e.g., “(disorder)”). The semantic tag will be leveraged

while suggesting potentially missing hierarchical relations. We further process special

symbols in FSNs such as removing parentheses and square brackets, and replacing
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backslash with “or” if the FSN does not contain numbers (e.g., “Sickness/injury care”

will result in “Sickness or injury care,” while “5 mg/ml” will remain intact).

3.1.2.2 Initializing lexical feature sets with noun phrases and words

In this work, instead of purely using the bag-of-words model, we consider noun

phrases as meaning features of concepts to facilitate the identification of missing

hierarchical relations. Take two concepts “Acute sensitivity to pain (finding)” and

“Acute pain (finding)” as an example, if we simply used the bag-of-words model,

their lexical feature sets would be {acute, sensitivity, to, pain} and {acute, pain}

respectively, where {acute, sensitivity, to, pain} is a superset of {acute, pain} (i.e.,

more detailed), and thus “Acute sensitivity to pain (finding)” would be suggested as a

subtype of “Acute pain (finding).” However, this suggestion is incorrect since “Acute

sensitivity to pain” is a finding of pain threshold, while “Acute pain” is a finding of

pattern of pain; and there should not be any subsumption relations between these

two concepts. The reason for this incorrect suggestion is that the adjective “acute” is

the modifier for two different nouns (“sensitivity” and “pain”) in these two concepts.

To avoid such situation, we model a concept’s name as a set of noun phrases and

words, where a noun phrase groups the modifier(s) and the corresponding noun as

a single feature. Hence in the above example, the two concepts’ lexical features will

become {acute, sensitivity, to, pain, acute sensitivity} and {acute, pain, acute pain},

which do not have any subset-superset relation anymore.

We use Stanford CoreNLP Parser [99] to identify noun phrases. Note that the

parser may recognize noun phrases in different levels of granularity. For instance, for

concept “Anesthesia for procedure on veins of lower leg (procedure),” there is a base

level noun phrase “lower leg” which is a component of a higher level noun phrase

“veins of lower leg.” In this work, we only consider the base level noun phrases. That

is, we model a concept’s FSN initially as a set of individual word(s) and base level
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noun phrase(s). In this example, the initial set of lexical features for the concept is

{anesthesia, for, procedure, on, veins, of, lower, leg, lower leg}.

3.1.2.3 Enriching lexical feature sets

We enrich concepts’ lexical features in two steps. In the first step, for each concept

c, we check if its FSN contains noun phrase(s) identified in the initial feature sets of

other concepts that are not hierarchically linked with c; and if yes, we add such

noun phrase(s) into c’s initial lexical feature set. We denote concept c’s set of lexical

features obtained after the first-step enrichment process as E1c. In the second step,

for each concept, we further enrich its set of lexical features with its ancestors’ sets

of lexical features. It is intuitive that if concept x is a subtype of concept y, then the

lexical features or attributes of concept y are also considered to be true for concept

x (i.e., x inherits y’s attributes). In this work, we maintain a directed graph that is

constructed using all the inferred hierarchical relations in the SNOMED CT, compute

its transitive closure, and obtain the ancestors of concepts using breadth-first search

(BFS). While performing the second-step enrichment process for a concept c, if an

ancestor a contains stop word(s)/phrase(s), then we do not add a’s set of lexical

features to c’s. More formally, we have

E2c = E1c ∪ (
⋃
{E1a | a ∈ Ac and a does not contain any stop words/phrases}),

where E2c denotes concept c’s set of lexical features after the second-step enrichment

process, and Ac is the set of c’s ancestors.

Table 3.1 shows an example of the initial and enriched sets of lexical features for

concept c: 371977004 – “Primary malignant neoplasm of cecum (disorder).” The noun

phrase identified in the initial set of lexical features is “primary malignant neoplasm”

(underlined). After the first-step enrichment (E1c), a new noun phrase “malignant

neoplasm” is identified from concepts which are not hierarchically linked with c. After
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the second-step enrichment (E2c), more noun phrases and words are inherited from

c’s ancestors. For instance, noun phrase “large intestine” is inherited from the initial

lexical feature set of c’s parent – “Primary malignant neoplasm of large intestine

(disorder)” and noun phrase “malignant tumor” is inherited from c’s other parent –

“Malignant tumor of cecum (disorder).”

Table 3.1: The initial and enriched sets of lexical features of an example concept
c: 371977004 – Primary malignant neoplasm of cecum (disorder). Noun phrases are
underlined.

c’s FSN Primary malignant neoplasm of cecum (disorder)

Initial set {primary, malignant, neoplasm, of, cecum,
primary malignant neoplasm}

Enriched set E1c {primary, malignant, neoplasm, of, cecum,
primary malignant neoplasm, malignant neoplasm}

Enriched set E2c {primary, malignant, neoplasm, of, cecum,
primary malignant neoplasm, malignant neoplasm, abdominal, mass,
abdominal mass, disorder, digestive, structure, digestive structure,
finding, large, intestine, large intestine, neoplastic, disease,
neoplastic disease, malignant neoplastic disease, viscus,
structure finding, body, region, body region, trunk, trunk structure,
abdomen, tumor, malignant tumor, organ, digestive organ,
gastrointestinal, tract, gastrointestinal tract, system, digestive system,
intraabdominal, intraabdominal organ, bowel, bowel finding, lower,
lower gastrointestinal tract, body system, abdominal organ finding,
abdominal organ, gastrointestinal tract finding, segment,
abdominal segment, intestinal, intestinal tract, digestive system finding,
system finding, body structure, digestive tract, cecal, cecal mass}

3.1.3 Identifying potentially missing hierarchical relations

To automatically suggest potentially missing hierarchical relations, we first produce

candidate pairs of concepts (say x and y) that meet the following conditions:

• concepts x and y are within the same sub-hierarchy (we assume that concepts in

different sub-hierarchies do not have hierarchical relations since sub-hierarchies

in SNOMED CT do not share common concepts);

• x and y are not hierarchically linked through existing hierarchical relations;
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• x and y share the same semantic tag;

• neither x nor y contains any stop word/phrase; and

• the enriched sets of lexical features E2x and E2y do not contain antonym pairs.

Then for each candidate pair of concepts (x, y), we systematically compare their

enriched sets of lexical features E2x and E2y as follows: if E2x is a superset of E2y,

then “concept x IS-A concept y” will be suggested as a potentially missing hierarchical

relation; if E2x is a subset of E2y, then “concept y IS-A concept x” will be suggested

as a potentially missing hierarchical relation; otherwise, nothing will be suggested.

Since our suggestion of missing hierarchical relations is in an exhaustive way, it

may result in redundant missing hierarchical relations. For example, our approach

may suggest “A IS-A B” and “A IS-A C” as two missing hierarchical relations, while

B is an ancestor of C in the current ontology (i.e., an existing IS-A relation). In this

case, “A IS-A B” is considered redundant because it can be implied by the potentially

missing hierarchical relation“A IS-A C” and the existing relation “C IS-A B”. To

improve the evaluation efficiency, we avoid unnecessary analyses on such redundant

relations. More formally, a detected potentially missing hierarchical relation “A IS-

A B” is considered as redundant if it can be inferred by other missing or existing

hierarchical relations.

3.2 Results

We applied our method to all the sub-hierarchies in the September 2017 release of

SNOMED CT (US edition), except “SNOMED CT Model Component (metadata)”

(e.g., definition status) and “Special concept (special concept)” (e.g., inactive concept).

A total of 38,615 potentially missing hierarchical relations were suggested. Table 3.2

shows the number of potentially missing hierarchical relations in each sub-hierarchy.

For instance, 6,946 potentially missing hierarchical relations were identified from the

“Clinical finding” sub-hierarchy.
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Table 3.2: Numbers of missing hierarchical relations detected in terms of the sub-
hierarchies.

Sub-hierarchy # of Potentially Missing IS-A Sub-hierarchy # of Potentially Missing IS-A

Body structure 26,161 Situation with explicit context 82

Clinical finding 6,946 Staging and scales 36

Procedure 3,861 Social context 33

Substance 390 Specimen 31

Organism 277 Environment or geographical location 26

Observable entity 242 Pharmaceutical / biologic product 22

Physical object 234 Record artifact 2

Qualifier value 185 Physical force 0

Event 87

3.2.1 Evaluation

To evaluate the effectiveness of our approach for detecting missing hierarchical rela-

tions, we randomly selected a sample of 100 potentially missing hierarchical relations

from the “Clinical finding” sub-hierarchy. A domain expert reviewed the sample and

verified that 90 out of 100 missing hierarchical relations are valid (or true positives),

indicating that our approach achieved a precision of 90%. Table 3.3 lists 15 examples

of missing hierarchical relations in the “Clinical finding” sub-hierarchy verified by the

domain expert, including “Open injury of diaphragm (disorder)” IS-A “Open wound

of thorax (disorder),” and “Primary malignant neoplasm of fibula (disorder)” IS-A

“Malignant neoplasm of long bone of lower leg (disorder).”

For each false positive (i.e., invalid missing hierarchical relation suggested), we

provided the domain expert with the existing hierarchical relation(s) which lead to

the suggestion of the false positive. The domain expert further reviewed these existing

hierarchical relations and checked whether any of them is problematic.

3.2.2 Analysis of false positive cases

We manually examined the false positive cases for potential causes. For instance, our

approach suggests a false positive: “Familial malignant neoplasm of pancreas (disor-

der)” IS-A “Malignant tumor of body of pancreas (disorder),” since the former concept
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inherits a lexical feature “body” from its ancestor “Mass of body region (finding).”

However, the meaning of “body” in “Malignant tumor of body of pancreas (disorder)”

is different than its meaning in “Mass of body region (finding).” The former refers

to the finding site of structure of body of pancreas, while the latter refers to the

finding site of body region structure. Therefore, there should not be a hierarchical

relation between the two concepts. In this case, the false positive is due to the varied

meanings of a word in different contexts.

Table 3.3: Examples of missing hierarchical relations in the “Clinical finding” sub-
hierarchy confirmed by the domain expert.

Subconcept Superconcept

Primary adenosquamous cell carcinoma of larynx (disorder) Carcinoma of larynx (disorder)

Strain of fascia of intrinsic muscle of thumb (disorder) Injury of fascia of intrinsic muscle of thumb (disorder)

Pelvic muscular dystrophy (disorder) Degenerative disorder of muscle (disorder)

Superficial injury of interscapular region with infection (disorder) Superficial injury of trunk with infection (disorder)

Contracture of iliopsoas (disorder) Disorder of soft tissue of trunk (disorder)

Carcinoma in situ of upper labial mucosa (disorder) Tumor of upper labial mucosa (disorder)

Complete ankylosis of the spine (disorder) Disorder of vertebra (disorder)

Plasmodium vivax malaria with rupture of spleen (disorder) Infectious disease of abdomen (disorder)

Fracture subluxation of acromioclavicular joint (disorder) Fracture subluxation of joint of upper limb (disorder)

Genital herpes simplex (disorder) Infectious disease of genitourinary system (disorder)

Plasmodium vivax malaria with rupture of spleen (disorder) Infectious disease of abdomen (disorder)

Open fracture of thoracic spine with spinal cord lesion (disorder) Fracture of spine with spinal cord lesion (disorder)

Open injury of diaphragm (disorder) Open wound of thorax (disorder)

Osteitis fibrosa cystica generalisata (disorder) Degenerative disorder of bone (disorder)

Primary malignant neoplasm of fibula (disorder) Malignant neoplasm of long bone of lower leg (disorder)

Another cause of false positives is the incorrect existing hierarchical relations in

SNOMED CT that our approach leverages to suggest potentially missing hierarchical

relations. Table 5.4 shows seven examples of false positives generated by our approach

due to the incorrect existing hierarchical relations. For instance, our approach sug-

gests “Encysted hydrocele of spermatic cord (disorder)” IS-A “Soft tissue lesion of

pelvic region (disorder),” which is incorrect since hydrocele refers to a small “bag of

fluid” and is not considered as a soft tissue lesion. This incorrect suggestion is due
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Table 3.4: Examples of false positives caused by the incorrect existing hierarchical
relations.

False Positives Reason: Incorrect Existing Relations

Disorder of left sacroiliac joint (disorder) IS-A Disorder of left
lower extremity (disorder)

Disorder of pelvic girdle (disorder) IS-A Disorder
of lower extremity (disorder)

Encysted hydrocele of spermatic cord (disorder) IS-A Soft tis-
sue lesion of pelvic region (disorder)

Encysted hydrocele of spermatic cord (disorder)
IS-A Soft tissue lesion (disorder)

Malignant neoplasm of sacral vertebra (disorder) IS-A Malig-
nant neoplasm of bone of lower limb (disorder)

Neoplasm of sacrum (disorder) IS-A Neoplasm of
lower limb (disorder)

Algodystrophy of foot (disorder) IS-A Degenerative disorder
of extremity (disorder)

Algodystrophy (disorder) IS-A Degenerative disor-
der (disorder)?

Reflex sympathetic dystrophy of upper extremity (disorder)
IS-A Degenerative disorder of extremity (disorder)

Algodystrophy (disorder) IS-A Degenerative disor-
der (disorder)?

Secondary malignant neoplasm of sacrum (disorder) IS-A Sec-
ondary malignant neoplasm of bone of lower limb (disorder)

Neoplasm of sacrum (disorder) IS-A Neoplasm of
lower limb (disorder)

Autosomal recessive popliteal pterygium syndrome (disorder)
IS-A Dysplasia of limb (disorder)

Popliteal pterygium syndrome (disorder) IS-A
Congenital anomaly of lower limb (disorder)

?: indicates that the incorrect existing relation has been removed in the newer versions of
SNOMED CT.

to an existing relation: “Encysted hydrocele of spermatic cord (disorder)” IS-A “Soft

tissue lesion (disorder).” In addition, there are two false positives caused by the same

existing relation: “Algodystrophy (disorder)” IS-A “Degenerative disorder (disorder)”

in the September 2017 release of SNOMED CT US edition that we used. It is worth

noting that this relation is no longer existent in the current version of SNOMED CT,

that is, this incorrect hierarchical relation has been removed.

3.3 Discussion

In this work, we introduce a lexical approach for exhaustive detection of potentially

missing hierarchical relations in SNOMED CT. It can be seen that our approach can

not only detect intuitive/straightforward relations such as “Primary adenosquamous

cell carcinoma of larynx (disorder)” IS-A “Carcinoma of larynx (disorder),” but also

uncover complicated cases such as “Genital herpes simplex (disorder)” IS-A “Infec-

tious disease of genitourinary system (disorder)” and “Plasmodium vivax malaria

with rupture of spleen (disorder)“ IS-A “Infectious disease of abdomen (disorder)”
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(Table 3.3). Since our approach only requires the hierarchical structure and concept

names as the input, it can be generally applied to other terminologies or ontologies.

3.3.1 Comparison with previous work

In previous work [26], we introduced a structural-lexical approach for the detection

of potentially missing hierarchical relations in SNOMED CT, by leveraging the lex-

ical attributes of concepts in non-lattice subgraphs. A pair of concepts is known as

a non-lattice pair if they share more than one maximal common descendant. Non-

lattice subgraphs derived from non-lattice pairs often reveal quality issues including

missing hierarchical relations. In this work, we perform exhaustive detection of poten-

tially missing hierarchical relations without limiting to the non-lattice substructures.

Figure 3.1: The levels of concepts involved
in a missing hierarchical relation: “Open in-
jury of diaphragm (disorder)” IS-A “Open
wound of thorax (disorder).”

More importantly, this work iden-

tifies previously undiscovered missing

hierarchical relations. Among 38,615

potentially missing hierarchical rela-

tions identified in this work, 36,534

(94.6%) are newly discovered com-

pared with those in previous work [26].

Among 6,946 potentially missing hi-

erarchical relations from the “Clini-

cal finding” sub-hierarchy in this work,

6,081 (87.5%) are newly identified com-

pared with those in previous work [26].

Since this work leverages the entire

structure of SNOMED CT while the previous work focuses on non-lattice substruc-

tures, it is intuitive to further investigate the level differences of the subconcepts and

superconcepts involved in the potentially missing hierarchical relations. Therefore,
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we computed the level of each concept in SNOMED CT (i.e., the number of concepts

in the path from the root to the concept). For concepts with multiple paths from the

root, we chose the number of the longest path. We considered the root’s level as 0.

For instance, Figure 3.1 shows that the level of concept “Open injury of diaphragm

(disorder)” is 11 and the level of concept “Open wound of thorax (disorder)” is 9.

The level difference between these two concepts is 2.

We compared the level difference of subconcepts and superconcepts for potentially

missing hierarchical relations identified in this work and previous work [26]. Figure 3.2

shows the number of potentially missing hierarchical relations in terms of the level

difference between the subconcept and superconcept. The level difference ranges from

-3 to 21 in this work and -3 to 18 in previous work. A negative level difference indicates

that the superconcept has a higher level than the subconcept does. For the previous

work [26], 6% of identified missing hierarchical relations have a level difference that

is greater than 5; while for this work, over 32% of the detected missing hierarchical

relations have a level difference that is greater than 5. It can also be seen that for

Figure 3.2: Distribution of potentially missing hierarchical relations detected in this
work and previous work according to the level differences between subconcepts and
superconcepts.
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each of the non-negative level differences (0 to 21), this work consistently identifies

more potentially missing hierarchical relations than the previous work does; while

for each of the negative level differences (-3 to -1), the previous work detects more

potentially missing hierarchical relations than this work does.

Another major distinction is regarding the construction of lexical features for

concepts. In the previous work [26], a concept in a non-lattice subgraph is modeled

as a set of words in its FSN with enriched lexical features inherited from its ancestors

within the non-lattice subgraph.

Figure 3.3: A non-lattice subgraph iden-
tified in the previous work [26]. This non-
lattice subgraph suggests a missing hierar-
chical relation between concepts 3 and 1:
“Fracture subluxation of lunate” IS-A “Frac-
ture dislocation of lunate”.

For instance, Figure 3.3 shows a

non-lattice subgraph identified in the

previous work [26], where concept

6, “Fracture subluxation of perilunate

joint,” has a set of lexical features

{fracture, subluxation, of, perilunate,

joint, dislocation, lunate, wrist}. In

this work, we model each concept as

a set of words and noun phrases, with

enriched lexical features inherited from

all its ancestors in the entire SNOMED CT. Take the same concept “Fracture sublux-

ation of perilunate joint” as an example, this work generates a set of lexical features

for the concept as {fracture, subluxation, of, perilunate, joint, fracture subluxation,

perilunate joint, traumatic dislocation, dislocation, traumatic, lunate, lunate bone,

bone, wrist, limb structure, finding, structure, limb, upper limb, upper, wrist joint,

disorder, fracture dislocation, lesion, musculoskeletal system, injury, system, muscu-

loskeletal, arthropathy, wrist region, region, radiocarpal, radiocarpal joint, body region,

body, extremity, upper extremity, traumatic injury, skeletal, skeletal system, connec-

tive tissue, tissue, joint injury, body system, bone finding, musculoskeletal finding,
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joint finding, carpal bone, disease, bone injury}. As can be seen, concepts have more

enriched lexical features to represent their meanings in this work.

3.4 Conclusions

This Chapter presents a lexical-based approach to exhaustively detect potentially

missing hierarchical relations in the SNOMED CT. Each concept is modeled as a set

of enriched lexical features consisting of words and noun phrases in the name of the

concept itself and its ancestors. Pairwise comparison of the concepts’ lexical features

automatically suggests potentially missing hierarchical relations. The results showed

that this approach is effective in identifying missing hierarchical relations. Analysis

of false positive cases further revealed incorrect existing hierarchical relations in the

SNOMED CT.
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CHAPTER 4. Detecting Missing IS-A Relations in the NCI Thesaurus

Using an Enhanced Hybrid Approach

To automatically identify missing hierarchical relations, one commonly used approach

is to find features to represent the meanings of concepts [22, 23, 25, 26, 31, 32, 43]

and check whether there exist any subsumption relations between the represented

meanings. In biomedical ontologies, two important aspects can be utilized to represent

the semantic meaning of a concept – lexical features and logical definitions.

Lexical features have been widely adopted to detect missing hierarchical relations

in ontologies including the NCI Thesaurus, Gene Ontology and SNOMED CT (e.g.,

auditing method introduced in Chapter 3). However, in many cases, it is challenging

to get the machine to catch the meanings and other details behind the words. Take

concept “Sarcoma” in the NCI Thesaurus as an example. Purely from the concept

name itself, the machine will not be able to know that this concept refers to a ma-

lignant neoplasm of the soft tissue or bone. In addition, concept names are defined

manually by curators of biomedical ontologies and inconsistencies may exist during

the naming process [42], which may further affect the subsumption checking.

When it comes to logical definitions (or role definitions), they are formally defined

and often contain meanings beyond concept names. Consider the previous example

“Sarcoma.” Table 4.1 shows its role definitions in the NCI Thesaurus, including a sub-

type relation (IS-A, Malignant Neoplasm) and an associative role (i.e., attribute re-

lation) (Disease Has Associated Anatomic Site, Connective and Soft T issue). How-

ever, logical definitions (or role definitions) are often incomplete, making them im-

practical to be solely used in representing meanings of concepts. For instance, in the

19.08d version of the NCI Thesaurus, only 17,052 out of 146,688 (11.62%) concepts

are considered as fully defined in logical definition; and in the 11/02/2019 release of

Gene Ontology, the number is 12,011 out of 44,650 (26.9%).
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To derive more precise missing hierarchical relations from subsumption testing,

this Chapter presents a hybrid semantic model that leverages both lexical features

and role definitions, aiming at providing more comprehensive information while rep-

resenting the meanings of concepts.

Table 4.1: The role definitions of concept “Sarcoma” (C9118 ) in the NCI The-
saurus [3].

Attribute type Value

IS-A Connective and Soft Tissue Neoplasm

IS-A Malignant Neoplasm

Disease Has Abnormal Cell Malignant Cell

Disease Has Abnormal Cell Neoplastic Cell

Disease Excludes Normal Cell Origin Epithelial Cell

Disease Excludes Normal Tissue Origin Epithelial Tissue

Disease Has Associated Anatomic Site Connective and Soft Tissue

Disease Has Normal Tissue Origin Connective and Soft Tissue

Disease Excludes Finding Benign Cellular Infiltrate

Disease Excludes Finding Indolent Clinical Course

Disease Excludes Finding Intermediate Filaments Present

Disease Excludes Finding Intracytoplasmic Eosinophilic Inclusion

Disease Has Finding Malignant Cellular Infiltrate

4.1 Methods

In this work, we focus on detecting missing hierarchical relations for non-lattice sub-

graphs which often contain quality issues [10, 22, 23, 26]. To identify missing hier-

archical relations in non-lattice subgraphs, we first find a proper way to represent

the meanings of concepts, and then check whether there exists any subsumption rela-

tions between the represented meanings of unlinked concepts (i.e., not connected by

hierarchical relations either directly or transitively) within non-lattice subgraphs.

There are mainly three steps: (1) compute non-lattice subgraphs and identify

candidate pairs of concepts that are currently not linked by hierarchical relations;
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(2) for each concept, construct a model that harmonizes associative roles, words and

roots of noun chunks within its concept name and its ancestor’s names, to represent its

meaning; (3) perform subsumption checking for candidate pairs based on our hybrid

model.

4.1.1 Computing non-lattice subgraphs and generating candidate pairs

Concepts in an ontology are organized into an IS-A hierarchy, which can be considered

as a directed acyclic graph. Given two concepts A and B in the ontology, a common

ancestor X of A and B is known as their minimal common ancestor, if A and B do

not have any other common ancestor Y such that X is an ancestor of Y . Similarly, a

common descendant P of A and B is known as their maximal common descendant, if

A and B do not have any other common descendant Q such that P is a descendant

of Q. An ontology forms a lattice if any two concepts in the ontology have a unique

minimal common ancestor and a unique maximal common descendant. Lattice is a

desirable property for a well-formed ontology or terminology [64].

A pair of concepts is called a non-lattice pair if the two concepts have more than

one maximal common descendant. A non-lattices subgraph can be obtained from a

non-lattice pair by first reversely computing the minimal common ancestors of the

maximal common descendants of the non-lattice pair; and then aggregating all the

concepts and hierarchical relations between them [22]. Figure 4.1 shows a non-lattice

subgraph in the NCI Thesaurus (19.08d version) obtained from the non-lattice pair

(“Skin Disorder,” “Non-Neoplastic Disorder By Site”) with two maximal common

descendants “Non-Neoplastic Skin Disorder” and “Cutaneous Pseudolymphoma”.

We leverage an efficient non-lattice extraction algorithm [100] to compute all the

non-lattice subgraphs in the NCI Thesaurus. Then we identify potentially missing

hierarchical relations between pairs of concepts (denoted as candidate pairs) which

are currently not linked by hierarchical relations in the non-lattice subgraphs. Take
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the non-lattice subgraph shown in Figure 4.1 as an example, (“Non-Neoplastic Skin

Disorder,” “Cutaneous Pseudolymphoma”) is a candidate pair and (“Skin Disorder,”

“Benign Lymphoproliferative Disorder”) is another.

Figure 4.1: An example of non-lattice subgraphs in the 19.08d version of NCI The-
saurus. Concepts are connected by hierarchical relations. The red dotted line shows
a potentially missing hierarchical relation between concepts “Cutaneous Pseudolym-
phoma” and “Non-Neoplastic Skin Disorder” identified by our method.

4.1.2 Modeling concepts

In this work, we introduce a comprehensive semantic model that utilizes role defini-

tions and lexical features to represent the meanings of concepts. Given a concept C,

its semantic model contains five parts (Cbow, Cebow, Cr, Cer, Ca):

1. bag-of-words Cbow, which includes words appearing in its preferred name;

2. enriched bag-of-words Cebow, which includes words appearing in its preferred

name and words in its ancestors’ preferred names;
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3. roots of noun chunks Cr, which includes roots of noun chunks in its preferred

name;

4. enriched roots of noun chunks Cer, which includes roots of noun chunks in its

preferred name and in its ancestors’ preferred names; and

5. associative roles Ca.

Figure 4.2 shows the semantic models for concepts “Cutaneous Pseudolymphoma”

and “Non-Neoplastic Skin Disorder” in the non-lattice subgraph shown in Figure 4.1.

Figure 4.2: Semantic models of concepts “Cutaneous Pseudolymphoma (C62776)”
and “Non-Neoplastic Skin Disorder (C27555)” which are contained in the non-lattice
subgraph shown in Figure 4.1.

Note that subtype relations in the role definitions are not included in the semantic

model, since our goal is to identify missing hierarchical relations (i.e., subtype rela-

tions). Alternatively, we use features inherited from concept’s ancestor (i.e., Cebow

and Cer) to embody the subtype relations, which could gather more concept-related

information and thus help refine the meanings of concepts. We maintain both orig-

inal lexical features (i.e., Cbow and Cr) and enriched ones (i.e., Cebow and Cer) for

performing subsumption testing later.
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4.1.2.1 Lexical features

The regular bag-of-words Cbow and enriched bag-of-words Cebow could convey the

meaning of a concept to some extent. However, there exist some words that may

express different meanings depending on the contexts under which they appear. For

example, word “erlotinib” in concept “Erlotinib” and in concept “Erlotinib Hydrochlo-

ride” convey different meanings – the former refers to the chemical item itself while

the latter is used to describe word “hydrochloride.” Therefore, even though both

concepts contain the same word “erlotinib,” it should be considered as a different

lexical feature for each concept.

To handle such cases (i.e., a noun used as a descriptive term), our idea is to leverage

a technique in Natural Language Processing (NLP) called dependency parsing which

could extract the grammatical structure and relationships between words for a given

phrase. For example, after parsing concept name “Malignant Bladder Neoplasm,” we

can get “malignant bladder neoplasm” whole as a noun chunk. The word “malignant”

is used to modify “neoplasm” in terms of the type (i.e., benign or malignant) while the

word “bladder” is used to modify “neoplasm” in term of the location (i.e., anatomic

site). In this work, besides bag-of-words Cbow (and enriched Cebow), we also adopt

roots of noun chunks Cr (and enriched Cer) as part of the lexical feature. Given a

concept name, we use spaCy [101], an open-source library for NLP, to parse it and

recognize the roots of noun chunks. In the previous example, “neoplasm” is denoted

as a root of noun chunk since other words are used to modify it. By utilizing roots of

noun chunks Cr, to some extent we could distinguish different meanings of a word in

different contexts. In the concepts “Erlotinib” and “Erlotinib Hydrochloride,” word

“erlotinib” will be taken as two different words – a root of noun chunk in the former

concept, but a descriptive term (i.e., not a root of noun chunk) in the latter concept.

In this work, we also adopt a list of stop words that may distort the represented

meanings of concepts. As mentioned in our previous work [39], concept names which
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contain “and” are often inconsistent with what they actually mean and their role

definitions. For example, concept “Lip and Oral Cavity Squamous Cell Carcinoma”

actually refers to a squamous cell carcinoma arising from the lip or the oral cavity.

In this work, we do not perform subsumption testing for candidate pairs that include

concepts whose Cbow contain any stop word. In addition, while generating enriched

lexical features Cebow and Cer, concepts will not inherit lexical features Cbow and

Cr from their ancestors containing any stop word such that the stop words will not

propagate. More specifically, as long as an ancestor contains a stop word, none of the

ancestor’s lexical features will be inherited. The list of stop words used in this step

is the same as the one introduced in Chapter 3.

In Figure 4.2, it can be seen that concept “Cutaneous Pseudolymphoma” has

two single words and inherits seven words from its ancestors such as “Benign Lym-

phoproliferative Disorder,” “Skin Disorder” and “Non-Neoplastic Disorder,” which

enrich the meaning expressed by the concept name. Also, word “pseudolymphoma”

is recognized as the root of noun chunk “cutaneous pseudolymphoma.” Concept

“Cutaneous Pseudolymphoma” also inherits another root of noun chunk “disorder”

from its ancestor “Benign Lymphoproliferative Disorder.” Note that another ancestor

of concept “Cutaneous Pseudolymphoma” is “Non-Neoplastic Hematologic and Lym-

phocytic Disorder,” which contains a stop word “and.” Hence, Cbow and Cr of this

ancestor are not inherited.

4.1.2.2 Associative roles

In our model, we use associative roles Ca to collect and adjust the meaning of

concepts that may not be fully expressed by lexical features, especially for concepts

that are lexically similar but should not be linked by hierarchical relations. Consider

the concepts “Metastatic Malignant Neoplasm in the Pancreas” and “Metastatic Ma-

lignant Pancreatic Neoplasm.” If only lexical features are considered, the former
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concept’s lexical features include all of the latter one’s after the enrichment (e.g.,

“Metastatic Malignant Neoplasm in the Pancreas” inherits “pancreatic” from its an-

cestor “Pancreatic Neoplasm”). However, the former concept “Metastatic Malignant

Neoplasm in the Pancreas” refers to a malignant neoplasm that has spread to the

pancreas from another anatomic site, while “metastatic malignant pancreatic neo-

plasm” actually refers to a malignant neoplasm that arises from the pancreas and has

metastasized to another anatomic site. Thus, there should not be any subsumption

relations between these two concepts. However, the difference between the two con-

cepts can not be caught purely from their lexical features. To compensate for this, we

adopt associative roles which usually contain information that is not included in the

literal meanings. Consider the previous example, the former concept has associative

role (Disease Has Metastatic Anatomic Site, Pancreas), but the latter concept

has role definition (Disease Excludes Metastatic Anatomic Site, Pancreas). De-

pending on the inclusion and exclusion of metastatic anatomic locations provided by

the role definitions could easily distinguish these two concepts.

In this work, to gather as much information as possible, the associative roles we

adopted for a concept are the inferred ones that include associative roles inherited

from the concept’s ancestors. For instance, in Figure 4.2, concept “Cutaneous Pseu-

dolymphoma” contains 18 associative roles (14 inherited from its ancestors), while

concept “Non-Neoplastic Skin Disorder” contains three associative roles (two inher-

ited from its ancestors).

4.1.3 Identifying potentially missing hierarchical relations

As mentioned earlier, in this work, our task is to identify potentially missing hier-

archical relations among candidate pairs – pairs of concepts that are not linked by

hierarchical relations within non-lattice subgraphs. For each candidate pair (A, B),

we perform a two-step subsumption checking to see if the meaning represented by the
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hybrid model of A is more detailed than B’s (i.e., A IS-A B), or vice versa (i.e., B

IS-A A).

In the first step, we perform a lexical-feature-based checking. We consider original

lexical features (i.e., Cbow, Cr) as minimal satisfying features for a concept. In other

words, if A’s enriched lexical features (i.e., all meanings from lexical features that

hold for A) satisfy B’s original lexical features, we consider A is more detailed than

B in terms of lexical features. Here, we do not consider enriched lexical features of

B because A can then also inherit lexical features from B’s ancestors if A becomes a

subtype of B. As we represent lexical features of concepts as sets of words, we simply

use set inclusion testing, that is, if A’s enriched bag-of-words (i.e., Aebow) is a superset

of B’s bag-of-words (i.e., Bbow) and A’s enriched roots of noun chunks (i.e., Aer) is

a superset of B’s roots of noun chunks (i.e., Br), then A is considered more detailed

than B in lexical feature wise.

In the second step, we perform a role-based checking. To do so, we require that

each of the two concepts within a candidate pair should contain at least one associative

role and associative roles of two concepts should not be totally identical (otherwise we

can not decide which one is more detailed). Further, we check that for each associative

role (roleB, valueB) of B, if there exists a corresponding role (roleA, valueA) of A

such that roleA and roleB are the same and valueB is the same or more general than

valueA (i.e.,valueB is an ancestor of valueA). If this is the case, then A is considered

more detailed than B in terms of role definitions.

If A is more detailed than B in terms of both lexical features and role defini-

tions, we consider “A IS-A B” as a potentially missing hierarchical relation. For

example, consider a candidate pair (“Cutaneous Pseudolymphoma,” “Non-Neoplastic

Skin Disorder”) in Figure 4.2. “Cutaneous Pseudolymphoma” is more detailed than

“Non-Neoplastic Skin Disorder” in terms of lexical features because the enriched

bag-of-words of “Cutaneous Pseudolymphoma,” {cutaneous, pseudolymphoma, be-
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nign, lymphoproliferative, disorder, skin, non-neoplastic}, is a superset of bag-of-

words of “Non-Neoplastic Skin Disorder,” {non-neoplastic, skin, disorder}; and the

enriched roots of noun chunks of “Cutaneous Pseudolymphoma,” {pseudolymphoma,

disorder}, is also a superset of roots of noun chunks of “Non-Neoplastic Skin Disor-

der,” {disorder}. In addition, “Cutaneous Pseudolymphoma” is more detailed than

“Non-Neoplastic Skin Disorder” in role definitions, since for each associative role of

“Non-Neoplastic Skin Disorder,” there is a corresponding role of “Cutaneous Pseu-

dolymphoma” that is equivalent or more detailed. Therefore, our approach suggests

“Cutaneous Pseudolymphoma IS-A Non-Neoplastic Skin Disorder” as a potentially

missing hierarchical relation. Note that this missing hierarchical relation has been

confirmed by experts from NCI Enterprise Vocabulary Service (EVS) and included

in the newer versions of the NCI Thesaurus.

In some cases, a potentially missing hierarchical relation detected could actually

be a relation similar to a hierarchical relation, such as “part of .” NCI Thesaurus pro-

vides associations (i.e., different things from role definitions) between concepts, such

as “Has Salt Form,” “Has Target,” “Has Pharmaceutical Transformation,” etc.

We further utilize them to distinguish those like-hierarchical relations. Given a po-

tentially missing hierarchical relation identified by our approach, if two concepts are

already linked by any kind of these associations, then the missing hierarchical relation

will be abandoned.

Another thing to consider is that due to the large size of some non-lattice sub-

graphs, there may exist an overlap between non-lattice subgraphs which may result in

redundant missing hierarchical relations being suggested. We adopt the same strategy

in Chapter 3 to remove redundant relations which can be inferred by other missing

or existing hierarchical relations.
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4.2 Results

We applied our enhanced hybrid approach to the 19.08d inferred version of the NCI

Thesaurus for identifying potentially missing hierarchical relations.

4.2.1 Non-lattice subgraphs and suggested hierarchical relations

In total, 10,216 non-lattice subgraphs were obtained in 16 sub-hierarchies of the NCI

Thesaurus. 55 non-redundant missing hierarchical relations were suggested for five

sub-hierarchies. Table 4.2 shows the number of suggested missing hierarchical rela-

tions for each of the five sub-hierarchies. For example, 34 non-redundant missing hier-

archical relations were suggested in the“Disease, Disorder or Finding” sub-hierarchy.

Table 4.2: The number of potentially missing hierarchical relations identified for
sub-hierarchies.

Sub-hierarchy # of Non-lattice Subgraphs # of Suggested Missing IS-A relations

Disease, Disorder or Finding 8,075 34

Experimental Organism Diagnosis 257 18

Drug, Food, Chemical or Biomedical Material 922 1

Molecular Abnormality 143 1

Activity 109 1

4.2.2 Evaluation

For evaluation, we provided the NCI EVS domain experts, who manage the NCI The-

saurus, with 55 potentially missing hierarchical relations identified by our approach.

29 out of 55 were confirmed by EVS experts and have been incorporated in the newer

version of the NCI Thesaurus. Table 4.3 lists ten examples of valid missing hierar-

chical relations verified by EVS experts, including “Glycine Encephalopathy” IS-A

“Congenital Nervous System Disorder” and “Congenital Vena Cava Abnormality”

IS-A “Congenital Cardiovascular Abnormality.”
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Table 4.3: Ten examples of valid missing hierarchical relations confirmed by EVS
experts.

Subconcept Superconcept

Glycine Encephalopathy Congenital Nervous System Disorder

Tumor Infiltrating Lymphocytes-N2-Transduced Therapeutic Tumor Infiltrating Lymphocytes

Stage 0 Anal Cancer AJCC v8 Anal Precancerous Condition

Cutaneous Pseudolymphoma Non-Neoplastic Skin Disorder

Congenital Vena Cava Abnormality Congenital Cardiovascular Abnormality

Mouse Cardiac Fibrosarcoma Mouse Cardiac Sarcoma

Fibrosarcoma of the Mouse Intestinal Tract Mouse Malignant Mesenchymal Neoplasm

Carcinoma of the Mouse Larynx Mouse Carcinoma

Eyelid Xanthoma Non-Neoplastic Eyelid Disorder

Autoimmune Lymphoproliferative Syndrome-Associated Lymphoma Immunodeficiency-Related Malignant Neoplasm

4.3 Discussion

In this work, we combine role definitions and lexical features to suggest missing hier-

archical relations in the NCI Thesaurus. The evaluation results show that our hybrid

approach is promising in identifying missing hierarchical relations. From the true pos-

itives, such as “Glycine Encephalopathy” IS-A “Congenital Nervous System Disorder”

and “Cutaneous Pseudolymphoma IS-A Non-Neoplastic Skin Disorder,” we find that

using enriched lexical features for subconcepts help recognize meanings related to the

concepts that cannot be caught from their own concept names.

4.3.1 Analysis of false positives

Even though this approach correctly suggested missing hierarchical relations in ma-

jority of the cases (i.e., 29 out of 55), there were still cases where the approach made

incorrect suggestions. By reviewing such invalid suggestions, we identified two major

causes for them.

The first cause is that the existence of erroneous hierarchical relations in NCI

Thesaurus has led to invalid missing hierarchical suggestions. For example, our ap-

proach suggested “Carcinosarcoma of the Mouse Prostate Gland” IS-A “Carcinoma
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of the Mouse Prostate Gland” mainly based on an existing hierarchical relation “Car-

cinosarcoma of the Mouse Prostate Gland” IS-A “Mouse Carcinoma.” However, as

stated by EVS experts, “carcinosarcoma” is not a kind of “carcinoma.” Thus, the

existing hierarchical relation on which we rely to derive the missing hierarchical re-

lation is incorrect, and it has been fixed by EVS experts in the newer release of the

NCI Thesaurus. In total, 7 out of 26 false positive cases fall into this cause. In such

cases, even though our suggestions of missing hierarchical relations were incorrect,

they further revealed problems within the existing hierarchy of the NCI thesaurus

that in turn help improve the quality of the NCI thesaurus.

Secondly, since we only adopted original lexical features (Cbow, Cr) for supercon-

cepts during subsumption testing, the meanings beyond the original lexical features

and logical definitions could lead incorrect missing hierarchical relations to be sug-

gested. Consider the false positive “Diffuse Pulmonary Lymphangiomatosis” IS-A

“Pulmonary Vascular Disorder.” The subconcept is a kind of “neoplasm,” however,

the superconcept has an ancestor “Non-Neoplastic Lung Disorder.” Since a neoplasm

could not be a subtype of a non-neoplastic disorder, this suggestion is invalid. Other

similar cases include: “Conjunctival Kaposi Sarcoma” IS-A “Conjunctival Vascu-

lar Disorder” and “Retinal Hemangioma” IS-A “Retinal Vascular Disorder.” Since

meanings like “non-neoplastic” could be found in the enriched lexical features of su-

perconcepts (i.e., inherited from ancestors), a natural question would be: Whether

adopting enriched lexical features for both concepts within candidate pairs during

lexical-based subsumption testing could improve the performance of our method?

To study this, we further utilized enriched lexical features of superconcept and

subconcepts in lexical-based subsumption checking. Therefore, in order for a hierar-

chical relation to be suggested, the enriched lexical features of the subconcept now

should also contain the original lexical features of the superconcept’s ancestors. In

total, 45 missing hierarchical relations were identified in this setting. The result
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was found to be a subset of our previous result. One exception is that a missing

hierarchical relation was considered redundant but became non-redundant as some

missing hierarchical relations are no longer included in the result. Since the hierarchi-

cal relation was redundant to a valid hierarchical relation, this hierarchical relation

is also considered as valid. Among those 45 missing hierarchical relations, 29 were

valid hierarchical relations, the number of true positives went down by 3 but the

number of false positives went down by 7. We noticed that some false positives in

the format of “neoplasm” IS-A “non-neoplastic” still appeared in the result because

the role definitions of the superconcepts are not sufficient (i.e., incompleteness). For

example, “Kidney Lymphangioma” IS-A “Kidney Vascular Disorder.” The supercon-

cept “Kidney Vascular Disorder” should be a “non-neoplastic” disorder, however, in

the role definitions, none of its ancestors is “non-neoplastic” disorder and none of

its associative roles indicates that it is not a kind of “neoplasm.” Another example

is “Brain Astrocytoma” IS-A “Brain Disorder.” Therefore, adopting enriched lexi-

cal features for both superconcept and subconcept during lexical-based subsumption

checking could improve the performance, but only slightly due to the incompleteness

of role definitions.

4.3.2 Comparison with other approaches

The hybrid approach introduced in this Chapter can be categorized as a structural-

lexical-based method introduced in Chapter 2.

Compared with structural-based approaches such as abstraction network (AbNs)

[33, 36] which often require domain expert to manually review problematic areas in

ontologies to reveal the exact quality issues, our approach not only identifies prob-

lematic areas (i.e., non-lattice subgraphs), but also automatically suggests missing

hierarchical relations (the actual quality issues) in the problematic areas.

In previous lexical-based and structural-lexical-based methods, bag-of-words model
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is often adopted while representing concepts [25, 26, 43, 102]. However, individual

words may not be sufficient to represent the semantic meaning of a concept. In con-

trast, our hybrid model leverages both lexical features and associative roles to provide

more comprehensive information for concepts’ meanings.

4.3.3 Comparison with our previous work

In our previous work [102], we developed a lexical-based approach to identify missing

hierarchical relations in the NCI Thesaurus. The lexical feature used in that work

was the enriched bag-of-words (i.e., Cebow in this work). Since only one kind of

lexical features was used, several other restrictions such as stop words, antonym

pairs and location restrictions were applied to avoid potential false identification of

missing hierarchical relations. In total, 925 potentially missing hierarchical relations

were identified from 9,512 non-lattice subgraphs in 19.01d inferred version of the

NCI Thesaurus. We provided EVS experts with 253 potentially missing hierarchical

relations in non-lattice subgraphs of size less than or equal to 15. EVS experts

confirmed 73 out of 253 suggested missing hierarchical relations. We compared our

hybrid approach in this work with the lexical-based approach in previous work [102]

in two aspects.

First, we applied our hybrid approach in this work to the 19.01d inferred version

of the NCI Thesaurus. In total, 87 non-redundant missing hierarchical relations were

identified, 56 out of which were obtained from non-lattice subgraphs of size less than

or equal to 15. Compared with previously evaluated 253 missing hierarchical relations,

28 out of 55 were overlapping. Among those 28 overlapped ones, 14 of them were true

positives. Based on this, the precision was improved while the recall was lowered.

In our previous work [102], only one type of lexical features (enriched bag-of-words)

was used. Therefore, in the second experiment, we tried to consider associative roles

and roots of noun chunks as additional subsumption testing (i.e., in addition to lex-
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ical features and other restrictions used in [102]) to further check their effectiveness

in helping identify missing hierarchical relations. Given 253 missing hierarchical re-

lations identified in our previous work, 135 out of 253 were the cases in which both

the subconcept and the superconcept contained at least one associative roles and

their associative roles were not identical. 32 out of 253 cases satisfied the role-based

testing, and 14 out of them were valid ones. When it comes to using roots of noun

chunks, 245 cases passed the testing, where 70 out of them were valid ones. When it

comes to performing additional subsumption testing based on both features, 31 out

of 253 passed the testing, where 14 out of them were valid ones. The results indicate

that associative roles can be used as the main tester to recognize differences in the

intended meanings of concepts and roots of noun chunks can be used to catch the

subtle differences.

4.4 Conclusions

In this chapter, we introduced a hybrid semantic model that combines lexical fea-

tures and role definitions of concepts to identify missing hierarchical relations within

non-lattice subgraphs in the NCI Thesaurus. The results showed that our approach

is capable of uncovering valid missing hierarchical relations. Further examination

of false positives revealed erroneous existing hierarchical relations as well as incom-

plete concept definitions, which in turn also helped improve the quality of the NCI

thesaurus. Comparison with our previous lexical-based work further showed the use-

fulness of leveraging role definitions.
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CHAPTER 5. A Transformation-based Method for Auditing the IS-A

Hierarchy of Biomedical Terminologies in the Unified Medical Language

System

The Unified Medical Language System (UMLS) integrates various source ontologies

to support interoperability between biomedical information systems. This chapter

presents a novel transformation-based auditing method that leverages the knowledge

in the UMLS to systematically identify missing hierarchical relations in its source on-

tologies. Unlike the traditional ontology auditing methods that often rely on internal

knowledge (e.g., approaches introduced in Chapter 3 and Chapter 4), this method

leverages not only the ontology itself but also the knowledge from other multiple on-

tologies in the UMLS (i.e., both internal and external knowledge). This will result in

newly identified missing hierarchical relations that would not be uncovered by only

looking into one or two individual ontologies.

5.1 Methods

This work is based on the UMLS 2019AB release. A large proportion of concept names

(or atoms) in the UMLS contain more than one noun chunk. The key idea of this

transformation-based auditing method is to replace those noun chunks in a concept

name with more general terms. If a newly generated name after the replacement is

an existing concept name in the same source ontology, then we consider there is a

potentially missing hierarchical relation between the two concepts corresponding to

the original and new concept names.

This method consists of four main steps to identify potentially missing hierarchi-

cal relations for each concept name in the UMLS: (1) parse the concept name and

identify noun chunks; (2) generate replacement candidates for noun chunks; (3) per-

form concept name transformation and construct new potential concept names; and
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(4) map newly constructed concept names to atoms and identify potentially missing

hierarchical relations in the source ontologies.

5.1.1 Parsing concept names

We first convert each concept name to lower case. We then use spaCy [101], an

open-source library for advanced NLP, to perform dependency parsing and identify

noun chunks within concept names. For example, Figure 5.1 shows the dependency

graph of the concept name “Primary basal cell carcinoma of left eyelid” where two

base noun chunks can be identified: “primary basal cell carcinoma” and “left eyelid.”

Here a base noun chunk consists of a head (e.g., “carcinoma”) plus words describing

the head (e.g., “primary basal cell”) [103]. Note that “basal cell” is not a base noun

chunk since it is used to modify or describe “carcinoma.” Instead, we consider such

noun phrases describing the head as secondary noun chunks.

Figure 5.1: Dependency graph of the concept name “Primary basal cell carcinoma
of left eyelid.”

After the parsing, each concept name C can be represented as an ordered array

of elements [c1, c2, . . . , cn], where ci can be a single word, a base noun chunk, or a

secondary noun chunk. For instance, the concept name “Primary basal cell carcinoma

of left eyelid” can be represented in two forms: (1) [primary basal cell carcinoma, of,

left eyelid]; and (2) [primary, basal cell, carcinoma, of, left eyelid].
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5.1.2 Identifying replacement candidates

In this step, we identify replacement candidates that are more general than the noun

chunks (base and secondary) in each concept name. If a noun chunk can be mapped

to a UMLS atom (i.e., the noun chunk is also a concept name in an existing source

ontology), then we consider the concept names of this atom’s ancestors in its source

ontology as replacement candidates for the noun chunk; otherwise, the noun chunk

is considered as not having any replacement candidates. In other words, we leverage

existing hierarchical relations in the UMLS source ontologies to identify replacement

candidates. To avoid replacement candidates being too general, we leveraged ances-

tors of the atom within a distance of two levels using Depth-limited-search[104].

Take the concept name “Acute dacryoadenitis of left eye” in Table 5.1 as an ex-

ample, it can be represented as an array [acute dacryoadenitis, of, left eye]. The noun

chunk “acute dacryoadenitis” can be mapped to 9 atoms. For example, A2889158 is

an atom sourced from the SNOMED CT (US edition) with seven level-2 ancestors.

After going through all the 9 atoms, the following replacement candidates for “acute

dacryoadenitis” can be obtained: “disorder of lacrimal gland,” “disorder of eyelid or

lacrimal system,” “dacryoadenitis,” “inflammation of specific body systems,” “acute

inflammatory disease,” “inflammatory disorder of head,” “acute disease,” and “in-

flammatory disorder.”
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Table 5.1: An example of the transformation process for concept name “Acute
dacryoadenitis of left eye.”

Concept name Acute dacryoadenitis of left eye

Representation ([c1, c2, c3]) [acute dacryoadenitis, of, left eye]

Replacement candidates for

“acute dacryoadenitis” (r1)

{dacryoadenitis, inflammation of specific body systems, acute disease, acute inflammatory

disease, inflammatory disorder, inflammatory disorder of head, disorder of eyelid or lacrimal

system, disorder of lacrimal gland}

Replacement candidates for

“left eye” (r3)
{organ of special sense, eye, subdivision of face}

Combinatorial replacements

[{acute dacryoadenitis, dacryoadenitis, inflammation of specific body systems, acute disease,

acute inflammatory disease, inflammatory disorder, inflammatory disorder of head, disorder

of eyelid or lacrimal system, disorder of lacrimal gland}, of, {left eye, organ of special sense

, eye, subdivision of face}]

Potentially missing IS-A

relations detected in

source ontologies

SNOMEDCT US:

“acute dacryoadenitis of left eye” IS-A “acute disease of eye”

MEDCIN:

“acute dacryoadenitis of left eye” IS-A “inflammatory disorder of eye”

5.1.3 Concept name transformation

For each concept name with noun chunk(s) such that the replacement candidates have

been identified already, we replace the original noun chunk(s) with their corresponding

candidates to generate new potential concept names, which may serve as supertypes

of the original concept name (since the replacement candidates are more general than

the original noun chunk). Formally, given a concept name C represented by [c1, c2,

. . . , cn] where there exists an i such that ci is a base or secondary noun chunk and

ri is a set of replacement candidates for ci, then we replace ci with any candidate in

ri and concatenate the array as a string to construct new concept names that may

serve as C’s supertypes. If there are multiple such i’s, we will perform combinatorial

replacements for multiple i’s.

Take the concept name “Acute dacryoadenitis of left eye” in Table 5.1 as an

example. There are three elements in its array representation [c1, c2, c3] where c1

and c3 are base noun chunks. There are 8 replacement candidates for c1 and 3 for

c3. A total of 35 new potential concept names can be obtained after the combinatory
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replacements for c1 and c3, including “acute disease of eye” and “acute inflammatory

disease of left eye.” Note that the total number 35 can be obtained by multiplying 9

(8 new noun chunks and 1 original noun chunk for c1) by 4 (3 new noun chunks and

1 original noun chunk for c3), and subtracting 1 (the original concept name) from it.

5.1.4 Identify missing hierarchical relations in source ontologies

In this step, we check if the newly generated concept names exist in the UMLS (i.e.,

exactly match the names of UMLS atoms) to identify potentially missing hierarchical

relations between atoms in source ontologies. Given a concept name C (mapped to an

atom AUIC) and a potential concept name S serving as its supertype, if the following

conditions hold:

1. S can be mapped to a UMLS atom AUIS;

2. AUIS comes from the same source ontology T as AUIC ;

3. currently there is no hierarchical relation (either direct or indirect) between

AUIS and AUIC claimed in T ; and

4. AUIC has the same semantic type as AUIS, or the set of semantic types of

AUIC contains that of AUIS as a subset,

then we consider there is a potentially missing hierarchical relation between AUIC

and AUIS (i.e., AUIC IS-A AUIS) in the ontology T . Note that missing hierarchical

relations between atoms from different source ontologies are beyond the scope of this

work. The semantic type requirement of C and S is to avoid ambiguities caused by

concept names which may have multiple meanings. For example, the concept name

“cold” could refer to lower temperature (with a semantic type “Natural Phenomenon

or Process”) or a kind of disease (with a semantic type “Disease or Syndrome”).

For “acute dacryoadenitis of left eye” in Table 5.1, after the transformation, “acute

disease of eye” is one of its potential new concept names which can be mapped to
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atoms, while “acute inflammatory disease of left eye” cannot. By further mapping

concept names to atoms, a potentially missing hierarchical relation between “acute

dacryoadenitis of left eye” with AUI A27761536 and “acute disease of eye” with AUI

A3463187 can be identified in the SNOMED CT.

It is worth noting that the potentially missing hierarchical relations identified by

our method may contain redundancy. Here a missing hierarchical relation (say “x

IS-A y”) identified in an ontology T is considered redundant, if there exists another

missing hierarchical relation “x IS-A z” identified in T such that y is currently an

ancestor of z in T . In this case, if “x IS-A z” is a valid missing hierarchical relation,

then “x IS-A y” can be implied as valid by “x IS-A z” and “z IS-A y.” Therefore, we

further remove the potentially missing hierarchical relations that are redundant from

the result.

5.2 Results

5.2.1 Identifying missing hierarchical relations

We applied our method to the English-language concept names in the UMLS (2019AB

release). In total, our method identified 42,362 potentially missing hierarchical rela-

tions from 13 source ontologies in the UMLS. 39,359 out of 42,362 are non-redundant.

Table 6.1 shows the number of potentially missing hierarchical relations (non-redundant)

detected in each source ontology. Table 6.1 also presents each ontology’s size including

the number of concepts and the number of direct hierarchical relations, as well as the

number of existing hierarchical relations that can be identified by our transformation-

based method. In total 149,568 existing hierarchical relations can be identified from

13 source ontologies, and 109,031 of them are direct hierarchical relations.

Among 39,359 potentially missing hierarchical relations identified, 36,997 were

obtained from a single noun chunk replacement (1-replacement), 2,338 from two noun

chunk replacements (2-replacement), and 24 from three noun chunk replacements (3-
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replacement).

Table 5.2: The number of potentially missing hierarchical relations detected in the
UMLS source ontologies in English, as well as the ontology size and the number of
existing hierarchical relations that can be identified for each ontology.

Source ontology
ontology size # of existing IS-A relations identified # of potentially missing

IS-A relations identified# of concepts # of direct IS-A relations direct + indirect direct

MEDCIN 348,808 353,304 30,001 23,692 16,779

UWDA 61,127 62,285 34,564 24,594 10,865

FMA 102,595 104,341 54,644 39,274 7,230

SNOMEDCT US 401,832 994,499 19,859 14,529 3,833

NCI 151,966 159,479 688 539 334

GO 49,907 77,067 9,640 6,246 250

SNOMEDCT VET 36,527 40,689 82 81 23

HPO 16,222 18,313 37 30 11

CPM 3,079 3,853 7 7 10

UMD 27,309 12,889 0 0 8

PDQ 18,874 4,298 43 36 8

CPT 40,892 14,072 1 1 7

ATC 5,485 4,969 2 2 1

5.2.2 Evaluation

To assess the effectiveness of our method for identifying missing hierarchical relations

in the UMLS source ontologies, a sample of 200 hierarchical relations from SNOMED

CT (the “Clinical Finding” subhierarchy) and a sample of 100 from the Gene Ontol-

ogy were randomly selected and reviewed by domain experts. For each relation, we

provided domain experts with the preferred names of the two concepts involved, as

well as the links to the two concepts in their online browsers.

Domain experts verified that 173 out of 200 potentially missing hierarchical re-

lations in the SNOMED CT (a precision of 86.5%) and 63 out of 100 in the Gene

Ontology (a precision of 63%) are valid (i.e., true positives). Table 5.3 lists 15 valid

examples.
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Table 5.3: Examples of missing hierarchical relations confirmed by domain experts.

Subtype concept Supertype concept Source ontology

Abrasion and/or friction burn of buttock

with infection (disorder)
Superficial injury of buttock with infection (disorder) SNOMEDCT US

Camptodactyly of right hand (disorder) Congenital deformity of right hand (disorder) SNOMEDCT US

Acute gastrojejunal ulcer with hemorrhage AND

with perforation but without obstruction (disorder)

Peptic ulcer with hemorrhage AND with perforation

but without obstruction (disorder)
SNOMEDCT US

Malignant melanoma of skin of forearm (disorder) Malignant neoplasm of skin of forearm (disorder) SNOMEDCT US

Deficiency of adenosylhomocysteinase (disorder) Deficiency of hydrolase (disorder) SNOMEDCT US

Infestation caused by Boophilus (disorder) Infestation caused by Ixodidae (disorder) SNOMEDCT US

Abscess of nasal septum (disorder) Inflammatory disorder of cartilage (disorder) SNOMEDCT US

Obsessive compulsive disorder caused by cocaine (disorder) Anxiety disorder caused by stimulant (disorder) SNOMEDCT US

Primary malignant neoplasm of frontal lobe (disorder) Malignant neoplasm of cerebral cortex (disorder) SNOMEDCT US

Rupture of anterior cruciate ligament of left knee (disorder) Injury of cruciate ligament of knee (disorder) SNOMEDCT US

negative regulation of testosterone biosynthetic process negative regulation of steroid hormone biosynthetic process GO

macrophage migration inhibitory factor binding enzyme binding GO

response to camptothecin response to topoisomerase inhibitor GO

formate dehydrogenase complex oxidoreductase complex GO

negative regulation of transmembrane negative regulation of cellular process GO

Table 5.3 also contains four examples of missing hierarchical relations in SNOMED

CT that were obtained by multiple noun chunk replacements. For instance, the

missing hierarchical relation between “Obsessive compulsive disorder caused by co-

caine (disorder)” and “Anxiety disorder caused by stimulant (disorder)” was obtained

through the following two replacements: (1) “Obsessive compulsive disorder” IS-A

“Anxiety disorder” in the NCI Thesaurus; and (2) “Cocaine” IS-A “Psychostimu-

lant” and “Psychostimulant” IS-A “Stimulant” in the SNOMED CT.

5.2.3 Analyses of false positive cases

Based on the evaluation results from domain experts, we examined false positive

cases (i.e., invalid missing hierarchical relations). More specifically, we looked into

the noun chunks within the concept names and their replacement candidates (i.e.,

existing hierarchical relations) to find the potential causes.

Table 5.4 presents 7 invalid missing hierarchical relations as well as the existing hi-

erarchical relations in the UMLS that were leveraged to obtain these invalid relations.
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We noted that the main cause of false positives is that the biomedical meanings of

replacement candidates are not considered to be more general than their correspond-

ing noun chunks. This could relate to either incorrect existing hierarchical relations

or different views of different ontologies. Take “cellular response to beta-carotene”

IS-A “cellular response to vitamin A” detected in the Gene Ontology as an example.

The domain experts believe that “beta-carotene” is an antioxidant that converts to

vitamin A (which is not an hierarchical relation), while SNOMED CT has a hierar-

chical relation between “Beta-carotene (substance)” and “Retinol (substance)” (with

a synonym “Vitamin A”), indicating that this is an incorrect hierarchical relation in

the SNOMED CT. Consider “Abscess of thumb of left hand (disorder)” IS-A “Abscess

of finger of left hand (disorder)” detected in the SNOMED CT. It was obtained by

leveraging an existing relation “Thumb” IS-A “Finger” in both UWDA and FMA.

However, the detected missing hierarchical relation is invalid, since in SNOMED CT

“Finger” only includes the second to fifth digit of the hand (i.e., “Thumb” is not a

“Finger”).

Table 5.4: Examples of false positives (or invalid missing hierarchical relations) and
the existing hierarchical relations causing the false positives

Subtype concept Supertype concept Source ontology Existing IS-A relation(s) causing the false positive

Benign neoplasm of false vocal

cord (disorder)

Benign neoplasm of vocal

cord (disorder)
SNOMEDCT US “false vocal cord” IS-A “vocal cord” in the NCI Thesaurus

Deficiency of lysophospholipase

(disorder)

Deficiency of triacylglycerol

lipase (disorder)
SNOMEDCT US

“lysophospholipase” IS-A “phospholipase” IS-A

“triacylglycerol lipase” in the SNOMEDCT US

Abscess of thumb of left hand

(disorder)

Abscess of finger of left hand

(disorder)
SNOMEDCT US “thumb” IS-A “finger” in the UWDA and FMA

Calculus of gallbladder with acute

and chronic cholecystitis (disorder)

Calculus of gallbladder with acute

cholecystitis (disorder)
SNOMEDCT US

“acute and chronic cholecystitis” IS-A “acute cholecystitis”

in the MEDCIN

cellular response to beta-carotene cellular response to vitamin A GO “beta-carotene” IS-A “vitamin A” in the SNOMEDCT US

caprolactam metabolic process propylene metabolic process GO “caprolactam” IS-A “propylene” in the SNOMEDCT US

cellular response to ammonium ion cellular response to ammonia GO “ammonium ion” IS-A “ammonia” in the SNOMEDCT US
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5.2.4 Effect of restricting the hierarchical source for noun chunk replace-

ment

Relating to the subtle ontology difference, a natural question is whether restricting

the hierarchical relations leveraged for noun chunk replacement to be in the same

ontology will have an effect on the performance of our method. To study this, we

performed an experiment by restricting replacement candidates in the same ontology,

which resulted in a total of 20,754 potentially missing hierarchical relations, compared

to 39,359 without applying the restriction.

We further looked into the evaluated samples regarding the performance compar-

ison. For SNOMED CT, 173 out of 200 evaluated relations (without applying the

restriction) are valid, achieving a precision of 86.5%. Among 200 evaluated ones, 107

of them can be obtained by applying the restriction, and 103 out of 107 are valid,

achieving a precision of 96.26%. Therefore, the precision is increased by 9.76% with

the restriction applied. However, the number of valid missing hierarchical relations

is decreased from 173 to 103, a 40.46% reduction. For Gene Ontology, 63 out of 100

evaluated relations (without applying the restriction) are valid, achieving a precision

of 63%. Among 100 evaluated ones, 21 of them can be obtained by applying the

restriction, and 18 out of 21 are valid, achieving a precision of 85.71%. Therefore,

the precision is increased by 22.71%. However, the number of valid missing hier-

archical relations is decreased from 63 to 18, a 71.43% reduction. It can be seen

that although restricting to the same source ontology for noun chunk replacement

can improve the precision to some extent, leveraging multiple sources can identify

more missing hierarchical relations to a greater extent while still achieving acceptable

precision.
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5.3 Discussion

In this work, we introduced a transformation-based method to replace noun chunks

in a concept name with more general concept names in order to detect potentially

missing hierarchical relations in the UMLS source ontologies. To find noun chunk re-

placement, we leverage abundant knowledge of hierarchical relations between concept

names provided by the UMLS.

5.3.1 Distinction with related work

Other auditing methods designed for a specific ontology including pattern-based,

lexical-based and deep learning-based methods usually rely on the knowledge in the

ontology itself and require transferring knowledge to features for representing concepts

in order to identify missing hierarchical relations between concepts [22, 23, 25–27,

31, 32, 43]. Therefore, the effectiveness of such methods to some extent relies on the

ontology itself (i.e., internal knowledge), while our method leverages both internal and

external knowledge through the UMLS to perform the auditing. More importantly,

our method enables the auditing of multiple source ontologies at the same time.

In addition, unlike previous related work on auditing the UMLS that mainly

focused on auditing high level views (e.g., semantic types, concepts/CUIs, relations

between concepts), this work intends to audit the UMLS source ontologies at the

atom level.

5.3.2 Exact versus normalized matching

For parsing and mapping concept names, we directly used the exact names without

performing any normalization. We further tried normalizing concept names (after

noun chunks were identified) using the UMLS lexical tool LuiNorm [105]. We also

utilized the normalized format for generating replacement candidates for noun chunks
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and mapping newly constructed concept names to atoms. As a result, the potentially

missing hierarchical relations identified using normalized matching contain all the

39,359 ones identified by exact matching as a subset. In addition, the normalized

matching identified 10,627 extra potentially missing hierarchical relations.

Indeed, normalized matching helped identify extra valid missing hierarchical re-

lations. For example, a missing hierarchical relation between “Malignant neoplasm

of connective tissue” and “Neoplasm of connective tissues” in the SNOMED CT was

identified by normalized matching, since “tissues” was normalized to “tissue.” How-

ever, there were also invalid cases identified. For instance, “Asymmetry” is a child of

“Symmetries” in the SNOMED CT. Performing normalization resulted in “Asymme-

try” IS-A “Symmetry” and thus an invalid missing hierarchical relation: “Asymmetry

of mandible” IS-A “Symmetry of mandible.” Since the main focus of this work is the

transformation-based method, it is beyond the scope of this work to thoroughly com-

pare the actual performances of the exact matching and normalized matching, as it

requires additional manual evaluation by domain experts.

5.3.3 Potential for concept enrichment

Since our focus in this work is to identify missing hierarchical relations in the UMLS

source ontologies, we require that the two atoms involved in a potentially missing

hierarchical relation be from the same ontology. For those ones with the two atoms

coming from different source ontologies, missing concepts may be identified for con-

cept enrichment in source ontologies. That is, if the supertype atom does not appear

in the same source ontology as the subtype atom, then the supertype atom may be a

potentially missing concept (i.e., new concept) for the ontology or a missing synonym

for an existing concept in the source ontology of the subtype atom.
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5.3.4 Applicability to a specific ontology

Although our method was designed for auditing multiple source ontologies in the

UMLS, it can be applied within a specific ontology such as the SNOMED CT it-

self without using the UMLS. A question that may arise is: Will this give the same

results obtained for restricting the hierarchical relations leveraged for noun chunk

replacement to be in the UMLS SNOMED CT? The answer to this question depends

on whether the hierarchical relations in the UMLS SNOMED CT are identical to

that in the original SNOMED CT. It is worth noting that relations in the UMLS

are expressed in terms of CUIs (concepts) and AUIs (atoms or concept names). For

the September 2019 release of SNOMED CT (US edition) integrated in the UMLS

(2019AB release), only hierarchical relations between designated preferred names of

SNOMED CT concepts are maintained. Therefore, if we only leverage such hierarchi-

cal relations between preferred names of concepts when applying our method within

the SNOMED CT, then the same results will be obtained; however, if we leverage

additional hierarchical relations such as those between synonyms of concepts, then

more results will be obtained and need further domain expert evaluation.

5.4 Conclusion

In this Chapter, a concept name transformation-based auditing method is introduced

to detect potentially missing hierarchical relations in the UMLS source ontologies.

Leveraging rich knowledge in the UMLS (2019AB release), our method is able to

audit multiple ontologies at the same time. Experts’ evaluation showed the effective-

ness of our method (a precision of 86.5% for SNOMED CT and 63% for the Gene

Ontology). Further analyses of invalid missing hierarchical relations derived by our

method revealed additional quality issues in the source ontologies.
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CHAPTER 6. A Lexical-based Formal Concept Analysis Method to

Identify Missing Concepts in the NCI Thesaurus

As part of the ontology evolution process, new concepts are regularly added in re-

sponse to the evolving domain knowledge and emerging applications. Most existing

concept enrichment methods suggest new concepts via directly importing knowledge

from external sources. In this chapter, we introduced an FCA-based method that

utilizes the intrinsic knowledge within the ontology itself. Compared with the tradi-

tional FCA-based methods which take logical definitions as attributes (i.e., difficult

to validate new concepts), our approach considers lexical features (i.e., words ap-

pearing in the concept names) as FCA attributes while generating formal context.

As a result, formalizing new concepts also brings bags of words that could be used

to name the concepts which are more convenient to validate compared with sets of

logical definitions.

6.1 Method

This method mainly consists of two steps: (1) pre-processing concept names and con-

structing FCA formal context; and (2) performing FCA via a multistage intersection

algorithm to identify potentially missing (or new) concepts in the NCI Thesaurus.

6.1.1 Constructing formal context

Given a collection of concepts in the ontology, we consider all the concepts as FCA

objects O and words appearing in the concept names (i.e., lexical features) as FCA

attributes A, respectively. With the binary relation R ⊆ O × A specifying whether

concept o ∈ O contains word a ∈ A, we can construct the FCA formal context

K = (O,A,R).

Since words appearing in concept names may have variations (e.g., plural vs. sin-
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gular forms) or synonyms, we perform attribute/word normalization to create a more

robust FCA formal context. For word variations, we normalize words appearing in

concept names using LuiNorm [105], a lexical tool provided by the UMLS. For exam-

ple, “bones” can be normalized to “bone”. Regarding word synonyms, we leverage

concepts in the NCI Thesaurus with single-word preferred names and single-word

synonyms. More specifically, if a word w itself is the preferred name of an NCI The-

saurus concept and has a synonym s that is also a single word, then we maintain a

mapping between the synonym s and the preferred name w. This way words with the

same meanings can be normalized to their preferred names thus the same attribute.

6.1.2 Identifying potentially missing concepts

To derive FCA formal concepts, we leverage the idea of a faster concept analysis

algorithm introduced in [106], which is to perform multistage intersection on each

pair of formal concepts from the initial formal concept set consisting of all objects,

until no more new formal concept is generated. The pseudocode of the algorithm is

shown in Fig. 6.1.

Figure 6.1: Pseudocode of identifying potentially missing concepts by multistage
intersection.

In practice, for computation convenience, we perform operations on the lexical
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feature sets (i.e., using FCA attribute sets to represent FCA formal concepts). The

initial set of FCA formal concepts is a set of FCA attribute sets, that is, the lexical

feature sets of all the original concepts (i.e., {o↑ | o ∈ O}). In the first iteration, we

compute the intersection of each pair of FCA attribute sets in the initial set; and if

the result is not included in the initial set, we add it into the initial set. We repeat

this process until no new FCA attribute set can be derived. Each newly generated

FCA attribute set is taken as the lexical feature set of a potentially missing concept

among the given concepts. An advantage of using lexical features (or words) as FCA

attribute sets is that these words can be further leverage to name the newly discovered

concepts.

6.1.3 Illustrative example

Fig. 6.2 shows a simple example of FCA formal context in a tabular format generated

from the concept Breast Fibroepithelial Neoplasm (C40405 ) and its descendants in the

NCI Thesaurus. The cells with check marks represent the binary relation between

the concepts and their lexical features. Note that word “Tumor” is normalized to

“neoplasm,” since it is a synonym of Neoplasm (C3262 ) in the NCI Thesaurus.

Figure 6.2: An example of FCA formal context generated by the concept Breast
Fibroepithelial Neoplasm (C40405 ) in the NCI Thesaurus and its descendants in com-
pany with their lexical features. Word “Tumor” is normalized to “neoplasm” and
word “Phyllodes” is normalized to “phyllode.” An FCA formal concept (marked by
blue cells) with FCA attribute set {breast, neoplasm} is considered as a potentially
missing concept among the given concepts.

Given the FCA formal context, the FCA formal concept with attribute set {breast,

neoplasm} (see blue cells in Fig. 6.2) can be derived by intersecting the attribute sets
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of Borderline Breast Phyllodes Tumor (C5316 ) and Breast Fibroepithelial Neoplasm

(C40405 ). Therefore, a concept with lexical feature set {breast, neoplasm} is con-

sidered as a potentially missing concept for the given FCA formal context. This

example only intends to illustrate how our method works, and one may have noticed

that Breast Neoplasm (C2910 ) is an existing concept in the NCI Thesaurus although

it is not among the given concepts. For the actual implementation of our method, we

further check if the newly generated concepts are existing in the NCI Thesaurus and

ensure the removal of such cases from the list of potentially missing concepts.

6.2 Results

6.2.1 Summary result

We applied our method to the sub-hierarchies under Disease or Disorder (C2991 ) in

the 19.08d version of the NCI Thesaurus. Table 6.1 shows the numbers of existing

concepts, newly generated concepts, and potentially missing concepts respectively for

each sub-hierarchy. For example, there are 10,996 existing concepts in the Neoplasm

(C3262 ) sub-hierarchy; and FCA generated a total of 8,511 new concepts, among

which 7,737 were potentially missing concepts in the NCI Thesaurus.

Note that potentially missing concepts are detected in terms of the given FCA

formal context (or the given collection of the input concepts). Therefore, the missing

concepts detected in a sub-hierarchy may overlap with those detected in another sub-

hierarchy. In total, 8,983 unique potentially missing concepts were identified among

these sub-hierarchies.

6.2.2 Preliminary evaluation

We performed a preliminary evaluation to validate the potentially missing concepts

identified using the external knowledge in the UMLS which integrates millions of

biomedical concepts from more than 200 source ontologies [87].
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Table 6.1: The numbers of existing concepts, newly generated concepts, potentially
missing concepts, and missing concepts validated via UMLS for each sub-hierarchy
under Disease or Disorder (C2991 ).

Sub-hierarchy # of Concepts
# of Newly Generated Concepts

Total
# of Potentially

Missing

# of Validated

via UMLS

C27551: Disorder by Site 13,595 9,114 7,864 451

C3262: Neoplasm 10,996 8,511 7,737 289

C53529: Non-Neoplastic Disorder 4,198 1,279 813 227

C8278: Cancer-Related Condition 578 491 374 28

C4873: Rare Disorder 915 283 196 44

C89328: Pediatric Disorder 528 280 218 20

C28193: Syndrome 907 266 204 31

C3101: Genetic Disorder 159 52 30 6

C2893: Psychiatric Disorder 231 45 29 11

C3113: Hyperplasia 81 24 17 8

C3340: Polyp 110 24 7 2

C35470: Behavioral Disorder 49 19 9 0

C3075: Hamartoma 63 15 6 0

C26684: Radiation-Induced Disorder 25 5 3 0

For each potentially missing concept identified, we checked whether its lexical

feature set can be matched to any concept name from the external ontologies in

the UMLS. We found 592 out of 8,983 potentially missing concepts are included in

the external ontologies in UMLS (see Table 6.1 for the number of missing concepts

validated via UMLS for each sub-hierarchy). Table 6.2 lists 10 examples of validated

missing concepts (in the form of lexical feature sets) and matched concept names in

the UMLS ontologies.

Since a matching concept may be from multiple UMLS ontologies, we further

looked into the ontologies that contributed most to the validation of the 592 iden-

tified potentially missing concepts. The top 10 in terms of the number of matched

concepts (in parentheses) are listed as follows: Consumer Health Vocabulary - CHV

(328), SNOMED CT US Edition - SNOMEDCT US (245), Read Codes - RCD (135),

MedDRA - MDR (124), ICPC2-ICD10 Thesaurus - ICPC2ICD10ENG (101), MSH

(97), Metathesaurus Names - MTH (79), MEDCIN (78), Online Mendelian Inheri-
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tance in Man - OMIM (55), and Logical Observation Identifiers Names and Codes -

LNC (52).

Table 6.2: Ten examples of validated missing concepts and their matched concepts
in the UMLS ontologies.

Lexical Feature Set of Missing Concept Matched Concept (External ontology)

{carcinoma, papillary, urothelial} Papillary urothelial carcinoma (SNOMEDCT US)

{borderline, serous, tumor} Serous borderline tumor (SNOMEDCT US)

{intestinal, lymphoma} Intestinal lymphoma (SNOMEDCT US)

{adrenal, carcinoma} Adrenal carcinoma (OMIM)

{in, breast, carcinoma, situ} breast carcinoma in situ (CHV)

{fossa, piriform} Piriform Fossa (MSH)

{cellular, pigmentation} cellular pigmentation (GO)

{b-cell, cutaneous, lymphoma, primary} Primary cutaneous B-cell lymphoma (MEDCIN)

{gastric, sarcoma} gastric sarcoma (MEDCIN)

{adenocarcinoma, breast, metaplasia, with} breast adenocarcinoma with metaplasia (MEDCIN)

6.3 Discussion

In this work, we leveraged words in concept names and FCA to detect potentially

missing concepts in the NCI Thesaurus. The preliminary evaluation via UMLS-based

validation indicates that our method has the potential to identify missing concepts

for concept enrichment of the NCI Thesaurus. However, there are still several things

that need our attention.

First, the potentially missing concepts detected by our method may not be di-

rectly imported into an ontology. This is because different ontologies are developed

for disparate purposes and have varying target applications, and a concept that is

essential for an ontology may not be necessary for another. Further reviews and

evaluations by the ontology curators are still required to decide whether a concept

is meaningful and should be added according to the scope of the ontology and its

potential applications.

Another thing is that the “subconcept-superconcept” relations between formal
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concepts derived from lexical features could be different from the hierarchical IS-A

relations in the original ontology. For instance, Breast Neoplasm and Breast are two

new concepts generated based on the FCA formal context in Fig. 6.2. Although the

two concepts have a “subconcept-superconcept” relation in terms of the FCA word

attributes, they do not form a valid IS-A relation. In fact, Breast locates in a different

sub-hierarchy Organ. A potential solution to avoid such cases is to use enriched lexical

features for a concept, which includes its ancestor’s lexical features. This way, the

original hierarchical relation will be captured in the initial FCA formal context, and

thus the new concepts generated by attribute set intersection will locate within the

same sub-hierarchy with the root concept. However, the enriched lexical features may

make it more difficult to decide which words to use for naming a concept. To deal

with this, we could further leverage both logical definitions and lexical features to

identify and name missing concepts.

6.4 Conclusion

In this chapter, we present a lexical- and FCA-based method that utilizes intrinsic

knowledge of an ontology to detect potentially missing concepts. We applied our

method to the NCI Thesaurus Disease or Disorder sub-hierarchy and identified 8,983

potentially missing concepts. The preliminary evaluation via external validation using

UMLS showed encouraging evidence for the effectiveness of our method.
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CHAPTER 7. Exploring Deep Learning-based Approaches for Predicting

Concept Names in SNOMED CT

Although many automatic methods have been proposed to identify missing or new

concepts in biomedical ontologies, proper naming of those new concepts remains chal-

lenging and relies on the curators of biomedical ontologies. However, it is hard for

different curators to maintain the same standard and keep consistent while naming

thousands of concepts. Also, according to the experiment results from Zhu et al’s

work [19], even in well-constructed and mature ontologies such as SNOMED CT,

there still exists a large number of missing concepts. It is labor-intensive and time-

consuming for curators to manually find appropriate and unambiguous names for a

large number of concepts. Therefore, automated methods are highly desirable to pro-

vide suggestions on concept names to reduce curators’ manual burden and accelerate

the ontology maintenance process.

By using the method introduced in Chapter 6 and the method in our previous

work [22], we are able to generate a bag of words that are necessary to construct

the name for a potentially missing concept. However, the words may be unordered,

or the order of the words may not be consistent with the naming convention of the

given ontology. For example, we could get bag of words {of, neoplasm, malignant,

upper, lobe, right, of, lung} whose proper name should be “malignant neoplasm of

right upper lobe of lung.”

In this Chapter, based on our previous work, we further try to generate proper

sequence order (i.e., concept names) for a given bag of words. We explore three deep

learning-based approaches to automatically predict concept names that comply with

the naming convention of SNOMED CT. These deep learning models are simple neu-

ral network, Long Short-Term Memory (LSTM), and Convolutional Neural Network

(CNN) combined with LSTM.
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7.1 Method

In this work, we focus on addressing the problem of predicting the word sequence

given a bag of words for naming a concept. To achieve this, we divide this task into

the following two subtasks. Firstly, given a word sequence, we train the models to

determine whether the given sequence or order is correct (meaningful and satisfying

the naming convention of SNOMED CT) or not (binary classification). Secondly,

given a bag of words, we utilize the trained models to predict its correct word sequence.

Since the trained models return different confidence levels of the correctness judgment

for different sequences, we test all the possible sequences of the given words and choose

the one(s) with the highest confidence as the predicted concept name(s). Further, we

implement a two-step filter to eliminate those potential incorrect candidate concept

name(s).

7.1.1 Word embedding & data preprocessing

We first use Word2Vec [107] provided by Gensim [108] to learn vector representation

of words in SNOMED CT concept names. Each word is mapped to a 125-length

vector (word embedding) based on the word(s) surrounding it, and thus mapped to a

higher dimensional space. The mappings between words and their word embeddings

are stored in a matrix which later will be reused in training the neural network models.

To train the models, we need both positive and negative training data. The

original sequences of words (concept names) are labeled as “1” or correct. Then, for

each correct sequence, we generate n incorrect sequences (n = 5 in this work) by

randomly disordering the sequence and the generated sequences are labeled as “0” or

wrong. Since concept names in SNOMED CT are in different lengths (ranging from

1 to 39), all sequences are padded to the same length of 45.
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7.1.2 Neural networks for classifying word sequences

We use Keras [109], a high-level neural networks API, to implement three types of

deep learning models as shown in Fig. 7.1. For all three models, there is an embedding

layer right after the input layer. It is responsible for mapping each word in the input

sequence to its word embedding. The pre-computed word embedding matrix will

serve as the trained weight for this layer.

Figure 7.1: Three neural network models used for the classification task. (a) is a
simple neural network for binary classification; (b) is an LSTM neural network; (c)
is the combination of convolutional neural network and LSTM. “None” means that
the dimension is variable.

The first model (Fig. 7.1(a)) is a simple neural network for binary classification.

Since word embedding increases the input dimension, we need to flatten the input.

Then we use a dense layer that has a sigmoid activation function to generate the pre-

diction result. For the classification task, we use binary crossentropy in Keras, which

is often used for binary classification problems, in all three models while training.

The concept names in SNOMED CT are in various lengths, and the position of a

word may not only depend on the words next to it. This requires the model to be able

to learn long-term context and dependencies between words in the input sequence.

LSTM is proven to be good at learning such dependencies [67]. Thus we also adopt
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LSTM (Fig. 7.1(b)) for binary classification that contains a single LSTM layer with

100 LSTM memory unit in the middle.

When it comes to determining the correctness of a sequence, there may exist fea-

tured patterns which can indicate whether a sequence order is correct or not. Thus,

to capture those potential featured patterns, we employed a model in which convo-

lutional neural network (CNN) is adopted and combined with LSTM (Fig. 7.1(c)).

CNN is commonly applied to analyzing visual imagery and it can identify lower level

features from the minimum unit of the input which eventually may improve the clas-

sification process [110]. CNN also benefits sentence classification, such as sentiment

analysis and question classification [111]. Regarding our work, the input is sequence

of words (concept name) which can be considered as one dimension spatially. By

using one-dimension CNN (Conv1D), certain word combinations or patterns will be

selected as lower level feature and these learned spatial features will then be learned

by an LSTM layer. In this model, the number of output filters in the Conv1D layer

is 32 and the window size is set to three. The pool size [112] for the MaxPooling1D

layer is two.

As mentioned in the data preprocessing step, the number of input data labeled

as “1” is less than those labeled as “0,” with a proportion of 1 : 5. To lessen the

impact of unbalanced data, we assign different weights to different classes so that

during training, the model will weight class “1” more when adjusting the weight.

7.1.3 Predicting concept names given bags of words

To suggest candidate concept name for a given bag of words, we first generate all its

permutations (i.e., all possible sequences). Then we use the trained models to classify

those generated sequences to check which one is valid. While performing classification,

the neural network models could return a confidence score (probability) for a sequence

to be valid. Thus, we select the sequence(s) with the highest confidence score to be
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valid as the potential concept name(s) for a given bag of words. Because the number

of permutations of n distinct objects is n factorial. When n becomes relatively large,

the computation time increases dramatically. Thus, in this work, we only provide

prediction for concept names whose length is less than or equal to 9.

Since there may exist multiple sequences with the highest confidence score for a

given bag of words, we implement a two-step filtering process to further select the

“best” candidate(s). In the first step, we leverage the idea of Viterbi algorithm [113]

which returns the most likely sequence of hidden states, to remove those “invalid”

ones. It is based on the assumption that if a word A has never been placed before (or

after) another word B in the training data set, then A is not likely to appear before

(or after) B in the candidate concept names. In the second step, we leverage similar

concept names to further reduce the candidate list. For a bag of words, we first find

the most similar concept name (in terms of the bag of words) in the training data,

where similarity is calculated by dividing the number of words that appear in both

bags of words by the total number of distinct words in two bags. Then we utilize

“Levenshtein distance” [114] to compute the editing distances between each candidate

name and the most similar concept name, and the one with the least distance will be

selected as the “best” candidate concept names.

7.2 Experiment & result

To validate the effectiveness of our method, we focused on two research questions:

1. Are the deep learning models able to determine if a sequence of words is a valid

concept name in SNOMED CT? (binary classification)

2. Given a bag of words, can our method generate the correct sequence using those

words and thus provide suggestions on how to name a concept in SNOMED CT?

(sequence prediction)
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7.2.1 Experiment setup

To explore the first question regarding binary classification, we performed two ex-

periments. In the first experiment, we randomly separated the concept names in the

March 2018 US Edition of SNOMED CT into two groups: training and test datasets.

There are 1,753,513 labeled sequences in the training data set and 1,784,744 labeled

sequences in the test data set. In the second experiment, we trained our models by

all the concept names in the September 2017 US Edition of SNOMED CT (along

with randomly disordered ones). For testing, we extracted all the new concept names

that were added into the March 2018 US Edition of SNOMED CT and generated

disordered ones. For each of these two experiments, after training our models with

the training dataset, we evaluated our models using the test dataset.

For the second question regarding sequence prediction, we evaluated our method

in two ways. In the first way, we considered the sequence orders of the newly added

concept names in the March 2018 US Edition of SNOMED CT as the ground truth

for sequence prediction. For each concept name, we regarded it as a bag of words

and used our method to generate candidate concept names. Then we compared these

suggestions with the ground truth. In the second way, we identified a collection

of missing concepts (in the September 2017 US Edition of SNOMED CT) and the

corresponding bags of words that are necessary to construct their names using Cui et

al.’s method [22]. A total of 60 concepts in the form of bags of words were obtained

for testing the performance of word sequence prediction with the help of a human

annotator for validation.

7.2.2 Result for binary classification

In the first experiment for binary classification, we first tested different thresholds

of confidence (for a sequence to be labeled as positive) for three models to achieve

the best F1 score. The results are 0.5 for simple neural network, 0.8 for LSTM,
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and 0.7 for CNN and LSTM, respectively. The results of binary classification for

three models using these thresholds are shown in Table 7.1, where it can be seen

that the LSTM model outperformed the other two models, and achieved the best

performance: an accuracy of 94.72%, a precision of 84.59%, a recall of 83.51%, an

F1 score of 84.05%, and an FP-rate of 3.04%. The simple neural network performed

the worst, and generated more false positives than the other two models. This is

not surprising because while determining if a sequence is correct or not, the order

of words matters and the simple neural network may not be able to learn long-term

dependencies. In addition, it is shown that the combination of CNN and LSTM did

not improve the performance of binary classification.

Table 7.1: Result of binary classification for Experiment I.

Simple Neural Network CNN and LSTM LSTM

Accuracy 73.58% 92.15% 94.72%

Precision 35.42% 74.23% 84.59%

Recall 71.08% 81.03% 83.51%

F1 Score 47.28% 77.48% 84.05%

FP-rate 25.91% 5.63% 3.04%

The result of the second experiment for binary classification is shown in Table 7.2.

It can be seen that the LSTM model still achieved the best performance. The main

difference between the two experiments is that the first one’s evaluation is within the

same version of SNOMED CT, however, the second one is using concept names from

a newer version of SNOMED CT to test the model which was trained by the older

version. Although the training data in the second experiment is much more than the

testing data, it exhibited a similar performance as the first experiment.

Since the LSTM model achieved the best performance in the binary classification

subtask, we utilized it to perform sequence prediction for given bags of words in the

next step.
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Table 7.2: Result of binary classification for Experiment II.

Simple Neural Network CNN and LSTM LSTM

Accuracy 71.75% 93.35% 95.05%

Precision 31.67% 81.63% 87.56%

Recall 60.05% 77.56% 81.97%

F1 Score 41.47% 79.54% 84.67%

FP-rate 25.90% 3.49% 2.33%

7.2.3 Result for sequence prediction

For the sequence prediction subtask, we first used the trained LSTM model to predict

correct sequence orders for the newly added concept names in the March 2018 US

Edition of SNOMED CT. Given the computational challenge for testing all possible

sequences and the fact that less than 5% of concept names in SNOMED CT are in

the length of more than or equal to ten (see Fig. 7.2 for the distribution of concept

names in terms of their lengths), we performed the sequence prediction for concepts

whose lengths are less than ten.

Figure 7.2: Number of concept names in terms of the name length for all concepts
in the March 2018 US Edition of SNOMED CT.

For a bag of words, our method will provide a set of candidate concept names. If

a candidate name is in correct order (i.e., a valid name), then it is considered as a

true positive case; otherwise, it is considered as a false positive case. If the correct

sequence is not included in the set of candidate concept names, we have one false

negative case.
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Table 7.3 shows the performance of our LSTM-based sequence prediction approach

for predicting concept names with an overall F1 score of 63.41%. It can be seen that

concepts whose names are in the length of two and three received an F1 score of

above 80%, concepts in length of four and five received an F1 score of above 60%,

concepts in length of six and seven received an F1 score of above 50%, concepts in

length of eight received an F1 score of 49.1%, and concepts in length of nine received

an F1 score of 39.91%. This indicates that as the length of concept names grows,

more sequences (false positive cases) might be included in the candidate set which

leads to decreasing performance. However, even for concept names with length of six,

seven or eight, the performance is still acceptable. Overall, the F1 score of our model

is 63.41%.

Table 7.3: Result of LSTM-based sequence prediction in terms of the length of
concept names. Training data is from September 2017 US Edition of SNOMED CT
and test data is the newly added concepts in the March 2018 Edition.

Length of Concept Name 2 3 4 5 6 7 8 9 All

Number of True Positives 735 1274 909 918 565 446 316 184 5347

Number of False Positives 154 310 556 465 375 278 287 332 2757

Number of False Negatives 155 321 590 665 627 465 368 222 3413

Precision 82.68% 80.43% 62.05% 66.38% 60.11% 61.60% 52.40% 35.66% 65.98%

Recall 82.58% 79.87% 60.64% 57.99% 47.40% 48.96% 46.20% 45.32% 61.04%

F1 Score 82.63% 80.15% 61.34% 61.90% 53.00% 54.56% 49.10% 39.91% 63.41%

We also performed another way to evaluate the performance of our LSTM-based

sequence prediction approach, by utilizing Cui et al.’s method in [22] to generate bags

of words that are necessary to construct the names of new concepts. We obtained 60

bags of words and performed name prediction for them. For each predicted name, a

human annotator manually examined whether the generated sequence order is correct

and conforming to the name convention of SNOMED CT. Among 60 cases, 44 out

of them were considered as correct by the human annotator. Table 7.4 shows our

LSTM-based approach achieved an F1 score of 73.95%. The positive examples include

“malignant neoplasm of blood vessel of thorax,” “structure of layer of tunica vaginalis”

and “open wound of limb without complication.” This indicates that the LSTM-based
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method can be applied for naming a new concept based on the bags of words featuring

a concept.

Table 7.4: Result of LSTM-based sequence prediction for names of missing concepts
identified by Cui et al.’s method in [22].

Number of Concepts Names 60

Number of True Positives 44

Number of False Positives 15

Number of False Negatives 16

Precision 74.58%

Recall 73.33%

F1 Score 73.95%

7.3 Discussion

7.3.1 Potential Factors Affecting the Prediction Performance

There are mainly two factors that potentially affect the performance of our prediction

model – the size of bags of words and the words in the bag.

For the first factor, as the length of concept names increases, it becomes more

difficult for the model to predict the correct sequence. This is because when the

size of a bag of words increases, the number of sequences that need to be classified

by the model increases dramatically. Since we assume that there is only one correct

concept name for a bag of words, the false positive cases may greatly lower the model’s

precision. For instance, for a bag of words of size five without duplicate words, it has

120 permutations and only one of them is correct. If we only have two false positive

cases, the accuracy is about 98%, however, the actual precision is only 33% and F1

measure is 49%. Thus, the length of the concept name is an important factor affecting

the performance of model. In our experiments, 50% of the testing data are of a length

that is larger than or equal to five.

The second factor that may affect the model’s performance involves the words in
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the bag. Our model may generate multiple candidate concept names for a given bag

of words. This may be because that some words in the bag have the same role in

other concept names. For example, for the concept name “ultrasound guided biopsy

of left and right breast,” our model may be confused about the order of words “left”

and “right,” because they may appear separately in other concepts but with the same

roles or patterns. Another typical case is related to duplicate words in a bag. If a bag

contains two (or more) identical words (e.g. multiple “of” or multiple “and”) such

as “MRI of joint of right lower extremity,” it is even harder for the model to decide

which word should be attached with the first one, which word should be attached

with the second one, and the order of these two parts. Thus in this work, we also

compared the performance of the LSTM-based model applied to the bags of words

containing duplicate words and those which do not contain duplicate words. The

result is shown in Table 7.5. The model achieved a better F1 score when applied to

the bags of words without duplicates.

Table 7.5: Result of LSTM-based sequence prediction in terms of whether concept
names contain duplicate words or not.

Without Duplicates With Duplicates

Number of True Positives 4789 558

Number of False Positives 2224 533

Number of False Negatives 3101 312

Precision 68.29% 51.15%

Recall 60.70% 64.14%

F1 Score 64.27% 56.91%

7.3.2 Analysis of False Positives

We manually examined some of the false positive cases in Experiment II of binary

classification for potential patterns that our model is not able to deal with. Mean-

while, we compared our sequence predictions for those false positive cases with the

ground truth to explore possible causes for mislabeling. Two observed patterns are
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listed as follows.

The first pattern is related to “of.” In SNOMED CT, “B A” and “A of B” are

both acceptable names for certain cases. One of them is often defined as the fully

specified name (FSN), while the other one is listed as its synonym. For instance, “cyst

of lung” is an FSN, and “lung cyst” is its synonym. However, in some cases, only

one of them is included (e.g., concept “lung mass” does not have a synonym “mass

of lung”). Therefore, if a concept name falls into this pattern, our model sometimes

cannot predict it correctly.

The second pattern involves two items (e.g., noun or noun phrase) that are con-

nected by a preposition or conjunction, in which case our model sometimes cannot de-

cide which one should be placed first. For example, for the concept “naproxen sodium

and sumatriptan,” our predicted name was “sumatriptan and naproxen sodium.” An-

other example is that, for the concept “fluoroscopy of left and right hip,” our predicted

name was “fluoroscopy of right and left hip.” In such cases, even the predicted names

were valid, they were considered as false positives since they differ from the sequence

of words provided in the ground truth. In other words, our evaluation was performed

in a conservative way.

7.3.3 Beyond Naming Purpose

While analyzing false positive cases, we also noticed that this work could identify po-

tential inconsistencies in the naming convention of concepts which can be considered

as part of the quality assurance process for biomedical ontologies. For an existing

name, we can use our trained model to check if it complies with the naming conven-

tion of SNOMED CT. For example, in the March 2018 US Edition of SNOMED CT,

a new concept “Lesion of bone right upper arm” is added. Our model labeled it as

wrong. We found that it is a synonym of “Lesion of right upper arm bone.” However,

when it comes to another similar concept “Lesion of left lower leg bone,” it does not
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have a synonym “Lesion of bone left lower leg.” Instead, it has “Lesion of bone in left

lower leg” whose pattern does not appear as a synonym of “Lesion of right upper arm

bone.”

Another example is “Liver of normal size” that has been added to SNOMED CT

in the March 2018 Edition. Our model labeled it as wrong. We found that it is an

FSN, and “Normal sized liver” is its synonym. However, in other similar concepts such

as “Normal sized tonsils” and “Normal sized ear canal,” they are considered as FSNs,

but they do not have any synonym that has the pattern “xx of normal size.” This

indicates a naming inconsistency. A potential fix is that “Normal sized liver” should

be the FSN, and the name “Liver of normal size” should become inactive. These

two examples indicate that our model to some extent can reveal the inconsistency in

SNOMED CT names.

7.4 Conclusion

In this chapter, we explore three deep learning-based approaches – simple neural net-

work, LSTM, and CNN combined with LSTM, to predict concept names for new con-

cepts given bags of words. Our experiments showed that the LSTM-based approach

achieved the best performance with an F1 score of 63.41% for predicting names for

newly added concepts in the March 2018 Edition of SNOMED CT and an F1 score of

73.95% for naming missing concepts identified by Cui et al.’s method in [22]. This in-

dicates that the LSTM-based approach is effective in predicting concept names given

bags of words. Further analysis of the false positive cases revealed that this work may

also be leveraged for identifying potential inconsistencies within the concept names

of SNOMED CT.
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CHAPTER 8. Preliminary Analysis of Cross-ontology Evaluation Based

on Extrinsic Knowledge from UMLS

After quality issues were identified in biomedical ontologies, typically they will be

manually reviewed by domain experts which is time-consuming and with a heavy

workload.

In this dissertation, we explored different automated validation methods to relieve

the manual burden. In the early-stage work of Chapter 4, to validate the uncovered

missing hierarchical relations, we adopted the idea of Retrospective Ground Truth

(RGT) proposed in [115] which leverages the difference between two versions of an

ontology as the reference standard. More specifically, we used the newly added hierar-

chical relations in a newer version of NCIt (19.07e inferred) compared with the 19.01d

inferred version as the RGT, and then evaluated the potentially missing hierarchical

relations suggested by our method against the RGT. In Chapter 6, we leveraged ex-

ternal ontologies in the UMLS to help validate the missing concepts identified by our

FCA-based method. This kind of automatic validation method could show whether

an auditing method is potentially effective.

In this chapter, we present a work in which cross-ontology verification based on

extrinsic knowledge from UMLS is adopted to automatically validate missing hierar-

chical relations.

In this work, we first identify subtype inconsistencies within biomedical ontologies

(Gene Ontology, NCI Thesaurus and SNOMED CT) by looking for identical linked

and unlinked Inferred Term Pair (ITP) derived from linked and unlinked Partial

Matching Concept Pair (PMCP). An example is shown in Figure 8.1. In SNOMED

CT, concept “Lesion of ligaments of pelvic region (disorder)” is a subtype of “Soft

tissue lesion of pelvic region (disorder).” They two could form a lined PMCP and

infer a linked ITP (“lesion of ligaments,” “soft tissue lesion”). Similarly, “Lesion of
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ligaments of shoulder region (disorder)” is currently not a subtype of “Soft tissue

lesion of shoulder region (disorder),” they two form an unlined PMCP and infer

an unlinked IPT (“lesion of ligaments,” “soft tissue lesion”). Obviously, subtype

inconsistency occurs (either the former one should be unlinked or the later one should

be linked).

Figure 8.1: A: An unlinked PMCP with diff 3 in SNOMED CT and its unlinked
ITP derived; B: A linked PMCP with diff 3 in SNOMED CT and its linked ITP
derived. This example reveals a potentially missing hierarchical relation in A,
that is, lesion of ligaments of shoulder region (disorder) IS-A soft tissue lesion of
shoulder region (disorder).

After detecting inconsistencies, besides manual review, we leverage external knowl-

edge in UMLS (i.e., other ontologies in UMLS) to identify supporting evidence for

detected potential subtype inconsistencies, which indicates the extent to which cross-

ontology can help with validating whether a detected subtype inconsistency is a miss-

ing hierarchical relation. We performed such automated cross-ontology evaluation for

Gene Ontology, NCI Thesaurus and SNOMED CT, respectively.

8.1 Method

Given an ontology, we perform a systematic check for each detected potential sub-

type inconsistency I. Assume that (u1, u2) is the unlinked PMCP involved in the

inconsistency I. Then we map concepts u1 and u2 to the corresponding UMLS con-

cepts m1 and m2. If there exists a path p from m1 to m2 in UMLS such that p

= m1,mi1 ,mi2 , . . . ,mik ,m2 where m1 is a mi1 , mi1 is a mi2 , . . . , and mik is a m2,

then we say that there is a piece of evidence in the UMLS supporting that u1 is a

subtype of u2. Note that the subtype relations along the path may be from different
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ontologies. For instance, in Fig. 8.2, the path from “connective tissues nevus” (CUI:

C8371 ) to “connective tissue disorder” (CUI: C26729 ) in UMLS was found through

ontologies SNOMED CT and MEDCIN [116].

Figure 8.2: A: An unlinked PMCP with diff 3 in NCI Thesaurus and its unlinked
ITP derived; B: A linked PMCP with diff 3 in NCI Thesaurus and its linked ITP
derived. This example reveals a potentially missing subtype relation in A, that
is, “connective tissues nevus” (CUI: C8371 ) IS-A “connective tissue disorder” (CUI:
C26729 ).

8.2 Result

The UMLS-based evaluation identified supporting evidence for missing subtype rela-

tions involved in 26 detected inconsistencies in Gene Ontology, 306 in NCI Thesaurus,

and 1,940 in SNOMED CT, respectively. Tables 8.1, 8.2 and 8.3 present ontologies

in UMLS and their corresponding path contributions (PC) to identify supporting

evidence for the detected potential subtype inconsistencies in Gene Ontology, NCIt,

and SNOMED CT, respectively. These tables contain the top 10 ontologies with the

maximum path contributions. For Gene Ontology, Medical Subject Headings [117]

contributed the most. For NCI Thesaurus, SNOMED CT contributed the most. For

SNOMED CT, Read Thesaurus contributed the most.

In this preliminary work, cross-ontology evaluation only showed limited support-

ing evidence: 0.54% (=26/4841) for Gene Ontology, 11.43% (=306/2677) for NCI

Thesaurus, and 3.61% (=1940/53782) for SNOMED CT. It would be interesting to

further investigate methods to leverage other external knowledge such as biomed-

ical literature to automatically identify supporting evidence for detected potential

inconsistencies and reduce domain experts’ manual effort.
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Table 8.1: Ontologies and correspond-
ing Path Contributions (PC) for the
UMLS-based evaluation of detected sub-
type inconsistencies in Gene Ontology.

n = 1 n = 2

Ontology PC Ontology PC

Medical Subject Headings 15 NCIt 3

NCIt 11 CRISP Thesaurus 2

Crisp Thesaurus 11 Alcohol and Other Drug The-

saurus

1

Alcohol and Other Drug Thesaurus 7

Foundation Model of Anatomy Ontol-

ogy

6

LOINC 5

Thesaurus of Psychological Index

Terms

5

SNOMED CT 5

University of Washington Digital

Anatomist

5

Read Thesaurus 5

Table 8.2: Ontologies and correspond-
ing Path Contributions (PC) for the
UMLS-based evaluation of detected sub-
type inconsistencies in NCI Thesaurus.

n = 1 n = 2

Ontology PC Ontology PC

SNOMED CT 184 SNOMED CT 48

Read Thesaurus 86 Read Thesaurus 31

Medical Subject Headings 60 MedDRA 15

MEDCIN 57 International Classification of Diseases 13

Related Health Problems

MedDRA 44 Medical Subject Headings 13

National Drug File-Reference Terminology 33 MEDCIN 10

CRISP Thesaurus 32 National Drug File-Reference Terminology 9

Alcohol and Other Drug Thesaurus 24 CRISP Thesaurus 9

COSTART 22 COSTART 9

International Classification of Diseases and 17 Human Phenotype Ontology 8

Related Health Problems

Table 8.3: Ontologies and corresponding Path Contributions (PC) for the UMLS-
based evaluation of detected subtype inconsistencies in SNOMED CT.

n = 1 n = 2 n = 3 n = 4

Ontology PC Ontology PC Ontology PC Ontology PC

Read Thesaurus 954 Read Thesaurus 283 Read Thesaurus 49 Read Thesaurus 13

MEDCIN 323 MEDCIN 69 MEDCIN 19 Medical Subject Headings 4

NCIt 291 Medical Subject Headings 63 Foundational Model of Anatomy Ontology 17 NCIt 3

Medical Subject Headings 257 NCIt 61 University of Washington Digital Anatomist 17 National Drug File - Reference Terminology 3

CRISP Thesaurus 164 Alcohol and Other Drug Thesaurus 43 NCIt 13 CRISP Thesaurus 2

Alcohol and Other Drug Thesaurus 138 CRISP Thesaurus 40 International Classification of Diseases and 10 University of Washington Digital Anatomist 1

Related Health Problems

National Drug File - Reference Terminology 109 National Drug File - Reference Terminology 30 Medical Subject Headings 10 MEDCIN 1

International Classification of Diseases and 85 University of Washington Digital Anatomist 29 Human Phenotype Ontology 4

Related Health Problems

Foundational Model of Anatomy Ontology 84 Foundational Model of Anatomy Ontology 27 National Drug File - Reference Terminology 3

MedDRA 77 International Classification of Diseases and 21 MedlinePlus Health Topics 2

Related Health Problems
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CHAPTER 9. Discussion, Conclusions and Future Directions

9.1 Discussion

In this dissertation, we introduced several automated and scalable approaches for on-

tology quality assurance. By “scalable,” we mean that the approach can be applied to

the entire ontology and its performance (e.g., the precision of suggested missing hier-

archical relations) remains compatible compared with being applied to a specific part

or sub-hierarchies of the ontology. Existing studies are often confined to part of the

ontology and do not scale to the entirety. For instance, previous study [25] regarded

words appearing in the concept names as logical definitions, and compared lexical-

derived hierarchy with the original hierarchy to reveal missing hierarchical relations.

Their method achieved a decent precision while applying to two specific groups of

concepts (concepts under “Disorder of head (disorder)” and “Operative procedure on

head (procedure)”). However, if we apply the method to a different group of concepts

(e.g., contains concepts from different knowledge branches) or to the entire SNOMED

CT, many false positives will appear in the results. For example, related concepts

(e.g., “Erlotinib (substance)” and “Erlotinib hydrochloride (substance)” ), as well as

un-related concepts (e.g., “Acute pain (finding)” and “Acute sensitivity to pain (find-

ing)”) can both be incorrectly linked with hierarchical relation. When it comes to

our approaches in auditing hierarchical relations, in Chapter 3 and Chapter 4, we

leveraged a rich set of features (e.g., noun phrase and associative roles) to distinguish

the semantic meanings of concepts so that those potential erroneous relations can be

greatly relieved. Also, we applied our method to the entire ontology (either exhaus-

tively or by first recognizing problematic sub-structures), and then randomly selected

samples for manual review which ensured that the precision of the sampled missing

hierarchical relations could reflect the effectiveness of our approaches in auditing the

entire ontology.
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Next we briefly discuss the time complexity of our quality assurance approaches.

An ontology can be considered as a directed graph G(V,E), where V is a set of

nodes representing the concepts and E is a set of edges representing relations among

concepts (e.g., hierarchical relations). Regarding the auditing approaches introduced

in Chapter 3 and Chapter 4, their time complexity is O(|V |2) if we pre-compute

the lexical features or logical definitions of concepts (i.e., retrieve information from

pre-constructed hash tables which support constant time look up operation) and

then perform pairwise comparison among |V | concepts. In Chapter 5, to identify

potentially missing hierarchical relations, we performed name transformation for each

concept – noun chunks in the concept name were replaced by more general terms

to generate potential supertype concepts. Therefore, the time complexity of this

auditing approach can be computed by summing up the transformation time Ti for

each concept i ∈ V . Here Ti =
∏

j∈NPi
|Rij|, where NPi denotes the set of noun chunks

to be replaced in i’s concept name and Rij denotes the set of replacement candidates

for noun chunk j ∈ NPi. Let n be the maximum number of noun chunks to be

replaced in concept names and r be the maximum number of replacement candidates

for noun chunks respectively, then
∑

i∈V Ti is bounded by rn · |V |. Regarding the

missing hierarchical relations identified in Chapter 5, the subtype concepts on which

we perform the transformation are all with no larger than three noun chunks in

their concept names (i.e., n = 3); although the maximum number of replacement

candidates for noun chunks is 40 (i.e., r = 40), the average number is less than 3.

Therefore, the running time of the transformation-based approach in our experiment

is close to the best case O(|V |).

9.2 Conclusions

Biomedical ontologies play vital roles in downstream biomedical applications. Biomed-

ical ontologies are constantly evolving and thus usually incomplete. However, the lack
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of completeness may be unacceptable for applications in areas such as healthcare and

defense, where missing answers can adversely affect the application’s functionality.

Due to the sheer size and complexity of biomedical ontologies, manually auditing the

completeness is of poor efficiency. Therefore, automated frameworks that can uncover

or validate the incompleteness issues in biomedical ontologies are highly desirable.

This dissertation introduces scalable approaches for identifying and validating po-

tential incompleteness issues (i.e., missing hierarchical relations and missing concepts)

in biomedical ontologies using a combination of (1) logical definitions and lexical fea-

tures of concepts; (2) mathematical underpinning with Formal Concept Analysis; and

(3) extrinsic knowledge sources.

Chapter 3 introduces a lexical-based approach to automatically detect potentially

missing hierarchical relations. We model each concept with an enriched set of lexical

features, by leveraging words and noun phrases in the name of the concept itself and

the concept’s ancestors. Then we perform subset inclusion checking on enriched lexi-

cal feature sets to suggest potentially missing hierarchical relations between concepts.

We applied our approach to the September 2017 release of SNOMED CT (US edi-

tion) which suggested a total of 38,615 potentially missing hierarchical relations. For

evaluation, a domain expert reviewed a random sample of 100 missing hierarchical re-

lations selected from the “Clinical finding” sub-hierarchy, and confirmed 90 are valid,

indicating that our method achieved a precision of 90% in detecting missing hierar-

chical relations. Additional review of invalid suggestions further revealed incorrect

existing hierarchical relations. Our results demonstrated that systematic analysis of

the enriched lexical features of concepts is an effective approach to identify potentially

missing hierarchical relations in the SNOMED CT.

Chapter 4 presents a framework utilizing lexical features and role definitions of

concepts to identify missing hierarchical relations in non-lattice subgraphs. Regard-

ing the method, we first compute all the non-lattice subgraphs (i.e., areas that are
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likely to contain quality issues). Then, we model each concept using its associative

roles, words and roots of noun chunks within its concept name and its ancestor’s

names. At last, we perform subsumption testing for candidate concept pairs in the

non-lattice subgraphs to automatically detect potentially missing hierarchical rela-

tions. We applied our approach to the 19.08d version of the NCI Thesaurus. A total

of 55 potentially missing hierarchical relations were identified by our approach. Do-

main experts confirmed 29 out of 55 as valid and incorporated them in the newer

versions of the NCI Thesaurus. 7 out of 55 further revealed incorrect existing hier-

archical relations in the NCI Thesaurus. The results showed that leveraging both

lexical features and role definitions benefits semantic modeling of concepts as well as

incompleteness detection.

Chapter 5 introduces a novel transformation-based auditing method that leverages

the UMLS knowledge to systematically identify missing hierarchical relations in its

source ontologies. Given a concept name in the UMLS, we first identify its base and

secondary noun chunks. For each identified noun chunk, we generate replacement

candidates that are more general than the noun chunk. Then we replace the noun

chunks with their replacement candidates to generate new potential concept names

which may serve as supertypes of the original concept. If a newly generated name

is an existing concept name in the same source ontology with the original concept,

then a potentially missing hierarchical relation between the original and the new

concept is identified. Applying our transformation-based method to English-language

concept names in the UMLS (2019AB release), a total of 39,359 potentially missing

hierarchical relations were detected in 13 source ontologies. Domain experts evaluated

a random sample of 200 potentially missing hierarchical relations identified in the

SNOMED CT (US edition), and 100 in the Gene Ontology. 173 out of 200 and

63 out of 100 potentially missing IS-A relations were confirmed by domain experts,

indicating our method achieved a precision of 86.5% and 63% for the SNOMED CT
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and Gene Ontology, respectively.

Chapter 6 introduces a lexical method based on Formal Concept Analysis (FCA)

to identify potentially missing concepts in a given ontology by leveraging its intrinsic

knowledge – concept names. Lexical features (i.e., words appearing in the concept

names) are considered as FCA attributes while generating formal context. Applying

multistage intersection on FCA attributes identifies newly formalized bags of words

(i.e., FCA formal concepts) that represent missing concepts, which may be further

validated through external knowledge. We applied our method to the Disease or

Disorder sub-hierarchy in the 19.08d version of the NCI Thesaurus and identified a

total of 8,983 potentially missing concepts. The preliminary evaluation via exter-

nal validation using UMLS showed encouraging evidence for the effectiveness of our

method.

Chapter 7 shows deep learning-based approaches, given bags of words, to automat-

ically predict concept names that comply with the naming convention of SNOMED

CT. These deep learning models are simple neural network, Long Short-Term Mem-

ory (LSTM), and Convolutional Neural Network (CNN) combined with LSTM. Our

experiments showed that LSTM-based approach achieved the best performance: a

precision of 65.98%, a recall of 61.04%, and an F1 score of 63.41% for predicting con-

cept names for newly added concepts in the March 2018 Edition of SNOMED CT.

It also achieved a precision of 74.58%, a recall of 73.33%, and an F1 score of 73.95%

for naming missing concepts identified by our previous work. Further examination

of results revealed inconsistencies within SNOMED CT which may be leveraged for

quality assurance purposes.

In Chapter 8, we discuss the possibility to use automatic validating methods based

on Retrospective Ground Truth (RGT) and extrinsic knowledge from the UMLS to

relieve the heavy work of manual review. We also perform a preliminary study on the

extent to which external knowledge in the UMLS can provide supporting evidence for
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validating the detected missing hierarchical relations.

9.3 Future directions

9.3.1 Repair Missing Hierarchical Relations

Given a set of missing hierarchical relations, the simplest remediation measure is to

just add them into the ontology hierarchy. However, since most auditing methods

rely on the inferred definitions of concepts, the missing hierarchical relations they

detected also pertain to the inferred hierarchy which is obtained by reasoners based

on the stated logical definitions. Therefore, it is more meaningful to investigate why

the missing hierarchical relations are not derived by the DL reasoners. Recently, we

developed a method based on semantic-related group pairs to reveal the causes of

missing hierarchical relations, as well as locate quality issues in the stated logical

definitions. After repairing those quality issues, the missing hierarchical relations will

also become derivable by the reasoners and thus fixed. Compared with purely adding

the missing hierarchical relations, this method could better improve the quality of

biomedical ontologies. We plan to apply our method to the missing hierarchical

relations detected in our previous work and provide our result to the domain experts

so that a comprehensive evaluation of our method could be provided in the near

future.

9.3.2 Improved Formal Concept Analysis

Regarding the lexical-based FCA method proposed in Chapter 6, since we consider

each word in the concept name as individual feature, the results from multistage in-

tersection (i.e., formalizing concepts) only includes bags of words. Although we have

found some supporting evidence (i.e., matching concept names) in the UMLS, large

portion of revealed missing concepts are still waiting for evaluation to prove the ef-

fectiveness of our method. However, it is inconvenient for domain experts to evaluate
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bags of words. To name the concepts, we could leverage the work in Chapter 7 to

predict concept names given bags of words. In the other way, we could re-define the

attributes used in FCA and the process of multistage intersection so that the at-

tributes we get for the new concepts are meaningful sequences (i.e., concept names).

Currently, formal context adopts sets of attributes (e.g., sets of words) as input and

the intersection is performed between sets. In the future, we plan to consider directly

using the whole concept names (i.e., sequences) as the attributes. Then the FCA

results rely on how to formalize new concepts from the “intersection” (which previ-

ously is defined as intersection between sets) between concept names. An intuitive

idea is to find the common sub-strings between two concept names. On the other

hand, we have studied different layouts of a concept name (e.g., breaking the concept

name as a combination of noun phrases and words used in Chapter 5 or sequence

representation based on sub-term and pos-tagging in [96]). We could utilize these

variants and re-define the concept-forming operator in traditional FCA to generate

either more general or more detailed concept names.

9.3.3 Deep learning approaches

In Chapter 7, we adopted several basic deep learning models to predict concept names.

However, the sequence prediction method is based on classifying all possible combi-

nations of words, which is computationally challenging when the concept name is

long. Therefore, we plan to build a more powerful generative neural network model

to generate potential concept names based on descriptive input.

In Chapter 4, we have explored how to harmonize the logical definitions with

lexical features to represent the semantic meanings of concepts. The hybrid model

could be adapted to embeddings of concepts and thus potentially be a determinant in

how to name the concepts. We plan to build a sequence-to-sequence neural network

which takes our hybrid semantic model as input and generates corresponding concept
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names as outputs. In this case, we no longer need to rely on the bags of words and test

all the possible combinations. In addition, a large portion of non-lattice subgraphs

in Chapter 4 is not covered by rule-based auditing methods. Therefore, we also plan

to leverage machine learning techniques to uncover additional missing hierarchical

relations for those unexplored non-lattice subgraphs.

9.3.4 Automatic validation method

In this dissertation, to automatically validate the detected incompleteness issues, we

mainly utilized the extrinsic knowledge from the UMLS. Another rich source that

could be leveraged is biomedical literature. For example, MEDLINE/PubMed com-

promises more than 27 million records representing articles in the biomedical lit-

erature, which documents article titles, abstract and controlled vocabulary search

terms [118]. In the future, we plan to develop entity-relations recognition approaches

to extract evidence from biomedical literature to support validation of missing hier-

archical relations.

96



REFERENCES

[1] Olivier Bodenreider. Biomedical ontologies in action: role in knowledge manage-
ment, data integration and decision support. Yearbook of medical informatics,
17(01):67–79, 2008.

[2] Robert Hoehndorf, Paul N Schofield, and Georgios V Gkoutos. The role of on-
tologies in biological and biomedical research: a functional perspective. Brief-
ings in bioinformatics, 16(6):1069–1080, 2015.

[3] National Cancer Institute Thesaurus. https://ncit.nci.nih.gov/. [Accessed
10-January-2021].

[4] Sherri De Coronado, Margaret W Haber, Nicholas Sioutos, Mark S Tuttle,
Lawrence W Wright, et al. Nci thesaurus: using science-based terminology to
integrate cancer research results. In Medinfo, pages 33–37, 2004.

[5] Gilberto Fragoso, Sherri de Coronado, Margaret Haber, Frank Hartel, and Larry
Wright. Overview and utilization of the nci thesaurus. Comparative and func-
tional genomics, 5(8):648–654, 2004.

[6] Nicholas Sioutos, Sherri de Coronado, Margaret W Haber, Frank W Hartel,
Wen-Ling Shaiu, and Lawrence W Wright. Nci thesaurus: a semantic model in-
tegrating cancer-related clinical and molecular information. Journal of biomed-
ical informatics, 40(1):30–43, 2007.

[7] SNOMED CT. https://www.snomed.org/. [Accessed 10-January-2021].

[8] Dennis Lee, Nicolette de Keizer, Francis Lau, and Ronald Cornet. Literature
review of snomed ct use. Journal of the American Medical Informatics Associ-
ation, 21(e1):e11–e19, 2013.

[9] Rainer Winnenburg and Olivier Bodenreider. Metrics for assessing the quality
of value sets in clinical quality measures. In AMIA Annual Symposium Pro-
ceedings, volume 2013, page 1497. American Medical Informatics Association,
2013.

[10] Licong Cui, Shiqiang Tao, and Guo-Qiang Zhang. Biomedical ontology qual-
ity assurance using a big data approach. ACM Transactions on Knowledge
Discovery from Data (TKDD), 10(4):41, 2016.

[11] B Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Horrocks. Completeness
guarantees for incomplete ontology reasoners: Theory and practice. Journal of
Artificial Intelligence Research, 43:419–476, 2012.

[12] SNOMED International Release Management Home. https://confluence.

ihtsdotools.org/display/RMT/. [Accessed 10-January-2021].

97

https://ncit.nci.nih.gov/
https://www.snomed.org/
https://confluence.ihtsdotools.org/display/RMT/
https://confluence.ihtsdotools.org/display/RMT/


[13] Overview of NCI Thesaurus (NCIt). https://wiki.nci.nih.gov/pages/

viewpage.action?pageId=7472532. [Accessed 10-January-2021].

[14] Patrick Lambrix, Fang Wei-Kleiner, and Zlatan Dragisic. Completing the is-a
structure in light-weight ontologies. Journal of biomedical semantics, 6(1):12,
2015.

[15] Licong Cui, Remo Mueller, Satya Sahoo, and Guo-Qiang Zhang. Querying
complex federated clinical data using ontological mapping and subsumption
reasoning. In 2013 IEEE International Conference on Healthcare Informatics,
pages 351–360. IEEE, 2013.

[16] Zhe He, James Geller, and Yan Chen. A comparative analysis of the density
of the snomed ct conceptual content for semantic harmonization. Artificial
intelligence in medicine, 64(1):29–40, 2015.

[17] Zhe He, Yan Chen, Sherri de Coronado, Katrina Piskorski, and James Geller.
Topological-pattern-based recommendation of umls concepts for national cancer
institute thesaurus. In AMIA Annual Symposium Proceedings, volume 2016,
page 618. American Medical Informatics Association, 2016.

[18] Guoqian Jiang and Christopher G Chute. Auditing the semantic completeness
of snomed ct using formal concept analysis. Journal of the American Medical
Informatics Association, 16(1):89–102, 2009.

[19] Zhu Wei, Cui Licong, and Zhang Guo-Qiang. Spark-mca: Large-scale, ex-
haustive formal concept analysis for evaluating the semantic completeness of
snomed ct. In AMIA Annual Symposium Proceedings, volume 2017, page 1931.
American Medical Informatics Association, 2017.

[20] Praveen Chandar, Anil Yaman, Julia Hoxha, Zhe He, and Chunhua Weng.
Similarity-based recommendation of new concepts to a terminology. In AMIA
Annual Symposium Proceedings, volume 2015, page 386. American Medical In-
formatics Association, 2015.

[21] Jiajie Peng, Tao Wang, Jixuan Wang, Yadong Wang, and Jin Chen. Extending
gene ontology with gene association networks. Bioinformatics, 32(8):1185–1194,
2016.

[22] Licong Cui, Wei Zhu, Shiqiang Tao, James T Case, Olivier Bodenreider, and
Guo-Qiang Zhang. Mining non-lattice subgraphs for detecting missing hierar-
chical relations and concepts in snomed ct. Journal of the American Medical
Informatics Association, 24(4):788–798, 2017.

[23] Rashmie Abeysinghe, Michael A Brooks, Jeffery Talbert, and Cui Licong. Qual-
ity assurance of nci thesaurus by mining structural-lexical patterns. In AMIA
Annual Symposium Proceedings, volume 2017, page 364. American Medical In-
formatics Association, 2017.

98

https://wiki.nci.nih.gov/pages/viewpage.action?pageId=7472532
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=7472532


[24] Yan Chen, Huanying Helen Gu, Yehoshua Perl, and James Geller. Structural
group-based auditing of missing hierarchical relationships in umls. Journal of
biomedical informatics, 42(3):452–467, 2009.

[25] Olivier Bodenreider. Identifying missing hierarchical relations in snomed
ct from logical definitions based on the lexical features of concept names.
ICBO/BioCreative, 2016, 2016.

[26] Licong Cui, Olivier Bodenreider, Jay Shi, and Guo-Qiang Zhang. Auditing
snomed ct hierarchical relations based on lexical features of concepts in non-
lattice subgraphs. Journal of biomedical informatics, 78:177–184, 2018.

[27] Rashmie Abeysinghe, Eugene W Hinderer, Hunter NB Moseley, and Licong
Cui. Auditing subtype inconsistencies among gene ontology concepts. In 2017
IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
pages 1242–1245. IEEE, 2017.

[28] Rashmie Abeysinghe, Fengbo Zheng, Eugene W Hinderer, Hunter NB Moseley,
and Licong Cui. A lexical approach to identifying subtype inconsistencies in
biomedical terminologies. In 2018 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM), pages 1982–1989. IEEE, 2018.

[29] Manuel Quesada-Mart́ınez, Jesualdo Tomás Fernández-Breis, and Daniel Karls-
son. Suggesting missing relations in biomedical ontologies based on lexical reg-
ularities. In MIE, pages 384–388, 2016.

[30] Vipina K Keloth, Zhe He, Yan Chen, and James Geller. Leveraging horizontal
density differences between ontologies to identify missing child concepts: A
proof of concept. In AMIA Annual Symposium Proceedings, volume 2018, page
644. American Medical Informatics Association, 2018.

[31] Hao Liu, Ling Zheng, Yehoshua Perl, James Geller, and Gai Elhanan. Can a
convolutional neural network support auditing of nci thesaurus neoplasm con-
cepts? In ICBO, 2018.

[32] Qi Sun, Guo-Qiang Zhang, Wei Zhu, and Licong Cui. Validating auto-suggested
changes for snomed ct in non-lattice subgraphs using relational machine learn-
ing. Studies in health technology and informatics, 2019.

[33] Christopher Ochs, Zhe He, Ling Zheng, James Geller, Yehoshua Perl, George
Hripcsak, and Mark A Musen. Utilizing a structural meta-ontology for family-
based quality assurance of the bioportal ontologies. Journal of biomedical in-
formatics, 61:63–76, 2016.

[34] H Gu, Y Chen, Z He, M Halper, and L Chen. Quality assurance of umls
semantic type assignments using snomed ct hierarchies. Methods of information
in medicine, 55(02):158–165, 2016.

99



[35] Christopher Ochs, James Geller, Yehoshua Perl, Yan Chen, Ankur Agrawal,
James T Case, and George Hripcsak. A tribal abstraction network for snomed
ct target hierarchies without attribute relationships. Journal of the American
Medical Informatics Association, 22(3):628–639, 2014.

[36] Christopher Ochs, James Geller, Yehoshua Perl, Yan Chen, Junchuan Xu, Hua
Min, James T Case, and Zhi Wei. Scalable quality assurance for large snomed
ct hierarchies using subject-based subtaxonomies. Journal of the American
Medical Informatics Association, 22(3):507–518, 2015.

[37] F Zheng, J Shi, and L Cui. A lexical-based approach for exhaustive detection
of missing hierarchical is-a relations in snomed ct. In AMIA 2020 Annual
Symposium Proceedings. American Medical Informatics Association, [In Press].

[38] Fengbo Zheng, Rashmie Abeysinghe, Nicholas Sioutos, Lori Whiteman, Lyubov
Remennik, and Licong Cui. Detecting missing is-a relations in the nci thesaurus
using an enhanced hybrid approach. BMC Medical Informatics and Decision
Making, 20(10):1–11, 2020.

[39] Fengbo Zheng, Rashmie Abeysinghe, and Licong Cui. A hybrid method to
detect missing hierarchical relations in nci thesaurus. In 2019 IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM), pages 1948–
1953. IEEE, 2019.

[40] Fengbo Zheng, Jay Shi, Yuntao Yang, W Jim Zheng, and Licong Cui. A
transformation-based method for auditing the is-a hierarchy of biomedical ter-
minologies in the unified medical language system. Journal of the American
Medical Informatics Association, 27(10):1568–1575, 2020.

[41] Fengbo Zheng and Licong Cui. A lexical-based formal concept analysis method
to identify missing concepts in the nci thesaurus. In 2020 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM), pages 1757–
1760. IEEE, 2020.

[42] Fengbo Zheng and Licong Cui. Exploring deep learning-based approaches for
predicting concept names in snomed ct. In 2018 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 808–813. IEEE, 2018.

[43] Rashmie Abeysinghe, Michael A Brooks, and Licong Cui. Leveraging non-
lattice subgraphs to audit hierarchical relations in nci thesaurus. In AMIA
Annual Symposium Proceedings, volume 2019, page 982. American Medical In-
formatics Association, 2019.

[44] Dieter Fensel. Ontologies: a silver bullet for knowledge management and elec-
tronic commerce. Springer, 2011.

[45] Natalya F Noy, Nigam H Shah, Patricia L Whetzel, Benjamin Dai, Michael
Dorf, Nicholas Griffith, Clement Jonquet, Daniel L Rubin, Margaret-Anne

100



Storey, Christopher G Chute, et al. Bioportal: ontologies and integrated data
resources at the click of a mouse. Nucleic acids research, 37(suppl 2):W170–
W173, 2009.

[46] BioPortal. https://bioportal.bioontology.org/. [Accessed 10-January-
2021].

[47] Manuel Salvadores, Paul R Alexander, Mark A Musen, and Natalya F Noy.
Bioportal as a dataset of linked biomedical ontologies and terminologies in rdf.
Semantic web, 4(3):277–284, 2013.

[48] Thomas R Gruber. Toward principles for the design of ontologies used for
knowledge sharing? International journal of human-computer studies, 43(5-
6):907–928, 1995.
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