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ABSTRACT OF DISSERTATION

Novel Hedonic Games and Stability Notions

We present here work on matching problems, namely hedonic games, also known as
coalition formation games. We introduce two classes of hedonic games, Super Altru-
istic Hedonic Games (SAHGs) and Anchored Team Formation Games (ATFGs), and
investigate the computational complexity of finding optimal partitions of agents into
coalitions, or finding – or determining the existence of – stable coalition structures.
We introduce a new stability notion for hedonic games and examine its relation to
core and Nash stability for several classes of hedonic games.
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Chapter 1 Introduction

This dissertation discusses matching problems that seek to assign individuals to

groups based on those individuals’ preferences. The goal in these problems is to

find matchings that are unlikely to break down. Cooperative game theory provides

the tools necessary to analyze and solve the problems.

Cooperative game theory models challenges in which agents must cooperate with

each other agents to achieve a certain goal; this stands in contrast with non-cooperative

game theory wherein there is no such expectation. Cooperative game theory has been

applied to a wide variety of real-world challenges such as voting, resource allocation,

and organization of teams.

An important consideration for any cooperative game, from the perspective of

both player and modeler, is whether or not utility is transferable. In cooperative

games with transferable utility, agents may discuss how to distribute the utility re-

sulting from their cooperation. A classic example of transferable utility is a game

with monetary winnings, since there are many ways to divide a single amount of

money. An example of non-transferable utility is the enjoyment of being around a

friend; friendship itself cannot be transferred between people at will, and there’s no

guarantee that the enjoyment people get from spending time with friends is consistent

between individuals.

Our research focuses on cooperative games where the goal is to divide people into

groups. Many situations exist wherein individuals will choose to act as a group, or

coalition. Examples include social clubs, political parties, marriage partner selection,

and legislative voting [9, 27, 68]. Matching problems which can model these situa-

tions are a common topic of interest in multiagent systems research since Gale and

Shapley’s work on college admission and the stable marriage problem [27]. Within
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the area of matching, we study coalition formation games; a generalization of the

stable marriage problem studied by Gale and Shapley where the goal is assigning

agents to coalitions that may contain many agents rather than just two. We are

interested in a subclass of coalition formation games, hedonic games, which were first

proposed by Drèze and Greenberg (1980) and later formalized by Banerjee, Konishi,

and Sönmez (2001) and Bogomolnaia and Jackson (2002). Hedonic games are distin-

guished from general coalition formation games by the requirement that each agent’s

utility is wholly derived from the members of their own coalition [6, 9, 21].

A central problem in hedonic games research, and for coalition formation games in

general, is deciding whether or not a proposed set of coalitions, or partition, is stable

[68], meaning that agents will not leave, or deviate, from their coalitions. There are

a number of factors to consider when trying to decide whether a partition is stable

or not. Do agents always act alone, or do they act in concert with others? Do

agents actively pursue better coalitions, or will they only deviate if their coalition

is particularly bad? Do agents need the approval of others in order to join a new

coalition or leave their current coalition? These are some of the most common factors

to consider when evaluating the stability of a partition. Several concepts have been

introduced to characterize the ways in which a partition is or is not stable, each with

its own unique assumptions about how agents tend to deviate. Woeginger’s (2013)

survey and book chapters by Aziz and Savani (2016) and by Elkind and Rothe (2016)

provide overviews of several stability notions [4, 22, 68]. One stability concept that

is of perennial interest in coalition formation games is the core (See Definition 29).

[3, 6, 9, 19, 20, 28, 29, 30, 45]. Stability concepts relevant to our work are formally

introduced in section 2.3.

2



1.1 Questions of interest

In hedonic games research, there are a number of questions that researchers investi-

gate. Here we briefly discuss a number of questions related to stability.

One of the most common questions is whether or not stable partitions are guar-

anteed to exist. The answer to this question varies depending on the type of hedonic

game and the notion of stability being investigated. A related question is how difficult

it is to verify whether a given partition is stable or not. We could also investigate

how hard it is to determine whether a stable partition exists for a particular game.

While the questions thus far center on whether any stable partitions exist, we

could also ask how many stable partitions there are. Related to this question is

how hard it is to determine how many stable partitions exist. As with questions on

whether any stable partitions exist, the answer to how many stable partitions exist

will vary based on the type of game and the type of stability one is investigating.

1.2 Contributions of This Dissertation

We introduce super altruistic hedonic games (SAHGs), hedonic games where an

agent’s utility is impacted by the preferences of all agents in their coalition, as a

natural extension of altruistic hedonic games (AHGs, see Definition 17) proposed by

Nguyen et al. [45]. The central notion behind AHGs is that an agent’s happiness

is impacted by their friends’ happiness and vice-versa. SAHGs extend this notion

further to consider that an agent’s happiness will be impacted by the happiness of all

other agents in their coalition.

We introduce anchored team formation games (ATFGs) to evaluate coalition for-

mation settings where the coalitions must contain a leading agent, or anchor. ATFGs

are a completely new class of hedonic games inspired by tabletop role playing games

such as Dungeons & Dragons and Pathfinder, wherein a group of individuals must

3



contain a leader, or game master (GM), in order to play. We design one complete

solver and three heuristic solvers for Nash stability (see Definition 24) in ATFGs.

Complete solvers will always find a solution when one exists, but they scale poorly

since they systematically evaluate the entire state space of the game. Heuristics are

not guaranteed to find solutions, even when they exist, but they scale much better

than complete solvers, which often makes them better in practice.

We introduce internal stability for partitions, a stability notion which examines

whether each coalition in a partition is stable, which builds on work by Dimitrov et al.

and Alcalde and Romero-Medina that introduced the notion of internal stability for

coalitions. Alcalde and Romero-Medina use internally stable coalitions as a tool to

investigate conditions that guarantee the existence of core stable partitions in hedonic

games [1]. Dimitrov et al. use internal stability to define another stability notion,

deviation stability, which they use to prove the existence of core stable partitions in

friend and enemy-oriented hedonic games [20]. Since its introduction, the only other

paper we have found which utilizes internal stability is a 2014 paper by Liu et al.

that adapts it to matching and exchange contexts [41].

1.3 Dissertation Roadmap

We begin with Chapter 2 by covering definitions and terminology relevant to our

work. After defining these preliminaries, we provide a survey of related works in

Chapter 3. Next, we move into our work on new classes of hedonic games. In

Chapter 4 we introduce SAHGs and present several complexity results. In Chapter

5 we introduce ATFGs and present some complexity results and results from our

heuristic solvers. We then move on to our work with internal stability in Chapter 6

where we distinguish it from other stability notions and provide results for the price of

internal stability. Finally, in Chapter 7 we conclude with final remarks and directions

for future research.

4
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Chapter 2 Definitions

Here, we cover a range definitions and terminology relevant to our work. We start by

introducing relevant complexity classes, then move on to formally introduce hedonic

games and classes of hedonic games relevant to our work. Next, we introduce several

stability notion followed by three notions of optimality. We end the Chapter with

descriptions of the price of stability and price of anarchy.

2.1 Complexity Definitions

Complexity theory provides a structure to describe and categorize computational

problems based on the amount of time or space required to solve them. This helps

us understand whether or not a problem can be solved in a reasonable amount of

time with the resources available. In this section, we introduce time complexity

classes utilized throughout the document. For more background see Papadimitriou’s

Computational Complexity [48].

Definition 1. [48] Time complexity class P contains problems solvable in time that is

polynomial based on the size of the input. Any problem with an upper time complexity

bound of O(np) where p is a fixed numeric value is contained in this class.

Problems that fall within the time complexity class P are considered tractable.

The closely related class NP contains all problems in P and introduces problems that

may be intractable.

Definition 2. [48] Complexity class NP contains problems for which a proposed

solution’s validity can be checked in polynomial time. A non-deterministic algorithm

can guess a valid solution and confirm it in polynomial time, but a deterministic

algorithm may be unable to find a valid solution in polynomial time.

6



Many well-known problems fall within the NP complexity class. Some examples of

problems that fall into the NP complexity class include General Satisfiability (SAT),

Hamilton Path, Clique, and Exact Cover by 3-Sets [48].

Definition 3. [48] Complexity class coNP is the class of languages whose comple-

ments are in NP.

Exampmles of coNP problems include the SAT Complement and Hamilton Path

Complement problems [48].

Definition 4. [66] Complexity class #P contains all functions that compute the

number of solutions to an NP problem.

The #P complexity class is of interest, because problems that may admit an easy

means to compute a solution may remain difficult when the goal becomes finding how

many solutions exist.

Definition 5. [31] Complexity class Θp
2 is an alternative name for PNP [log]. Games

in this class are solvable by a P machine that can make O(log n) queries to an NP

oracle.

Before we introduce the last complexity class of interest, we first define concepts

necessary to understand it.

Definition 6. [57] A language A is mapping reducible to language B, written

A ≤m B, if there is a computable function f such that ∀w ∈ A : f(w) ∈ B.

We are primarily interested in cases where the function f mapping between two

languages is computable in polynomial time, typically written as A ≤P
m B when

describing reducibility between two languages or as ≤P
m in more general contexts.

Definition 7. [57] A language A is Turing reducible to language B, written A ≤T

B, if A is decidable relative to B.

7



As with mapping reductions, we are primarily concerned with polynomial time

Turing reductions.

Definition 8. A problem is said to be complete for a complexity class if and only

if it is in the complexity class and every other problem in the same complexity class

is ≤P
m-reducible to it.

Because all problems in a complexity class are ≤P
m-reducible to problems that are

complete for the class, problems that are complete for a given complexity class are

the hardest problems contained within that class. For example, the Exact Cover by

3-Sets problem is NP-complete in the general case [48]. This means that no problem

within the NP complexity class is more computationally complex than general case

Exact Cover. This also means that all other problems in NP can be reduced to Exact

Cover. Further, all NP-complete problems are ≤P
m-reducible to Exact Cover and vice

versa.

Definition 9. Hardness for a complexity class is a term used to define problems

that generalize the hardest, or complete, problems for that class.

Consider Exact Cover by 3-Sets, which is NP-complete. Exact Cover by 3-Sets

is also NP-hard, because it generalizes all other NP-complete problems. However,

the term NP-hard is more commonly used to refer to problems that generalize NP-

complete problems, but which are not proven to be contained in NP.

Definition 10. [47] The complexity class DP contains languages defined as the dif-

ference between two languages in NP.

For example, let C be an NP-complete language, and let L = {〈c1, c2〉 : c1 ∈

C ∧ c2 /∈ C}. Then L = {C × Σ∗} \ {Σ∗ × C} (where Σ∗ is the set of all strings over

the alphabet used to define C).

8



There is a significant body of work within cooperative games research on coalition

formation games. The goal of coalition formation games is to partition a set of agents

into coalitions, based on the individual agents’ preferences. Our work focuses on

hedonic coalition formation games, often shortened to hedonic games, where agents’

preferences are limited to their own coalitions and utility is non-transferable.

2.2 Hedonic Games

In this section, we formally define hedonic games, and introduce a few specific hedonic

games that were inspirations for our work. This includes Altruistic Hedonic Games

and Additively Separable Hedonic Games, as well as several gaming-inspired hedonic

games.

Below, we outline several classes of hedonic games. In each class, a particular

game G consists of

1. N , a finite set of n agents, with

2. preference set P = {Pi : i ∈ N}, where Pi is the preference of each agent i

over partitions of N into coalitions. Pi may exhaustively list the preferences of

agent i or provide a succinct representation from which preferences are derived.

Additionally, preferences over coalitions may be strict, meaning that for any

pair of coalitions C1, C2 containing an agent i either C1 �i C2 or C2 �i C1;

alternatively, preferences may permit indifference where it is possible to have

some C1, C2 such that C1 �i C2 and C2 �i C1 (equivalent to C2 ∼i C1).

3. When preferences are given as utilities, we generally assume that ui({i}) = 0:

for each i, the utility of agent i for being in a coalition of size 1, is 0.

Definition 11. [6, 9] Hedonic games are coalition formation games with nontrans-

ferable utility wherein players’ preferences are concerned only with their own coalition.

9



This inherently self-interested means of determining utility makes such games hedonic

in nature.

Let Ni be the set of possible coalitions containing agent i ∈ N . A preference

ordering of Ni is derived from the preference set Pi ∈ P . A solution for a game is

a partition π, which is contained in the set of all distinct partitions Γ. Each player

i ∈ N has preferences over all partitions π ∈ Γ based solely on their assigned coalition

in each π.

Hedonic games are a broad category, so it can be useful to define classes of hedo-

nic games that exhibit certain interesting or useful properties. Additively separable

hedonic games are a well-studied class of hedonic games that is relevant to our work.

Definition 12. [6] Additively Separable Hedonic Games (ASHG) are a class

of hedonic game where each agent i ∈ N assigns values to each agent j ∈ N , expressed

as vi(j); vi(i) is always set to 0. The utility an agent derives from each S ∈ Ni is

defined as ui(S) =
∑

j∈S vi(j).

B and W Games are two more classes of hedonic game where agents assign some

value to each other, as in ASHGs. Instead of deriving utility from all the agents in

a coalition, utility in B and W Games is derived from the single highest and least

valued agents, respectively.

Definition 13. [15] B and W Games are hedonic games where agents assign values

to each other, much like in ASHGs. In B Games the utility some i ∈ N derives

from a coalition C is equal to maxj∈C\{i} v(j); in W Games the utility is equal to

minj∈C\{i} v(j).

Fractional hedonic games are another class of hedonic games that builds off the

definition of ASHGs. Instead of taking the value assigned to other agents as utility

in and of itself, agents derive utility from the average value they assign to agents in

their coalition.

10



Definition 14. [3] Fractional Hedonic Games (FHGs) are a class of Hedo-

nic Games where agents assign values to each other agent. In contrast to ASHGs,

Fractional Hedonic Games define utility as an average rather than a sum:

ui(S) =

∑
j∈S vi(j)

|S|
.

While FHGs take the notion of agents assigning some value to each other in a

different direction than ASHGs, there are also sub-classes of ASHGs that have been

studied.

Definition 15. [20] Friend-oriented Hedonic Games (FOHGs) are a class

of hedonic game where each agent regards all other agents as either a friend or an

enemy. FOHGs are often represented by graphs where an edge from some agent i ∈ N

to another agent j ∈ N indicates that i regards j as a friend. Lack of an edge from

i to j indicates that i regards j as an enemy. Utility for each agent is the sum of

values they assign to other agents, friends being assigned a value of n while enemies

are valued at −1.

Definition 16. [20] Enemy-oriented Hedonic Games (EOHG) are another

class of graph-based hedonic game that follows the same basic principles of FOHGs;

each agent views each other agent as a friend or an enemy. However, in EOHGs a

friend’s value is 1, while an enemy’s value is −n.

FOHGs and EOHGs inspired a number of modifications and extensions to their

original conception, such as the introduction of neutral agents in work by Lang et al.,

Ohta et al., and unknowns by Barrot et al. [7, 39, 46]. Altruistic hedonic games

are an extension of the FOHG concept that considers not just how many friends are

in a coalition, but whether those friends are happy with the coalition or not [45].

The motivations behind altruistic hedonic games are a major inspiration for Super

Altruistic Hedonic Games (SAHGs), which we examine in Chapter 4.

11



Definition 17. [45] An Altruistic Hedonic Game (AHG) is a hedonic game

in which agents derive utility from both their own basic preferences and those of any

friends in the same coalition.

Let each agent i ∈ N have utility ui, and let i partition other agents into friends

and enemies, given by Fi, Ei. Three levels of altruism are considered in AHGs:

selfish-first, equal treatment, and altruistic first. The function used to deter-

mine an agent’s utility depends on their altruism level and on pre-utility preference

values calculated as the utility agents would have from some coalition C in a FOHG

based on the same graph (n|C∩Fi|−|C∩Ei|). Two of these functions utilize a weight

parameter of M = n5 to ensure that one of the terms in the equation dominates the

other. This weight value is the smallest whole number exponent of n which guarantees

this for both equations that make use of M . Definitions for each altruism level and

their utility functions are outlined below:

1. Selfish-First: agents prioritize their own preferences, but use the preferences

of others to break ties.

ui = M(n|C ∩ Fi| − |C ∩ Ei|) +
∑

a∈C∩Fi

n|C ∩ Fa| − |C ∩ Ea|
|C ∩ Fi|

2. Equal Treatment: all preferences are treated equally.

ui =
∑

a∈C∩(Fi∪{i})

n|C ∩ Fa| − |C ∩ Ea|
|C ∩ (Fi ∪ {i})|

3. Altruistic First: agents prioritize the preferences of others, but use their own

preferences to break ties.

ui = n|C ∩ Fi| − |C ∩ Ei|+M ·
∑

a∈C∩Fi

n|C ∩ Fa| − |C ∩ Ea|
|C ∩ Fi|

AHGs introduce some interesting ideas by incorporating the preferences of others

into utility computations in a polynomially computable fashion. The three levels of
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altruism provide a means to vary the degree to which agents consider the preferences

of others, while also providing bounds on the weights needed to ensure the dominance

of one term in the utility equation. However, only considering the preferences of

friends and three variations of altruism limits the preferences and degrees of altruism

that can be represented. In order to broaden the scope of representation, we combined

ideas from AHGs and social distance games in order to create SAHGs (see Chapter

4). Social distance games are a class of hedonic games introduced in 2011 where

agents are concerned with how socially close they are to their coalition members.

Definition 18. [11] Social Distance Games (SDG) are a class of hedonic game

where an agent’s utility is based on their social distance from other agents in their

coalition. A SDG instance is represented by an undirected, unweighted graph G =

(N,E). For any agent pair i, j in some coalition C ⊆ N the social distance between

i and j, dC(i, j), is the shortest path distance between them in the sub-graph GC =

(C,EC) where EC contains all edges (i, j) ∈ E such that i, j ∈ C. The utility some

agent i ∈ N derives from coalition C ⊆ N : i ∈ C is defined as follows:

ui(C) =
1

|C|
∑

j∈C\{i}

1

dC(i, j)

Thus far, all games we have defined rely on utility values associated with each

unique agent, but some hedonic games take a different approach. Roles and Teams

Hedonic Games (RTHGs) are one example inspired by the game League of Legends,

first introduced by Spradling et al.. In RTHGs, an agent’s utility is based on the

roles that make up their team and the role they are assigned to [60].

Definition 19. [60] A Roles and Teams Hedonic Game (RTHG) instance

consists of:

• P: A population of agents

• m: a team size (we assume that |P |/m is an integer)
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• R: a set of available member team roles

• C: a set of available team compositions, where a team composition is a set of

m not necessarily unique roles in R.

• U: a utility function vector 〈u0, ..., u|P |−1〉, where for reach agent p ∈ P , com-

position t ∈ C, and role r ∈ R there is a utility function up(t, r) with

up(t, r) = −∞ if r /∈ t.

A solution to an RTHG instance is a partition π of agents into teams of size m.

Later work by Spradling and Goldsmith introduced Role Based Hedonic Games,

a generalization of RTHGs that does not impose a strict team size [59].

Definition 20. [59] A Role Based Hedonic Game (RBHG) instance consists

of:

• P: A population of agents

• R: a set of roles

• C: a set of available team compositions, where a composition c ∈ C is a multiset

(bag) of roles from R.

• U: P × R × C → Z defines the utility function ui(r, c) for each player pi. We

assume that for all pi ∈ P and for all r ∈ R, ui(r, {r}) = 0.

Siler introduced Tiered Coalition Formation Games (TCFGs), another class of

games inspired by the Pokémon series of games.

Definition 21. [56] A Tiered Coalition Formation Game (TCFG) instance is

a pair (A,�) consisting of a finite set of agents A = {a1, a2, ..., an} and a preference

profile �= {�1,�2, ...,�n}, where �i is a weak total order over subsets of A that

contain ai.
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A ( tier list) consists of a partition of A into a totally ordered set of k disjoint

coalitions ( tiers) T = {T1, T2, ..., Tk}.

In a tier list T , we say that ai sees aj if ai is in the same tier as aj or a higher tier:

Seen(ai, T ) = ∪ml=1Tl, ai ∈ Tm. For tier lists T and T ′, �i specifies ai’s preference

between Seen(ai, T ) and Seen(ai, T
′).

The Group Activity Selection Problem proposed by Darmann et al. presents an-

other distinct approach to hedonic coalition formation [18].

Definition 22. [18] An instance of the Group Activity Selection Problem

(GASP) is given by a set of agents N = {1, ..., n}, a set of activities A = A∗∪{a∅},

where A∗ = {a1, ..., ap}, and a profile P, which consists of n votes (one for each

agent): P = (V1, ..., Vn). The vote of agent i describes their preferences over the set

of alternatives X = X∗∪{a∅}, where X∗ = A∗×{1, ..., n}; alternative (a, k), a ∈ A∗,

is interpreted as “activity a with k participants,” and a∅ is the void activity.

The vote Vi of an agent i ∈ N (also denoted by �i) is a weak order over X∗; its

induced strict preference and indifference relations are denoted by �i and ∼i respec-

tively. We set Si = {(a, k) ∈ X∗|(a, k) �i a∅}; we say that voter i approves of all

alternatives in Si, and refer to the set Si as the induced approval vote of voter i.

2.3 Stability

One of the major topics of hedonic games is stability, the idea that a partition will not

be disrupted by individuals rejecting their assigned coalitions and moving to other

coalitions. There are many sets of constraints placed on such disruptions, such as

the number of agents that can move simultaneously; whether all moving agents must

see an increase in utility; whether agents left behind by movers must see their utility

increase, or whether agents being joined by movers must see their utility improve. We

examine the stability of Super Altruistic Hedonic Games in Chapter 4 and Anchored
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Team Formation Games in Chapter 5. We also introduce a new notion of stability in

Chapter 6.

We next define stability notions used in this work. In these definitions π is a

partition composed of a set of k disjoint coalitions {C1, C2, ...Ck}. The term π(i)

refers to the coalition C ∈ π such that i ∈ C.

Definition 23. [22] A partition is individually rational if no individual agent can

improve their utility by leaving their current coalition to become a singleton.

Individual rationality only considers the possiblity that agents will leave a unsat-

isfactory coalition to become a singleton. However, there may be cases where agents

can join other coalitions instead of simply leaving their current one. Nash stability,

adapted to the hedonic games space by Bogomolnaia and Jackson, considers the pos-

sibility that individuals may move between coalitions if doing so will improve their

utility.

Definition 24. [9] A partition is Nash stable for a coalition formation game if no

individual agent can improve their utility by deviating from their current coalition to

join another coalition or to become a singleton.

Nash stability focuses only on the selfish behavior of an individual, meaning that

agents can freely join or leave coalitions regardless of how such actions impact other

agents. This freedom of movement between coalitions may not be realistic in all cases

and imposing conditions that must be satisfied before an agent can move between

coalitions may cause a coalition that is not Nash stable to become stable. Bogomol-

naia and Jackson propose stability notions that impose such conditions [9].

Definition 25. [9] A partition is individually stable if no agent can improve their

utility by joining a different coalition without also decreasing the utility of at least one

agent in their new coalition.
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A partition is individually stable when agents must receive permission from all

members of a coalition they seek to join. Accordingly, agents will only grant permis-

sion to join if their own utility either increases or remains the same.

Definition 26. [9] A partition is contractually individually stable if no agent

can improve their utility by deviating from their current coalition without also nega-

tively impacting the utility of one or more agents in either their current coalition or

the coalition they seek to join.

A partition is contractually individually stable when agents must receive permis-

sion from all agents in a coalition in order to join it or leave it. As with individual

stability, an agent will only grant permission to join or to leave if doing so will not

negatively impact their utility. One way to ensure that a coalition is stable is to

guarantee that all agents in a coalition mutually benefit from each others’ presence.

Woeginger proposes a stability notion for graph based games based on this idea [68].

Definition 27. [68] Partitions in games based on an undirected graphs are won-

derfully stable when all coalitions in the partition are maximal (non-extendable)

cliques.

Stability notions discussed thus far have been focused primarily on whether in-

dividual agents can improve their utility by deviating from their current coalition.

Another possibility to consider is whether or not groups of agents can improve their

utility through cooperative deviation from the status quo. Bogomolnaia and Jackson

introduced the notions of blocking coalitions, and core stability, building on work by

Greenberg and Weber, and by Demange [9, 19, 29].

Definition 28. [9] A coalition blocks a partition if all agents in the coalition prefer

it over their current coalitions. Formally, a coalition C blocks partition π if ∀i ∈ C :

C �i π(i).
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It is possible to understand core stability without first explaining the notion of a

blocking coalition, but an understanding of blocking coalitions simplifies the definition

of core stability quite a bit.

Definition 29. [9] A partition is core stable if no coalition blocks it.

Dimitrov et al. proposed a stronger stability notion that utilizes weaker criteria

for a blocking coalition [20].

Definition 30. [20] A coalition weakly blocks a partition if at least one agent

strictly prefers the new coalition over their current coalition and all other agents

in the coalition either prefer the new coalition over their current coalitions or are

indifferent between the two. Formally, a coalition C weakly blocks partition π if

∀i ∈ C : C �i π(i) and ∃j : C �j π(j).

As with core stability, understanding the notion of a weakly blocking coalition

makes defining strict core stability easier.

Definition 31. [20] A partition is strictly core stable if no coalition weakly blocks

it.

The previously discussed stability notions have focused on the idea that agents

must be incapable of achieving better outcomes than the present, potentially due to

conditions that must be satisfied in order to improve their utility. Another way of

thinking about stability is to treat it like a voting problem, selecting the partition

with the most support from the overall set of agents. Lang et al. propose a stability

notion based on the idea of popular support [39].

Definition 32. [39] A partition π is strictly popular if it beats all other partitions

π′ 6= π in pairwise comparisons. A partition π beats another partition π′ in a pairwise

comparison if and only if the number of agents that prefer π over π′ is greater than

the number of agents that prefer π′ over π.
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While stable outcomes are unlikely to change, they don’t necessarily guarantee

that everyone gets the best outcome possible.

2.4 Optimality

Optimality, the notion of finding a utility-maximizing partition, is another major topic

of hedonic games. Notions of optimality are subject to constraints which clarify what

is being optimized, such as whether individual or collective (egalitarian or utilitarian)

utility is being optimized, or whether utility can be improved for some at the expense

of others (Pareto efficiency).

We next define notions related to optimality that are referenced throughout the

proposal. In these definitions π is a partition composed of a set of k disjoint coalitions

{C1, C2, ...Ck}. The utility an agent derives from their coalition C ∈ π is represented

by ui(π). The total utility of a partition is the sum of all agents’ utilities, defined

by UT =
∑

i∈N ui(π).

Definition 33. A partition π is Pareto optimal if no other partition that gives all

agents at least as much utility as they receive in π and gives at least one agent more

utility than they get in π [43].

Another optimality notion proposed by Aziz et al. focuses on the sum total utility

across all agents in a game [2].

Definition 34. A partition π is optimal according to utilitarian social welfare

if the sum of the utilities derived from π by all agents is greater than the sum of the

utilities derived from all other partitions [2].

Another natural optimality consideration is one which seeks to maximize the

minimum amount of utility that any agent receives.
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Definition 35. A partition π is maximin optimal if the minimum amount of

utility any agent receives under π is greater than or equal to the minimum amount of

utility received in all other partitions.

2.5 Stability versus Anarchy

Notions of stability are useful tools for predicting outcomes. However, there may be

costs that result from the imposition of a given stability notion. Further, a given

stability notion may admit good outcomes, but may also permit particularly subpar

outcomes as well. The notions of price of stability and price of anarchy formally

define these ideas.

Definition 36. For stability notion X, the price of stability (PoSX) is the ratio

between the overall utility-maximizing partition and the utility-maximizing X-stable

partition. For example, we use PoSIS to represent the price of internal stability.

Where the price of stability examines the loss of utility required to satisfy a given

stability notion, the price of anarchy examines the worst-case outcome of a given

stability notion.

Definition 37. For stability notion X, the price of anarchy (PoAX) is the ratio

between the overall utility-maximizing partition and the utility-minimizing X-stable

partition. For example, PoAIS represents the price of anarchy for internal stability.

In Chapter 3 we cover a range of works in the hedonic games field that are relevant

to our research.

Copyright c© Jacob Schlueter, 2021.
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Chapter 3 Related Works

Our work is in the area of hedonic coalition formation games, often shortened to

hedonic games. Hedonic games are a broad category of coalition formation games,

formally codified by Banerjee et al. and Bogomolnaia and Jackson in 2001-2002, where

each player’s utility is wholly derived from their coalition and is non-transferable [6, 9].

Non-transferable utility means that agents cannot share the benefits they derive from

the coalition directly with other agents. For example, the utility Hikaru derives from

being in a group with their friend cannot be transferred to someone else. In coalition

formation games with transferable utility, the benefits agents gain from their coalition

can be readily divided up and shared. For example, if the utility gained through group

formation is money, then it can be divided up however the group members like.

General case hedonic games can model a wide variety of problems, but it is diffi-

cult to generalize about the computational complexity of determining the existence,

or finding, stable or optimal partitions over all hedonic games. However, there are

some results for general hedonic games, which provide upper bounds on the com-

plexity for all games they generalize, such as work by Ballester in 2004 which proved

that deciding whether stable partitions exist is NP-complete for core stability, Nash

stability, and individual stability [5].

Much hedonic games research focused on subclasses that exhibit certain useful

properties. Early examples, which predate the formal codification of hedonic games,

are Gale and Shapley’s stable marriage and stable roommates problems introduced

in 1962, which always have polynomially computable stable matchings [27]. In both

problems players rank each other based on whom they want to be paired with, which

restricts their scope and applicability; stable marriage further restricts rankings to

members of a different gender [27] or other set in some bipartite graph (e.g., medical
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residents and hospitals [52]). Gale and Shapley proved that, when agents’ preferences

over who to marry or room with are strict, stable assignments always exist and also

provided an O(n2) algorithm to compute such stable assignments.

Around the same time that hedonic games were first formalized, B and W games

were introduced in 2001 by Cechlárová and Romero-Medina to address the stable

roommates problem when it is not restricted to pairs [15]. Cechlárová and Romero-

Medina provide polynomial time algorithms to compute strictly core stable partitions

for B and W games with strict preferences when they exist. In 2003 Cechlárová and

Hajduková demonstrated that determining if stable partitions exist for B games is

NP-complete when preferences are not strict [13]. In 2004 Cechlárová and Hajduková

expand onW games research by proving that, when preferences are not strict, deter-

mining the existence of core stable partitions is NP-complete [14].

Additively separable hedonic games (ASHGs, see Definition 12) were introduced

by one of the seminal papers on hedonic games by Banerjee et al. in 2001 to see

how the restriction of additively separable utility affected the existence of core stable

partitions, and proved that ASHGs are not guaranteed to have core stable partitions

[6]. Dimitrov et al. introduced friend oriented and enemy oriented hedonic games

(FOHGs and EOHGs see Definitions 15 and 16), in 2006 as two restricted subclasses

of ASHGs to see if the additional restrictions would elicit positive stability results

[20]. Dimitrov et al. proved that FOHGs are guaranteed to have strictly core stable

partitions that can be found in polynomial time [20]. EOHGs are guaranteed to

contain core stable partitions, but finding them is NP-hard [20].

In 2014 Aziz et al. extended the core notions of ASHGs with fractional hedonic

games (FHGs, see Definition 14) to find the average value of coalition members,

contrasting them with B and W games, which rely on the computation of the best

and worst (max and min) coalition members, and ASHGs, which compute the sum of

values of coalition members. [3]. Aziz et al. proved that core stable partitions are not
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guaranteed to exist for FHGs and that when core stable partitions do exist, computing

them is NP-hard and verifying that a partition is core stable is coNP-complete [3].

Nguyen et al. built on the foundations of FOHGs by introducing Altruistic Hedonic

Games (AHGs, see Definition 17) in 2016, arguing that the happiness of your friends

will affect your own happiness [45]. Nguyen et al. proved that Nash stable partitions

always exist for AHGs and provided several hardness proofs for other stability notions

[45]. Brânzei and Larson introduced social distance games (SDGs, see Definition 18)

in 2011 to investigate group formation among agents that are socially close to each

other [11]. Brânzei and Larson provided several optimality results as well as establish

one property which guarantees the existence of core stable partitions and another

property which precludes a coalition from being part of any core stable partition [11].

The work discussed thus far focused only on who agents want to be in a group with,

but hedonic games can also incorporate what agents want to do once the group has

been formed. For example, Darmann et al. introduced the Group Activity Selection

Problem (GASPs, see Definition 22) in 2012 [18]. Darmann et al. provided several

NP-completeness results for GASPs [18]. Spradling et al. introduced Roles and Teams

Hedonic Games (RTHGs, see Definition 19) in 2013 to model team formation in the

video game League of Legends [60]. Spradling et al. defined several stability notions

for RTHGs and provide NP-hardness results for some, but also prove that individu-

ally stable partitions can be found in polynomial time [60]. Spradling and Goldsmith

expanded on the ideas of RTHGs with the less rigidly defined Role Based Hedonic

Games (RBHG, see Definition 20) in 2015, where they provided NP-completeness re-

sults for several notions of stability [59]. Siler introduced Tiered Coalition Formation

Games (TCFGs, see Definition 21) in 2017. Siler provided NP-hardness results for

TCFGs and also find the unusual result that core stability guarantees Nash stability

in TCFGs.

Copyright c© Jacob Schlueter, 2021.
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Chapter 4 Super Altruistic Hedonic Games

Consider the process of choosing where to live. Let us consider the choice of neighbors,

perhaps in a setting where students are choosing their dormitories/hostels. We can

see the partitioning of students into living units (floors, buildings, etc.) as a hedonic

game. It is clear that we value our friends’ happiness with the living situation, as

we will hear about it from them; our enemies’ happiness could be assumed to also

affect how they treat us. If we stopped there, we would be modeling evaluation as

an Altruistic Hedonic Game. More generally we can also argue that our friends’

friends’ happiness will affect our friends’, and thus indirectly, our own, and that this

continues out friendship chains, with decreasing (or at least, non-increasing) effect as

we increase the social distance from ourselves.

If we were building intranets, a node could evaluate the quality of the local network

in terms of the bandwidth to reachable nodes. However, it would also need to take into

account the quality of more distant connections, if it hopes to have its packets relayed.

There are many other applications in which agents care not only about immediate

connections, but also those farther away. We introduce a family of hedonic games

that model such broad evaluations of coalitions: the Super Altruistic Hedonic Games.

4.1 Motivation

AHGs look at friends’ preferences, but we believe that considering everyone in the

coalition is better. Doing so makes it possible to model situations that are larger and

more complex than what AHGs can model.

For example, we could use this to model an extension of the stable roommate

problem to the problem of allocating all rooms on a dormitory floor. Since we are

treating all residents of the floor as members of the same coalition, coalition mem-
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bers are not connected as closely as they are in the traditional roommate problem.

However, coalition members still live in sufficiently close proximity that it is in their

best interest to get along with other members.

4.2 Related Works

SAHGs are a natural extension and generalization of Altruistic Hedonic Games

(AHGs, see Definition 17) wherein agents consider the preferences of other agents

[45]. In AHGs, agents only consider the preferences of their friends. In SAHGS,

agents consider the preferences of all agents in their coalition. In AHGs, friends are

assigned a value of n where n is the number of agents. In SAHGs, friends are assigned

a fixed non-negative value and enemies are assigned a fixed non-positive value, but

there are no rules specifying what those values must be. Additionally, the prefer-

ences of all agents in a coalition are considered in SAHGs, often taking advantage of

indirect relationships such as friends of friends to adjust the weight given to others’

preferences. (Note that friendship is not transitive: a friend of a friend could be our

enemy.)

While we expand the core notions of AHGs to consider all agents in a coalition

instead of just friends, there are other ways to extend the concepts of AHGs. In 2020

Kerkmann and Rothe proposed the expansion of AHGs into the more general space

of coalition formation games, by allowing an agent’s altruistic behavior to extend

beyond their coalition [37].

Social Distance Games (SDGs, see Definition 18) are a class of coalition formation

games wherein an agent’s utility is a measure of their closeness, or social distance,

from the other members of their coalition [11]. SDGs have similarities to SAHGs, but

we believe that SAHGs can better model realistic human interactions by combining

the notion of social distance with the consideration of others’ preferences proposed

in AHGs.

25



As we later demonstrate with Proposition 1, SAHGs generalize Friends-oriented

and Enemies-oriented Hedonic Games (FOHGs and EOHGs, see Definitions 15 and

16) [20]. In the former, agents seek coalitions that maximize the number of friends

with a secondary goal of minimizing the number of enemies. In the latter, minimizing

the number of enemies is the primary goal, while maximizing the number of friends

becomes secondary. This finding makes sense because AHGs drew heavily on the core

ideas of FOHGs [45].

Other research extends the concepts of FOHGs and EOHGs in different ways.

Work by Ohta et al. investigates the impact that neutral agents have on these games,

defining a neutral agent as one that is neither friend nor enemy [46]. Ohta et al.

show that permitting neutral agents in EOHGs allows for games that have no core

stable partition [46]. Core stable partitions are still guaranteed to exist in FOHGs

with neutral agents; however, strict-core stable partitions are not [46].

Kerkmann et al. investigate games with friends, enemies, and neutrals where

friends and enemies are ranked [38]. Kerkmann et al. prove that verification of possi-

ble and necessary stability is in P for individual rationality, Nash stability, individual

stability, and contractual individual stability and is coNP-complete for core stability,

strict core stability and strict popularity [38]. Kerkmann et al. find that proving

the existence of possibly and necessarily stable partitions is in P for individual ratio-

nality and contractual individual stability, but is NP-complete for Nash stability and

coNP-hard for strict popularity [38]. Deciding whether necessarily individually stable

partitions exist is NP-complete, but deciding if possibly individually stable partitions

exist is only known to be in NP [38].

Fichtenberger and Rey examine property testers with one-sided error for hedonic

games with friends, enemies and neutrals and a bounded number of friend/enemy

edges connected to each agent [24]. One-sided error, in this case, requires that a

partition being tested for a certain property (e.g. Nash stability) will be always be
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correctly categorized if it has the desired property, but may be incorrectly categorized

if it does not have the desired property. For example, a tester with one-sided error will

correctly categorize all Nash stable partitions for a given game, but may incorrectly

categorize some partitions that are not Nash stable.

Barrot et al. introduce FOHGs with unknowns, where unknowns are assigned an

ε positive or negative value such that the number of unknowns will only decide an

agent’s preference between two coalitions when the number of friends and enemies

is the same in both coalitions; this means that ε must be smaller than 1/n. They

prove that core stable and individual stable partitions may not exist when unknowns

have ε positive values, while strictly core stable partitions (and thus, core stable par-

titions) are guaranteed to exist when unknowns have ε negative values [7]. Barrot

et al. further prove that, when unknowns have ε positive values, deciding whether

core stable partitions exist is NPNP -complete and deciding whether individually sta-

ble paritions exist is NP -complete [7]. The findings of hedonic games with friends,

enemies and either neutrals or unknowns do not readily translate to SAHGs, because

SAHGs do not allow neutral or unknown agents. Neutral agents could be modeled as

graph-based games by labeling appropriate edges as neutral, and unknowns could be

modeled in a similar fashion, but SAHGs are focused on simple graph-based models,

so the addition of neutral edges is beyond the scope of the work presented in this

dissertation.

Work by Flammini et al. presents mechanisms to approximate optimal social

welfare in FOHGs and EOHGs that are strategy-proof in regards to players’ disclosure

of who they view as friends and enemies [25]. Flammini et al. propose that FOHGs

and EOHGs with neutrals are a natural extension of their work, since the assumption

that all agents view each other as strictly friends or enemies is unrealistic [25].

Bermond et al. provide tighter bounds on the complexity of computing partitions

composed of cliques with up to k agents in EOHGs for a fixed value of k [8]. The
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focus on cliques in the work by Bermond et al. makes sense, because all individually

rational partitions in EOHGs are composed of cliques.

Brandt et al. investigate whether individually stable partitions can be reached by

a sequence of deviations from some starting partition [10]. The techniques employed

by Brandt et al. to prove or disprove the existence of such sequences are similar to

the techniques we employ in our proof of Theorem 2.

There are graph-related hedonic games that depend on edge-weighted graphs. For

instance, B andW games are a category of hedonic games in which an agent’s utility

is defined by the agents in their coalition that they rate as the best or the worst,

respectively [15]. While these games fall into the category of hedonic games, we don’t

believe SAHGs can generalize B orW games. Similarly, we do not believe that either

B or W games can generalize SAHGs. This is due to the differences between B and

W games and SAHGS, such as the former two categories assuming each agent can

assign a unique value to each other agent, while SAHGs restrict agents to placing

others into one of two categories. Additionally, B and W games do not consider the

preferences of others as SAHGs do.

The Coalition Structure Generation (CSG) problem presents a set of coalition

formation games representable as graphs where each agent contributes a fixed value to

their coalition [40]. There are several significant differences between the CSG problem

and SAHGs, despite both falling under the broad scope of coalition formation games.

One major difference is the way agent values are handled. In the CSG problem there

can be as many values as there are agents and all agents agree on the values assigned

to each agent, whereas SAHGs only allow one of two values to be assigned to each

agent and agents aren’t guaranteed to agree on those values. Additionally, the CSG

problem assumes that utility is transferable, so all members of a coalition earn the

same utility. SAHGs do not have transferable utility, so not all agents in a given

coalition are guaranteed to have the same utility. As a result, there is no clear means
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to translate between the CSG problem and SAHGs.

4.3 Preliminaries

Super Altruistic Hedonic Games1 (SAHGs) extend the core principal of Al-

truistic Hedonic Games (see Definition 17) so agents consider the preferences of all

agents in their coalition. Agents weigh their consideration of each other’s preferences

according to some polynomially computable value.

Definition 38. Let parameters (a, g,M,L) be non-negative weights where a and g

represent the weights associated with friends and enemies, respectively, while M and

L represent the weights associated with personal preference and the average of friends’

preferences. Next, let D(i, j) be a polynomial-time computable function that is non-

increasing with the graph distance between i and j. Let the number of other agents in

coalition Ci be hi = |Ci \ {i}|. For each agent i ∈ N , let that agent’s base preference

be bi = a|Ci ∩ Fi| − g|Ci ∩ Ei|, and let their utility be

ui = Mbi + L
∑

j∈Ci\{i}

D(i, j) · bj
hi

.

If Ci = {i} then the sum is set to 0. The default definition of D is the inverse graph

distance function: for any pair of agents i, j ∈ N : i 6= j, let dij be the shortest path

distance between them, then let D(i, j) = 1/dij. The total utility of a partition π is

given by UT =
∑

i∈N ui.

We next show how SAHGs generalize friend-oriented and enemy-oriented hedonic

games (see Definitions 15 and 16) as well as one type of AHGs.

Observation 1. SAHGs generalize several graph-based hedonic games.

• A Friends-oriented Hedonic Game is a SAHG with parameters (a, g,M,L) =

(n, 1, 1, 0), and an Enemies-oriented Hedonic Game is a SAHG with parameters
1We considered calling them “Super Kinda Altruistic ex-Hedonic Fun Games,” even though the

sound of it was really quite atrocious.
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(1, n, 1, 0). (Because L = 0, it does not matter how we define D.) Thus, all

hardness results for FOHGs and EOHGs are inherited by SAHGs.

• SAHGs also model Altruistic Hedonic Games under the selfish-first criterion

((a, g,M,L) = (n, 1, n5, 1) and D(i, j) = 1 if j ∈ Fi and D(i, j) = 0 if j /∈ Fi).

• If D ≡ 1 and (a, g,M,L) = (n, 1, 1, 1) then we capture the notion of a friend-

oriented hedonic game on the transitive closure of the friendship graph.

4.4 Properties of Partitions

In this section we look at cliques in SAHGs. We also consider the existence of stable

partitions.

Proposition 1. If a coalition comprises a single clique, C, then individual utilities

are given by a linear function of the number of agents and coalition utility is defined

by a geometric function of the number of agents.

Proof. We first recall that the base preference of each agent i ∈ N is given by bi =

a|Ci ∩ Fi| − g|Ci ∩ Ei| where Ci is the coalition to which i belongs, and that hi =

|Ci ∩ Fi| + |Ci ∩ Ei| defines the number of agents in Ci \ {i}. Next recall that each

agent i ∈ N has utility given by

ui = Mbi + L
∑

j∈Ci\{i}

D(i, j) · bj
hi

.

The total utility of a partition is defined by UT =
∑

i∈N ui.

Now we define the total utility of a coalition as UC =
∑

i∈C ui. Because C is a

clique, we know that ∀i, j ∈ C, i 6= j D(i, j) = 1. We also know that all i ∈ C have

hi = |C| − 1 and bi = a(|C| − 1). We use this to calculate

ui = M · a(|C| − 1) + L
∑

j∈Ci\{i}

a(|C| − 1)

1(|C| − 1)
,

which simplifies to ui = (M + L) · a(|C| − 1).
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The total utility of the coalition is UC =
∑

i∈C ui, which simplifies to UC =

(M + L)(a(|C|2 − |C|)). Thus, we have demonstrated that, given a coalition C

comprised of a single clique, the individual utility is a linear function of |C| and the

coalition utility is a geometric function of |C|.

Next, we analyze the impact of cliques in SAHGs.

Proposition 2. Different partitions of a set of agents into cliques may have different

utilities.

Proof. Consider that coalition utility scales geometrically with the number of agents

if the coalition is a clique. Unless the clique-coalitions are all of equivalent size, then

the net utility will be different.

We can also prove by contradiction with a game based on Figure 4.1 with param-

eters (a, g,M,L) = (1, 1, 1, 1). For each i ∈ N we have:

• bi = |Ci ∩ Fi| − |Ci ∩ Ei|

• ui = bi +
∑

j∈Ci\{i}
D(i,j)·bj

hi
.

Figure 4.1: Unequal Cliques

Consider two partitions:

π1 = {{A,B,C}, {D}} and π2 = {{A,B}, {C,D}}.

In π1, we have bA = bB = bC = 2 and bD = 0. We also have uA = uB = uC = 4

and uD = 0 and UT (π1) = 12. In π2, we have bA = bB = bC = bD = 1 and

uA = uB = uC = uD = 2. Thus, UT (π2) = 8.
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Since we have two partitions into cliques with different total utility values, we

can conclude that partitioning agents into cliques does not ensure a consistent total

utility. However, given partitions π3 and π4 dividing agents into equal numbers of

cliques of each size, the total utilities of the two partitions will be the same.

Next we demonstrate that it is possible to construct stable partitions for SAHGs

under any notion of stability.

Proposition 3. For all parameter values, for all stability notions considered in this

paper, there exist SAHGs with stable partitions.

Proof. Let G be the SAHG with structure given by a graph with n nodes and no

edges with parameters (a, g,M,L). For the partition of singletons, each agent i has

utility ui = 0. Since there are no edges in the graph, no agent would benefit from

forming a coalition with any other agent or set of agents, so the partition of singletons

is stable.

In Theorem 1 we prove that strictly core stable partitions are not guaranteed to

exist in SAHGs.

Theorem 1. Not all SAHGs have strictly core stable partitions.

Proof. Consider a game based on Figure 4.2 with parameters (a, g,M,L) = (1, 1, 1, 1).

For each agent i ∈ N , we have:

• bi = |Ci ∩ Fi| − |Ci ∩ Ei|

• ui = bi +
∑

j∈Ci\i
D(i,j)·bj

hi
.

This game contains two equal-sized cliques connected by a single intermediate

agent, C. The grand coalition is weakly blocked by {A,B,C} and {C,D,E}. If one

of these weakly blocking coalitions splits off from the grand coalition, we either have
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Figure 4.2: Graphical Representation of Friends

π1 = {A,B,C}, {D,E} or π2 = {A,B}, {C,D,E}.

π1 is weakly blocked by {C,D,E} and π2 is weakly blocked by {A,B,C}.

The utility of A and B is maximized in {A,B,C}, while {C,D,E} maximizes the

utility of C and D. The utility of agent C is maximized by the grand coalition and

by {A,B,C} and {C,D,E}. As such, all possible partitions are weakly blocked by

{A,B,C}, {C,D,E}, or both. Thus there is no strictly core stable partition.

Next we prove that Nash stable partitions don’t always exist for SAHGs, even

when the SAHGs are based on undirected graphs.

Theorem 2. Not all SAHGs based on undirected graphs have Nash stable partitions.

Figure 4.3: Game with no Nash stable partition

Proof. Let G be the SAHG with structure given in Figure 4.3, and weight parameters

(a, g,M,L) = (1, 1, 1, 3). This gives us:

• bi = |Ci ∩ Fi| − |Ci ∩ Ei|

• ui = bi + 3
∑

j∈Ci\i
D(i,j)·bj

hi
.
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This game has two equal-sized cliques which are connected to each other through

two intermediate agents. The first connecting agent, agent 1, is connected to all agents

in both cliques. The second connecting agent, agent 10, is connected to a single agent

in each clique and is not connected to agent 1. The first clique is composed of agents

1–5 and the second of agents 1, 6–9.

Because the only member common to both cliques is agent 1, it is reasonable to

expect that no stable coalition containing one clique will contain any members from

the other, except for agent 1. If members from two cliques form into coalitions which

do not include agents 1 and 10, then these two remaining agents would prefer to

remain as singletons rather than forming a two-person coalition with each other. In

this case, the utility of an agent in one of the two clique coalitions is 12, while the

utility of agents 1 and 10 are zero since they are singletons. This describes partition

π1 = {{1}, {2, 3, 4, 5}, {6, 7, 8, 9}, {10}} with total utility UT = 96.

The partition π1 is unstable, because agent 1 can improve their utility by joining

one of the two clique coalitions. Since agent 1 is connected to all agents in both

cliques, its joining either coalition will increase the size of the clique by 1, increasing

the utility of all agents in the coalition from 12 to 16. Agent 1 is indifferent between

the two cliques. This presents two possible partitions

π2 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10}} and

π3 = {{2, 3, 4, 5}, {1, 6, 7, 8, 9}, {10}},

each of which has total utility UT = 128.

Both π2 and π3 are also unstable because agent 10 can also improve its own

utility by joining a coalition. If agent 10 chooses to join the coalition that agent

1 did not, it derives utility u10 = 3.25, while it derives utility u10 = 3.6 if it joins

the same coalition as agent 1. Thus, agent 10 prefers to join whichever coalition

agent 1 joined, which results in either π4 = {{1, 2, 3, 4, 5, 10}, {6, 7, 8, 9}} or π5 =

{{2, 3, 4, 5}, {1, 6, 7, 8, 9, 10}}. The total utility of this new partition is UT = 104.
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Still, π4 and π5 are unstable because agent 1 can improve its utility by leaving the

current coalition to join the other clique, thereby restoring its utility to 16. This gives

either π6 = {{2, 3, 4, 5, 10}, {1, 6, 7, 8, 9}} or π7 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}. In

these partitions, the total utility is UT = 110.5. However, π6 and π7 are unstable since

agent 10 can improve its utility by following agent 1, which creates a cycle of four

partitions, none of which are Nash stable. Thus we conclude that there is no Nash

stable partition for this game, and, by extension, that not all SAHGs are guaranteed

to have Nash stable partitions.

Theorem 2 contrasts with existing results for AHGs, which always have Nash

stable partitions [45], and FOHGs, which always have strictly core stable partitions

[20].

Notice that the game in the proof of Theorem 2 has core stable partitions:

{{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10}} and {{2, 3, 4, 5}, {1, 6, 7, 8, 9}, {10}}. The 5-member

cliques weakly block the opposing partition, but there are no coalitions that block

either partition. Additionally, agent 10 would not be accepted in either coalition,

since its presence decreases the utility of every other member in the coalition.

Observation 2 follows from previous work by Ballester (2004) proving that all

hedonic games have contractually individually stable partitions.

Observation 2. [5] Contractually individually stable partitions are guaranteed to

exist, for all hedonic games.

In section 4.5, we cover computational complexity results for SAHGs.

4.5 Computational Complexity

Our first result addresses the complexity of computing the sum of the utility each

agent derives from a partition.

Proposition 4. Computing the utility of a partition for a SAHG is in P.
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Proof. Consider a partition π of some game G. The steps to evaluate the partition

are:

1. ∀i ∈ N and ∀j ∈ π(i) compute D(i, j)

2. ∀i ∈ N compute hi and bi

3. ∀i ∈ N compute ui

4. compute UT (π).

We assume that intermediate values are computed once and stored.

In the default case where D(i, j) is the graph distance between i and j, we can

use the Floyd-Warshall algorithm to compute this distance for all (i, j) ∈ N ×N in

time O(n3) [17], otherwise, it is O(n2)t(n), where t(n) is the time needed to compute

any D(i, j) for a SAHG of size n. We compute hi and bi in time O(n2) by checking

each entry in π(i) against the lists Fi and Ei. Computing hi and bi for all i ∈ N

requires time O(n3). Calculating ui requires time Θ(|π(i)|) < O(n). So the time

required to compute ui for all i ∈ N is O(n2). UT (π) can then be computed in time

O(n). The overall time required to evaluate a partition is O(n3) when t(n) ∈ O(n)

and O(n2)t(n) otherwise. Thus a partition of a Super Altruistic Hedonic Game can

be evaluated in polynomial time.

Next we establish that Nash stability can be verified in polynomial time, which

proves that checking whether Nash stable partitions exist is in NP.

Proposition 5. Deciding whether a partition is Nash stable is in time O(n2 · e(n)),

where e(n) is the time needed to evaluate the utility of a coalition.

Proof. Consider a partition π of some game G. To determine if π is Nash stable,

∀i ∈ N and ∀C ∈ π : C 6= π(i) we compare ui(π(i)) with ui(C ∪ {i}). If @(i, C) such

that ui(C ∪ {i}) > ui(π(i)), then π is Nash stable.
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There are at most n coalitions in π in the case of the partition of singletons, and

for each C ∈ π n utility values must be computed. At most n2 utility values must

be computed to determine if π is Nash stable. Determining if a partition π is Nash

stable requires time O(n2 · e(n)) where e(n) is the time needed to compute the utility

of a coalition.

Table 4.1: Known Complexity Results

Nash Stable Existence
AHG Always exist [45]

Individually Stable Existence
AHG Always exist [45]

Contractually Individually Stable Existence
AHG Always exist [45]

Wonderfully Stable Existence
EOHG DP-hard [50, 51]

Core Stable Existence
EOHG Always exist [20]
FOHG Always exist [20]

AHG (selfish-first) Always exist [45]
Strict Core Stable Existence

EOHG DP-hard [50, 51]
FOHG Always exist [50, 51]

AHG (selfish-first) Always exist [45]
Core Stable Verification

EOHG coNP-complete∗ [62]
Strict Core Stable Verification

EOHG coNP-complete∗ [62]
Strict Core Stable Computation

FOHG P [20]
Strictly Popular Verification

AHG coNP-complete [45]
Strictly Popular Existence

AHG (selfish-first) coNP-hard [45]
∗ Corollary of their result for additive games.

We have previously demonstrated that FOHGs, EOHGs, and selfish-first AHGs

are generalized by SAHGs. As a result, SAHGs inherit the complexity results of these
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games as lower bounds on the hardness of general case SAHGs. Known complexity

results for these games are outlined in Table 4.1.

Corollary 1.

• Determining if wonderfully stable partitions exist is DP-hard [50, 51].

• Determining if strictly core stable partitions exist is DP-hard [50, 51].

• Verifying a partition is (strictly) core stable is coNP-hard [68].

• Determining if strictly popular partitions exist in SAHGS is coNP-hard [45].

• Verifying a partition is strictly popular is coNP-hard [45].

In the last section, we review our contributions and outline several open questions

related to our work on SAHGs.

4.6 Conclusions and Open Questions

We introduce SAHGs as an extension of the ideas behind AHGs, introduced by

Nguyen et al. [45]. We show that SAHGs generalize several graph-based hedonic

games: FHGs, EHGs, and AHGs under the selfish-first criterion in proposition 1.

What distinguishes SAHGs from the games they generalize is the consideration of

the preferences of all other agents in one’s coalition. This difference allows SAHGs to

better model partitioning problems with a larger scope than roommate assignment

problems.

We examine several properties of SAHGs in Propositions 1–3. We prove that

stable partitions may not exist, even when friendship relations are symmetric in

Theorems 1 and 2. We show that the total utility of a partition can be computed

in polynomial time in Proposition 4. Proposition 5 demonstrates how Nash stability

can be verified in polynomial time. Corollary 1 clarifies lower bounds on complexity

that SAHGs inherit from games they generalize.
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There are many questions relating to SAHGs that remain open. How large can a

general case SAHG be before deterministic solvers become impractical? What sorts of

heuristics can solve SAHG instances efficiently? Our experimental work on Anchored

Team Formation Games provides a couple of potential heuristics we could investigate

(see Chapter 5). Additionally, Miles [42] crafted a useful web program to simulate

a variety of hedonic games, which provided insight for our work on Anchored Team

Formation Games, and may be another useful resource to help construct deterministic

and heuristic solvers for SAHGs.

Are SAHGs guaranteed to have internally stable, core stable, or individually sta-

ble partitions? What are the necessary and sufficient conditions to guarantee the

existence of stable partitions in SAHGs for stability notions? We are particularly

interested in stability notions where general-case SAHGs are not guaranteed to have

stable partitions, such as Nash stability.

Do SAHGs generalize any social network problems? As with FOHGs and EOHGs,

social network problems generalized by SAHGs will provide lower complexity bounds

on a number of questions of interest for SAHGs. Do any well-studied social network

problems generalize SAHGs? If so, this would place an upper bound on the complexity

of many SAHG problems.

Future SAHGs research could build off extensions to FOHGs and EOHGs. What

impact would neutral agents similar to those proposed by Ohta et al. for FOHGs have

on SAHGs[46]? How would unknowns, as proposed by Barrot et al., impact SAHGs

[7]? Flammini et al. recognize that agents are not always truthful when reporting

their preferences [25]. Can strategyproof mechanisms similar to those proposed by

Flammini et al. be constructed for SAHGs?

Copyright c© Jacob Schlueter, 2021.
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Chapter 5 Anchored Team Formation Games

Consider tabletop role playing games (TRPG) such as Dungeons and Dragons. In

order to play a TRPG, a group must have players and a game manager (GM); the

former working through challenges set up by the latter. The expectation of enjoying a

particular group to play such a game is based on expectations that the GM will set up

a good story line, with sufficient challenges and rewards, and that the fellow travelers

will offer good measures of cooperation and competition. We introduce anchored

team formation games (ATFGs) to investigate the formation of groups with a leader,

or anchor, using the formation of Tabletop Role Playing Game (TRPG) groups as

an example application. While we refer to the gaming application throughout the

paper, the anchor could be a team lead in a programming or engineering team, in

business, class project groups, or outdoor adventuring. Whatever the application,

the driving question is, how do we divide individuals into groups that will get the job

(or game) done, and choose leaders for the groups, in a way that is consistent with

the individuals’ preferences?

We are interested in determining whether stable partitions exist for a given ATFG,

and how to find them. Given our proposed use case, we believe Nash stability is the

most relevant stability notion in the literature. However, the problem of finding

a Nash stable partition is NP-hard. We present experimental results with three

effective heuristics to check the existence of Nash stable partitions in ATFGs. Our first

algorithm starts by selecting anchors around which to build coalitions, then divide

players in a round robin fashion consisting of several rounds where each coalition

chooses one player to add. Our second algorithm is a local search implementation

that attempts to minimize the number of blocking players, those who can improve

their utility by unilaterally deviating from their assignment. Our third algorithm
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daisy-chains the previous two, using the output of the round-robin algorithm as a

starting place for a local search.

Experiments on 10–12-agent instances show that all three heuristics perform quite

well. On larger instances, however, we see that daisy-chaining is a significant im-

provement over either individual algorithm. These experiments indicate that good

partitions can be found. In the next section, we provide a more detailed motivation

for thise work. We then formally define ATFGs and present the algorithms used, the

experimental set-up, and the results.

5.1 Motivation

Consider about a university club focused on playing TRPGs. A key challenge for the

club is to divide up the club members so everyone can participate in a game while

also keeping everyone happy. They may be able to quickly determine approximately

how many groups should be formed, but what may be less clear is who should be in

which group. Not everyone will agree on who makes a good GM. There are differences

in opinion over what sorts of stories and challenges the best games should feature,

which can have a big impact on the types of games someone creates when they are a

GM or the types of games someone enjoys playing. This means that Azar may view

Dawa as an excellent GM, while Cleo may find Dawa intolerable as a GM based on

the types of games Dawa tends to make and the types of games that Azar and Cleo

like to play. People also have preferences over who they play with. Some people may

prefer to play with people who are good at engaging with the game’s story, while

others may prefer to play with people who are skilled at building their characters

with excellent combat abilities. As with GMs, not everyone will agree who the best

people to play with are.

Alternatively, consider an academic conference such as AAAI with breaks sepa-

rating the various sessions throughout each day. During the breaks, most attendees
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will engage in casual conversation with each other. Oftentimes, attendees will tend

to move around for several minutes at the beginning of the break before settling in

with one group they’ll spend the majority of the break talking with. Many attendees

are university professors, post-docs, or students. Professors and post-docs will often

have some degree of recognition in the research community, with professors typically

having more. Students, in contrast, will typically be largely unknown. We propose

the professors, and post-docs to a lesser degree, will often serve as anchor points for

conversation groups during these breaks. As with TRPGs, not everyone will agree on

who the best researchers to speak with are; for example, many people may prefer to

spend their time talking with other researchers specializing in topics similar to their

own.

5.2 Related Works

Banerjee et al. and Bogomolnaia and Jackson introduced additively separable hedonic

games (ASHGs), where players assign utility values to each other, similar to the

rankings in Gale and Shapley’s roommates problem, but there are no restrictions

on coalition size [6, 9, 27]. ASHGs are of particular interest to our work on ATFGs,

because they are generalized by ATFGs; there are many other hedonic games inspired

by ASHGs [3, 20, 39, 45, 55]. There are many hardness results for ASHGs and their

variants, which establish some baselines for our work [2, 49, 51, 54, 68].

Our work on ATFGs expands the body of hedonic games inspired by gaming. He-

donic games inspired by gaming include Tiered Coalition Formation Games (TCFGs)

inspired by Pokémon, Roles and Teams Hedonic Games (RTHGs) inspired by League

of Legends, and Role Based Hedonic Games (RBHGs), which generalize RTHGs

[56, 59, 60].

We expand the body of research applying heuristics to hedonic games with our

work on ATFGs. Spradling et al. gives experimental results for individual stability
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in RTHGs using a local search heuristic and another greedy heuristic that models

agents as voters then holds a series of elections to assign agents to coalitions [60].

Spradling et al. compare their heuristic results to MaxMin and MaxSum brute force

algorithms [60]. Later work by Spradling uses greedy voting and greedy local search

heuristics to find optimal partitions in RBHGs [61]. We use a local search heuristic

(see Algorithm 4), a round robin heuristic (see Algorithm 2), and a combination of

the two to find Nash stable partitions for ATFGs. We employ a complete algorithm

based on depth first search to find Nash stable partitions in ATFGs as a baseline to

which to compare our heuristics.

Keinänen and Keinänen develop local search heuristics for core stability verifica-

tion and social welfare optimization in hedonic games [33, 34, 36]. We conjecture

that Keinänen does not extend this to local search algorithms to construct stable

partitions, as we do, in part because the fitness function we use is unusual, and is

specific to Nash stability. However, Keinänen presents an EXPTIME breadth first

search algorithm to compute all Nash stable partition in ASHGs [35], which they

were able to run on (many) instances of size 10. Our complete algorithm has success-

fully run 20-player instances, despite ATFGs being more complicated the ASHGs.

We hypothesize the improvements in CPU architecture and differences in the number

of instances tested explain why Keinänen only examined instances of size 10, while

we were able to process instances of size 20; however, their runtimes are based on

number of partitions checked, where ours are based on CPU and wall clock time, so

they cannot be directly compared.

Waxman et al. utilize simulated annealing and leximin heuristics to optimize egali-

tarian welfare in ASHGs where a fixed number of coalitions must be formed [67]. Tay-

wade et al. give experimental results with three heuristics to optimize social welfare

in decentralized matching [65], which is significantly different from our centralized

setting, as well as being focused on optimality rather than stability. Collins et al. use
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a Monte Carlo implementation to generate core stable partitions for a large number

of hedonic games with strict preferences and up to 13 agents [16].

Gairing and Savani examine how many steps are required for local search to

converge on local optima for symmetric ASHGs for Nash stability, individual stability,

and contractual individual stability [26]. Gairing and Savani characterize their results

according to the polynomial local search (PLS) complexity class [26]. Informally,

a problem is in PLS when a polynomial time algorithm can construct an initial

candidate solution, compute the cost or utility of a candidate solution, and find

a neighboring solution that improves upon a candidate solution if one exists [32].

Gairing and Savani show that for ASHGs finding Nash stable or individually stable

partitions is PLS-complete, while finding contractually individually stable partitions

can be found in polynomial time with local search [26]. Since ATFGs generalize

ASHGs, as shown in Proposition 8, we conclude that finding Nash stable partitions

in ATFGs is a PLS-complete problem.

5.3 Preliminaries

We now introduce our model of team formation for gaming. A standard play group

in many TRPGs consists of four players and a fifth person, typically referred to either

as the game manager (GM) or dungeon manager (DM), we shall hereafter use the

term GM. The GM provides the game’s setting and leads the players through the

story. The number of players varies, but there is only one GM. A GM’s performance

can easily make or break a game. A good GM keeps players engaged, while a bad

GM can make for a poor experience.

We introduce Anchored Team Formation Games to model the formation of such

groups. One of the biggest differences between our setting and most others is that

we assume that players may have opinions not only on other individuals, but also on
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pairs of players, either positively1 or negatively.

Anchored Team Formation Games are a class of cooperative coalition formation

games in which each coalition must contain an anchor, or leading player, and in which

upper and lower bounds limit the permissible sizes of coalitions.

Definition 39. An Anchored Team Formation Game (ATFG) is a tuple

〈N, V, P,D, cu, cl〉, where N is a set of n players, and V , P , and D define weight

values such that each i ∈ N , there are vectors vi, pi, and di of lengths n, n2, and n

respectively. The vi[j] is the utility i gets for being in a coalition with player j ∈ N ;

pi[j, k] is the utility i gets for being in a coalition with the pair of players (j, k); di[j]

is the utility i gets if j is the anchor (GM) for i’s coalition. Values contained in each

vi, pi, and di are assumed to either be integers or unknowns.

The values cu and cl define upper and lower bounds on coalition size. Any valid

coalition C ⊆ N must satisfy cu ≥ |C| ≥ cl. Further, all valid coalitions C ⊆ N must

contain a designated player g(C) who serves as the anchor, or coalition leader. In

order for a partition γ to be valid, it must consist solely of valid disjoint coalitions.

The utility ui(γ) a player i ∈ N derives from a valid partition γ is defined as

follows:

di[g(Ci)] +
∑

j∈Ci\{i}

vi[j] +
∑

{j,l}⊂Ci\{i}

pi[{j, l}].

Evaluating the utility of a given coalition is a relatively fast operation, as shown

in Proposition 6.

Proposition 6. Evaluating ui(C) takes time O(n2).

Note that evaluating ui(C) takes time O(m2) ⊆ O(n2), where m is an upper

bound on |C|, due to the pi summation. Thus, evaluating the total utility of a

1Consider James and Elyse Willems
(https://www.youtube.com/channel/UCboMX_UNgaPBsUOIgasn3-Q): most players would yield a
higher utility from having both James and Elyse in a TRPG campaign as opposed to either, singly.
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coalition is O(m2) (and thus O(n2)) and of an entire partition is O(n3), or more

precisely, O(nm2).

Stability

An assignment, formally a partition, of players to tables is only useful if the players

consent to the assignment. We presume that, if they are aware of an assignment that

they perceive as better than the one on offer, they will attempt to move to the better

assignment. A partition is stable when it will not be disrupted by players rejecting

their assigned coalitions and moving to other coalitions. There are many sets of

constraints placed on such disruptions, such as the number of players that can move

simultaneously; whether all moving players must see an increase in utility; whether

players left behind by movers must see their utility increase, or whether players being

joined by movers must see their utility improve. We focus on Nash stability (see

Definition 24, which was adapted to hedonic games by Bogomolnaia and Jackson [9].

Note that there are some trivial cases of stable partitions, which we ignore. For

instance, if coalitions must have size ≥ 3, then the partition of all singletons is Nash

stable, since no pair is a valid coalition. We assume that all partitions contain at

least one valid coalition.

Our local search heuristic (Algorithm 4) defines fitness by the number of blocking

players, players who want to unilaterally leave their current coalition to join another

or to become a singleton. This measure, the Degree of Instability (DoI), was suggested

by Roth and Xing for matching in decentralized markets [53]. A more robust notion

of instability for pair matching was proposed by Eriksson and Häggström [23]. We

use the simpler count of blocking players as it is more appropriate for Nash stability.
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5.4 Computational Complexity

We now discuss computational complexity results for ATFGs, starting with a proof

that Nash stability verification is in P.

Proposition 7. Nash stability verification for ATFGs runs in polynomial time.

Proof. Consider some ATFG (N, V, P,D, cu, cl) with partition γ = {C1, ..., Ck}. For

each i ∈ N , recall that ui(γ) is defined by:

di[g(Ci)] +
∑

j∈Ci\{i}

vi[j] +
∑

{j,l}⊂Ci\{i}

pi[{j, l}].

For each i and each C ′ ∈ γ, we compute ui(C
′∪{i}) in time O(n2), by Observation 6.

If ∃i : ui(C
′ ∪ {i}) > ui(γ), the partition is not Nash stable. This computation is

order O(n4), as there are n players and O(n) coalitions.

Proposition 8 highlights the relationship between ATFGs and ASHGs.

Proposition 8. ATFGs generalize ASHGs.

Proof. We can convert any ASHG into an ATFG as follows:

1. Taking the values each player assigns to each other player as-is.

2. For all pi ∈ P set all values p ∈ pi to 0.

3. For all di ∈ D set all values d ∈ di to 0.

4. Set cu = n.

5. Set cl = 0.

Following this conversion, the anchor becomes irrelevant, as they have no impact on

utility. The bounds set on coalitions are such that they impose no limits whatsoever,

as any coalition size obtainable from a set of n players is permitted.
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Sung and Dimitrov prove that determining if a Nash stable partition exists is

NP-complete for ASHGs [63]. Their proof shows that this holds even when there is

a bound of 7 on the size of coalitions. Because ATFGs generalize ASHGs, we know

that the Nash stability existence problem is NP-hard for ATFGs. Proposition 7 shows

that Nash stability verification is in P, so Nash stability existence is in NP. Thus Nash

stability existence is NP-complete.

An ATFG constructed from an ASHG does not make use of coalition size restric-

tions or utility values assigned to anchors or pairs of players. Our focus is on settings

where coalition sizes are restricted and a coalition’s anchor is an important part of

each player’s utility.

5.5 Algorithms

We present a complete algorithm used as a comparison basis for our heuristics. For

the heuristic algorithms, the first step is to choose the GMs, and then to assign players

to coalitions. We present the GM selection function, and then describe how agents’

utilities are represented. We then describe round-robin and local search algorithms.

In all algorithms, W represents an arbitrary ATFG instance (N, V, P,D, cu, cl).

Complete search

As a baseline for our heuristics, we have a branch and bound algorithm that finds all

Nash stable partitions of a given instance. We refer to this as the complete algorithm.

Development of the algorithm started with a relatively pure implementation of a

depth-first search tree, where nodes at each level consist of coalitions that can be

constructed from as-yet unassigned agents. To eliminate redundant branches, each

node in the search tree contains the lowest-numbered available agent. In order to

improve the algorithm’s runtime, we’ve implemented a series of optimizations that

ultimately resulted in the branch and bound algorithm we have now.
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Originally, we stored a list of possible partitions as the tree structure was explored,

then later used multiprocessing tools to verify the stability of the partitions in parallel

either after the tree was fully explored or after a certain number of partitions were

held in storage, based roughly on available RAM. This was based on the assumption

that the majority of the computation time for the algorithm was spent on verifying

stability. Testing revealed that this was incorrect, so we adjusted the implementation

to use multiprocessing for tree exploration, then allowed the individual processes

to verify the partitions they store. Before making this adjustment, the wall clock

runtime for instances with 15 agents routinely hit a 20 minute time limit imposed

during development. Afterwards, the wall clock runtime was reduced to an average

of 65 seconds and a maximum of 263 seconds (or 4 minutes and 23 seconds).

We later restricted the algorithm so that singletons are only considered if 1 is

explicitly defined as a valid coalition size. This reduced the wall clock runtime average

from 65 to 28 seconds and the maximum from 263 to 120 seconds. Next we imposed

a restriction to immediately prune any branches that introduce instability to the

existing coalition set. This reduced the wall cock runtime average to 6 seconds and

the maximum to 17 seconds.

We ran the complete algorithm on 20 instances with 15 agents and 25 instances

with 20 agents. The 15 agent instances averaged 22.7 seconds of wall clock runtime

with a standard error of 3.8 seconds on our virtual machine, which was a Linux

machine with a CPU of Intel Xeon 2 cores at 2.1GHz, and 4GB of RAM. The 20

agent instances averaged 6489.5 seconds of runtime with a standard error of 1270.4

seconds on the same machine. We have successfully run a single 24 agent instance

through the complete solver; the computation took 281621.9 seconds (78.2 hours) to

complete.

In addition to our complete algorithm, we constructed three heuristic solvers for

Nash stability in ATFGs. The first step in each of these heuristics is to decide which
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agents will be GMs.

We use a GM Selection algorithm (Algorithm 1) to select agents who are willing

to be GMs. The algorithm checks the value each agent derives from being a GM, then

places all agents that derive positive value from being a GM into a list of potential

GMs. Next, a number of GMs, gs ← s ∈ [d |N |
cu
e, b |N |

cl
c], are selected at random from

that list. As GMs are selected, they are moved to the final GM list. The list of

remaining agents becomes the list of players. Note that the GM Selection algorithm

runs in time O(n), assuming that the random number generation takes constant time.

Next, we introduce introduce several algorithms to assign players to tables and

their corresponding GMs.

Algorithm 1 GM Selection
Pick GMs for Algorithms 2 and 4

Input: ATFG W
Output: GM set G, player set A∗

gs ← s ∈ [d |N |cu
e, b |N |cl c] %number of GMs

G′ ← {i ∈ N : di[i] > 0}
G← gs unique random options from G′

A∗ ← {i ∈ N \G} non-GM players
return: G,A∗

Heuristics

Our first heuristic uses a greedy round robin selection process. The Utilitarian

Round Robin (URR) algorithm (Algorithm 2) first chooses GMs (Algorithm 2).

The GMs then take turns choosing players whose addition to the table maximizes

total utility for the table, this utility value is computed by Algorithm 3.

The URR algorithm maintains a matrix of valuations of players by GMs, repre-

senting the value of adding a player to that GM’s table. Choosing a best addition is

O(n) for each of the O(n) GMs. After each round of additions, the O(n2) matrix is

updated, with each update taking O(n2), by Proposition 6. There are O(n) rounds,

so an iteration runs in time O(n5). Early on, we also developed a selfish round
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Algorithm 2 Utilitarian Round Robin
Input: ATFG W , GM set G, player set A∗

Output: γ, Potentially Nash stable partition
γ ← ∅
for g ∈ G do
γg ← {g}
γ ← γ ∪ γg

end for
M ← ∅ %player, marginal utility info (per GM)
for g ∈ G do
mg ← Algorithm 3(W, g, A∗, γg)
M ←M ∪ {mg}

end for
while |A∗| > 0 do
F ← ∅ % Bids for current favorites
for g ∈ G do

if |γg| < cu then
fg(uid)← k s.t. mk = maxi{mi| 〈i,mi〉 ∈Mg}
fg(util)← mfg(uid)

F ← F ∪ {〈fg(uid), fg(util)〉}
else
F ← F ∪ {∅}

end if
end for
% Distribute players based on bids
for g, j ∈ G×G : g 6= j do

if fg(uid) = fj(uid) then
if fg(util) < fj(util) then
fg ← ∅

else if fg(util) > fj(util) then
fj ← ∅

else if |γg| < |γj | then
fj ← ∅

else if |γg| > |γj)| then
fg ← ∅

else
fk ← ∅ : random k ∈ {g, j}

end if
end if

end for
for g ∈ G do

if fg 6= ∅ then
γg ← γg ∪ {fg(uid)}
A∗ ← A∗ \ {fg(uid)}

end if
mg ← Algorithm 3(W, g, A∗, γg)

end for
end while
return: γ

+ See Algorithm 3
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Algorithm 3 Update coalition values
Input: ATFG W , GM g, player set A∗, Coalition C s.t. g ∈ C
Output: Mg % Pairs 〈i,mi〉 where mi is the marginal utility of adding i to C
Mg ← ∅
utilC ← 0
for k ∈ C do
utilC ← utilC + uk(C)

end for
for i ∈ A∗ do
util← 0
for k ∈ C ∪ {i} do
util← util + uk(C ∪ {i})

end for
mi ← util − utilC
Mg ←Mg ∪ {〈i,mi〉}

end for
return: Mg

robin algorithm where only the preferences of the GM were considered. However, it

performed substantially worse than the URR algorithm, so it was abandoned.

Algorithm 4 is a local search heuristic, with the goal of minimizing the number

of blocking players. Each iteration of the algorithm chooses a random set of players to

be GMs, and randomly assigns other players to the GMs’ tables. It then repeatedly

chooses a neighboring partition (defined by a single player being assigned to a different

table) that improves (lowers) the fitness.

Note that it is possible that a partition examined by Algorithm 4 is not Nash

stable, but has no improving neighbor — even if there is a Nash stable partition for

that ATFG instance. This local-but-not-global optimum is a typical phenomenon of

local search algorithms; to handle this, we use multiple random re-starts.

An iteration of local search has O(n) improvements of fitness, since at most n

agents can want to deviate at a given time. Further, since an agent only is allowed to

move if the movement improves the fitness, we avoid potential loops. The algorithm

maintains a GM × players matrix of valuations, indicating the value each player

derives from each GM’s table. A scan of a player’s row can identify if they wish to
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move; to test stability requires scanning the O(n2) matrix, and potentially updating

it if a player moves. Each move of player i from GM j to GM k requires O(n2)-time

updates to the utilities of all O(n) players for the coalitions with GMs j and k. The

hardest part of the algorithm is determining which agent, if any, want to move. For

each of the n potential movers, i, and for each of the O(n) coalitions C they might

join, we check, for each other agent j, does j newly want to move? Particularly, do

they want to move to to C ∪ {i}, to the coalition i just left, or another coalition if

j ∈ C and j doesn’t like the addition of i? Determining if j wants to move takes

O(n2), by Observation 1. Thus, the entire check for acceptable moves takes O(n5),

and an iteration of LS, involving O(n) such checks, is O(n6).

Algorithm 4 Local Search
Input: ATFG W , GM set G, player set A∗

Output: γ, Potentially Nash stable partition
γ ← ∅ %randomly assigned partition
for all g ∈ G do
γg ← |A∗|

|G| random players +

γ ← γ ∪ {{g} ∪ γg}
end for
M ← ∅
for all i ∈ N do

if i can receive higher utility by moving then
mi ← # players wanting to move after i moves
M ←M ∪ {mi}

end if
end for
while ∃m ∈M : m < |M | do

choose {i : mi = min(M)}
γ ← γ modified by i’s move
M ← ∅
for all i ∈ N do

if i can receive higher utility by moving then
mi ← # players wanting to move after i moves
M ←M ∪ {mi}

end if
end for

end while
return: γ

+ |A∗|
|G| is

⌈ |A∗|
|G|
⌉

or
⌊ |A∗|

|G|
⌋

based on players available
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Our third heuristic, DC, daisy-chains URR and local search, by using the parti-

tion output by URR to hot-start the local search algorithm. The complexity of DC is

O(n6). In order to facilitate the creation of new coalitions over the course of several

movements, both local search and daisy-chain are permitted to create partitions with

singletons even in games where singletons are not considered valid coalitions. If sin-

gletons are not valid coalitions for a given instance, then the partition is invalid and

cannot be stable. The code we use to verify whether a partition is Nash stable specif-

ically checks the partition to ensure that all coalitions are of a valid size; partitions

containing one or more coalitions of invalid size are considered unstable.

5.6 Experiments

Our experimental contributions are results for our three greedy heuristic algorithms,

demonstrating the relative benefits and detriments of each and showing that all three

outperform a deterministic algorithm on instances with 12 or more players.

Experimental Setup

Our heuristics were coded in Python 3.7 and currently do not rely on third-party

packages. We tested our heuristics against three hand-crafted benchmark instances

with known Nash stable partitions, two with 10 players and one with 25 players.

Each 10-player instance contains a known stable partition consisting of a 4-player

coalition and two 3-player coalitions. The 25-player instance contains a known stable

partition consisting of 5-player coalitions. Initially these instances were used primarily

for proof-of-concept checks and to ensure that heuristics and the complete solver

produced correctly formatted output. Recently, we conducted 10 trials on each of

the 3 hand-crafted instances with a cap of 10,000 restarts per instance. We collected

data on the total number of restarts before a Nash stable partition was found, and

the time duration of the trials, as well as the number of restarts and time per size
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of instance. These trials were run on Windows 10 Pro with a AMD Ryzen 1700

Processor clocked at 3.0GHz and 32GB of RAM; the hardware differs from trials for

randomly generated instances because of time constraints.

We also tested the heuristics against randomly generated instances; 50 with 10

players; 20 with 12 players; 25 with 20 players; 25 with 24 players; 20 with 25 players;

25 with 30 players. To randomly generate these instances, we used coalition size

limits of 3–5 for 10, 12, and 15 player instances and 3–8 for 20, 24, 25, and 30 player

instances, asymmetric valuations between -n and n inclusive for individuals, pairs,

and GMs, and a pair valuation probability of 0.15.

Using the complete algorithm, we found Nash stable partitions for 24 of the ran-

domly generated 10-player instances and 12 of the 12-player instances. We then ran

the heuristic algorithms with fixed maximum numbers of random restarts. (Note that

the heuristic algorithms halt as soon as they find a single Nash stable partition for

the given instance.)

For each heuristic, we conducted 10 trials each for the 10, 12, 15, 20, 24, 25, and

30 player instances. Trials for the utilitarian round robin heuristic were capped at

100,000 restarts for 10 and 12-player instances, and 200,000 for 15, 20, 24, 25, and

30-player instances, while trials for local search and daisy-chain were capped at 10,000

restarts.2 Our experiments were run on Linux Ubuntu with an Intel Xeon Processor

clocked at 2.1GHz and 4GB of RAM. We collected data on the total number of

restarts before a Nash stable partition was found, and the time duration of the trials,

as well as the number of restarts and time per size of instance.

At the recommendation of reviewers for our recent paper submissions, we gen-

erated a new, more consistent set of test instances to run our heuristics on. We

generated 25 15-player, 25 20-player, 25 25-player, 25 and 30-player instances with

coalition size limits of 3–6, symmetric valuations between -n and n inclusive for indi-

2daisy-chain was given 50,000 restarts for the 24-player instances
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viduals, pairs, and GMs, and a pair valuation probability of 0.15. We also generated

new 10-player instances intended to be used for additional testing; however, due to

a very low percentage of stabilizable instances and time constraints, we chose not to

conduct tests on additional 10-player instances. Due to a bug discovered after the

trials finished running, the URR heuristic continued running until a stable partition

was found whenever DC found a stable partition, so the number of restarts was not

capped correctly. (Note that DC can take an unstable partition and improve it until

it’s stable, so URR may “know” that the instance is stabilizable, in this setting, even

if URR has not yet found a stable partition.)

On these new instances, we conducted 10 trials for each heuristic. Trials were

capped at 10,000 restarts for all heuristics. Most of these experiments were run on

Linux Ubuntu with an Intel Xeon Processor clocked at 2.1GHz and 4GB of RAM;

however, the LS trials on the 30-player instances were run on Windows 10 Pro with

a AMD Ryzen 1700 Processor clocked at 3.0GHz and 32GB of RAM due to time

constraints.

While updating the code to run these new trials, we discovered a significant bug

that affected the results of the local search heuristic on the original randomly gener-

ated instances. Extensive examination of our output data has proved that only the

local search heuristic results were affected by this bug. We have not re-run all of the

local search trials on the old instances. To maintain the integrity of our work, we

have removed the results from the LS trials on the old randomly generated instances.

We have since fixed the bug and have conducted extensive testing to ensure that this

issue has been resolved, so we include LS results for the trials on the hand-crafted

instances and the new randomly generated instances.

In order to ensure consistent results, the URR and DC trials are run simultane-

ously in the trials on the hand-crafted instances and the new randomly generated

instances; the output from each URR iteration being used as input for the local
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search portion of the DC heuristic. Once a stable partition has been found by the

DC heuristic, no further URR outputs are fed into the local search portion of DC.

This means that the runtime for URR is inflated for some of its iterations due to

waiting on the local search portion of the DC heuristic to finish.

Results

In this section we discuss the results of our experiments. In the oldest experiments,

Randomly Generated Instances: Part 1, we have omitted the results from LS testing

due to the previously-discussed bug discovered in the code. LS results are included

in the trials on the hand-crafted instances and new randomly generated instances

because the bug was fixed before those tests were run.

Randomly Generated Instances: Part 1

We observe that the daisy-chain heuristic is significantly slower per iteration than

URR, so our tests of DC use a factor of 10 fewer restarts with most tests to achieve

more comparable runtimes.

While URR was not as effective as we had hoped in finding Nash stable partitions,

it often provided partitions that were close to stable, i.e., with low degree of instability.

Remember that the degree of instability is the number of agents that would individ-

ually prefer to deviate from their assigned coalitions. Using local search to relocate

those individuals worked significantly better than either algorithm individually. (See

Table 5.1.)

We observe that the percentage of instances for which the heuristics found Nash

stable partitions is quite small for instances of sizes 25 and 30. We attribute this

to an insufficiency of random restarts; with a larger number of cores on our VMs,

we are confident that the algorithms will run significantly faster, permitting more

restarts which should increase these percentages. We were unable (so far) to verify the
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existence of Nash stable partitions on those instances using the complete algorithm,

but with high probability, a larger percentage of them have Nash stable partitions

than these results indicate.

Table 5.1: Average runtime (CPU seconds) and percentage of instances for which NS
coalitions are found.

# Players URR DC
time % time %

10 24.5 47.3 2.0 36.5
12 43.2 17 22.9 52.5
15 239.0 65.5 44.6 71.5
20 898.4 20.4 178.1 25
24 268.4 94.4 748.5 79.6
25 1745.7 0 591.9 4
30 2605.8 7.6 1533.8 2.5

Note: For the 24 agent DC test, 50,000 restarts were allowed.

Of the randomly generated instances: 48% of our 10-player instances are stabi-

lizable, 60% of 12-player instances are stabilizable, 95% of 15-player instances are

stabilizable, and 96% of 20-player instances are stabilizable. We initially conjectured

that a smaller percentage of 10 and 12-player instances are stabilizable because they

both have utility ranges from -20 to +20 (i.e. larger than the number of agents),

whereas the other instances were generated with limits no wider than -n to +n where

n is the number of agents. After examining newly created 10-player instances in-

tended to be used for new experiments, this conjecture appears to be incorrect. In

future work, we plan to examine parameters that make it more or less likely for a

given instance to be Nash stabilizable.

We provide information on the degree of instability (DoI), the number of agents

who prefer to move, of coalitions found by DC and URR. This provides additional

evidence that DC generally improves on the performance of URR.

58



Table 5.2: Average DoI

# Players Number of movers
URR DC

15 0.345 0.045
20 0.952 0.116
24 0.056 0.028
25 2.455 1.105
30 1.3 1.18

Hand-crafted instances

The results of our experiments on the hand-crafted instances, summarized in Table

5.3, show that local search is much worse at finding stable partitions than either of the

other heuristics. The number of possible partitions is much larger than the number

of Nash stable partitions for most of these instances, so LS has to be extremely lucky

to be started near a local optimum that is in fact globally optimal. This is evidenced

by its comparatively poor performance. However, by applying local search to the

result of the round robin heuristic, we see a substantial improvement in runtime and

the number of restarts needed to find a stable partition.

Table 5.3: Average runtime (CPU seconds), average restarts, and percentage of tests
where NS coalitions are found.

# Players URR DC LS
time restarts % time restarts % time restarts %

10 0.10 111.9 100 0.02 5.1 100 41.8 9001 10
10 0.08 81.1 100 0.03 11.5 100 19.8 8001 20
25 7.4 2210.2 100 0.01 1 100 210.9 5005 50

Note: All hand-crafted instances contain at least one known Nash stable partition.

All three heuristics reached partitions with a DoI of 0 on all trials. This seems to

clash with the rate at which LS succeeded in finding Nash stable partitions; however,

many of the local search results included singleton agents who did not wish to join

any of the available coalitions. Since singletons are not valid coalitions for any of

the hand-crafted instances, such partitions are invalid and cannot be Nash stable.
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In contrast, URR and DC succeeded in finding Nash stable partitions on all three

instances very quickly.

Randomly Generated Instances: Part 2

The results of our trials on the new randomly generated instances are outlined in

Table 5.4. As with experiments on the hand-crafted instances, local search is not

particularly good at finding stable partitions on its own. Due to a bug in the code,

DC and URR find stable partitions an equal percent of the time, which caused the

URR to continue running until a stable partition was found whenever DC found a

stable partition. Though not intentional, this bug highlights the difference in the

number of restarts necessary for DC and URR to find stable partitions on randomly

generated data. While each iteration of URR runs much faster than each iteration of

DC, URR requires many more restarts than DC to find a Nash stable partition.

Table 5.4: Average runtime (CPU seconds), average restarts, and success percentage
of tests where NS coalitions are found.

# Players URR1 DC LS
time2 restarts % time restarts % time restarts %

15 102.5 55643.2 25.2 54.6 8229.2 25.2 94.6 9924.8 0.8
20 307.7 87570.2 9.6 141.4 9302.3 9.6 269.1 9963.3 0.4
25 840.0 141436.1 1.2 369.8 9951.4 1.2 689.7 10000.0 0.0
30 153.0 6013.6 94.0 127.5 1916.18 94.0 2393.3 3 9759.2 6.8

1 Due to a bug in the code, the URR heuristic ran until a stable partition was found
in any trial where DC found a stable partition.
2 The URR heuristic has to wait for the local search aspect of DC before running
another iteration, so its times are bloated.
3 The 30 agent LS trials were run on different hardware than the other trials.

Table 5.5 describes the DoI for our trials on the new randomly generated in-

stances. As with the original test data, we find that DC produces the best DoI on

average. Similar to the tests run on the hand-crafted instances, local search often

found partitions where no player wants to move, but the partition is invalid due to
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the presence of singleton coalitions. However, in this set of tests, the same thing also

happens with the DC heuristic.

Table 5.5: Average DoI

# Players Number of movers
URR DC LS

15 1.232 0.0 0.0
20 2.256 0.008 0.036
25 2.504 0.02 0.208
30 0.084 0.012 0.412

We used the complete algorithm to examine the 15-player instances and found that

15 of the 25 (60%) are stabilizable. We do not know yet why this set of instances has a

lower percentage of stabilizable instances than the previous set of 15-player instances.

We plan to investigate this in future work. Due to computational complexity, we did

not examine the 20-player or larger instances with the complete algorithm.

5.7 Conclusions and Open Questions

We have introduced a novel coalition formation game for a subject dear to our hearts,

namely social and (in pre-pandemic days) in person gaming. Like many such coop-

erative games, finding stable partitions is NP-hard. However, we have introduced

two fast and effective heuristic algorithms to find Nash stable partitions. We focus

on Nash stability because we believe it is, socially, the most relevant notion in the

literature; though we can imagine social cliques that would be blocking coalitions

for core stability, we imagine that such cliques would not throw themselves into the

centralized assignment process.

What conditions guarantee or increase the likelihood that Nash stable partitions

exist? Could decentralized matching algorithms in the style of Taywade et al. [64, 65]

be used to solve ATFGs efficiently? We hypothesize that work by Gairing and Savani
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[26] can be extended to better characterize the theoretical efficacy of local search in

ATFGs.

Copyright c© Jacob Schlueter, 2021.
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Chapter 6 Internal Stability

In the last two chapters, we looked at novel hedonic games. We conclude the technical

part of the dissertation by looking at a novel notion of stability that arose naturally

in work by Taywade et al. [64].

One stability concept that is of perennial interest in coalition formation games is

core stability [3, 6, 9, 19, 20, 28, 29, 30, 45]. Core stability is defined as the lack of

agents who are incentivized to leave their assigned coalition(s) and form a blocking

coalition. This assumes that agents can easily identify others to form a blocking

coalition; however, this is not always realistic. Consider the task of partitioning first-

semester students into project groups. Some of the assigned groups may find that

a subgroup would rather work together, abandoning the rest of their group. Since

the students were not acquainted beforehand, they are less likely to coordinate across

separate groups. We could also consider dividing gamers up into play groups at a

convention. To address this possibility, we focus on the situation where any new

groups formed after the semester starts will consist solely of subgroups of previously-

existing groups.

Cases where blocking coalitions were confined to subcoalitions that split away

from an existing coalition were first considered in the context of hedonic games by

Dimitrov et al. (2006) and Alcalde and Romero-Medina (2006) who referred to it as

internal stability. We extend the notion of an internally stable coalition to partitions,

by defining that internal stability holds for a partition of agents into coalitions when

no subgroup of any assigned coalition is incentivized to break away. This stability

notion has appeared in other hedonic games works such as Taywade, Goldsmith,

and Harrison’s (2018) work on decentralized hedonic games where coalitions are only

blocked by subcoalitions. That work developed a decentralized heuristic for several
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classes of hedonic games using a grid world where agents with limited memory move

around the world in order to form coalitions. Due to the grid world model and agents’

limited memory, internal stability was a natural option to consider when evaluating

a partition’s stability.

A natural question is what the relationship is between internal stability and Nash

stability. We show that Nash stability implies internal stability in some classes of

hedonic games, but not in others. Table 6.1 at the end of section 6.4 provides a

summary of our Nash stability results. While communication channels such as Slack

have increased workers’ abilities to interact with distant co-workers, the workers may

still defect from the larger group and form private sub-channels. In such myopic

situations, internal stability seems a more realistic measure of the sustainability of a

work-group assignment.

Stability notions focus on outcomes that are likely to occur due to agents’ selfish

behavior. Stable outcomes may provide the best individual outcomes for all agents,

but this is not always the case. The price of stability (PoS) provides a metric to

gauge the utility lost in order to achieve stability.

We introduce here a natural and important extension of Dimitrov et al. (2006) and

Alcalde and Romero-Medina’s (2006) internal stability. We investigate the relation-

ships of internal stability to other, more common notions, and show that it is distinct

from core and Nash stability, for multiple types of hedonic games. We investigate the

prices of anarchy and stability for internal stability with respect to several hedonic

games. This work gives insight into a key stability notion when agents are myopic.

6.1 Motivation

Consider a search and rescue effort following a large avalanche. Ideally, those caught

up in the avalanche will all be rescued without endangering members of the rescue

effort. Unfortunately, this is rarely possible. Some victims may be killed by the
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avalanche itself, while others may die before rescuers can reach them. Additionally,

the rescue operations can be dangerous, and the possibility of another avalanche must

be considered. Further, the effort will have to cope with incomplete information about

the situation.

Shortly after the avalanche, the rescue effort will likely have some information

about the situation. There may be estimations of how many victims are likely to be

found in different parts of the disaster area, but it’s unlikely that the precise locations

of victims will be known initially. Further, there may be area-based predictions on

the likelihood victims survived the avalanche itself; this is important, since survivors

should take priority over casualties, but survivors with more severe injuries may

require higher priority in order to survive. Finally, the location(s) of operations

base(s) will be known in relation to the disaster zone.

In order to carry out the rescue mission successfully, several tasks need to be

carried out in parallel: victims must be located, victims must be rescued (or their

bodies retrieved), status of rescue teams must be monitored, and the disaster zone

conditions must be monitored for additional hazards, which may include another

avalanche. Not all agents will have the same skill set, and most teams will benefit

from a variety of agents. For example, teams sent to rescue victims will be more

effective if they include agents skilled at locating victims, agents capable of rescuing

victims from potentially hazardous locations, agents capable of providing emergency

medical aid, and agents able to monitor their immediate surroundings for previously

unknown or impending hazards. The size of a team should also be appropriate for

the task they’re assigned; a team sent to rescue five to ten victims whose vital status

is unknown will require more agents than a team sent to rescue one victim who is

stranded, but is known to be alive and relatively unharmed.

It is in the best interests of all involved to minimize the likelihood that teams

will not split up. When a team splits, the resulting new teams may not be as well
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balanced or as well positioned as they otherwise could have been. They also will

likely be unable to join agents from another team for a number of reasons (distance,

obstacles, unawareness of each other, etc.). In this example, we do not consider team

members acting in parallel in close proximity to each other splitting up (ie. a team

sent to rescue five people could reasonably extract those people in parallel if they are

close enough together).

6.2 Related Works

Works published in 2006 by Dimitrov et al. and Alcalde and Romero-Medina intro-

duce internal stability for coalitions, observing that a singleton coalition is always

internally stable [1, 20]. Alcalde and Romero-Medina use internally stable coali-

tions as a tool to investigate conditions that guarantee the existence of core stable

partitions in hedonic games [1]. Dimitrov et al. use internal stability to define an-

other stability notion, deviation stability, which they use to prove the existence of

core stable partitions in friend and enemy-oriented hedonic games [20]. Since its in-

troduction, the only other paper that discusses internal stability is a paper by Liu

et al. which adapts it to matching and exchange contexts [41]. One can view internal

stability as relevant when agents are myopic, meaning that their awareness of the

desirability of other agents is limited to those agents that are nearby, namely in the

same coalition. Another work that considered agents with limited preference knowl-

edge is PAC-stability, proposed by Sliwinski and Zick, which could be understood as

resistance to random attempts by myopic agents to form blocking coalitions [58].

Carosi et al. proposed a notion of local core stability for Simple Symmetric Frac-

tional Hedonic Games (SS-FHGs): FHGs where all edges are undirected and have

a weight of 1 [12]. A partition is locally core stable when there is no clique such

that all agents within the clique derive more utility from the clique than from their

current coalition(s) [12]. Carosi et al. also prove that the price of stability for local
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core stability is between 2 and 8/3 for SS-FHGs [12].

Nguyen and Rothe proposed three notions of local fairness in hedonic games; a

partition is said to be locally fair if all players’ coalitions are at least as good as a

threshold coalition assigned to each player based upon their preferences [44]. Nguyen

et al. examine the existence of locally fair coalitions in general hedonic games and

ASHGs [44]. Nguyen and Rothe also study the complexity of determining if locally

fair coalitions exist, and they investigate the price of fairness for the notions they

propose [44]. Fairness is beyond the scope of our work on internal stability, but

the interest in more localized partition properties and on the cost associated with

desirable properties of partitions is similar to our own.

6.3 Preliminaries

Internal stability considers group deviations where all deviating agents must come

from the same coalition.

Definition 40. A coalition C is internally stable if there is not subset D ⊂ C

such that all of the agents of D are better off leaving C and forming a new coalition

[1, 20].

A partition π is internally stable if all coalitions C ∈ π are internally stable.

In the next section we clarify the relationship between internal stability and two

of the most common stability notions in hedonic games.

6.4 Relationship to Core and Nash Stability

It might seem, at first, that internal stability is very similar to Nash stability, or

perhaps to core stability. We investigate the relationship of internal stability to Nash

stability and core stability for a variety of hedonic games.
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Observation 3 immediately follows from Dimitrov et al.’s (2006) observation that

all coalitions in a core stable partition are internally stable.

Observation 3. Core stability implies internal stability for all classes of hedonic

games.

Note that all singleton partitions (i.e., each agent in a coalition of size 1) are

trivially internally stable. However, in most instances of most hedonic games, a

singleton partition will neither be core stable nor Nash stable. Thus, internal stability

does not, generally, imply core stability or Nash stability. Theorem 3 shows our first

step in analyzing the relationship between Nash stability and internal stability.

Theorem 3. Nash stability does not guarantee internal stability in FOHGs.

Proof. Consider a graphG = (V,E) with V = {A,B,C,D} and E = {(A,B), (C,D)}.

(See Figure 6.1.) Consider a FOHG based on this graph such that the set of agents

N = V and each edge (i, j) ∈ E defines a mutual friendship. All pairs (i, j) /∈ E

indicate mutual enmity.

Now consider the grand coalition for this FOHG. Each agent i ∈ N gains 4

utility from the presence of their mutual friend, but also loses 2 utility due to the

2 enemies present. This gives each agent i a net utility of 2, making the grand

coalition individually rational. The only deviation a single agent can make to the

grand coalition is to leave the coalition and become a singleton, thereby earning 0

utility. Thus, the grand coalition is Nash stable. If we view the grand coalition from

the viewpoint of internal stability, however, we see that for pairs of agents (A,B) and

(C,D), each agent pair can leave the grand coalition and increase the utility of both

agents from 2 to 4. Thus, the grand coalition is not internally stable and we conclude

that not all Nash stable partitions are internally stable.

Since FOHGs are a subclass of ASHGs, Corollary 2 immediately follows from

Theorem 3.
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Figure 6.1: Nash stable, not internally stable

Corollary 2. Nash stability does not imply internal stability for ASHGs.

While internal stability is not implied by Nash stability in general case ASHGs,

there are subclasses where Nash stability does imply internal stability. We show that

enemy-oriented hedonic games are one such subclass; in particular, we show that not

only does Nash stability imply internal stability, but individual rationality is sufficient

to imply internal stability.

Lemma 1. Individual rationality guarantees internal stability in EOHGs.

Proof. By the definition of EOHGs the only individually rational coalitions for some

agent i ∈ N are those which contain none of i’s enemies. Equivalently, all individually

rational coalitions can be described by cliques in a graph of friendship relations.

Since all agents in an individually rational coalition are friends with each other, no

subset of agents in such a coalition can increase their utility by leaving. Therefore, all

individually rational coalitions are internally stable. A partition is only individually

rational if all its coalitions are individually rational and, therefore, internally stable.

Thus, all individually rational partitions are internally stable.

Theorem 4. Nash stability guarantees internal stability for EOHGs.

Proof. Because all Nash stable partitions are individually rational, it follows from

Lemma 1 that Nash stability implies internal stability.

Theorems 3 and 4 show that the relationship between Nash and internal stability

varies between subclasses of ASHGs. We expand our understanding of the relationship
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between Nash and internal stability beyond the scope of ASHGs in Theorem 5 by

analyzing fractional hedonic games.

Theorem 5. Nash stability does not guarantee internal stability in fractional hedonic

games.

Proof. Construct a fractional hedonic game, G, with agents {A,B,C,D} with uA(B) =

uB(A) = 4 and uX(Y ) = 1 for all other X 6= Y . Consider the grand coalition, S.

Then uA(S) = uB(S) = 4+1+1
4

= 6
4

and uC(S) = uD(S) = 1+1+1
4

= 3
4
. This coalition

is individually rational, since each agent has positive utility. It is also Nash Stable,

since an agent’s only defection option is to leave S and form a singleton coalition,

with utility 0. However, the coalition {A,B} provides utility 2 for each of A and

B, so S is not internally stable. Therefore, for FHGs, Nash stability does not imply

internal stability.

We now state the relationship between Nash and internal stability in altruistic

hedonic games in Theorem 6.

Theorem 6. Nash stability does not guarantee internal stability for any of the three

altruism levels of altruistic hedonic games (AHGs).

Proof. Consider an AHG based with agents {A,B,C,D}. Let {A,B} and {C,D} be

mutual friends that regard all other agents as enemies. Since there are 4 agents in

this game, we set M = n5 = 45 = 1024.

In the grand coalition all agents achieve a utility of 2050 in the Selfish-First and

Altruistic First paradigms and 2 in Equal Treatment. Individual agents can only

deviate by becoming a singleton, so the grand coalition is Nash stable for all three

paradigms.

Now consider if {A,B} or {C,D} broke away; the agents breaking away derive

a utility of 5000 in the Selfish-First and Altruistic First paradigms and a utility of
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4 in the Equal Treatment paradigm. The grand coalition is not internally stable for

any of the three paradigms, because both {A,B} and {C,D} have incentive to break

away.

Because Schlueter and Goldsmith (2020) showed that selfish-first AHGs are special

cases of Super Altruistic Hedonic Games, Corollary 3 follows from Theorem 6.

Corollary 3. Nash stability does not imply internal stability in Super Altruistic He-

donic Games.

The proofs for Theorems 3–6 also give Observation 4.

Observation 4. If there exists an instance of a coalition formation game such that the

grand coalition is individually rational, but not internally stable, then Nash stability

does not imply internal stability for that class of games.

The games we have examined thus far assume that agents’ utility is based directly

on the other agents in their coalition. In Role Based Hedonic Games, utility is based

instead on an agent’s assigned role and the team’s role composition.

Theorem 7. Nash stability does not imply internal stability in RBHGs.

Proof. Consider an RBHG instance with the following setup: P = {p1, p2, p3, p4}, R =

{r1, r2}, C = {{r1, r2}, {r1, r1, r1, r1}, {r1}, {r2}}. Now ∀i ∈ P let ui(r1, {r1, r1, r1, r1}) =

1 and ∀(r, c) ∈ R × C let up1(r, c) = up3(r, c) and let up2(r, c) = up4(r, c). Let

up1(r1, {r1, r2}) = 2 and up1(r2, {r1, r2}) = −1. Let up2(r1, {r1, r2}) = −1 and

up2(r2, {r1, r2}) = 2. As usual for singletons, ∀i ∈ P let ui(x, {x}) = 0 for x = r1, r2.

Now let a partition π form where all four agents are put in the grand coalition with

the composition {r1, r1, r1, r1}. Since every role in the composition is r1, all agents

derive a utility of 1 from this partition. The only way an individual can deviate

from this partition is to leave to become a singleton of either role r1 or r2; in either

case, agents derive zero utility as a singleton. Since the only deviations available to
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individuals will reduce their utility from 1 to 0, the partition of all agents in the grand

coalition with composition {r1, r1, r1, r1} is Nash stable.

While the grand coalition with composition {r1, r1, r1, r1} is Nash stable, it is not

internally stable. Either agent p1 or p3 could join agent p2 or p4 and split away to

form a new coalition with composition {r1, r2} with p1 or p3 taking role r1 and p2 or

p4 taking role r2; doing this would increase the utility of both deviating agents from

1 to 2. Thus, Nash stability does not imply internal stability in RBHGs.

Roles and Teams Hedonic Games [60] are a subclass of RBHGs that impose a

strict team size rule that makes it impossible for a subset of a valid existing team to

break away to form a new, valid team.

Observation 5. All valid partitions are internally stable in RTHGs.

In instances of the Group Activity Selection Problem, agents derive utility from

the selected activity and the size of their coalition.

Theorem 8. Nash stability does not imply internal stability in GASPs.

Proof. Consider a GASP instance where there are n agents, and activity set A =

{a1, a∅} and ∀i ∈ N (a1, n − 2) �i (a1, n) �i a∅; all alternatives not included in the

preference profile are seen as worse than the void activity.

Now consider the case where all n agents form a single coalition to participate

in activity a1. We can see from the preference profile shared by all agents that this

outcome is preferable to the void activity and to participating in activity a1 alone.

Since the only way for an individual to deviate from this outcome is to leave and

do nothing, or participate in a1 by themselves, no individual agent has incentive to

deviate from this outcome. Thus, the outcome is Nash stable.

From the perspective of internal stability, we see that any subset of n− 2 agents

could break away and achieve a more favorable outcome. Thus, the grand coalition

participating in a1 is not a internally stable outcome.
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In this section, we have shown that that Nash stability implies internal stability in

some classes of hedonic games, but not in others. We also observe that core stability

guarantees internal stability for all classes of hedonic games. Table 6.1 provides a

summary of our Nash stability results.

Table 6.1: Summary of Relationship of Nash Stability to Internal Stability

Hedonic Game Nash Stability ⇒ Internal Stability? Where?
Additively Separable No Corollary 2
Enemy-oriented Yes Theorem 4
Friend-oriented No Theorem 3
Fractional No Theorem 5
Altruistic No Theorem 6
Super Altruistic No Corollary 3
Role Based No Theorem 7
Roles and Teams Yes Observation 5
Group Activity Selection No Theorem 8

6.5 Price of Stability (PoS)

We present some results on the PoS of internal stability in hedonic games. The price

of stability for a particular notion of stability and a particular hedonic game is a

measure of the coupling between stability and utility for that game. A fixed, finite

PoS tells us that the utility of any stable partition is bounded by a constant times

the utility of any other, whereas an unbounded PoS tells us that utility is not coupled

with this notion of stability.

Theorem 9. PoSIS(G) is unbounded in hedonic games where agents assign asym-

metric values to each other. This includes general case ASHGs and FHGs.

Proof. Consider a hedonic game with the following setup: N = {1, 2, 3}, v1(2) = 10,

v1(3) = −1, v2(1) = −1, v2(3) = −1, v3(1) = −1, v3(2) = 10. In both ASHGs and

FHGs, the utility is maximized by the grand coalition, but the only stable partition is

the partition of singletons. Since the partition of singletons has a sum utility of zero,
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PoS= ∞. This scenario can be adapted to any hedonic game where agents derive

utility from potentially asymmetric values assigned to each other.

While PoSIS(G) is unbounded for some classes of games, we show that it is

bounded in others in Theorem 10.

Theorem 10. PoSIS for symmetric ASHGs is 1.

Proof. Consider a symmetric ASHG. Consider an optimal coalition A and suppose

that it contains a blocking subcoalition B ⊂ A. Note that the total utility for A is the

sum of utilities of agents within B, agents in A \ B, and utilities (in each direction)

between B and A \ B:
∑

x∈B ux(B) +
∑

y∈A\B uy(A \ B) + 2 ·
∑

x∈B,y∈A\B ux(y).

Since B is a blocking subcoalition
∑

x∈B ux(B) >
∑

x∈B ux(A) =
∑

x∈B ux(B) +∑
x∈B,y∈A\B ux(y). Therefore,

∑
x∈B,y∈A\B ux(y) < 0.

Thus, the total utility for the partitionB,A\B has utility
∑

x∈B ux(B)+
∑

y∈A\B uy(A\

B) >
∑

x∈B ux(B) +
∑

y∈A\B uy(A \B) + 2 ·
∑

x∈B,y∈A\B ux(y), contradicting the op-

timality of A.

Thus, any optimal coalition has maximum utility over sub-partitions, and is in-

ternally stable. Therefore, PoSIS(G) = 1 for all symmetric ASHGs.

In theorem 11 we provide another class of games where price of internal stability

is bounded.

Theorem 11. PoSIS for symmetric FHGs is bounded by 2.

Proof. We define an FHG,G, which maximizes the ratio between the utility-maximizing

partition and the utility-maximizing internally stable partition. If PoSIS(G) > 1,

then the utility-maximizing partition is not internally stable. Without loss of general-

ity, we consider a single coalition. (The maximum PoS will occur when each coalition

is split; since we take the average utility over all agents, it suffices to consider a single

coalition A to find the maximum PoS as if that were the grand coalition.) Let B ⊂ A
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be a blocking coalition. We also assign a = |A|, b = |B|, and r = a− b. Keep in mind

that, for an agent in B, its average utility in B is higher than its average utility in A.

Because, for FHGs, agents’ utilities for other agents in their coalition are averaged,

and agent’s utilities for others need only distinguish three cases. We define vb as the

value agents in B assign to each other; ∀i, j ∈ B, vi(j) = vj(i) = vb. We define vr

as the value agents in A \ B assign to each other; ∀i, j ∈ A \ B, vi(j) = vj(i) = vr.

We define va as the value agents in B assign to agents in A \ B and vice-versa;

∀i ∈ B, j ∈ A \B, vi(j) = vj(i) = va.

In order for agents in B to be incentivized to break away from the rest of A, the

value each agent in B receives in B (which approaches vb as |B| grows) is greater than

the value it receives in A, which is (b−1)vb+rvr
b+r

. This implies that vb > vr. We see that

the grand coalition maximizes the sum of agents’ utilities when vb− 1
b

+ vr− 1
r
< 2va.

We are able to show that the ratio between vb : 2va is a hard upper bound on the

ratio between the sum utilities of the grand coalition and {A \B,B}, allowing us to

construct examples G where the the PoSIS(G) is arbitrarily close to 2.

Related to PoS is the price of anarchy (PoA), which gauges the potential loss of

utility caused by agents’ selfish behavior; PoA is defined as the ratio of the highest-

utility partition over the lowest-utility stable partition. Since the partition into sin-

gletons is vacuously internally stable, we have PoAIS(G) = ∞ for any game where

singletons derive zero utility.

6.6 Conclusions and Open Questions

We have extended the notion of internal stability for coalitions [1, 20] to a partition

stability notion. Internal stability is important whenever agents have a local view of

their preferences. While communication channels such as Slack have increased work-

ers’ abilities to interact with distant co-workers, the workers may still defect from the

larger group and form private sub-channels. Thus, in such myopic situations, internal
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stability seems a more realistic measure of the sustainability of a work group assign-

ment. The relationship of internal stability to other, more commonly investigated

notions turns out to depend on the particularity of preference representation used

in the hedonic game. For instance, any individually rational hedonic game has an

internally stable partition of singletons; finding others is expected to be more difficult

computationally.

We showed that internal stability is, in some hedonic game types, not equivalent to

Nash or core stability. We have seen instances where the price of stability for internal

stability is bounded, and where it is unbounded. We predict that this internal stability

will continue to generate interesting insight into locally-aware coalition formation

games.

Our research leaves some questions open for later research. One question is how

hard it is to find a partition of maximal internally stable coalitions; note that such a

partition is, by definition, internally stable. How would this problem be related, if at

all, to the max-clique problem, wonderful stability, or strict popularity? Could fast

heuristics be used to provide additional insight into these questions? What are the

necessary and sufficient conditions to guarantee the existence of non-singleton inter-

nally stable partitions? How does internal stability compare to local core stability,

proposed by Carosi et al. for SS-FHGs, if local core stability were adapted to games

besides SS-FHGs?

Taywade et al. used the concept of internal stability in their proposal of budding

in decentralized approach to hedonic games [64]. The algorithms implemented by

Taywade et al. in 2018 and Taywade et al. in 2020 may provide good starting points

to construct heuristics to find internally stable partitions in several classes of hedonic

games [64, 65].

Copyright c© Jacob Schlueter, 2021.
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Chapter 7 Conclusion

In this work, we introduced two novel classes of hedonic games and a new notion

of stability for hedonic games. We have demonstrated that hedonic games have

a wide range of applications and can model myriad social phenomena. While we

have answered a number of questions in the space of hedonic games, there are many

questions that remain unanswered and even questions that have yet to be properly

formalized.

Many problems in the hedonic games space are computationally hard to solve.

Fortunately, many of these hard problems can be solved by heuristics; something we

made particularly clear with our work on Anchored Team Formation Games. Still,

many questions in the field remain unanswered. For example, can we create good

heuristics to investigate internal stability? If so, how will they vary from one class of

hedonic game to another? We’ve demonstrated that internal stability is distinct from

both Nash and core stability for ATFGs, but are there other stability notions that

exist along this spectrum of local to global scope? If so, are these notions continuous

in nature, or are they discrete?

We could adapt ideas from other research areas into the hedonic games space

to further our understanding of this vast field of research. For example, we could

adapt the voting theory notions of possible and necessary winners, which are used to

handle voters with unknown preferences, into possibly and necessarily stable parti-

tions to handle agents with unknown preferences in hedonic games. Accommodating

for agents with unknown preferences will make it possible to construct more robust

models of real world behavior of humans and artificial agents. And that is, after all,

the goal of this work.

Copyright c© Jacob Schlueter, 2021.
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