

University of Kentucky UKnowledge

International Grassland Congress Proceedings

XXI International Grassland Congress / VIII International Rangeland Congress

Effects of Phosphorus and Potassium on Alfalfa Seed Quality

Xianguo Wang China Agricultural University, China

Jianguo Han China Agricultural University, China

Zhiguang Geng China Agricultural University, China

Peisheng Mao China Agricultural University, China

Yunwen Wang China Agricultural University, China

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/21/14-2/12

The XXI International Grassland Congress / VIII International Rangeland Congress took place in Hohhot, China from June 29 through July 5, 2008.

Proceedings edited by Organizing Committee of 2008 IGC/IRC Conference

Published by Guangdong People's Publishing House

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Effects of phosphorus and potassium on alfalfa seed quality

Wang Xianguo, Han Jianguo, Geng Zhiguang, Mao Peisheng, Wang Yunwen

Department of Grassland Science, China Agricultural University, Beijing, China 100094. E-mail: 346328244@qq.com

Key words alfalfa ,phosphorus ,potassium ,seed quality

Introduction Previous research showed that potassium increased soybean seed germination rate (Jeffers et al., 1982), while nitrogen and phosphorus decreased hard seed percentage of Egyptian clover (Bagoury and Niyazi, 1975). However, the effects of macronutrients fertilization on alfalfa seed quality have not been determined. The experiment was designed to determine the effects of combined application of phosphorus and potassium on alfalfa seed germination and hard seed percentage.

Materials and methods A field experiment was conducted at Grassland Research Station of China Agricultural University located in Northwestern China's Jiuquan District $(39^{\circ}37'N, 98^{\circ}30'$, altitude 1480m) during 2003 and 2004. WL232HQ" alfalfa stand was seeded with 0.60 m row space and 45 g m^{-2} seeding rate in autumn of 2002. Five treatments (including CK) were evaluated in a randomized block design with four replications (Table 1). Individual plot size was $6 \ge 9 m$. The fertilizers were applied in mid to late April.

Table 1 A lf alf a seed	quality respon	ses to combination of	^c phosphorus a	nd potassium	fertilization .
0 0	1 7 1	v	1 1	1 .	,

		Treatments (kg/hm^2)		Seed yield (kg/hm^2)		First count $(\%)$		Normal seedling (%)		Hard seed $(\sqrt[0]{0})$		$\begin{array}{c} \text{Germination} \\ (\%) \end{array}$	
	$P_2 O_5$	$K_2 O$	2003	2004	2003	2004	2003	2004	2003	2004	2003	2004	
СК	0	0	469 .0a	1164 a	62 .4c	56 .8bc	64 .4c	60 .1bc	27 .5a	37 .6a	91 .9b	97 .7a	
PK1	60	60	542 .3a	1259 a	73 .6ab	63 .8ab	75 .0ab	67 .1a	19 .9b	31 .6a	94 .9a	98 .7a	
PK2	90	60	482 .5a	1102a	72 .8b	54 .8c	73.7b	57 .3c	21 .7b	40 .4a	95 .4a	97 .7a	
PK3	120	60	530 .0a	1039 a	77 .1a	58 2abc	77 .9a	61 .3abc	17 .4b	36 .7a	95 .3a	98 .0a	
PK4	150	60	435 2a	1194a	77 .4a	64 .8a	77 .9a	66 .4ab	17 .8b	31 .9a	95 .6a	98 .3a	

Note : Different letters in a column indicate significant differences at 0.05 level(LSD)

Results The combination of phosphorus and potassium did not significantly effect the alfalfa seed yield in both years (P > 0. 05). In contrast, the hard seed percentage was significantly decreased by fertilizer application and the highest germination rate and lowest hard seed percentage were obtained by high fertilizer rates (PK3 and PK4) in 2003. Phosphorus and potassium application in 2004 increased the first count, normal seedlings and germination rates by 14%, 11.64%, and 15.2% respectively. (Table 1)

References

El Bagoury, O.H. and Niyazi, M.A. (1973). Effect of different fertilizers on the germination and hard seed percentage of Egyptian seeds (*Trifolium alexandrinum* L.). Seed Sci. Technol. 3, 569-574.

Jeffers, D.L., Schmitthenner, A.F. and Kroetz, M.E. (1982). Potassium fertilization effects on phomopsis seed infection, seed quality, and yield of soybeans Agron. J. 74, 886-890.