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ABSTRACT OF THESIS 

THE ROLE OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN LEUKEMIA TRAFFICKING 

Vascular endothelial growth factor (VEGF) is a signaling protein involved in inducing and 
regulating endothelial cell proliferation and function (Duffy et al 2000).  VEGF is also involved in 
cancer progression, as it induces vascular permeability and promotes angiogenesis to tumor 
laden areas, giving cancer cells critical oxygen and nutrients (Hoeppner et al.,2012. Studies 
indicate VEGF prevents lymphoblast apoptosis, which may contribute to leukemia formation and 
enable the proliferation of leukemic cells (Duffy et al 2000). Ongoing research seeks to further 
examine VEGF in leukemia, using a rag2:GFP-Myc expressing transgenic zebrafish as the animal 
model of T-cell Acute Lymphoblastic Leukemia (T-ALL). Recent findings have concluded a 
relationship between VEGF expression in leukemic fish remodels the microenvironment leading 
to cell migration, but not through vascular restructuring, as a means to upregulate leukemic 
expression. 
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Introduction 

Zebrafish as a Leukemia Model 

Acute lymphoblastic leukemia (ALL) is a cancer prone to occurring in children, but can 

recur or even occur for the first time in adults, particularly the elderly, with a poorer prognosis 

in later years (Terwilliger et al., 2017). In vivo models of human cancer in zebrafish (Danio rerio) 

are a growing field of study to help inform treatment and diagnosis of the disease. Zebrafish are 

small, reproduce quickly and are 71% of human proteins have a direct zebrafish homology 

(Stolotov et al, 2008).  They can be housed and fed inexpensively compared to rodents and can 

be genetically modified in the germline in order to conduct experiments. Zebrafish embryos are 

translucent, and development can be wholly observed ex vivo, since they are not mammals. 

Organ development occurs within 3 days post fertilization (dpf) can be observed without 

sacrificing the animal (Baeten et al., 2018). They lay clutches upwards of 30 eggs at a time, 

which helps dull genetic diversity when conducting large scale experiments.  

Mutant lines have been generated to lack pigment, which enables fluorescence 

microscopy of interior anatomy. The zebrafish can be viewed live, with all its organ systems 

intact and with no need for sectioning in order to view deeper tissue. This saves both money 

and time, by negating the necessity for sectioning tools and fixative and the slow application of 

sections to slides. Furthermore, zebrafish can be injected with human transgenes and produce 

human proteins that respond to drugs and assays that already exist, which enables easy 

investigation into treatment or analysis. There are well established fluoresced B and T cell 

leukemic lines (Baeten et al., 2000). 

Though zebrafish undergo hematopoiesis in their kidney marrow (deep kidney tissue) 

and humans undergo hematopoiesis in their bones, T cell maturation occurs in the thymus of 

both organisms. Furthermore, many transcription factors and signaling pathways for 

differentiation of hematopoietic cells into their myeloid and lymphoid progenitors are very 

similar, resulting in overlapping genetics and molecular biology in the development of leukemia 

(Baeten et al., 2000). Recombination Activating Gene 2 (Rag2) is one such conserved gene across 

human, mouse and zebrafish, that is present only in T and B lymphoid tissue, enabling specific 

activation of transgenes that can induce leukemia in zebrafish (Langenau et al., 2004). 
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rag2:GFP-Myc Leukemia Producing Transgene 

The Myc oncogene is conserved between zebrafish and their mammalian counterparts 

in the expression of lymphocytic leukemia (O’Neil et al 2007), enabling experiment among an 

established line of leukemic fish. In immature lymphocytes Recombination Activating Gene 2 

(Rag2) plays a critical role in recombination, and a mutation of this gene affects the outcome for 

VDJ recombination, impacting the later outcome of these cells (Weissman 1985, Schlissel, Kaffer 

et al. 2006, Mijuskovic, Chou et al. 2015). Because the rag2 promoter for the rag2 gene is 

specific to lymphocytes, the rag2 promoter can be hijacked to express Myc, inducing leukemia. 

The line of zebrafish used in this study used transposase to create a double stranded break in 

the zebrafish DNA in order to insert the mouse derived Myc transgene under the rag2 promoter 

in order to limit the cancer to T and B lymphocytes (Langenau et al, 2003).  Myc is fused with a 

GFP gene in order to fluoresce (making the line rag2:GFP-Myc), which allows experimenters to 

visualize, track and measure the leukemia in vivo. The particular line of fish in this experiment is 

restricted to T lymphocytes only. Conversely, the control (nonleukemic) line is rag2:GFP 

transgenic so the microenvironment without the influence of Myc can also be visualized. 

Investigations into the activity of Myc under this (rag2) promoter are ongoing. Myc 

affects growth at several points in the cell’s life cycle, including during double negative selection 

into double positive selection, then again during stimulation of TCR, both of which occur in the 

thymus (Delgado and Leon, 2010). The role of Myc is not limited to individual cell development 

within the thymus, Myc is involved in cell migration and invasion in epithelial mesenchymal 

layers (Wolfer and Ramaswamy, 2011). Furthermore, its role in solid tumor metastasis has been 

well documented (Kortlever, Sodir et al., 2017). Contrary to solid tumors, in which spread of 

metastasis indicates poorer prognosis, spread of lymphocytes into the periphery is common to 

both leukemic and non- leukemic fish and impact on prognosis needs further investigation 

(Stoletov, Montel et al., 2007). Overall, the molecular changes brought by rag2:GFP-Myc enable 

a stable leukemic fish line.  

Role of Vascular Endothelial Growth Factor in Immunity 

During this maturation process, some cells will undergo clonal expansion, increasing the 

odds that a cell with the correct antigen receptor will encounter the pathogen presenting the 
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reciprocating antigen (Hess et all 2012). In leukemic cells, the maturation process is mutated 

between the selection processes, so propensity for cells to expand uncontrollably within and out 

of the thymus is possible and this has been suggested as a means for leukemic cell dissemination 

from the thymus (Feng et al. 2010)  

We know that solid tumors remodel their local vascular environment in order to 

transport nutrients and oxygen into the area, particularly through the use of VEGF to induce 

angiogenesis (Kortlever et al 2017). Prior studies in mouse models indicate VEGF induced 

microvasculature remodeling was also associated with leukocyte and mast cell recruitment 

(Detmar et al 1998). In other forms of leukemia, particularly acute myeloid leukemia (AML) and 

chronic lymphoblastic leukemia (CLL), plasma VEGF levels are markedly higher than in non-

leukemic patients (Aguayo et al., 2000). The same study also found a relationship between 

increased vascularization of the bone marrow, coinciding with increased VEGF expression and 

poorer prognosis in AML and CLL patients (Aguayo et al., 2000). Using our zebrafish model, I will 

be able to visualize leukemia progression in vivo, particularly as it relates to T cell dissemination 

from the thymus to other areas of the fish’s body and identify what role VEGF may play in that 

dissemination. I will be able to see patterns of vascular recruitment as VEGF changes the 

microenvironment surrounding the thymus. This would not be possible in a mouse model 

because of size constraints of the fluorescence microscope and depth of mouse tissue. A mouse 

model would have to sacrificed and sectioned in order to be wholly observed.  Fish have the 

advantage of being small enough that their vasculature and organ systems can be imaged in 

three dimensions while the animal is still alive.  

Using the zebrafish model, we can elucidate the role VEGF plays in leukemia progression 

and angiogenesis among endothelial (Fli1a), VEGFR-2 (Flk) and lymphatics (Lyve) fluorescently 

tagged vasculature. While there are four kinds of VEGF (VEGF-A through VEGF-D) and three 

receptors, the ones analyzed in this experiment will be VEGF-A and VEGFR-2, which regulates 

angiogenesis and vascular permeability (Wang et al 2020). Additionally, VEGF expression can be 

controlled in animals via heat shock promoter (hsp), to determine the role that VEGF plays in 

leukemia progression. These fish with VEGF induction via heat shock promoter are also positive 

for fluoresced Fli1a vasculature (Fli1a:RFP). 

 My hypothesis is that I will see an increase in VEGF-R vasculature (Flk) remodeling in 

the local area surrounding the thymus in leukemic (rag2:GFP-Myc) fish, and I expect the vascular 
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density to increase as leukemia progresses, possibly providing routes for leukemic 

dissemination. I also expect to see an increase in thymus volume as the leukemia progresses, in 

keeping with suggestions by prior literature that leukemia expands within the thymus before 

progression into the bloodstream.  Furthermore, I expect that under increased VEGF protein 

expression through use of a heat shock promoter, these features will be exacerbated in 

leukemic (rag2:GFP-Myc), but not control (rag2:GFP), non-leukemic fish. 
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Methods 

Zebrafish Husbandry 

All experimental procedures involving zebrafish were approved by the University of 

Kentucky’s Institutional Animal Care and Use Committee, protocol number 2015-2225. 

Transgenic lines used in this study are shown in Table 1. Animals were not excluded from 

experiments based on sex and were between 13-30 days post-fertilization for these studies. 

Light Sheet Fluorescence Microscopy 

To prepare fish for imaging, each fish was anesthetized and then transferred to a 2 mL 

microcentrifuge tube, removing excess water afterward. 300μL of 0.004% tricaine (MS-222, 

Western Chemical Inc) in E3 media was added to each tube and fish were kept at rest for 5 

minutes. 200 μL of a solution of 2% NuSieve GTG low-melt agarose (Lonza, cat. no. 50081) was 

added to the tubes for a final agarose concentration of 0.8%. Tubes were mixed by inversion and 

then the fish was loaded, tail first, into a glass capillary using a custom plunger (Zeiss). The 

E3/agarose was then allowed to cool and solidify for five minutes. Agarose-constrained fish 

were imaged using a Zeiss Light Sheet Z.1 dual-illumination microscope system and Zen imaging 

software (ZEN 2014 SP1 Black Edition) at the University of Kentucky Arts & Sciences Imaging 

Center. Fish ≤21 dpf were imaged into a Zeiss file, then converted to Imaris files. 20x objective 

lens (P/N 421452-9700-000) and fish ≥21dpf were imaged with a Zeiss 5x objective lens (P/N 

420330-8210-000).   

To make E3: 14.6g NaCl, 0.65g KCl, 2.20g CaCl and 4.05g MgSO4 were combined in a 1L 

bottle and topped off to 1L with ddH2O. The liquid made 50x concentration, which must be 

diluted to a 1X concentration and buffered to pH=7.  50ul Methylene Blue (an antifungal) per 1L 

of media was then added to yield  the final 1X E3 media. 
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Table 1. Zebrafish Lines Used 

Zebrafish Line Name Transgene Expression Site Obtained From 

Flk:RFP Tg(kdrl:RFP) VEGFR+vasculature 
ZIRC (Huang, Zhang et 

al. 2005)  

Fli1a:RFP Tg(fli1a:RFP) 
VEGFR- endothelial 

vasculature  

 Laboratory of Protein 

Signaling and 

Interactions (Martin et 

al, 2013)  

Lyve:dsRED Tg(-5.2Lyve1b:dsRED)  Lymphatics 
Crosier Lab (Okuda, 

Astin et al. 2012)  

Rag2:GFP Zrag2:GFP Lymphocytes 
Look Lab (Anderson, Li 

et al. 2016)  

Rag2:GFP-Myc Zrag2:GFP-Myc Lymphocytes/Leukemia 
Look Lab (Langenau, 

Traver et al. 2003)  

hsp:VEGF h70-mC-hVEGF Global 

Mukhopadhyay 

Lab (Hoeppner et  al., 

2012)  

Table 1: Zebrafish Lines: “zebrafish line name” indicates the shorthand name for the transgene 

of interest, while “transgene” indicates the scientific nomenclature of the transgene. Expression 

site indicates what will be fluoresced. “Obtained from” is the name of the lab of origin for the 

transgene. 
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Image Processing and Data Analysis 

The images were analyzed using Imaris 9.2 (Bitplane) or FIJI. Files were converted to 

.IMS files using Imaris File Converter 9.3.0. The Imaris surface creation software was used to 

enhance the clarity of the rag2:GFP-Myc and rag2:GFP cells by applying a mask over all GFP+ 

cells. Images were saved as .tifs and GIMP photo editing software was used to de-convolute and 

crop images.  

For Volume:  Using Imaris, the thymus volume was calculated by selecting the volume 

tool and restricting the parameters to a box encompassing only the thymus. I selected the green 

(GFP) field with a smoothness setting between 3 and 6. I completed the automated steps but 

toggled the surfaces in the final step so only the thymus is selected, if multiple surfaces were 

detected by the automated algorithm. The surface’s volume was then available to view under 

the ‘statistics’ tab. 

For measuring vascular density using Imaris, each thymus length was first measured in 

pixels, then that length was doubled to create a region of interest that is proportional to the 

thymus. The region of interest (ROI) was converted to μm by using Edit> image properties> ‘look 

at x, y, z dimensions’ and then all axes’ pixel values were multiplied by their respective 

conversion factor. The ROI was reported in μm3 and the percentage vascular density was 

calculated by dividing the ROI vascular volume by the total ROI volume. Then I divided the sum 

volume by the ROI and get a percent. 

For measuring cell-vessel proximity using FIJI, all image stacks and channels were 

adjusted for optimal signal:noise background reduction. Using the ‘points’ tool and ensuring 

‘stack position’ was selected in the measurement options, cells were measured from the center 

of their mass to the nearest vessel, whether that happened to be in plane or in a nearby plane. 

30-50 cell-vessel measurements were made for each image volume included in this study. After 

all points were reported, the values were moved to a spreadsheet, subtracted for all x-, y-, and 

z-dimensions and then calculated using a simple, 3-dimensional, vector calculation between two

points. All calculated cell-vessel distances were averaged before reporting a value for each 

animal, maintaining statistical independence of results.  
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Cell Counts 

In Imaris, a surface mask was used to ignore the GFP+ thymus in each image series. 

Using the ‘spots’ tool, the GFP fluorescence channel was selected and then the diameter of a 

cell was measured; then used as the estimated XY diameter. After the software has selected all 

spots that meet the XY criteria, a manual deselection of cells in the thymus that were not 

previously masked is carried out. From there, the cell count for each image can be copied from 

the ‘statistics’ tab into a spreadsheet for further analysis.  

RNA Isolation 

Zebrafish bearing heat-shock promoter VEGF-A in the rag2:GFP-Myc genetic background 

were raised until 21 dpf. Fish were separated into two groups, one remaining at 28°C and the 

other to be maintained at 36°C for 3 days. Fish transferred to tanks for heat shock activation at 

36°C were acclimated at 2°C increments daily until reaching 36°C. After 3 days of heat shock 

treatment, all fish were sacrificed by placing in containers of aquarium water with lethal dosage 

of tricaine supplemented prior to freezing in micro-centrifuge tubes on dry ice. All fish were 

stored at -80°C until RNA isolation with TRIzol Reagent (Fisher Scientific, cat. no. 15596026). 

After thawing, animals were disintegrated into 150 μL of TRIzol in a micro-centrifuge tube while 

using a disposable pestle for each fish. After disintegration, 350 μL of TRIzol was added to each 

tube, was mixed by flicking and inversion, with the remainder of the manufacturer’s protocol for 

RNA isolation followed. Recovered RNA was quantified for each sample using Qubit RNA HS 

Assay Kit (Fisher Scientific, cat. no. Q32852) and the Qubit 4 fluorometer system (Thermo 

Fisher).  

Reverse Transcription and qPCR 

1 μg of RNA from each sample in the previous step was reverse transcribed using the 

iScript cDNA synthesis kit (BioRad, cat. no. 1708891) and following the manufacturer’s 

instructions. The list of primers used were as follows: vegfaa FWD: GAG CTG CTG GTA GAC ATC 

ATC; vegfaa REV: TTC GAG CGC CTC ATC ATT AC; ef1a FWD: ATG GCA CGG TGA CAA CAT GCT; 

ef1a REV: CCA CAT TAC CAC GAC GGA TG; rplp0 FWD: GCG TCC CTA CCG TGA GAT TTT; rplp0 

REV: CGC CCA CGA TGA AAC ACT TG. qPCR samples were run in duplicate using iTaq Universal 

SYBR Green Supermix (BioRad, cat. no. 1725121) in 96-well plates on C1000 Touch thermal 

cycler (Bio-Rad) with standard, 2-step cycling parameters and 50°C annealing/extension. Results 
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were analyzed using comparative ΔCt analysis in spreadsheet software. Results were exported 

to GraphPad Prism v7.04 and Mstat 6.6.2 (McArdle Laboratory, University of Wisconsin-

Madison) for analysis and graphical representation of the results.  

Statistical Analysis 

For all multi-category comparisons, the Kruskal-Wallis (K-W) test was first used to 

determine if any category’s values attained statistical significance from the other groups. For all 

two-sample comparisons, the Mann-Whitney U(MWU)/Wilcoxon Rank Sum (WRS) statistical 

tests were employed. C.I.’s were 0.95 and significance was defined as p≤0.05. Graphical 

representations of data were generated in GraphPad Prism v7.04. 
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Results 

Leukemic Cell Dissemination Follows a Pattern 

Using the fish in Figure 1A to orient ourselves to Figure 1B and 1E, we visualized the cell 

dissemination, in leukemic fish (rag2:GFP-Myc), as it migrated from the thymus, caudally toward 

the kidney head (Figure 1E). We saw that migration occured in a predictable, stepwise manner 

and did not occur in the non- leukemic (rag2:GFP) fish. This is important because such a pattern 

means the microenvironment surrounding the thymus (place of migration initiation) and along 

the route of travel are being remodeled, perhaps in the same manner as solid tumors remodel 

their local microenvironment in order to recruit vessels for nutrients and oxygen. While fish 

younger than 14dpf did not appear to express leukemia regardless of Myc (or VEGF, as we will 

get into) expression, by 21dpf, the leukemic fish (rag2:GFP-Myc) display a consistent exodus of 

lymphocytes from the caudal tip of the medulla of the thymus that was not found in the non-

leukemic (rag2:GFP) fish lines at any time period (Figure 1C). The dissemination direction was 

significantly caudal in leukemic fish (rag2:GFP-Myc), with no particular direction of 

dissemination in non-leukemic (rag2:GFP) fish (Figure 1D). Not only do more cells migrate 

caudally, but a greater number of cells, overall, begin their journey (Figure 1C and 1D) among 

the leukemic fish than among non-leukemic fish. I postulate that some cells will always be 

present throughout the zebrafish, since lymphocytes are necessary responders to infection and 

daily maintenance of the fish’s adaptive immunity, so non-leukemic cell dissemination will not 

be zero. 



11 

Figure 1: Leukemia Cell Dissemination 

Figure 1: Leukemia Cell Dissemination:  Using lightsheet microscopy and Imaris imaging 

analysis, lymphocyte migration was calculated as lymphocytes left the thymus between 

leukemic and non-leukemic fish with either a rag2:GFP (Wild Type) or rag2:GFP-Myc (leukemic) 

cell marker.A) Animation for orientation of the fish. B) Representative images of cell 

dissemination from the thymus displaying cell count significantly increased in rag2:GFP-Myc 

(leukemic) fish compared to non- leukemic (rag2:GFP) fish. C) Significantly more cells migrate in 

older leukemic (rag2:GFP-Myc) fish when compared to younger leukemic fish and  non-leukemic 

(rag2:GFP) at any age. (Solid line: p<0.05 dashed line: n.s.) D) Dissemination was also shown to 

occur in a predictable pattern, with most cells exiting caudally with great significance in 

Leukemic fish (rag2:GFP-Myc) (p<0.05), but pattern of dissemination was not significant (n.s.) in 

non-leukemic (rag2:GFP) fish.  E) The pattern of dissemination appears to migrate caudally, 

toward the kidney head, seen in this graphic. 
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VEGF Heat Shock Increases Dissemination 

As Figure 1C indicates, leukemic fish experienced greater cell dissemination than non-

leukemic fish as the fish age. Since the effect can be induced in greater number under the VEGF 

heat shock promoter (hspVEGF+) (Figure 2C) than without VEGF transgene (hspVEGF-) (Figure 

2C), I can conclude the presence of VEGF protein provides a possible driver to heightened 

leukemic dissemination, though other proteins, including the fish’s endogenous VEGF, which 

appear to already be contributing to lymphocyte dissemination. The dissemination of 

lymphocytes is simply lower in number prior to heat shock, and greater in number in fish that 

possess the VEGF transgene. I speculate that since we see a similar uptick in dissemination 

between among heat shocked fish with a VEGF transgene (hspVEGF+) and the RNA analysis 

provided by the rtPCR data, the progression is at least in part driven by VEGF (Figure 2G). We 

see increased lymphocyte spread from the thymus in the leukemic fish under the heat shock 

than the control fish under the heat shock (Figures 2D, 2E and 2F). The spread is significantly 

more caudal, but does have a non-significant, but trending dissemination dorsally as well (figure 

2E). This implies that VEGF protein is certainly important to Leukemia trafficking, which is 

consistent with previous research (Dias, 2000), though the specific mechanism needs further 

exploration.  

While the hspVEGF+ and hspVEGF- fish both experience significant cell migration 

caudally, cells migrate en masse after a heat shock, at which time dorsal migration also becomes 

significant in only the VEGF+ fish with the transgene (p<0.05) (Figure 2E). Heat shock induced 

more cell exodus overall in the transgenic (VEGF+) fish, though the trend was slightly above a p 

value of 0.05 (0.05<p<0.1). This indicates that an endogenous mechanism of cell migration may 

be multifaceted but can be amplified with VEGF heat shock. 

Since there is increased expression in VEGF protein expression and VEGF plays a role 

in angiogenesis, this experiment wanted to assess the level of VEGF-Receptor (VEGFR) 

expression in a selected area of the zebrafish. While levels of VEGFR do not bear significant 

difference between leukemic and non-leukemic samples, a follow up real time PCR (Figure 2G) 

indicated the VEGF protein was overexpressed in leukemic fish with a heat shock promoter after 

the promoter was activated.  
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Figure 2: Patterned Lymphocyte Migration
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Figure 2: Patterned Lymphocyte Migration: Using light sheet microscopy and Imaris imaging 

analysis, the direction of lymphocyte migration was calculated as the lymphocytes left the 

thymus. A) Leukemic (rag2:GFP-Myc) fish dissemination was most significant caudally (p<0.001 

between caudal and all other directions). B) Non-leukemic (rag2:GFP) fish cell migration did not 

have a significant direction of cell dissemination (n.s.). C) Overlay of heat shocked fish, 

possessing the VEGF transgene (hspVegfA,rag2:GFP-Myc, flk:RFP) (blue), and without the 

transgene(hspVegfA,rag2:GFP, flk:RFP) (grayscale,) showed an increase in caudal and rostral cell 

dissemination for both transgenic and non-transgenic but the amount of cells migrating caudally 

in the VEGF+ transgenic fish trends much greater than the VEGF- fish, without the transgene 

after heat shock (0.05<p<0.1). D) Non-heat shocked VEGF+ fish (hspVegfA,rag2:GFP-Myc, 

flk:RFP) began to undergo caudal cell migration at a significant rate when compared to ventral 

and rostral directions (p<0.05 for both), with dorsal migration trending similarly (0.05<p<0.1). E) 

Heat shocked VEGF+ (hspVegfA,rag2:GFP-Myc, flk:RFP) fish experienced significant cell 

dissemination caudally, compared to ventral and rostral (p<0.05 both prior to and after heat 

shock), but only after heat shock does dorsal migration become significant when compared to 

ventral and rostral (p<0.05 for both). F) Caudal cell migration differences between transgenic 

and non-transgenic fish indicated the greatest significance between the VEGF+ (transgenic) fish 

after heat shock (p<0.01), but there was not significant difference between the VEGF+ and 

VEGF- fish after heat shock, despite trending(0.05<p<0.1.), nor was there significance between 

the non- transgenic VEGF- before and after heat shock (n.s.)  G qPCR quantification 9derived 

from cDNA made from RNA) of VEGF gene expression validated significant uptick in expression 

of the VEGF gene after the heat shock, but the same significance did not exist in the fish lacking 

the VEGF gene (p<0.05)  
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No Significant Evidence of Vascular Remodeling 

 The second point to my hypothesis was that as leukemia expands outward from the 

thymus, it would recruit and remodel the vasculature of the local environment. Vessel density 

among leukemia positive specimens is of interest because tumorous tissue develops in hypoxic 

niches. This experiment sought to assess the role of vessel formation in leukemia to see if it was 

similar to that found in solid tumors. Looking at fish with red fluoresced lymphatics (Figure 3A 

and 3B), general endothelial (Figure 3C and 3D) and endothelial vasculature bearing a VEGF- 

receptor marker (Figure 3E and 3F), I compared leukemic and non-leukemic fish to see if the 

vascular density in the area surrounding the thymus was being remodeled. Fundamentally, I was 

treating the thymus like a solid tumor. Additionally, I looked at co-localization between leukemic 

cells and their vasculature by quantifying their overlap (Figure 3G). 

 I saw no evidence of co-localization between any vessel line and the lymphocytes 

(Figure 3G). In analyzing a region of interest twice the length of the thymus all the way around 

(and limited to the boundaries within the fish itself) I saw that vascular change during leukemic 

progression was not quite significant among any vessel type.  Figures 3A,3B and 3C show that no 

matter the vasculature type, the vessel density within the region of interest was not significantly 

remodeled when compared to the control of the same vessel type. In fact, vessel densities 

varied widely between animals. Flk is vasculature bearing a VEGF receptor (VEGFR) (Figure 3C 

and 3D). I was expecting the Flk (VEGFR+) vasculature to undergo the most remodeling, since we 

understand that VEGF presence creates the optimum environment to increase leukemia 

dissemination, but as Figure 3D shows, the vessel density of VEGFR-2 tagged vasculature (Flk) is 

not significantly changed during leukemia migration. This allows us to conclude that unlike solid 

tumor formation, VEGF is not playing a role in angiogenesis and vasculature remodeling in 

leukemic zebrafish; it might be playing a different role, which needs further research. 



16 

Figure 3: Vessel Density and Distance 
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Figure 3: Vessel Density and Distance: Using light sheet microscopy and Imaris imaging analysis, 

a region of interest surrounding the thymus was taken.  The percent of the ROI taken up by 

vessels was calculated and compared between Leukemic (rag2:GFP-Myc) and non-leukemic 

(rag2:GFP) fish. A) Representative imagery of Lymphatics (Lyve:RFP) vasculature with B) graphic 

analysis of lymphatics vasculature (n.s.).C) Representative imagery of VEGFR+ vasculature with 

D) graphic analysis of VEGFR+ vasculature (n.s.). E) Representative imagery of Endothelial

(Fli1a:RFP) vasculature with F)Graphic analysis of endothelial vasculature (Fli1a:RFP) (n.s.). G) 

Graphic analysis of co-localization was achieved using FIJI imaging software, in which co-

localization of the vessels (red) and the leukemic cells (green) would have been represented in 

yellow, which indicated leukemic cells are not significantly close to any vasculature as (see 

figures 2A, 2C and 2C) (n.s.). 
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Thymus Volume Does Not Induce Leukemic Dissemination 

Initially I hypothesized that as leukemia progressed, I would see an increase in thymus 

volume but the increase in thymus volume did not appear to associate significantly with 

leukemia progression (Figure 4). Any difference in volume could be attributed to age, which is 

why we see such large ranges for each subtype in Figure 4. There was a difference in thymus 

volume between 14dpf fish and 28 dpf fish within the same subgroup (within just leukemic fish 

for example), but there was no significant difference between the thymus volume of control and 

leukemic fish. This runs contrary to the current knowledge that leukemogenesis may evolve 

from a single cell dividing in the thymus into a mass of leukemic cells that push the thymic 

boundaries and enter the interstitial space (Hess et al., 2012). If that were the case, I would see 

random selection as regards to which side of the thymus experienced eruption of the leukemic 

cells first, but as previously explored in Figure 1 and 2, the data indicates that leukemia 

progression is largely predictable. 

It can be noted that the Fli thymus volume has a p value that is very close to being 

significant (0.05<p<0.1). This is important because Fli vasculature do not wholly overlap with 

VEGF-R tagged (Flk) vasculature, so the driver of this trend may be something other than VEGF 

entirely. Further investigation is needed. 

Not surprisingly, our VEGF heat shock experiment (hspVEGF) follows the trends set by 

the fli, flk and lyve assessments of thymus volumes. Looking at Figure 4D we see no significance 

in the volume of the thymus whether leukemic or control after heat shock. While both the 

leukemic and control experienced a change in thymus size due to the heat itself, the difference 

between them is non-significant and implies that VEGF did not play a role in inducing the 

thymus volume change.  

Figure 4a represents the reality of what I see when I analyze and process the 

fluorescence imagery. Not only do we see how the leukemic cells exit caudally from the thymus, 

we see in 4b that no cells overlap or travel along any vasculature type.  Since the thymocytes are 

green fluoresced and the vessels are red fluoresced, overlap will appear as yellow fluorescence 

(this is done automatically during imaging), but no such overlap occurs. This contests the theory 

of migration along vessels that had previously been established (Langenau et al., 2003) 



19 

Thymus volume appears to increase in size regardless of whether the fish has the VEGF 

gene or does not have it. The presence of VEGF does not appear to enable a significant 

difference in thymus size; the heat shock alone appears to be the contributing factor. Between 

VEGF+28 and VEGF+ 36 p<0.05, and between VEGF-28 and VEGF-36 p<0.01, indicating it is 

significant regardless, only heat matters. There is no significant change in size when both VEGF- 

and VEGF+ are at 28 Celsius and no difference between VEGF- and VEGF+ at 36 Celsius either. 
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Figure 4: Thymus Volume 

Figure 4: Thymus Volume: Using light sheet microscopy and Imaris imaging analysis, the thymus 

volume was calculated in its entirety between non-leukemic (rag2:GFP) and leukemic (rag2:GFP-

Myc) fish with a A) Fli1a:RFP endothelial cell marker, B) Flk:RFP VEGF-receptor marker, C) 

Lyve:RFP Lymphatics marker and D) Heat shocked VEGF marker. There was no significance 

between the leukemic and non-leukemic thymuses in any line. P>0.05 for all (n.s.). 
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Discussion 

Using a well-established line of zebrafish bearing Myc-induced T-cell leukemia 

(Langenau, Traver et al. 2003), we visualize the initial expansion of leukemia from the thymus in 

the context of the vascular microenvironment and enhanced VEGF expression. I compared these 

rag2:GFP-Myc transgenic, (leukemic) fish to a rag2:GFP control (non- leukemic) model. Both fish 

lines were outcrossed to a Casper strain, which is a mutation of the mitfa gene that causes a 

complete lack of melanocytes, so the fish’s scales are somewhat transparent (White, Sessa et al. 

2008). This allowed me to better visualize the fluorescence via light sheet microscopy. With the 

goal of understanding the role of Vascular Endothelial Growth Factor in angiogenesis during 

leukemogenesis, I identified a step-wise onset of leukemic cell migration from the caudal tip of 

the thymus (Figure 1 and Figure 2). Leukemia progression was not associated with any vascular 

remodeling, and leukemia cells did not migrate along particular vascular tracks (Figure 3). 

Leukemia progression was not associate with any change in thymus size, which contests earlier 

studies that the reason for sudden cell migration was that clonal expansion within the thymus 

breeched the limits of the thymus (Hess et al.,2012). However, VEGF significantly accelerated 

leukemia progression from the caudal tip of the thymus along a predictable path toward the 

kidney head, indicating that VEGF may be acting as a signaling molecule directly impacting 

leukemia cells (Figure 2).  

Our means of zebrafish husbandry required successive generations of pairing from Myc 

positive fish, which means that the onset of leukemia had to be later, with slow leukemia 

formation and spread, as the animals are maintained in a manner that enables them to reach 

breeding age. This may mean that my study does not have good representation of acute 

lymphoblastic leukemia, which would likely have killed afflicted fish prior to making it to 

adulthood. This slow progression bears a resemblance to chronic lymphocytic leukemia in 

mammals (Finola et al, 2012).  The spread into the caudal area proximal to the thymus and 

kidney head is consistent with prior literature (Finola et al, 2012,  Blackburn et al 2012). I chose 

to examine the microenvironment surrounding the thymus because the pattern leukemic fish 

undergo during cell dissemination was relatively linear(Figures 1 and 2) and I likened the thymus 

to a solid tumor and observed to see if it, or the leukemic cells that composed it, would remodel 

their surroundings in the same way.  
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I looked at lymphatic (Lyve), all endothelial (Fli1a) and VEGFR-tagged endothelial 

vasculature, though if I had been more thorough I would have analyzed other linear tissue, (such 

as neural tissue) but I will explore the latter briefly. The direction of cell migration does not 

appear to be influenced by any endothelial or lymphatics vasculature (Figure 3). This contrasts 

findings of earlier studies that indicate in acute lymphoblastic leukemia cells, which show an 

initial random migration of leukemic cells from the thymus, followed by travel along blood 

vessels to the kidney head (Langenau, Traver et al 2003). I further analyzed co-localization of 

cells and vasculature, looking for overlap, but did not find any significance (Figure 3G).  

While I did not observe T-cells following along any vasculature, it is important to note 

that the zebrafish used in this study were F2 generation as opposed to the F0 generation in the 

Langenau study, which means the onset of leukemia had to be slower to enable successive 

generations and thus maybe more akin to chronic lymphoblastic leukemia (CLL) than the acute 

lymphoblastic leukemia (ALL) that appear in previous studies. The path of dissemination may 

vary for this reason. Of course, it is possible that since ALL is so acute, patterns of dissemination 

are difficult to track and the slow progression in my experiment allows time for tracking subtlety 

that would otherwise be missed. Variance from the previous study may also be the result of an 

amplifying, synergistic effect between the endogenous myc of the zebrafish and its mouse 

derived Myc transgene. Having two copies of the gene might influence leukemic progression. 

Nevertheless, the ultimate dissemination pattern resulted in the same destination for the 

lymphocytes as mentioned in previous literature; caudal migration appears to be heading 

toward the kidney (Figures 1 and 2).  

Dorsal migration also appears to have some significance, though to a much less 

significant degree than caudal migration (Figure 2E). This may be due to my own imperfect 

measuring the sections of the fish. Looking at Figure 1B and 1E cell dissemination is in a 

somewhat dorsal-caudal pattern, but in my to avoid counting the same cells twice, I had to 

make a very hard cut off for what qualified as dorsal and what qualified as caudal.  I could have 

simply divided the fish into caudal and rostral halves, but four directions more accurately 

represented a three-dimensional animal.  Nonetheless, whether the path of dissemination is 

distinctly caudal or somewhat dorsal, vessels were not the tract along which the cells were 

traveling (Figure 3G). 
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If vessels are not the track leukemic cells follow, I speculated that something else about 

the thymus might induce the leukemic migration. Keeping with the theory that T-cell clonal 

expansion was the culprit, I observed the thymus volume. I found the thymus increased in size 

significantly whether the fish had leukemia or not (Figure 4). It seemed increase in thymus 

volume was a function of growth over time.  It is worth noting the Fli1a fish line was very close 

to significance, but it fell short. It could be anomalous, or there could be an increase in the 

thymus of those Fli1a fish, but perhaps more research is needed.  

With vascular remodeling and changes to the thymus not fully explaining what 

summoned the thymocytes from the thymus, there may be some kind of chemoattractant 

gradient stemming from an unseen source that I have not yet measured. Studies in mice identify 

VEGF receptor (VEGF) on the surface of leukemic cells. Furthermore, increased human VEGF 

protein appears in mice xenografted with human leukemia (Dias et al., 2000). Murine Vegf is not 

elevated in these xenografted mice, indicating that it is the leukemic cells, themselves, that are 

the potential producer of the human VEGF protein, which may be acting in a paracrine or 

autocrine manner (Dias et al, 2000). The leukemia is potentially releasing VEGF protein, which in 

turn acts on either the cell itself or its neighboring cells. If I apply this logic to my experiment, its 

possible that leukemic cell migration is activated by the leukemia at a certain time, since we see 

that the en masse migration begins in older rag2:GFP-Myc fish (Figure 1C). This migration might 

be induced by the first cell(s) to turn on VEGF, which would explain why we see so much more 

dissemination caudally under a heat shock promoter for Vegf (Figure 2). During the heat shock 

experiment I noticed that lymphocyte migration did not begin en masse until after the heat 

shock (Figure 2F) when VEGF expression is upregulated (Figure 2G); it did not occur with any 

significance in the heat shocked control fish (Figure 2F). Increased intracellular VEGF expression 

is associated with poorer prognosis in chronic lymphoblastic leukemia and CLL was also found to 

have no significant change to the vasculature (Aguayo et al. , 2000). This supports my 

postulation that it is the leukemia itself using VEGF as a signal to migrate en masse. Investigation 

into why it migrates in such a linear fashion from the caudal tip of the thymus toward the kidney 

head needs further investigation. 

Future Directions 

Paracrine and autocrine signaling do not fully explain why the leukemic cells travel en 

masse along the same route of dissemination from the caudal tip of the thymus toward the 
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kidney head. If the leukemia is acting in a paracrine or autocrine manner, it could be activated at 

any place within the thymus and therefore disseminate from all sides. Non-leukemic fish 

experienced random dissemination patterns (Figure 2B), so it stands to reason that the 

thymocyte passage through the thymus cortex to medulla for maturation is not responsible for 

the caudal exodus point. It should be noted that leukemic cells are abnormal, so further 

investigation is needed to rule this out. I cannot rule out the kidney head as the 

chemoattractant secreting organ, but since the path of dissemination was limited only to the 

side of the organ proximal to the thymus, I propose its worth looking at what is special about 

what is between the two organs.  Since the route between thymus and kidney head is such a 

linear tract, it is worth examining  linear tracts of tissue. Since I have ruled out lymphatics and 

endothelial vasculature, including endothelial vasculature bearing the VEGF receptor, it might be 

worth looking into nervous tissue. Nervous tissue have linear tracts and the kidney head is 

highly innervated. 

 Looking at pathologies across central nervous tissue VEGF has been shown to be 

upregulated when cerebellar granule neurons (and astrocytes, to a lesser degree) are subjected 

to slightly hypoxic conditions. The study found the presence of VEGF bound to its receptor 

provided protection to the local neurons, but when unbound that protection is lost, further 

supporting the paracrine/autocrine hypothesis (Wick et al., 2002). Hypoxic tumors are also 

known to secrete VEGF in order to promote vascularization of the tumor in order to deliver 

oxygen and nutrients as the tumor expands (Casey et al., 2015). From this I might speculate that 

hypoxia could be playing a role to induce the VEGF signaling in leukemia, but further 

investigation is needed. 

Previous studies on the effects of double stranded breaks and faulty repair mechanisms 

in Rag2:Myc murine model indicate that not only does V(D)J recombination enable 

leukemogenesis in lymphocyte progenitors, but also that there is a high incidence of 

comorbidity with severe neural pathology. While this study analyzed the phenomena in pro-B 

cell leukemia, it compared its findings to leptomeningeal leukemia and terminal acute 

lymphoblastic leukemia (Gladdy et al., 2003). Patients experience a poorer prognosis once the 

leukemia spreads to the central nervous system. Future research might elucidate the role 

hypoxic neurons might play in VEGF signaling. There may be a link to the leukemia trafficking we 

have seen, but I will have to look at hypoxia, VEGF levels and fluorescently tagged neurons. 
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Limitations of Experiment 

One of the shortcomings in this set of experiments is the limitation on the number of 

animals included. While more than 50 animals were studied, significance could be vastly 

improved upon with more animals at specific age brackets, and more per fish line. In fact, the Fli 

vessel density was trending very close to significance that analysis of 5 or 10 more fish may have 

been able to slide the significance to be more representative of the reality. Animal studies are 

limited by time constraints. This study also had to contend with the fact that the microscopy and 

RNA extractions were terminal for all the fish.  

In conclusion, consistent, predictable trafficking among rag2:GFP-Myc induced leukemia 

may be the result of some kind of microenvironment change that is influenced by VEGF. The 

trafficking does not appear related to nearby endothelial (including VEGFR-tagged) vasculature 

or lymphatics, but investigation into the roles of neuron VEGF secretion and hypoxia is needed 

as the trafficking is linear and predictable. I now hypothesize that VEGF protein and VEGFR- 

receptor are acting together in a paracrine/autocrine manner. The role of zebrafish as a model 

for leukemia can be further explored with further focus on other linear tissues, such as neuronal 

and more focus on molecular mechanisms in those tissues, particularly in adult fish, whose 

leukemia may be more akin to chronic lymphoblastic leukemia.  Understanding these 

mechanisms may provide therapeutic drug targets that could be modified to benefit human 

patients. 
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