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INTRODUCTION

The role of generalist natural enemies in biological con-
trol and their interactions with prey, of which aphids con-
stitute one part, has received considerable attention
(Symondson et al., 2002) due to their importance in
agroecosystems and the unsustainable nature of conven-
tional methods of pest control. Pests of agroecosystems
are readily accessible at various strata and are attacked by
a range of natural enemies (pathogens, parasitoids and
predators) which interact in complex ways (Sunderland et
al., 1997) but the most valuable attribute of the generalist
predator community is that most species subsist on alter-
native, non-pest prey. They are therefore present within
the crop prior to colonization by pests, either performing
a “lying-in-wait” strategy (Murdoch et al., 1985; Chang
& Kareiva, 1999) or building up their populations and
impacting pests with favourable predator : pest ratios
(Settle et al., 1996). Although generalist predators are
unlikely to impact pests once their populations increase
exponentially, it has been suggested that they could have
a greater role than individual specialists acting alone
(Murdoch et al., 1985).

A fundamental premise to using predators in biological
control is their ability to consume large numbers of pests.
Many generalist aphidophagous predators do not exhibit
this behaviour. Not only do they feed on a diverse range
of prey which are often of higher nutritional quality than
aphids (Bilde et al., 2000; Bilde & Toft, 2001) but many
are competitive and/or cannibalistic (Evans, 2004; Hoo-
gendoorn & Heimpel, 2004). This concept whereby

overall regulation of herbivore populations could be
reduced due to interactions between natural enemies was
demonstrated in Chrysoperla carnea (Stephens) (Neurop-
tera: Chrysopidae). This predator was ineffective at sup-
pressing aphids when in the presence of other natural
enemies (Rosenheim et al., 1993). Despite these interac-
tions which complicate our understanding of the ability of
natural enemies in biological control, there is sufficient
evidence to suggest that the assemblage of generalist
predators can contribute towards pest reduction
(Symondson et al., 2002) and has been supported by
mathematical modelling which predicts that control is
only likely early in the season (Fleming, 1980), before
colonization by specialist natural enemies.

For these reasons, whereby interactions between natural
enemies can be additive, synergistic or detrimental to bio-
logical control, careful assessment of the feeding ecology
of generalist predators is required before they can be
implicated for pest management. Numerous techniques
have assessed this impact, all of which make certain
assumptions and have interpretative complications. Gut-
content analyses allow prey consumption to be assessed
after the feeding event (or events) occurred naturally in
the field and will be reviewed with reference to aphido-
phagous predators. Potential sources of error inherent to
gut-content analyses, which are regularly ignored in field
studies, will be outlined in detail. Other methods of bio-
control evaluation (laboratory trials, manipulative experi-
ments and direct observations) will be discussed briefly,
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season before exponential increases in density and prior to the arrival of specialist natural enemies. Although direct observations of
predation, laboratory feeding trials and manipulative field studies have been used to estimate levels of biological control exerted by
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Over 100 investigations have utilized gut-content analysis to estimate aphid predation rates by predators. Throughout the last cen-
tury, gut dissection, which enables the visual identification of aphid body parts, has been used in over 50% of studies although accu-
rate identification and quantification of predation is difficult. Other techniques have included radio-labelling of prey, dissection of
faecal samples, electrophoresis, stable isotope analysis and use of polyclonal antisera. In recent studies of invertebrate predation,
monoclonal antibodies have been the most frequently applied technique but advances in molecular biology have enabled the detec-
tion of species-specific DNA sequences. The use of these applications to quantify predation by aphidophagous predators will be
reviewed, with emphasis on potential sources of error and difficulties of quantitative interpretation. Despite the considerable focus
currently directed towards molecular approaches, antibody-based techniques are likely to remain an important tool for studying pre-
dation rates of pests in the field, especially when antibodies have already been developed. However, the study of multiple predation
events within complex generalist predator food webs is only likely through the detection of species-specific DNA sequences using
molecular techniques.
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describing the difficulties of correlating their results to
natural interactions in the field.

DIRECT OBSERVATIONS AND MANIPULATIVE

EXPERIMENTS

Determining the biocontrol potential of aphidophagous
predators cannot follow protocols which can be applied
across species and habitats. Often subtle differences in the
biology and behaviour of predators may allow certain
techniques to accurately assess biological control by some
arthropods but not others. Whilst certain forms of gut-
content analysis can be utilized to study the feeding
activity of all predators (discussed in detail below), obser-
vations and manipulations of predator and prey communi-
ties have been used extensively to estimate the role of
some natural enemies in biological control.

Direct observations

The observation of feeding behaviour has been used to
gather valuable information on the spectrum of prey cap-
tured and feeding frequencies, but does not allow accu-
rate estimates of predation in the field. For example,
direct observations have indicated that the diet of web-
building spiders is dominated by homopteran prey
(Nyffeler, 1999). However, these techniques sometimes
yield fewer than one feeding observation per person hour
(Nyffeler, 1999) and are complicated by partial consump-
tion and/or rejection of prey, resulting in the overestima-
tion of predation rates upon less-preferred prey.
Therefore, direct observations only provide preliminary
information on prey taken by predators in the field.

Directly observing predation using video analysis
(Schenk & Bacher, 2002) provides more accurate infor-
mation on feeding behaviour in the field and can monitor
day and night-time (using infra-red light) activity.
Although the positioning of a camera in the field poses
some technical challenges, it is extremely effective at
monitoring the consumption of prey and attack behaviour
of predators with less selectivity and greater accuracy
than visual observations which are susceptible to human
error and bias. For example, Schenk & Bacher (2002)
deduced that the paper wasp Polistes dominulus (Christ)
(Hymenoptera: Vespidae) was the primary predator of
Cassida rubiginosa Müller (Coleoptera: Chrysomelidae)
and that predation occurred exclusively during the day.
Video technology clearly allows accurate assessment of
attack rates in the field and the spectrum of prey con-
sumed. These approaches are most effective with those
predators feeding on small, cryptic and immobile prey
items where visual identification is difficult.

Laboratory experiments

Laboratory experiments usually fail to replicate all vari-
ables experienced by predators in the field. Even within
large-scale controlled environment facilities where it is
often possible to accurately study complex interactions,
certain assumptions have to be made and with mobile
aphidophagous predators it is difficult to simulate all
these interactions. Despite these difficulties, laboratory
trials do enable the breakdown of ecological, behavioural

and trophic connections within invertebrate food webs.
Ultimately, they can implicate species as valuable bio-
logical control agents and formulate hypotheses which
can be tested with quantitative studies in the field.

Given that many aphidophagous predators exhibit gen-
eralist feeding habits, laboratory trials can indicate differ-
ential acceptabilities of prey, which can be used to record
the availability of “potential prey” in the field (Harwood
et al., 2001a, 2003) and model pest consumption rates
(Harwood et al., 2004). During trials that evaluate feeding
behaviour, it is important to consider that simple labora-
tory arenas do not represent the complex field environ-
ment in which a predator’s decision to attack may be dif-
ferent. They can only be viewed as establishing whether
or not a predator is capable of killing and consuming par-
ticular prey. Toft (1997) reported that aversions were
acquired by wolf spiders exposed to an aphid-only diet
whilst Greenstone (1979) suggested that these aphido-
phagous predators optimized their dietary intake of essen-
tial amino acids which could lead to the rejection of cer-
tain prey, although the likelihood of such discrimination
in the field is low given that food items are often in short
supply. Despite the artificial environment, laboratory
studies can provide valuable information on prey accept-
ability and prey quality. In parallel with field studies, they
form a basis for determining the role of aphidophagous
predators in biological control.

Caged and manipulative field experiments

Caged experiments allow the manipulation of predator
and prey densities, enabling biocontrol efficiencies to be
evaluated. They often provide a more realistic habitat
than laboratory environments and allow the assessment of
interactions between natural enemies which are some-
times (Snyder & Ives, 2001) but not always (Colfer &
Rosenheim, 2001) detrimental to pest control. For exam-
ple, Colfer & Rosenheim (2001) reported that within
parasitoid-only control plots, rates of parasitism never
exceeded 10% but rather than reducing biological control
due to between-species competition, the addition of
predator communities further suppressed aphid densities
despite high levels of predation on immature parasitoids.
However, care is needed during the implementation of
caged experiments to ensure comparable conditions and
interactions to those experienced in the field. Despite
these difficulties, caged field experiments allow specific
hypotheses to be tested under “field” conditions, which
are not possible in the laboratory.

Ultimately all observatory and manipulative studies
can, if they are carefully designed and the results inter-
preted accurately, provide information on the behaviour
and ecology of aphidophagous predators. If performed in
parallel to gut-content analysis and population
monitoring, the results can be additive and allow an
increasingly accurate determination of the role of natural
enemies in biological control.

GUT-CONTENT ANALYSIS

The ability to identify prey remains within arthropod
predators is essential for understanding the trophic inter-
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actions within complex food webs. This is especially
important in generalist predators whose biocontrol poten-
tial can sometimes be affected by the presence of alterna-
tive prey (Madsen et al., 2004). Advantageous to
observatory and manipulative experiments, results can be
obtained from systems where predation occurred natu-
rally without experimental interference. The application
of post-mortem analyses to studying predation has been
reviewed (Boreham & Ohiagu, 1978; Sunderland, 1988,
1996; Greenstone, 1996; Solomon et al., 1996; Symond-
son, 2002a) and analyzed in relation to specific predators
(Greenstone, 1999; Symondson, 2002b) or prey (Obrycki,
1992; Symondson & Liddell, 1996). The effectiveness of
different techniques varies between predators and/or prey,
thus each trophic connection being examined should be
considered as a separate parameter. For example, faecal
analysis enables prey DNA or proteins to be measured but
collecting such material from aphidophagous predators
may be difficult. Many aphidophagous predators also
feed by liquid ingestion making gut dissection redundant.
It is therefore important to evaluate the relevance of each
technique in terms of the prey item being consumed
(aphid body parts may enable visual identification of
remains) and the predator consuming target material.

The application of gut-content analyses have evolved
from simple dissection and visual identification of prey,
first reported in carabids and coccinellids in the 19th Cen-
tury (Forbes, 1883), to highly sophisticated techniques
utilizing the identification of species-specific prey DNA
using multiplex-PCR (Harper et al., 2005) or prey epi-
topes using monoclonal antibodies (Symondson et al.,
1996; Harwood et al., 2004, 2005). Despite the progres-
sion of new technologies, all techniques have associated
strengths and weaknesses which influence interpretation
of results and will be discussed in detail.

Despite these technical and interpretative difficulties,
over 100 studies have used gut-content analysis to assess
aphid predation (Table 1). It is interesting to note that
predation by carabids is well documented (Fig. 1) but
other voracious aphid predators have been poorly studied,
possibly due to the ease of capture (by pitfall trapping) of

these epigeal predators. This demonstrates the need for a
wider evaluation of predator communities, all of which
feed on aphids and potentially impact their densities.

Gut dissection

Although many aphidophagous predators feed by liquid
ingestion, certain species consume particulate matter
which allows examination of remains from the digestive
tract or gut of a predator. Providing sufficient taxonomic
skills enable accurate identification, the simplicity of
these techniques explains why they have been widely
utilized for analyzing gut-contents of carabids,
coccinellids, Opiliones and dermapterans (Table 1). Gut
dissection was first employed to assess aphid predation in
the 19th Century (Forbes, 1883) and was still used, albeit
less frequently, until the end of the 20th Century (e.g.
Holland & Thomas, 1997; Triltsch, 1999).

Despite its application to over 50% of studies
measuring aphid predation by gut-content analysis, there
are many interpretative complications. It is extremely
difficult to quantify prey consumption from solid remains
within a predators gut. Although possible to identify some
structures belonging to Aphididae, such as antennae,
cornicles, legs, cauda and (if alate) wing remains,
determining the number (or biomass) of aphids consumed
is problematic due to differential rates of digestion of
body parts. Species-level identification of these partially
degraded structures also requires great taxonomic skill.
Dixon & McKinlay (1992) analyzed the gut content of
1800 Pterostichus melanarius (Illiger) (Coleoptera:
Carabidae) and 910 P. madidus (F.) (Coleoptera:
Carabidae) from commercial potato crops and indicated
that, respectively, 14.1% and 30.5% contained aphids, of
which 80% were Macrosiphum euphorbiae (Thomas)
(Hemiptera: Aphididae). However, the vast majority of
studies categorize predation as “aphid-consumption”,
making little or no attempt to differentiate among species.
In addition, many aphidophagous predators feed by liquid
ingestion and exhibit extra-oral digestion. In such
instances, gut dissection would provide no information on
prey consumption other than the extent to which the gut is
filled with partially digested and liquefied prey.
Nevertheless, where prey can be identified, gut dissection
can provide an inexpensive and easily applied alternative
to the more complex biochemical and molecular
techniques.

Faecal analysis

In recent years, molecular technology has allowed the
accurate identification of prey remains within faecal sam-
ples of vertebrate predators (e.g. Jarman et al., 2004), but
is difficult to apply to invertebrate predator-prey systems.
However, Pallant (1969) collected faeces of the grey field
slug A. reticulatum from leaves of dicotyledonous herbs
in British woodland and identified indigested and par-
tially decayed material evacuated from the gut. Although
dominated by plant remains, arthropod fragments (aphid
exoskeleton, earthworm chaete and dipteran wings) were
recorded in 21.2% of slugs.
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Fig. 1. Number of studies investigating the feeding behaviour
of aphidophagous predators using gut-content or analytical
analyses. Twelve families are presented separately; the
remaining twenty-eight families were represented by fewer than
five studies and are categorized as “Others”.
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Good & Giller (1988)WWGelElecM. dirhodumStap

Sunderland et al. (1987)WWPc/dabELISAAphididae

Anth, Aran, Cant, Cara, Club, Empi,
Forf, Form, Leio, Liny, Lioc, Lyco,
Miri, Nabi, Para, Phal, Scat, Stap, Tetr,
Ther, Thom

Sopp & Chiverton (1987)WWPc/dabELISAAphididaeCara, Liny, Stap, Tetr
Pollet et al. (1987)GrDissectAphididaeCara
Pollet & Desender (1987b)GrDissectAphididaeCara
Pollet & Desender (1987a)GrDissectAphididaeCara
Nielsen (1987)WdDissectAphididaeForf
Lövei et al. (1987)LabImmuno/dabELISAS. avenaeCara
Hance & Renier (1987)SgBImmuno/indELISAA. fabaeCara

Chiverton (1987b)SBPc/dabELISAR. padi
Cant, Cara, Forf, Form, Liny, Lyco,
Phal, Stap

Chiverton (1987a)SBDissectR. padiCara

Chiverton (1987a)SBImmuno/dabELISAR. padi
Cant, Cara, Liny, Lyco, Forf, Form,
Phal, Stap

Ricci (1986)WW, SBDissect5 species of aphidCocc
Kokubu & Duelli (1986)RipDissectAphididaeOsmy
Kennedy et al. (1986)WW, SB, GrDissectAphididaeStap
Honek (1986)XFaecalAphididaeCocc
Coombes (1986)WWDissectAphididaeCara, Stap
Pollet & Desender (1985)GrDissectAphididaeCara
Griffiths et al. (1985)WWDissectAphididaeCara
Desender & Pollet (1985)GrDissectAphididaeCara

Turner (1984)WdPc/OuchHomoptera
Anyp, Anys, Aran, Cara, Chry, Club,
Cocc, Empi, Heme, Liny, Meti, Miri,
Nabi, Phal, Proc, Redu, Stap, Syrp, Ther

Scheller (1984)SBDissectAphididaeCara
Loreau (1984)WdDissectAphididaeCara
Leathwick & Winterbourn (1984)LucPc/PrecipAcyrthosiphon spp.Cocc, Heme, Lyco, Nabi, Phal
Koehler (1984)WdDissectAphididaeCara
Hance & Tries (1984)LabImmuno/dabELISAA. fabaeCara

Crook & Sunderland (1984)LabImmuno/dabELISAAphididae
Anth, Cara, Club, Empi, Forf, Form,
Leio, Liny, Lith, Lyco, Meso, Stap, Tetr

Chiverton (1984)SBDissectR. padiCara
Loughridge & Luff (1983)ArDissectAphididaeCara
Loreau (1983b)WdDissectAphididaeCara
Loreau (1983a)WdDissectAphididaeCara
Kokubu & Duelli (1983)Fr, CyDissectAphididaeSisy
Hance & Rossignol (1983)LabImmuno/OuchM. viciae, M. persicaeCara
Hance & Gregoire-Wibo (1983)ArImmuno/OuchM. viciae, M. persicaeCara
Griffiths (1982)LabDissectAphididaeCara
Gregoire-Wibo (1982)SgB, WWDissectAphididaeCara
Sunderland & Vickerman (1980)SB, WWDissectAphididaeCara, Cocc, Forf, Stap
Hengeveld (1980)Ht, GrDissectAphididaeCara
Ohiagu & Boreham (1978)LabImmuno/LatexAggA. pisumCocc
Murray & Solomon (1978)LabGelElecR. insertumAnth
Vickerman & Sunderland (1975)SB, WWPc/OuchAphididaeCant, Cara, Club, Cocc, Forf, Stap, Syrp
Sunderland (1975)SB, WWDissectAphididaeCara, Forf, Heni, Stap
Luff (1974)Gr, FrDissectAphididaeCara
Fox & Landis (1973)SgBDissectM. persicaeAgri
Cornic (1973)FrDissectAphididaeCara
Pettersson (1972)LabPc/IEF,OuchR. padiAnth, Cara, Cocc, Chry, Syrp
Foster (1970)VDissectAphididaeCara, Phal
Pallant (1969)WdDissect/FaecalAphididaeLima
Eastop & Pope (1969)WdDissectAphididaeCocc
Penney (1966)WdDissectAphididaeCara
Dawson (1965)FnDissectAphididaeCara
Putman (1964)FrDissectAphididaeCocc
Dempster (1963)FlPc/TbPrecipA. spartiiAnth
Skuhravý (1960)ArDissectAphididaeForf
Phillipson (1960)LabFaecalMicrolophium spp.Phal
Skuhravý (1959)ArDissectAphididaeCara
Pendleton & Grundmann (1954)FlRadio-labAnuraphis spp.Cocc, Salt, Syrp
Forbes (1883)VarDissectAphididaeCara, Cocc
ReferenceHabitat(s)4Techniques3Target(s)2Predator(s)1

TABLE 1. Laboratory and field investigations employing the use of post-mortem gut-content and analytical analyses to measure (or develop
methods to measure) predation and digestion rates of aphidophagous invertebrate predators.
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1 Predators categorized to family-level: Agri, Agriolimacidae (Mollusca); Anth, Anthocoridae (Hemiptera); Anyp, Anyphaenidae (Araneae);
Anys, Anystidae (Acari); Aran, Araneidae (Araneae); Cant, Cantharidae (Coleoptera); Cara, Carabidae (Coleoptera); Chry, Chrysopidae (Neu-
roptera); Club, Clubionidae (Araneae); Cocc, Coccinellidae (Coleoptera); Dict, Dictynidae (Araneae); Empi, Empididae (Diptera); Forf, Forfi-
culidae (Dermaptera); Form, Formicidae (Hymenoptera); Heme, Hemerobiidae (Neuroptera); Heni, Henicopidae (Lithobiomorpha); Leio,
Leiodidae (Coleoptera); Lima, Limacidae (Mollusca); Liny, Linyphiidae (Araneae); Lioc, Liocranidae (Araneae); Lith, Lithobiidae (Chilo-
poda); Lyco, Lycosidae (Araneae); Meso, Mesostigma (Acari); Meti, Metidae (Araneae); Miri, Miridae (Hemiptera); Nabi, Nabidae (Hemip-
tera); Osmy, Osmylidae (Neuroptera); Oxyo, Oxyopidae (Araneae); Para, Parasitidae (Acari); Phal, Phalangiidae (Opiliones); Proc,
Proctotrupidae (Hymenoptera); Redu, Reduviidae (Heteroptera); Scat, Scathophagidae (Diptera); Sisy, Sisyridae (Neuroptera); Stap, Staphy-
linidae (Coleoptera); Syrp, Syrphidae (Diptera); Tetr, Tetragnathidae (Araneae); Ther, Theriidae (Araneae); Thom, Thomisidae (Araneae).
2 where aphids were identified to species level these are noted, otherwise categorized as Aphididae when consumption on precise species were
not recorded.
3 Abbreviations used in Techniques: dabELISA, double-antibody sandwich enzyme-linked immunosorbent assay; Dissect, gut dissection;
DNA, DNA-based technique; Faecal, analysis of faecal samples; GelElec, gel electrophoresis; indELISA, indirect enzyme-linked immuno-
sorbent assay; IEF, Isoelectric focusing; ImmElec, Immunoelectrophoresis on cellulose acetate membranes; Immuno, immunoglobulin; Latex-
Agg, Latex Agglutination; MAb, monoclonal antibody; Ouch, Ouchterlony test; Pc, polyclonal antibody; PCR, polymerase chain reaction;
Precip, precipitin test; Radio-Lab, recovery of radiolabelled prey; SI, stable isotope analysis; TbPrecip, Tube Precipitin test.
4 Habitat in which study was undertaken: A, alfalfa; Ar, arable fields (precise crop not recorded); BW, buckwheat; Ce, cereals; Cl, clover; Cn,
corn; Ct, cotton; Cy, City/urban habitat; Fl, flowing plants; Fn, fenland habitat; Fr, fruit/orchards; Gr, grassland; Ht, heathland; Lab, laboratory
study; Luc, lucerne; Ms, marshland; P, peas; Pec, pecan; Rip, riparian; SB, spring barley; SBn, spring bean; SgB, sugar-beet; So, sorghum;
SW, spring wheat; V, vegetables; Var, various and mixed habitats; Wd, woodland/forest; WW, winter wheat; X, unspecified.

Harper et al. (2005)Lab, Sbn, WWDNA/PCR6 species of aphidCara
Winder et al. (2005)WWMAb/indELISAAphididaeCara
Harwood et al. (2005)WWMAb/indELISAAphididaeTetr
Renouard et al. (2004)PecPc/indELISAM. caryaefoliaeAnyp
Harwood et al. (2004)WWMAb/indELISAAphididaeLiny
Prasifka et al. (2004)Ct, So, LabSIA. gossypiiCocc
Greenstone & Shufran (2003)LabDNA/PCRR. maidis, R. padiOxyo
Cuthbertson et al. (2003)LabDNA/PCRR. insertumAnys
Harwood et al. (2001c)WWMAb/indELISAAphididaeLiny
Harwood et al. (2001b)LabMAb/indELISAS. avenaeCara, Liny
Su et al. (2000)CtPc/dabELISAA. gossypiiChry
Nienstedt & Poehling (2000)LabSIS. avenaeCara, Liny
Chen et al. (2000)LabDNA/PCRR. maidis, R. padiChry, Cocc
Symondson et al. (1999a)LabMAb/indELISAAphididaeCara
Triltsch (1999)WWDissectAphididaeCocc
Nienstedt & Poehling (1998)LabSIS. avenaeCara
Hering (1998)RipDissectAphididaeCara
Corey et al. (1998)CnGelElecR. maidisAnth
Triltsch (1997)WWDissectAphididiaeCocc
Ostrom et al. (1997)A, LabSIAphididaeCocc
Holland & Thomas (1997)WWDissectAphididaeCara
Hering & Plachter (1997)RipDissectAphididaeCara
Holland et al. (1996)WWDissectAphididaeCara
Sunderland et al. (1995)BW, Fr, SB, GrDissectAphididaeCara
Scrimgeour et al. (1995)FrSIA. idaeiCocc
Nienstedt & Poehling (1995)LabSIS. avenaeCara, Liny
Winder et al. (1994)WWPc/dabELISAS. avenaeCara, Liny, Stap
Löbner & Hartwig (1994)WWImmuno/dabELISAAphididaeCant, Nabi
Ekbom (1994)A, Cl, PDissectA. pisumCara, Cocc
El Banhawy et al. (1993)WWGelElecS. avenaeAnys, Meso
Sopp et al. (1992)LabPc/dabELISAS. avenaeCara, Liny, Stap
Holopainen & Helenius (1992)SBDissectR. padiCara
Dixon & McKinlay (1992)VDissectM. euphorbiae, M. persicaeCara
Burn (1992)CePc/dabELISAAphididaeCara, Liny
Burn (1992)CeDissectAphididaeCara
Dennis et al. (1991)SWDissectAphididaeStap
Chiverton & Sotherton (1991)SWDissectAphididaeCara
Pollet & Desender (1990)GrDissectAphididaeCara
Lövei et al. (1990)LabPc/dabELISAS. avenaeCara, Stap
Janssens & De Clercq (1990)WWDissectAphididaeCara
Janssens & De Clercq (1990)WWPc/dabELISAAphididaeCara, Stap
Hagley & Allen (1990)FrPc/ImmElecA. pomiCara, Chry, Cocc, Forf, Form, Miri, Redi
Bruinink (1990)GrDissectAphididaeCara
Sopp & Sunderland (1989)LabImmuno/dabELISAS. avenaeCara, Liny, Stap
Kabacik-Wasylik (1989)VDissectAphididaeCara
Hagley & Allen (1989)FrImmElecA. pomiDict
Dixon & McKinlay (1989)VDissectM. euphorbiae, M. persicaePhal
Burn (1989)CePc/dabELISAAphididaeCara, Liny
Pollet & Desender (1988)GrDissectAphididaeCara
Janssens & De Clercq (1988)WWDissectAphididaeCara



Importantly, the dissection of faeces and visual identifi-
cation of remains cannot quantify direct levels of preda-
tion in the field. The data provides qualitative information
on recognizable prey passing through the digestive sys-
tem, but not on quantities consumed.

Radio-isotope labelling

The labelling of prey or plant material with radioactive
isotopes or elements such as rubidium can be used to
track trophic movements in food webs. Although the
labelling of aphids with radioactive phosphorous has indi-
cated the extent of its uptake by parasitoids (Robertson,
1976) and the dispersal of virulous aphids in sugar beet
(Bjorling et al., 1951), there is only one study docu-
menting its application for quantifying aphid predation
(Pendleton & Grundman, 1954). The thistle Cirsium
undulatum (Nutt.) Spreng. (Asterales: Asteraceae) was
inoculated with 32P which was taken up by aphids within
the genus Anuraphis. Extrapolating from counts per mil-
lion of 32P within aphids to its presence in predators,
Pendleton & Grundman (1954) semi-quantitatively esti-
mated the number of aphids consumed by spiders, cocci-
nellids and syrphids. Notwithstanding the ability of this
technique to suggest that Diptera larvae were the most
important aphid predator on thistle, such methods are
fraught with potential error. Whilst they implicate trophic
links, the likelihood of false positives from scavenging on
contaminated material and secondary predation by
feeding on other predators which contain radio-labelled
prey, are high. Furthermore, environmental concerns,
regulations and ethical issues relating to the field-release
of radio-labelled material are the most powerful reasons
which explain why such techniques are rarely used to
study predator-prey interactions.

Stable isotopes

It is also possible to measure the ratio of stable
isotopes, most frequently 15N and 13C, within predators
using mass spectrometry (Table 1), but they are rarely
utilized to study trophic interactions between aphido-
phagous predators and prey (Scrimgeour et al., 1995; Pra-
sifka et al., 2004). One reason for their sparse
representation is the relative expense of equipment and
technical expertise required to analyze samples even
though screening protocols are inexpensive compared
with biochemical or molecular techniques.

Measuring the feeding behaviour of Hippodamia con-
vergens Guérin-Méneville (Coleoptera: Coccinellidae),
Prasifka et al. (2004) collected predators from cotton by
aspirator and screened them for 13C : 12C ratios using com-
bustion - gas chromatography - mass spectrometry.
Within the laboratory it was possible to observe changes
in isotopic ratio when these predators switched from
feeding on a C4-based diet [Aphis gossypii Glover (Hem-
iptera: Aphididae) reared on grain sorghum] to a C3-based
diet (A. gossypii reared on cotton), with ratios stabilizing
after 3 days. Although at intermediate periods and during
the dietary mixing of prey in the field it may be difficult
to accurately determine the food source, Prasifka et al.
(2004) deduced that during times of low aphid

abundance, H. convergens rarely fed on non-aphid food
which had originated from cotton. During high aphid den-
sities in cotton, isotopic ratios were comparable to labora-
tory studies of individuals feeding on an exclusively
C3-based diet indicating significant predation upon pests
within these fields.

However, when determining the role of a predator in
biological control, it is necessary to measure how much
material has been eaten. The tracking of stable isotope
ratios within food chains can only reveal qualitative infor-
mation on trophic links, making it difficult to assess the
biocontrol efficiency of predators. There is also a lack of
information available on detection periods for stable iso-
tope ratios and the rates at which the proportions present
in the predators gut fragment at different temperatures,
during dietary mixing and at variable hunger levels.
Although this preliminary characterization is required,
with careful consideration of potential errors, stable iso-
topes could prove useful in future food-web studies.

Electrophoresis

The electrophoretic analysis of prey isoenzymes offers
an alternative approach to quantitative biochemical and
molecular applications (Solomon et al., 1996). First dem-
onstrated in the laboratory for studying predation of Rho-
palosiphum insertum (Walker) (Hemiptera: Aphididae)
(Murray & Solomon, 1978) and subsequently utilized in
the field (Good & Giller, 1988; Corey et al., 1998), elec-
trophoresis enables the rapid screening of invertebrates
without the complex development procedures associated
with antibody and DNA-based approaches. Although care
is required when designing a system capable of separating
prey enzymes into highly focussed bands, once optimized
the preparation and running of gels follows a relatively
simple and standardized protocol.

Good & Giller (1988) attempted to measure -esterase
and malate dehydrogenase enzyme patterns of Metopolo-
phium dirhodum (Walker) (Hemiptera: Aphididae) and
Sminthurus viridis (Lubbock) (Collembola: Sminthur-
idae) within Tachyporus hypnorum (F.) (Coleoptera:
Staphylinidae). Although it had been possible to separate
esterase enzymes in the past (Murray & Solomon, 1978;
Giller, 1986), they were unable to distinguish between
species, concluding that esterases were unsuitable
because of intraspecific variation within the staphylinid
predators and their prey. However, even if prey enzymes
were separated, the use of vacuum suction sampling
invalidated the results due to surface-level contamination
and increased likelihood of false-positive reactivity (dis-
cussed below). More acceptable were the techniques of
Corey et al. (1998) who, by cutting whole plants and
sealing in bags prior to transfer into a freezer, minimized
surface-level contamination. Targeting isocitrate dehydro-
genase, Corey et al. (1998) separated multiple prey
enzymes on polyacrylamide gels and measured predation
upon Rhopalosiphum maidis (Fitch) (Hemiptera: Aphidi-
dae) by Orius insidiosus (Say) (Hemiptera: Anthocoridae)
in corn. It was possible to separate the banding patterns of
seven prey items, but they only reported the proportion of
predators screening positive. However, providing charac-
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terization of the electrophoretic system is undertaken it is
possible to correlate the intensity of stain to the concen-
tration of target enzyme in the sample, thus allowing
accurate quantification of prey material within the preda-
tor.

Electrophoretic analysis could provide a less-expensive
alternative to antibody and DNA-based techniques. If the
gel and enzyme system can be optimized to ensure that
banding patterns can be distinguished, the wide avail-
ability of electrophoretic equipment in laboratories could
be advantageous, in some cases, for studying predator-
prey systems. Indeed, Solomon et al. (1996) concluded
that these techniques were valuable in predation studies,
especially where multiple prey are consumed.

Chromatography

The detection of prey pigments by gas chromatography
has been used to determine the diet of marine organisms
and high-pressure liquid chromatography has measured
levels of glucosinolate sequestration by arthropods, but
only occasionally have these techniques been used to
study aphid predation (Table 1). Putman (1969) distin-
guished between predation upon two different mites by
spiders in peach orchards using paper chromatography
but the separation of pigments was not complete and
accurate identification proved impossible. This was fur-
ther complicated by the presence of multiple prey within
predator guts and the difficulties of quantification. Given
these limitations, the application of chromatographic
techniques for quantifying generalist predator diets is
unlikely.

Serological techniques

For nearly 60 years, antibodies have been developed in
vertebrate hosts to enable the study of predator feeding
habits. These systems have been reviewed extensively
with new technologies continually providing more com-
plex and accurate assays (Boreham & Ohiagu, 1978; Sun-
derland, 1988, 1996; Greenstone, 1996; Symondson,
2002a, b). Given the extensive literature already available
on earlier serological techniques, this review will concen-
trate on the use of polyclonal and monoclonal antibodies
in quantitative assays for predator-prey analysis.

It is theoretically possible to produce antisera against
any species but in many cases limited sensitivity and
specificity is achieved. Hundreds of studies have devel-
oped polyclonal antisera to scrutinize interactions
between predators and prey, with assays being capable of
quantitatively detecting prey remains by colorimetric
determination. Presently, the most commonly employed
immunoassay techniques are the indirect ELISA, dotblot
assay and double-antibody sandwich ELISA. The most
sensitive ELISA for detecting target prey in predator guts
is the indirect ELISA (Crook & Payne, 1980) but the
double-antibody sandwich assay tends to be less suscep-
tible to non-specific binding due to the attachment of anti-
bodies to two target sites. Other studies have also
reported that the dotblot assay tends to be more sensitive
than conventional ELISA (Stuart & Greenstone, 1990;
Hagler et al., 1995). Therefore, dependent upon the assay

requirements, i.e. whether greater sensitivity or specificity
is required, different methodologies can be designed to
improve the detection of target prey. Boreham & Ohiagu
(1978) commented that the major disadvantage of pre-
cipitin tests were their relative insensitivity to the remains
of partially degraded prey, but these technical difficulties
have been overcome as ELISA’s are highly sensitive to
the presence of extremely small quantities of target mate-
rial.

The development of polyclonal antisera generally
involves the immunization of vertebrates with target prey
to generate an immune response. However, ELISA’s are
highly sensitive and antisera often cross-react with pro-
teins common across species (Harwood et al., 1999b;
Renouard et al., 2004). It is therefore important to test
antisera against non-target species prior to the screening
of field-collected predators to ensure accurate interpreta-
tion of trophic links, and if the specificity is sufficiently
low, it can be improved by absorbing against cross
reacting material or antibody purification by affinity chro-
matography. Despite their simple preparation, polyclonal
antisera have determined aphid predation by many preda-
tors in the field (Table 1). In a survey of over 7,500
predators, Sunderland et al. (1987) developed digestion
rate and predation indices (to account for the variable
detection limits between species) to assess the biocontrol
potential of predators. Spiders, dominated by the Liny-
phiidae, were the principle aphid predators but mass
screening also implicated nine other Orders as important
predators. Although the results were semi-quantitative
(percentage of predators testing positive), current ELISA
technology allows the concentration and quantity of target
prey to be determined. Providing extensive characteriza-
tion is undertaken, polyclonal antisera could still offer a
considerably less expensive alternative to monoclonal or
DNA-based techniques. However, due to the crude nature
of their design, specificity cannot be assured and even
when it is achieved sensitivity is sometimes compromised
such that prey remains are undetectable in predator guts.

Monoclonal antibodies overcome this lack of speci-
ficity but are technically challenging to develop, consid-
erably more expensive and time consuming to achieve a
suitable monoclone. Their development follows the pro-
tocol initially described by Köhler & Milstein (1979) who
reported that when B lymphocytes were fused with mye-
loma cells, antibody-producing hybridomas were created.
These produced a monoclone of identical antibody-
producing cells that bound to a single target epitope.
Dependent upon the extent to which this epitope exists
across species, stages or instars, highly specific antibod-
ies can be produced in limitless supply. This high degree
of specificity can be achieved by the careful selection of
antibody-secreting hybridoma cell lines, resulting in their
extensive application to study predation in the field
(Table 1).

Despite the specificity that can be achieved, the high
cost of monoclonal production and characterization (Chen
et al., 2000), high equipment costs and technical com-
plexities associated with their development often make
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the use of such quantitative systems beyond the limits of
many ecological studies. However, they are a powerful
tool for studying predation in the field and their long
detection period improves the likelihood of detecting prey
consumption. Following characterization of an anti-aphid
monoclonal antibody, Harwood et al. (2004) measured
predation rates of linyphiid spiders in winter wheat and
tracked the effect of alternative prey on consumption
rates. Although high rates of aphid consumption were
recorded, Collembola (an important non-pest food
resource) influenced predation rates of erigonid spiders,
thus reducing levels of biological control. Similar
tracking of predator and prey populations were reported
by Winder et al. (2005) who correlated the activity and
spatial patterns of carabids with those of their prey. These
simultaneous assessments of prey availability and quanti-
tative measures of predation are essential to enhancing
our understanding of the complex trophic interactions
between predators and prey. Symondson (2002a) com-
mented that monoclonal antibodies are the most accurate
molecular technique available for studying predation in
the field. Although developmental success is not assured
(Chen et al., 2000) and extensive characterization is
required, it is their flexibility, ease of quantitative
screening and the ability to screen samples rapidly against
single prey is likely to result in their continued applica-
tion when studying trophic connections in the field.

Molecular techniques

Until recently, antibody-based approaches have been
the method of choice for quantifying predation and meas-
uring trophic links within food webs. The proliferation of
molecular technology opens up exciting new challenges,
enabling the detection of species-specific DNA sequences
within predator guts.

Molecular markers have been utilized in entomology
for many years (Loxdale & Lushai, 1998) but only
recently have DNA-based approaches been applied to
study invertebrate predation in the field (Agustí et al.,
2003; Harper et al. 2005). However, this is likely to
change in light of the numerous laboratory studies which
have demonstrated the ability to detect DNA remains
within predator guts (Zaidi et al., 1999; Chen et al., 2000;
Hoogendoorn & Heimpel, 2001; Cuthbertson et al., 2003;
Grenstone & Shufran, 2003; Sheppard et al., 2004). In
principle, molecular techniques could be applied to
almost any predator-prey system and would be especially
useful in generalist predators where a multitude of prey
species are likely to be present within the gut. The appli-
cation of multiplex-PCR’s to separate species (Hinamoto
et al., 2004) and its ability to simultaneously amplify
degraded mitochondrial DNA of different prey (Harper et
al., 2005) implicate these molecular techniques as having
distinct advantages to biochemical analyses which have,
to date, relied on running multiple assays against each
target prey.

Agustí et al. (2003) designed primers to amplify frag-
ments of the mitochondrial cytochrome oxidase subunit I
gene to detect predation by linyphiid spiders on six spe-
cies of Collembola in winter wheat. Following characteri-

zation of the primer system, spiders were collected and
guts amplified by polymerase chain reaction. It was pos-
sible to show that these spiders preferentially consumed
Isotoma anglicana Lubbock (Collembola: Isotomidae), a
prey item that was relatively scarce in the field. In a dif-
ferent approach using the mitochondrial 16S rDNA gene,
Kasper et al. (2004) compared the feeding behaviour of a
native and an introduced social wasp by analyzing the
content of masticated food samples. It was found that the
native Polistes humilis (F.) (Hymenoptera: Vespidae) fed
almost exclusively upon lepidopteran larvae but the intro-
duced Vespula germanica (F.) (Hymenoptera: Vespidae)
had a rather more generalist feeding habit, with its masti-
cated food sample containing both vertebrate (chicken
and kangaroo) and invertebrate (Araneae, Coleoptera,
Diptera, Hemiptera, Hymenoptera, Neuroptera, Odonata
and Orthoptera) prey, which included Symydobius kabae
Matsumura (Hemiptera: Aphididae). The collection of
such data from field populations of introduced species
allows for risk assessments to be made, especially
between those individuals whose niches overlap.

These studies demonstrate the value of molecular tech-
niques but, like other forms of gut-content analysis, have
complications associated with their interpretation. To
date, molecular approaches have resulted in relatively
short detection periods of prey DNA (e.g. Zaidi et al.,
1999; Agustí et al., 2003; Greenstone & Shufran, 2003;
Sheppard et al., 2004) compared to the slow breakdown
of prey antigens detectable by monoclonal antibodies
(Symondson et al., 1999a; Harwood et al., 2001c, 2004;
Schenk & Bacher, 2004). This shortened detection there-
fore reduces the likelihood of determining positive
feeding events and trophic links in the field. Despite these
shorter detection times, Agustí et al. (2003) was able to
document significant levels of predation in the field and
Kaspar et al. (2004) recorded a range of prey in decayed
and macerated food samples. However, the fast decay
rates of DNA may hinder studies within agroecosystems
especially upon less common prey. Furthermore, the die-
tary mixing of prey by generalist predators may (or may
not) influence the rate at which partially digested prey
(and decayed DNA) breaks down. The use of shorter
DNA base pair sequences (Zaidi et al., 1999; Agustí et
al., 2003) have increased detection periods but molecular
methods have not, as yet, allowed the quantification of
prey remains within predator guts although real-time PCR
is likely to make this possible and allows rapid, sensitive,
cost-effective and quantitative measurements of target
DNA. Its application to invertebrate predator-prey sys-
tems is likely and will provide a viable alternative to
quantitative immunological detection systems.

Although questions remain (notably the detection of
scavenged material in predator guts, potential food chain
errors, the role of feeding on alternative prey, maximizing
the short detection periods and quantifying DNA material
within guts), molecular techniques exhibit great potential
for use in quantifying trophic interactions and breaking
down complex food webs in the field. The principle con-
cern for the use of DNA technology are the short detec-
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tion periods that may limit the detectability of prey,
although these are not sufficiently rapid to prevent the
detection of scavenged material in predator guts (Juen &
Traugott, 2005), a situation also evident in antibody-
based assays (Calder et al., 2005). The application of
molecular techniques to measure predation in the field is
only likely to increase with the continual development
and application of new molecular systems to invertebrate
food webs (e.g. multiplex-PCR, RFLP-analysis, DNA
cloning and sequencing, temperature or denaturing gra-
dient gel electrophoresis, and competitive sequence
analysis). However, further system characterization is
required and should precede field-based analyses to iden-
tify sources of error and determine detection limits.
Without such characterization, it may be difficult to deter-
mine trophic links in the field.

PROBLEMS OF QUANTIFYING PREDATION USING

GUT-CONTENT ANALYSES

Gut-content analysis can provide a valuable insight into
the feeding ecology and trophic interactions between
aphidophagous predators and their prey, but to measure
direct predation, a number of prerequisites must be satis-
fied. Despite the requirement for pre-screening of assays
and techniques, many studies assessing gut-content incor-
rectly attribute the presence of prey remains to direct pre-
dation in the field.

Methods of predator collection

Prior to screening, invertebrate samples must be col-
lected from the field which can lead to inaccuracies of
interpretation. Vacuum suction sampling and sweep net-
ting enable the rapid collection of predators but can
invalidate estimates of predation due of the likelihood for
“false-positives” from surface-level contamination with
prey (Crook & Sunderland, 1984). Despite this error,
predators are frequently assayed for predation following
sweep netting (e.g. Leathwick & Winterbourn, 1984;
Löbner & Hartwig, 1994) and D-Vac (e.g. Good & Giller,
1988). If the guts are extracted (or predators washed), the
number of false-positives may be reduced but pre-
analysis characterization would be necessary to ensure
direct levels of predation were not overestimated due to
interactions with target prey within the sweep net or
D-Vac.

Pitfall trapping overcomes the problems of contamina-
tion, has been used to trap generalist predators for gut-
content analysis and has the benefit of measuring the
activity-density of predator communities. Although
external contamination is eliminated, direct predation can
occur within dry pitfalls if prey aggregate to such envi-
ronments. Within a carabid-slug system, Symondson et al.
(1996) concluded that the error caused by carabid preda-
tion upon slugs was negligible since the pitfalls were
unattractive to these prey. Although suitable for certain
predator-prey systems, it is therefore necessary to
evaluate potential sources of error prior to implementing
sampling programmes. Pitfall traps can also be filled with
alcohol or a dilute detergent solution which has little
effect on the detectability of prey material within predator

guts (Crook & Sunderland, 1984) but may attract inverte-
brates which contaminate the trapping substance that is
subsequently imbibed by predators during death.

Surrounding plants with bags before transferring preda-
tors to a freezer has been used to measure predation rates
in the field (Corey et al., 1998) but inherent with such
techniques are the possibilities of actively increasing the
interactions between predators and prey in the bag. The
delay of 2 h before Corey et al. (1998) transferred preda-
tors to a refrigerator, before being frozen, could allow
direct predation, thus increasing the proportion of preda-
tors screening positive.

The most accurate means of collecting predators from
the field is by aspirator and rapid freezing of samples
(Harwood et al., 2004, 2005; Prasifka et al., 2004).
Although unsuitable for certain predators, this method
allows easy collection of aphidophagous predators such
as spiders and coccinellids without the possibility of over-
estimating predation due to sampling inefficiencies. The
principle problem is that they represent a very time-
consuming form of predator collection but guarantee
errors-of-predation are not due to incorrect sampling pro-
tocols. An alternative to this time-consuming collection
technique is the sampling of arthropod predators from
underneath small wooden planks placed in the field
(Bilde & Toft, 1998). This yields a large number of gen-
eralist predators that have not been removed from their
natural habitat (Søren Toft, pers. commun.) and can be
collected for gut-content analysis.

Scavenging

The presence of prey within a gut only indicates that
the target has been consumed. Scavenging can seriously
overestimate direct predation rates of field-collected
predators and falsely implicate them as valuable biocon-
trol agents. Spiders usually rely on active movement to
stimulate attack response behaviour and therefore overes-
timating “true” predation due to scavenging is unlikely.
More important are the scavenging activities of
Opiliones, Carabidae, Coccinellidae and Dermaptera
which can imply “true” predation, especially given that
some predators preferentially feed on freshly killed rather
than live prey (Mair & Port, 2001). Despite this signifi-
cant source of error, Sunderland (1996) reported that of
72 publications using antibodies to measure predation
between 1956 and 1994, only 15% considered scavenging
as a source of error but none quantified its significance.
This is extremely significant given that within a carabid-
slug system using monoclonal antibodies, Calder et al.
(2005) reported the decay of target antigens on the soil
surface was very slow and as a result scavenged material
was detectable after 6 h digestion leading to the potential
for inaccurate predation estimates in field collected
carabids. Similarly with PCR-based techniques, Juen &
Traugott (2005) indicated the likelihood of inadvertently
overestimating predation due to scavenging. Prior to the
measurement of gut-content from field-collected preda-
tors, it is therefore essential that quantitative experiments
are undertaken with the specific systems being used to
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quantify potential errors of overestimating “true” preda-
tion caused by scavenging.

Secondary predation

The inherent problem of many generalist aphido-
phagous predators is that in addition to feeding upon
aphids and other herbivorous insects, many are cannibal-
istic and/or feed on other predators which may have con-
sumed aphids. Although such behaviour is cited as a
potential source of error in quantitative predator-prey sys-
tems using analytical techniques (Hagler & Naranjo,
1996; Sunderland, 1996), only one study (Harwood et al.,
2001b) has quantified its significance. This study indi-
cated the likelihood of errors caused by secondary preda-
tion due to the carabid Poecilus cupreus (L.) (Coleoptera:
Carabidae) feeding on spiders, Tenuiphantes tenuis (F.)
(Araneae: Linyphiidae), that had consumed S. avenae
when using an aphid-specific monoclonal antibody, was
negligible. Given the extremely long detection period of
this antibody and that aphid material could only be
detected in carabids that were frozen immediately after
they had consumed at least two spiders which themselves
recently consumed significant quantities of aphid, indi-
cated that such errors are unlikely in the field. The poten-
tial error within DNA-based detection systems is likely to
be low (due to more rapid breakdown of DNA targets)
but other analytical approaches could lead to sources of
error. It is therefore essential that prior to alternative tech-
niques being used on field-collected predators (including
DNA-based methods where detection is unlikely, but pos-
sible) potential errors from secondary predation are quan-
titatively assessed in the laboratory.

Between-species comparisons

It is often valuable to compare feeding rates between
different predators and prey. Direct comparisons enable a
profile of predator communities to be compiled but inter-
pretation can be difficult given that rates of antigen and
DNA decay can sometimes (Symondson & Liddell, 1993;
Chen et al., 2000; Harwood et al., 2001b) but not always
(Harwood et al., 2004, 2005) vary between species. This
is further complicated by differences that can occur
between males and females; Symondson et al. (1999b)
reported that slug antigens within the male carabid P.
melanarius were detectable for 30% longer than in
females. If between-species or between-gender differ-
ences are observed in the laboratory, simple calibratory
models should be developed to account for the variable
rates of decay. In the absence of characterization,
between-species comparisons are difficult to interpret and
the presence of prey material in the gut of one predator
does not imply it has a greater potential for pest regula-
tion than another. For example, the longer detection
periods of spiders compared to carabids (Harwood et al.,
2001b) could result in higher prey concentrations within
field-collected specimens due to physiological adapta-
tions and not differences in feeding behaviour. It is also
important to correlate predation rates with the availability
of prey to each predator; coccinellids feed on aphids at a
different stratum to spiders which intercept aphids in their

webs when they fall to the ground. Aphids are finally
exposed to carabids and other epigeal predators. The
microhabitat to which each predator locates will therefore
influence prey availability, and should be considered
when assessing predation rates in the field.

Correlating gut-content to predation rates

Some of the most challenging aspects of gut-content
analysis relate to the difficulties of correlating the pres-
ence of target prey to rates of predation. Currently, it is
not possible to separate a large meal eaten some time ago
(which has partially decayed in the gut) to a small meal
eaten recently. Both situations can provide the same
quantitative and/or qualitative result. Sunderland (1996)
reported that the differential rates of antigenic decline
exhibited by different monoclonal antibodies could
enable the separation of these factors by screening preda-
tors against multiple assays. However, in practice such
separation would be difficult given the multitude of com-
plicating issues including partial consumption, repeated
feeding on prey, variable handling times, wasteful killing
and that gut samples of aphidophagous predators are usu-
ally contaminated with alternative food.

Naranjo & Hagler (2001) incorporated aspects of
feeding behaviour into a model with the percentage of
predators testing positive to a species-specific mono-
clonal antibody. Although the percentage positive
approach does not in itself enable gut-content to be quan-
tified, this model highlights the potential for such tech-
niques to determine predation rates from prey material
within a gut sample. Despite the problems of linking gut-
content to actual rates of predation, a quantitative assay
does represent an accurate means by which trophic links
can be established and the biocontrol of a predator (or
group of predators) estimated.

Other considerations for gut-content analyses

Many factors affecting prey detection have been
assessed in antibody-based systems but they are equally
applicable to other detection systems. The rate at which
prey material decays can change with varying tempera-
ture, level of starvation, feeding on alternative prey
(although this is not always the case) and meal size
(reviewed by Sunderland, 1996). The screening of preda-
tors subjected to these varying conditions should there-
fore precede field-based analyses; otherwise conclusions
on trophic links that exist and the biocontrol potential of
generalist aphidophagous predators are not reliable.
Laboratory decay rate experiments easily account for
these variables and should be conducted at temperatures
comparable to those in the field. Antigen or DNA decay
rate experiments should consider that the guts of gener-
alist predators are frequently in a state of semi-starvation
and therefore the long-term ad libitum supply of prey
(frequently provided in laboratory trials) may not accu-
rately represent feeding parameters in the field. Although
laboratory conditions cannot accurately replicate all biotic
and abiotic conditions, careful selection of these criteria
can allow the characterization of an assay which can vali-
date its application to field-collected predators.
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The screening of predators can provide information on
prey consumption but does not quantify the biocontrol
potential of a generalist predator community. To make
such conclusions, it is necessary to simultaneously
monitor predator and prey population densities to model
the impact of predator communities on aphid populations.
For example, an increased aphid density may lead to
increased predation by aphidophagous predators but the
impact of these generalists is only likely early in the
season (Chiverton, 1987a; Landis & Van der Werf,
1997). Thus, the temporal monitoring of aphid (and
predator) populations, and subsequent gut analysis, can
provide an indication of whether predators are feeding on
pests at the time when control is required.

CONCLUSIONS

Identifying prey remains within the guts of aphido-
phagous predators allows complex trophic interactions
between generalist predator communities and their prey to
be broken down from undisturbed, unmanipulated sys-
tems. Whilst aphids are clearly consumed by many spe-
cies of predator, determining the extent to which such
prey is consumed in relation to its availability is essential
if we are to fully understand the biocontrol potential of
natural enemy populations.

Observations of predation, manipulative field studies
and feeding trials in the laboratory provide information
on the feeding behaviour of predators but may not
account for the many interactions that occur between
arthropods in the field. Although gut-content analyses
have difficulties associated with their interpretation,
quantification and potential sources of error, they do rep-
resent an extremely accurate means by which the feeding
behaviour of aphidophagous predators can be assessed.
Over time, these techniques have become increasingly
complex, allowing accurate species-specific assessments
of prey consumption (monoclonal antibodies and DNA-
based techniques requiring expensive equipment and
extensive characterization presently represent the most
frequently utilized technology). The choice of technique
will sometimes be a compromise between utilizing the
most accurate and quantifiable methodology (which tend
to be the most complex and expensive) with methodo-
logical and financial constraints often limiting the eco-
logical evaluation of invertebrate feeding behaviour and
food web dynamics in low-value agricultural systems.
Gut dissection and the visual identification of prey
remains within invertebrates that feed on particulate
matter has been the most widespread technique over the
past century. It represents an inexpensive, semi-
quantitative measure of gut content and is still widespread
today. For example, Woodward & Hildrew (2002) were
able to deduce that the six predatory species in their
system consumed virtually every animal taxon smaller
than themselves. Despite their simple approach, gut dis-
section and the visual identification of prey allows trophic
interactions to be quantified and will have a significant
role in the future. Perhaps the most powerful application
of such techniques would be during preliminary evalua-

tion of feeding behaviours in the field when the financial
cost of alternative molecular or immunological technolo-
gies could prove prohibitively expensive. Stable isotopes
may also offer a viable alternative as they have consid-
erably lower costs compared to monoclonal and DNA-
based approaches but further characterization of these
systems are required before complex food webs can be
constructed.

Symondson (2002a) commented that based on experi-
mental evidence in the laboratory, PCR-based methodolo-
gies “are likely to rapidly displace all other approaches”.
In certain instances this will undoubtedly be the case,
especially where multiple prey are to be detected and
multiplex PCR’s can allow the detection of prey DNA
sequences simultaneously (Harper et al., 2005). However,
certain methodological difficulties remain. Monoclonal
antibodies are long-established techniques for quantifying
predation and provide stable, replicable results and a lim-
itless supply of antibody. They are the most accurate
means by which field-collected predators can be assayed
and the use of ELISA enables the mass screening of large
numbers of predators (often in their thousands) which can
be tested against individual prey species. The lower and
faster development cost of species-specific DNA
sequences compared to monoclonal antibodies (Chen et
al., 2000) is invaluable when screening predators against
a diverse range of prey but the rapid decay of DNA rela-
tive to protein epitopes could seriously hinder their
advance. Expanding this detection limit, the development
of quantitative real-time PCR systems and extensive labo-
ratory characterization (which are essential and seriously
lacking in DNA-based detection systems) could further
swing the balance towards molecular- as opposed to
antibody-based technology. However, if predation by
large numbers of predators on a limited number of prey
species is desired, especially if monoclonal antibodies
have already been developed and characterized, these bio-
chemical approaches will continue to have a valuable
application in predation studies. Although the trade-off
between the two techniques will continue, they appear
likely to, in parallel, further enhance our understanding of
the trophic interactions between predators and their prey
in the field.

The most important considerations to be addressed
before any technique can be applied to the field are the
significant and potentially invalidating errors caused by
inaccurate and/or insufficient characterization of the
detection system. Carefully considering these potential
sources of error allows all forms of gut-content analysis
(gut dissection followed by visual identification, stable
isotope analysis, electrophoresis, antibody technologies
and detection of species-specific DNA) to provide valu-
able insights into the feeding ecology of predators in ter-
restrial, freshwater and marine ecosystems. Without
consideration, inaccurate trophic links may be implicated,
predation rates over- (or under-) estimated and, in terms
of biological control, incorrect integrated pest manage-
ment strategies implemented.
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