

University of Kentucky

Pharmaceutical Sciences Faculty Patents

Pharmaceutical Sciences

3-24-2020

Method and System for Diterpene Production Platforms in Yeast

Joseph Chappell University of Kentucky, chappell@uky.edu

Xun Zhuang University of Kentucky

Shuiqin Wu University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents

Part of the Pharmacy and Pharmaceutical Sciences Commons Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Chappell, Joseph; Zhuang, Xun; and Wu, Shuiqin, "Method and System for Diterpene Production Platforms in Yeast" (2020). *Pharmaceutical Sciences Faculty Patents*. 188. https://uknowledge.uky.edu/ps_patents/188

This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US010597665B1

(12) United States Patent

Chappell et al.

(54) METHOD AND SYSTEM FOR DITERPENE PRODUCTION PLATFORMS IN YEAST

- (71) Applicant: University of Kentucky Research Foundation, Lexington, KY (US)
- Inventors: Joe Chappell, Lexington, KY (US);
 Xun Zhuang, Lexington, KY (US);
 Shuiqin Wu, Lexington, KY (US)
- (73) Assignee: UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION, Lexington, KY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 14/092,286
- (22) Filed: Nov. 27, 2013

Related U.S. Application Data

- (60) Provisional application No. 61/730,412, filed on Nov. 27, 2012.
- (51) Int. Cl. *C12N 15/81* (2006.01) *C12N 15/01* (2006.01)
- $\begin{array}{c} (52) \quad U.S. \ Cl. \\ (52) \quad U.S. \ Cl. \\ (53) \quad U.S. \ Cl. \\ (54) \quad U.S. \ Cl. \\$

CPC C12N 15/81 (2013.01); C12N 15/01 (2013.01)

(58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

7,238,514	B2 *	7/2007	Matsuda C12N 9/1085
			435/193
2002/0040488	A1*	4/2002	Chappell et al 800/278
2002/0094556	A1	7/2002	Chappell et al.
2002/0094557	A1	7/2002	Chappell et al.
2003/0087406	A1	5/2003	Chappell et al.
2004/0053386	A1		Chappell et al.
2009/0053797	A1*	2/2009	Shiba C12P 23/00
			435/254.21
2011/0039299	A1	2/2011	Bailey et al.

OTHER PUBLICATIONS

Tarshis et al. 1994 (Crystal Structure of Recombinant Farnesyl Diphosphate Synthase at 2.6 A Resolution; Biochemistry 33:10871-10877).*

Fernandez et al. 2000 (Farnesyl Diphosphate Synthase: Altering the Catalytic Site to Select for Geranyl Diphosphate Activity; Biochemistry 39: 15316-15321).*

Genetic Nomenclature Guide. 1998. SGD (Saccharomyces Genome Database) http://genome-www.stanford.edu/Saccharomyces/.*

Takahashi et al. 2007 (Metabolic Engineering of Sesquiterpene Metabolism in Yeast; Biotechnology and Bioengineering; 97(1):170-181).*

Kayscek et al. 2015 (Yeast as a cell factory: current state and perspectives; Microbial Cell Factories 14:94). (Year: 2015).*

(10) Patent No.: US 10,597,665 B1 (45) Date of Patent: Mar. 24, 2020

Zhuang et al. 2015 (Building Terpene Production Platforms in Yeast; Biotechnology and Bioengineering 112(9): 1854-1864; which is a post-filing by the inventors and appears to describe the claimed yeast). (Year: 2015).*

Vu, Shuiqin, et al., "Engineering Triterpene Metabolism in Tobacco", Planta, (2012).

Anderson M, Che P, Song J, Nikolau B, Wurtele E, 1998. 3-Methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants. Plant physiology 118, 1127-38.

Anterola A, Shanle E, Perroud P-F, Quatrano R (2009) Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgenic Research 18: 655-660.

Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J, 2010. Enhancement of Famesyl Diphosphate Pool as Direct Precursor of Sesquiterpenes Through Metabolic Engineering of the Mevalonate Pathway in *Saccharomyces cerevisiae*. Biotechnology and bioengineering 106, 86-96.

Barkovich R, Liao JC, 2001. Metabolic engineering of isoprenoids. Metabolic engineering 3, 27-39.

Bhilwade HN, Tatewaki N, Nishida H, Konishi T, 2010. Squalene as Novel Food Factor. Current Pharmaceutical Biotechnology 11, 875-80.

Bitter GA, Egan KM (1984) Expression of Heterologous Genes in *Saccharomyces-cerevisiae* From Vectors Utilizing the Glyceraldehyde-3-Phosphate Dehydrogenase Gene Promoter Gene 32: 263-274.

Bourot S, Karst F (1995) Isolation and Characterization of the *Saccharomyces-cerevisiae* Sut1 Gene Involved in Sterol Uptake. Gene 165: 97-102.

Bouvier F, Rahier A, Camara B, 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Progress in lipid research 44, 357-429.

Buchanan B, Gruissem W, Jones R, 2002. Biochemistry & Molecular Biology of Plants. John Wiley & Sons.

Burke YD, Stark MJ, Roach SL, Sen SE, Crowell PL, 1997. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32, 151-6.

Cardenas C, Quesada AR, Medina MA (2011) Anti-Angiogenic and Anti-Inflammatory Properties of Kahweol, a Coffee Diterpene. Plos One 6.

Carrau FM, Medina K, Boido E, et al., 2005. De novo synthesis of monoterpenes by *Saccharomyces cerevisiae* wine yeasts. FEMS microbiology letters 243, 107-15.

Casida JE (2009) Pest Toxicology: The Primary Mechanisms of Pesticide Action. Chemical Research in Toxicology 22: 609-619.

DeJong JM, Liu YL, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of Taxol biosynthetic genes in *Saccharomyces cerevisiae*. Biotechnology and Bioengineering 93: 212-924.

Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Engineering 10: 201-206.

(Continued)

Primary Examiner — Mary Maille Lyons

(74) Attorney, Agent, or Firm — Stephen J. Weyer, Esq.; Stites & Harbison, PLLC

(57) ABSTRACT

A method is provided for modifying yeast to express mutant avian farnesyl disphospate synthase and the resulting modified yeast. The yeast advantageously includes additional mutants including but not limited to having ergosterol dependent growth and being erg-. The modified yeast are beneficial for the production of various terpenes including diterpenes.

16 Claims, 15 Drawing Sheets

Specification includes a Sequence Listing.

(56) **References Cited**

OTHER PUBLICATIONS

Farhi M, Marhevka E, Masci T, et al., 2011. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic engineering 13, 474-81.

Fernandez SMS, Kellogg BA, Poulter CD (2000) Farnesyl diphosphate synthase. Altering the catalytic site to select for geranyl diphosphate activity. Biochemistry 39: 15316-15321.

Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F, 2011. Metabolic Engineering of Monoterpene Synthesis in Yeast. Biotechnology and Bioengineering 108, 1883-92.

Grassmann J (2005) Terpenoids as plant antioxidants. In G Litwack, ed, Plant Hormones, vol. 72, pp. 505-535.

Havaux M, Dall'Osto L, Cuine S, Giuliano G, Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in *Arabidopsis thaliana*. Journal of Biological Chemistry 279: 13878-13888.

Hick AJ, Luszniak MC, Pickett JA, 1999. Volatile isoprenoids that control insect behaviour and development. Natural Product Reports 16, 39-54.

Huang Z-R, Lin Y-K, Fang J-Y, 2009. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 14, 540-54.

Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947-962.

Kovacs K, Zhang L, Linforth RST, Whittaker B, Hayes CJ, Fray RG (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene taxa-4(5),11(12)-diene in transgenic tomato fruit. Transgenic Research 16: 121-126.

Maertens JA (2004) History of the development of azole derivatives. Clinical Microbiology and Infection 10: 1-10.

Maimone TJ, Baran PS, 2007. Modern synthetic efforts toward biologically active terpenes. Nature chemical biology 3, 396-407. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD, 2003. Engineering a mevalonate pathway in *Escherichia coli* for production of terpenoids. Nature Biotechnology 21, 796-802.

Mateus C, Avery SV (2000) Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16: 1313-1323.

Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J, 2005. Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Advances in biochemical engineering/ biotechnology 100, 19-51.

Mumberg D, Muller R, Funk M (1995) Yeast Vectors for the Controlled Expression of Heterologous Proteins in Different Genetic Backgrounds. Gene 156: 119-122.

Nicolaou KC, Yang Z, Liu JJ, Uenoll, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ (1994) Total Synthesis of Taxol. Nature 367: 630-634.

Ohnuma SI, Narita K, Nakazawa T, et al., 1996. A role of the amino acid residue located on the fifth position before the irst aspartate-

rich motif of farnesyl diphosphate synthase on determination of the final product. The Journal of biological chemistry 271, 30748-54. Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology 3: 387-395.

Reddy LH, Couvreur P, 2009. Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews 61, 1412-26.

Shianna KV, Dotson WD, Tope S, Parks LW (2001) Identification of a UPC2 homolog in *Saccharomyces cerevisiae* and its involvement in aerobic sterol uptake. Journal of Bacteriology 183: 830-834. Takahashi 5, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnology and Bioengineering 97: 170-181.

Tarshis LC, Proteau PJ, Kellogg BA, Sacchettini JC, Poulter CD (1996) Regulation of product chain length by isoprenyl diphosphate synthases. Proceedings of the National Academy of Sciences of the United States of America 93: 15018-15023.

Tohoyama H, Kadota H, Shiraishi E, Inouhe M, Joho M (2001) Induction for the expression of yeast metallothionein gene, CUP1, by cobalt. Microbios 104: 99-104.

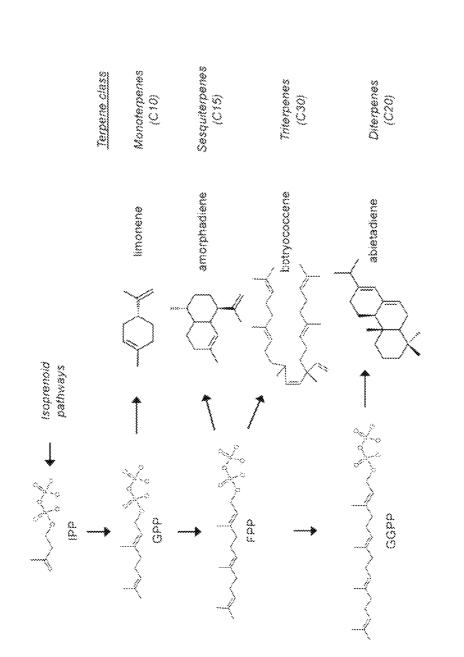
Toyomasu T, Kawaide H, Ishizaki A, Shinoda S, Otsuka M, Mitsuhashi W, Sassa T (2000) Cloning of a full-length cDna encoding entkaurene synthase from *Gibberella fujikuroi*: Functional analysis of a bifunctional diterpene cyclase. Bioscience Biotechnology and Biochemistry 64: 660-664.

Tu Y, 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine 17, 1217-20.

Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Applied and Environmental Microbiology 67: 3514-3522.

Vogel BS, Wildung MR, Vogel G, Croteau R (1996) Abietadiene synthase from grand fir (Abies grandis)—cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Journal of Biological Chemistry 271: 23262-23268.

Wall ME, Wani MC (1995) Paclitaxel—From Discovery to Clinic. In Gicttoivdm Georg, ed, Taxane Anticancer Agents: Basic Science and Current Status, vol. 583, pp. 18-30.


Wu SQ, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature Biotechnology 24: 1441-1447. Yamaguchi S (2008) Gibberellin metabolism and its regulation. In Annual Review of Plant Biology, vol. 59, pp. 225-251.

Zhang DL, Jennings SM, Robinson GW, Poulter CD (1993) Yeast Squalene Synthase—Expression, Purification, and Characterization of Soluble Recombinant Enzyme. Archives of Biochemistry and Biophysics 304: 133-143.

Zhou YJ, Gao W, Rong Q, et al., 2012. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. Journal of the American Chemical Society 134, 3234-41.

Porto TS, Rangel R, Furtado N, de Carvalho TC, Martins CHG, Veneziani RCS, Da Costa FB, Vinholis AHC, Cunha WR, Heleno VCG, Ambrosio SR (2009) Pimarane-type Diterpenes: Antimicrobial Activity against Oral Pathogens. Molecules 14: 191-199.

* cited by examiner

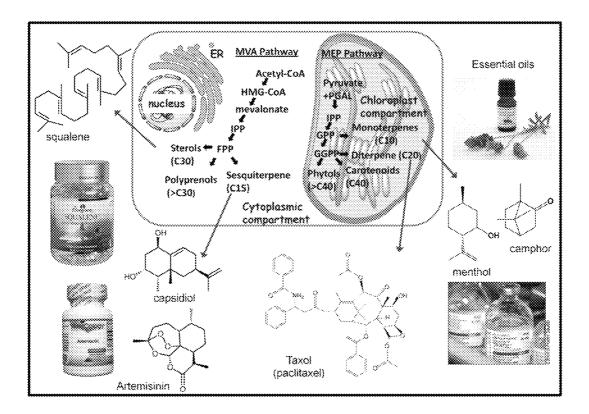
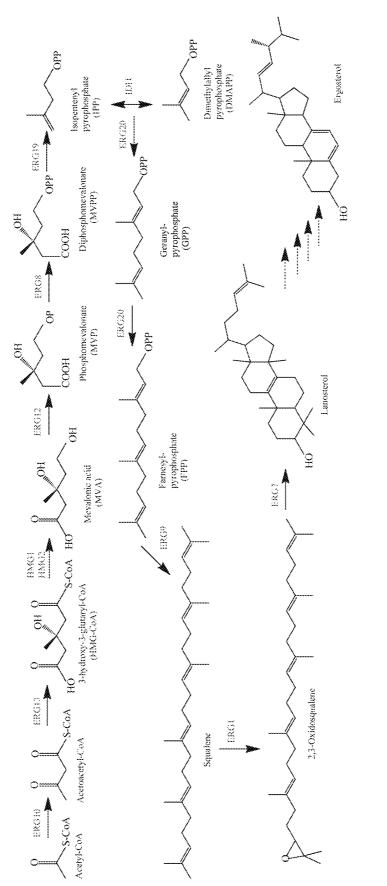
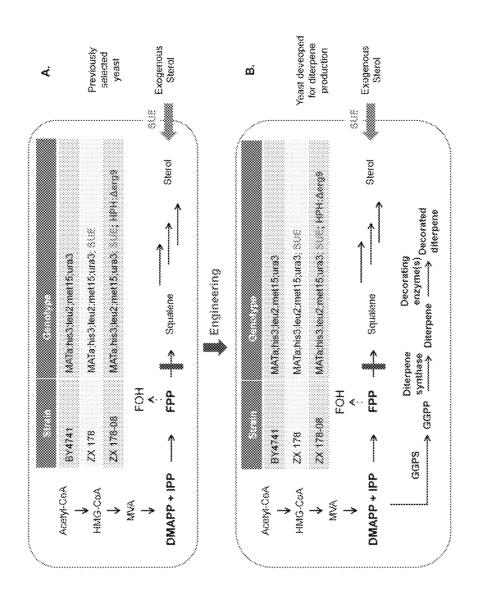
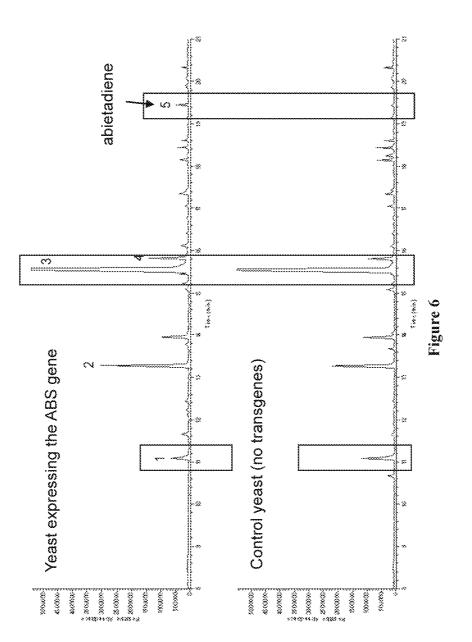


Figure 2



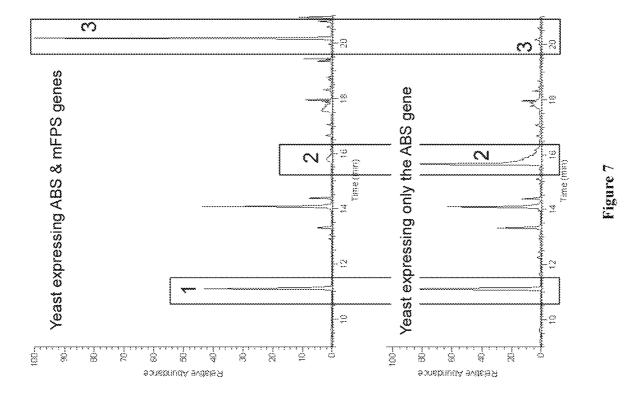


Figure 4

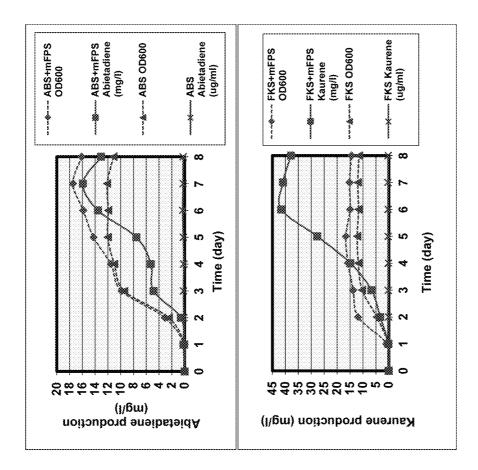


Figure 8

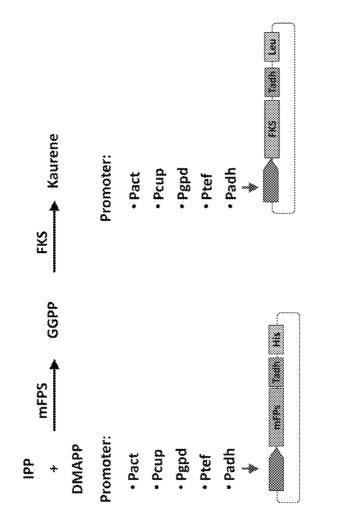


Figure 9

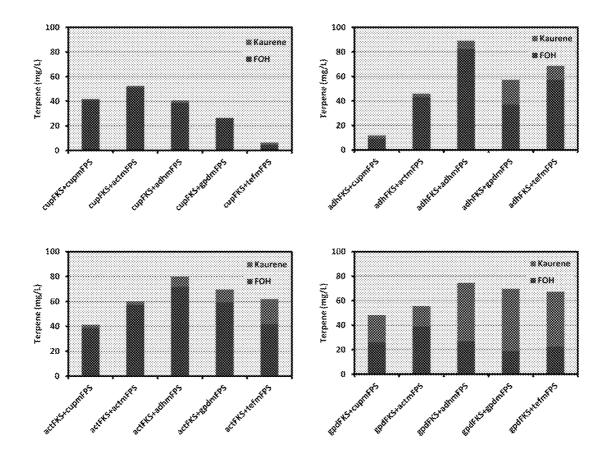


Figure 10

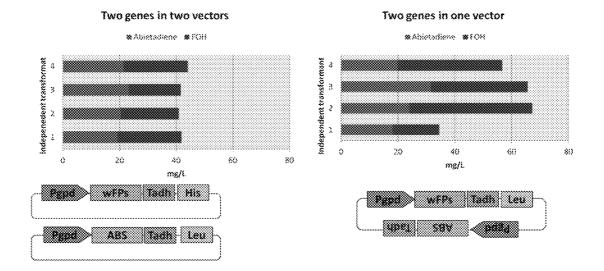


Figure 11

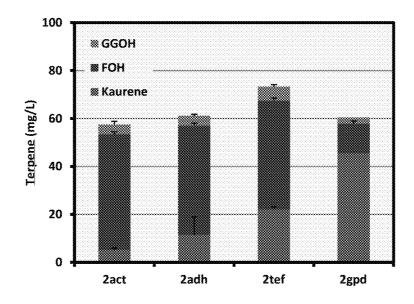
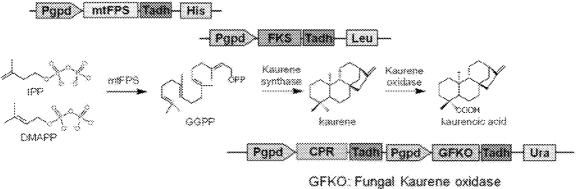



Figure 12

Figure 13

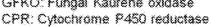
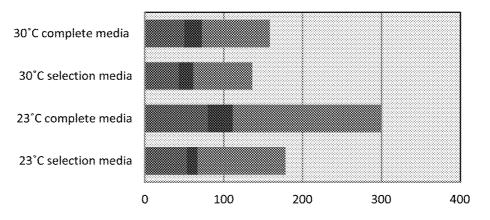



Figure 14

Terpene (mg/L)

🕷 kaurene 🗰 kaurenal 🗮 kaurenoic acid

METHOD AND SYSTEM FOR DITERPENE **PRODUCTION PLATFORMS IN YEAST**

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. provisional patent application Ser. No. 61/730,412, filed Nov. 27, 2012, and co-pending application filed Nov. 27, 2013, both herein incorporated by reference.

FIELD OF THE INVENTION

The presently-disclosed subject matter relates to methods for producing or generating modified yeast, and the resulting yeast, and in particular, yeast that can be used for various aspects of terpene production. For example, the subject matter relates to methods and systems for building terpene production platforms in yeast to express mutant avian farne- 20 syl disphospate synthase. These platforms or cell lines can be further modified, e.g. genetically engineered to produce specific enzymes and/or terpenes, namely diterpenes.

BACKGROUND OF THE INVENTION

Plants, microorganisms and animals produce a large variety of organic chemical compounds, some of which are used universally for growth and metabolism and others seem to play specialized roles in the life cycle of the organism 30 (Maimone & Baran, 2007). As such, two large classes of natural products are widely recognized. Primary metabolites are those essential for live in all eukaryotic organisms, while specialized metabolites appear to give species specific advantages for occupying distinct environmental niches. 35 The distinctive role specialized metabolites play in an organisms natural history, for example how these metabolites provide protection against microbial challenge, have also not escape attention for their possible utility in a wide range of applications. For example, many of the currently used 40 drugs are derived or inspired from plant-derived specialized chemicals and are commonly referred to as Natural Products (Buchanan et al., 2002). Capturing the chemical and structural diversity of Natural Products has recently been identified as a major objective within the scientific community in 45 large part because of the wide array of applications Natural Products can have and the resulting economical implications.

Terpenes and terpenoids are a large and diverse family of Natural Products with more than 55,000 having been iden- 50 tified (Maimone & Baran, 2007). However, based on the biosynthetic mechanisms responsible for terpenes, chemists have predicted that only a small fraction of all the possible terpene compounds have been discovered (Bouvier et al., 2005). Terpenes are derived from the five carbon isoprene 55 unit with different combinations of the isoprene units generating different classes of the terpene products. The classification and biosynthesis of terpenoids are based on the number of five-carbon units they contain as illustrated in FIG. 1. Monoterpenes (consisting of 10 carbons), sesquit- 60 erpenes (15 carbon derivatives), and diterpenes (20 carbon derivatives), arise from the corresponding intermediates geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP). These intermediates in turn arise by the sequential head to tail condensation of C5 units. Higher order terpenes like triterpene (30 carbons) are formed from two farnesyl units condensed head-to-head.

Likewise, tetraterpenes (40 carbons) are formed from two geranylgeranyl units condensed head-to-head.

Monoterpenes are well known as the volatile essence of flowers and plants and such mixtures can account for up to 5% of plant dry weight (Buchanan et al., 2002). Menthol and camphor are common monoterpenes found in diverse plant families and whose structural complexity in terms of stereoand regio-chemistry are emphasized in FIG. 2. Besides providing pleasing fragrances, monoterpenes have been shown to function as signal molecules in defense mechanisms against pathogens (Hick et al., 1999). Hence, monoterpenes have the commercial value as flavors, fragrances, essential oils, and as anticancer and antimicrobial drugs (Burke et al., 1997). Sesquiterpenes (C15) are also found in essential oils, and many sesquiterpenes possess antibiotic activities, prompting suggestions that they are produced by plants as a defense mechanism. Diterpenes (C20) include gibberellins (plant hormones), vitamin A, as well as pharmaceutical important metabolites such as taxol, an exceptional anticancer regent (Barkovich & Liao, 2001). Triterpenes (C30) include the brassinosteroids, phytosterols important for lipid membrane composition, and components of surface waxes, such as oleanolic aid of grapes. Squalene, the major content of shark liver oil, is a linear triterpene and 25 common ingredient in cosmetic products (Buchanan et al., 2002), has special utility as a lubricant for high performance machinery, and is a common adjuvant in many pharmaceutical formulations (Bhilwade et al., 2010, Huang et al., 2009, Reddy & Couvreur, 2009). Tetraterpenes (C40) include carotenoid accessory pigments, like lycopene, the monocyclic gamma-carotene, and the bicyclic alpha- and betacarotenes, which perform essential for the light reactions of photosynthesis. Longer chain terpenes, so-called polyterpenes, contain more than 8 isoprene units and include examples like ubiquinone and rubber (Buchanan et al., 2002).

There are two pathways for terpene biosynthesis in plant cells. One is the mevalonate pathway pathway (MVA) which is well established and discovered in the 1960s (Bouvier et al., 2005). The other is the mevalonate independent pathway, or more properly referred to as the methylerythritol-phosphate pathway (MEP), which was more recently discovered (Bouvier et al., 2005). The MEP pathway was first discovered in prokaryote cells, and then confirmed to exist in plant cells (Barkovich & Liao, 2001). Interestingly, plants utilize these two pathways to meet different terpene biosynthetic needs. Sesquiterpenes, sterols, triterpenes and oligoterpenes (side chain of dolichols) are synthesized in the cytosol via the MVA pathway, while monoterpenes, diterpenes, teraterpenes, and polyterpenoids are synthesized in chloroplasts via the MEP pathway using pyruvate and glyceraldehydes-3-phosphate as the primary precursors (FIG. 2).

The principal product of the mevalonate pathway is sterols, for example cholesterol in animal cells, stigmasterol and campesterol in plant cells, and ergosterol in fungi, which all play essential roles in establishing the structural integrity of membranes, establishing permeability and fluidity, and also serving as signal compounds in cellular communication (Buchanan et al., 2002). In Saccharomyces cerevisiae, only the mevalonate pathway is known to operate and no components of the MEP pathway have been found (Maury et al., 2005). FIG. 3 shows the intermediates and the related genes involved in the yeast mevalonate pathway (Maury et al., 2005). Two molecules of acetyl-CoA are condensed by acetoacetyl-CoA thiolase, which is encoded by ERG10, to synthesize acetoacetyl-CoA. A second condensation reaction between acetoacetyl-CoA and acetyl-CoA is then cata-

lyzed by HMG-CoA synthase encoded by ERG13 to yield 3-hydroxy-3methyglutaryl-CoA (HMG-CoA).

TABLE 1

Biological activities and commercial applications of typical terpenoids

Class	Biologic activities	Commercial applications	Examples	
Monoter- penoids	Signal molecules and used as defense mechanisms against pathogens	Flavors, fragrances, cleaning products, anticancer, antibacterial, antioxidant, essential oil. bionief	Limonence, menthol, camphor, linalool	10
Sesquiter- penoids	Antibiotic, antitumor antiviral, immuno- suppressive, and hormonal activities, defensive agents or pheromones	,	Nootkatone, artemisinin, patchoulol, nerolidol, farnesol, capsidol, farnesene, bisabolene	20
Diter- penoids	Hormonal activities, growth regulator, antitumor, antimicrobial and anti-inflammatory properties	Anticancer agents, feedstock for industrial chemical applications	0100001000	25
Triter- penoids	Membrane component, steroid hormones	Biologic markers, biofuel, skin moisturizers in cosmetics, immunologic adjuvant in vaccines.	Sterols, hopanoids, squalene, botryococcene.	30
Tetrater- penoids	Antioxidants, photosynthetic components, pigments, and nutritional elements (vitamins)	Food additives, colorants, antioxidants	Lycopene, beta- carotene	35

HMG-CoA is reduced by HMG-CoA reductase to yield mevalonate. This reaction is catalyzed by HMG-CoA reduc-40 tase, which is encoded by 2 separate loci in yeast. Both loci appear to compensate for a knockout loss of the other gene. The C5 position of mevalonate is phosphorylated by mevalonate kinase, encoded by ERG12. Then a second kinase, phosphomevalonate kinase, encoded by ERGS, cata- 45 lyzes the successive phosphorylation to yield diphosphomevalonate. In the next step the diphosphomevalonate is converted into IPP (isopentenyl diphosphate) by mevalonate diphosphate decarboxylase, encoded by ERG19. IPP isomerase, encoded by IDI1 converts IPP into DMAPP 50 (dimethylallyl diphosphate). The condensation of the C5 building blocks of IPP and DMAPP into FPP is catalyzed by FPP synthase, which is encoded by ERG20. FPP can then be used as substrate for sterol and other isoprenoid biosynthetic needs

Recent studies have discovered that FPP is also available in yeast mitochondria, as evidenced by increasing novel sesquiterpene production three-times by targeting a sesquiterpene synthase to the mitochondria compartment compared with targeting this same enzyme to the cytosol (Farhi 60 et al., 2011). The origin of FPP in mitochondria could be the IPP and DMAPP arising in cytosol being imported and converted in the mitochondria to FPP. Alternatively, a hypothetical leucine metabolism model for the formation of terpene in *S. cerevisiae* is also a possibility. The leucine 65 catabolism pathway (MCC pathway) is known to occur in the mitochondria of other eukaryotic mammal and plant

cells (Anderson et al., 1998), in mitochondria leucine metabolite to form 3-Hydroxy-3-methylglutaryl-CoA, which can be catalyzed by HMGR to produce mevalonic acid, and then produce IPP and DMAPP through MVA pathway as shown in FIG. **4** (Carrau et al., 2005). Interestingly, a yeast line engineered with a chimeric diterpene synthase targeted to the cytoplasm along with prenyltransferases streamlined for GGPP biosynthesis, yielded 2-3 times more diterpene when the expression vector also provided a leu2 auxotrophic selection marker gene. The interpretation provided by the authors was that the extra leucine produced by the auxotrophic selection marker gene provided another source for IPP via the leucine catabolic pathway (FIG. **4**). (Zhou et al., 2012).

Prenyltransferases generate allylic diphosphate esters GPP, FPP, and GGPP. These compounds can undergo a variety of reactions, which include cyclization reactions catalyzed by terpene synthases, yielding diverse terpenes based on regio- and stereo-chemical constraints built into the reactions. Prenyltransferases and terpene syntahases utilize electrophilic reaction mechanisms to mediate the catalytic reactions (Ohnuma et al., 1996) and typically share a conserved aspartate-rich DDXXD motif thought important for the initial substrate binding and metal-dependent ionization step leading to the first reactions, the allylic diphosphate ester can be ionized to form a carbocation, then condensed with a second IPP in another round of elongation.

Terpenes are a very large class of structurally diverse o compounds made by organisms in all kingdoms of life. The terpenes from plants are perhaps the most extensively described as evident by well over 100,000 different terpenes reported in the literature (Buckingham, 2003). Terpenes are also widely recognized for their diverse utility and applications. For example, taxol, a diterpene widely recognized for its application as a chemotherapeutic agent, was first isolated from the bark and needles of several Taxus plant species (Wall and Wani, 1995). Likewise, Artemisinin, a sesquiterpene isolated from the plant Artemisia annua, has been developed as a key pharmacological agent for the control of malaria (Tu, 2011). Patchouli, another sesquiterpene, is a popular aromatic found in colognes, perfumes and many other household cleaning products (Wu et al., 2006). Menthol is a monoterpene obtained from mint family plants and is a popular ingredient in many foods and consumer products (Bedoukian, 1983). Triterpenes such as squalene, obtained from various plant sources and the livers of deep sea sharks, have utility as a nutraceutical product, is used extensively in many types of cosmetics, has special utility as a lubricant for high performance machinery, and is a common adjuvant in many pharmaceutical formulations (Huang et al., 2009; Reddy and Couvreur, 2009; Bhilwade et al., 2010).

Terpenes are, however, generally made by plants and microbes in small amounts and components of complex mixtures that vary with growth and environmental conditions, making it difficult to reproducibly obtain large amounts of any one terpene constituent (Wu et al., 2006). Chemical synthesis of terpenes is often costly and inefficient (Nicolaou et al., 1994). Chemical synthesis also suffers from generating enantiomeric mixtures, which adds other complications if one particular stereochemical form of a terpene is desired. Given such difficulties, there are many on-going efforts to create robust, reliable and efficient biological systems for the production of distinct classes of terpenes, and more so for the generation of stereochemically pure forms of terpenes (Martin et al., 2003; Wu et al., 2006;

Takahashi et al., 2007; Asadollahi et al., 2008; Kirby et al., 2008; Seki et al., 2008; Keasling, 2009; Asadollahi et al., 2010; Fischer et al., 2011). The current invention disclosure describes the generation of yeast lines that we claim have utility for the production of diverse classes of terpenes 5 including monoterpenes, sesquiterpenes, diterpenes and triterpenes.

Diterpenes are a class of compounds within the much larger terpene family of molecules (FIG. 4). Terpenes, in general, are built upon a 5 carbon repeating unit giving rise 10 to classes of compounds having 10 (monoterpenes), 15 (sesquiterpenes), 20 (diterpenes), and more carbons. The current disclosure pertains to diterpenes, which are known to have diverse biological and practical applications. In plants, specific diterpenes serve as hormones or growth regulators 1 (i.e. gibberellic acid derivatives) (Yamaguchi, 2008) while others serve as accessory photo-pigments funneling energy from light capture to the light reactions of photosynthesis (Havaux et al., 2004). Other diterpenes provide protection against oxidative radicals (Grassmann, 2005). The anti- 20 oxidant activity of diterpenes has also led to their use in human nutraceuticals and medical applications (Cardenas et al., 2011). Perhaps the most widely recognized diterpene is taxol, used very successfully and extensively for the treatment of a variety of cancers (Wall and Wani, 1995). Specific 25 diterpenes have also found use in the control of dental caries providing antimicrobial activities (Porto et al., 2009). Other diterpenes have found utility in manufacturing purposes, such as in the production of tackifers (U.S. Pat. No. 7,655, 739), herein incorporated by reference.

Diterpenes are traditionally obtained from plant sources. However, they are often found in only small amounts and as components of complex mixtures that vary with growth and environmental conditions, making it difficult to obtain large amounts of any one diterpene constituent (Wu et al., 2006). 35 Chemical synthesis of diterpenes is often costly and inefficient (Nicolaou et al., 1994). Chemical synthesis also suffers from generating enantiomeric mixtures, which adds other complications if one particular stereochemical form of a terpene is desired. Given such difficulties, there are many 40 on-going efforts to create robust, reliable and efficient biological systems for the production of distinct diterpenes, and more so for the generation of stereochemically pure forms of diterpenes (DeJong et al., 2006; Kovacs et al., 2007; Roberts, 2007; Engels et al., 2008; Anterola et al., 2009). The 45 current invention disclosure describes the generation of yeast lines that we claim have utility for the production of diverse and high-value diterpenes.

SUMMARY OF THE INVENTION

The presently disclosed subject matter relates to methods for producing modified yeast cell lines to produce "platforms" in yeast and the resulting modified yeast or platforms. The production platforms can be further modified to 55 produce specific terpenes such as diterpenes. Advantageously, the method includes modifying yeast to express avian farnesyl disphospate synthase and preferably mutant avian farnesyl disphospate synthase. The modification advantageously is provided by an expression vector encod- 60 ing mutant avian farnesyl disphospate synthase. The expression vector can be inserted into wildtype yeast including but not limited to Candida albicans (C. albicans) and Saccharomyces cerevisiae (S. cerevisiae). These can be ergosterol (hereinafter "erg") erg- or erg+ and/or have sterol uptake 65 enhancement (hereinafter "SUE") SUE+ or SUE-. Especially advantageous yeast platforms are both erg- and SUE+.

The mutant avian farnesyl disphospate synthase (mtFPS) converts dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to teganylgeranyldiphosphate (GGPP) and from GGPP to various desired diterpenes.

The present invention, in one form, relates to genetically modified yeast which expresses mtFPS. The yeast may be erg+ or erg- and/or SUE+ or SUE-.

The present invention, in another form thereof relates to a method for producing a genetically modified yeast comprising inserting an expression vector into a yeast cell wherein the expression vector expresses a gene for mtFPS.

The present invention, in another form thereof relates to a method for generating terpene produced yeast cell lines. The method includes combining yeast with a chemical mutagenesis agent to induce mutations in the yeast to generate chemically modified yeast. The chemically modified yeast are selected which grow in the presence of nysatin, squalestatin, and cholesterol followed by selecting for ergosterol dependent growth. The ergosterol dependent growth yeast are subjected to an erg9 knockout mutation to thereby produce ergosterol dependent growthlerg9 knockout mutation yeast cell lines. An expression vector is inserted into the ergosterol dependent growthlerg9 knockout mutation yeast cells wherein the expression vector expresses a gene for mtFPS.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows biosynthesis of terpenes from natural sources, often in mixtures, produced by wild type yeast.

FIG. 2 is schematic outline of two terpene biosynthetic pathways that operate in plants (the MVA and MEP pathways), their intracellular locations, and examples of the chemical compounds derived from each.

FIG. 3 illustrates mevalonate pathway in erogsterol biosynthesis in yeast (S. cerevisiae).

FIG. 4 is a schematic representing compounds of various terpenoid classes and prenyl diphosphates derived.

FIG. 5 is a schematic showing one strategy for developing a yeast line suitable for engineering diterpene chemicals in accordance with the present invention.

FIG. 6 is a graph showing a comparison of terpene chemical profiles in yeast over-expressing the abietadiene synthase (ABS) gene versus control yeast not harboring the ABS gene.

FIG. 7 is a graph showing a comparison of terpene chemical profiles from yeast co-expressing an alternative GGPP synthase (mFPS F112A) with abietadiene synthase 50 versus only over-expressing the abietadiene synthase.

FIG. 8 comprises two graphs showing co-expression of the mFPS gene with different diterpene synthase genes enhances diterpene accumulation.

FIG. 9 illustrates a construct design for testing the importance of specific gene promoters for diterpene (kaurene) production in yeast.

FIG. 10 comprises four graphs showing kaurene and farnesol (FOH) accumulation in yeast engineered for expression of the kaurene synthase and mutant avian FPP synthase driven by different gene promoters.

FIG. 11 shows a comparison of vector configuration effects on abietadine production in ZX 2-2 yeast line.

FIG. 12 is a chart showing kaurene, farnesol (FOH) and geranylgeraniol accumulation in yeast engineered for expression of kaurene synthase and mutant avian FPP synthase driven by different gene promoter combinations on a single gene expression vector.

FIG. **13** comprises two charts show culture medium and temperature influences on abietadiene accumulation.

FIG. **14** shows expression constructs designed for producing diterpene acids in yeast in accordance with the present invention.

FIG. **15** is a chart showing culture medium and temperature influence kaurenoic acid accumulation in accordance with the present invention.

DETAILED DESCRIPTION

The present method and modified yeast will now be described with reference to the figures and exemplary experiments, examples and methods. The figures, experiments and examples are merely to provide a more thorough 15 understanding of the present method and modified yeast. However, other methods and generated yeast can be envisioned consistent with the scope and spirit of this disclosure.

FIG. **5** outlines one approach used to generate yeast lines that provides for robust biosynthesis of precursors that can 20 be utilized for the production of many different classes of terpenes. The schematic diagram in FIG. **5** shows an overall approach used for generating a yeast cell line that have a dispensable sterol biosynthetic pathway (FIG. **5**, upper panel A), which provide opportunities for diverting intermediaries 25 (DMAPP, IPP and FPP) from the mevalonate (MVA) pathway for the biosynthesis of diterpene compounds (FIG. **5**, lower panel B).

The strategy takes advantage of the native mevalonate (MVA) pathway that operates normally in yeast for the 30 biosynthesis of ergosterol, the dominant sterol found in yeast. Ergosterol is the main product of the yeast mevalonate pathway, is an important membrane component, and is essential for yeast growth. If the ergosterol biosynthetic pathway is blocked or inhibited, yeast die. In fact, this is the 35 basis for many pharmacological drugs to control fungal infections in man (Maertens, 2004) and agricultural chemicals to control fungal infection in plants (Casida, 2009). To further complicate matters, wild type yeast can take up exogenously supplied sterol from their environment only 40 under anaerobic conditions.

In order to be able to efficiently channel terpene biosynthetic intermediates from the ergosterol biosynthetic pathway (FIG. 5, panel A), a SUE (sterol uptake enhancement) mutation supporting the aerobic uptake and utilization of 45 exogenous sterol was first created (Bourot and Karst, 1995; Shianna et al., 2001). A SUE mutation is thus a veast line that can meet all its sterol needs by an exogenous source of sterol, and therefore making the endogenous ergosterol biosynthetic pathway dispensable (Bourot and Karst). The 50 Bourot and Karst SUE mutation was then complemented by the introduction of a knockout mutation in the ERGS gene (squalene synthase) (Zhang et al., 1993), resulting in a yeast line where the MVA pathway was still operational up to the biosynthesis of FPP and hence, intermediates in the pathway 55 (DMAPP, IPP and FPP) could be diverted to the biosynthesis of other non-essential terpene components.

This technique diverts isoprenoid pathway intermediates to the biosynthesis of diterpenes, to provide high yielding conditions for the production of diterpene hydrocarbons and 60 decorating the diterpene scaffolds to generate additional high-valued chemical entities.

Steps in the Development of High Level Diterpene Accumulation in Yeast

I. Co-Expression of a Mutant Prenyltransferase

Specific efforts and conditions were necessary to generate yeast lines expressing high-level diterpene accumulation.

65

The first was based on the observation that yeast engineered with a diterpene synthase, like abietadiene synthase, ABS (Vogel et al., 1996) tend to accumulate only marginal amounts of the desired diterpene product (FIG. 6). However, 5 when expression of the ABS gene is coupled with the co-expression of a mutant avian farnesyl diphosphate synthase (mtFPS) that exhibits a preferred biosynthesis for geranylgeranyl diphosphate (GGPP) rather than FPP (Tarshis et al., 1996; Fernandez et al., 2000), those yeast lines 10 demonstrated a dramatic accumulation of abietadiene at the expense of farnesol accumulation (FIG. 7). Use of the mtFPS was preferred to other native GGPP synthases because the avian enzyme is particular active as a homodimeric protein and because the enzyme protein is itself 15 relatively small.

Referring to FIG. **6**, GC chromatographs of extracts were prepared from yeast engineered for expression of the abietadiene synthase (ABS) gene (upper panel) versus control yeast (those engineered with an empty plasmid DNA, no ABS gene) (lower panel). The yeast lines were grown for approximately 5 days, aliquots of the culture were extracted into hexane, and the hexane extracts then profiled by GC-MS. Cedrene was added to cultures prior to extraction as an external standard to account for sample extraction efficiency (peak 1); farnesol (peak 3) was monitored as an estimation of how much carbon flux to FPP was occurring in the yeast cells; and abietadiene (peak 5) was monitored as a measure of how much isoprenoid intermediates (IPP, DMAPP and FPP) were being diverted to diterpene biosynthesis.

FIG. 7 provides data from GC chromatograms of yeast co-expressing the abietadiene synthase (ABS) and a mutant avian farnesyl diphosphate synthase (mtFPS) (upper panel) versus a yeast line only expressing the ABS gene (lower panel). The yeast lines were grown for approximately 5 days, aliquots of the culture were extracted into hexane, and the hexane extracts then profiled by GC-MS. Cedrene was added to cultures prior to extraction as an external standard to account for sample extraction efficiency (peak 1); farnesol (peak 2) was monitored as an estimation of how much carbon flux to FPP was occurring in the yeast cells, thus escaping channeling to diterpene biosynthesis; and abietadiene (peak 3) was monitored as a measure of how much isoprenoid intermediates (IPP, DMAPP and FPP) were being diverted to specialized diterpene biosynthesis.

FIG. 8 comprises graphs for assessing if the co-expression of the mtFPS gene with different diterpene synthases genes enhances diterpene accumulation. In the upper panel of FIG. 8, yeast engineered for expression of the ABS gene or ABS gene plus mtFPS gene were grown under standard conditions and aliquots of the cultures were monitored daily for growth (OD600 nm) and abietadiene accumulation (GC-MS determination). In the lower panel of FIG. 8, yeast were engineered for expression of a second diterpene synthase gene, kaurene synthase, plus and minus co-expression of the mtFPS gene. Cultures were monitored daily for growth (OD600 nm) and kaurene accumulation (GC-MS).

The benefit of co-expressing the mutant FPS gene with other diterpene synthases for the improved yield of diterpene hydrocarbons was examined with other diterpene synthase genes as well. In FIG. **8**, co-expression of the mtFPS gene along with a codon optimized fungal kaurene synthase gene (Toyomasu et al., 2000) dramatically improved kaurene accumulation (lower panel) as observed for abietadiene biosynthesis (upper panel). Equally important to note, the enhanced diterpene accumulation due to the co-expression of the mtFPS did not impose any obvious penalty in cell biomass accumulation (OD600 nm). Cell culture growth

was, in fact, improved from 20 to 40% when the diterpene synthase genes were co-expressed with the mutant prenyl-transferase.

II. Identification of Gene Expression Promoters and Vector Configurations to Enhance Diterpene Accumulation

The co-expression of the mutant FPS and diterpene synthases provides evidence that the expression level of each gene relative to one another (the stoichiometric relationship) might be an important for optimized diterpene production

FIG. **9** is a schematic showing a construct design for 10 testing the importance of specific gene promoters for diterpene (kaurene) production in yeast. A variety of promoter elements were inserted independently upfront of the mtFPS gene and the fungal kaurene synthase gene followed by the yeast being transformed with all possible combinations of 15 each construct. The different transgenic yeast lines would then evaluate for kaurene production levels.

A variety of gene promoter combinations were evaluated for determining the regulation level of target enzymes in the yeast cells as shown in the strategy outline in FIG. **9**.

As shown in FIG. 9, the promoter elements included the actin (act) promoter (Mateus and Avery, 2000), a copper inducible (cup) promoter (Tohoyama et al., 2001), glyceraldehyde phosphate dehydrogenase (gpd) promoter (Bitter and Egan, 1984), transcription elongation factor (tef) pro- 25 moter (Mumberg et al., 1995), and the alcohol dehydrogenase (adh) promoter, which we previous described using for heterologous expression in yeast (Takahashi et al., 2007). Yeast strain ZX 2-2 was co-transformed with the various two plasmid construct combinations, then individual transfor- 30 mant lines were monitored for kaurene and farnesol accumulation (FIG. 10). While we were obviously screened these lines for the promoter combination giving the highest level of diterpene production, an equal important parameter was the farnesol levels. If a yeast line was efficiently diverting 35 the earlier isoprenoid precursors to diterpene, their farnesol levels would be expected to be equally low. By these criteria, having the GPD promoter direct expression of both the mutant prenyltransferase and the kaurene synthase genes yielded the highest level of kaurene with the greatest effi- 40 ciency.

The data in the graphs of FIG. **10** were from yeast transformed with the various plasmids noted in FIG. **9**, selected for prototrophic growth without leucine or histidene added to the culture media, then grown for 10 days before 45 extracting and chemically profiling aliquots of the cultures by GC-MS. For the line harboring the CUP promoter construct, the cultures were grown for 2 days, then 1 mM copper sulfate was added to the growth media.

The results of FIG. 10 demonstrated that the absolute 50 level of gene expression and stoichiometry of the encoded enzymes influenced overall diterpene production. Next the prenyltransferase and diterpene synthase genes were assembled in separate plasmid vectors or into a single vector. In this way, we were evaluating whether variation in diter- 55 pene accumulation could be associated with possible variation in gene copy number as reflected by possible variation in plasmid copy number, or whether a one-to-one stoichiometry of prenyltransferase and diterpene synthase genes on a single plasmid vector were preferable. In the first exami- 60 nation of these possibilities, the constructs relied on the GPD promoter to drive expression of the prenyltransferase and diterpene synthase genes. The constructs were then introduced into yeast and multiple, independent transformants selected for monitoring diterpene (abietadiene) production 65 and farnesol accumulation (FIG. 11). Farnesol accumulation was monitored as a measure of how much carbon was not

efficiently being converted to diterpene. Surprisingly, those transgenic lines with the multiple plasmid constructs exhibited relatively minor variation in the level of diterpene and farnesol accumulated, while the lines transformed with the single vector harboring both the prenyltransferase and diterpene synthase genes showed more than 50% variation in the absolute levels of farnesol and abietadiene. Nonetheless, independent transgenic lines containing the targeted genes on a single plasmid vector also demonstrated greater than 30% more abietadiene and farnesol than when the transgenes were introduced on separate plasmid vectors.

FIG. 11 provides data from test showing how the molecular configuration of the mutant prenyltransferase (mtFPS, geranylgeranyl diphosphate synthase) relative to the diterpene synthase (ABS, abietadiene synthase) might influence diterpene production. The indicated plasmid vectors were transformed into yeast ZX 2-2 and 4 independent transgenic lines grown for 10 days prior to extracting and chemically profiling the extracts by GC-MS for abietadiene and farnesol 20 (FOH) accumulation.

The most optimal vector design suggested by the experimental work up to this point suggest that having both the prenyltransferase and diterpene synthase genes on one plasmid vector and having expression of both genes driven by the GPD promoter was the preferred structural organization. This was confirmed in another experiment where the GPD promoter elements within the single plasmid construct were substituted with the ACT, ADH and TEF promoter elements and the transgenic lines examined for farnesol and kaurene accumulation (FIG. **12**). Once again, the combination of the dual combination of the GPD promoters proved superior to any other promoter combination with respect to kaurene yield and efficiency, as noted by the limited about of farnesol accumulating.

The graph of FIG. **12** provides data from evaluating the efficiency of the ACT, ADH, TEF or GPD promoters to direct expression of both the mutant prenyltransferase and kaurene synthase genes on a single plasmid vector for diterpene production. Yeast line ZX 2-2 was transformed with the indicated plasmid vector and a resulting transformant line chemically profiled by GC-MS after 10 days of growth.

III. Optimization of Culture Conditions to Enhance Diterpene Accumulation

During the evaluation of genes and genetic elements for enhancing diterpene accumulation, variation in diterpene yields with the culture conditions were observed upon examination of these parameters more systematically, it was discovered that for each diterpene target, specific culture conditions could dramatically influence overall diterpene accumulation. In FIG. 13, the accumulation of abietadiene, farnesol and geranylgeraniol by the same yeast line overexpressing the mutant prenyltransferase and abietadiene synthase genes grown under 4 conditions (2 temperatures and 2 media) was examined. Not unexpectedly, when grown in nutrient rich media (YPDE), the yeast grew approximately 2-fold greater than when cultured in selection media (SCE) for 10 days. However, growth of the cultures at 23° C. versus 30° C. had relatively little influence over this 10-day period in terms of overall biomass accumulation. However, a dramatic effect on abietadiene accumulation was noted when the cultures were grown at 23° C. in selection media. Abietadiene accumulation was 2-fold greater under these conditions than when grown at the higher temperature or in the nutrient rich media. The latter observation might be explained by the loss of the recombinant expression plasmid from the yeast grown in the absence of selection pressure

provided by the selection media. In contrast, kaurene accumulation by yeast co-expressing the fungal kaurene synthase and mutant prenyltransferase also under the control of GPD promoters was highest in yeast grown in nutrient rich media rather than selection media, even if the cultures were grown 5 for 10 or more days. Cooler culture temperatures appear to improve diterpene accumulation regardless of the diterpene synthase gene used.

FIG. 13 provides data correlating culture media and temperature influence diterpene accumulation. Yeast strain ZX178-08 co-expressing ABS and mtFPS under the direction of the GPD promoter was grown in nutrient rich media (YPDE) or selection media (SCE) at 23° C. or 30° C. for 10 days. Culture growth was then measure at OD600 nm and 15 terpene accumulation was determined by GC-MS. IV. Decorating Diterpene Hydrocarbon Scaffolds

Having achieved the production of diterpene hydrocarbon production in yeast, more highly modified forms of diterpenes and especially those molecules that might have indus- 20 trial, agricultural or medicinal applications were sought. For this purpose, we have utilized a 3 plasmid construct design (FIG. 14). Plasmids 1 and 2 are those described above and whose expression in yeast yields robust levels of diterpenes such as kaurene. The third plasmid construct was similarly 25 designed to constructs 1 and 2, but contained a gene encoding for kaurene oxidase, a fungal P450 enzyme (Tudzynski et al., 2001) requiring reducing equivalents from a cytochrome P450 reductase (CPR) (Takahashi et al., 2007) for activity.

These three vector constructs were transformed into yeast line 2-2 and a confirmed transformant evaluated for diterpene production at 23° C. and 30° C. in nutrient rich media and selection media as described before (FIG. 15). The yeast were grown for 10 days before the accumulation of kaurene 35 and its specific oxidation products kaurenal and kaurenoic acid were measured by GC-MS. Consistent with the earlier observations for kaurene production only, maximal production of approximately 200 mg/I of kaurenoic acid was determined for the culture grown in nutrient rich media at 40 the reduced temperature. This diterpene productivity was about 2-fold greater than the next best conditions, which was the same lower temperature with selection growth media.

FIG. 14 is a schematic showing a construct design for producing diterpene acids in yeast in accordance with the 45 present invention. The mutant prenyltransferase (mtFPS) and kaurene synthase (FKS) constructs were described above and the new construct consisting of a gene encoding for a fungal P450 enzyme catalyzing the oxidation of kaurene to it acidic form (kaurene oxidase, GFKO), plus a 50 cytochrome P450 reductase (CPR) that provides reducing equivalents to the kaurene oxidase. Expression of these genes, like the prenyltransferase and kaurene synthase genes, is controlled by the GPD promoter.

FIG. 15 shows kaurenoic acid production in yeast is 55 media and temperature sensitive. Yeast strain 2-2 was transformed with the 3 plasmid constructs shown in FIG. 14 and a single confirmed transformant grown under the conditions noted. The diterpene profile was determined after 10 days of growth by GC-MS analysis.

The following experiments, methods and procedures provide additional background with regard to the method for producing diterpene platforms in yeast and the resulting yeast produced. In addition, method for producing various knockout mutations in yeast are described in co-pending 65 U.S. Patent Application Serial No.: 14/092,496, herein incorporated by reference.

The following disclosure provides and demonstrates utility of the yeast lines produced in accordance with the present disclosure for diterpene production via a bioreactor scale-up procedure.

Materials and Methods

Chemical and Media Preparations

All chemical reagents were obtained from Sigma-Aldrich (St. Louis, Mo.), BD Bioscience (Franklin Lakes, N.J.), or Fisher Scientific (Chicago, Ill.), while reagents for molecular manipulations were from Stratagene (San Diego, Calif.), Takara (Shiga, Japan), Invitrogen (San Diego, Calif.), and New England Biolab (Ipswich, Mass.).

Bacteria and yeast were grown using standard culture practices. YPD media for growing yeast without selection consisted of 1% Bactoyeast extract, 2% Bacto-peptone, and 2% glucose (or 0.5% glucose for select experiments). YPDE media was YPD media supplemented with ergosterol (40 mg/L) for ergosterol dependent lines. Minimal media, SCE (pH 5.3), contained 0.67% Bacto-yeast nitrogen base (without amino acids), 2% dextrose, 0.6% succinic acid, 0.14% Sigma yeast dropout solution (-his,-leu,-ura,-trp), uracil (300 mg/L), L-tryptophan (150 mg/L), L-histidine (250 mg/L), L-methionine (200 mg/L), L-leucine (lg/L) and 40 mg/L ergosterol. Cholesterol and ergostrol stocks were 10 mg/mL in 50% Triton X-100, 50% ethanol and kept at -20° C. Selection media was prepared similarly except without supplementing the media with the indicated reagent based on the yeast auxotrophic makers. All solid media plates were prepared with 2% Bacto-Agar.

Yeast Strains

The ZX yeast lines used in these studies were disclosed previously. Essentially, these strains were selected for their ability to utilize exogenous sterol sources under aerobic conditions and were engineered with a knockout mutation in their squalene synthase (ERGS) gene such that the basic mevalonate biosynthetic pathway is operative up to FPP biosynthesis. In some cases, similarly constructed yeast strain CALI7 was utilized (Takahashi et al., 2007). Yeast Transformation and Culture Performance

Yeast strains were transformed with the respective vector constructs using the FROZEN-EZ Yeast Transformation II Kit (Zymo Research, Orange, Calif.) according to the manufacturer's recommendations. About 1 pg of plasmid DNA was used per transformation, followed by selection on agar plates of SCE medium lacking specified amino acids for the auxotrophic markers (selection media) or YPDE (rich media) at 30° C. Variable numbers of independent colonies were subsequently picked and used to start 3 ml cultures in minimal media to characterize their terpene production capacities. Aliquots of these cultures were analyzed for terpene production after 3-6 days of incubation at 30° C. with shaking by GC-MS. Cultures exhibiting the highest terpene production levels were chosen for further studies and archived as glycerol stocks at -80° C. Selected lines were characterized for cell growth and terpene production 60 using 30 mL shake flask cultures. Starter cultures grown to saturation in minimal media were inoculated into 30 ml SCE or YPDE media and 1 mL aliquots withdrawn at indicated intervals for up to 15 days. Cell growth was monitored as the change in optical density at 600 nm, using appropriate dilutions for cultures at later stages of growth. Terpene production was determined by GC-MS similar to the initial screening method.

GC-MS Detection and Quantification of Terpenes

To determine terpene accumulation levels, aliquots of cultures grown for 3 to 12 days were extracted with hexane and aliquots evaluated by GC-MS. In general, to 1 volume of culture, 1 volume of acetone was added and mixed 5 vigorously for 3 to 5 min to lyse the cells. The sample was then allowed to incubate at room temperature for 10 min before adding 1 volume of hexane containing a known amount of cedrene external standard. The mixture was again mixed vigorously, then centrifuged in a clinical centrifuge for 5 min at maximum speed. The upper organic layer was collected and when necessary, concentrated under a N2 stream to 1/10 the original volume. An aliquot of the organic phase (1 pl) was then analyzed by GC-MS with a Varian CP-3800 GC coupled to a Varian Saturn 2200 MS/MS 15 (Varian Medical Systems) using a Supelco SLB-5 ms fused silica capillary column (30 m×0.25 mm×0.25 pm film thickness, Supelco). The initial oven temperature was set at 70° C. for 1 min, ramped to 200° C. at 8° C./min, and then ramped to 300° C. at 20° C./min and held for 5 min more. 20 Farnesol and diterpene levels were calculated relative to the cedrene external standard.

Expression Vector Construction

The yeast GPD promoter (Pgpd) was amplified from the PYM-N14 plasmid described by Janke et al. (Janke et al., 25 2004) using the primers GPD-BamHIF and GPD-NotIR primers and inserted into the pESC-His vector digested with BamH1 and NotI to replace the original GAL1/10 promoters. The resulting plasmid was named pESC-His-gpd. The other promoter elements were obtained similarly. 30

It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the subject matter disclosed herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation. ³⁵

REFERENCES

Numerous references have been cited throughout this disclosure including the following. All are incorporated by 40 G Litwack, ed, Plant Hormones, Vol 72, pp 505-535 20. Havaux M, DaII'Osto L, Cuine S, Giuliano G, Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on

- Anderson M, Che P, Song J, Nikolau B, Wurtele E, 1998.
 3-Methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants. Plant physiology 118, 1127-38.
- 2. Anterola A, Shanle E, Perroud P-F, Quatrano R (2009) Production of taxa-4(5),11(12)-diene by transgenic *Physcomitrella patens*. Transgenic Research 18: 655-660
- Asadollahi M A, Maury J, Schalk M, Clark A, Nielsen J, 2010. Enhancement of Farnesyl Diphosphate Pool as 50 Direct Precursor of Sesquiterpenes Through Metabolic Engineering of the Mevalonate Pathway in *Saccharomyces cerevisiae*. Biotechnology and bioengineering 106, 86-96.
- Barkovich R, Liao J C, 2001. Metabolic engineering of 55 isoprenoids. Metabolic engineering 3, 27-39.
- 5. Bhilwade H N, Tatewaki N, Nishida H, Konishi T, 2010. Squalene as Novel Food Factor. Current Pharmaceutical Biotechnology 11, 875-80.
- Bitter G A, Egan K M (1984) Expression Of Heterologous 60 Genes In Saccharomyces-Cerevisiae From Vectors Utilizing The Glyceraldehyde-3-Phosphate Dehydrogenase Gene Promoter. Gene 32: 263-274
- 7. Bourot S, Karst F (1995) ISOLATION AND CHARAC-TERIZATION OF THE *SACCHAROMYCES-CEREVI-* 65 *SIAE* SUT1 GENE INVOLVED IN STEROL UPTAKE. Gene 165: 97-102

- 8. Bouvier F, Rahier A, Camara B, 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Progress in lipid research 44, 357-429.
- Buchanan B, Gruissem W, Jones R, 2002. Biochemistry & Molecular Biology of Plants. John Wiley & Sons.
- Burke Y D, Stark M J, Roach S L, Sen S E, Crowell P L, 1997. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32, 151-6.
- 10 11. Cardenas C, Quesada A R, Medina M A (2011) Anti-Angiogenic and Anti-Inflammatory Properties of Kahweol, a Coffee Diterpene. Plos One 6
 - Carrau F M, Medina K, Boido E, et al., 2005. De novo synthesis of monoterpenes by *Saccharomyces cerevisiae* wine yeasts. FEMS microbiology letters 243, 107-15.
 - Casida J E (2009) Pest Toxicology: The Primary Mechanisms of Pesticide Action. Chemical Research in Toxicology 22: 609-619
 - 14. DeJong J M, Liu Y L, Bollon A P, Long R M, Jennewein S, Williams D, Croteau R B (2006) Genetic engineering of Taxol biosynthetic genes in *Saccharomyces cerevisiae*. Biotechnology and Bioengineering 93: 212-224
 - Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Engineering 10: 201-206
 - Farhi M, Marhevka E, Masci T, et al., 2011. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic engineering 13, 474-81.
- 30 17. Fernandez S M S, Kellogg B A, Poulter C D (2000) Farnesyl diphosphate synthase. Altering the catalytic site to select for geranyl diphosphate activity. Biochemistry 39: 15316-15321
 - Fischer M J C, Meyer S, Claudel P, Bergdoll M, Karst F, 2011. Metabolic Engineering of Monoterpene Synthesis in Yeast. Biotechnology and Bioengineering 108, 1883-92.
 - 19. Grassmann J (2005) Terpenoids as plant antioxidants. In G Litwack, ed, Plant Hormones, Vol 72, pp 505-535
 - 20. Havaux M, Dall'Osto L, Cuine S, Giuliano G, Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in *Arabidopsis thaliana*. Journal of Biological Chemistry 279: 13878-13888
- 45 21. Hick A J, Luszniak M C, Pickett J A, 1999. Volatile isoprenoids that control insect behaviour and development. Natural Product Reports 16, 39-54.
 - 22. Huang Z-R, Lin Y-K, Fang J-Y, 2009. Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules 14, 540-54.
 - 23. Janke C, Magiera M M, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947-962
 - 24. Kovacs K, Zhang L, Linforth R S T, Whittaker B, Hayes C J, Fray R G (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene taxa-4(5), 11(12)-diene in transgenic tomato fruit. Transgenic Research 16: 121-126
 - Maertens J A (2004) History of the development of azole derivatives. Clinical Microbiology and Infection 10: 1-10
 - Maimone T J, Baran P S, 2007. Modern synthetic efforts toward biologically active terpenes. Nature chemical biology 3, 396-407.

25

- 27. Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D, 2003. Engineering a mevalonate pathway in *Escherichia coli* for production of terpenoids. Nature Biotechnology 21, 796-802.
- Mateus C, Avery S V (2000) Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16: 1313-1323
- 29. Maury J, Asadollahi M A, Møller K, Clark A, Nielsen J, 2005. Microbial isoprenoid production: an example of 10 green chemistry through metabolic engineering. Advances in biochemical engineering/biotechnology 100, 19-51.
- 30. Mumberg D, Muller R, Funk M (1995) Yeast Vectors For The Controlled Expression Of Heterologous Proteins In 15 Different Genetic Backgrounds. Gene 156: 119-122
- 31. Nicolaou K C, Yang Z, Liu J J, Ueno H, Nantermet P G, Guy R K, Claiborne C F, Renaud J, Couladouros E A, Paulvannan K, Sorensen E J (1994) TOTAL SYNTHESIS OF TAXOL. Nature 367: 630-634
- 32. Ohnuma S I, Narita K, Nakazawa T, et al., 1996. A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. The Journal of biological chemistry 271, 30748-54.
- 33. Porto T S, Rangel R, Furtado N, de Carvalho T C, Martins C H G, Veneziani R C S, Da Costa F B, Vinholis A H C, Cunha W R, Heleno V C G, Ambrosio S R (2009) Pimarane-type Diterpenes: Antimicrobial Activity against Oral Pathogens. Molecules 14: 191-199 Roberts S C 30 (2007) Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology 3: 387-395
- 34. Reddy L H, Couvreur P, 2009. Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews 61, 1412-26.
- 35. Shianna K V, Dotson W D, Tope S, Parks L W (2001) Identification of a UPC2 homolog in *Saccharomyces cerevisiae* and its involvement in aerobic sterol uptake. Journal of Bacteriology 183: 830-834
- 36. Takahashi 5, Yeo Y, Greenhagen B T, McMullin T, Song 40 L, Maurina-Brunker J, Rosson R, Noel J P, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnology and Bioengineering 97: 170-181
- 37. Tarshis L C, Proteau P J, Kellogg B A, Sacchettini J C, 45 Poulter C D (1996) Regulation of product chain length by

<160> NUMBER OF SEQ ID NOS: 24

16

isoprenyl diphosphate synthases. Proceedings of the National Academy of Sciences of the United States of America 93: 15018-15023

- Tohoyama H, Kadota H, Shiraishi E, Inouhe M, Joho M (2001) Induction for the expression of yeast metallothionein gene, CUP1, by cobalt. Microbios 104: 99-104
- 39. Toyomasu T, Kawaide H, Ishizaki A, Shinoda S, Otsuka M, Mitsuhashi W, Sassa T (2000) Cloning of a full-length cDNA encoding ent-kaurene synthase from *Gibberella fujikuroi*: Functional analysis of a bifunctional diterpene cyclase. Bioscience Biotechnology and Biochemistry 64: 660-664
- Tu Y, 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine 17, 1217-20.
- 41. Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 gene of *Gibberella fujikuroi* encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Applied and Environmental Microbiology 67: 3514-3522
- 42. Vogel B S, Wildung M R, Vogel G, Croteau R (1996) Abietadiene synthase from grand fir (*Abies grandis*) cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Journal of Biological Chemistry 271: 23262-23268
- 43. Wall M E, Wani M C (1995) PACLITAXEL—FROM DISCOVERY TO CLINIC. In GICTTOIVDM Georg, ed, Taxane Anticancer Agents: Basic Science and Current Status, Vol 583, pp 18-30
- 44. Wu S Q, Schalk M, Clark A, Miles R B, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature Biotechnology 24: 1441-1447
- 35 45. Yamaguchi S (2008) Gibberellin metabolism and its regulation. In Annual Review of Plant Biology, Vol 59, pp 225-251
 - 46. Zhang D L, Jennings S M, Robinson G W, Poulter C D (1993) YEAST SQUALENE SYNTHASE—EXPRES-SION, PURIFICATION, AND CHARACTERIZATION OF SOLUBLE RECOMBINANT ENZYME. Archives of Biochemistry and Biophysics 304: 133-143
 - 47. Zhou Y J, Gao W, Rong Q, et al., 2012. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. Journal of the American Chemical Society 134, 3234-41.

SEQUENCE LISTING

<210> SEQ ID NO 1 <211> LENGTH: 1137 <212> TYPE: DNA <213> ORGANISM: Gallus gallus <400> SEQUENCE: 1 atgcagcccc atcatcatca taaagagggg cgtatgcata aatttactgg tgtcaatgcc 60 aagtttcagc aacccgcgtt gaggaacctc agccccgtgg tggttgagag ggagagggag 120 gagttcgtgg ggttcttccc gcagatcgtc cgcgatctga ccgaggacgg catcggacac 180 240 ccggaggtgg gcgacgctgt ggcgcggctg aaggaggtgc tgcaatacaa cgctcccggt 300 qqqaaatqca atcqtqqqct qacqqtqqtq qctqcqtacc qqqaqctqtc qqqqccqqqq 360 caqaaqqatq ctqaqaqcct qcqqtqcqcq ctqqccqtqq qttqqtqcat cqaqttqttc

US 10,597,665 B1

17

-continued

	54
caggcettet teetggtgge tgatgatate atggateagt eceteaegeg ee	ggggggcag 420
ctgtgttggt ataagaagga gggggtcggt ttggatgcca tcaacgactc ct	tcctcctc 480
gagteetetg tgtacagagt getgaagaag taetgeagge ageggeegta tt	acgtgcat 540
ctgttggagc tcttcctgca gaccgcctac cagactgagc tcgggcagat go	tggacctc 600
atcacagete cegtetecaa agtggatttg agteaettea gegaggagag gt	acaaagcc 660
atogttaagt acaagactgo ottotactoo ttotacotac oogtggotgo to	ccatgtat 720
atggttggga tcgacagtaa ggaagaacac gagaatgcca aagccatcct go	tggagatg 780
ggggaatact tccagatcca ggatgattac ctggactgct ttggggaccc gg	cgctcacg 840
gggaaggtgg gcaccgacat ccaggacaat aaatgcagct ggctcgtggt gc	agtgcctg 900
cagegegtea egeeggagea geggeagete etggaggaea actaeggeeg ta	aggagccc 960
gagaaggtgg cgaaggtgaa ggagctgtat gaggccgtgg ggatgagggc tg	cgttccag 1020
cagtacgagg agagcagcta ccggcgcctg caggaactga tagagaagca ct	cgaaccgc 1080
ctcccgaagg agatcttcct cggcctggca cagaagatct acaaacgcca ga	aatga 1137
<210> SEQ ID NO 2 <211> LENGTH: 378 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: deduced sequence from cDNA from	Gallus gallus
<400> SEQUENCE: 2	
Met Gln Pro His His His His Lys Glu Gly Arg Met His Lys F 1 5 10 1	he Thr 5
Gly Val Asn Ala Lys Phe Gln Gln Pro Ala Leu Arg Asn Leu S 20 25 30	er Pro
Val Val Glu Arg Glu Arg Glu Glu Glu Phe Val Gly Phe Phe P 35 40 45	Pro Gln
Ile Val Arg Asp Leu Thr Glu Asp Gly Ile Gly His Pro Glu V505560	al Gly
Asp Ala Val Ala Arg Leu Lys Glu Val Leu Gln Tyr Asn Ala F 65 70 75	ro Gly 80
Gly Lys Cys Asn Arg Gly Leu Thr Val Val Ala Ala Tyr Arg G 85 90 9	lu Leu 5
Ser Gly Pro Gly Gln Lys Asp Ala Glu Ser Leu Arg Cys Ala L 100 105 110	eu Ala
Val Gly Trp Cys Ile Glu Leu Phe Gln Ala Phe Phe Leu Val A 115 120 125	la Asp
Asp Ile Met Asp Gln Ser Leu Thr Arg Arg Gly Gln Leu Cys T 130 135 140	'rp Tyr
Lys Lys Glu Gly Val Gly Leu Asp Ala Ile Asn Asp Ser Phe L 145 150 155	eu Leu 160
Glu Ser Ser Val Tyr Arg Val Leu Lys Lys Tyr Cys Arg Gln A 165 170 1	rg Pro 75
Tyr Tyr Val His Leu Leu Glu Leu Phe Leu Gln Thr Ala Tyr G 180 185 190	ln Thr
Glu Leu Gly Gln Met Leu Asp Leu Ile Thr Ala Pro Val Ser L 195 200 205	ys Val
Asp Leu Ser His Phe Ser Glu Glu Arg Tyr Lys Ala Ile Val L 210 215 220	ys Tyr

-continued

Lys Thr Ala Phe Tyr Ser Phe Tyr Leu Pro Val Ala Ala Ala Met Tyr 225 230 235 240
Met Val Gly Ile Asp Ser Lys Glu Glu His Glu Asn Ala Lys Ala Ile 245 250 255
Leu Leu Glu Met Gly Glu Tyr Phe Gln Ile Gln Asp Asp Tyr Leu Asp 260 265 270
Cys Phe Gly Asp Pro Ala Leu Thr Gly Lys Val Gly Thr Asp Ile Gln 275 280 285
Asp Asn Lys Cys Ser Trp Leu Val Gln Cys Leu Gln Arg Val Thr 290 295 300
Pro Glu Gln Arg Gln Leu Leu Glu Asp Asn Tyr Gly Arg Lys Glu Pro 305 310 315 320
Glu Lys Val Ala Lys Val Lys Glu Leu Tyr Glu Ala Val Gly Met Arg 325 330 335
Ala Ala Phe Gln Gln Tyr Glu Glu Ser Ser Tyr Arg Arg Leu Gln Glu 340 345 350
Leu Ile Glu Lys His Ser Asn Arg Leu Pro Lys Glu Ile Phe Leu Gly 355 360 365
Leu Ala Gln Lys Ile Tyr Lys Arg Gln Lys 370 375
<210> SEQ ID NO 3 <211> LENGTH: 1155 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence
<400> SEQUENCE: 3
atgcaccacc atcatcatat gcagccccat catcatcata aagagggggg tatgcataaa 60
tttactggtg tcaatgccaa gtttcagcaa cccgcgttga ggaacctcag ccccgtggtg 120
gttgagaggg agagggagga gttcgtgggg ttcttcccgc agatcgtccg cgatctgacc 180
gaggacggca teggacaeee ggaggtggge gaegetgtgg egeggetgaa ggaggtgetg 240
caatacaacg ctcccggtgg gaaatgcaat cgtgggctga cggtggtggc tgcgtaccgg 300
gagetgtegg ggeegggggea gaaggatget gagageetge ggtgegeget ggeegtggggt 360
tggtgcatcg agetetteea ggeegeette etggtggetg atgatateat ggateagtee 420
ctcacgcgcc gggggcagct gtgttggtat aagaaggagg gggtcggttt ggatgccatc 480
aacgacteet teeteetega gteetetgtg tacagagtge tgaagaagta etgeaggeag 540
cggccgtatt acgtgcatct gttggagctc ttcctgcaga ccgcctacca gactgagctc 600
gggcagatgc tggacctcat cacagctccc gtctccaaag tggatttgag tcacttcagc 660
gaggagaggt acaaagccat cgttaagtac aagactgcct tctactcctt ctacctaccc 720

780

840

900

960

1020 1080

1140 1155

gagaagcact cgaaccgcct cccgaaggag atcttcctcg gcctggcaca gaagatctac aaacgccaga aatga

gtggctgctg ccatgtatat ggttgggatc gacagtaagg aagaacacga gaatgccaaa

gccatcctgc tggagatggg ggaatacttc cagatccagg atgattacct ggactgcttt

ggggacccgg cgctcacggg gaaggtgggc accgacatcc aggacaataa atgcagctgg

ctcgtggtgc agtgcctgca gcgcgtcacg ccggagcagc ggcagctcct ggaggacaac

tacggccgta aggagcccga gaaggtggcg aaggtgaagg agctgtatga ggccgtgggg

atgagggetg cgttccagca gtacgaggag agcagctacc ggcgcctgca ggaactgata

-continued

<210	> SE	EO II	о мо	4														
			H: 34															
<212	> T)	CPE :	DNA															
				Art:	ifici	ial S	Seque	ence										
		EATUI THER		ORMA:	TON	· pr	imer	sea	lence	2								
~ 2 2 3	- 01		1111 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1101	. pr.	LINCL	beq										
<400	> SE	EQUEI	ICE :	4														
gtgo	atco	gag (etett	cca	gg co	cgeet	tcct	z ggt	g							34		
<210	> SE	EQ II	о мо	5														
			H: 34	1														
		PE:		7	نہ دع													
		EATUR		Art:		Lai :	seque	ence										
				ORMA:	FION	: pr:	imer	sequ	ience	Э								
<400	I> SE	EQUEI	ICE :	5														
dado	adda	an n	rcaa	ctg	na ar	radd	cast	- ac:	ac							34		
cucc	agge	aug s	3099	Jeeg	ga ag	juger	logu	gee								51		
			ОИО															
			I: 38	35														
		(PE : RGAN		Art:	ifici	ial s	Seque	ence										
		EATU					1											
<223	> 01	THER	INFO	ORMA:	FION	: dec	duceo	d sec	queno	ce								
- 100	u cr		ICE .	c														
<400	I> 5E	CÕOFI	ICE :	6														
Met	His	His	His	His	His	His	Met	Gln	Pro	His	His	His	His	Lys	Glu			
1				5					10					15				
~ 1	-				-	-	61						a 1	C 1	_			
GIY	Arg	Met	ніs 20	гла	Pne	Thr	GIY	vai 25	Asn	AIa	гла	Pne	Gln 30	GIN	Pro			
			20					20					50					
Ala	Leu	Arg	Asn	Leu	Ser	Pro	Val	Val	Val	Glu	Arg	Glu	Arg	Glu	Glu			
		35					40					45						
Dho	Val	Glv	Dho	Dho	Dro	Gln	T10	Val	Ara	Aen	1.011	Thr	Glu	Agn	GLV			
- 110	50	y	- 110	- 110	0	55			y	• 10 P	Бец 60		JIU	P	y			
	Gly	His	Pro	Glu		Gly	Asp	Ala	Val		Arg	Leu	Lys	Glu				
65					70					75					80			
Leu	Gln	Tyr	Asn	Ala	Pro	Glv	Glv	Lys	Cys	Asn	Arq	Glv	Leu	Thr	Val			
		<u> </u>		85		-1	-1	- <u>-</u>	90			-1		95				
			_	_		_	-		_			_	_					
Val	Ala	Ala	-	Arg	Glu	Leu	Ser	-	Pro	Gly	Gln	Lys	Asp	Ala	Glu			
			100					105					110					
Ser	Leu	Arg	Cys	Ala	Leu	Ala	Val	Gly	Trp	Cys	Ile	Glu	Leu	Phe	Gln			
		115	-				120	-	-	-		125						
		D'				7		T 7			~ 7	a	Ŧ	m'				
Ala	Ala 130	Phe	Leu	Val	Ala	Asp 135	Aab	⊥le	Met	Aab	Gln 140	Ser	Leu	Thr	Arg			
	130					132					140							
Arg	Gly	Gln	Leu	Cys	Trp	Tyr	Lys	Lys	Glu	Gly	Val	Gly	Leu	Asp	Ala			
145	-			-	150	-	-	-		155		-		-	160			
	_	_	_		_	_		_	_		_	_		_	_			
Ile	Asn	Asp	Ser		Leu	Leu	Glu	Ser		Val	Tyr	Arg	Val		ГЛа			
				165					170					175				
Lvs	Tvr	Cvs	Ara	Gln	Ara	Pro	Tvr	Tvr	Val	His	Leu	Leu	Glu	Leu	Phe			
1,0		010	180	0111		110	- / -	185	Var	1110	Dea	Dea	190	Dea	1110			
Leu	Gln	Thr	Ala	Tyr	Gln	Thr	Glu	Leu	Gly	Gln	Met	Leu	Asp	Leu	Ile			
		195					200					205						
-		_					_		~					eu =				
Thr		Pro	Val	Ser	гүз		Asb	Leu	Ser	His		Ser	Glu	Glu	Arg			
	210					215					220							
Tvr	Lvs	Ala	Ile	Val	Lve	Tvr	Lvs	Thr	Ala	Phe	Tvr	Ser	Phe	Tvr	Leu			
- y -	-10				230	-1-	-10			235	- <u>r</u> -	201		-1-	240			
225										-					-			

22

-continued

Pro Val Ala Ala Ala Met Tyr Met Val Gly Ile Asp Ser Lys Glu Glu 245 250 255 His Glu Asn Ala Lys Ala Ile Leu Leu Glu Met Gly Glu Tyr Phe Gln 265 260 270 Ile Gln Asp Asp Tyr Leu Asp Cys Phe Gly Asp Pro Ala Leu Thr Gly 275 280 285 Lys Val Gly Thr Asp Ile Gln Asp Asn Lys Cys Ser Trp Leu Val Val 290 295 300 Gln Cys Leu Gln Arg Val Thr Pro Glu Gln Arg Gln Leu Leu Glu Asp 305 310 315 320 Asn Tyr Gly Arg Lys Glu Pro Glu Lys Val Ala Lys Val Lys Glu Leu 330 Tyr Glu Ala Val Gly Met Arg Ala Ala Phe Gln Gln Tyr Glu Glu Ser 340 345 350 Ser Tyr Arg Arg Leu Gln Glu Leu Ile Glu Lys His Ser Asn Arg Leu 360 355 365 Pro Lys Glu Ile Phe Leu Gly Leu Ala Gln Lys Ile Tyr Lys Arg Gln 370 375 380 Lvs 385 <210> SEQ ID NO 7 <211> LENGTH: 2859 <212> TYPE: DNA <213> ORGANISM: Gibberella fujikuroi <400> SEQUENCE: 7 atgcctggca aaatcgagaa cggcaccccc aaagacctca agacaggaaa tgactttgta 60 tcagcagcaa agtcgctgct ggaccgcgcc ttcaagagcc atcatagcta ctatggtcta 120 tgttccacca gctgtcaggt atatgacact gcttgggtgg ccatgatacc caagacgaga 180 gacaatgtca agcaatggct gtttcctgag tgcttccact atcttctgaa gactcaggcc 240 gctgatggta gttggggtag tctccccacg acccagactg ctggtattct agacactgct 300 360 tcagctgtgc ttgcactctt atgtcacgca caagagcctc tgcagatact ggacgtctcg ccagacgaga tgggtctcag gatcgagcac ggggtaactt ctttgaagcg acagctagct 420 gtttggaacg atgttgaaga taccaatcac attggtgtcg agtttattat tccagcttta 480 ctttccatgc ttgagaaaga gctcgacgtg ccatcttttg agtttccttg cagaagtatc 540 ttggagagga tgcacggaga gaagctcggc catttcgatt tggagcaagt atatggcaag 600 ccgtcttcac tacttcactc ccttgaagcc tttcttggaa agcttgactt tgatcgcctt 660 teteaceate tttateatgg etetatgatg getteacett etteeaetge ageetaeete 720 780 attggtgcaa ccaagtggga cgacgaggct gaagattacc tgaggcacgt tatgagaaat ggtgctggtc acgggaatgg tggcatctca ggcacctttc ctacaacaca ttttgagtgt 840 agetggatea tagegaeact eetgaaggtt ggetteactt tgaaacaaat egatggtgat 900 ggettgegeg gettgteaac tataettete gaagegttga gggaegagaa tggagtaatt 960 ggetttgcac cccgtactgc tgatgttgat gacactgcaa aagetettet ggeattgage 1020 cttgtcaatc aacctgtcag cccagatatc atgatcaagg tctttgaagg aaaagatcac 1080 ttcaccacgt tcggatctga acgtgatccc agettgactt ccaacctcca tgtgctgctg 1140 agteteetga ageagteeaa tetategeaa taccacceae aaateetgaa gaccaegttg 1200

US 10,597,665 B1

25

-continued

-continued	
ttcacttgcc gatggtggtg gggcagcgac cattgcgtca aagataaatg gaatttgagt	1260
catctatacc caaccatgct tctggtggaa gctttcaccg aggtacttca tctcattgat	1320
ggtggcgagc tttctagtct ctttgacgag agcttcaagt gcaagatcgg cctgtcaatc	1380
ttccaggctg tactacgtat catcctcacc caagataacg acggatcttg gagaggatat	1440
cgcgagcaaa catgctacgc cattctagct cttgtacagg cacgccatgt atgtttcttc	1500
actcacatgg tggacaggct acagagttgc gtcgaccgtg gcttttcgtg gctcaagtcc	1560
tgcagctttc attctcagga cctcacttgg acgtcaaaga cagcatatga ggttgggttt	1620
gttgctgaag cgtacaagct agcagccctt cagtcagcaa gcctagaggt gcccgccgct	1680
actattggcc acagegteae eteggeggtt ceateategg aettggagaa gtaeatgagg	1740
cttgtgcgca agactgcttt gttctcgcca ctggacgagt ggggactcat ggcgtcaatc	1800
attgagteet egttettegt geeeetteta caageteage gegttgagat ttateegagg	1860
gacaacatca aggtcgacga ggacaaatac ctgagcatca ttccttttac ttgggtcgga	1920
tgcaacaaca gatcccgcac atttgcatct aacagatggc tctacgatat gatgtacctg	1980
teeeteetgg getaccagac egatgagtac atggaagetg tegetgggee ggtatteggt	2040
gatgtetete tgetteacea gaceategae aaggteatag acaacacaat gggaaaetta	2100
gccagggcca atggtaccgt gcacagtggc aatggtcatc agcatgagtc acccaacatt	2160
ggacaagttg aggatactct cactcgcttc accaacagcg tgctcaacca caaagatgtt	2220
ctgaattcaa gctcttctga ccaagacact cttcgccgag aattcagaac gttcatgcat	2280
gcccatatca cacagataga ggacaacagt cgcttctcca agcaggcctc cagcgacgct	2340
ttctcttccc cagaacaatc gtacttccaa tgggtcaaca gtacaggagg cagtcacgtc	2400
geetgegegt acteattege ttteteeaae tgeetaatgt eagegaatet geteeaagge	2460
aaggacgcat tteeeteegg caeteagaaa tateteattt eateegttat gegteaeget	2520
acaaatatgt gtcgtatgta caacgacttt gggtccatag ctcgcgataa cgctgagcgg	2580
aatgtgaact cgatccactt ccccgagttc acgttatgta acggaacgtc acagaatctc	2640
gatgaaagga aagagagact tttaaagata gctacgtatg agcaaggtta tcttgatcgt	2700
gctctcgaag ctctggaacg acagtctcgt gatgatgcag gtgatcgtgc tgggtctaag	2760
gatatgagga agctcaagat tgtaaaactg ttctgtgatg tcaccgactt gtatgatcag	2820
ctttacgtga tcaaggacct ttcaagcagc atgaagtga	2859
<210> SEQ ID NO 8 <211> LENGTH: 952 <212> TYPE: PRT <213> ORGANISM: Gibberella fujikuroi	
<400> SEQUENCE: 8	
Met Pro Gly Lys Ile Glu Asn Gly Thr Pro Lys Asp Leu Lys Thr Gly151015	
Asn Asp Phe Val Ser Ala Ala Lys Ser Leu Leu Asp Arg Ala Phe Lys 20 25 30	
Ser His His Ser Tyr Tyr Gly Leu Cys Ser Thr Ser Cys Gln Val Tyr 35 40 45	
Asp Thr Ala Trp Val Ala Met Ile Pro Lys Thr Arg Asp Asn Val Lys 50 55 60	
Gln Trp Leu Phe Pro Glu Cys Phe His Tyr Leu Leu Lys Thr Gln Ala65707580	

-continued

												0011	CIII	ucu	
Ala	Asp	Gly	Ser	Trp 85	Gly	Ser	Leu	Pro	Thr 90	Thr	Gln	Thr	Ala	Gly 95	Ile
Leu	Asp	Thr	Ala 100	Ser	Ala	Val	Leu	Ala 105	Leu	Leu	Сүз	His	Ala 110	Gln	Glu
Pro	Leu	Gln 115	Ile	Leu	Asp	Val	Ser 120	Pro	Asp	Glu	Met	Gly 125	Leu	Arg	Ile
Glu	His 130	Gly	Val	Thr	Ser	Leu 135	Lys	Arg	Gln	Leu	Ala 140	Val	Trp	Asn	Asp
Val 145	Glu	Asp	Thr	Asn	His 150	Ile	Gly	Val	Glu	Phe 155	Ile	Ile	Pro	Ala	Leu 160
Leu	Ser	Met	Leu	Glu 165	Lys	Glu	Leu	Aab	Val 170	Pro	Ser	Phe	Glu	Phe 175	Pro
Суа	Arg	Ser	Ile 180	Leu	Glu	Arg	Met	His 185	Gly	Glu	ГЛа	Leu	Gly 190	His	Phe
Asp	Leu	Glu 195	Gln	Val	Tyr	Gly	Lys 200	Pro	Ser	Ser	Leu	Leu 205	His	Ser	Leu
Glu	Ala 210	Phe	Leu	Gly	ГЛа	Leu 215	Asp	Phe	Asp	Arg	Leu 220	Ser	His	His	Leu
Tyr 225	His	Gly	Ser	Met	Met 230	Ala	Ser	Pro	Ser	Ser 235	Thr	Ala	Ala	Tyr	Leu 240
Ile	Gly	Ala	Thr	Lys 245	Trp	Asp	Asp	Glu	Ala 250	Glu	Asp	Tyr	Leu	Arg 255	His
Val	Met	Arg	Asn 260	Gly	Ala	Gly	His	Gly 265	Asn	Gly	Gly	Ile	Ser 270	Gly	Thr
Phe	Pro	Thr 275	Thr	His	Phe	Glu	Сув 280	Ser	Trp	Ile	Ile	Ala 285	Thr	Leu	Leu
Lys	Val 290	Gly	Phe	Thr	Leu	Lys 295	Gln	Ile	Asp	Gly	Asp 300	Gly	Leu	Arg	Gly
Leu 305	Ser	Thr	Ile	Leu	Leu 310	Glu	Ala	Leu	Arg	Asp 315	Glu	Asn	Gly	Val	Ile 320
Gly	Phe	Ala	Pro	Arg 325	Thr	Ala	Asp	Val	Asp 330	Asp	Thr	Ala	ГЛа	Ala 335	Leu
Leu	Ala	Leu	Ser 340	Leu	Val	Asn	Gln	Pro 345	Val	Ser	Pro	Asp	Ile 350	Met	Ile
Lys	Val	Phe 355	Glu	Gly	Lys	Asp	His 360	Phe	Thr	Thr	Phe	Gly 365	Ser	Glu	Arg
Asp	Pro 370	Ser	Leu	Thr	Ser	Asn 375	Leu	His	Val	Leu	Leu 380	Ser	Leu	Leu	Lys
Gln 385	Ser	Asn	Leu	Ser	Gln 390	Tyr	His	Pro	Gln	Ile 395	Leu	Lys	Thr	Thr	Leu 400
Phe	Thr	Cys	Arg	Trp 405	Trp	Trp	Gly	Ser	Asp 410	His	СЛа	Val	Lys	Asp 415	Lys
Trp	Asn	Leu	Ser 420	His	Leu	Tyr	Pro	Thr 425	Met	Leu	Leu	Val	Glu 430	Ala	Phe
Thr	Glu	Val 435	Leu	His	Leu	Ile	Asp 440	Gly	Gly	Glu	Leu	Ser 445	Ser	Leu	Phe
Asp	Glu 450	Ser	Phe	Lys	Суз	Lys 455	Ile	Gly	Leu	Ser	Ile 460	Phe	Gln	Ala	Val
Leu 465	Arg	Ile	Ile	Leu	Thr 470	Gln	Asp	Asn	Asp	Gly 475	Ser	Trp	Arg	Gly	Tyr 480
	Glu	Gln	Thr	Сув 485		Ala	Ile	Leu	Ala 490		Val	Gln	Ala	Arg 495	
Val	Cys	Phe	Phe		His	Met	Val	Asp		Leu	Gln	Ser	Суз	Val	Asp

																_
			500					505					510			
Arg	Gly	Phe 515	Ser	Trp	Leu	Lys	Ser 520	Суз	Ser	Phe	His	Ser 525	Gln	Asp	Leu	
Thr	Trp 530	Thr	Ser	Lys	Thr	Ala 535	Tyr	Glu	Val	Gly	Phe 540	Val	Ala	Glu	Ala	
Tyr 545	Lys	Leu	Ala	Ala	Leu 550	Gln	Ser	Ala	Ser	Leu 555	Glu	Val	Pro	Ala	Ala 560	
Thr	Ile	Gly	His	Ser 565	Val	Thr	Ser	Ala	Val 570	Pro	Ser	Ser	Asp	Leu 575	Glu	
Lys	Tyr	Met	Arg 580	Leu	Val	Arg	Lys	Thr 585	Ala	Leu	Phe	Ser	Pro 590	Leu	Asp	
Glu	Trp	Gly 595	Leu	Met	Ala	Ser	Ile 600	Ile	Glu	Ser	Ser	Phe 605	Phe	Val	Pro	
Leu	Leu 610	Gln	Ala	Gln	Arg	Val 615	Glu	Ile	Tyr	Pro	Arg 620	Asp	Asn	Ile	Lys	
Val 625	Asp	Glu	Asp	Lys	Tyr 630	Leu	Ser	Ile	Ile	Pro 635	Phe	Thr	Trp	Val	Gly 640	
Суа	Asn	Asn	Arg	Ser 645	Arg	Thr	Phe	Ala	Ser 650	Asn	Arg	Trp	Leu	Tyr 655	Asp	
Met	Met	Tyr	Leu 660	Ser	Leu	Leu	Gly	Tyr 665	Gln	Thr	Asp	Glu	Tyr 670	Met	Glu	
Ala	Val	Ala 675		Pro	Val	Phe	Gly 680		Val	Ser	Leu	Leu 685	His	Gln	Thr	
Ile	Asp 690		Val	Ile	Asp	Asn 695		Met	Gly	Asn	Leu 700		Arg	Ala	Asn	
Gly 705	Thr	Val	His	Ser	Gly 710		Gly	His	Gln	His 715		Ser	Pro	Asn	Ile 720	
	Gln	Val	Glu	Asp 725		Leu	Thr	Arg	Phe 730		Asn	Ser	Val	Leu 735		
His	Lys	Asp	Val 740		Asn	Ser	Ser	Ser 745		Asp	Gln	Asp	Thr 750		Arg	
Arg	Glu	Phe 755		Thr	Phe	Met	His 760		His	Ile	Thr			Glu	Asp	
Asn	Ser	Arg	Phe	Ser	Гла			Ser	Ser	Asp		765 Phe	Ser	Ser	Pro	
	770 Gln		Tyr	Phe			Val	Asn	Ser		780 Gly	Gly	Ser	His		
785 Ala	Суз	Ala	Tyr		790 Phe		Phe	Ser		795 Сув	Leu	Met	Ser	Ala	800 Asn	
Leu	Leu	Gln	Gly	805 Lys	Asp	Ala	Phe	Pro	810 Ser	Gly	Thr	Gln	Lys	815 Tyr	Leu	
Ile	Ser	Ser	820 Val	Met	Arg	His	Ala	825 Thr	Asn	Met	Суз	Arg	830 Met	Tyr	Asn	
	Phe	835			-		840				-	845		-		
-	850	-				855	-				860					
865	His				870			-		875					880	
Aab	Glu	Arg	Lys	Glu 885	Arg	Leu	Leu	Lys	Ile 890	Ala	Thr	Tyr	Glu	Gln 895	Gly	
Tyr	Leu	Asp	Arg 900	Ala	Leu	Glu	Ala	Leu 905	Glu	Arg	Gln	Ser	Arg 910	Asp	Asp	
Ala	Gly	Asp 915	Arg	Ala	Gly	Ser	Lys 920	Asp	Met	Arg	Lys	Leu 925	Lys	Ile	Val	

-continued

Lys Leu Phe Cys Asp Val Thr Asp Leu Tyr Asp Gln Leu Tyr Val Ile 930 935 940 Lys Asp Leu Ser Ser Ser Met Lys 945 950 <210> SEQ ID NO 9 <211> LENGTH: 2868 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence <400> SEQUENCE: 9 atggcggccg caccaggtaa aattgaaaat ggtactccaa aagatttgaa aactggtaat 60 gatttcgttt ctgctgctaa atctttgttg gatagagctt ttaaatctca tcattcttac 120 tacggtttgt gttctacttc ttgtcaagtt tacgatactg cttgggttgc tatgattcca 180 aagactagag ataacgttaa gcaatggttg ttcccagaat gtttccatta tttgttgaaa 240 actcaagetg etgatggtte ttggggttet ttgecaacta etcaaactge tggtattttg 300 gatactgett etgetgtttt ggetttgttg tgteatgete aagaaceatt geaaattttg 360 gatgtttctc cagatgaaat gggtttgaga attgaacatg gtgttacttc tttgaaaaga 420 caattqqctq tttqqaatqa tqttqaaqat actaatcata ttqqtqttqa qttcatcatt 480 ccagetttgt tgtetatgtt ggaaaaagaa ttggatgtte catettttga attteeatgt 540 agatctattt tggaaagaat gcatggtgaa aaattgggtc attttgattt ggaacaagtt 600 tatggtaaac catcttcttt gttgcattct ttggaagcat tccttggtaa attggatttt 660 gatagattgt ctcatcattt gtatcatggt tctatgatgg cttctccatc ttctactgct 720 gcttatttga ttggtgctac taaatgggat gatgaagctg aagattattt gagacatgtt 780 atgagaaatg gtgctggtca tggtaatggt ggtatttctg gtacttttcc aactactcat 840 ttcgaatgtt cttggatcat cgctactttg ttgaaggttg gttttacttt gaagcaaatt 900 gatggagatg gtttgagagg tttgtctact attttgttgg aagctcttag agatgaaaat 960 ggtgttattg gttttgctcc aagaactgct gatgttgatg atactgctaa ggctttgttg 1020 gctttgtctt tggttaacca accagtttct ccagatatca tgatcaaggt tttcgagggt 1080 aaagatcatt tcactacttt cggttctgaa agagatccat ctttgacttc taatttgcat 1140 gttttgttgt ctttgttgaa gcaatctaat ttgtctcaat accatccaca aatcttgaag 1200 actactttgt ttacttgtag atggtggtgg ggttctgatc attgtgttaa ggataagtgg 1260 aatttgtctc atttgtaccc aactatgttg ttggttgaag cattcactga agttttgcat 1320 ttgatcgatg gtggtgaatt gtcttctttg ttcgatgaat cttttaaatg caagatcggt 1380 ttgtctatct tccaagctgt tttgagaatc atcttgactc aagataacga tggttcttgg 1440 agaggttata gagaacaaac ttgttatgct attttggctt tggttcaagc tagacatgtt 1500 tgtttcttta ctcatatggt tgatagattg caatcttgtg ttgatagagg tttttcttgg 1560 ttqaaatett gttettttea tteteaaqat ttgaettqga ettetaaaae tgettatgaa 1620 gttggttttg ttgctgaagc atacaaattg gctgctttgc aatctgcttc tttggaagtt 1680 ccagetgeta ctattggtea ttetgttaet tetgetgtte catettetga tttggaaaag 1740 tacatgagat tggttagaaa gactgctttg ttttctccat tggatgaatg gggtttgatg 1800 gettetatta ttgaatette atttttegtt ceattgttge aageteaaag agttgaaate 1860

US 10,597,665 B1

33

-continued

tacccaagag ataacatcaa ggttgatgag gataagtatt tgtctatcat tccattcact	1920
tgggttggtt gtaacaacag atctagaact ttcgcttcta acagatggtt gtacgatatg	1980
atgtatttgt ctttgttggg ttaccaaact gatgaatata tggaagctgt tgctggtcca	2040
gttttcggag atgtttcttt gttgcatcaa actatcgata aagttattga taacactatg	2100
ggtaatttgg ctagagctaa cggtactgtt cattctggta atggtcatca acatgaatct	2160
ccaaacatcg gtcaagttga agatactttg actagattca ctaactctgt tttgaaccat	2220
aaggatgttt tgaactcttc ctcaagtgat caagatactt tgagaagaga gttcagaact	2280
tttatgcatg ctcatatcac tcaaatcgaa gataattcta gattttctaa gcaagctagt	2340
tetgatgett tttettetee agaacaatet tatttteaat gggttaatte taetggtggt	2400
teteatgttg ettgtgetta ttetttget ttttetaatt gtttgatgte tgetaatttg	2460
ttgcagggta aagatgettt eeeatetggt aeteaaaagt atttgattte ttetgttatg	2520
agacatgcta ctaacatgtg tagaatgtac aacgatttcg gttctatcgc tagagataac	2580
gctgaaagaa acgttaattc tatccatttc ccagagttca ctttgtgtaa cggtacttct	2640
caaaatttgg atgaaagaaa ggaaagattg ttgaagatcg ctacttacga acaaggttat	2700
ttggatagag ctttggaggc acttgaaaga caatctagag atgatgctgg agatagagct	2760
ggttctaagg atatgagaaa attgaagatc gttaaattgt tttgtgatgt tactgatttg	2820
tatgatcaat tgtatgttat taaagatttg tcttcaagta tgaaataa	2868
<210> SEQ ID NO 10 <211> LENGTH: 2115 <212> TYPE: DNA <213> ORGANISM: Artemisia annua	
<400> SEQUENCE: 10	
atgcaatcaa caactteegt taagttatet eeettegate taatgaegge gttaettaae	60
ggcaaggtat cettegacae ateaaacaea teegataega atatteegtt ageegtgttt	120
atggagaatc gtgagetttt gatgatttta actaettegg ttgeggttet gateggatge	180
gttgtggtgc ttgtgtggag acggtcgtcg tcggcggcga agaaagcggc ggagtcgccg	240
gtgattgttg taccgaagaa agtgacggag gatgaggttg atgatggacg gaagaaagtt	300
actgtgtttt ttggaactca gactggtact gctgaaggtt ttgctaaggc gcttgttgaa	360
gaggotaaag ogogatatga aaaggoggtg tttaaagtga ttgatttgga tgattatgoo	420
gctgaagatg atgagtatga ggagaagtta aagaaagaa	480
gctacgtatg gagatggtga gccgacagat aatgctgcta gattctataa atggtttacc	540
gagggtgaag agaaaggtga atggcttgac aagcttcaat acgcagtgtt tggacttggt	600
aacagacagt atgagcattt caacaagatt gctaaggtgg tcgatgaaaa acttgtggaa	660
cagggtgcaa agegeettgt teetgttgge atgggagaeg atgateaatg tategaagae	720
gacttcactg catggaaaga gttggtgtgg cctgagttgg atcaattact tcgtgatgag	780
gatgatacat ctgttgccac tccatacaca gctgctgttg cagaataccg tgttgtgttc	840
catgataaac cagagacata tgatcaggat caactgacaa atggccatgc tgttcatgat	900
gctcaacatc catgcagatc caatgtcgct gtcaaaaagg agctccattc ccctctatct	960
gaccggtctt gcactcattt ggaatttgat atctctaata ctggattatc gtatgaaact	1020
ggggaccatg ttggagtcta tgttgagaat ctaagtgaag ttgtggacga agctgaaaaa	1080
ttaataggtt taccgccgca cacttatttc tcagtacaca ctgataacga agacgggaca	1140

34

US 10,597,665 B1

35

-continued

ccacttggtg ga	gcatcttt	gccacctcct	t ttccctcca	: gcactttaag	aaaagcattg	1200
gcttcctatg ct	gatgtttt	gageteteet	t aaaaagtcag	g ctttgcttgc	tttagctgct	1260
catgccactg at	tctactga	agctgataga	a ctgaaattto	ttgcgtctcc	tgctggaaag	1320
gatgaatatg ct	cagtggat	agttgcaage	c cacagaagt	c tccttgaggt	catggaggcc	1380
ttcccatcag ct	aagcetee	gcttggtgtt	t ttttttgca	ctgttgcccc	acgtttgcag	1440
ccgagatact at	tccatttc	ttcttcccca	a aagtttgcg	caaataggat	tcatgtaact	1500
tgtgcattag tg	tatgagca	aacaccgtca	a ggccgcgtto	c acaagggagt	ctgttcaaca	1560
tggatgaaga at	gccgtgcc	tatgacagaa	a agccaggati	gcagttgggc	cccaatttat	1620
gttagaacat cc	aatttcag	acttectte	t gatcctaag	g teccagttat	catgattggc	1680
ccaggcactg ga	ttggctcc	atttagaggi	t ttccttcag	y aaaggttagc	tcagaaggaa	1740
gctgggactg ag	ctcggaac	agccatttta	a ttcttcgga	gcaggaatcg	caaagtggat	1800
ttcatatatg aa	gacgagct	taataattt	t gtggagacg	g gggetettte	cgagcttgtt	1860
acggcettet et	cgtgaagg	tgccactaa	g gagtacgtg	c aacacaagat	gactcagaag	1920
gcttcggata tc	tggaattt	tctctctgag	g ggagcatati	tgtatgtttg	cggtgatgcc	1980
aaaggcatgg cc	aaagatgt	acatcggact	t ctgcacacaa	a ttgtgcaaga	acagggatct	2040
ctagactcct ca	aaggcgga	gctctacgt	g aagaatcta	c aaatggcagg	aagatatctc	2100
cgtgatgtat gg	taa					2115
<210> SEQ ID 1 <211> LENGTH: <212> TYPE: PI <213> ORGANIS	704 RT	isia annua				
<400> SEQUENC	E: 11					
Met Gln Ser T 1	nr Thr Se 5	er Val Lys	Leu Ser Pro 10) Phe Asp Le	u Met Thr 15	
	5 sn Gly Ly	-	10	-	15	
1 Ala Leu Leu A	5 sn Gly Ly D	ys Val Ser	10 Phe Asp Th: 25	: Ser Asn Th 30	15 r Ser Asp	
1 Ala Leu Leu A 2 Thr Asn Ile P	5 sn Gly Ly 0 ro Leu Ai	ys Val Ser la Val Phe 40	10 Phe Asp Th: 25 Met Glu Ass	r Ser Asn Th: 30 h Arg Glu Le 45	15 r Ser Asp u Leu Met	
1 Ala Leu Leu A 2 Thr Asn Ile P 35 Ile Leu Thr T 50 Val Trp Arg Ar	5 sn Gly Ly ro Leu A nr Ser Va rg Ser Sa	ys Val Ser la Val Phe 40 al Ala Val 55 er Ser Ala	10 Phe Asp Thr 25 Met Glu Asu Leu Ile Gly Ala Lys Lys	Ser Asn Th 30 Arg Glu Le 45 7 Cys Val Va 60	15 r Ser Asp u Leu Met l Val Leu u Ser Pro	
1 Ala Leu Leu A 2 Thr Asn Ile P 35 Ile Leu Thr T 50 Val Trp Arg A 65	5 sn Gly Ly ro Leu A nr Ser Va rg Ser Sa 70	ys Val Ser la Val Phe 40 al Ala Val 55 er Ser Ala 0	10 Phe Asp Th: 25 Met Glu Asr Leu Ile Gly Ala Lys Lys	r Ser Asn Th 30 Arg Glu Le 45 7 Cys Val Va 60 8 Ala Ala Gl	15 r Ser Asp u Leu Met l Val Leu u Ser Pro 80	
1 Ala Leu Leu A 2 Thr Asn Ile P 35 Ile Leu Thr T 50 Val Trp Arg Ar	5 sn Gly Ly ro Leu A nr Ser Va rg Ser Sa 70	ys Val Ser la Val Phe 40 al Ala Val 55 er Ser Ala 0	10 Phe Asp Th: 25 Met Glu Asr Leu Ile Gly Ala Lys Lys	r Ser Asn Th 30 Arg Glu Le 45 7 Cys Val Va 60 8 Ala Ala Gl	15 r Ser Asp u Leu Met l Val Leu u Ser Pro 80	
1 Ala Leu Leu A Thr Asn Ile P: Jle Leu Thr Ti Val Trp Arg Arg	5 sn Gly Ly ro Leu A nr Ser Va rg Ser Sa 70 al Pro Ly 85	ys Val Ser la Val Phe 40 al Ala Val 55 er Ser Ala 0 ys Lys Val	10PheAspThe25GluAspMetGluAspLeuIleGluAlaLysCrThrGluAsp90St	Ser Asn Th 30 Arg Glu Le 45 Cys Val Va 60 Ala Ala Gl Glu Val As	15 r Ser Asp u Leu Met l Val Leu u Ser Pro 80 p Asp Gly 95 r Ala Glu	
1 Ala Leu Leu A Thr Asn Ile P: Jle Leu Thr Ti Val Trp Arg Arg	5 Sn Gly Ly ro Leu A: nr Ser Va rg Ser Sa rg al Pro Ly 85 al Thr Va 00	ys Val Ser la Val Phe 40 al Ala Val 55 er Ser Ala 0 ys Lys Val al Phe Phe	10PheAspTh:MetGluAspLeuIleGl;AlaLysLysThrGluAsp90GlyThrGlyThrGln	Ser Asn Thi 30 Arg Glu Le 45 Cys Val Va 60 Ala Ala Gli O Glu Val Asy 1 Thr Gly Thi 11	15 r Ser Asp u Leu Met l Val Leu u Ser Pro 80 p Asp Gly 95 r Ala Glu	
1 Ala Leu Leu A Thr Asn Ile P Jle Leu Thr T Val Trp Arg Arg Lys Lys Arg Lys Lys Y Gly Phe Ala Lys	5 Sn Gly Ly ro Leu A nr Ser Va rg Ser Sa rg Ser Ly al Pro Ly al Thr Va ys Ala La	ys Val Ser la Val Phe 40 al Ala Val 55 S Ala o ys Lys Val al Phe Phe eu Val Glu 120	10PheAspTh:MetGluAspLeuIleGl;AlaLysLysAlaLysAspGlyThrGliGluAlaLys	Ser Asn Th 30 Arg Glu Ler 7 Cys Val Va 60 Ala Ala Gl 5 Glu Val Asy 1 Thr Gly Th 11 Ala Arg Ty 125	15 r Ser Asp u Leu Met l Val Leu Ser Pro 80 p Asp Gly 95 r Ala Glu r Glu Lys	
1 Ala Leu Leu A Thr Asn Ile P Jle Leu Thr T Val Trp Arg A Val Ile Val Val Arg Lys Lys Y Gly Phe Ala Lus	5 Sn Gly Ly ro Leu A: nr Ser V: rg Ser Sc rg al Pro Ly 85 al Thr V: ys Ala Lo ys Val I: lu Lys Lo	ys Val Ser la Val Phe 40 al Ala Val 55 Ala o Ser Ala ys Lys Val al Phe Phe eu Val Glu 120 le Asp Leu 135	10PheAspTheMetGluAspLeuIleGluAlaLysLysThrGluAspGluAlaLysGluAlaLysAspAspTy	Ser Asn Th. Arg Glu Le ⁴ Cys Val Va Ala Ala Gl ² Glu Val Asy Thr Gly Th. 11 Ala Arg Ty. 125 Ala Ala Gl ² Ala Ala Gl ² 140	15 r Ser Asp u Leu Met l Val Leu Ser Pro 80 p Asp Gly 95 r Ala Glu r Glu Lys u Asp Asp	
1AlaLeuLeuAThrAsnIleYIleLeuThrTrValTrpArgArgValArgLysLysYGlyPheAlaLAlaValPheAlaLCluTyrGluGluGlu	5 Sn Gly Ly ro Leu A: nr Ser Va rg Ser Sa rg Ser Sa rg Ser Ly al Pro Ly 85 Al Thr Va ys Ala La ys Val I: lu Lys La 19 19 Asp G:	ys Val Ser la Val Phe 40 al Ala Val 55 Ala o Ser Ala ys Lys Val al Phe Phe eu Val Glu 120 le Asp Leu 135	10PheAspTheMetGluAspLeuIleGlyAlaLysLysThrGluAspGluAlaLysGluAlaLysGluSapTy:GluSapLysThrAspAspAspAspLysCluSapLysCluSapLysCluSapLysThrAspAspThrAspAsp	Ser Asn Th 30 Arg Glu Ler 45 7 Cys Val Va 60 8 Ala Ala Glr 11 9 Ala Arg Ty: 125 7 Ala Ala Glr 140 9 Ala Phe Ph	15 r Ser Asp u Leu Met Val Leu Val Leu Ser Pro 80 p Asp Gly 95 Glu Lys u Asp Asp e Phe Leu 160 g Phe Tyr	
1 Ala Leu Leu A.2 Thr Asn Ile Y.2 Thr Asn Ile Y.2 Ile Leu Thr Ile Val Trp Arg Arg Y.2 Arg Lys Lys Y.2 Gly Phe Ala Y.2 Ala Val Phe Ala Glu Tyr Glu Glu Glu	5 Sn Gly Ly ro Leu A: nr Ser Va rg Ser Sa rg Ser Sa rg al Pro Ly 85 ly Ala La ys Val I: lu Lys La 165 165	ys Val Ser la Val Phe 40 al Ala Val 55 Ala o Ser Ala ys Lys Val al Phe Phe eu Val Glu 120 le Asp Leu 135 Lys 50 Lys Lys	10PheAspTheMetGluAspLeuIleGluAlaLysLysThrGluAspGluAlaLysGluAspTysGluSaspTysGluSaspLysLunAspAspAspAspTysGluSaspLysLunSaspAspSaspSaspLysLunSaspLysLunSaspAspLunSaspLysLunSaspLysLunSaspLysLunSaspLysLunSaspLysLunLysLysLunLysLysLunLysLysLunLysLysLunLysLysLunLysLysLunLys </td <td>Ser Asn Thi 30 Arg Glu Le 45 Cys Val Va 60 Ala Ala Gli Ala Ala Gli 11 Ala Arg Ty 125 Ala Ala Gli 140 Ala Phe Phi Ala Ala Ara</td> <td>15 r Ser Asp u Leu Met Val Leu Ser Pro 80 p Asp Gly p Asp Glu o Ala Glu r Glu Lys u Asp Asp e Phe Leu 160 g Phe Tyr</td> <td></td>	Ser Asn Thi 30 Arg Glu Le 45 Cys Val Va 60 Ala Ala Gli Ala Ala Gli 11 Ala Arg Ty 125 Ala Ala Gli 140 Ala Phe Phi Ala Ala Ara	15 r Ser Asp u Leu Met Val Leu Ser Pro 80 p Asp Gly p Asp Glu o Ala Glu r Glu Lys u Asp Asp e Phe Leu 160 g Phe Tyr	

														ucu	
Gln	Tyr	Ala 195	Val	Phe	Gly	Leu	Gly 200	Asn	Arg	Gln	Tyr	Glu 205	His	Phe	Asn
ГÀа	Ile 210	Ala	Lys	Val	Val	Asp 215	Glu	Lys	Leu	Val	Glu 220	Gln	Gly	Ala	Lys
Arg 225	Leu	Val	Pro	Val	Gly 230	Met	Gly	Aab	Aab	Asp 235	Gln	Сүз	Ile	Glu	Asp 240
Asp	Phe	Thr	Ala	Trp 245	Гла	Glu	Leu	Val	Trp 250	Pro	Glu	Leu	Asp	Gln 255	Leu
Leu	Arg	Asp	Glu 260	Asp	Asp	Thr	Ser	Val 265	Ala	Thr	Pro	Tyr	Thr 270	Ala	Ala
Val	Ala	Glu 275	Tyr	Arg	Val	Val	Phe 280	His	Asp	Lys	Pro	Glu 285	Thr	Tyr	Asp
Gln	Asp 290	Gln	Leu	Thr	Asn	Gly 295	His	Ala	Val	His	Asp 300	Ala	Gln	His	Pro
Суя 305	Arg	Ser	Asn	Val	Ala 310	Val	Lys	Lys	Glu	Leu 315	His	Ser	Pro	Leu	Ser 320
Asp	Arg	Ser	Cys	Thr 325	His	Leu	Glu	Phe	Asp 330	Ile	Ser	Asn	Thr	Gly 335	Leu
Ser	Tyr	Glu	Thr 340	Gly	Asp	His	Val	Gly 345	Val	Tyr	Val	Glu	Asn 350	Leu	Ser
Glu	Val	Val 355	Asp	Glu	Ala	Glu	Lys 360	Leu	Ile	Gly	Leu	Pro 365	Pro	His	Thr
Tyr	Phe 370	Ser	Val	His	Thr	Asp 375	Asn	Glu	Asp	Gly	Thr 380	Pro	Leu	Gly	Gly
Ala 385	Ser	Leu	Pro	Pro	Pro 390	Phe	Pro	Pro	Сув	Thr 395	Leu	Arg	Lys	Ala	Leu 400
Ala	Ser	Tyr	Ala	Asp 405	Val	Leu	Ser	Ser	Pro 410	Гла	Гла	Ser	Ala	Leu 415	Leu
Ala	Leu	Ala	Ala 420	His	Ala	Thr	Asp	Ser 425	Thr	Glu	Ala	Asp	Arg 430	Leu	Lys
Phe	Leu	Ala 435	Ser	Pro	Ala	Gly	Lys 440	Asp	Glu	Tyr	Ala	Gln 445	Trp	Ile	Val
Ala	Ser 450	His	Arg	Ser	Leu	Leu 455	Glu	Val	Met	Glu	Ala 460	Phe	Pro	Ser	Ala
Lys 465	Pro	Pro	Leu	Gly	Val 470	Phe	Phe	Ala	Ser	Val 475	Ala	Pro	Arg	Leu	Gln 480
Pro	Arg	Tyr	Tyr	Ser 485	Ile	Ser	Ser	Ser	Pro 490	Lys	Phe	Ala	Pro	Asn 495	Arg
Ile	His	Val	Thr 500	Суз	Ala	Leu	Val	Tyr 505	Glu	Gln	Thr	Pro	Ser 510	Gly	Arg
Val	His	Lys 515	Gly	Val	Сүз	Ser	Thr 520	Trp	Met	Lys	Asn	Ala 525	Val	Pro	Met
Thr	Glu 530	Ser	Gln	Asp	Сүз	Ser 535	Trp	Ala	Pro	Ile	Tyr 540	Val	Arg	Thr	Ser
Asn 545	Phe	Arg	Leu	Pro	Ser 550	Asp	Pro	Lys	Val	Pro 555	Val	Ile	Met	Ile	Gly 560
Pro	Gly	Thr	Gly	Leu 565	Ala	Pro	Phe	Arg	Gly 570	Phe	Leu	Gln	Glu	Arg 575	Leu
Ala	Gln	Lys	Glu 580	Ala	Gly	Thr	Glu	Leu 585	Gly	Thr	Ala	Ile	Leu 590	Phe	Phe
Gly	Сув	Arg 595	Asn	Arg	Гла	Val	Asp 600	Phe	Ile	Tyr	Glu	Asp 605	Glu	Leu	Asn
Asn	Phe	Val	Glu	Thr	Gly	Ala	Leu	Ser	Glu	Leu	Val	Thr	Ala	Phe	Ser

-continued	
610 615 620	
Arg Glu Gly Ala Thr Lys Glu Tyr Val Gln His Lys Met Thr Gln Lys625630635640	
Ala Ser Asp Ile Trp Asn Phe Leu Ser Glu Gly Ala Tyr Leu Tyr Val 645 650 655	
Cys Gly Asp Ala Lys Gly Met Ala Lys Asp Val His Arg Thr Leu His 660 665 670	
Thr Ile Val Gln Glu Gln Gly Ser Leu Asp Ser Ser Lys Ala Glu Leu 675 680 685	
Tyr Val Lys Asn Leu Gln Met Ala Gly Arg Tyr Leu Arg Asp Val Trp 690 695 700	
<210> SEQ ID NO 12 <211> LENGTH: 1530 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 12	
atggeettet tetecatgat etceattete ettggettig tiateteete etteatette	60
atottottot toaagaaact tototootto tocagaaaga acatgtotga agtotocact	120
ctcccctctg ttccagtggt accagggttt cctgttattg ggaacttgct gcaactaaaa gaqaagaaac ctcacaagac tttcactaga tggtcagaga tttatggtcc tatttactct	240
ataaaqatqq qttcttcttc tcttattqtc ctcaattcta ctqaqactqc caaaqaqqcc	300
atggtgacgc ggttttcgtc tatctcaacg aggaagttgt caaatgcgtt gacagtcctt	360
actigtgaca aatctatggt tgctactagt gattatgatg atttccacaa gttggtgaaa	420
cggtgtctct tgaacggtct tttgggtgct aatgcacaga aacgaaaaag acattacaga	480
gatgcactca ttgaaaatgt gtcttccaag ttgcatgccc atgctaggga ccatccacaa	540
gaacctgtaa acttcagagc tatatttgag catgagcttt tcggtgtagc attgaagcaa	600
gettttggga aagatgtgga atccattat gttaaagaac teggtgtgac tttgtegaaa	660
gacgagatct tcaaggtttt agtacatgac atgatggaag gtgcaattga tgttgattgg	720
agagacttct tcccatactt gaaatggatt ccaaataaaa gttttgaagc aagaatccag	780
caaaagcata aacgtagact cgcagtgatg aatgctctga ttcaagatcg actgaagcag	840
aatggttcag aatcggatga tgattgctat ctcaacttct tgatgtcgga agcgaaaaca	900
ctaaccaagg agcaaattgc tatcttggtt tgggagacga ttatcgagac agctgacact	960
actttggtta caactgaatg ggccatctat gagctcgcta agcatccaag tgtccaagat	1020
cgtctgtgca aagaaatcca aaatgtctgc ggaggagaaa agttcaaaga agagcaattg	1080
tetcaagtte ettatetcaa tggagtettt catgaaaege ttaggaaata cagteetget	1140
cctctagttc ccattcgcta cgcccacgag gatacgcaaa tcggaggcta tcatgtccct	1200
gcaggaagtg agattgcaat aaacatatat ggatgcaaca tggataagaa gcgttgggag	1260
agaccagagg actggtggcc ggagcggttt cttgatgatg gcaaatatga aacgtcagat	1320
cttcacaaga caatggcgtt tggagcggga aagagggttt gtgctggtgc tcttcaagca	1380

1440

1500 1530

atggctatta tcaatccaag gcgttcttaa

teteteatgg caggeattge tattggaaga ttagtgeaag aattegagtg gaagettaga

gatggcgaag aagagaatgt ggatacatat ggcttgacct ctcagaagct ttatcctctt

<210> SEQ ID NO 13

<211> LENGTH: 509 <212> TYPE: PRT													
<213> ORGANI	SM: Arabi	dopsis	thalia	ina									
<400> SEQUEN	CE: 13												
Met Ala Phe 1	Phe Ser M 5	et Ile	Ser Il	.e Leu 10	Leu	Gly	Phe	Val	Ile 15	Ser			
Ser Phe Ile	Phe Ile P 20	ne Phe	Phe Ly 25	-	Leu	Leu	Ser	Phe 30	Ser	Arg			
Lys Asn Met 35	Ser Glu V		Thr Le 40	eu Pro	Ser	Val	Pro 45	Val	Val	Pro			
Gly Phe Pro 50	Val Ile G	ly Asn 55	Leu Le	eu Gln	Leu	Lys 60	Glu	Lys	Lys	Pro			
His Lys Thr 65	Phe Thr A 7		Ser Gl	u Ile	Tyr 75	Gly	Pro	Ile	Tyr	Ser 80			
Ile Lys Met	Gly Ser S 85	er Ser	Leu Il	.e Val 90	Leu	Asn	Ser	Thr	Glu 95	Thr			
Ala Lys Glu	Ala Met V 100	al Thr	Arg Ph 10		Ser	Ile	Ser	Thr 110	Arg	Гла			
Leu Ser Asn 115	Ala Leu T		Leu Th 120	nr Cys	Asp	Lys	Ser 125	Met	Val	Ala			
Thr Ser Asp 130	Tyr Asp A	sp Phe 135	His Ly	's Leu	Val	Lys 140	Arg	Cys	Leu	Leu			
Asn Gly Leu 145		la Asn 50	Ala Gl	n Lys	Arg 155	Lys	Arg	His	Tyr	Arg 160			
Asp Ala Leu	Ile Glu A 165	sn Val	Ser Se	er Lys 170	Leu	His	Ala	His	Ala 175	Arg			
Asp His Pro	Gln Glu P 180	ro Val	Asn Ph 18		Ala	Ile	Phe	Glu 190	His	Glu			
Leu Phe Gly 195	Val Ala L		Gln Al 200	.a Phe	Gly	Lys	Asp 205	Val	Glu	Ser			
Ile Tyr Val 210	Lys Glu L	eu Gly 215	Val Th	nr Leu	Ser	Lys 220	Asp	Glu	Ile	Phe			
Lys Val Leu 225		sp Met 30	Met Gl	u Gly	Ala 235	Ile	Asp	Val	Asp	Trp 240			
Arg Asp Phe	Phe Pro T 245	yr Leu	Lys Tr	p Ile 250	Pro	Asn	Lys	Ser	Phe 255	Glu			
	260		26	5				270					
Leu Ile Gln 275		-	280	-			285	-	-	-			
Cys Tyr Leu 290		295			-	300			-				
Gln Ile Ala 305	3	10			315				-	320			
Thr Leu Val	Thr Thr G 325	lu Trp	Ala Il	e Tyr. 330	Glu	Leu	Ala	Lys	His 335	Pro			
Ser Val Gln	Asp Arg L 340	eu Cys	Lys Gl 34		Gln	Asn	Val	Суз 350	Gly	Gly			
Glu Lys Phe 355	Lys Glu G		Leu Se 360	er Gln	Val	Pro	Tyr 365	Leu	Asn	Gly			
Val Phe His 370	Glu Thr L	eu Arg 375	Lүз Ту	vr Ser	Pro	Ala 380	Pro	Leu	Val	Pro			
Ile Arg Tyr	Ala His G	lu Asp	Thr Gl	n Ile	Gly	Gly	Tyr	His	Val	Pro			

continued

							-	con	tin	ued				
385		390				395					400		 	 -
Ala Gly Ser	Glu Ile 405	Ala I	le Asn	Ile	Tyr 410	Gly	Суз	Asn	Met	Asp 415	Lys			
Lys Arg Trp	Glu Arg 420	Pro G	3lu Asp	Trp 425	Trp	Pro	Glu	Arg	Phe 430	Leu	Asp			
Asp Gly Lys 435	Tyr Glu	Thr S	Ser Asp 440	Leu	His	Гла	Thr	Met 445	Ala	Phe	Gly			
Ala Gly Lys 450	Arg Val	-		Ala	Leu	Gln	Ala 460		Leu	Met	Ala			
Gly Ile Ala 465	-			Gln	Glu	Phe 475		Trp	Lys	Leu	Arg 480			
Asp Gly Glu			/al Asp	Thr	Tyr 490		Leu	Thr	Ser	Gln 495				
Leu Tyr Pro		Ala I	le Ile	Asn 505		Arg	Arg	Ser		495				
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI <400> SEQUEN	I: 1578 DNA SM: Gibb	perell	a fuji	kuro:	i									
-		+ ~~~	anatha	a	aasta	~~~~	aat	t a t t /			ataata	60		
atgagtaagt c	-	-	-	-	-	-	-				-	60		
ttaggtcttg a gcttggttat g		-		-			-					120 180		
geriggilal g gtegtagget a	-		-		-				-	-		240		
gaagggggat c												300		
cgaaagcttg g	-	-					-					360		
ctgtcccaag a	-	-			-			-				420		
acacgggggca t	ggtettte	t gca	aagtga	t tto	gcaga	aacc	gtg	tgati	cca q	gcago	eggttg	480		
acgccaaaac t	cgtatcgt	t gac	caaaggt	a atq	gaago	gagg	agci	ttga	cta 1	tgcct	tgacc	540		
aaagagatgc c	tgacatga	ia gaa	atgatga	a tgo	ggttg	gaag	tcg	acati	tc 1	ttcca	atcatg	600		
gtcaggctca t	atcacgca	t ctc	cagccag	a gto	gttto	ctcg	gtc	caga	gca (ctgco	cgcaac	660		
caagaatggt t	gacgacca	ic tgo	agagta	c ago	cgaga	agcc	tgti	tcata	aac 1	tggct	ttatt	720		
ctccgcgttg t	cccccata	at tct	aagacc	a tto	cataç	geee	cgc	tgcta	acc (ctcct	cacaga	780		
acactacttc g	gcaacgtct	c gto	aggtog	a aga	agtta	attg	gaga	acato	cat 1	tcgct	cccag	840		
caaggtgatg g	caacgagg	ja cat	cctgtc	a tgo	gatga	aggg	atg	ctgc	gac a	agggg	gaagaa	900		
aagcaaattg a	icaacattg	je cea	agcggat	g cti	tatco	ctga	gtc	tcgc	gtc 1	tatto	cacact	960		
acggcaatga c	gatgacgo	a tgo	tatgta	t gao	cttat	tgtg	ctt	geeet	cga 🤉	gtaca	atagag	1020		
cctcttagag a	ıtgaggtca	ia aag	ıtgtcgt	t ggo	cgcta	agtg	gtt	ggga	caa q	gacgo	gcgttg	1080		
aatcgattcc a	caaactco	ja cag	getttet	c aaa	agagt	tcac	aac	gctto	caa 🤇	cccc	gtgttc	1140		
ctcttaacgt t	caatcgca	it tta	atcacca	a tco	catga	acac	tct	cagat	cgg (cacca	aacatc	1200		
ccatcaggca c	tcgcatcg	jc ggt	tccctc	t cad	cgcga	atgc	ttc	agga	ctc a	agcgo	catgtc	1260		
ccaggcccga c	gccaccaa	ic cga	igtttga	t gga	attta	agat	act	caaa	gat 1	tcgct	ccagac	1320		
tcaaactatg c	acagaaat	a tct	cttctc	c ato	gacto	gatt	cta	gtaa	cat o	ggcgt	ttggg	1380		
tatgggaaat a	legeetgee	c ago	gcggtt	c tat	tgcat	tcta	atg	agato	gaa q	gctga	actttg	1440		

1	5
-	υ.

										-	con	tin	ued			
gcgatac	tcc 1	ttta	acaa	tt t	gagti	tcaa	g tt	gccaç	gatg	gga	aagg	aag a	accad	cgaaat	1500	
atcacta	ttg a	atagi	tgaca	at g	ataco	ctgat	t cc	gagaq	gcta	ggci	tgtg	cgt 1	tagga	aagcga	1560	
tcactga	gag a	atgaa	atga												1578	
<210> S <211> L <212> T <213> O	ENGTI YPE :	H: 52 PRT	25	bere	lla :	fujil	kuro:	i								
<400> S	EQUEI	NCE :	15													
Met Ser 1	Lys	Ser	Asn 5	Ser	Met	Asn	Ser	Thr 10	Ser	His	Glu	Thr	Leu 15	Phe		
Gln Gln	Leu	Val 20	Leu	Gly	Leu	Asp	Arg 25	Met	Pro	Leu	Met	Asp 30	Val	His		
Trp Leu	Ile 35	Tyr	Val	Ala	Phe	Gly 40	Ala	Trp	Leu	Суа	Ser 45	Tyr	Val	Ile		
His Val 50	Leu	Ser	Ser	Ser	Ser 55	Thr	Val	Lys	Val	Pro 60	Val	Val	Gly	Tyr		
Arg Ser 65	Val	Phe	Glu	Pro 70	Thr	Trp	Leu	Leu	Arg 75	Leu	Arg	Phe	Val	Trp 80		
Glu Gly	Gly	Ser	Ile 85	Ile	Gly	Gln	Gly	Tyr 90	Asn	Lys	Phe	Lys	Asp 95	Ser		
Ile Phe	Gln	Val 100	Arg	Lys	Leu	Gly	Thr 105	Asp	Ile	Val	Ile	Ile 110	Pro	Pro		
Asn Tyr	Ile 115	Asp	Glu	Val	Arg	Lys 120	Leu	Ser	Gln	Aap	Lys 125	Thr	Arg	Ser		
Val Glu 130		Phe	Ile	Asn	Asp 135	Phe	Ala	Gly	Gln	Tyr 140	Thr	Arg	Gly	Met		
Val Phe 145	Leu	Gln	Ser	Asp 150	Leu	Gln	Asn	Arg	Val 155	Ile	Gln	Gln	Arg	Leu 160		
Thr Pro	Lys	Leu	Val 165	Ser	Leu	Thr	Lys	Val 170	Met	Lys	Glu	Glu	Leu 175	Asp		
Tyr Ala	Leu	Thr 180	Lys	Glu	Met	Pro	Asp 185	Met	Lys	Asn	Asp	Glu 190	Trp	Val		
Glu Val	Asp 195	Ile	Ser	Ser	Ile	Met 200	Val	Arg	Leu	Ile	Ser 205	Arg	Ile	Ser		
Ala Arg 210		Phe	Leu	Gly	Pro 215	Glu	His	Суз	Arg	Asn 220	Gln	Glu	Trp	Leu		
Thr Thr 225	Thr	Ala	Glu	Tyr 230	Ser	Glu	Ser	Leu	Phe 235	Ile	Thr	Gly	Phe	Ile 240		
Leu Arg	Val	Val	Pro 245	His	Ile	Leu	Arg	Pro 250	Phe	Ile	Ala	Pro	Leu 255	Leu		
Pro Ser	Tyr	Arg 260	Thr	Leu	Leu	Arg	Asn 265	Val	Ser	Ser	Gly	Arg 270	Arg	Val		
Ile Gly	Asp 275	Ile	Ile	Arg	Ser	Gln 280	Gln	Gly	Asp	Gly	Asn 285	Glu	Asp	Ile		
Leu Ser 290	_	Met	Arg	Asp	Ala 295	Ala	Thr	Gly	Glu	Glu 300	Lys	Gln	Ile	Asp		
Asn Ile 305	Ala	Gln	Arg	Met 310	Leu	Ile	Leu	Ser	Leu 315	Ala	Ser	Ile	His	Thr 320		
Thr Ala	Met	Thr	Met 325	Thr	His	Ala	Met	Tyr 330	Asp	Leu	Суз	Ala	Сув 335	Pro		
Glu Tyr	Ile	Glu 340		Leu	Arg	Asp	Glu 345		Lys	Ser	Val	Val 350		Ala		
		340					345					350				

Ser Gly Trp Asp Lys Thr Ala Leu Asn Arg Phe His Lys Leu Asp Ser
355 360 365 Phe Leu Lys Glu Ser Gln Arg Phe Asn Pro Val Phe Leu Leu Thr Phe
370 375 380
Asn Arg Ile Tyr His Gln Ser Met Thr Leu Ser Asp Gly Thr Asn Ile 385 390 395 400
Pro Ser Gly Thr Arg Ile Ala Val Pro Ser His Ala Met Leu Gln Asp 405 410 415
Ser Ala His Val Pro Gly Pro Thr Pro Pro Thr Glu Phe Asp Gly Phe 420 425 430
Arg Tyr Ser Lys Ile Arg Ser Asp Ser Asn Tyr Ala Gln Lys Tyr Leu 435 440 445
Phe Ser Met Thr Asp Ser Ser Asn Met Ala Phe Gly Tyr Gly Lys Tyr 450 455 460
Ala Cys Pro Gly Arg Phe Tyr Ala Ser Asn Glu Met Lys Leu Thr Leu 465 470 475 480
Ala Ile Leu Leu Gln Phe Glu Phe Lys Leu Pro Asp Gly Lys Gly 485 490 495
Arg Pro Arg Asn Ile Thr Ile Asp Ser Asp Met Ile Pro Asp Pro Arg 500 505 510
Ala Arg Leu Cys Val Arg Lys Arg Ser Leu Arg Asp Glu 515 520 525
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered synthetic Codon optimized Gibberella fujikuroi Gibberella fujikuroi Kaurene Oxidase (GFKO) gene <400> SEQUENCE: 16
atgagtaaga gtaacagtat gaacagtaca teecacgaaa etttatteea acaattagta 60
ttaggtttag atagaatgcc tttgatggat gtccattggt taatctatgt tgcctttggt 120
gcttggttat gttcttacgt aatacacgtc ttgtcttcat ccagtacagt taaagtacca 180
gttgtaggtt atagatcagt tttcgaacct acctggttgt taagattgag atttgtttgg 240
gaaggtggtt ccatcatcgg tcaaggttac aacaaattca aggatagtat cttccaagtt 300
agaaagttag gtacagacat agtaatcatt ccacctaact acatcgatga agttagaaaa 360
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420 acaagaggta tggtcttttt gcaatccgac ttacaaaaca gagttattca acaaagattg 480
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420 acaagaggta tggtctttt gcaatccgac ttacaaaaca gagttattca acaaagattg 480 accccaaaat tggtttcttt aactaaagta atgaaggaag aattggatta cgccttaact 540
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420 acaagaggta tggtctttt gcaatccgac ttacaaaaca gagttattca acaaagattg 480 accccaaaat tggtttcttt aactaaagta atgaaggaag aattggatta cgccttaact 540 aaagaaatgc ctgatatgaa gaacgacgaa tgggtcgaag ttgatattc ttctatcatg 600
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420 acaagaggta tggtctttt gcaatccgac ttacaaaaca gagttattca acaaagattg 480 accccaaaat tggtttcttt aactaaagta atgaaggaag aattggatta cgccttaact 540 aaagaaatgc ctgatatgaa gaacgacgaa tgggtcgaag ttgatattc ttctatcatg 600 gttagattaa tatccagaat cagtgctaga gtcttcttgg gtcctgaaca ttgcagaaat 660
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420 acaagaggta tggtctttt gcaatccgac ttacaaaaca gagttattca acaaagattg 480 accccaaaat tggtttcttt aactaaagta atgaaggaag aattggatta cgccttaact 540 aaagaaatgc ctgatatgaa gaacgacgaa tgggtcgaag ttgatattc ttctatcatg 600 gttagattaa tatccagaat cagtgctaga gtcttcttgg gtcctgaaca ttgcagaaat 660 caagaatggt tgactacaac cgcagaatat tccgaaagtt tgtttatcac aggtttcatt 720
ttgtctcaag acaagactag atcagtagaa ccttttatta acgatttcgc aggtcaatac 420 acaagaggta tggtctttt gcaatccgac ttacaaaaca gagttattca acaaagattg 480 accccaaaat tggtttcttt aactaaagta atgaaggaag aattggatta cgccttaact 540 aaagaaatgc ctgatatgaa gaacgacgaa tgggtcgaag ttgatattc ttctatcatg 600 gttagattaa tatccagaat cagtgctaga gtcttcttgg gtcctgaaca ttgcagaaat 660 caagaatggt tgactacaac cgcagaatat tccgaaagtt tgttatcac aggtttcatt 720 ttgagagtcg ttccacatat cttgagacct tttatcgcac cattgttgcc ttcatacaga 780
ttgtctcaagacaagaactagatcagtagaaccttttattaacgatttcgcaggtcaatac420acaagaggtatggtcttttgcaatccgacttacaaaacagagttattcaacaagagttg480accccaaaattggtttctttaactaaagtaatgaaggaagaattggattacgccttaact540aaagaaatgcctgatatgaagaacgacgaatgggtcgaagttgatattcttctatcatg600gttagattaatatccagaatcagtgctagagtcggtcgaagttgatattcttctatcatg660caagaatggttgactacaaccgcagaatattccgaaagtttgttatcacaggttcatt720ttgagagtcgttccacatatcttgagaccttttatcgcaccattgttgccttcatacaga780actttgttgagaaacgtatccagtggtagaagagtcatcggtgacattatcagaatccaa840
ttgtctcaagacaagaactagatcagtagaaccttttattaacgatttcgcaggtcaatac420acaagaggtatggtcttttgcaatccgacttacaaaacagagttattcaacaagagttg480accccaaaattggtttctttaactaaagtaatgaaggaagaattggattacgccttaact540aaagaaatgcctgatatgaagaacgacgaatgggtcgaagttgatattcttctatcatg600gttagattaatatccagaatcagtgctagagtcggtcgaagttgatattcttctatcatg660caagaatggttgactacaaccgcagaatattccgaaagtttgttatcacaggttcatt720ttgagagtcgttccacatatcttgagaccttttatcgcaccattgttgccttcatacaga780actttgttgagaaacgtatccagtggtagaagagtcatcggtgacattatcagaatccaa840
ttgtctcaagacaagactagatcagtagaaccttttattaacgatttcgcaggtcaatac420acaagaggtatggtcttttgcaatccgacttacaaaacagagttattcaacaaagattg480accccaaaattggtttctttaactaaagtaatgaggaagaattggattacgccttaact540aaagaaatgcctgatatgaagaacgacgaatgggtcgaagttgatattcttctatcatg600gttagattaatatccagaatcagtgctagagtcgtcgaagttgatattcttctatcatg660caagaatggttgactacaaccgcagaatattccgaaagttgtttatcacaggttcatt720ttgagagtcgttccacatatcttgagaccttttatcgcaccatgttgccttcatacaga780actttgttgagaaacgtatccagtggtagaaggtcatcggtgacattatcagatccaa840caaggtgacggtaacgaagacattttatcatggatgaagaaggtgaaga900

49

-continued

			CONCIN	lucu	
cctttgagag acga	agttaa atctgtagtc	ggtgcatcag	gttgggataa	gactgccttg	1080
aacagattcc ataa	attgga ctcctttta	aaagaaagtc	aaagattcaa	tccagttttc	1140
ttgttgacct ttaa	cagaat ctatcaccaa	tccatgactt	taagtgatgg	tacaaatatc	1200
ccatctggta ctag	aattgc agttccttcc	catgccatgt	tgcaagatag	tgcccacgtt	1260
ccaggtccta cacc	acctac cgaatttgat	ggtttcagat	actctaagat	cagatctgac	1320
tcaaactacg ctca	aaagta cttattctca	atgactgatt	cttcaaacat	ggcttttggt	1380
tatggtaaat acgo	atgtcc aggtagattt	tacgcctcta	acgaaatgaa	gttgacattg	1440
gctatcttgt tgtt	gcaatt cgagtttaaa	ttgccagatg	gtaaaggtag	acctagaaat	1500
attaccatag atto	tgacat gatacctgac	ccaagagcaa	gattatgcgt	tagaaaaaga	1560
agtttga					1567
<210> SEQ ID NC <211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM:	607 Abies grandis				
<400> SEQUENCE:	17				
atggccatgc ctto	ctcttc attgtcatca	cagattccca	ctgctgctca	tcatctaact	60
gctaacgcac aato	cattcc gcatttctcc	acgacgctga	atgctggaag	cagtgctagc	120
aaacggagaa gctt	gtacct acgatggggt	aaaggttcaa	acaagatcat	tgcctgtgtt	180
ggagaaggtg gtgo	aacctc tgttccttat	cagtctgctg	aaaagaatga	ttcgctttct	240
tcttctacat tggt	gaaacg agaatttcct	ccaggatttt	ggaaggatga	tcttatcgat	300
tctctaacgt catc	tcacaa ggttgcagca	tcagacgaga	agcgtatcga	gacattaata	360
tccgagatta agaa	tatgtt tagatgtatg	ggctatggcg	aaacgaatcc	ctctgcatat	420
gacactgctt gggt	agcaag gattccagca	gttgatggct	ctgacaaccc	tcactttcct	480
gagacggttg aatg	gattet teaaaateag	ttgaaagatg	ggtcttgggg	tgaaggattc	540
tacttcttgg cata	tgacag aatactggct	acacttgcat	gtattattac	ccttaccctc	600
tggcgtactg ggga	gacaca agtacagaaa	ggtattgaat	tcttcaggac	acaagctgga	660
aagatggaag atga	agctga tagtcatagg	ccaagtggat	ttgaaatagt	atttcctgca	720
atgctaaagg aagc	taaaat cttaggcttg	gatctgcctt	acgatttgcc	attcctgaaa	780
caaatcatcg aaaa	gcggga ggctaagctt	aaaaggattc	ccactgatgt	tctctatgcc	840
cttccaacaa cgtt	attgta ttctttggaa	ggtttacaag	aaatagtaga	ctggcagaaa	900
ataatgaaac ttca	atccaa ggatggatca	tttctcagct	ctccggcatc	tacagcggct	960
gtattcatgc gtac	agggaa caaaaagtgc	ttggatttct	tgaactttgt	cttgaagaaa	1020
ttcggaaacc atgt	geettg teactateeg	cttgatctat	ttgaacgttt	gtgggcggtt	1080
gatacagttg agcg	gctagg tatcgatcgt	catttcaaag	aggagatcaa	ggaagcattg	1140
gattatgttt acag	ccattg ggacgaaaga	ggcattggat	gggcgagaga	gaatcctgtt	1200
cctgatattg atga	tacagc catgggcctt	cgaatcttga	gattacatgg	atacaatgta	1260
tcctcagatg tttt	aaaaac atttagagat	gagaatgggg	agttcttttg	cttcttgggt	1320
caaacacaga gaqq	agttac agacatgtta	aacgtcaatc	gttgttcaca	tgtttcattt	1380
	catgga agaagcaaaa				1440
	tgcctt tgacaaatgg				1500
gagtatgcac tcaa	atatcc ctggcataag	agtatgccaa	ggttggaggc	tagaagctat	1560

51

attgaaaact atgggccaga tgatgtgtgg cttggaaaaa ctgtatatat gatgccatac

-continued

atttcgaatg aaaa						
	gtattt a	gaactagco	g aaactgga	ct tcaataag	gt gcagtc	tata 1680
caccaaacag agct	tcaaga t	cttcgaago	g tggtggaa	at catccggt	tt cacgga	tctg 1740
aatttcactc gtga	gcgtgt g	acggaaata	a tatttctca	ac cggcatcc	tt tatctt	tgag 1800
cccgagtttt ctaa	gtgcag a	gaggtttat	acaaaaact	tt ccaatttc	ac tgttat	ttta 1860
gatgatcttt atga	cgccca t	ggatcttta	a gacgatct	ta agttgttc	ac agaatc	agtc 1920
aaaagatggg atct	atcact a	gtggaccaa	a atgccaca	ac aaatgaaa	at atgttt	tgtg 1980
ggtttctaca atac	ttttaa t	gatatagca	a aaagaagga	ac gtgagagg	ca agggcg	cgat 2040
gtgctaggct acat	tcaaaa t	gtttggaaa	a gtccaact	tg aagettae	ac gaaaga	agca 2100
gaatggtctg aagc	taaata t	gtgccatco	c ttcaatga	at acatagag	aa tgcgag	tgtg 2160
tcaatagcat tggg	aacagt c	gttctcatt	agtgctct	tt tcactggg	ga ggttct	taca 2220
gatgaagtac tctc	caaaat t	gatcgcgaa	a tctagatt	tc ttcaactc	at gggctt	aaca 2280
gggcgtttgg tgaa	tgacac c	aaaacttat	c caggcagag	ga gaggtcaa	gg tgaggt	ggct 2340
tctgccatac aatg	ttatat g	aaggaccat	cctaaaat	ct ctgaagaa	ga agctct	acaa 2400
catgtctata gtgt	catgga a	aatgcccto	gaagagtt	ga atagggag	tt tgtgaa	taac 2460
aaaataccgg atat	ttacaa a	agactggtt	tttgaaac	tg caagaata	at gcaact	cttt 2520
tatatgcaag ggga	tggttt g	acactatca	a catgatate	gg aaattaaa	ga gcatgt	.caaa 2580
aattgeetet teea	accagt t	gcctag				2607
<pre><210> SEQ ID NO <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM:</pre>	68	randis				
<400> SEQUENCE:	18					
Met Ala Met Pro	Ser Ser	Sor Lou				
1	5	Ser Deu	Ser Ser G 10	ln Ile Pro	Thr Ala A 15	la
1 His His Leu Thr 20	5		10	ro His Phe	15	
His His Leu Thr	Ala Asn	Ala Gln	10 Ser Ile P: 25	ro His Phe	15 Ser Thr T 30	'nr
His His Leu Thr 20 Leu Asn Ala Gly	Ala Asn Ser Ser	Ala Gln Ala Ser 40	10 Ser Ile P: 25 Lys Arg A:	ro His Phe rg Ser Leu 45	15 Ser Thr T 30 Tyr Leu A	rg
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50 Ala Thr Ser Val	Ala Asn Ser Ser Ser Asn Pro Tyr	Ala Gln Ala Ser 40 Lys Ile 55	10 Ser Ile P: 25 Lys Arg A: Ile Ala C: Ala Glu Ly	ro His Phe rg Ser Leu 45 ys Val Gly 60 ys Asn Asp	15 Ser Thr T 30 Tyr Leu A Glu Gly G Ser Leu S	'hr rg tly er
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys	Ala Gln Ala Ser 40 Lys Ile 55 Gln Ser	10 Ser Ile P: 25 Lys Arg Ar Ile Ala C; Ala Glu L; 7! Phe Pro P:	ro His Phe rg Ser Leu 45 ys Val Gly 60 ys Asn Asp 5	15 Ser Thr T 30 Tyr Leu A Glu Gly G Ser Leu S 8 Trp Lys A	'hr rg lly er 0
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50 Ala Thr Ser Val 65 Ser Ser Thr Leu	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys 85	Ala Gln Ala Ser 40 Lys Ile 55 Gln Ser Arg Glu	10 Ser Ile P: 25 Lys Arg A: Ile Ala C: Ala Glu L: 77 Phe Pro P: 90	ro His Phe rg Ser Leu 45 ys Val Gly 60 ys Asn Asp 5 ro Gly Phe	15 Ser Thr T Tyr Leu A Glu Gly G Ser Leu S 8 Trp Lys A 95	'hr rg lly er o sp
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50 Ala Thr Ser Val 65	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys 85	Ala Gln Ala Ser 40 Lys Ile 55 Gln Ser Arg Glu	10 Ser Ile P: 25 Lys Arg A: Ile Ala C: Ala Glu L: 77 Phe Pro P: 90	ro His Phe rg Ser Leu 45 vs Val Gly 60 vs Asn Asp 5 ro Gly Phe ys Val Ala	15 Ser Thr T Tyr Leu A Glu Gly G Ser Leu S 8 Trp Lys A 95	'hr rg lly er o sp
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50 Ala Thr Ser Val 65 Ser Ser Thr Leu Asp Leu Ile Asp	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys 85 Ser Leu	Ala Gln Ala Ser 40 Lys Ile 55 Gln Ser Arg Glu Thr Ser	10 Ser Ile P: 25 Lys Arg Ar Ile Ala C: Ala Glu L: 7! Phe Pro P: 90 Ser His L: 105	ro His Phe rg Ser Leu 45 ys Val Gly 60 ys Asn Asp 5 ro Gly Phe ys Val Ala	15 Ser Thr T 30 Tyr Leu A Glu Gly G Ser Leu S Ser Leu S 17p Lys A 95 Ala Ser A	hr rg dly sp sp
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50 Ala Thr Ser Val 65 Ser Ser Thr Leu Asp Leu Ile Asp 100 Glu Lys Arg Ile	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys 85 Ser Leu Glu Thr	Ala Gln Ala Ser 40 Lys Ile 55 Gln Ser Arg Glu Thr Ser Leu Ile 120	10 Ser Ile P: Lys Arg A: Ile Ala C: Ala Glu L; 7 Phe Pro P: 90 Ser His L; Ser Glu I:	ro His Phe rg Ser Leu 45 vs Val Gly 5 Asn Asp 5 Asn Asp vs Val Ala le Lys Asn 125	15 Ser Thr T 30 Tyr Leu A Glu Gly G Ser Leu S Trp Lys A 95 Ala Ser A 110 Met Phe A	nu nu nu nu nu nu nu nu nu nu nu nu nu n
His His Leu Thr 20 Leu Asn Ala Gly 35 Trp Gly Lys Gly 50 Ala Thr Ser Val 65 Ser Ser Thr Leu Asp Leu Ile Asp 100 Glu Lys Arg Ile 115	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys Ser Leu Glu Thr Gly Glu	Ala Gln Ala Ser 40 Lys Ile Gln Ser Arg Glu Thr Ser Leu Ile 120 Thr Asn 135	10 Ser Ile P: 25 Lys Arg A: Ile Ala C: Ala Glu L: 79 Phe Pro P: Ser His L: 105 Ser Glu I: Pro Ser A: Gly Ser A:	ro His Phe rg Ser Leu 45 vs Val Gly co Gly Phe vs Val Ala le Lys Asn 125 la Tyr Asp	15 Ser Thr T Tyr Leu A Glu Gly G Ser Leu S Trp Lys A Lys A 10 Met Phe A Thr Ala T His Phe P	hr rg dly sp sp rg
His His Leu Thr 20 Leu Asn Ala Gly Trp Gly Lys Gly 50 Ala Thr Ser Val 65 Ser Ser Thr Leu Asp Leu Ile Asp 100 Glu Lys Arg Ile 115 Cys Met Gly Tyr	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys 85 Ser Leu Glu Thr Gly Glu Pro Ala 150	Ala Gln Ala Ser 40 Lys Ile 55 Gln Ser Arg Glu Thr Ser Leu Ile 120 Thr Asn 135 Val Asp	10SerIleP:LysArgA:IleAlaC:AlaGluC:AlaGluC:SerHisL:NoSerAluSerGluI:GlySerAlu	ro His Phe rg Ser Leu 45 vs Val Gly 60 Asp 55 Asn Asp 75 Asn Asp 75 Val Ala 125 1a Tyr Asp 140 55 Asn Pro	15 Ser Thr T Tyr Leu A Glu Gly G Ser Leu S Trp Lys A 110 Ser A 110 Met Phe A Thr Ala T His Phe P	'hr rg lly er o sp rg rp ro 60
HisHisLeuThr 20LeuAsnAlaGlyTrpGlyLysGlyTrpGlyLysQlyAlaThrSerVal65SerThrLeuAspLeuIleAspGluLysArgIleCysMetGlyTyr130ArgIle145ArgIle	Ala Asn Ser Ser Ser Asn Pro Tyr 70 Val Lys Ser Leu Glu Thr Gly Glu Pro Ala 150 Trp Ile	Ala Gln Ala Ser 40 Lys Ile Gln Ser Arg Glu Thr Ser Leu Ile 120 Thr Asn 135 Val Asp Leu Gln	10SerIleP:LysArgA:IleAlaC!AlaGluL;PheProP:90SerHisL;SerGluI:ProSerAiGlySerA:AsnGinL;	ro His Phe rg Ser Leu 45 ws Val Gly 60 Gly Phe vs Val Ala le Lys Asn 140 sp Asn Pro 55 Asn Pro	15 Ser Thr T Tyr Leu A Glu Gly G Ser Leu S Trp Lys A 110 Ser A Thr Ala T Thr Ala T His Phe P 1 Gly Ser T	hr rg dly er o sp sp rg rp ro 60 rp

-continued

_																_
			180					185					190			
Ala	Cys	Ile 195	Ile	Thr	Leu	Thr	Leu 200	Trp	Arg	Thr	Gly	Glu 205	Thr	Gln	Val	1
Gln	Lys 210	Gly	Ile	Glu	Phe	Phe 215	Arg	Thr	Gln	Ala	Gly 220	Lys	Met	Glu	Asp	p
Glu 225	Ala	Asp	Ser	His	Arg 230	Pro	Ser	Gly	Phe	Glu 235	Ile	Val	Phe	Pro	Ala 240	
Met	Leu	Lys	Glu	Ala 245	Гла	Ile	Leu	Gly	Leu 250	Asp	Leu	Pro	Tyr	Asp 255	Leu	u
Pro	Phe	Leu	Lys 260	Gln	Ile	Ile	Glu	Lys 265	Arg	Glu	Ala	Lys	Leu 270	Lys	Arg	g
Ile	Pro	Thr 275	Asp	Val	Leu	Tyr	Ala 280	Leu	Pro	Thr	Thr	Leu 285	Leu	Tyr	Ser	r
Leu	Glu 290	Gly	Leu	Gln	Glu	Ile 295	Val	Asp	Trp	Gln	Lys 300	Ile	Met	Lys	Leu	u
Gln 305	Ser	Lys	Asp	Gly	Ser 310	Phe	Leu	Ser	Ser	Pro 315	Ala	Ser	Thr	Ala	Ala 320	
Val	Phe	Met	Arg	Thr 325	Gly	Asn	Lys	Lys	Суз 330	Leu	Asp	Phe	Leu	Asn 335	Phe	e
Val	Leu	Lys	Lys 340	Phe	Gly	Asn	His	Val 345	Pro	Сув	His	Tyr	Pro 350	Leu	Asp	р
Leu	Phe	Glu 355	Arg	Leu	Trp	Ala	Val 360	Asp	Thr	Val	Glu	Arg 365	Leu	Gly	Ile	e
Asp	Arg 370	His	Phe	Гла	Glu	Glu 375	Ile	Гла	Glu	Ala	Leu 380	Asp	Tyr	Val	Tyr	r
Ser 385		Trp	Asp	Glu	Arg 390	Gly	Ile	Gly	Trp	Ala 395	Arg	Glu	Asn	Pro	Val 400	
Pro	Asp	Ile	Asp	Asp 405	Thr	Ala	Met	Gly	Leu 410	Arg	Ile	Leu	Arg	Leu 415	His	ទ
Gly	Tyr	Asn	Val 420		Ser	Asp	Val	Leu 425		Thr	Phe	Arg	Asp 430		Asn	n
Gly	Glu	Phe 435		Сүз	Phe	Leu	Gly 440		Thr	Gln	Arg	Gly 445		Thr	Asp	р
Met	Leu 450		Val	Asn	Arg	Cys 455		His	Val	Ser	Phe 460	Pro	Gly	Glu	Thr	r
Ile 465		Glu	Glu	Ala	Lys 470		Суз	Thr	Glu	Arg 475		Leu	Arg	Asn	Ala 480	
	Glu	Asn	Val	Asp 485		Phe	Asp	Lys	Trp 490		Phe	Гла	Гла	Asn 495		
Arg	Gly	Glu	Val 500		Tyr	Ala	Leu	Lys 505		Pro	Trp	His	Lys 510		Met	t
Pro	Arg			Ala	Arg	Ser	-		Glu	Asn	Tyr	Gly		Asp	Asp	р
Val	-	515 Leu	Gly	Lys	Thr		520 Tyr	Met	Met	Pro	-	525 Ile	Ser	Asn	Glu	u
Lys	530 Tyr	Leu	Glu	Leu	Ala	535 Lys	Leu	Asp	Phe	Asn	540 Lys	Val	Gln	Ser	Ile	e
545	-				550	-		_		555	-	Lys			560	0
				565				_	570	_	_	-		575	_	
			580					585				Glu	590			
Ser	Pro	Ala 595	Ser	Phe	Ile	Phe	Glu 600	Pro	Glu	Phe	Ser	Lys 605	Сүз	Arg	Glu	u

Val Tyr Thr Lys Thr Ser Asn Phe Thr Val Ile Leu Asp Asp Leu Tyr 610 615 620	
Asp Ala His Gly Ser Leu Asp Asp Leu Lys Leu Phe Thr Glu Ser Val 625 630 635 640	
Lys Arg Trp Asp Leu Ser Leu Val Asp Gln Met Pro Gln Gln Met Lys 645 650 655	
Ile Cys Phe Val Gly Phe Tyr Asn Thr Phe Asn Asp Ile Ala Lys Glu 660 665 670	
Gly Arg Glu Arg Gln Gly Arg Asp Val Leu Gly Tyr Ile Gln Asn Val 675 680 685	
Trp Lys Val Gln Leu Glu Ala Tyr Thr Lys Glu Ala Glu Trp Ser Glu 690 695 700	
Ala Lys Tyr Val Pro Ser Phe Asn Glu Tyr Ile Glu Asn Ala Ser Val 705 710 715 720	
Ser Ile Ala Leu Gly Thr Val Val Leu Ile Ser Ala Leu Phe Thr Gly 725 730 735	
Glu Val Leu Thr Asp Glu Val Leu Ser Lys Ile Asp Arg Glu Ser Arg 740 745 750	
Phe Leu Gln Leu Met Gly Leu Thr Gly Arg Leu Val Asn Asp Thr Lys 755 760 765	
Thr Tyr Gln Ala Glu Arg Gly Gln Gly Glu Val Ala Ser Ala Ile Gln 770 775 780	
Cys Tyr Met Lys Asp His Pro Lys Ile Ser Glu Glu Glu Ala Leu Gln 785 790 795 800	
His Val Tyr Ser Val Met Glu Asn Ala Leu Glu Glu Leu Asn Arg Glu 805 810 815	
Phe Val Asn Asn Lys Ile Pro Asp Ile Tyr Lys Arg Leu Val Phe Glu 820 825 830	
Thr Ala Arg Ile Met Gln Leu Phe Tyr Met Gln Gly Asp Gly Leu Thr 835 840 845	
Leu Ser His Asp Met Glu Ile Lys Glu His Val Lys Asn Cys Leu Phe 850 855 860	
Gln Pro Val Ala 865	
<210> SEQ ID NO 19 <211> LENGTH: 2607 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence <400> SEQUENCE: 19	
atggctatgc ctagttette teteagttea caaatteeaa etgetgetea eeaettaaea	60
gcaaacgcac aaagtattcc acatttttct actacactta atgctggatc tagtgcttct	120
aagaggagat cattgtattt gagatgggga aaaggatcca acaagattat tgcatgcgtg	180
ggagaaggag gtgcaacatc agtteettae caatetgetg agaagaatga ttetttaagt	240
tetteaacae ttgtgaaaag ggagttteea eetggttttt ggaaagatga teteattgat	300
tetttaaett etteecataa agtggetgea teegatgaaa aaaggattga gaeteteatt	360
totgaaatta agaacatgtt tagatgtatg ggttacggag aaactaacco ttotgottac	420
gatacagett gggttgetag gatteeaget gtggatggta gtgataacee acatttteet	480
gagactgttg aatggattet teagaateag eteaaagatg gttettgggg agaaggatte	540

-continued

tatttcttag	cttacgatag	aattttggca	actttggctt	gcattattac	tttgacactt	600
tggagaactg	gtgaaacaca	agttcagaag	ggtattgaat	ttttcaggac	tcaagcagga	660
aagatggagg	atgaggctga	tagtcacaga	ccttcaggtt	tcgagattgt	gtttccagca	720
atgttgaaag	aggctaagat	tcttggattg	gatcttcctt	acgatttgcc	atttctcaag	780
caaattattg	agaaaagaga	agctaagctc	aaaaggattc	ctacagatgt	tctctacgca	840
ttaccaacaa	ctcttttgta	ttctttggaa	ggacttcaag	aaattgttga	ttggcaaaag	900
attatgaaac	tccaaagtaa	ggatggatct	tttctctcat	ctcctgcttc	tactgctgct	960
gtttttatga	ggacaggtaa	caagaagtgt	ttagatttct	taaatttcgt	gctcaaaaag	1020
tttggaaatc	atgttccatg	ccactatcct	cttgatttat	ttgaaagact	ttgggctgtt	1080
gatacagtgg	agaggettgg	tattgatagg	cattttaaag	aagaaattaa	ggaggcattg	1140
gattatgttt	actctcattg	ggatgagaga	ggaattggat	gggctagaga	aaaccctgtt	1200
cctgatattg	atgatacagc	aatgggtctt	agaattttaa	gattgcatgg	atacaatgtt	1260
tcttcagatg	ttttaaaaac	atttagagat	gagaatggag	agttcttctg	ctttttaggt	1320
cagacacaaa	ggggagttac	agatatgttg	aatgttaaca	gatgttctca	tgttagtttc	1380
cctggtgaga	ctattatgga	ggaagctaag	ttgtgcacag	agagatatct	tagaaatgca	1440
ttggagaatg	ttgatgcttt	cgataaatgg	gcattcaaaa	agaatattag	gggtgaagtg	1500
gaatatgctc	tcaagtaccc	atggcataag	tctatgccta	ggttggaggc	tagatcatat	1560
attgagaact	atggtcctga	tgatgtttgg	cttggaaaaa	cagtgtacat	gatgccttat	1620
atttcaaatg	aaaaatacct	tgaactcgct	aagctcgatt	ttaataaggt	tcagtctatt	1680
caccaaactg	agttgcagga	tttaaggagg	tggtggaaat	cttcaggatt	cactgatctt	1740
aattttacta	gagagagagt	tactgagatt	tacttctcac	ctgctagttt	tattttcgaa	1800
ccagagttct	caaaatgtag	agaggtttat	acaaaaacta	gtaatttcac	agttattttg	1860
gatgatttgt	acgatgctca	cggtagtctc	gatgatctta	aactttttac	agaatcagtt	1920
aaaagatggg	atttgtcatt	agttgatcaa	atgccacaac	aaatgaagat	ttgttttgtg	1980
ggattttaca	atacttttaa	tgatattgct	aaagagggta	gggagagaca	aggtagagat	2040
gttcttggat	atattcagaa	cgtttggaaa	gtgcagttag	aggcttatac	aaaagaagca	2100
gagtggtctg	aggcaaagta	tgtgccatct	ttcaatgagt	acattgaaaa	cgcatctgtg	2160
agtattgete	tcggtactgt	tgtgcttatt	tcagctttat	ttacaggaga	ggtgcttact	2220
gatgaagtgt	tgtccaaaat	tgatagggag	agtagatttc	ttcaacttat	gggtcttaca	2280
ggtaggcttg	ttaatgatac	aaagacttat	caagctgaaa	ggggtcaagg	agaagttgct	2340
tctgctattc	aatgttatat	gaaggatcat	cctaaaattt	ctgaagaaga	agcattgcaa	2400
catgtttatt	cagtgatgga	aaacgcactc	gaagaattaa	atagggagtt	cgttaacaac	2460
aaaattccag	atatttataa	aagacttgtt	tttgaaactg	ctagaattat	gcagctcttt	2520
tacatgcaag	gtgatggatt	aactttgtcc	catgatatgg	aaattaagga	gcacgttaaa	2580
aattgtttgt	tccaacctgt	tgcataa				2607

<210> SEQ ID NO 20 <211> LENGTH: 658 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence

59

-continued

<400> SEOUENCE: 20 gageteagtt tateattate aataetegee attteaaaga ataegtaaat aattaatagt 60 agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 120 acatgeeccaa aatagggggge gggttacaca gaatatataa categtaggt gtetgggtga 180 acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 240 aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 300 ccattetett agegeaacta cagagaacag gggeacaaac aggeaaaaaa egggeacaac 360 ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 420 atgtatetat etcatttet tacacettet attacettet getetetet attiggaaaa 480 agetgaaaaa aaaggttgaa accagtteee tgaaattatt eccetaettg actaataagt 540 atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 600 tctactttta tagttagtct ttttttagt tttaaaacac cagaacttag tttcgacg 658 <210> SEQ ID NO 21 <211> LENGTH: 666 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence <400> SEOUENCE: 21 ttctggcaac caaacccata tacatcggga ttcctataat accttcgttg gtctccctaa 60 catgtaggtg gcggagggga gatatacaat agaacagata ccagacaaga cataatgggc 120 taaacaagac tacaccaatt acactgcctc attgatggtg gtacataacg aactaatact 180 gtagccctag acttgatagc catcatcata tcgaagtttc actacccttt ttccatttgc 240 catctattga agtaataata ggcgcatgca acttettte tttttttte ttttetet 300 cccccgttgt tgtctcacca tatccgcaat gacaaaaaaa tgatggaaga cactaaagga 360 aaaaattaac gacaaagaca gcaccaacag atgtcgttgt tccagagctg atgaggggta 420 tetegaagea caegaaaett ttteetteet teatteaege acaetaetet etaatgagea 480 acggtatacg gccttccttc cagttacttg aatttgaaat aaaaaaaagt ttgctgtctt 540 gctatcaagt ataaatagac ctgcaattat taatcttttg tttcctcgtc attgttctcg 600 ttccctttct tccttgtttc tttttctgca caatatttca agctatacca agcatacaat 660 caacta 666 <210> SEQ ID NO 22 <211> LENGTH: 408 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence <400> SEQUENCE: 22 gageteatag etteaaaatg tttetaetee ttttttaete tteeagattt teteggaete 60 cgcgcatcgc cgtaccactt caaaacaccc aagcacagca tactaaattt cccctctttc 120 180 ctcgtttctt tttcttcgtc gaaaaaggca ataaaaattt ttatcacgtt tcttttctt 240 gaaaattttt tttttgattt ttttctcttt cgatgacctc ccattgatat ttaagttaat 300 aaacggtett caatttetea agttteagtt teatttttet tgttetatta caactttttt 360

61	
01	

-continued

tacttettge teattagaaa gaaageatag eaatetaate taagtttt	408					
<210> SEQ ID NO 23 <211> LENGTH: 481 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence						
<400> SEQUENCE: 23						
tagtaageeg ateceattae egacatttgg gegetataeg tgeatatgtt eatgtatgta	60					
tctgtattta aaacactttt gtattatttt tcctcatata tgtgtatagg tttatacgga	120					
tgatttaatt attacttcac caccetttat tteaggetga tatettagee ttgttaetag	180					
ttagaaaaag acatttttgc tgtcagtcac tgtcaagaga ttcttttgct ggcatttctt	240					
ctagaagcaa aaagagcgat gcgtcttttc cgctgaaccg ttccagcaaa aaagactacc	300					
aacgcaatat ggattgtcag aatcatataa aagagaagca aataactcct tgtcttgtat	360					
caattgcatt ataatatctt cttgttagtg caatatcata tagaagtcat cgaaatagat	420					
attaagaaaa acaaactgta caatcaatca atcaatcatc acataaatcc ggacgacaga	480					
g	481					
<210> SEQ ID NO 24 <211> LENGTH: 421 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: engineered sequence						
<400> SEQUENCE: 24						
ggateeteaa aaceettaaa aacatatgee teaceetaae atatttteea attaaceete	60					
aatatttete tgteaceegg eetetatttt eeattttett etttaeeege eaegegtttt	120					
tttctttcaa atttttttct tccttcttct ttttcttcca cgtcctcttg cataaataaa	180					
tttettteaa attttttet teettettet ttttetteea egteetettg eataaataaa taaacegttt tgaaaecaaa etegeetete teteteettt ttgaaatatt tttgggtttg	180 240					
 taaaccgttt tgaaaccaaa ctcgcctctc tctctccttt ttgaaatatt tttgggtttg	240					
taaaccgttt tgaaaccaaa ctcgcctctc tctctccttt ttgaaatatt tttgggtttg tttgatcctt tccttcccaa tctctcttgt ttaatatata ttcatttata tcacgctctc	240 300					

50

60

The invention claimed is:

1. A genetically modified yeast for the enhanced expression of terpenes produced by a method comprising:

- combining yeast with a chemical mutagenesis agent to induce mutations in the yeast to generate chemically 55 mutated yeast;
- selecting chemically mutated yeast which grows in the presence of nystatin, squalestatin and cholesterol, followed by selecting for sterol dependent growth in the presence of squalestatin;
- subjecting the sterol dependent growth yeast to an erg9 knockout mutation, to thereby produce sterol dependent growth/erg9 knockout mutation yeast cell lines; and
- inserting an expression vector into the sterol dependent 65 albicans and Saccharomyces cerevisiae. growth/erg9 knockout mutation yeast cells wherein the expression vector expresses a gene for mutant avian

farnesyl diphosphate synthase, to thereby produce the genetically modified yeast having a dispensable sterol biosynthetic pathway and genetically modified with a non-naturally occurring prenyltransferase to thereby alter prenyl diphosphate levels and genetically modified to express a terpene synthase directed to diterpene production.

2. The genetically modified yeast of claim 1, wherein the yeast both has an erg9 knockout and has sterol uptake enhancement (SUE) and the yeast can grow in the presence of squalestatin and nystatin and are dependent on exogenous sterol for growth.

3. The genetically modified yeast of claim 1, wherein the yeast is selected from the group consisting of Candida

4. A method for generating terpene producing yeast cell lines, the method comprising:

- combining yeast with a chemical mutagenesis agent to induce mutations in the yeast to generate chemically mutated yeast;
- selecting chemically mutated yeast which grows in the presence of nystatin, squalestatin and cholesterol, followed by selecting for sterol dependent growth in the presence of squalestatin;
- subjecting the sterol dependent growth yeast to an erg9 knockout mutation, to thereby produce sterol dependent growth/erg9 knockout mutation yeast cell lines; 10 and
- inserting an expression vector into the sterol dependent growth/erg9 knockout mutation yeast cells wherein the expression vector expresses a gene for mutant avian farnesyl diphosphate synthase.

5. The method of claim **4**, wherein subjecting the sterol dependent growth yeast to an erg9 knockout mutation comprises inserting a foreign gene sequence into the sterol dependent growth yeast at the location of erg9 to effect gene replacement, thereby generating the erg9 knockout muta- $_{20}$ tion.

6. The method of claim 5, wherein the foreign gene sequence confers chemical resistance to a selected chemical thereby allowing the sterol dependent growth/erg9 knockout mutation yeast to grow in the presence of the chemical.

7. The method of claim 4, wherein the yeast is selected from the group consisting of *Candida albicans* and *Saccharomyces cerevisiae*.

8. The genetically modified yeast of claim **1**, wherein the terpene synthase is kaurene synthase.

9. The genetically modified yeast of claim **1**, wherein the prenyltransferase and the terpene synthase are targeted to the cytoplasm of the genetically modified yeast.

10. The generally modified yeast of claim **1**, wherein the dispensable sterol biosynthetic pathway comprises a functional mevalonate pathway not coupled to sterol metabolism.

11. The genetically modified yeast of claim **1**, wherein the non-naturally occurring prenyltransferase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) and isopentenyl diphosphate (IPP) to yield GGPP.

12. The genetically modified yeast of claim **11**, wherein the terpene synthase, expressed for diterpene production by genetic modification, is a heterologous diterpene synthase that converts available geranylgeranyl diphosphate (GGPP) to the production of diterpenes.

13. The genetically modified yeast of claim **1**, wherein the terpene synthase, expressed for diterpene production by genetic modification, is a heterologous diterpene synthase that converts available geranylgeranyl diphosphate (GGPP) to the production of diterpenes.

14. The genetically modified yeast of claim 1, wherein subjecting the sterol dependent growth yeast to an erg9 knockout mutation comprises inserting a foreign gene sequence into the sterol dependent growth yeast at the location of erg9 to effect gene replacement, thereby generating the erg9 knockout mutation.

15. The genetically modified yeast of claim **14**, wherein the foreign gene sequence confers chemical resistance to a selected chemical thereby allowing the sterol dependent growth/erg9 knockout mutation yeast to grow in the presence of the chemical.

16. The genetically modified yeast of claim **1**, wherein the sterol is ergosterol.

* * * * *