
PhD Dissertations and Master's Theses 

4-10-2021 

Automated Scenario Generation Using Halton Sequences for the Automated Scenario Generation Using Halton Sequences for the 

Verification of Autonomous Vehicle Behavior in Simulation Verification of Autonomous Vehicle Behavior in Simulation 

Andrew Ferree 
ferreea1@my.erau.edu 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Automotive Engineering Commons, and the Mechanical Engineering Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Ferree, Andrew, "Automated Scenario Generation Using Halton Sequences for the Verification of 
Autonomous Vehicle Behavior in Simulation" (2021). PhD Dissertations and Master's Theses. 591. 
https://commons.erau.edu/edt/591 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in PhD Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. For 
more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=commons.erau.edu%2Fedt%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=commons.erau.edu%2Fedt%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/591?utm_source=commons.erau.edu%2Fedt%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


AUTOMATED SCENARIO GENERATION USING HALTON SEQUENCES FOR 
THE VERIFICATION OF AUTONOMOUS VEHICLE BEHAVIOR IN SIMULATION 

by 

Andrew James Ferree 

A Thesis Submitted to the College of Engineering Department of Mechanical 
Engineering in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Mechanical Engineering 

Embry-Riddle Aeronautical University 
Daytona Beach, Florida 

April 2021



i 

AUTOMATED SCENARIO GENERATION USING HALTON SEQUENCES FOR 
THE VERIFICATION OF AUTONOMOUS VEHICLE BEHAVIOR IN SIMULATION 

by 

Andrew James Ferree 

This thesis was prepared under the direction of the candidate’s Thesis Committee Chair, 
Dr. Patrick Currier, Professor, Daytona Beach Campus, and Thesis Committee Members 
Dr. M. Ilhan Akbas, Professor, Daytona Beach Campus, and Dr. Eric Coyle, Professor, 
Daytona Beach Campus, and has been approved by the Thesis Committee.  It was 
submitted to the Department of Mechanical Engineering in partial fulfillment of the 
requirements for the degree of Master of Science in Mechanical Engineering 

Thesis Review Committee: 

____________________________________ 
Patrick Currier, Ph.D. 

Committee Chair 
 
 
_________________________________ 

M. Ilhan Akbas, Ph.D. 
Committee Member 

 
________________________________ 

Jean-Michel Dhainaut, Ph.D. 
Graduate Program Chair, 
Mechanical Engineering 

 
________________________________ 

Maj Mirmirani, Ph.D. 
Dean, College of Engineering

 
 

_______________________________ 
Eric Coyle, Ph.D. 

Committee Member 
 

_______________________________ 
Eduardo Divo, Ph.D. 
Department Chair, 

Mechanical Engineering  
 

_______________________________ 
Christopher Grant, Ph.D. 

Associate Vice President of Academics 
 

___________ 
Date  

 

___________________ ________________________ _________________________
Ericcccccccc CCCCCCCCCCCCoyle PhPPPPPPPPPP D

________________
M. Ilhan Akbas, Ph

i b

Thesis Review Committee:

________________________________
Patrick Currier, Ph.D. 

Committee Member

______________________________
Jean-Michel Dhainaut Ph D

Mechanical Engineering

__________________________
Maj Mirmirani Ph D

 Eduardo Divo

4/30/2021



ii 

Acknowledgements 

I would like to thank all the members of my committee: Dr. Patrick Currier, Dr. 

Ilhan Akbas, and Dr. Eric Coyle for their help and support throughout this entire process. 

This would have been impossible without them. As the phrase goes: “We stand on the 

shoulders of giants,” and I am definitely standing on their shoulders. 

I could not have done this without my family. There are too many of you to list, 

but every single one of you helped me get here. Mom and Dad, there are not enough 

words in the dictionary to describe my thanks. Our phone calls (that might not had been 

as frequent as we all would have liked), your confidence in me, and most importantly 

your love helped me through this. The work you put into raising me has gotten me to 

where I am today. This should be every bit as much of your accomplishment as it is mine. 

To my girlfriend, Mary. Thank you for putting up with my crazy work schedule 

and supporting me throughout the years. Your kindness and compassion have helped 

keep me sane (mostly) and I could not have done this without you.  

To all of my friends, both from North Carolina and the ones I’ve made at Embry-

Riddle, you helped keep me going through it all. I will never forget the support and the 

many needed laughs you have given me. 

Lastly, to the cigarette man at the end of my street, whose many friendly waves 

over the years when leaving for campus always gave me that extra smile for the day. I 

may have never even known your name, but you will never be forgotten. 



iii 

Abstract 

Researcher: Andrew James Ferree 

Title: Automated Scenario Generation Using Halton Sequences for the 

Verification of Autonomous Vehicle Behavior in Simulation 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Mechanical Engineering 

Year: 2021 

As autonomous vehicles continue to develop, verifying their safety remains a large 

hurdle to mass adoption. One component of this is testing, however it has been shown 

that it is impractical to statistically prove an autonomous vehicle’s safety using real-world 

testing alone. Therefore, simulation tools and other virtual testing methods are being 

employed to assist with the verification process. Testing in simulation still faces some of 

the challenges of the real world, such as the difficulty in exhaustively testing the system 

in all scenarios it will encounter. Manual scenario creation is time consuming and does 

not guarantee scenario coverage. Pseudo-random scenario generation is a faster option, 

but still does not ensure coverage of the state space. Therefore, this study proposes the 

use of Halton sequences to automatically generate scenarios for autonomous vehicle 

testing in simulation. It compares these scenarios against a set of pseudo-randomly 

generated scenarios and assesses the performance of each method to cover the simulation 

state space and provide an accurate depiction of the capabilities of the system-under-test. 

These tests are carried out in the CARLA simulation environment on an open source, 

published driving model called “Learning by Cheating” which takes place as the system-

under-test. This study concludes that the scenario set generated by the Halton sequence is 

better at providing an accurate representation of the capabilities of the system-under-test 

than the pseudo-random scenario generation method.  
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1 Introduction 

In 2018 alone, 36,560 people died and 2,710,000 were injured in car accidents in the 

United States [1], [2]. The economic impact of car accidents in 2010 cost the U.S. $242 

billion, which represented roughly 1.6 percent of U.S. Gross Domestic Product [3]. 

Factoring in the total societal harm, when including quality-of-life valuations, that cost 

increases to $836 billion [3]. It is estimated that about 94% of accidents are caused by 

human error, while the other 6% is attributed to the vehicle, environment, or unknown 

reasons [4]. For years, autonomous vehicles (AVs) have promised to drastically reduce 

the number of these accidents by removing the segment that is caused by human error, as 

AVs offer clear advantages, such as never getting distracted, fatigued, or intoxicated, 

however, no system will ever be perfect [5].  

The developers of AVs must ensure that they do not just trade accidents caused by 

human error for accidents caused by computer error.  It has been found that public trust in 

AVs is one of the driving factors in their acceptance [6]. Already, 56% of Americans 

would not want to ride in AVs if given the opportunity, citing a general lack of trust that 

the AV would perform in a safe manner [7]. If AVs are to help prevent accidents due to 

human error, then the humans must be willing to trust the technology and cede control of 

driving to the computer. More accidents involving AVs will not help increase this 

consumer confidence in the technology, therefore demonstrating the capability and safety 

of an AV should be a primary objective before mass adoption. 

One way to demonstrate that AVs are safe enough is through real-world test 

driving [8]–[11]. However, as shown by Kalra and Paddock, to statistically prove AVs 
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are safe enough would require millions if not billions of miles driven, which would take 

tens to hundreds of years to drive with a fleet of 100 AVs (Table 1.1) [12]. 

Table 1.1  
 

Examples of miles and years needed to demonstrate autonomous vehicle reliability 

How many miles (years) would have to be driven… X …Y. 
 Y 

(A) 1.09 
fatalities per 100 
million miles? 

(B) 77 reported 
injuries per 100 
million miles? 

(C) 190 reported 
crashes per 100 
million miles? 

X 

(1) without failure to 
demonstrate with 95% 
confidence that their 
failure rate is at most… 

275 million  
(12.5 years) 

3.9 million  
(2 months) 

1.6 million  
(1 month) 

(2) to demonstrate with 
95% confidence their 
failure rate to within 
20% of the true rate of… 

8.8 billion  
(400 years) 

125 million  
(5.7 years) 

51 million  
(2.3 years) 

(3) to demonstrate with 
95% confidence and 
80% power that their 
failure rate is 20% better 
than the human driver 
failure rate of… 

11 billion  
(500 years) 

161 million  
(7.3 years) 

65 million  
(3 years) 

From “Driving to safety: How many miles of driving would it take to demonstrate 
autonomous vehicle reliability?” by N. Kalra & S. M. Paddock, Transportation Research 
Part A: Policy and Practice, 94, p. 182–193. 

 

The time it would take in years to drive the necessary number of miles is calculated using 

the following assumptions: a fleet of 100 autonomous vehicles (larger than any known 

existing fleet) driving 24 hours a day, 365 days a year, at an average speed of 25 miles 

per hour [12]. This shows that proving the safety of an AV solely through real-world on-

the-road testing is not feasible. Other methods for proving AV safety, such as 

simulations, should be used[13].   
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By improving the detection of failures of AV driving functions in a simulated 

environment, systems engineering teams can identify key software modules in need of 

improvement and additional development before testing in the real world. Not only does 

this save valuable testing time on physical vehicles, but it will also help to prevent 

accidents. For example, in the March 2018 accident involving an Uber Technologies, Inc. 

developmental automated driving system and a pedestrian in Tempe, Arizona, the 

National Transportation Safety Board (NTSB) noted in its findings that the Uber 

Advanced Technologies Group failed to manage the risk of the limitations of its 

automated driving system [14]. If this scenario had been tested in simulation prior to the 

vehicle being tested on the road, then Uber Technologies, Inc. might have been able to 

better identify the limitations of the system and ultimately saved a life.  

 Using simulation in autonomous vehicle verification and validation (V&V) has 

been suggested as playing an important role in verifying the safety of an autonomous 

system [10], [15], [16]. The usage of simulation is even discussed in one of the first 

proposed safety standards for building the safety case for the development of AVs [17]. 

There are, however, several limitations of simulation. The variance of the simulated 

dynamic model and the real-world dynamics the system-under-test (SUT) experiences are 

just some examples. Other limitations include imprecise sensor models and the lack of 

injection of real-world sensor noise [10]. When testing the AV, these limitations and 

variances from the real-world can result in behaviors that are shown to be safe in 

simulation but result in unsafe behavior in the real-world.  In the proposed standard, UL 

4600 requires the identification and documentation of these limitations to build an 

appropriate safety case for the system [17].  
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AVs have extensive and complex requirements due to the complexity of the 

environments they operate in [16]. Consequently, the resulting software developed to 

meet these requirements is very complex, made up of a multitude of modules ranging 

from perception to path planning and decision making [10]. The more complex the 

software, the more difficult it becomes to verify that it meets its requirements. For 

example, it is an immense challenge to verify a planner since they are designed to 

discover solutions to problems with very large state spaces [18]. 

Another large challenge for testing AVs is the popularity of non-deterministic 

algorithms such as machine learning or algorithms utilizing random number generators 

[10], [19], [20]. When non-deterministic algorithms are executed, different outputs might 

be observed on different executions when given the same exact inputs. This means 

passing a unit test once does not necessarily mean the system will always pass that exact 

same unit test [10].  

 According to Utting et al., “The goal of testing is failure detection” which means 

finding differences between the implemented and intended behavior of the SUT as 

defined by its requirements [21]. An example of one type of testing process can be seen 

in Figure 1. In this model-based testing process, requirements drive both the model and 

the test selection criteria. From the selection criteria, test case specifications are created. 

Then, using these test case specifications and the model, full test cases can be developed 

and subsequently executed using a test script. Often, some adaptor script is needed to 

feed the SUT the information from the test cases. Finally, the verdicts are returned after 

the test cases are complete. 
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Figure 1: The Process of Model-Based Testing [21] 

Developing these tests to determine situations where an AV fails is critical to their 

development and future safety [8]. Work has been done to formally represent different 

driving scenarios the AV might encounter and then verify that the vehicle has responded 

in an appropriate and safe manner [9], [22], [23]. In previous Advanced Driver 

Assistance Systems (ADAS), such as Lane Keeping Assistance (LKAS) and Adaptive 

Cruise Control (ACC), the number of scenarios that the system would be expected to 
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perform in was limited and keeps the driver in the loop. However, when moving to the 

more unbounded operating conditions of Automated Driving (AD) such as in the SAE 

autonomy levels three through five, the number of scenarios the system can encounter 

becomes immeasurable [11]. These levels of autonomy can be found below in Figure 2. 

 

Figure 2: Levels of autonomy defined by SAE showing the jump to AD [11], [24] 

As the autonomy level increases, so does the scope and complexity of the 

operational design domain (ODD) and defining tests that accurately describe all of the 

scenarios in which the system will operate and exhaustively test all AD functions 

becomes significantly more difficult [8], [10], [11]. Creation of a catalog of scenarios by 

experts has been used for testing critical situations in the past, such as is required in the 

ISO 26262 standard hazard analysis and risk assessment where hazardous events must be 

determined using adequate techniques [25]. However, this manual method is infeasible to 

construct an exhaustive list of scenarios for testing high level AD functions due to the 

complexity of the ODD and the immeasurable number of potential scenarios which the 
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AV might encounter [11], [26]. Another method, potentially an automated approach, will 

need to be implemented.  

Since simulation will play an important role in the V&V of AV behavior, there 

needs to be methods available to design scenarios that exhaustively test AD functions [9], 

[12]. While complete coverage of scenarios in the real-world ODD is infeasible, an 

algorithm that can generate scenarios by more uniformly covering the simulation state 

space is a more tractable goal [8], [10], [11]. Therefore, it is the purpose of this study to 

evaluate using Halton sequences to improve coverage of the simulation state space while 

limiting the number of redundant scenarios which can then be used for testing AD 

performance. It will explore the following questions: 

• How could a larger number of challenging edge-cases be discovered by applying 

an automated scenario variation technique to increase the risk dimension of the 

scenarios? 

• How can Halton sequences be used to create variations of existing scenarios that 

improve the exploration of the simulation state space while decreasing the time 

and number of scenarios? 

• How does the mean performance and performance variance of the system-under-

test (SUT) in scenarios generated by a Halton sequence compared to those which 

are randomly generated? 
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2 Background 

 This study has discussed scenarios and test cases and sometimes used the two 

terms interchangeably. The reason for this requires further discussion. Formally defined, 

a scenario “is a description that contains (1) actors, (2) background information on the 

actors and assumptions about their environment, (3) goals or objectives, and (4) 

sequences of actions and events” [27]. A scenario can also be described as a sequence of 

scenes, where scenes are individual snapshots in time which contains all of the 

instantaneous parameters of the scenario at that point [11], [28]. Scenes are to scenarios 

as frames are to videos. The parameters in each scene and the changes from one scene to 

another help create the entire scenario. Some of these changes from one scene to another 

might be, for example, the velocity of another actor or the luminosity of the environment. 

While there are parameters that might change from scene to scene, there are also 

parameters that can be defined at the beginning of the scenario, such as precipitation, 

global luminosity, road friction, etc. [23], [29]. All of these parameters help bound and 

define distinct scenarios to test the AV. 

One method to describe these scenarios is by using ontologies [26], [30]. 

Ontologies are a set of concepts in a domain that formally portrays different entities, their 

properties, and their relationships between one another. Ontologies have been proposed 

for use in different applications ranging from test generation to AV decision making 

[30]–[33]. The variables then defined in these ontologies can be combined to generate 

test cases. These test cases then can be used to evaluate what situations cause failures of 

the autonomous driving functions [30]. Figure 3 shows a general automated testing 

approach that utilizes ontologies. 
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Figure 3: Overview of a general automated testing approach [31] 

It has been proposed that using ontologies to represent scenes offer a natural language 

approach to generating scenarios in an efficient manner [26]. In doing this, Bagschik et 

al. show that the knowledge base could be more easily represented and leveraged to 

produce a diverse set of scenarios. The information is organized into a layered model 

representing the knowledge base, as shown in Figure 4. 
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Figure 4: Representation of scenes using a layer model [26], [34] 

This method produced a scene catalog that did not need to be reviewed by analysts since 

as long as the elements in the ontology are accurately modeled, then the elements would 

be correctly combined with other layers. While this method provides an excellent way for 

combinatorial testing, it does not guarantee coverage of, for example, all the different 

environmental conditions in L5 since it is still just representing expert knowledge. 

Therefore, a more automated approach needs to be applied to guarantee coverage of this 

state space.  
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One way to automatically cover the state space to generate scenarios is by using 

Rapidly-Exploring Random Trees (RRTs). RRTs are typically used as path planning 

algorithms [35], [36]. They have been useful in this domain for multiple reasons such as 

their ability to inexpensively compute paths from a start to a goal and their bias towards 

exploration of the state space [35]. It does this by sampling the state space and extending 

toward the sampled point. An example of 2D RRT growth is shown in Figure 5. Note 

how the RRT grows towards the unexplored areas in the space. The more iterations the 

algorithm runs, the more explored the state space will become. 

 

Figure 5: Expansion of an RRT [35] 

This bias towards exploration of the state space could be applied to generating scenarios 

in a simulation environment since another valuable feature of RRTs are their ability to be 

applied to higher-dimensional state spaces [37]. Already, there is some evidence that 

RRT’s could be used for test generation for AVs [38]. 

One approach for applying RRT’s to scenario generation is to determine the 

boundaries in which situations an AV can and can’t avoid collisions [38]. For example, 

Figure 6 shows the red vehicle entering the lane of the yellow vehicle at a distance too 
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close for the yellow vehicle to stop. By applying an RRT, multiple trajectories can be 

generated to find these types of situations. 

 

Figure 6: Example of an unavoidable collision [38] 

This is done by sampling a target path segment, where the target path segment is 

just a set of waypoints that are defined by an x and y coordinate, target heading and 

speed. Once this is sampled, a segment is extended some distance from the waypoint. The 

results of this method are random paths that can produce numerous situations that might 

produce collisions between the AV and other actors on the road and it minimizes the need 

for manually designing scenarios for the SUT [38]. An example of one case where a 

collision was found using the automated RRT method is shown in Figure 7. Identifying 

what situations AVs cannot avoid collisions can inform system designers on which areas 

to focus improvement efforts on, as well as advanced knowledge of situations the AV 

might fail to react properly during real-world testing.

 

Figure 7: RRT generated test resulting in a collision [38] 
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RRT’s might provide a good way to cover the state space due to its bias towards 

exploration, however this method might prove to be inefficient due to the need to start 

with some root scenario and then expand out away from that scenario. The result would 

be starting with scenarios closer to the root scenario and working away. While the 

distance the algorithm can extend away from that scenario can be tuned, the system still 

must start with some root scenario and then move through the state space from there. 

Though the RRT method might be better suited for making variations to one scenario, for 

a more generic testing approach it might be more desired to have a uniform distribution 

of samples in the state space to evenly distribute scenarios.  

To distribute samples of simulation parameters more uniformly in the state space, 

quasi-random, low-discrepancy sequences could be a promising avenue. Sampling 

techniques that use quasi-random sequences such as Hammersley, Sobol, Faure, and 

Halton sequences have been used in multiple instances in the field of path planners for 

robots [39]–[41]. Distributing samples more uniformly, also referred to as having a lower 

discrepancy, is one of the advantages of quasi-random over pseudo-random sampling 

[42]. For example, Figure 8 shows 50 samples in a two-dimensional space that were 

generated by a pseudo-random method and by a quasi-random method, specifically a 

Halton sequence. Note that the points generated by the pseudo-random method suffer 

from clumping of points and larger spaces without samples, whereas the samples 

generated by the Halton sequence are more uniformly distributed in the space. For a more 

in depth explanation of Halton sequences, refer to Section 3.5. 
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Figure 8: A 2-dimensional state space with 50 samples generated by a pseudo-random 
method (left) and by a Halton sequence (right) 

 

Since the goal of testing is failure detection, the need to cover the large number of 

scenarios an AV may encounter is a key element of finding areas where an AD system 

fails [8], [10], [11], [21]. Using a quasi-random sampling method, such as a Halton 

sequence, to generate diverse scenario catalogs that have a more uniform coverage of the 

state space over pseudo-random sampling could be a useful solution. Halton sequences 

may provide better coverage of the simulation state space and ensure that there are fewer 

redundant scenarios in the resulting scenario catalog [43].  
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3 Methods 

This study will use an open-source, photorealistic simulation environment to 

evaluate using Halton sequences over pseudo-random sampling to generate scenarios for 

AV testing. This methods section will outline the controlled and extraneous variables in 

Section 3.1 and summarize the metrics for evaluating the system model’s performance in 

Section 3.3. The simulation platform that will be used is discussed in Section 3.2 and the 

vehicle model that will be evaluated in tests is shown in Section 3.4. Halton sequences 

and their implementation for generating scenarios will also be covered in Sections 3.5 

and 3.6, respectively. 

3.1 Variables and Metrics 

When evaluating the performance of techniques in creating scenarios, the 

following metrics will be used. Outlined by Chance et al. (2020), these are attributes of 

‘good’ test cases. 

1. Effectiveness – How well do the generated scenarios find failures? 

2. Efficiency – Are the number of test cases reduced? 

3. Economy – How long does it take to generate the scenarios? 

4. Robustness – How well does it handle changes in the state space? 

Variables that will be fixed during this study will be the computation hardware, 

simulation environment, and the vehicle model being used as the system-under-test 

(SUT). Extraneous variables include outputs from non-deterministic algorithms in the 

SUT and will be discussed at the end of this section. 
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Hardware is one of the controls in this study, as one of the metrics that will be 

evaluated, as discussed above, is “economy,” or how long it takes to generate the 

scenarios. The hardware used for this study is shown in Table 3.1.  

Table 3.1  
 

Computer hardware and software versions used in study 

CPU Intel Core i9-9900K CPU @ 3.70GHz 

RAM 32GB DDR4 

GPU Nvidia GeForce RTX 2080 

OS Ubuntu 20.04 LTS 

CARLA Version 0.9.10.1 
 

Extraneous variables that could have an impact on the results of the tests include 

the outputs from non-deterministic algorithms. As discussed before, non-deterministic 

algorithms, which are popular in AVs, can result in different outputs when given the 

same set of input parameters [10]. Because of this, a scenario that was generated and used 

for vehicle testing might reveal a system failure on the first run but might not reveal a 

system failure on a subsequent run. Multiple simulation test runs with the same set of 

generated scenarios will be conducted to observe the impact some of these non-

deterministic systems have on the results. The variance will be calculated for the scores 

across all runs of the same scenario set to determine the variability of repeated executions 

of the same test.  

3.2 Simulation Environment 

The simulation environment used in this study is CARLA (Car Learning to Act), an 

open-source 3D AV simulator with a high degree of controllability of the simulation 
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environment [45]. Environmental conditions (such as precipitation, fog, and ambient 

occlusion), sensor characteristics, roadway placement, pedestrian locations, and vehicle 

dynamics are just some of the many parameters that can be controlled.  Such high 

controllability of the simulation state space can enable scenario generation algorithms to 

produce unique scenarios that can be used to evaluate the SUT. While a vast number of 

parameters can be controlled, this study will focus primarily on the parameters related to 

environmental conditions. 

 

Figure 9: Different environmental conditions in CARLA [45] 

 Another benefit of CARLA is the diverse number of cars, pedestrians, and maps 

available for use. There are 50 different animated pedestrian models, 16 unique vehicle 

models (with options of varying textures), 40 different buildings, as well as multiple pre-

made towns with varying driving environments (city, highway, etc.) [45]. Samples of 

some of these assets can be seen in Figure 10. 
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Figure 10: Diversity of assets in CARLA [45] 

A diverse range of assets will allow for multiple combinations of assets to enable 

diverse scenarios to be generated. CARLA also has methods to create vehicles, sensors, 

and maps for a more customized environment. Road networks can be imported from 

OpenDRIVE, which is an open file format used to easily exchange road network logic 

between different simulators [46]. CARLA also supports scenario specification using the 

OpenSCENARIO standard, which defines an XML format for describing the complex, 

dynamic environments and maneuvers in simulation environments [29]. 
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 CARLA also has an Autonomous Driving Leaderboard, which evaluates various 

autonomous driving agents that are submitted to the leaderboard using an assortment of 

predefined traffic scenarios and weather conditions. The driving model evaluated in this 

study was found on the Autonomous Driving Leaderboard and was chosen because it is 

well documented and open-sourced. Additionally, the metrics this study uses to evaluate 

the AD system’s performance are the same ones that would be evaluated by the 

Autonomous Driving Leaderboard. These performance metrics and the driving model 

used as the SUT will be described in the following sections. 

3.3 SUT Performance Metrics 

 Some expected failures that the SUT will be tested for include collisions, blocked 

actor, lane departure, and moving violations. Collisions that will be tested for include 

collisions with other vehicles, pedestrians, and infrastructure (signs, light poles, 

buildings, etc.). A blocked actor is the result of vehicle immobility for a longer-than-

expected period. Examples of a blocked actor failure would be the vehicle remaining 

stationary at a green light or never proceeding after a stop sign. Lane departure/incursion 

includes leaving the roadway, entering lanes of oncoming traffic, and departing the lane 

the vehicle is supposed to be in (i.e., drifting into another lane). Finally, moving 

violations include some of the standard rules-of-the-road, such as running a red light or a 

stop sign. These failures are tabulated below and are the only ones that the SUT will be 

evaluated for. 
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Table 3.2  
 

Failures for which the SUT will be assessed 

Category Failure 

Collisions 

Collided with another vehicle 

Collided with a pedestrian 

Collided with static elements 

Blocked Actor Actor immobile for more than 180 seconds 

Lane Departure Actor is outside of route lane lines 

Moving Violations 
Failure to stop at a stop sign 

Failure to stop at a stop light 
 

Each of these failures can be characterized by parameters, called infraction 

penalties, that can then be used to calculate an overall score of the test. These penalties 

and their corresponding values are shown in Table 3.3. The coefficients assigned to each 

infraction penalty are defined by the CARLA Autonomous Driving Leaderboard and do 

not necessarily reflect a defined real-world severity ranking. Lane departure, which has 

no infraction penalty, is accommodated for by deducting the percentage of the route for 

which the SUT is outside the route lane lines from the total route completion percentage. 

Table 3.3  
 

Infraction penalty coefficients 

Collisions with pedestrians 0.50 

Collisions with vehicles 0.60 

Collisions with static elements 0.65 

Failure to stop at a red light 0.70 

Failure to stop at a stop sign 0.80 
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The overall score is calculated by calculating the percentage of the route 

completed, as well as then including penalties for the infractions the SUT committed. 

Using these penalty coefficients, 𝑝𝑝, and the percentage of the route completed, 𝑅𝑅, the 

following equations can be used to calculate an overall driving score. Equation 1 

aggregates the infraction penalties and Equation 2 combines both to get an overall 

average driving score for the i-th route across N routes [47]. A perfect score (meaning 

100% route completion, 0% of the route outside of lane lines, and 0 infractions) would 

result in a value of 100, whereas the worst score would be 0. 

𝑃𝑃𝑖𝑖 = � �𝑝𝑝𝑖𝑖
𝑗𝑗�

# 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝,…,𝑖𝑖𝑖𝑖𝑜𝑜𝑝𝑝

𝑗𝑗

 (1) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆 =   1
𝑁𝑁
∑ 𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖𝑁𝑁
𝑖𝑖  (2) 

3.4 SUT Vehicle Model 

This study uses an existing, open-source driving model and evaluates that driving 

model using the afore mentioned metrics in a variety of conditions that will be 

automatically generated. The model used is the Learning by Cheating driving model, 

which uses a trained agent with access to privileged information to train a vision-based 

agent which uses only a forward facing RGB camera [48]. The privileged agent uses 

ground-truth information such as the locations of other actors and the layout of the 

environment and is then trained from a set of expert trajectories. The second, a 

sensorimotor agent which does not have access to this ground-truth information, then 

learns to imitate the privileged agent. Figure 11 shows an overview of both of these 

agents. 
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Figure 11: Privileged agent (left) and Sensorimotor agent (right) used in the Learning by 
Cheating driving model [48] 

This agent is trained using a dataset with various situations and weather conditions, for 

example, changing the weather every few seconds to add variety to the images collected 

for agent to be trained with. This should result in at least a moderate resilience to 

changing environmental conditions such as luminosity, fog, and rain. 

 The Learning by Cheating driving model will be used as the SUT and evaluated 

based on the performance metrics that have been previously discussed. This study uses a 

pre-trained model from the Learning by Cheating’s Wandb which was trained on April 

18th, 2020 and is named “command_coefficient=0.01_sample_by=even_stage2”. The 

scenarios that will be used to test this driving model will be generated using Halton 

sequences, which will be discussed next. 

3.5 Halton Sequences 

Halton sequences are quasi-random, multi-dimensional sequences which generate 

samples in a space and have been used in applications such as Monte Carlo simulations 

and probabilistic roadmaps for path planning [41], [49], [50]. They are also low-

discrepancy, meaning that they attempt to more uniformly distribute samples inside of a 

state space. Halton sequences are generated by using coprime numbers as its bases 
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𝑏𝑏1, 𝑏𝑏2  … 𝑏𝑏𝑖𝑖 for each dimension s. The following equations describe the Halton sequence 

[51], [52]. Any positive integer n can be written in base b with the integer string 𝑑𝑑𝑖𝑖 

(𝑑𝑑0, 𝑑𝑑1, …𝑑𝑑𝑖𝑖) such that:  

𝐷𝐷 =  𝑑𝑑0 + 𝑑𝑑1𝑏𝑏1 + 𝑑𝑑2𝑏𝑏2 + ⋯+ 𝑑𝑑𝑗𝑗𝑏𝑏𝑗𝑗 , 0 ≤  𝑑𝑑𝑖𝑖 < 𝑏𝑏 (3) 

Then, using the radical inverse of n for base b: 

𝜑𝜑𝑏𝑏(𝐷𝐷) =  𝑑𝑑0𝑏𝑏−1 + 𝑑𝑑1𝑏𝑏−2 + ⋯+ 𝑑𝑑𝑗𝑗𝑏𝑏−𝑗𝑗−1 (4) 

Finally, the Halton sequence for each prime base b in each dimension s is the set: 

𝑥𝑥𝑖𝑖 = �𝜑𝜑𝑏𝑏1(𝐷𝐷), … ,𝜑𝜑𝑏𝑏𝑠𝑠(𝐷𝐷)�  , 𝐷𝐷 = 0, 1, 2, … (5) 

Therefore, to demonstrate, the first 4 points of a 2-dimensional Halton sequence using the 

primes 2 and 3 as 𝑏𝑏1 and 𝑏𝑏2, respectively, would result in �(0,0), �1
2

, 1
3
� , �1

4
, 2
3
� , �3

4
, 1
9
��.  

One of the problems associated with Halton sequences is the high correlation 

between dimensions of higher dimensional state spaces [50], [52]. For example, Figure 

12 shows dimensions 19 and 20 of a 20-dimensional state space plotted against each 

other.  
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Figure 12: High correlation between dimensions 19 and 20 of a 20-dimensional state 
space with 200 samples from the Halton sequence 

This correlation between higher dimensions in the state space would be sub-optimal for 

applying Halton sequences to uniformly sample the simulation state space since there 

could be a multitude of parameters that are desired to be varied. Fortunately, there are a 

few remedies to this problem. 

 The three ways this study explored to correct for the correlation between higher 

dimensions is the application of skipping, leaping, and scrambling to the Halton 

sequence. The first method, skipping, simply omits a specified number of initial points 

from the sequence. For example, when using primes 23 and 29 as the bases, the first five 

point-pairs of the sequence are �(0,0), � 1
23

, 1
29
� , � 2

23
, 2
29
� , � 3

23
, 3
29
� , � 4

23
, 4
29
��. If a skip of 3 
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was applied, then the resulting sequence would start with � 3
23

, 3
29
� and continue onward, 

like so �� 3
23

, 3
29
� , � 4

23
, 4
29
� , � 5

23
, 5
29
� , … �. However, the perfectly linear correlation between 

the two dimensions still remains, therefore leaping is also applied.  

 Leaping is a method to attempt to eliminate the cycles and linear correlation 

between higher dimensions, improving overall point set quality to be more uniform [50]. 

It accomplishes this by specifying a number of points in the sequence to omit after each 

sample, hence “leaping” through the sequence. To demonstrate, consider again the first 

five point-pairs of a Halton sequence with base primes as 23 and 29, resulting in 

�(0,0), � 1
23

, 1
29
� , � 2

23
, 2
29
� , � 3

23
, 3
29
� , � 4

23
, 4
29
��. If a leap of 3 was applied, the resulting 

sequence would become �(0,0), � 4
23

, 4
29
� , � 8

23
, 8
29
� , … �. Selecting a correct leap value for 

this is important, as the wrong leap value can lead to new, undesirable cycles [50]. One 

way to selecting a decent leap value is by selecting a prime that is greater than the largest 

prime in the sequence and subtracting 1. For example, in a 20-dimensional state space the 

largest prime is 71, with the next two primes that are unused being 73 and 79. If 

following the suggestion, the prime number 79 could be used and then have 1 subtracted 

from it to get 78, which would be the value to use for the leap. In Figure 13 is the same 

number of samples and dimensions as in Figure 12, however with a skip of 3 and a leap 

of 78. This still does not solve the problem for all dimensions, though. When plotting 

dimensions 16 and 17 against each other, the secondary cycling induced by the chosen 

leap value is observed. 
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Figure 13: Dimensions 19 and 20 (left) and dimensions 16 and 17 (right) of a 20-
dimensional state space with 200 samples from a Halton sequence with a skip value of 3 

and a leap value of 78. 

 To fix the issues of these cycles occurring in higher dimensions, a scramble is 

applied to the sequence. The specific scrambling algorithm used is the Reverse-Radix 

Algorithm, otherwise known as HaltonRR2. According to Kocis and Whiten (1997), who 

developed this scrambling method, it works by changing the values of d mentioned above 

and “reversing the binary digits of integers, expressed using a fixed number of base-2 

digits, and removing any values that are too large.” This results a lower discrepancy, or 

more uniform distribution, of samples in higher dimensional state spaces [50]. The built-

in functions in MATLAB were used to both generate the Halton sequence and to apply 

the HaltonRR2 scramble to the sequence. Once the sequence was generated in the proper 

number of dimensions, each dimension could be scaled to the proper range for the 

simulation parameters.  

3.6 Application of Halton Sequences 

As mentioned previously in Section 3.2, CARLA can simulate many different 

weather conditions. This paper proposes applying Halton sequences to automatically 
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cover these different conditions more uniformly so that the capabilities of the SUT may 

be more accurately described. The variables that will be varied by using a Halton 

sequence are outlined and described in Table 3.4. 

Table 3.4  
 

Simulation parameter state space to be varied by Halton sequence 

 Minimum Maximum Description 

Cloudiness 0 100 0 is completely clear, 100 is overcast 

Fog Density 0 100 0 is no fog, 100 is extremely thick fog 

Fog Distance 0 5 Distance the fog starts, in meters 

Fog Falloff 0 5 
Specific mass of the fog; the larger the value, 
the closer the fog will be to the ground. At 1, 

it is approximately as dense as the air. 

Precipitation 0 100 0 is no rain, 100 is heavy rain 

Precipitation 
Deposits 0 100 Amount of water on the road. 0, there is no 

water, 100 completely covered 

Wetness 0 100 Humidity percentage of the road 

Wind 
Intensity 0 100 0 is no wind, 100 is strong wind 

Sun Azimuth 
Angle 0 180 Arbitrary north is 0, with south being 180 

Sun Altitude 
Angle -90 90 90 corresponds with noon, whereas -90 

corresponds to midnight 

 



28 

Using these parameters results in a 10-dimensional state space, of which sample sets will 

be generated using both the Halton sequence and a pseudo-random generator. While 

parameters take on varying ranges of values, the values will initially be generated on the 

unit hypercube and will then be scaled to their appropriate range. For example, a sample 

point of 0.5 in the Fog Distance dimension would be scaled to 2.5. Once these are scaled, 

the resulting parameters are written to an XML file that can be read by the simulator.  

In addition to comparing the Halton generation method to the pseudo-random 

method, this study will also examine how the number of scenarios generated impact each 

methods ability to accurately describe the capabilities of the SUT. Analyzing this should 

then, if the hypothesis of the study is correct, show that Halton sequences are able to 

accurately describe the capabilities of the SUT in a fewer number of samples than the 

pseudo-random method since the Halton sequences are more uniformly covering the state 

space. 
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4 Results 

The results of this study will cover a few different perspectives. The first will be the 

coverage of the input space by both pseudo-random and Halton sequence generated point 

sets. Next, the observed performance of the SUT for both the pseudo-random and Halton 

generated point sets will be shown. Lastly, the variance of the resulting scores for varying 

number of point sets and the variability of results when running the same scenario 

multiple times will be examined. 

4.1 Input Space Coverage 

While it has been proven that Halton sequences have a lower discrepancy than 

pseudo-random sequences in lower dimensions, and that this lower discrepancy can be 

extended to higher dimensions by applying a scramble to the sequence such as the 

HaltonRR2 method, a sanity check for uniformity should still be performed [50], [52]. 

After generating scenario files for the simulator to run, these weather parameters are read 

back into MATLAB and then histograms are created. Since the parameters had been 

scaled, as described in Section 3.6, the data is then normalized to the range of 0 to 1 and 

all of the points generated for all of the dimensions are fit onto one histogram. If the 

points are indeed uniformly distributed, then there should be a uniform distribution on the 

histogram. As seen in Figure 14, the Halton sequence, as expected, has a much more 

uniform distribution of samples than the pseudo-random generator for 100 scenarios for a 

10-dimensional state space (1000 total samples). Quantitatively, the variance of the 

quantity of samples in each bin on the histogram for the pseudo-random scenario set was 

174.7, whereas the variance for the Halton scenario set was 4.22. 
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Figure 14: Histogram of 1000 normalized samples in a 10-dimensional state space from 
pseudo-random (left) and Halton sequence (right) 

If the samples are not uniformly distributed in the state space, then a result as in 

Figure 15 will be observed. In this instance, a Halton sequence was generated using a 

poorly chosen leap value of 1000 which, when combined with a skip value of 1000 and 

the HaltonRR2 scramble, induced some secondary cycling which greatly impacted 

dimensions 4 (Fog Falloff), 5 (Precipitation), and 6 (Precipitation Deposits), resulting in 

those dimensions not being uniformly covered throughout their entire range. The 

dimension representing precipitation, for example, had a minimum value of 63.65 and a 

maximum value of 72.71, meaning that every scenario which was generated had a similar 

amount of precipitation present, which would not have properly evaluated the 

performance of the SUT in all precipitation conditions. This also would have biased the 

overall final score of the vehicle, as the SUT’s performance in precipitation would most 

likely be poorer than in clear conditions due to it being a solely vision-based system. 
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Figure 15: Histogram of 1000 normalized samples from a Halton sequence with a poorly 
chosen leap value (1000) in a 10-dimensional state space 

This shows that great care must be taken when applying any sampling method for 

generating scenarios, as the resulting bias could potentially skew the perceived 

performance of the SUT. In Section 4.2 the effects of biased scenario generation will be 

discussed in greater detail. 

The final values chosen to generate the Halton sequence were a skip value of 20 and 

a leap value of 0. After the sequence was generated, the HaltonRR2 scramble was 

applied. This resulted in uniform coverage with limited correlation between dimensions. 

A total of 800 scenarios were generated using the Halton sequence and 800 were 

generated using the pseudo-random generator in MATLAB. While it is impractical to 

inspect every dimension, a few dimensions can be selected to check for correlation 
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between dimensions. This will at least give additional insight into how well the Halton 

sequence generation method performed against the pseudo-random method. Below in 

Figure 16, cloudiness and fog density are plotted against each other, as well as fog 

density versus sun altitude angle for two sets of 800 scenarios, one set generated by a 

Halton sequence, with the other pseudo-randomly generated. 

 

Figure 16: Cloudiness vs. Fog Density and Fog Density vs. Sun Altitude Angle for 800 
scenarios generated by a Halton sequence and 800 scenarios which were pseudo-

randomly generated 

 



33 

This shows the much more uniform distribution of samples generated by the 

Halton sequence over these dimensions. This means that in the scenario set generated by 

the Halton sequence, the SUT experienced a similar number of scenarios with high 

density fog around noon (sun altitude angle equal to 90) as it experienced around 

midnight (sun altitude angle equal to -90). The pseudo-random generated set of scenarios, 

though, could have gaps or bias towards each side. When looking at the histogram for sun 

altitude, as in Figure 17, it is demonstrated that there were more scenarios that occurred 

at night rather than during the day in the pseudo-randomly generated set. This can be 

further shown by taking the mean of each dataset. The mean for the sun altitude angle for 

the set of 800 pseudo-randomly generated scenarios was -3.82 while the mean for the set 

of 800 scenarios generated by the Halton sequence was 0.06. Also, the variance of the 

number of samples in each bin for the Halton and random sets were 0.667 and 100.2, 

respectively. This shows that incidentally, in this scenario set, the random method was 

biased towards scenarios at night whereas the Halton sequence was evenly distributed.  

 
Figure 17: Histogram of sun altitude angle from 800 scenarios pseudo-randomly 

generated (left) and generated from the Halton sequence (right) 
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When examining all the dimensions, it can be shown that the mean of the pseudo-

random scenario set is always further from the ideal mean than the Halton generated 

scenario set in these two scenario sets. The maximum percent difference from the ideal 

mean for the randomly generated scenario set was -4.24% while the Halton generated 

scenario set had a maximum percent difference of -0.29%. This means, for example, 

there was a 4.24% bias towards nighttime scenarios in the randomly generated scenario 

set, whereas the Halton sequence had only a 0.07% bias towards scenarios occurring 

during the daytime. 

Table 4.1  
 

Mean of 800 Halton and pseudo-randomly generated scenarios and their percent 
difference from the ideal mean 

 Ideal 
Mean 

Random 
Mean 

Random % 
Difference 

Halton 
Mean 

Halton % 
Difference 

Cloudiness 50.00 50.17 0.33% 49.90 -0.20% 

Fog Density 50.00 50.81 1.62% 49.85 -0.29% 

Fog Distance 2.50 2.46 -1.76% 2.50 -0.04% 

Fog Falloff 2.50 2.58 3.34% 2.49 -0.24% 

Precipitation 50.00 51.05 2.10% 49.97 -0.07% 

Precipitation 
Deposits 50.00 50.67 1.33% 49.89 -0.23% 

Wetness 50.00 49.93 -0.14% 49.95 -0.10% 

Wind 
Intensity 50.00 51.24 2.48% 50.04 0.07% 

Sun Azimuth 
Angle 90.00 87.11 -3.21% 89.89 -0.13% 

Sun Altitude 
Angle 0.00 -3.82 -4.24% 0.06 0.07% 
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4.2 SUT Performance 

The performance of the SUT can be examined in a few different ways: the overall 

mean driving score for the entire scenario set, the relationship between driving score and 

a specific simulation parameter, and the average number of infractions for each infraction 

type. This should give a decent overview of the SUT performance along the tested route 

and how different simulation parameters impact the driving score. 

The overall mean driving score for the SUT in the Halton generated scenario set 

was 9.36 and was 8.79 for the pseudo-randomly generated scenario set after 800 

scenarios. As defined in Section 3.3, these scores are on a range of 0-100, with 100 being 

a perfect score and 0 being the worst score. In Figure 18, the mean driving score after 

each of the 800 generated scenarios for both sets can be seen. The two responses show 

that eventually, both scenario sets begin to come to a similar agreement on the mean 

driving score. The percent difference between the two resulting mean driving scores after 

400 scenarios was 21.1% while the percent difference after all 800 scenarios was 6.27%. 

It took 381 scenarios for the Halton generated scenario set to converge to within 5% of 

the final mean score, whereas the pseudo-randomly generated scenario set converged to 

within 5% of the final mean score after 673 scenarios. The plot of percent difference of 

the current mean driving score from the final mean driving score can be seen in Figure 

19. Additionally, a histogram of the driving scores for both the pseudo-random and 

Halton scenario sets is shown in Figure 20. 
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Figure 18: Mean driving score for 800 scenarios generated pseudo-randomly and by a 
Halton sequence 

 

 



37 

 

Figure 19: Percent difference between running mean and final mean driving score 
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Figure 20: Histogram of driving scores for the pseudo-random scenario set (left) and the 
Halton scenario set (right) 

 

While these plots give an overview of the overall performance of the SUT, they do 

not provide as much feedback for specific improvement areas. To get this, the driving 

score in different dimensions can be examined to determine if there is any correlation. 

For parameters sun altitude angle and fog density, in Figure 21 and Figure 22, 

respectively, there was some correlation with driving score. With sun altitude angle, there 

was a sharp drop off in vehicle performance below a sun altitude angle of 0. In the Halton 

generated set, no scenarios with a sun altitude angle of less than or equal to -7 achieved a 

driving score greater than 14.45. In the pseudo-randomly generated set, there was one 

outlier scenario which was able to achieve a driving score of 33.89 with a sun altitude 

angle of -57. However, the same general trend of poor performance in nighttime 

scenarios as observed in the Halton generated set was also prevalent in the pseudo-

randomly generated set.  
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Figure 21: Sun altitude angle vs driving score for pseudo-random scenario set (left) and 
Halton scenario set (right) for 800 scenarios 

 

 

Figure 22: Fog density vs driving score for pseudo-random scenario set (left) and Halton 
scenario set (right) for 800 scenarios 
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A more gradual decline in performance of the SUT was observed for the fog 

density parameter. For a fog density of greater than 80, both scenario sets did not 

encounter a driving score above 15. Examining each scenario set after 800 scenarios 

gives a similar amount of insight into the capabilities and limitations of the system. 

However, a better way to explore the performance of both scenario generation methods 

might be to examine how well each method portrays the capabilities of the system as the 

number of scenarios run increases. Below in Figure 23 through Figure 26, a quadratic 

polynomial trendline is fit to the driving score and sun altitude angle after 50, 100, 400, 

and 800 scenarios for each scenario generation method. Through visual inspection, the 

trend of the SUT’s performance after 50 scenarios is generally the same as after the 800 

scenarios for the Halton generation method, whereas the pseudo-random method has a 

trend after 50 and 100 scenarios which would indicate decreasing performance of the 

SUT as the sun altitude angle increases. In Figure 25, which is after 400 scenarios, the 

pseudo-random scenario set indicates a similar trend to the Halton generated set. After 

800 scenarios, both methods are in general agreement of the trend of the SUT’s 

performance over a varying sun altitude angle. This is most likely due to the Halton 

sequences more uniform coverage of the state space, as discussed in Section 4.1. 
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Figure 23: Sun altitude angle vs driving score with trendline for pseudo-random scenario 
set (left) and Halton scenario set (right) for 50 scenarios 

 

Figure 24: Sun altitude angle vs driving score with trendline for pseudo-random scenario 
set (left) and Halton scenario set (right) for 100 scenarios 
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Figure 25: Sun altitude angle vs driving score with trendline for pseudo-random scenario 
set (left) and Halton scenario set (right) for 400 scenarios 

 

Figure 26: Sun altitude angle vs driving score with trendline for pseudo-random scenario 
set (left) and Halton scenario set (right) for 800 scenarios 
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While some dimensions, specifically sun altitude angle and fog density, had a fairly 

large impact on the overall driving score, other dimensions seemed to have little to no 

effect on the final driving score. For example, neither cloudiness nor wind intensity 

appeared to have even a marginal, if any, impact on driving score. Appendix A contains a 

plot of each of these dimensions after 800 scenarios. 

 

Figure 27: Cloudiness vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 

 

Figure 28: Wind intensity vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 
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 Since it has now been shown that certain parameters have a larger impact on the 

overall driving score, the difference of 6.27% between the final overall driving scores 

(Figure 18) from the Halton scenario set and the pseudo-randomly generated scenario set 

can be rationalized. As discussed in Section 4.1, the pseudo-random scenario set had 

more bias in each dimension than the Halton scenario set (shown in Table 4.1). Take, for 

example, sun altitude angle, with which the pseudo-random scenario set had a bias of 

4.24% towards scenarios occurring at night (meaning a sun altitude angle of less than 0) 

and the Halton scenario set had a bias of 0.07% towards daytime scenarios. It has been 

shown that the SUT had a poorer performance in scenarios occurring at night. Therefore, 

it makes sense that the pseudo-random set had a lower overall mean driving score than 

the Halton set, as it was biased towards scenarios with which the SUT performs poorly, 

whereas the Halton set had a smaller, nearly negligible bias. More samples towards either 

end of the spectrum can cause the testing to result in either an over estimation of the 

SUT’s abilities if more scenarios with more favorable conditions are generated, or an 

under-estimation if there are more scenarios that are difficult for the SUT to perform well 

in. While this bias could have caused the overall mean driving score of the pseudo-

random set to have been lower, other factors, which will be discussed in Section 4.3, 

could have impacted these results. 
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4.3 Performance Variance 

If the Halton sequence generated scenario set more uniformly distributed samples in 

the state space, then it should also produce a higher variance in the output space. This 

higher variance would be indicative of a more diverse scenario set that properly tested the 

system both in scenarios where it would perform well and where it would perform 

poorly. Therefore, in Figure 29, the running variance of the scenarios run thus far is 

calculated and then plotted every 10 scenarios. For instance, the first sample point on the 

plot is the variance from scenarios 1 through 10, next is the from scenarios 1 through 20, 

then scenarios 1 through 30, etc. 

 

Figure 29: Variance of Halton and pseudo-random driving score 
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The variance of the driving score from the Halton scenario set after the first 10 

scenarios was 910.8, whereas the variance from the pseudo-random set was 15.7. As the 

number of scenarios increase, the variance of the Halton scenario set decreases, with 

occasional spikes up. The variance of the pseudo-random set, however, starts from a 

fairly low variance and increases. This further reinforces the claim that the Halton 

sequence is more uniformly testing the SUT, whereas the pseudo-random set might be 

testing redundant scenarios. The Halton scenario set ends at 800 scenarios with a variance 

of 227.8 while the pseudo-random set ends with a variance of 180.0.  

4.4 Testing Variability 

As mentioned in Section 3.1, one of the extraneous variables is the impact of non-

determinism on the testing results. First, the variability of the results will be shown and 

then the potential causes will be discussed. To characterize the variability of the results, 

the same set of 50 scenarios were run 4 different times. In Figure 30, the rolling mean 

driving score for these same 50 scenarios is exhibited. The final mean driving scores for 

runs 1 through 4, in order, were: 9.25, 7.02, 7.91, 7.20. This gives a final aggregate mean 

score between all 4 runs of 7.85. The resulting variance of the final mean driving score 

across all runs was 1.02. The variability in these results show that there is in fact 

variability when running the same scenario to evaluate the SUT. While there are still 

many scenarios that, across all four runs, result in the same driving score, there are some 

which can experience wildly different outcomes. A selection of the scores for individual 

scenarios and their variance can be seen in Table 4.2, whereas the full dataset can be 

found in 0. 
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Figure 30: Mean driving score across 4 repeated runs of the same set of 50 scenarios 

 

Table 4.2  
 

A subset of 10 scenarios of the results of 50 scenarios run 4 times 

Scenario ID Run 1 Run 2 Run 3 Run 4 Variance 
1 3.45 3.45 0.45 3.45 2.25 
2 3.40 4.91 13.51 13.93 30.90 
3 3.35 4.96 2.03 3.35 1.44 
4 3.45 3.45 3.45 3.45 0.00 
5 34.77 20.86 20.76 34.63 64.31 
6 13.65 13.65 13.65 8.27 7.23 
7 3.45 3.45 2.07 2.07 0.63 
8 9.58 6.23 6.23 9.58 3.75 
9 3.45 3.45 3.45 3.45 0.00 

10 3.45 1.23 1.22 2.22 1.11 
 



48 

Since the SUT uses machine learning, the core element of the driving model is 

inherently non-deterministic, meaning that given the same set of inputs this driving 

model could react in a completely different way. Another non-deterministic aspect of the 

testing process is the simulator itself, specifically the traffic manager. Meaning multiple 

different runs on the simulator may result in actors not behaving the same exact way, in 

turn changing the SUT’s experience on the route and causing different inputs that should 

have been consistent. While this is more impactful on the outcomes of individual or small 

test scenarios, the variance of 1.02 across the final means scores of all 4 runs show that 

the effects of this most likely even out across the aggregate scenario set. However, the 

same scenario set should probably be re-run multiple times for more accurate testing 

results. Re-running the same set of 800 scenarios was infeasible for this study due to the 

long testing time, which will be mentioned in the next section. 

4.5 Testing Time 

Another datapoint that should be discussed is the amount of time it took to run these 

scenarios using the hardware and software listed in Table 3.1. The time it took to run 800 

scenarios was approximately 72 hours, resulting in an average time of 5.4 minutes per 

scenario. The time to generate scenarios using the Halton sequence and the pseudo-

random method was effectively negligible compared to the testing time. Both took 

essentially the same amount of time to generate 800 scenarios, around 3.6 seconds on 

average. This long testing time is the reason why the number of 800 scenarios for each 

method was chosen. This long testing time for each scenario also underscores the benefit 

of using the Halton sequence generation method, as the vehicles performance was 

characterized in fewer scenarios than the pseudo-random method.  
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5 Conclusions 

The future of AV’s will depend on their ability to be fully and effectively tested, and 

simulation will play a large role in this testing regime [6], [9], [12], [16]. This study has 

proposed and evaluated using Halton sequences to generate scenarios for testing AD 

systems in simulation. The method was compared to traditional pseudo-random scenario 

generation and evaluated for uniformity of the coverage of input space and its ability to 

accurately evaluate the SUT’s performance.  

Halton sequences were chosen because of their low-discrepancy in smaller state 

spaces, and their ability to expand their low-discrepancy characteristics to higher 

dimensional state spaces by using a scrambling method, namely the HaltonRR2 method 

[49], [50], [52]. Halton sequences were shown to have a more uniform distribution of the 

state space and converge to within 5% of the final driving score in 381 scenarios, whereas 

the pseudo-random method took 673. It additionally showed that the general trend of the 

SUT’s performance in a certain dimension was correctly characterized by the Halton 

method before the pseudo-random generation method. The Halton scenario set also had a 

higher variance than the pseudo-random method, especially during the initial scenarios. 

This indicates that the Halton scenario set generated a more diverse set of scenarios to 

evaluate the SUT, finding both scenarios where the SUT performed poorly, and where it 

performed well. While it was found that there is variability in the test results and that 

running the same scenario can yield different outputs each time, the variance of the 

aggregate driving score over many scenarios was relatively low. 

As mentioned in Section 3.1, attributes of good test cases are effectiveness, 

efficiency, economy, and robustness [44]. The Halton sequence generation method was 
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effective as it uniformly covered the state space, testing a diverse set of scenarios. It was 

also more efficient than the pseudo-random generation as it took nearly 300 fewer 

scenarios to converge to a final score, and it took fewer scenarios to characterize the 

SUT’s performance in relation to each parameter. It was just as economical as the 

pseudo-random generation method, as each took essentially the same amount of time to 

generate the set of scenarios. Finally, a Halton sequence should be resilient to changes in 

the state space, so long as appropriate methods are used to prevent correlation between 

higher dimensions and avoid secondary cycling. Overall, this study finds that it is 

advantageous for AV testing in simulation to use Halton sequences for scenario 

generation over pseudo-random methods because of its unform state space coverage and 

testing efficiency. 

 

6 Future Work 

While the use of Halton sequences to generate a uniform, diverse scenario set has 

been shown to be promising in this paper, their performance and application should be 

further studied. First, more analysis of the performance of Halton sequences should be 

completed across many other vehicle models, and the same scenario sets should be re-run 

multiple times to provide statistical significance. A larger set of scenarios to evaluate 

performance beyond the 800 scenarios generated, as well as scenarios with larger state 

spaces should also be generated and evaluated.  

Additionally, the scenarios generated here were focused on weather variation along a 

route, however this could easily be expanded well beyond weather parameters. For 

example, consider a “Cut-In” type scenario where the SUT is travelling along a road and 
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another actor cuts in front of it, something most drivers on the road have probably 

experienced at some point. Halton sequences could be applied to vary parameters such as 

velocity of the SUT, velocity of the other actor, distance at cut-in, velocity after cut-in, in 

addition to the weather parameters. The batches of scenarios which would be shorter than 

an entire route, but cover a larger state space, would be an interesting application of 

Halton sequences.  

The performance of other low-discrepancy, quasi-random sequences should be 

evaluated and compared to Halton and pseudo-random scenario generation. Sequences 

such as Sobol, Hammersley, Faure or some of the many others should be explored. 

Finally, a uniform distribution, such as the Halton sequence provides, might not 

always be the preferred way to test. For example, a vehicle most likely does not 

experience the same number of scenarios with heavy rain as it experiences a clear, sunny 

day. Characterizing the distribution of scenarios in the ODD, while not a trivial task, 

should also be investigated. If at least a rudimentary representation of the distribution of 

scenarios in the ODD could be characterized, then an overall driving score would be 

more representative of the vehicle’s ability in the real world. This would not replace the 

benefit of evaluating the vehicles performance using a unform distribution but could 

supplement the estimated performance of the vehicle in the real world. 
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Appendix A  

 

Figure 31: Cloudiness vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 

 

Figure 32: Fog density vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 
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Figure 33: Fog distance vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 

 

Figure 34: Fog Falloff vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 
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Figure 35: Precipitation deposits vs driving score with trendline for pseudo-random 
scenario set (left) and Halton scenario set (right) for 800 scenarios 

 

Figure 36: Precipitation vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 
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Figure 37: Sun altitude angle vs driving score with trendline for pseudo-random scenario 
set (left) and Halton scenario set (right) for 800 scenarios 

 

Figure 38: Sun azimuth angle vs driving score with trendline for pseudo-random scenario 
set (left) and Halton scenario set (right) for 800 scenarios 
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Figure 39: Wetness vs driving score with trendline for pseudo-random scenario set (left) 
and Halton scenario set (right) for 800 scenarios 

 

Figure 40: Wind Intensity vs driving score with trendline for pseudo-random scenario set 
(left) and Halton scenario set (right) for 800 scenarios 
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Appendix B  

Table 7.1  
 

Results of the same set of 50 scenarios run 4 separate times 

Scenario ID Run 1 Run 2 Run 3 Run 4 Variance 
1 3.45 3.45 0.45 3.45 2.25 
2 3.40 4.91 13.51 13.93 30.90 
3 3.35 4.96 2.03 3.35 1.44 
4 3.45 3.45 3.45 3.45 0.00 
5 34.77 20.86 20.76 34.63 64.31 
6 13.65 13.65 13.65 8.27 7.23 
7 3.45 3.45 2.07 2.07 0.63 
8 9.58 6.23 6.23 9.58 3.75 
9 3.45 3.45 3.45 3.45 0.00 

10 3.45 1.23 1.22 2.22 1.11 
11 13.80 13.93 8.88 13.93 6.27 
12 3.45 2.07 3.45 2.07 0.63 
13 2.07 3.45 3.45 3.45 0.48 
14 12.59 12.74 12.59 12.74 0.01 
15 3.74 7.22 2.32 4.33 4.23 
16 2.07 2.07 2.07 2.07 0.00 
17 8.95 8.82 8.95 8.82 0.01 
18 8.88 13.78 14.07 8.88 8.49 
19 3.45 3.45 3.45 3.45 0.00 
20 3.45 3.45 3.45 3.45 0.00 
21 0.41 3.39 3.39 1.89 2.03 
22 2.07 3.42 3.45 1.24 1.17 
23 64.99 40.30 63.75 59.65 131.70 
24 3.45 3.45 3.45 3.45 0.00 
25 5.06 5.70 3.42 3.42 1.35 
26 8.78 8.88 8.88 8.88 0.00 
27 3.45 3.45 3.45 3.45 0.00 
28 2.07 2.07 2.07 2.07 0.00 
29 18.31 28.16 28.16 15.60 43.10 
30 3.45 3.45 3.45 3.45 0.00 
31 1.34 3.42 2.07 5.75 3.75 
32 13.91 8.27 8.35 13.91 10.48 
33 0.14 2.53 0.72 0.05 1.33 
34 2.07 2.07 2.07 2.07 0.00 
35 13.66 13.36 13.66 13.51 0.02 
36 5.43 5.43 4.96 4.96 0.07 
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37 3.45 3.45 3.45 3.45 0.00 
38 3.45 3.45 3.45 3.45 0.00 
39 5.02 3.06 3.38 5.02 1.09 
40 1.33 1.24 1.89 0.14 0.54 
41 29.71 29.71 29.71 16.91 40.93 
42 3.45 3.45 3.45 3.45 0.00 
43 3.45 1.24 5.16 3.45 2.58 
44 89.40 2.93 33.32 2.95 1661.67 
45 3.45 3.45 3.45 3.45 0.00 
46 3.45 2.07 2.25 5.16 2.03 
47 8.88 8.88 8.88 8.88 0.00 
48 2.07 2.07 3.45 3.45 0.63 
49 3.45 3.45 0.08 0.61 3.25 
50 8.82 8.82 8.82 8.82 0.00 
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