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ABSTRACT 

 

Array of circular cylindrical pins or tubes are one of the most widely used type of 

convection cooling systems, profoundly used in the internal cooling of gas turbine blades. 

They promote heat transfer due to flow acceleration, secondary flows and wake shedding, 

at the expense of large pressure loss and unsteadiness in the flow. The need to reduce 

pressure loss and maintain the heat transfer rates are a much needed requirement for a 

variety of industries to improve the cooling efficiency. One such prominent line of 

research is conducted on optimizing the design of the circular cylindrical pins to increase 

their cooling performance. Bio-mimicked harbor seal whisker have been studied from an 

aerodynamic standpoint, due to their ability to reduce drag and flow unsteadiness. While 

applying this mimicked geometry in thermal management research, it was found that they 

lead to reduction in cooling system pumping power requirements, with the potential to 

maintain heat transfer performance. The seal whisker geometry consists of streamwise 

and spanwise undulations which reduce the size of the wake and coherent structures shed 

from the body; a result of an added component of streamwise vorticity along the pin 

surface. In addition, the vortex shedding frequency becomes less pronounced, leading to 

significantly reduced lateral loading on the modified cylinder. These whisker geometries 

are studied for their aero behavior but not from a thermal performance stand point. Hence 

the main objective of this study is to understand and utilize different flow physics of 

these whisker geometries in a wall bounded configuration. Computational studies have 

shown that the modified wake and vortex shedding structures resulting from the geometry 

tend to reduce the total pressure loss throughout the system without significantly 

degrading the cooling levels and experimental results agree with these findings. In 
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comparison to a conventional elliptical pin the bio pins have an increase in thermal 

performance at constant pressure drop by 9% and by 45% in comparison to a 

conventional cylindrical pin. These findings are important to the gas turbine community 

and heat exchangers as reduced penalties associated with cooling flows directly translate 

to improved thermodynamic and propulsive efficiencies. 
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1. Introduction 

Most energy-based systems in use employ some form of convection based thermal 

management. Gas turbine engines power most of the passenger aircrafts operating today. 

The efficiency of the gas turbine is directly related to the turbine inlet temperature, and 

the effectiveness of the hot section cooling systems. The gas turbine works on Brayton 

cycle, illustrated in the temperature and entropy diagram in Figure 1.1. 

 

 

Figure 1.1 Brayton cycle 

 

 The efficiency of the Brayton cycle is governed by the equation shown in the Figure 

1.1. In the ideal case, the Brayton cycle will not have any losses, but in the real world 

there are losses, which is illustrated by the actual Brayton cycle. Here T3 represents the 

turbine inlet temperature, and as seen from the Brayton cycle, higher the temperature at 

the inlet of the turbine, better the efficiency of the Brayton cycle. Hence gas turbine 

manufacturers strive to achieve the highest turbine inlet temperatures within the safe 

operating limits of the blade material. 
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1.1. Motivation 

 Modern gas turbine designs have taken advantage of advanced cooling technologies 

to the extent that rotor experiences inlet temperatures several hundred Kelvin beyond the 

safe operating point of the exotic materials used within them (Sautner, Clouser, & Han, 

1992), with limits continuing to be pushed. The importance of this is highlighted by the 

fact that a 56 Kelvin increase in hot gas temperature potentially yields an increase of up 

to 13% in power output or 4% in simple cycle efficiency (Boyce, 2006). The task of a 

cooling design is not only to keep the maximum temperature of the blade itself below a 

safe level, but also minimize spatial variations in temperature that can create thermal 

stress (Iacovides & Launder, 2006). Future advances, however, are becoming more 

difficult to achieve, as the rate of technology improvement has somewhat reached a 

plateau in the past 10 years (Bunker, 2006; Downs & Landis, 2009). 

 There is a need in improved cooling techniques, which takes advantage of advanced 

design, materials and their manufacturing methods. In most heat exchange applications, 

an array of constant cross section cylinders are widely employed; hence they have been 

heavily studied in the literature. This gives us the opportunity to come upon with novel 

ideas leading to innovative pin structures for the potential to have better performance. 

1.2. Turbine Blade Cooling 

The maximum attainable turbine inlet temperatures ultimately depend on the 

maximum combustion temperature of the fuels used for power generation today with 

some losses, which can reach temperatures close to 1700°C as seen in Figure 1.2. 

Cooling air around 650°C is extracted from the compressor and passes through the 

turbine blade. With the hot gases and cooling air, the temperature of the turbine blades 
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can be lowered to approximately 1000°C, which is permissible for reliable and safe 

operation of the engine (Gas turbine handbook, 2006). 

 

 

Figure 1.2 Turbine inlet temperatures over the years (Wadley Research Group) 

 

Cooling of turbine blades started with simple convection cooling (internal cooling). 

Later various methods such as film cooling, Thermal Barrier Coating (TBC) allowed to 

increase the operating temperature of the blade. Figure 1.3 shows the different cooling 

techniques implemented in a conventional gas turbine blade. 

 

 

Figure 1.3 Blade cooling techniques (Han, 2004) 
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The cooling techniques for the turbine blade comprises of both internal and external 

cooling. The internal cooling technique comprises of different methods such as, jet 

impingement cooling, rib turbulated cooling, dimple cooling and pin fin cooling. External 

cooling technique utilizes film cooling holes. Apart from these convection type cooling 

methods, other advanced methods such as Thermal Barrier Coating (TBC), and Ceramic 

Matrix Composite (CMC) materials are used to further enhance the heat transfer. 

1.2.1. Pin fin channel 

A pin fin channel is made up of fins, usually cylindrical in shape, arranged in a 

staggered or non-staggered array. Figure 1.4 represent the flow feature in a typical pin fin 

channel geometry. The resulting shedding of vortex, as seen in Figure 1.4 caused by 

unsteady separation is a significant driver of heat transfer on the backside of the pin 

(Ames & Dvorak, 2006).  

 

 

Figure 1.4 Flow feature in a pin fin channel (Shih, 2018) 
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  An internal cooling channel with a pin fin array is characterized by regions of 

accelerated flows between the pins, stagnation flows, localized low and high pressure 

regions, flow separation zones and end wall boundary layer flow features that enhance 

the rates of convective heat transfer (Ames et al., 2006; Chyu et al., 1999; Metzger et al., 

1982). The main contributors to the heat transfer are the stagnation at the leading edge 

and the horseshoe vortex created by the pin – endwall to flow interaction (Chyu, Hsing, 

Shih, & Natarajan, 1999). Figure 1.5 shows the flow feature of the flow interaction with 

the endwall due to the presence of the cylindrical pins.  

 

 

Figure 1.5 Endwall Nusselt number contour (CFD) – Cylindrical pin fin array 

 

 As seen in the contour, the horseshoe vortex just forms upstream of the base of the 

pin and the vortex warps around the pins (Gas turbine handbook, 2006). They create 

additional flow mixing and therefore enhance the heat transfer. The pin shape and size 

also have a profound impact on the heat transfer in the cooling passage of a pin fin 

channel. Also, the effect of coolant extraction must be considered, since pin fins are 

commonly coupled with trailing edge ejection in a turbine blade/vane as shown in Figure 

1.6. 
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Figure 1.6 Turbine vane cross section (Gas turbine handbook, 2006) 

 

1.3. Biomimicry 

 Biomimicry (from bios meaning life, and mimesis, meaning to imitate) is a discipline 

that imitates nature’s designs to solve human design problems (Benyus, 1997). 

Biomimicry and bio-inspired devices have gained interest recently, due to the optimized 

designs presented in nature through evolution. Biomimicry has found applications in a 

variety of fields, including modeling bumblebees and other insects in flapping wing 

aerodynamics. The wing from the insect manduca sexta, as shown in Figure 1.7 is an 

inspiration for the application of flapping wing aerodynamics.  

 

 

Figure 1.7 Biological vs. engineered hawkmoth (manduca sexta) wing (DeLuca, 2013) 
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Several objectives were achieved by studying the wing of this insect, such as the wing 

rotation angle and effective control methods (DeLuca, 2013). The insect Bumblebees also 

serves as an inspiration for application of flapping wing aerodynamics. Its wing generates 

a lift coefficient of 0.5894, the stall angle was observed at +16° angle of attack and the 

minimum coefficient of drag was observed to be -0.2389 at an angle of attack of -7° 

(Thompson et al., 2015).  Settles et al. (2003) studied about gas sampling based on canine 

olfactory airflows, separate flow pathways are provided for the inspired and expired air 

by way of nozzle flexure, these were studied for the purpose of chemosensing (Settles, 

Douglas, & Dodson-Dreibelbis, 2003).  

The fish scale was mimicked for microscale passages for enhanced heat transfer. It 

was observed that the thermos-hydraulic performance factor was increased by 43% 

compared to a smooth passage (Goh & Ooi, 2016). Different fractal geometries inspired 

by plant leaves with different surface wettability were studied to be used for heat 

exchanger surface treatment for condensation and frosting application (Huang, Hwang, & 

Radermacher, 2017). 

Fish et al. (2011) and Miklosovic et al. (2004) investigated the application of 

tubercles on humpback whales’ flipper, as seen in Figure 1.8. It was observed that the use 

of tubercles on the leading edge of an airfoil increased the lift by 6% and increased the 

stall angle by 40% with comparison to NACA 0020 airfoil, while maintaining the 

coefficient of drag (Fish et al., 2011; Miklosovic et al., 2004). 

Tubercles on humpback whales’ flipper are also studied to be used in wind turbine 

blades, as seen in Figure 1.8. WhalePower Corporation demonstrated that using tubercles 

based on humpback whales’ flipper on wind turbine blades will overcome the poor 
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reliability when winds fall, noise – especially tip chatter caused by tip stalling, and poor 

performance in unsteady or turbulent air (Whalepower Corporation). 

 

 

Figure 1.8 Left – Humpback whales’ flipper (Asknature), middle – Humpback whales’ 

flipper airfoil model (Fish et al., 2011) and Right – Humpback whales’ flipper turbine 

blade model (Whalepower Corporation) 

 

Biome-Renewables proposed retrofitting a wind turbine with a PowerCone, as seen in 

Figure 1.9 which channels incoming wind onto the blades to address root leakage. This 

results in obtaining more power. The PowerCone design is based on kingfisher’s beak 

and the maple seed. The PowerCone has a 53% peak aerodynamic efficiency and 13% 

increase in annual energy production, while experiencing reduced loads and generating 

less noise (Biome-Renewables®). 

Biomimicry still imposes a main challenge, of how to access the information needed 

to use biomimicry in an effective and successful way (Volstad & Boks, 2012). The 

research entitled to this dissertation, which imitates harbor seal’s whisker shape to a pin 

geometry, also faces the same challenge, as the whiskers are naturally designed for their 

hydrodynamic benefits. However, in this research they are used for thermodynamic and 

aerodynamic purpose. Hence accessing the information needed to obtain a successful 

thermal performance benefit from this whisker shape pin geometry will be the challenge 

for this study. 
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Figure 1.9 Left – Maple seed in time as it falls to the ground and Right – PowerCone 

(Biome-Renewables®) 
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2. Literature Review 

Numerous studies have been carried out using different pin geometries, in this section 

these studies are categorized into two parts, conventional and non-conventional pins. 

Studies done using harbor seal whiskers will be discussed, which will lead to the 

hypothesis of this current study. 

2.1. Conventional Pins 

The circular cross section cylinders have been extensively used in thermal 

management applications due to better heat transfer characteristics, but at the cost of 

pumping power requirements; hence increasing heat transfer characteristics will 

subsequently increase the pumping power requirements.  

The behavior of flow around the pin significantly affects the heat transfer and it has 

been detailed in literature that the presence of the pin breaks up the boundary layer 

creating a horseshoe vortex, as seen in Figure 1.5. The horseshoe vortex created by the 

presence of the pin produces high wall shear stress beneath it, resulting in high heat 

transfer from the wall, the resulting flow separation around the pin results in large 

pressure loss (Chyu, 1990). The pin fin channel has been heavily studied in the literature 

in an effort to describe the heat transfer, flow behavior, and improve prediction abilities.  

VanFossen (1982) studied about staggered array of short pin fins, two different model 

geometries was used in three variations: copper pins, wooden pins, and inclined copper 

pins. It was concluded that the average heat transfer coefficient on the pin surface is 

about 35 percent larger than that on the endwall. At low Reynolds number, pins angled at 

60º have 50% greater effective heat transfer than perpendicular pins (VanFossen, 1982).  

Chyu et al. (1999) investigated about pin fin array configuration: inline and staggered, 
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as seen in Figure 2.1. Two features were implemented, one is the isothermal boundary 

conditions over the entire channel and second is attaining true row averaged data. This 

study concluded the heat transfer coefficient on the pin surface is higher than the endwall 

by approximately 10 to 20% (Chyu et al., 1999).  

 

 

Figure 2.1 Inline and staggered pin fin array (Chyu et al., 1999) 

 

Ames and Dvorak (2006) investigated flow features and aspects of turbulent transport 

in a pin fin array, in order to better understand the flow physics. He concluded that the 

flow has significant unsteadiness due to vortex shedding from the pins and the relative 

intensity of vortex shedding increases with Reynolds number. Vortex shedding from pins 

in row 2 is significantly stronger than shedding from pins in row 1, as seen in Figure 1.4 

and the relative intensity of this shedding has been shown to correlate well with backside 

heat transfer rates (Ames & Dvorak, 2006).  

In a pin fin array, the flow of fluid around the pin causes turbulent wakes, which 

increases as the flow moves downstream. These turbulent wakes result in high levels of 

total pressure loss in these regions. This overall pressure drop in the channel can be used 

to throttle the flow. As a result, relatively small driving pressures can be supplied to these 

fin arrays (Ciha, 2014).  
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Lawson et al. (2011) discussed about the augmentation in convective heat transfer 

due to different spacing in the pin fin arrays, as shown in Figure 2.2. Their study showed 

that the heat transfer in an array of pin fins increased with decreased spanwise (S1/d) and 

streamwise (S2/d) pin spacing with a stronger dependence on streamwise spacing than 

spanwise spacing (Lawson, Thrift, Thole, & Kohli, 2011). Figure 2.3 summarizes array 

averaged Nusselt number for different pin spacing. 

 

 

Figure 2.2 Different streamwise and spanwise spacing for H/d=1 (Lawson et al., 2011) 

 

 

Figure 2.3 Array averaged Nusselt number (Lawson et al., 2011) 
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Lee et al. (2019) studied about the effect of heating loads (Tw/Tc) on the unsteady 

flows and heat transfer in an internal cooling passage with a staggered array of pin fins. 

Results from their study show that, as the heating load increases, the mean Nusselt 

number and the flow separation angle around the pin decreases (Lee, Shih, Bryden, & 

Dennis, 2018), as depicted in Figure 2.4. 

 

  

Figure 2.4 Regionally – averaged Nu and flow separation angle (Lee et al., 2019) 

 

In terms of CFD, a thorough study was done by Fernandes et al. (2017) in comparing 

selected commercially available turbulence models. From the results of the study, it can 

be summarized that, in the case of pin-fin cooling channels, realizable k – ε turbulence 

model performed poorly in comparison to experimental data for different Reynolds 

numbers, the quadratic version of the k – ε turbulence model differed by 8% on average 

for higher Reynolds numbers and k – ω SST turbulence model had the overall better 

agreement to experimental data for different Reynolds numbers (Fernandes, Ricklick, 

Prasad, & Pai, 2017). 

Paniagua et al. (2014) compared Large Eddy Simulations with different subgrid-scale 

models (WALE, QR, and VMS) for a matrix of wall bounded 8x8 cylindrical pins. His 
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team found that QR eddy viscosity model better predicted the pressure distribution 

around the pins, but the velocity field of the channel was in better agreement with the 

experimental results when WALE model was used. For averaged heat transfer results all 

the three subgrid scale models had the ability to predict fairly well for this kind of 

geometry (Paniagua, Lehmkuhl, Oliet, & Perez-Segarra, 2014). 

Delibra et al. (2010) studied vortex structures and heat transfer in a pin fin channel 

using LES with RANS wall-treatment (hybrid model). This study also compared the 

hybrid LES model with URANS and experimental results. Figure 2.5 shows the time 

averaged endwall Nusselt number for URANS, hybrid and experiment. 

 

 

Figure 2.5 Time averaged Nusselt number normalized with Nusselt number average 

(Nu/Nuave) for Re = 30,000, Top: URANS; middle: hybrid LES/URANS; bottom: 

experiment. (Delibra et al., 2010) 

 

It was summarized in this study that the hybrid approach showed visible 

improvements over URANS using the same computational grid. As the local convection 
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associated with large vortex systems is the dominant heat transfer mode away from the 

near-wall layers gives support to using a hybrid URANS/LES approach in treating 

convective heat transfer in complex configurations dominated by separated flows over 

bluff bodies (Delibra, Hanjalic, Borello, & Rispoli, 2010). In manufacturing aspect, the 

circular cylindrical pins are relatively easy to manufacture and hence, this configuration 

is often found in commercial applications.  

2.2. Non – Conventional Pins 

Several researchers have investigated benefits associated with non-conventional pins. 

Kim and Moon (2009) investigated stepped circular pin shapes, as shown in Figure 2.6, 

in an effort to enhance heat transfer and thermal performance. 

 

 

Figure 2.6 Geometry of stepped circular pin fin (Kim & Moon, 2009) 

 

These stepped pins were optimized based on the ratio of height of smaller diameter 

part of the pin-fin to height of the channel (h/H) and ratio of smaller diameter of the pin-

fin to height of the channel (d/H). They showed significant improvements were possible 

in terms of thermal performance at constant pumping power as compared to straight pin 

shapes, as summarized in Figure 2.7 (Kim & Moon, 2009).  
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Figure 2.7 Comparison of thermal performance for stepped pin fins (Kim & Moon, 2009) 

 

The enhancement of thermal performance in stepped pin fins is attributed to the fact 

that the vortices arises from the steps promotes heat transfer while the pressure loss is 

reduced by the smaller blockage ratio due to the steps (Kim & Moon, 2009). Figure 2.8 

shows the streamlines of vortices in the axial plane. 

 

 

Figure 2.8 Streamlines: A – Cylindrical pin fin, B – stepped pin fin and C – optimized 

stepped pin fin (Kim & Moon, 2009) 

 

Tullius et al. (2012) investigated the impact of normal and non-circular fin shapes, as 

shown in Figure 2.9, on heat transfer and pressure drop in a microchannel. Different fin 

shapes yield Nusselt number values within 37% of each other at high Reynolds number 

with improved performance observed with triangular pins and smallest pressure drop 

recorded in elliptical pins (Tullius et al., 2012). 



17 
 

 

Figure 2.9 Microchannel model with different pins shapes (J. Tullius, T. Tullius, & 

Bayazitoglu, 2012) 

 

 Figure 2.10 summarizes the result for Nusselt number and pressure drop for different 

pin geometries. As mentioned previously, we can see in Figure 2.10, the triangular pin 

has the largest Nusselt number and the elliptical pin due to its aerodynamic shape has the 

lowest pressure drop at the expense of heat transfer performance. 

 

 

Figure 2.10 Nusselt number and pressure drop for different pin geometry (Tullius et al., 

2012) 

 

 Pent et al. (2009) investigated the performance of a porous pin fin array, in an 

attempt to reduce the pressure drop across the system, as illustrated in Figure 2.11. 
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However, the flow separates from the porous pin surface relatively early which increases 

the size of the wake along with pressure penalties, as seen in Figure 2.11 (Pent, Kapat, & 

Ricklick, 2009). 

 

 

Figure 2.11 Flow visualization (left) and thermal performance (right) of porous pins 

(Pent et al., 2009) 

  

Uzol and Camci (2005) conducted a study to compare end-wall heat transfer 

enhancements and total pressure loss between circular, elliptical and a pin based on 

NACA 0024 airfoil, as shown in Figure 2.12. From their study, the Nusselt number for 

the circular fin array was about 27% higher on average than the elliptical and NACA fin 

arrays. The Pressure loss levels for the circular fin are 46.5% and 59.5% higher on 

average than those of the elliptical and NACA fins, respectively (Uzol & Camci, 2005).  

  

 

Figure 2.12 Pin model: Circular pin, Standard elliptical pin (SEF) and pin based on 

NACA 0024 (N fin) (Uzol & Camci, 2005) 
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Kondo et al. (2000) investigated an approach for the design and optimization of pin 

fin heat sink cooled by impingement, as shown in Figure 2.13. For a model of 60-by-60-

mm, Kondo concluded the optimum fin geometry to be, pin diameter of 0.35 mm, 

minimum spacing between pins are 0.65 mm, number of pins to be 3481 pins, and pin 

height of 17 mm (Kondo, Matsuhima, & Komatsu, 2000).  

 

 

Figure 2.13 Pin fin heat sink model with impingement cooling (Kondo et al., 2000) 

 

Benjan (2000) conducted the geometric optimization of T-shaped fins. He concluded 

that the constructal optimization, based on constructal law could lead to substantial 

increases in global conductance relative to current optimal designs that fill the same 

volume and use the same amount of fin material (Benjan, 2000).  

Lee et al. (2004) conducted numerical simulations of flow past a circular cylinder 

with periodic array of fins, as seen in Figure 2.14. The presence of the periodic array of 

fins break down the flow structures which leads to a decrease in pressure drop, however 

due to vortex dislocation and cylinder end effects, as illustrated in Figure 2.15, the mean 

local heat transfer is reduced by 25%, even though the total area exposed to the flow for 

finned cylinder is three times that of the smooth cylinder (Lee, Ha, Balachandar, & Lee, 
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2004). Hence the Nusselt number, Strouhal number and mean pressure drag coefficients 

for the finned cylinder are smaller in comparison to smooth cylinder (Lee et al., 2004). 

  

 

Figure 2.14 Circular cylinders with periodic array of fins (Lee et al., 2004) 

 

 

Figure 2.15 Instantaneous streamwise contours at different locations along the pin axis 

(Lee et al., 2004) 

 

Kirsch et al. (2014) compared the pin surface heat transfer in arrays of oblong and 

cylindrical pins. The research concluded that, cylindrical pins generated elevated channel 

turbulence and therefore produced higher overall heat transfer when compared to the 

oblong pins. Oblong pins led to a lower pressure drop within the array compared to 

cylindrical pins. As shown in Figure 2.16, the results also indicated the importance of 
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spacing and Reynolds number effects on the pin surface heat transfer with oblong pins 

being severely affected by these parameters, given that they affected the boundary layer 

growth along the surface (Kirsch, Ostanek, & Thole, 2014). 

 

 

 Figure 2.16 Frossling number (left) and friction factor (right) comparison (Kirsch et al., 

2014) 

 

2.3. Biomimicry 

Biomimicry and bio-inspired devices have gained interest recently, due to the 

optimized designs presented in nature through evolution. This discipline imitates nature’s 

designs to solve human design problems (Benyus, 1997). The main topic of this study is 

the natural design of harbor seal whisker.  

Harbor seals are evolved to locate the footprints (wake) fish leave behind in water. 

The seals can sense these vortices left by the flick of a fish’s fins using their whiskers, as 

illustrated in Figure 2.17 (Beam, 2016). This behavior of the seal’s whisker sensing 

vortices is surprising because, it is well known that a cylindrical/elliptical object such as a 

whisker should naturally vibrate in flowing water, which hinders sensing other vibrations, 

as shown in Figure 2.18. 
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Figure 2.17 Sensing abilities of harbor seal whisker (Beam, 2016) 

  

 

Figure 2.18 Vortex induced vibrations (Beam, 2016) 

 

But upon close observation it was found that the seal’s whiskers did not appear to 

vibrate, and it was theorized that this may be related to the seal whiskers’ unusual shape. 

From the top they are elliptical, and from the side they are wavy, shown in Figure 2.19. 

 

 

Figure 2.19 Seal whisker’s shape (Beam, 2016; Hanke et al., 2010) 
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The harbor seal whisker has been studied heavily in the literature, in an effort to 

understand their acute sensing abilities (Beem & Triantafyllou, 2015 and Miersch et al., 

2011). Beem & Triantafyllou (2015) studied about the detectability of a specific object 

(such as a cylinder) in the flow stream by using harbor seal whisker and found out that 

the presence of distinct wakes was detectable at 160 times the whisker’s minor diameter 

downstream.  

In addition, it was also indicated that the whisker geometry vibrates with large 

amplitude at the Strouhal frequency of the upstream cylinder and practically ceases to 

vibrate when the upstream cylinder is removed (Beem & Triantafyllou, 2015). In harbor 

seal whiskers, it was found that the undulated shape results in reduced vortex induced 

excitations and diminishes the strength of organized flow structures in the wake (Beem, 

Dahl, & Triantafyllou, 2011; Weymouth, & Triantafyllou, 2011). 

 

 

Figure 2.20 Structure of Harbor seal and California sea lion vibrissae (Hanke et al., 2010; 

Miersch et al., 2011) 

 

 Miersch et al. (2011) investigated about the detection of external hydrodynamic 

information by harbor seal and California sea lion whiskers, as shown in Figure 2.20. By 

this research, it was found that the sensory performance of both the whiskers were similar 
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but indicated that California sea lion whisker had a reduced temporal resolution in 

comparison to the harbor seal whisker. This deficit in temporal resolution will cause an 

impaired spatial perception of vortex patterns (Miersch et al., 2011).  

Murphy et al. (2013) studied about the effect of angle of orientation on flow induced 

vibration of pinniped (seals) vibrissae (whiskers). Summarized in Figure 2.21, it was 

found that the angle of orientation, rather than species differences and thus surface 

structure of the vibrissa, had the greatest effect on the frequency and velocity of flow-

induced vibrations. (Murphy, Eberhardt, Calhoun, D.A. Mann, & K.A. Mann, 2013). 

 

 

Figure 2.21 Frequency and velocity for flow induced vibration (Murphy et al., 2013) 

 

 Hanke et al. (2010) also studied the vortex induced vibration of harbor seal whiskers. 

He concluded that few or no vortex-induced vibrations occur on harbor seal vibrissae 

owing to the effective suppression of the periodic forces. The research indicated a 

reduction of the standard deviation of the lift and drag forces of approximately 90% on 

the harbor seal vibrissa as compared with those on a circular cylinder and their numerical 

results fell within ± 30% of the experimental values (Hanke et al., 2010). Figure 2.22 
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shows the harbor seal whisker geometry and the wake flow behind whisker in 

comparison to an ellipse and a cylinder. 

 

  

Figure 2.22 Wake flow behind different cross section bodies (Hanke et al., 2010) 

 

 From Figure 2.22, it can be seen that no large scale periodic vortex formations are 

seen in the wake of the vibrissa. The separation of Kármán vortices as seen in a 

cylindrical structure is replaced by complex 3D vortex structure behind the vibrissa. The 

separation of these complex vortex structures occur simultaneously across the axial 

direction, also the region of vortex formation is considerably shifted downstream 

compared to the cylindrical and elliptical structures wake. Hence the gap between the 

structure and the region with fluctuating flow, results in symmetric pressure imposition 

leading to reduction in large periodic forces on the vibrissa and thus reducing vortex 

induced vibrations (Hanke et al., 2010).  

Hans et al. (2013) studied about the force reduction properties of harbor seal whisker-

like geometries, as seen in Figure 2.23. They found that the undulations on both axes are 
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necessary for the lift force reduction. When the undulation on one of the axis is 

eliminated the lift coefficient increase by 8 times. 

 

 

Figure 2.23 a) whisker-like geometry with no undulations on major axis, b) whisker-like 

geometry with no undulations on minor axis, c) whisker-like geometry with no offset 

angle, d) whisker-like geometry with constant offset angle (17.6°), and e) real whisker 

geometry (Hans et al., 2013) 

 

The undulations on the minor axis reduces the drag coefficient by 26% (Hans, Miao, 

Weymouth, & Triantafyllou, 2013). Due to the reduced lifting forces and flow induced 

vibrations, the harbor seal whiskers are an ideal solution to micro-sensors (Hans et al., 

2011; Liu et al., 2013; Beem & Triantafyllou, 2012).  

Kottapali et al. (2015) studied about the application of harbor seal whiskers to flow 

sensors due to reduction in vortex induced vibrations, as seen in Figure 2.24. It was 

observed that the amplitude of vortex induced vibration frequency peak for the whisker-

like structure is 50 times smaller than the circular cylinder (Kottapalli, Asadnia, Miao, & 

Triantafyllou, 2015).  
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Figure 2.24 Piezoelectric sensor with circular cylinder (left) and whisker-like (right) 

structure mounted at the center of the membrane (Kottapalli et al., 2015) 

 

 Most recently, NASA researchers have investigated the benefits associated with 

larger scale structures, such as adaptations to turbine blades, as seen in Figure 2.25. From 

this study, reduced aerodynamic loading and total pressure loss has been observed, 

associated with the streamwise vortex – mainstream flow interactions. In general, the 

elimination of large-scale coherent structures and resulting reduced wake size have an all-

around positive impact aerodynamically and indicated that it could lead to a reduction in 

drag by 50% (Shyam et al., 2015). 

  

 

Figure 2.25 Harbor seal whisker inspired turbine blade geometries (Shyam et al., 2015) 

 

With the advent of advanced manufacturing techniques, such as three-dimensional 
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printing of high-strength alloys (Bernstein et al., 2013), implementation of such bio-

inspired devices are now a possibility. 

2.4. Hypothesis 

While the use of harbor seal whiskers has been studied for aerodynamic benefits, they 

have not been applied to thermal management configurations, such as the gas turbine 

blade trailing edge or heat exchangers. 

This leads to the hypothesis; Use of bio-inspired harbor seal whisker shaped pins in a 

pin fin channel has the potential to improve heat transfer characteristics in comparison to 

conventional shaped pins. The overall objective of the study is to elucidate, quantify and 

optimize the thermal transport behavior of a bio-inspired cylinder array configuration as 

compared to a bank of circular and elliptical cylinders.  

Achievement of this objective will directly contribute to the improved thermal design 

of many energy-based products, further improve the understanding of biologically 

developed geometries, and aid heat transfer engineers in the ever-challenging goal of 

decoupling heat transfer and pressure loss. It will extend the work in computational and 

experimental analysis of novel cooling geometries for propulsion and energy systems, 

and the engineering community’s work in biomimicry for heat transfer.   

To achieve this objective, several smaller objectives have been established. Each of 

these objectives are tied to a specific task and contribute to the overall success of this 

research. 

• Characterize heat transfer and pressure drop sensitivity, over a range of Reynolds 

numbers for the bio-inspired harbor seal whisker geometry (bio pins) using CFD. 

o This will identify the important geometric feature and a reduction of the 
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design space from thermal standpoint. 

• Experimental verification of heat transfer and pressure loss performance for 

selected geometries. 

o This will identify the shortcomings in the various simulation 

methodologies, providing a means for benchmarking the results. 

• Comparison of major flow structures between traditional cylinders and bio pins, 

and their impact on thermal performance. 

o This will lead to better understanding of the aero thermal behavior of the 

bio-inspired configurations.
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3. Methodology 

This study utilizes both computational and experimental setup to test different pinfin 

geometries in a channel configuration. This section will discuss the pin designs, the 

computational and experimental setup, instrumentation used and data reduction. 

3.1. Pin Designs 

Harbor seal whiskers have two distinct elliptical shapes in their structure formed at 

certain angles, which gives their unique undulation (waviness), as shown in Figure 3.1. 

As discussed in the literature these undulations are the cause for their hydrodynamic 

properties.  

 

 

Figure 3.1 Seal whisker structure (Hanke et al., 2010) 

 

3.1.1. Initial Pin Design 

For initial study the pin geometries were scaled heavily from an already scaled up 

whisker’s geometry. Scaling of the first geometry (BP1) was focused in the axial 

direction so as to maintain a large number of undulations, scaling 0.125X in the pin axis 
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direction, and 0.68X in the streamwise (X) direction, also a baseline cylinder with 

diameter 0.015 m was created to match the major diameter of BP1. The pin height to 

major diameter (H/D) of the pins are 2. Since the seal whisker is naturally elliptical in 

nature, and to account for this, two steps were taken. The first step was to scale the first 

geometry (BP1) in the spanwise direction in order to generate a bio-cylinder with a 

circular base (BP2). The second was to utilize a second baseline of elliptical cross section 

pin (EP1), matching BP1’s base profile. The geometrical design of all 4 pins is shown in 

Figure 3.2. The major diameter of the base of all the 4 pins are identical. Due to 

computational and experimental expense, judicious choice of modifications was made to 

the natural whisker geometry for the initial study.  

 

 

Figure 3.2 Adapted whisker geometries 

 

3.1.2. Final Pin Design 

To better understand the natural design of whiskers for heat transfer purpose, the final 

pin designs were made to preserve the natural shape of the undulations present in the 

whisker. A replica of the whisker geometry was created in CAD, but this geometry was 

scaled uniformly in all dimensions 12.6 times from the whisker’s natural dimensions in 

order to better fit our computational and experimental setup. The replica is shown in 

Figure 3.3. 
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Figure 3.3 Replica of the harbor seal whisker geometry 

 

 The dimensions of the final pin design: period of the undulations (M) is 11.466 mm, 

peak major and minor radius are 7.497 mm and 3.024 mm, valley major and minor radius 

are 5.985 mm and 3.654 mm and the peak and valley plane angles (α and β) are 15.27° 

and 17.60°. The height of the pin is 30 mm.  

 Three groups of pins were created as part of the final pin design. Group 1, the pins are 

created based on the elliptical shape of the peak, group 2, the pins are created based on 

the elliptical shape of the valley and group 3 is an extension of group 2. 

 In group 1, the first geometry is made by cropping the bio pins to retain two peaks 

(G1TP). The second geometry is a 180° rotation of the first geometry (G1TPR). As seen 

in Figure 3.3, the peak and valley ellipse are at a particular angle. Hence the second 

geometry is made to see the effects of the angles of undulations facing the flow. The third 

geometry is a pure elliptical pin (G1E), who’s major and minor diameter are the same as 

the peak ellipse in the bio pin. The fourth pin is a pure cylindrical pin (G1C) with the 

diameter equal to the minor diameter of the peak. The fifth pin (G1TPZ) is similar to first 
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and second geometry, the undulation angle are kept zero to see the effects. The sixth 

geometry (G1TRP) has a reduction in the period of the undulation from 11.466 mm to 

7.67 mm, to include three peaks and two valleys. All these geometries are made to have 

approximately 13% endwall blockage (based on endwall dimensions) in the channel.  

 In group 2, the first geometry is made by cropping the bio pins to retain two valley 

(G2TV). The second geometry is a 180° rotation of the first geometry (G2TVR). The 

third geometry is a pure elliptical pin (G2E), who’s major and minor diameter are the 

same as the valley ellipse in the bio pin. The fourth pin is a pure cylindrical pin (G2C) 

with the diameter equal to the minor diameter of the valley. The fifth pin (G2TVZ) is 

similar to first and second geometry, the undulation angle are kept zero to see the effects. 

The sixth geometry (G2TRV) has a reduction in the period of the undulation from 11.466 

mm to 7.67 mm, to include three valleys and two peaks. All these geometries are made to 

have approximately 16% endwall blockage in the channel.  

 In group 3, the first geometry is G2TV the same one in group 2, this geometry is 

included for comparison. The second geometry (G2TVSP) is made from G2TV with the 

streamwise undulation removed. The third geometry (G2TVST) is made from G2TV with 

the spanwise undulation removed. Geometry 2 and 3 are made to study the effect of 

undulation on the streamwise and spanwise direction. Figure 3.4 shows the shape of the 

pin geometries in group 1, 2 and 3.  

 All bio pins including the initial pin design used in this study were 3D printed using 

Shapeways 3D printing service. The pins were 3D printed using Nylon 12 material. 

Some of the pins in the final pin design, especially the pins used in the center of the 

channel were 3D printed using Aluminum, so that they could be internally heated. 
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Figure 3.4 Pin geometries in groups 1, 2 and 3 

 

3.2. Computational Setup 

The numerical test utilizes an unsteady k-ω SST Reynolds Averaged Navier Stokes 

(RANS) modeling approach, using a commercial software, STAR CCM+. As discussed 

in the literature, previous efforts have shown that the shear stress transport (SST) k – ω 

turbulence model yields the most accurate predictions for pin fin channel thermal 

performance, as compared against experimental results (Fernandes et al., 2017).   

For the initial pin design study a time step of 0.2 ms was used, with 5 inner iterations 

per time step and for the final pin design study a time step of 0.1 ms was used, with 5 

inner iterations for each time step. The characteristic length scale (characteristic 

diameter) is taken to be the CP1 diameter (0.015 m) for the initial pin design study and 

the hydraulic diameter of the channel for the final pin design study. Since the channel is 

modelled to be infinity long in the spanwise direction (periodic boundary), the hydraulic 
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dimeter of the channel is calculated to be two times the height of the channel (2H).  

The array was composed of 8 rows of pins arranged in a staggered manner with 

spanwise (Y) and streamwise (X) spacing of 45 mm each and channel height (H) of 30 

mm. A smooth channel case without the pins was also modeled. The boundary conditions 

are shown in Figure 3.5. 

 

 

Figure 3.5 Computational model 

 

As shown in Figure 3.5, the pins, the top and the bottom endwall were given a 

constant static temperature condition with a specified fluid velocity at the inlet and a 

pressure outlet condition at the exit of the channel. Sidewalls were set to periodic 

boundaries.  

The Nusselt number calculated in the following results was based on CP1 diameter 

for the initial pin design study and the hydraulic diameter of the channel for the final pin 

design study. For the initial pin design study three Reynolds numbers 2700, 5200 and 

15,000 was used. The Reynolds number is based on the inlet velocity of 2.85 m/s, 5.48 
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m/s and 16.15 m/s and CP1 diameter (0.15 m). For the final pin design study a Reynolds 

number of 15,000 and 30,000 was used. The Reynolds number is based on the inlet 

velocity of 3.925 m/s and 7.85 m/s and the hydraulic diameter (2H). 

3.2.1. Mesh Independent Study 

 

For the final pin design study, a mesh independence study was conducted to 

determine the optimum mesh condition for the simulation. The study was conducted for 

the case G2TV and for a Reynolds number of 30,000. 

To maintain a wall Y+ of less than 1, the total number of prism layers used are 20 and 

the prism layer thickness is 1.5 mm with a growth rate of 1.3. These values were chosen 

from the initial study for the mesh. Different base sizes were tested to obtain a suitable 

mesh. A point was created in the domain to obtain data for comparison, as shown in 

Table 3.1 and Figure 3.6. The endwall average and pin average Nusselt number, and 

pressure drop across the channel are compared in Table 3.2. The percentage difference is 

obtained by comparing the data from each cell count to the data from the maximum cell 

count.  

 

Table 3.1  

Mesh independent study 

Base 

size 

(mm) 

# Cells 
Wall 

Y+ 

Static Pressure 

(Pa) 

% 

Difference  

Temperature 

(K) 

% 

Difference 

0.5 18087899 < 1 28.227 –  301.256 –  

0.55 14558846 < 1 28.249 0.08 301.385 0.04 

0.6 12194267 < 1 28.136 0.33 301.259 0.001 

0.65 10459643 < 1 27.742 1.72 301.258 0.001 

0.7 9012607 < 1 27.649 1.89 301.28 0.01 
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Figure 3.6 Mesh independent study 

 

Table 3.2 

Mesh independent study 

 

Base size 

(mm) 

Endwall – 

Nu 

% 

Difference  
Pin – Nu 

% 

Difference  

Pressure 

Drop (Pa) 

% 

Difference  

0.5 94.582 – 223.753 – 50.714 – 

0.55 94.886 0.321 224.514 0.34 50.691 0.004 

0.6 94.721 0.146 224.638 0.395 50.622 0.181 

0.65 94.009 0.605 224.738 0.456 50.357 0.703 

0.7 93.711 0.921 224.761 0.451 50.341 0.734 

 

From the tables and figure, we can see that base size less than 0.6 mm has less than 

1% percentage difference in all categories. Hence, to reduce the computational cost and 

time the base size 0.6 mm is chosen.  Therefore, all the pin cases had approximately 12 

million cells, based on base size of 0.6 mm from the mesh independence study. Figure 

3.7 shows the cross section of the mesh.  

Mesh independent study was not conducted for initial pin design study, as it was 

considered a preliminary investigation focused on trends. A Base size of 0.6 mm with a 

total number of 20 prism layers of thickness 1.5mm was used. All the pin cases had 
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approximately 10.5 million cells. Three Reynolds numbers 2,700, 5,200 and 15,500 was 

used in this preliminary computational study. 

 

 

Figure 3.7 Mesh – G2TV 

 

The Reynolds number is based on the inlet velocity of 2.85 m/s, 5.48 m/s and 16.15 

m/s and CP1 diameter (0.015 m). The wall Y+ was maintained at less than 1 for 2,700 

and 5,200 Reynolds number cases and less than 2 for 15,000 Reynolds number case. 

3.3. Experimental Setup 

A pin fin channel was created using 1 inch think acrylic plates for the experimental 

setup, a schematic of the setup is shown in Figure 3.8. The test section is connected to an 

inlet and an outset section, the outlet section is connected to a converging duct and 

connected to a centrifugal blower under suction using PVC pipes. A venturi flow meter is 

used in-line to measure the pressure drop using a digital manometer to calculate the mass 

flow rate, hence calculate velocity and Reynolds number. Pressure transducers are used to 

obtain pressure drop data in the test section and thermocouples are used to obtain inlet air 

temperature and the reference temperature on the endwall for post processing TSP. 
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Figure 3.8 Schematic of experimental setup 

 

The test section used for the initial pin setup was 15.75 inch long, for the final pin 

setup the test section was extended in the entrance and at the exit to have a total length of 

20.67 inch. The extension was done to neglect any effect at the entrance of the test 

section due to the connection of the Inconel strips. Figure 3.9 and Figure 3.10 shows the 

setup and view of the test section. 

 

 

Figure 3.9 Initial pin design – test section setup 
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Figure 3.10 Final pin design – test section setup 

 

 The inlet section (approx. 9Dh in length) which is attached to the upstream of the test 

section allows the flow to be hydrodynamically fully develop before reaching the test 

section. The inlet does not have any external heat addition hence the flow does not 

thermally develop before entering the test section. Thermal development starts at the 

entrance of the test section.  

 The pin array in the test section was composed of 8 rows of pins, 7 pins in each row, 

arranged in a staggered manner with spanwise (Y) and streamwise (X) spacing of 45 mm 

each and channel height (H) of 30 mm. The end wall of the acrylic test section was 

painted with a uniform coat of Temperature Sensitive Paint TSP (from ISSI), above 

which the strips were placed using a double sided high-strength tape, as shown in Figure 
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3.14. The strips were connected in series, as shown in Figure 3.11. These were then 

connected to a VARIAC to form a series circuit. The pins were placed on top of the 

Inconel heater strips.  

 Some of the pins were internally heated using cartridge heaters specifically the central 

section of the setup to reduce lateral conduction, as shown in Figure 3.12. The data from 

the regions surrounding these pins are post-processed and presented in results. A 

scientific grade CMOS camera was used to capture the TSP, which was excited by LED 

light of certain wavelength as shown in Figure 3.13. A constant heat flux was supplied to 

the Inconel strips through Joule heating by varying the voltage. 

 

 

Figure 3.11 Inconel heater strips 
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Figure 3.12 Test section – internally heated pins 

 

 

Figure 3.13 TSP excitation, CMOS camera and LED light 
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 As seen from Figure 3.12 fasteners are used to secure a proper fit between the top and 

bottom plate, since acrylic plates warp due to constant heating, which leads to the pins 

not touching the bottom plate. Hence this problem is avoided by using fasteners. The 

schematic of the test section is shown in Figure 3.14. 

 

 

Figure 3.14 Schematic of test section 

 

3.3.1. Heat Leakage Test 

As mentioned earlier, a constant heat flux was supplied to the Inconel strips via Joule 

heating by varying the applied voltage. In order to account for the heat lost to the 

surrounding through the acrylic endwall (bottom wall), a heat leakage test was conducted. 

The test section was filled with insulating material to prevent natural convection and a 

heat flux was applied using the Inconel heater strips attached to the bottom wall. Figure 

3.15 and Figure 3.16 shows the schematic and setup of heat leakage test. The applied heat 

flux under these conditions was assumed to pass through the 1 inch thick acrylic bottom 

wall into the room. The heat lost to surrounding was found and correlated as a function of 

the difference in temperature between the wall and room. Equation 1 and Figure 3.17. 

 𝑞𝑙𝑜𝑠𝑠
" = 6.31442 ∗ ∆𝑇 (1) 
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Figure 3.15 Schematic of heat leakage test 

 

 

Figure 3.16 Heat leakage test setup 

 

 

Figure 3.17 Heat leakage test 
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3.3.2. Temperature Sensitive Paint (TSP) 

TSP provides a convenient way to obtain local temperature data. It is a luminescent 

paint with fluorescent molecules suspended within a binder. The TSP molecules are 

excited to a higher energy state when exposed to light of appropriate wavelength 

(excitation wavelength). The Jablonski diagram shown in Figure 3.18, describes the 

transition of the molecules.  

 

 

Figure 3.18 Jablonski diagram (Bell et al., 2001) 

 

The excited molecules can return to ground state by emitting photons of particular 

wavelength (emission wavelength) through luminescence and without emitting photons 

by thermal quenching. In thermal quenching the molecules vibrate and collide with one 

another, lose energy, and returns to ground state. In a given instant the molecules return 

to the ground state by both luminescence and thermal quenching, but the number of 

molecules returned by each method differs statistically in regards to temperature applied. 

For this research UniCoat TSP (from the manufacturer ISSI) was used having excitation 
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wavelength of 380 – 520 nm and emission wavelength of 500 – 720 nm (Innovative 

Scientific Solutions, Inc.). A LED source (from the manufacturer ISSI) with a 

wavelength of 400 nm was used to excite the TSP molecules.  

The intensity of the paint varies with the number of photons emitted. Increase in 

temperature will statistically increase the return of photons to ground state through 

thermal quenching, thereby decreasing the intensity of the paint (intensity is related to the 

measure of photons emitted from the TSP, which are then captured by the photodetector). 

A scientific grade camera (CMOS) is used to capture the intensity of the light emitted by 

the TSP, with a long pass filter (wavelength 550 nm) to distinguish between the excited 

and the emitted wavelength. 

In Figure 3.19, the reference image is taken before the heated run with known 

intensity and reference temperature (measured and confirmed with multiple 

thermocouples across different locations). The data image is that of the heated run where 

the intensity of the paint is known but the surface temperature of the paint is unknown. 

 

 

Figure 3.19 Reference image and data image 
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 TSP is calibrated with a calibration curve of intensity ratio vs temperature difference. 

Using this calibration curve, the temperature of the data image can be found. The 

calibration uncertainty of TSP was found to be ± 0.93 °C for temperature ranges of 22 to 

90 °C in previous studies (Liu, 2006). A detailed description of TSP and PSP 

technologies has been presented by Liu (2006) and Liu et al. (1995). 

 Temperature sensitive paint is calibrated in a controlled setup, both reference image 

and data image is taken with known temperature. The temperature is obtained using 

multiple thermocouples placed on top of the test coupon. The test coupon is heated to 

multiple temperature readings and measurements are made, when steady state is attained 

for each temperature reading. Equation 2 and Figure 3.20 shows the calibration result of 

the TSP. 

𝑇𝑆 − 𝑇𝑟𝑒𝑓

100
= 2.52 (

𝐼𝑆

𝐼𝑟𝑒𝑓
)

4

− 8.30 (
𝐼𝑆

𝐼𝑟𝑒𝑓
)

3

+ 10.18 (
𝐼𝑆

𝐼𝑟𝑒𝑓
)

2

− 6.24 (
𝐼𝑆

𝐼𝑟𝑒𝑓
) + 1.85 (2) 

 

 

Figure 3.20 Calibration of TSP 
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3.4. Hotwire Anemometry 

An anemometer is an analogue instrument designed for measurement of velocity in 

fluids and is especially suited for measurements of fast velocity fluctuations. It works on 

the basis of convective heat transfer from a heated sensor to the surrounding fluid, the 

heat transfer being primarily related to the fluid velocity. By using very fine wire sensors 

placed in the fluid and the electronics with the servo-loop amplifier, it is possible to 

measure velocity fluctuations of fine scale and of high frequencies. The advantages of 

hotwire anemometer over other flow measuring instruments is that the output is voltage, 

so no information is lost and has very high temporal resolution, which makes it ideal for 

temporal power spectra (Dantec Dynamics). 

A single component hotwire probe, as shown in Figure 3.21 is used to measure 

velocity fluctuations to calculate turbulence intensity. The hotwire probe needs to be 

calibrated every time before obtaining a set of measurements. Hence a calibration device 

is built for the purpose of hotwire calibration. 

 

 

Figure 3.21 Single component hotwire probe 

 

A hotwire calibration device consists of a chamber with flow conditioning materials 

placed inside and a nozzle at the exit to create a steady jet. The flow conditioning 

material used are, stainless steel wool, baffle plate, stainless steel mesh, and honeycomb 
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mesh. The chamber is made of 6 inch diameter PVC pipe and PVC caps, the honeycomb 

mesh is made of stainless steel, 3 inch thick and 1/4 inch cell size. A schematic of the 

hotwire calibration device is shown in Figure 3.22. 

 

 

Figure 3.22 Schematic of hotwire calibration device 

 

The stainless steel wool is used to spread the flow throughout the chamber, since the 

flow is coming through a smaller diameter tubing. The stainless steel mesh is used to hold 

the stainless steel wool in place. The baffle plate spreads out the flow evenly throughout 

the chamber. The Honeycomb mesh is used to straighten the flow. Hence the nozzle 

receives a straightened, uniformly distributed flow.  

The chamber length should be in the range of 0.5 – 3 times the hydraulic diameter in 

order to have uniform air flow and avoid boundary layer growth, greater than 3 times the 

hydraulic diameter would increase the boundary layer thickness (Barlow, Rae & Pope, 

1999). Hence, the chamber length for this setup was made to be approximately 2.5 times 
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the hydraulic diameter, the chamber length starts after the baffle plate and end at the 

nozzle entrance. Figure 3.23 shows the setup inside and outside the calibration device.  

 

 

Figure 3.23 Hotwire Calibration device 
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 The nozzle was designed in CATIA and 3D printed using Shapeways 3D printing 

services, Accura Xtreme 200 material was used for 3D printing. The nozzle is designed to 

have the flow enter and exit axially. The nozzle design was also validated 

computationally using STAR CCM+. Figure 3.24 shows the nozzle design and Figure 

3.25 and Figure 3.26 shows the air flow through the nozzle. 

 

 

Figure 3.24 Nozzle design 

 

 

Figure 3.25 Nozzle velocity contour 
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Figure 3.26 Nozzle velocity vector 

 

3.4.1. Calibration of Hotwire 

The velocity of the jet out of the nozzle is controlled by the chamber pressure. Flow 

regulators are used to control the chamber pressure of the calibration device. The hot wire 

is kept near the nozzle exit. For the flow out of the nozzle at each chamber pressure the 

voltage of the hotwire is recorded. The velocity of the flow out of the nozzle is calculated 

based on isentropic equation, as given by Equation 3. 

 
𝑃0

𝑃∞
= ( 1 + 

𝛾 − 1

2
 𝑀∞

2)

𝛾
(𝛾−1)

  (3) 

Where P0 is the chamber pressure, P∞ is the atmospheric pressure of the room, 𝛾 is the 

ratio of specific heats (for air 𝛾 = 1.4) and M∞ the Mach number of the jet out of the 

nozzle. From Mach number velocity of the jet is calculated based on Equation 4. 

 𝑉∞ =  𝑀∞ ×  𝑎∞ (4) 

  𝑎∞ =  √𝛾𝑅𝑇∞ (5) 

Where a∞ is the speed of sound given by Equation 5. R is the gas constant for air (287 
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J/KgK) and T∞ is the temperature of the jet obtained from the thermocouples in the 

calibration device. A temperature correction is applied to the recorded hotwire voltage to 

obtain a corrected voltage, given by Equation 6. 

 𝐸𝑐𝑜𝑟𝑟 =  √
𝑇𝑤 −  𝑇0

𝑇𝑤 −  𝑇𝑎
×  𝐸𝑎 (6) 

Where Ea is the recorded voltage, Ecorr is the corrected voltage, Tw is the wire 

temperature (set by the device), Ta is the ambient temperature during calibration and T0 is 

the calibration temperature (average of initial and final jet temperature). A 4th order 

polynomial curve fit is applied between the corrected voltage and the calculated velocity 

based on isentropic equation, the format of calibration equation is given by Equation 7. 

 𝑉 =  𝐶0 +  𝐶1𝐸𝑐𝑜𝑟𝑟 +  𝐶2𝐸𝑐𝑜𝑟𝑟
2 + 𝐶3𝐸𝑐𝑜𝑟𝑟

3 + 𝐶4𝐸𝑐𝑜𝑟𝑟
4 (7) 

3.4.2. Validation of Hotwire and Calibration Setup 

The validation of hotwire is done by comparing the velocity measured by the hotwire 

using the calibration equation and the velocity measured using a pitot static tube. The 

same calibration device is used for this validation process as it will also be self-validated 

in this process.  

Figure 3.27 compares the chamber pressure of the calibration setup to the velocity 

measured by the hotwire, pitot static tube and the isentropic equation. We can see from 

the graph that velocity measured by the hotwire and the pitot static tube are almost 

identical for a given chamber pressure. Hence, this validates the hotwire and the 

calibration setup. In the experimental setup the hotwire is placed behind row 1 and row 5 

pins. The hotwire can be moved axially, spanwise and streamwise direction using a 3 – 

axis traverse. Figure 3.28 show the schematic of hotwire setup in the experiment. 
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Figure 3.27 Hotwire validation 

   

 

Figure 3.28 Schematic of hotwire setup 

 

Figure 3.29 shows the hotwire setup in the experiment. The hotwire and acrylic plate 

is attached to a 3-axis traverse, vacuum grease is applied between two of the acrylic 

plates as seen in the figure, to seal the gaps as the top plate moves with the traverse. The 

bottom acrylic plate is screwed to the test section side wall. 
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Figure 3.29 Hotwire setup 

 

3.5. Pressure Transducers 

Pressure ports are located at the side wall to measure the pressure drop across the 

channel. They are located, such that they are between two rows of pins. These ports are 

connected to an Omega differential pressure transducer (model PX409-2.5CGV).  
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Miniature pressure transducers are placed on the top wall behind row 1, row 3 and 

row 5 pins to measure the pressure fluctuations. They are used to analyze the unsteady 

wake shedding from the pins. Figure 3.30 shows the miniature pressure transducer from 

the manufacturer Kulite (model XCL-072-5D) and the schematic of the placement in the 

test section. The Kulite pressure transducer should be flush with the top wall. 

  

 

Figure 3.30 Schematic of Kulite pressure transducer 

 

3.6. Data Reduction 

3.6.1. Endwall Nusselt number 

Nusselt number is given by, 

 𝑁𝑢 =
ℎ ∗ 𝐷

𝑘
 (8) 

Where h is the heat transfer coefficient, D is the characteristic diameter and k is the 

thermal conductivity of air calculated based on Sutherland’s equation, as shown in 

Equation 9.  

 𝑘 = 𝑘0 (
𝑇

𝑇0
)

3/2 𝑇0 + 𝑆𝑘

𝑇 + 𝑆𝑘
 (9) 

Where k0, T0 and Sk are Sutherland’s constant. For air k0 = 0.0241 W/m.K, T0 = 273 K 
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and Sk = 194 K. T is the bulk temperature of the flow. 

From Newton’s law of cooling heat transfer coefficient (h) is given by, 

 ℎ =  
𝑞𝑠𝑢𝑝

" − 𝑞𝑙𝑜𝑠𝑠
"

(𝑇𝑠 − 𝑇𝑏) 
 (10) 

Where Ts is the surface temperature, Tb is the bulk temperature of the flow, 𝑞𝑠𝑢𝑝
"  is the 

heat flux supplied to the Inconel strip, and 𝑞𝑙𝑜𝑠𝑠
"  is the heat flux lost due to heat leakage 

through the acrylic endwall. From Equation 1 the  𝑞𝑙𝑜𝑠𝑠
"  is given by, 

 𝑞𝑙𝑜𝑠𝑠
" = 6.31442 ∗ (𝑇𝑠 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) (11) 

 𝑞𝑠𝑢𝑝
" =

𝐼2𝜌

𝑤2𝑡
 (12) 

Where ρ is the resistivity of the Inconel material, I is the current supplied, w is the 

width of the Inconel strips and t is the thickness of the strip. The surface temperature (Ts) 

of the Inconel strips is obtained by post processing the TSP data. The bulk temperature is 

calculated using an energy balance given by Equation 13. 

 𝑇𝑏
𝑖(𝑥)

=  𝑇𝑏
𝑖−1(𝑥)

+
𝑞(𝑥)

ṁ𝐶𝑝
 (13) 

The left hand side of the equation is the bulk temperature of the current pixel in the x 

direction (streamwise) calculated using the bulk temperature of the previous pixel. q(x) is 

the heat supplied per span wise row of pixel, �̇� is the mass flow rate into the channel 

while Cp is the specific heat capacity of the air based on the mean bulk temperature. 

 𝑞(𝑥) =  
(𝑞𝑠𝑢𝑝

" − 𝑞𝑙𝑜𝑠𝑠
" ) ∗ 𝐴𝑆

𝑛 
 (14) 

Where As is the total surface area of the strips and n is the total number of pixels in 

the streamwise direction. 
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3.6.2. Pin Surface Average Nusselt number (ESM) 

The extended surface boundary conditions from the present experimental setup can be 

stated as follows; pin of finite length, known constant heat flux at the base, insulated tip, 

forced convection on the surface of the fin as well as uniform internal heat generation 

within the pin. We assume a 1D model for simplicity, allowed with the use of a low Biot 

number for the pin (Pai, Prasad & Ricklick, 2020). All distances are measured from the 

base of the pin. A simple schematic of the boundary conditions can be seen in Figure 

3.31. 

 

Figure 3.31 Layout of the test section with boundary conditions (Pai et al., 2020). 

 

The governing equation for such a system is given by the 1D fin conduction equation 

with internal heat generation as seen in Equation 15 (Bejan & Kraus, 2003). 

 
𝑑2𝜃

𝑑𝑥2
− 𝑚2𝜃 = −

�̇�

𝑘
 (15) 

Where 𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
  &   𝜃(𝑥) = 𝑇(𝑥) − 𝑇𝑏. The general solution is obtained by solving 
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the above equation using the method of annihilators. 

 𝜃(𝑥) = 𝑐1𝑒𝑚𝑥 + 𝑐2𝑒−𝑚𝑥 + 𝑐3 (16) 

 The boundary conditions can be expressed mathematically as, 

 𝑎𝑡 𝑥 = 0,   − 𝑘
𝑑𝜃

𝑑𝑥
= 𝑞"𝑏

                     𝑎𝑡 𝑥 = 𝐿,   
𝑑𝜃

𝑑𝑥
= 0 (17) 

 Using the above boundary conditions, the solution for such a system is given by (Pai 

et al., 2020), 

 𝜃(𝑥) =
(𝑞"𝑏

 ∗ 𝑒𝑚𝑥−2𝑚𝐿 + 𝑞"𝑏
 ∗ 𝑒−𝑚𝑥)

𝑘𝑚(1 − 𝑒−2𝑚𝐿)
+

�̇�

𝑘𝑚2
 (18) 

 This gives the temperature distribution along the length of the pin, in term of the 

excess temperature. For x = 0, that is at the base of the pin, the temperature is obtained 

experimentally along with the Tb that is the bulk temperature. The values of heat flux 

through the base and the internal heat generation through the pins are also known. Thus, 

Equation 18 reduces to a non-linear equation of unknown m. Thus, the surface average 

pin heat transfer coefficient contained within the fin parameter (m) is calculated by using 

an iterative approach (Pai et al., 2020). And finally the pin surface average Nusselt 

number is calculated by using Equation 8, in which k is the thermal conductivity of the 

pin material. 

fsolve() function is used in MATLAB to solve this equation iteratively. The initial 

guess for the heat transfer coefficient (h) was the theoretical fin parameter based on the 

pin dimensions. The solution was not dependent on the initial guess (Pai et al., 2020). 

The fsolve() function uses a Trust-Region Dogleg method by default to obtain a solution. 

3.6.3. Pressure Data 

The pressure measured by the Omega pressure transducer (model PX409-2.5CGV) is 
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calculated by using Equation 19.  

 𝑃 =
2.5 × 𝑉

5
 (19) 

Where P is the gauge pressure measured in psi and V is the voltage recorded from the 

output of the pressure transducer. 

The pressure fluctuation measured using Kulite pressure transducer (model XCL-072-

5D) is calculated by using Equation 20. 

 𝑃 =
5 × 𝑉

0.045
 (20) 

Where P is the gauge pressure measured in psi and V is the voltage recorded from the 

output of the Kulite pressure transducer. 

Two omega pressure transducers were used to measure the chamber pressure for the 

hotwire calibration device, one for the lower end (Omega pressure transducer model 

PX653-0.1D5V) and the other for medium to high end (Omega pressure transducer 

model PX409-2.5CGV). The pressure measured by the Omega pressure transducer 

(model PX653-0.1D5V) is calculated by using Equation 21. 

 𝑃 = (0.025 × 𝑉) − 0.025 (21) 

Where P is the gauge pressure measured in inch of water and V is the voltage 

recorded from the output of the pressure transducer. 

3.6.4. Reynolds Number 

The Reynolds number is calculated using Equation 22. 

 𝑅𝑒 =  
�̇�𝐷

𝐴𝑐𝜇
 (22) 

Where �̇� is the mass flow rate of the flow, D is the characteristic diameter (CP1 

diameter for initial pin design and 2H for the final pin design), Ac is the cross sectional 
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area of the test section (either inlet or the effective cross sectional area with respect to the 

pins) and μ is the dynamic viscosity of the flow. 

The mass flow rate is calculated by measuring the pressure drop across a venturi flow 

meter. Dynamic viscosity is calculated using the Sutherland’s equation as shown in 

Equation 22. 

 𝜇 = 𝜇0 (
𝑇

𝑇0
)

3/2 𝑇0 + 𝑆𝜇

𝑇 + 𝑆𝜇
 (23) 

Where μ0, T0 and Sμ are Sutherland’s constant. For air μ0 = 1.716*10-5 Pa.s, T0 = 273 

K and Sμ = 111 K. T is the temperature of the flow through the venturi flow meter. 

Equation 24 – 30 shows the steps used to calculate the mass flow rate from the pressure 

drop (∆P) obtained from the venturi flow meter. 

 𝐺𝑃𝑀 =  𝐶1 × ∆𝑃𝐶2 (24) 

Equation 24 is a power curve fit obtained from the ∆P vs GPM data given by the 

venturi flow meter manufacturer Presco. This GPM data is calibrated for different ∆P by 

the manufacturer for a venturi flow meter specification of schedule 40, and with water at 

60 °F. 

 𝑇𝑐 =  √
𝑇 + 460

520
  (25) 

 Where Tc is the temperature correction to get the temperature in standard condition 

and T is the temperature of the flow through the venturi flow meter measured in °F. 

 𝑃𝑐 =  √
14.73

𝑃 + 14.73
  (26) 

 Where Pc is the pressure correction to get the pressure in standard condition and P is 

the upstream gauge pressure of the venturimter measured in psi.  
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 𝑆𝐶𝐹𝑀 =  
𝐺𝑃𝑀 × 3.8

𝑇𝑐 × 𝑃𝑐
 (27) 

 𝜌 =  
𝑃

𝑅 × 𝑇
 (28) 

Density in lb/ft3 is multiplied to SCFM to get mass flow rate. The density is 

calculated based on standard atmospheric pressure and temperature condition and by 

using equation of state, Equation 28. 

 �̇� = 𝑆𝐶𝐹𝑀 × 0.0765  (29) 

 In Equation 29 the mass flow calculated is in lb/min. Equation 30 shows the mass 

flow rate calculated in Kg/s. 

 �̇� =
�̇�(𝑖𝑛 𝑙𝑏/𝑚𝑖𝑛) × 0.453592

60
 (30) 

The velocity of the flow in the test section is calculated from mass flow rate equation 

as shown in equation 31. 

 𝑉 =  
�̇�

𝜌𝐴𝑐
 (31) 

 Where ρ is the density of the flow, Ac is the cross sectional area of the test section 

(either inlet or the effective cross sectional area with respect to the pins). If the inlet cross 

sectional area is used then the velocity calculated will be inlet velocity to the test section 

(used in initial and final pin design) and if the effective cross sectional area with respect 

to the pins is used then the velocity calculated will be the velocity between the pins in the 

first row of the test section, which in turn would be the maximum velocity in the test 

section (used in validation experimental test setup). 

3.6.5. Friction Factor 

A pressure loss form of friction factor (f) known as Darcy–Weisbach equation is used. 
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 𝑓 =  
2∆𝑃𝐷

𝜌𝑉2𝐿
 (32) 

Where D is the characteristic diameter, L is the length of the channel, ρ is the density 

of the fluid, ∆P is the pressure drop across the channel and V is the inlet velocity of the 

channel. 

3.6.6. Turbulence Intensity 

Turbulence intensity (TI) is calculated using the velocity fluctuations measured by the 

hotwire anemometer, given by Equation 33.  

 𝑇𝐼 =
𝑉𝑟𝑚𝑠

𝑉𝑚𝑒𝑎𝑛
 (33) 

Where standard deviation of velocity (Vrms) is given by,  

 𝑉𝑟𝑚𝑠 =  √
1

𝑁 − 1
 ∑(𝑉𝑖 − 𝑉𝑚𝑒𝑎𝑛)2

𝑁

1

 (34) 

 Where N is the sample size and mean of velocity measurements is given by, 

 𝑉𝑚𝑒𝑎𝑛 =  
1

𝑁
∑ 𝑉𝑖

𝑁

1

 (35) 

3.6.7. Uncertainty Analysis 

The uncertainty in the experimental results are calculated by using root sum square 

method (Moffat, 1988; Prasad & Ricklick, 2017). If result y in the experiment is 

calculated using Equation 36, with variables m and x. 

 𝑦 = 𝑚𝑥 (36) 

Then the uncertainty in the result y is given by, 
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 𝑢𝑦 =  √(
𝜕𝑦

𝜕𝑚
∗ 𝑏𝑚)

2

+  (
𝜕𝑦

𝜕𝑥
∗ 𝑏𝑥)

2

+  (
𝜕𝑦

𝜕𝑚
∗ 𝑆𝑚)

2

+  (
𝜕𝑦

𝜕𝑥
∗ 𝑆𝑥)

2

 (37) 

Where systematic uncertainty is represented by b and random uncertainty is 

represented by S. The calculated uncertainty uy take into consideration the errors of each 

measurements by propagating the error throughout using root sum square method. The 

final uncertainty with the 95% level of confidence is given by, 

 𝑈𝑦 =  𝑡95 × 𝑢𝑦 (38) 

Where t95 is the t value chosen from the student t distribution table based on the level 

of confidence desired and the degree of freedom considered. The t95 value should only be 

affected by the random uncertainty but not the systematic uncertainty, hence the 

systematic uncertainty is divided by the t95 value, before taken into root sum square to 

calculate the total uncertainty (Prasad & Ricklick, 2017). 

 𝑏𝑥 =
𝐵𝑥

𝑡95
 (39) 

 Systematic uncertainty is calculated from the bias error of the measurements made by 

a measuring instrument/device, the systematic uncertainty for a variable is given by, 

 𝐵𝑥 =  √𝑒1
2 + 𝑒2

2 … … . +𝑒𝑛
2 (40) 

 Where variables e1, e2…...en are the different types of errors in a measuring device for 

a single measurement. Systematic uncertainty is also known by bias uncertainty. Random 

uncertainty is calculated from the standard deviation given by Equation 41, it describes 

the precision and the repeatability of the measurement. It is also called as standard 

deviation of the mean. 

 𝑆𝑥 =  
𝜎𝑥

√𝑁
 (41) 
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4. Results 

The results section will be split into four parts, the first two will discuss the 

computational results and the latter two will discuss the experimental results for both 

initial and final pin designs. 

4.1. Computational Study – Initial Pin Design 

As mentioned in pin design, the initial pin design consists of pins CP1, EP1, BP1 and 

BP2. CP1 is a circular pin, EP1 is an elliptical pin, BP1 is a bio pin of elliptical cross 

section and BP2 is a bio pin of circular cross section. These initial pin designs were part 

of preliminary computational study. Three Reynolds numbers 2,700, 5,200 and 15,500 

was used in this preliminary computational study. The Reynolds number is based on the 

inlet velocity of 2.85 m/s, 5.48 m/s and 16.15 m/s, CP1 diameter (0.15 m) and the inlet 

cross sectional area of the test section. 

4.1.1. Endwall Nusselt Number 

Figure 4.1 – Figure 4.4 shows the result for spanwise average Nusselt number for all 

Reynolds number cases and also the endwall Nusselt number contour. The spanwise 

average Nusselt number is normalized with respect to square root of Reynolds number. 

Nu/Re1/2 is called the Frossling number, which is used for heat transfer scaling.  

From Figure 4.2, for the bio pin BP1 and BP2, we can see that the wake created 

behind the horseshoe vortex from row 2 onwards is broken as compared to pin CP1 and 

EP1. The wake as seen in the endwall contour is created form the core flow to endwall 

interaction. As seen from the literature the seal whiskers break down the wake due to the 

added vorticity component, this is seen in the endwall results of the Nusselt number 

contour. 
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Figure 4.1 Spanwise average Nusselt number for Re = 2,700. 

 

 

Figure 4.2 Endwall Nusselt number contour for Re = 2,700 
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The flow structure at the endwall near row 1 pins remains the same for all the pins 

shapes, this can also be seen from the spanwise average results from Figure 4.1. From 

Figure 4.1 we can also see that the wake region of BP2 has a higher Nusselt number 

enhancement in comparison to the other pins, since the complex wake structure behind 

the pin causes a higher Nusselt number augmentation at the endwall. 

 

 

Figure 4.3 Spanwise average Nusselt number for Re = 5,200 

 

 From Figure 4.3 we can see the trend for the spanwise average endwall Nusselt 

number is the same as seen in Figure 4.1 for Re of 2,700 case. The only difference is the 

increase in the Nusselt number augmentation in the wake region due to the increase in 

momentum, which can also be seen in Figure 4.4 for Re of 15,500. In Figure 4.4 it can 

also be seen the Nusselt number at the stagnation region and behind the pins is higher and 

due to more momentum in the flow. The increase in Nusselt number augmentation in the 

wake region is due to the increase in the magnitude of turbulence wake structure as the 

momentum of the flow is increased. 
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Figure 4.4 Spanwise average Nusselt number for Re = 15,500 

 

4.1.2. Pin Circumferential Data 

The undulations of the bio pins are defined by alternating peaks and valleys, the peak 

becomes a valley, and the valley becomes a peak around the side of the pin as seen in 

Figure 4.5. The circumferential distribution of peaks and valleys are compared 

individually with CP1 and EP1 for Nusselt number and coefficient of pressure (Cp), from 

Figure 4.6 to Figure 4.17. 

 

 

Figure 4.5 Circumferential pattern 
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Figure 4.6 Row 1 pin circumferential Cp data for Re = 2,700 

 

 

Figure 4.7 Row 1 pin circumferential Frossling number data for Re = 2,700 
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Figure 4.8 Row 5 pin circumferential Cp data for Re = 2,700 

 

 

Figure 4.9 Row 5 pin circumferential Frossling number data for Re = 2,700 
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From Figure 4.6 and  Figure 4.7 we can see that the elliptical shaped structures EP1 

and BP1 (at the peak and the valley section), the flow separates around 125°, 115° and 

105° while the cylindrical shaped structures CP1 and BP2 (at the peak and the valley 

section) the flow separates around 110°, 102° and 96°. The larger curvature in the 

cylindrical pin structures accelerate the flow faster in comparison to the slender elliptical 

pin structures, which causes the flow to separate faster and also leads to the increase in 

Nusselt number value in the flow acceleration region of the pin as seen in Figure 4.7.  

In Figure 4.7 we can also see that the stagnation point Nusselt number is high for 

peak regions, as these regions have edges with smaller radius compared to the valley 

regions. The structures with these edges are EP1, BP1 – Peak and BP2 – Peak. At the 

back side of the pins, due to the turbulence and mixing created by flow separation there is 

an increase in Nusselt number. The pin structures with peak regions have a significant 

increase in Nusselt number around 180°, this is due to the creation of partial stagnation 

region at the trailing edge of the pins. Also as discussed before the valley becomes the 

peak around the side of the pin, this creates a secondary stagnation region which 

increases the Nusselt number as seen from BP2 – valley and BP1 – Valley in Figure 4.7. 

Downstream of the domain, in row 5 pins, the results from Figure 4.8 and Figure 4.9 

are mostly similar to the results in the row 1 pins as discussed above. The main difference 

being the flow separates faster in CP1 around 100° in row 5 instead of 110° in row 1 and 

the respective increase in the Nusselt number at the leading edge stagnation region and 

the trailing edge of the pin due to the increase in the mixing of flow downstream of the 

channel. The undulations in BP2 keeps the flow attached longer and has the same 

separation angle of that of row 1. 
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Figure 4.10 Row 1 pin circumferential Cp data for Re = 5,200 

 

 

Figure 4.11 Row 1 pin circumferential Frossling number data for Re = 5,200 
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Figure 4.12 Row 5 pin circumferential Cp data for Re = 5,200 

 

 

Figure 4.13 Row 5 pin circumferential Frossling number data for Re = 5,200 
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Figure 4.10 – Figure 4.11 represents row 1 pin circumferential data for Reynolds 

number of 5,200. These results are similar to the results discussed for Reynolds number 

of 2,700. The main notable difference is the decrease in Cp around 180° for pin BP2 (at 

the peak and valley section). This suggests a momentum increase in the turbulence wake 

created by the pins, which thereby increases the Nusselt number at the trailing edges of 

the pin, as seen in Figure 4.11. 

Figure 4.12 and Figure 4.13 represents row 5 pin circumferential data for Reynolds 

number of 5,200. In comparison to the lower Reynolds number case, the flow around the 

pin CP1 and BP1 – valley section has a higher rate of acceleration, which increases the 

Nusselt number as seen in Figure 4.13. The stagnation region Nusselt number is higher 

for BP2 – Peak in comparison to the other pin structures. 

 

 

Figure 4.14 Row 1 pin circumferential Cp data for Re = 15,500 
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Figure 4.15 Row 1 pin circumferential Frossling number data for Re = 15,500 

 

 

Figure 4.16 Row 1 pin circumferential Cp data for Re = 15,500 
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Figure 4.17 Row 5 pin circumferential Frossling number data for Re = 15,500 

 

Figure 4.14 – Figure 4.17 represents pin circumferential data for Reynolds number of 

15,500. These results are similar to the results discussed for Reynolds number of 5,200, 

with BP1 being the poor performer in comparison to BP2. 

4.1.3. Pin Surface Average Nusselt Number 
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ergo the Frossling number is in comparing the heat transfer augmentation in different 
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number of 2,700. As seen in row 1 circumferential data, due to the higher Nusselt number 

in the leading edge stagnation region and the secondary stagnation region at the side for 

pins BP1 and BP2, relates to the increase in surface average Frossling number. Overall 

due to the presence of the undulations on the bio pins surface we can see augmentation in 

surface average Nusselt number for pins BP1 and BP2. 
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Figure 4.18 Pin surface average Frossling number for Re = 2,700 

 

 BP2 is the overall best performer with a maximum difference of 18% in comparison 

to pin CP1 at row 2. CP1 outperforms the bio pin BP2 at row 3 and row 5 with a 

difference of 3%, due to the increase in Nusselt number at the stagnation region and the 

trailing edge of the pin as seen in row 5 circumference data. EP1 is the worst performer 

being the most aerodynamic in shape.  

 

 

Figure 4.19 Pin surface average Frossling number for Re = 5,200 
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Figure 4.19 represents the surface average Frossling number for Reynolds number of 

5,200. The results are mostly similar to the lower Reynolds number case, with BP2 being 

the overall best performer. Figure 4.20 represents the surface average Frossling number 

for Reynolds number of 15,500. As the velocity of the flow is increased, we can see that 

the pins with circular structure dominate the augmentation of heat transfer at the pin 

surface, as seen in literature the circular cylindrical pins have higher pin surface average 

Nusselt number in comparison to the slender more aerodynamically shaped pins such as 

an elliptical pin. 

The circular shape of the pin accelerates the flow to a higher velocity around its 

circumference leading to increase in the Nusselt number and also leading to earlier flow 

separation. Hence the turbulence caused due to the flow separation increases the heat 

transfer but at the cost of increase in pressure drop which will be discussed in the next 

section. BP2 being a bio pin based on circular dimensions has better performance in 

comparisons to CP1 due to presence of the undulation creating local heat transfer 

augmentation. 

 

 

Figure 4.20 Pin surface average Frossling number for Re = 15,500 
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4.1.4. Pressure Drop Along the Channel 

Time averaged static pressure data are obtained from averaging data in a plane 

between each row of pins and also the inlet. The pressure drop is calculated based on 

pressure drop between each plane and the inlet (Pinlet – P). Figure 4.21 – Figure 4.23 

represents the pressure drop across the channel for Reynolds numbers of 2,700, 5,200 and 

15,500. 

 

 

Figure 4.21 Pressure drop along the channel for Re = 2,700 

 

 

Figure 4.22 Pressure drop along the channel for Re = 5,200 
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Figure 4.23 Pressure drop along the channel for Re = 15,500 

 

As discussed before, pins which are based out of circular dimensions have greater 
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drop in the channel. Bio pins BP1 and BP2 decreases the magnitude of wake shedding, 

which leads to reduced pressure loss, leading to reduced pressure drop in the channel, 

which can be seen from comparing BP1 and EP1 in Figure 4.21 – Figure 4.23, since both 

are based on elliptical shapes. 

4.1.5. Reynolds Number Effects 
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Figure 4.26 shows the result for the three categories mentioned above for Re of 2,700. 
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Figure 4.24 Channel average Nusselt number vs friction factor for Re = 2,700 

 

 

Figure 4.25 Endwall average Nusselt number vs friction factor for Re = 2,700 

 

 

Figure 4.26 Pin surface average Nusselt number vs friction factor for Re = 2,700 
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Since the Nusselt number and friction factor are normalized with respect to CP1, any 

data point above CP1 in the y axis means it performs well in heat transfer and any data 

point to the left of CP1 in the x axis means it performs well in pressure drop. 

From Figure 4.25 we can see that the bio pin BP1 in comparison to CP1 performs 

well in terms of friction factor by 40% and has a deficit in heat transfer performance by 

9%. The same pin BP1 in comparison to EP1 has 14% increase in heat transfer 

performance and 43% decrease in friction factor performance. For BP2, in comparison to 

CP1 has 2% increase in heat transfer performance and 10% decrease in friction factor 

performance. The elliptical pin EP1 in comparison to CP1 has 58% increase in friction 

factor performance and 20% decrease in heat transfer performance.  

As seen in endwall Nusselt number results the pin BP2 has an enhancement in heat 

transfer in the wake region, due to complex flow structures in the wake combined with 

lower momentum in the flow. BP1 occasionally outperforms CP1 mostly behind pin 2 

and 4, but performs immensely better in pressure drop due to the elliptical cross sections 

combined with the undulations which reduces the magnitude of the wake. 

From Figure 4.26, we can see that the bio pins BP1 and BP2 outperforms CP1 and 

EP1 in terms of thermo-hydrodynamic aspect due to reasons discussed in the pin surface 

average Nusselt number results. BP1 performs 40% better in terms of pressure drop while 

maintain the same heat transfer performance as CP1. In terms of channel average data as 

seen in Figure 4.24, the results are mostly similar to Figure 4.25, as the gains seen in pin 

surface Nusselt number are significantly less impactful when the surface area of the end 

wall constitutes greater to the average. Figure 4.27 – Figure 4.29 shows the result for the 

three categories for Re of 5,200. 
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Figure 4.27 Channel average Nusselt number vs friction factor for Re = 5,200 

 

 

Figure 4.28 Endwall average Nusselt number vs friction factor for Re = 5,200 

 

 

Figure 4.29 Pin surface average Nusselt number vs friction factor for Re = 5,200 
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From Figure 4.27 – Figure 4.29, we see that in comparison to lower Reynolds number 

case there is shift in performance, about 5% decrease in heat transfer and 6% 

improvement in friction factor. This can be seen for all pins and for all categories. Since 

the data is normalized with results from CP1, it is understood that as the momentum of 

the flow is increased the cylindrical pin CP1 have more pronounced periodic wake 

shedding which contributes to greater enhancement in heat transfer at the cost of increase 

in pressure drop.  

Whereas the bio pins BP1 and BP2 don’t have an large increase in heat transfer as the 

momentum of the flow is increased, in comparison to CP1, but there is an improvement 

in friction factor, this suggest that the complex wake structure still retains its form even in 

high Reynolds number cases and contributes to reduction in pressure loss.  

Pin EP1 has the same trend as seen in other pins, since this pin is more aerodynamic 

than other pins it does improve in friction factor in comparison to CP1, but the periodic 

wake shedding is not as pronounced as seen in CP1, which leads to the reduction in heat 

transfer.  

The same trend can be seen for a higher Reynolds number case of 15,500 with the 

only difference that the magnitude increase in friction factor and decrease in heat transfer 

performance becomes less prominent in comparison to the Reynolds number case of 

5,200. This suggest that, if the Reynolds number is further increased the magnitude shift 

in performance will eventually become stagnant. Figure 4.30 – Figure 4.32 shows the 

result for the three categories for Re of 15,500. 
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Figure 4.30 Channel average Nusselt number vs friction factor for Re = 15,500 

 

 

Figure 4.31 Endwall average Nusselt number vs friction factor for Re = 15,500 

 

 

Figure 4.32 Pin surface average Nusselt number vs friction factor for Re = 15,500 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.4 0.6 0.8 1 1.2

N
u
/N

u
C

P
1

f/fCP1

CP1 BP1 BP2 EP1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.4 0.6 0.8 1 1.2

N
u
/N

u
C

P
1

f/fCP1

CP1 BP1 BP2 EP1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.4 0.6 0.8 1 1.2

N
u
/N

u
C

P
1

f/fCP1

CP1 BP1 BP2 EP1



86 
 

4.1.6.Turbulent Kinetic Energy 

Turbulent kinetic energy data are obtained from averaging data in a plane between 

each row of pins at a solution time of 3 seconds. The TKE data is normalized with respect 

to inlet velocity squared. Figure 4.33 – Figure 4.35 represents the TKE data across the 

channel for Reynolds numbers of 2,700, 5,200 and 15,500. 

 

 

Figure 4.33 TKE along the channel for Re = 2,700 

 

 

Figure 4.34 TKE along the channel for Re = 5,200 
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Figure 4.35 TKE along the channel for Re = 15,500 

 

From these figures it is clear that the turbulence created by the cylindrical pin CP1 in 

a channel is the more predominant in comparison to other pins. Since BP2 is a bio pin of 

cylindrical nature it is comes second to CP1. Comparing EP1 and BP1, since they are 

both elliptical in nature, it is evident that BP1 contributes to less turbulence in the channel 

than EP1. Figure 4.36 – Figure 4.38 looks at TKE data behind row 1 and row 5 in the 

axial direction. The data is collected 0.023 m behind from the pin center. 
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Figure 4.36 TKE – axial direction for Re = 2,700 

 

In Figure 4.37 for row 1 pin, it is seen that for a Reynolds number of 5,200 the result 

for CP1 is the same as seen in the previous Reynolds number case. But for the bio pins 

we can see the presence of the undulations create a wake structure which is undulated in 

the axial direction mimicking the peak and the valley in the pin structure. Having less 

wake strength in the core flow as seen in the undulated wake promotes less total pressure 

loss, but still the endwall interaction remains the same as seen with the other pin 

structures leading to the same endwall Nusselt number performance as seen in other pins. 
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Figure 4.37 TKE – axial direction for Re = 5,200 
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magnitude of the wake in the axial and also in the streamwise direction due to added 

vorticity component by the presence of the undulation as seen in literature. For higher 

Reynolds number of 15,500 as seen in Figure 4.38, we can see that the pins with circular 

cross sections (BP2 and CP1) have a larger magnitude in the wake in comparison to pin 

with elliptical cross section (BP1 and EP1).  

 

 

Figure 4.38 TKE – axial direction for Re = 15,500 
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transfer at wake region of the endwall as seen in Figure 4.4. Figure 4.39 and Figure 4.40 

represents the TKE values in the spanwise direction 0.023 m behind the pin center for 

row1 and row 5. 

 

 
Figure 4.39 TKE – spanwise direction for Re = 5,200 
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Figure 4.40 TKE – spanwise direction for Re = 15,500 
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Figure 4.41 CP1 – TKE contour for Re = 15,500 

 

 

Figure 4.42 BP2 – TKE contour for Re = 15,500 



94 
 

 

Figure 4.43 EP1 – TKE contour for Re = 15,500 

 

 

Figure 4.44 BP1 – TKE contour for Re = 15,500 
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Figure 4.45 CP1 – Vorticity contour for Re = 15,500 

 

 

Figure 4.46 BP2 – Vorticity contour for Re = 15,500 
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Figure 4.47 EP1 – Vorticity contour for Re = 15,500 

 

 

Figure 4.48 BP1 – Vorticity contour for Re = 15,500 
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In the vorticity contour the right side of the contour bar represents anticlockwise 

rotation and the left side of the contour bar represents clockwise rotation. From the 

contour plots we can see that the bio pins BP1 and BP2 does create wake shedding as 

supposed to breaking down the wake seen in literature. This could be due to the fact that 

the pins are heavily undulated as supposed to the natural design of the whisker geometry. 

Due to these heavy undulations the structure of the pin behaves more like a cylinder and 

ellipse at different cross section locations. But having these undulation does contribute to 

the reduction in pressure loss does attest to the fact that these undulation does reduce the 

magnitude of the wake as seen BP2 and BP1 when compared with CP1. 

4.1.7. Spectral Analysis 

The pressure data is obtained in time at a point in the domain center 22.5 mm behind 

rows 1, 3 and 5. The simulation was run for 3 seconds and the data used was the last 2 

seconds at 5000 samples a second. The amplitude spectrum of the pressure fluctuations is 

then plotted with frequency for a Reynolds number case of 5,200. For the sake of brevity 

only one Reynolds number case number is discussed. Plotting the pressure fluctuations 

will give two dominant frequencies for the pin, one related to the drag and the other 

related to the lift. The frequency for the drag will be twice that of the lift. 

From Figure 4.49 – Figure 4.51 we can see that behind row 1 for pin CP1 there are 

two dominant frequency, 100 Hz for lift and 200 Hz for Drag and its respective 

harmonics. The amplitude for these frequencies is smaller in comparison to row 3 and 5 

suggesting that there is no presence of wake shedding, which was also seen in TKE 

results discussion, also depending on the length of recirculation zone the amplitude of lift 

and drag frequency would higher or lower in comparison to each other.  
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For BP2 we can see a dominant frequency of 200 Hz behind row 1 and a frequency of 

100 Hz at a smaller amplitude corresponding to lift, suggesting that the presence of the 

undulations does reduce the lift forces as mentioned in the literature. The amplitude of 

200 Hz is higher in comparison to CP1, since as seen from previous results there is a 

presence of wake shedding in BP2.  

For row 1 elliptical pin EP1, two frequencies 149 Hz (for lift) and 295 Hz (for drag) 

can be seen. The amplitude of these frequencies is small compared to other pins 

suggesting a smaller wake size and subsequent reduction in pressure due to instabilities in 

the wake. 

 For BP1 we see 117 Hz frequency due to lift and 234 Hz frequency due to drag. The 

amplitude is larger in comparison to EP1 and smaller in comparisons to BP2 which fits 

the trend in pressure drop results seen previously. 

The Lift frequency corresponds to vortex induced vibrations, lower the frequency 

lower the vortex induced vibrations. The frequency for drag relates to the drag created by 

the pin structure and corresponds to the pressure loss due to the instabilities in the wake. 

From the data in Row 1 we can see that the frequency for lift is lower for all the pins 

except for BP2, the drag is higher in BP2 in comparison to other pins, which corresponds 

to the pressure data seen before.  

 In subsequent rows 3 and 5, we can see based on the amplitude of pressure 

fluctuations the bio pins BP1 and BP2 in comparison to CP1 does have a reduction in 

wake size and hence contribute to reduction in turbulent mixing downstream of the 

channel, which is also seen in previous results. 
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Figure 4.49 PSD: Row 1 for Re = 5,200 
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Figure 4.50 PSD: Row 3 for Re = 5,200 
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Figure 4.51 PSD: Row 5 for Re = 5,200 
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4.2. Computational study – Final pin design 

 As seen from the results in the initial pin design the presence of heavy undulation on 

the pin surface leads to periodic wake instabilities as supposed to non-periodic broken 

down complex structured wake seen in literature. Whereas if we look upon a harbor seal 

whisker the undulations are subdued, hence the final pin design is an exact replica of a 

scaled up harbor seal whisker structure. 

4.2.1. Endwall Nusselt number 

Figure 4.52 and Figure 4.53 shows the spanwise average endwall Nusselt number for 

group 1, 2 and 3 of the final pin design. The Nusselt number data for the pin fin channel 

are normalized with respect to data from a smooth channel. From Figure 4.52 we can see 

that G1C is the best performing pin which is also known from literature that cylindrical 

pins have better performance in terms of endwall heat transfer. 

 

 

Figure 4.52 Spanwise average endwall Nusselt number for group 1 pins 
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Figure 4.53 Spanwise average endwall Nusselt number for group 2 and 3 pins 
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to other bio pins has a reduction in endwall heat transfer by ~ 14 %. Pin G2E on 

comparison to the bio pins have better performance in the wake region of the endwall 

after third row of pins, with a maximum difference of ~23 % in heat transfer. Pin 

G2TVST and G2TVSP has a similar endwall heat transfer performance. In comparison to 

pin G2TV, they have better endwall heat transfer from row 4, with an average difference 

of ~11 – 13%. This suggest that removing the undulation on at least one of the pin 

directions increases the size of the wake leading to an increase in endwall heat transfer. 

4.2.2. Pin Surface Average Nusselt number 

Figure 4.54 and Figure 4.55 shows the pin surface average endwall Nusselt number 

for group 1, 2 and 3 of the final pin design. The pin surface average Nusselt number are 

averaged across the rows and normalized to get Frossling number. 

 

 

Figure 4.54 Group 1: Row average Nusselt number 
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bio pins G1TP and G1TPR has identical performance, this shows that the orientation of 

the undulations doesn’t affect the surface average Nusselt number. Pin G1TPZ has a 

marginal decrease in Nusselt number in comparison to G1TP, this shows that the angle of 

the undulations locally creates a pseudo stagnation region on the side leading to the 

increase in Nusselt number. 

 

 

Figure 4.55 Group 2 and 3: Row average Nusselt number 
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overall in comparison to G2TV. Pin G2TRV in comparison to other bio pins has a similar 

performance for rows 1, 2 and 4, marginal difference in rows 6 and 8 and a reduction in 

heat transfer in rows 3, 5 and 7. In this case the two of the three valley regions are at the 

wall intersection, this surface pattern seems not ideal for an increment in undulations in 

the axial direction. Hence this pattern gives the pin overall two valley regions and two 

peak regions, and as we have seen before the flow acceleration around the peak regions 

are lower in comparison to the valley regions leading to a reduction in surface average 

Nusselt number. 

Pin G2E in comparison to other bio pins has similar heat transfer in rows 3, 5 and 7 

and a marginal increase in rows 1, 2, 4, 6 and 8. As seen from the structure the pin G2E 

has the largest minor diameter throughout the axial direction leading to better flow 

acceleration thereby increasing the heat transfer. Pin G2TVST has a similar heat transfer 

performance in comparison to pin G2TV, with a maximum difference of ~ 4.5 % in rows 

6 and 8. Pin G2TVSP which only has the spanwise undulation in comparison to G2TV 

performs significantly well after row 5 with a maximum increment in heat transfer of 

17%. This shows that the undulation in the spanwise direction is more important than the 

undulation in the streamwise direction for the improvement in heat transfer. 

4.2.3. Pressure Drop 

A plane section is created 20 mm behind each pin in the channel and the time 

averaged static pressure in measured in each plane section. The pressure drop is 

calculated between each plane section from the inlet section. Data in row 1 is the pressure 

drop between inlet and the plane section behind first row of pins. Similarly row 2 is the 

pressure drop between plane section behind 2 and inlet section. The pressure drop data is 
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normalized by the pressure drop data in a smooth channel. Figure 4.56 and Figure 4.57 

shows the pressure drop data for group 1, 2 and 3 pins. 

 

 

Figure 4.56 Group 1: Pressure drop along the channel 

 

 

Figure 4.57 Group 2 and 3: Pressure drop along the channel 
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In Figure 4.56, we can see that G1C is the least performing pin in this group, as 

documented in literature cylindrical pins are good heat transfer characteristics at the 

expense of pressure drop. The bio pins G1TP, G1TPR and G1TPZ has identical pressure 

drop data, which shows that the angle and orientation of the undulations does not affect 

the pressure drop across the channel.  

Pin G1TRP has a marginal increase in pressure drop in comparison to other bio pins, 

indicating that increasing the number of undulations in the pin apart from what nature 

intended does not bode to the aerodynamic aspect of the pin design. This could be due to 

the fact that when the half period between the undulations is decreased the pins structure 

works more as individual elliptical cross section at local sections of the pin decreasing the 

effect of the added vorticity component, which is also seen in the initial pin design data. 

Pin G1E has better performance in comparison to other pins, due to the given fact that 

this pin has the smallest minor diameter leading to reduction in wake size. 

In Figure 4.57, we can see that G2C is the least performing pin. The bio pins G2TV, 

G2TVR and G2TVZ has identical performance. Pin G2TRV has a marginal increase in 

pressure drop for the first three rows of pins, identical performance in rows 4 and 5 and 

reduction in pressure drop in rows 6, 7 and 8. This deviation from the pin in group 1 

could be due to the fact that the pin G2TRV overall has 2 valley regions and two peak 

regions unlike the pin G1TRP which has the two valley regions near the middle of the 

channel. Having two peak regions in the core flow for pin G2TRV significantly aides in 

the pressure drop performance due to the slimmer cross sectional area of the peak 

sections. 

G2E has higher pressure drop compared to bio pins since this pin has the largest 
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minor diameter. The bio pins in comparison to G2E has overall 8 – 10% lower pressure 

drop. Pin G2TVSP has a similar pressure drop in comparison to pin G2TV, except for 

rows 1 and 2 which sees a reduction in pressure drop by 16%. Pin G2TVSt in comparison 

to G2TV has similar pressure drop for rows 1 and 2 and about 8 – 10% increase in 

pressure drop for rows 3 onwards. This shows that removing the undulation in the 

spanwise direction increase the pressure drop as the flow moves downstream of the 

channel. 

4.2.4. Thermal Performance 

Figure 4.58 – Figure 4.60 shows the average endwall Nusselt number, pin surface 

average Nusselt number and channel average Nusselt number in comparison to friction 

factor for group 1 of the final pin design. The Nusselt number and friction factor data for 

the pin fin channel are normalized with respect to data from a smooth channel, except for 

pins surface average in that case the Nusselt number is normalized with respect to square 

root of Reynolds number to get Frossling number. 

 

 

Figure 4.58 Endwall average Nusselt number for Group 1 pins 
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Figure 4.59 Pin surface average Nusselt number for Group 1 pins 

 

 

Figure 4.60 Channel average Nusselt number for Group 1 pins 
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in comparison to bio pins.  

In Figure 4.60, we can see pins G1TP and G1TPR have identical performance. Pin 

G1TPZ has a marginal improvement in friction factor by 0.6% in comparison to G1TP 

and G1TPR. This again shows that the inclination of the undulation does not affect the 

performance of the pins. Pin G1TRP has a marginal increase in friction factor on 

comparison to the other bio pins. Pin G1C is the better performer in terms of heat transfer 

at the cost of friction factor performance. It can be clearly seen that pin G1E (elliptical 

pin) is the better performer in this segment when comparing against the bio pins, with an 

improvement of 9% in friction factor and 3% improvement in heat transfer and in 

comparison to the G1C, it has an 43% improvement in friction factor at the cost of 19% 

in heat transfer.  

Figure 4.61 – Figure 4.63 shows the average endwall Nusselt number, pin surface 

average Nusselt number and channel average Nusselt number in comparison to friction 

factor for group 2 and 3 of the final pin design. 

  

 

Figure 4.61 Endwall average Nusselt number for Group 2 and 3 pins 
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Figure 4.62 Pin surface average Nusselt number for Group 2 and 3 pins 

 

 

Figure 4.63 Channel average Nusselt number for Group 2 and 3 pins 
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identical, and the pin G2TVZ has a marginal difference in comparison to G2TV and 

G2TVR, this shows us that the angle and orientation of the undulation doesn’t contribute 

much to the pin surface average Nusselt number. Pin G2TVSP in comparison to G2E has 

a marginal improvement in heat transfer with a 10% improvement in friction factor, this 

shows that the spanwise undulation is important in decreasing the pressure drop caused 

by the pin structure. Pin G2TVSP in comparison to G2E has a similar performance in 

heat transfer with a marginal improvement in friction factor. 

From Figure 4.61 and Figure 4.63 we can see that the results are similar. In Figure 

4.63, we can see pins G2TV and G2TVR have identical performance. Pin G2TVZ has a 

marginal improvement in friction factor in comparison to G2TV and G2TVR. This again 

shows that the inclination of the undulation does not affect the performance of the pins. 

Pin G2TRV has a ~6% improvement in friction factor at the cost of 5% decrease in heat 

transfer on comparison to the G2TV. Pin G2C is the better performer in terms of heat 

transfer at the cost of friction factor performance. The bio pins G2TV, G2TVR and 

G2TVZ is the better performer when comparing against G2E, with an improvement of 

~15.5 % in friction factor at the cost of 6.5 % in heat transfer and in comparison to G2C, 

it has a 45 % improvement in friction factor at the cost of 20 % in heat transfer.  

The bio pin G2TRV on comparison to G2E has an improvement of ~20.5 % in 

friction factor at the cost of ~11% in heat transfer and in comparison to G2C, it has a 49 

% improvement in friction factor at the cost of 24 % in heat transfer. Pins G2TVST and 

G2TVSP has similar heat transfer performance with a difference of 4% on comparison to 

G2TV. G2TVST has an increase in friction factor by 11% on comparison to G2TV. 

G2TVSP has an increase in friction factor by 4.5% on comparison to G2TV. This shows 
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that by removing either the spanwise or the streamwise undulation there is a significant 

increase in pressure drop in the channel. 

4.2.5. Turbulent Kinetic Energy Along the Channel 

A plane is created 20 mm behind the center of the pins in the channel, and time 

averaged TKE value is plotted for points behind each row for group 1, 2 and 3 pins. The 

TKE value is normalized with respect to velocity squared. Figure 4.64 and Figure 4.65 

shows the TKE values across the channel for the different group of pins. 

 

 

Figure 4.64 TKE – Group 1 
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identical in performance. As seen in G2TVST and G2TVSP, removing at least one of the 

undulations increases the turbulence magnitude in the channel. The pin G2TRV, which 

has more undulation has a marginal increase in turbulence downstream of the pins in the 

first 3 rows of the channel. As seen in pressure drop results pins G2C and G2E have 

larger wake with periodic shedding leading to increase in turbulence mixing downstream 

of the channel.   

 

 

Figure 4.65 TKE – Group 2 and 3 
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4.66 – Figure 4.71 represents the above mentioned data for row 1 and row 5 pins for 

G2E, G2C, G2TV and G2TRV. 

 

 

Figure 4.66 Row 1 pin circumferential wall shear stress 

 

 

Figure 4.67 Row 1 pin circumferential coefficient of pressure 
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Figure 4.68 Row 1 pin circumferential Frossling number 
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In Figure 4.68 we can see that pin G2C has higher overall heat transfer performance 

before separation in comparison to other pins due the higher magnitude in flow 

acceleration. Also, after separation the pin G2C has the higher heat transfer performance 

due to the larger magnitude wake created by the pin structure. This gives the cylindrical 

pin the best heat transfer performance at the cost of pressure drop as seen before. 

Since the bio pins are elliptical in nature a good comparison would be with the pure 

elliptical pin. In Figure 4.68 we cans see that stagnation heat transfer for pin G2TV and 

G2TRV – Peak are higher in comparison to G2E and G2TRV – valley, since the leading 

edge of the peak ellipse is smaller in radius compared to valley ellipse, it leads to an 

increase in stagnation Nusselt number. Since G2C has the leading edge with a bigger 

radius, it has the lowest stagnation heat transfer performance.  

The valley ellipse section performs better in terms if hear transfer due to being less 

slender that the peak ellipse. Hence pin G2TV which has a peak ellipse at the center 

plane and transitions to valley ellipse towards the bottom and the top wall outperforms 

the pin G2TRV which has two peak ellipse and almost two valley ellipse. This can be 

seen in the Pin surface average Nusselt number results discussed before.  

Figure 4.69 represents time averaged wall shear stress for row 5 pins. Since this result 

is time averaged the stagnation point and the separation point are not represented by zero 

Pascal, due to turbulence in the channel leading to change in stagnation points over time 

in the leading edge of the pins. From the figure we can see that there is a decrease in 

magnitude in wall shear stress towards the leading edge of pins G2C and G2TRV in 

comparison to other two pins. This indicates that the pins G2C and G2TRV has increase 

in turbulence mixing in the channel compared to pins G2TV and G2E. The separation 



119 
 

point for pin G2C is increased to 117°, for pin G2TV it’s around 160°, for pins G2E it’s 

at 100° and for pin G2TRV the separation angle is between 100° – 140°. 

 

 

Figure 4.69 Row 5 pin circumferential wall shear stress 

 

 

Figure 4.70 Row 5 pin circumferential coefficient of pressure 
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Figure 4.71 Row 5 pin circumferential Frossling number 
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4.72 , we can see that at the given location behind row 1 pin the turbulence intensity from 
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the wake in the axial direction is smallest for G2C and highest for G2TRV. In G2TV it 

can be seen that the turbulence intensity is higher near the top and the bottom wall and 

there is a reduction in strength in the core flow, which is an ideal situation needed to have 

less pressure drop and improve heat transfer near the wall. G2E has the second smallest 

turbulence intensity in the axial direction. 

 

 

Figure 4.72 TKE behind row 1 

 

In Figure 4.73, behind row 3 pin, the trend is similar to the one seen in Figure 4.72, 

G2C having the smallest turbulence intensity and G2TRV having the largest turbulence 

intensity. The trend seen in G2TV behind row 1 pin is not seen behind row 3 pin, the 

turbulence intensity of the wake is more towards the core flow. 
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Figure 4.73 TKE behind row 3 

 

 

Figure 4.74 TKE behind row 5 
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Figure 4.75 TKE behind row 7 

 

In Figure 4.74, behind row 5 pin, the turbulence intensity for the 4 cases of pins are 

almost similar. In comparison to Figure 4.72 and Figure 4.73, G2C has an increase in 

magnitude which relates to a stronger wake in the axial direction. In Figure 4.75, behind 

row 7 pin the G2TV and G2TRV has the same turbulence intensity. G2C has a reduction 

in the magnitude of turbulence intensity in comparison to the previous figure. 

From Figure 4.72, Figure 4.73 and Figure 4.75, it seems that the pin G2C has the less 

turbulence intensity overall in the core flow, but in comparing these results to the contour 

plots Figure 4.78 – Figure 4.81, we can see that in the contour plot the turbulence 

intensity increase downstream of the flow domain for G2C in comparison to the other pin 

cases. This suggest that the wake created by the cylindrical pins G2C is much wider in 

comparison to the other pins, which can be seen in Figure 4.76.  
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Figure 4.76, the TKE is plotted along the width of the channel from one periodic 

boundary to the other, located by a line probe 0.02 m from the center of the pin for row 7. 

From Figure 4.76, it is seen that the wake is wider and has a higher range of turbulence 

intensity for G2C. Followed by G2E, G2TRV and G2TV. For G2TV the wake is 

narrower and has less turbulent intensity promoting less pressure drop. Furthermore, 

looking the wake of G2TRV we can see that behind the peak region (G2TRV – Peak) the 

wake characteristic are similar to G2TV, since G2TV has a peak elliptical structure at the 

center. 

 

 

Figure 4.76 Spanwise TKE data behind row 7 

 

4.2.8. Contour Plots 

Figure 4.77 shows the mean of endwall Nusselt number for pins G2E, G2C, G2TV 
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cylindrical pin enhances the end wall Nusselt number in the wake region. Same goes for 

pin G2E. But for pin G2TV we can see that the end wall Nusselt number in the wake 

region is reduced in comparison to G2E, this is due to the fact that pin G2TV has a 

reduction in wake magnitude due to the undulations on its surface.  

For pin G2TRV having more peaks and valleys on the pin surface leads to a lower 

end wall Nusselt number in the wake region, this is due to the interaction of the core flow 

to the enwall being broken down due to the presence of the undulation with smaller half 

period between them. Also the magnitude of the horseshoe vortex is reduced in this case. 

 

 

Figure 4.77 Mean of endwall Nusselt number 
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Figure 4.78 – Figure 4.81 shows the TKE data for the pins geometries. Figure 4.82 – 

Figure 4.85 shows the vorticity data for these pins. The TKE and vorticity data are 

obtained at 3 second in solution time. In vorticity contour the blue represesnts clockwise 

rotation and red represents anticlockwise rotation of the vortex. From the TKE contour 

we can see that the pin G2C and G2E has periodic wake shedding.  

 

 

Figure 4.78 TKE – G2C 

 

 

Figure 4.79 TKE – G2E 
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But looking at pin G2TV we can see that the wake shedding is not periodic and also 

smaller in magnitude this represents the information presented in the literature. The same 

goes for pin G2TRV, since it has peaks and valley near the core flow, looking at the 

respective planes we can see no periodic wake shedding.  

 

 

Figure 4.80 TKE – G2TV 

 

Figure 4.81 TKE – G2TRV 
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Also the valley region has a wider wake in comparison to peak region, this suggest 

that the wake near the walls are wider compared to wake near the center for both G2TV 

and G2TRV, this improves the pressure loss in the channel while maintaining the endwall 

heat transfer. 

 

 

Figure 4.82 Vorticity – G2C 

 

 

 

Figure 4.83 Vorticity – G2E 
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Figure 4.84 Vorticity – G2TV 

 

 

Figure 4.85 Vorticity – G2TRV 



130 
 

From the vorticity contour plots we can see that pins G2C and G2E has periodic 

vortex shedding but pins G2TV and G2TRV does not have periodic vortex shedding. 

This is similar to the discussion presented in the TKE contours. Looking at the vorticity 

contours in the axial direction we can see that in the wake region of pin G2C, the rotation 

of flow vortex near the end wall due to the horseshoe vortex interaction to the core flow. 

This contributes to the enhancement of heat transfer but at the cost of pressure drop. We 

can also see the same phenomenon for pin G2E but with reduction in magnitude. From 

pins G2TV and G2TRV the vortex structure is at an inclined angle for the axial direction 

of the pin this is due to the presence of the undulation of the pin.  

4.2.9. Spectral Analysis  

Local velocity magnitude data is obtained in time at a point 20 mm behind rows 1, 3, 

5 and 7. The simulation was run for 3 seconds and the data used was the last 2 seconds at 

10000 samples a second. The amplitude spectrum of the velocity magnitude fluctuations 

is then plotted with frequency. Plotting the velocity magnitude fluctuations will give two 

dominant frequencies for the pin, one related to the drag and the other related to the lift. 

The frequency for the drag will be twice that of the lift. Figure 4.86 and Figure 4.87 

shows the FFT for lift and drag force on pin G2TV in row 1. 

From the two figures we can see that the pin generates a lift of 219 Hz and drag of 

438 Hz. As discussed before the frequency of drag is twice the lift. Figure 4.88 shows the 

amplitude spectrum of the velocity magnitude fluctuations for pin G2TV. From the row 1 

data we can see two frequencies 222 Hz and 441 Hz, as mentioned before they represent 

lift and drag. As we move down steam in the channel we can see from the FFT data, that 

the amplitude of the frequency is retained for row 3 and 5, except row 7. This suggest 
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that there is a reduction in turbulence mixing downstream of the channel. 

 

 

Figure 4.86 FFT – Lift on pin G2TV 

 

 

Figure 4.87 FFT – Drag on pin G2TV 

 

   

 Figure 4.89 represents FFT data for pin G2TRV. From the figure we can see that 

multiple frequencies are resolved by FFT, suggesting that the wake created by the pin is 

broken down. As we move down steam in the channel we can see from the FFT data that 

the amplitude of the frequency is retained, suggesting that there is no vortex mixing, 

which leads to reduction in turbulence mixing downstream of the flow domain. 
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Figure 4.88 FFT – G2TV 
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Figure 4.89 FFT – G2TRV 
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Figure 4.90 FFT – G2E 
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Figure 4.91 FFT – G2C 
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Figure 4.90 represents the FFT data for pin G2E. From the figure we can see that the 

two frequencies are picked up behind row 1 pin, 238 and 477 Hz. As we move down 

steam in the channel we can see from the FFT data of the figure, that the amplitude of the 

frequency gets reduced, except for data behind row 3 in which it can be seen that the 

amplitude is higher suggesting that the wakes are pronounced similar to the pins in row 1. 

At the data behind row 7, it can be seen that the frequency of the wake shedding is 

captured by the FFT, but when compared with data behind row 1 pin, the amplitude is 

reduced. This suggest that even though there is turbulence mixing happening 

downstream, the wakes are distinguishable. 

Figure 4.91 shows the FFT data for pin G2C. From the figure we can see that the 

harmonics of the frequency in the data behind the row 1 pin, is given by 230 and 460 Hz. 

These represent the wake shedding corresponding to lift and drag forces from the pins. 

As we move down steam in the channel, we can see from the FFT data of the figure, that 

the amplitude of the frequency gets reduced. At the data behind row 5 and 7, it can be 

seen that amplitude of the shedding frequency is reduced but has a broader frequency 

range. This is due to the increase in turbulence mixing that increases downstream of the 

flow domain.  

On comparing the FFT data for the four pins design we can see that pin G2C has 

more turbulence mixing downstream of the channel, this can be also seen in the contour 

plots. Pin G2E is similar to pin G2C it does have an increase in magnitude as the flow 

moves downstream but not as much as G2C hence the wake shedding frequencies of the 

pins are preserved downstream of the channel. Same could be said for pin G2TV but in 

comparison to G2E there is a reduction of drag force as seen from the plots and the wake 
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structure contributes to reduction in turbulence mixing downstream of the channel. Pin 

G2TRV has multiple frequencies suggesting a complex wake structure due to having 

more undulations on the axial direction. These complex wake structure reduce the 

turbulence mixing in the channel leading to a reduction in static pressure loss across the 

channel. 

4.2.10.  Array Sensitivity 

To determine the effect of array dimensions on the pin design the spanwise and 

streamwise directions are changed from 0.045 m to 0.02394 m in the spanwise and 

streamwise direction. This sensitivity study is done for pins G2TV, G2TRV, G2E and 

G2C for the same Reynolds number of 30,000. Figure 4.92 shows the endwall average 

Nusselt number result. 

  

 

Figure 4.92 Endwall average Nusselt number – reduced array dimensions 
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which the pin G2TRV had a reduction in endwall heat transfer in comparison to G2TV. 

This indicates that uniqueness of pins individual wake structure which contributes to the 

endwall heat transfer are washed out when the array dimensions are reduced. Figure 4.93 

shows the contour plot for mean of Nusselt number contour for endwall heat transfer.  

 

 

Figure 4.93 Endwall Nusselt number contour – reduced array dimensions  

From the contour plot we can see that G2TV and G2TRV has almost the same result, 

except in G2TRV there is an moderate enhancement in heat transfer at the leading edge 

of the pins which can also be seen in the spanwise average results. In comparison to the 

previous array dimension contour plot (Figure 4.77) we can see that the flow accelerating 

between the pins compresses the endwall wake structure for the pins G2TV and G2TRV. 



139 
 

 Figure 4.94 shows the pins surface average Nusselt number result. The results are 

normalized to obtain Frossling number. It can be seen from the figure that having a 

reduction in array dimensions has a significant effect on the pin surface average Nusselt 

number for pins G2TV and G2TRV. In this case pin G2TRV takes advantage of the 

increase in undulations on its surface as the blockage ratio of the channel is increased. 

 

 

Figure 4.94 Pin surface average Nusselt number – reduced array dimension 
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comparison to previous results (Figure 4.57). A major notable change is that the 
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reduced.  
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Figure 4.95 Pin surface average Nusselt number – reduced array dimension 

 

Figure 4.96 – Figure 4.98 shows the average endwall Nusselt number, pin surface 

average Nusselt number and channel average Nusselt number in comparison to friction 

factor The Nusselt number and friction factor data for the pin fin channel are normalized 

with respect to data from a smooth channel, except for pins surface average in that case 

the Nusselt number is normalized to get Frossling number. 

 

 

Figure 4.96 Endwall thermal performance 
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Figure 4.97 Pin thermal performance 

 

 

Figure 4.98 Channel average thermal performance 
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from Figure 4.96, we can see that pin G2TRV having a 4.6% improvement in friction 

factor and 3.2% improvement in heat transfer. In comparing pin G2TRV and G2E we can 

see that pin G2TRV has a 28% improvement in friction factor at the cost of 16% in heat 

transfer. The average of these results is reflected in the area weighted channel average 

results presented in Figure 4.98.  

A plane is created 20 mm behind the center of the pins in the channel, and time 

averaged TKE value is plotted for points behind each row, as shown in Figure 4.99. The 

TKE value is normalized with respect to velocity squared. The results (trend) are 

identical in comparison to previous TKE results shown in Figure 4.65.  

 

 

Figure 4.99 TKE across the channel for reduced array dimension 
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figure we can see that the results are similar to the contours seen in previously from 

Figure 4.78 – Figure 4.81. 

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8

T
K

E
/V

-I
n
le

t2

Row Number

G2E G2C G2TV G2TRV



143 
 

 

Figure 4.100 TKE contour for reduced array dimensions 

 

 This shows that the wake structure is still maintained at the core flow, but as seen in 

endwall Nusselt number result in Figure 4.92, due to the reduction in array size the 

horseshoe vortex drastically affects the wake interaction with the endwall, leading to a 

much narrower wake region at the endwall. 

 

4.2.11.  Infinite Pin 

The top and bottom wall of the channel were set to symmetry boundary conditions in 
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order to simulate an infinite pin configuration. This is done to remove the wall effect on 

the pin and evaluate the pin thermal performance. Figure 4.101 shows the comparison 

between the wall bounded pins with the infinite pin configuration for pins G2TV, 

G2TRV and G2E.  

 From the figure it can be seen that by removing the top wall and the end wall the pin 

heat transfer is increased. Additionally, the heat transfer augmentation increases from 

row 1 to row 3 and then stays almost constant whereas in wall bounded pins the heat 

transfer decreases after row 3. This could be due to the absence of core flow to wall 

interaction which thereby increases the ability for the pins to extract the heat effectivity 

as the flow moves downstream in the channel. 

  

 

Figure 4.101 Infinite pin – pin surface average Nusselt number 
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there is a reduction in the magnitude of pressure drop. This is due to the absence of wall 

shear stress from the bottom and the top wall leading to the static pressure loss in the 

flow. 

 

 

Figure 4.102 Infinite pin – Pressure drop across the channel 

 

 
Figure 4.103 Infinite pin – Thermal performance 
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Figure 4.103 shows the thermal performance comparison of the infinite pin with the 

wall bounded pins. From the figure we can see that by removing the walls there is an 

improvement in thermal performance and friction factor by 10% and 24%, this is relevant 

to the results from the above two figures. 

4.2.12.  Reynolds Number Effects 

A Reynolds number case of 15,000 was done for the wall bounded pins and compared 

to the Reynolds number case of 30,000 to see the Reynolds number effects on the pins. 

The 30,000 Reynolds number case is for an inlet velocity of 3.925 m/s.  

Figure 4.104 – Figure 4.106 shows the average endwall Nusselt number, pin surface 

average Nusselt number and channel average Nusselt number in comparison to friction 

factor for Reynolds number case of 15,000 and 30,000.  

 

 

Figure 4.104 Nu vs f – Enwall average Nusselt number 
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Figure 4.105 Nu vs f – Pin surface average Nusselt number 

 

 

Figure 4.106 Nu vs f – Channel average Nusselt number 

 

The Nusselt number and friction factor data for the pin fin channel are normalized 

with respect to data from a smooth channel, except for pins surface average in that case 

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u
/R

e1
/2

f

G2E Re-15K G2TV Re-15K

G2C Re-15K G2TRV Re-15K

G2E Re-30K G2TV Re-30K

G2C Re-30K G2TRV Re-30K

0.3

0.8

1.3

1.8

2.3

2.8

2 3 4 5 6 7 8

N
u
/N

u
0

f/f0

G2E Re-15K G2TV Re-15K

G2C Re-15K G2TRV Re-15K

G2E Re-30K G2TV Re-30K

G2C Re-30K G2TRV Re-30K



148 
 

the Nusselt number is normalized to get Frossling number. A lower Reynolds number is 

chosen for this study to maintain the already present mesh conditions. From Figure 4.105 

we can see that the trend remains the same for a lower Reynolds number case, with a 

reduction in magnitude for pin surface average Nusselt number.  

Looking at the endwall Nusselt number result in Figure 4.104, it can be seen that the 

normalized results for Reynolds number of 15,000 show a marginal increase in heat 

transfer performance with a higher reduction in pressure drop, most notably the 

cylindrical pin G2C. This shows us that with respect to the smooth channel case the lower 

Reynolds number case performs better. An average of these results are seen in the 

channel average Nusselt number in Figure 4.106. 

4.2.13.  Engineered Pin Designs Based on Bio Pin Geometries 

The characteristic of the undulations are applied to the elliptical and cylindrical pin 

structures to see that effect in the aero-thermal performance. The pin shapes in this study 

is shown in Figure 4.107. The purpose of this design is to incorporate the best of 

cylindrical and elliptical pin structures into one pin design. As cylindrical pins are better 

at endwall heat transfer the bottom and top part of the pins are circular shapes and the 

center part of the pin is elliptical shape as elliptical pins are better in reducing pressure 

drop in the channel.  

The design NC1 has the circular shape at the bottom and the top with the same 

diameter as G2C, and the elliptical shape at the center has the same major diameter as 

peak ellipse with the minor diameter of valley ellipse. The pin design NC2 has the same 

circular dimension as NC1, but the elliptical shape has the minor diameter of peak ellipse 

and the major diameter of valley ellipse. 
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Figure 4.107 NC1 and NC2 geometry 

 

Figure 4.108 shows the spanwise average Nusselt number for NC1 and NC2, they are 

compared with G2C, G2E and G2TV. From the results we can see that even though the 

bottom and the top of the pin has the same circular geometry the end wall results are 

influenced by the shape of the pin center as this contributes to the core flow to endwall 

interaction leading to heat transfer augmentation on the side and the wake region of the 

pin. This is also affected by the minor diameter of the pin center as seen by pin NC2. 

 

 

Figure 4.108 Spanwise average Nusselt number for pin NC1 and NC2 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

N
u
/N

u
0

X/Dh

G2TV G2E G2C

NC1 NC2



150 
 

Figure 4.109 shows the pin surface average Nusselt number for NC1 and NC2. As 

seen from the endwall results a similar discussion can be made for pin surface average 

Nusselt number. As the center of the pin is slenderer the flow acceleration is much less in 

comparison to pin G2C, this leads to a reduction in Nusselt number. As pin NC2 has a 

narrower shape at the center than the pin NC1, it has a reduction in pin surface average 

Nusselt number as seen in Figure 4.109. 

 

 

Figure 4.109 Pin surface average Nusselt number for pin NC1 and NC2 

 

Looking at the pressure drop results from Figure 4.110 we can see that pin NC2 

which has the same center dimension as the elliptical pin G2E, has almost the same 

pressure loss in the channel as compared to pin G2E. This shows that the pressure drop in 

the channel is adversely affected by the characteristic of the core flow, which gets 

affected by the center shape of the pin. As NC1 having the same minor diameter of G2C, 

its performance lies right between G2C and G2E, and the larger major diameter of the pin 

center helps the flow to separate later leading to a reduction in wake size which 

contributes to the reduction in pressure drop. 
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Figure 4.110 Pressure drop across the channel for pin NC1 and NC2 

 

Figure 4.111 – Figure 4.113  shows the average endwall Nusselt number, pin surface 

average Nusselt number and channel average Nusselt number in comparison to friction 

factor for pins NC1 and NC2. The Nusselt number and friction factor data for the pin fin 

channel are normalized with respect to data from a smooth channel, except for pins 

surface average in that case the Nusselt number is normalized to get Frossling number. 

 

 

Figure 4.111 Endwall Nusselt number for pin NC1 and NC2 
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Figure 4.112 Pin average Nusselt number for pin NC1 and NC2 

 

 

Figure 4.113 Channel average Nusselt number for pin NC1 and NC2 
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Figure 4.114 TKE across the channel in NC1 and NC2 

 

 

Figure 4.115 TKE contour for NC1 and NC2 
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Figure 4.114 shows the TKE results across the channel for NC1 and NC2. A plane is 

created 20 mm behind the center of the pins in the channel, and time averaged TKE value 

is plotted for points behind each row. From the figure we can see that the TKE trend are 

similar to the pressure drop trend as seen in Figure 4.110.  

Figure 4.115 shows the TKE contour for pin NC1 and NC2 at 3 second solution time. 

From the TKE contours we can see that by having the characteristic of undulation in the 

streamwise and spanwise direction does aide in the reduction of wake size as seen in 

NC2. The result from this section shows that TKE and flow acceleration are the primary 

contributors to heat transfer. 

4.2.14.  Laminar Case Study 

Laminar case study was conducted for the pins with symmetry boundary conditions 

on the top and the bottom wall (infinite pin) to determine the effects of having and not 

having turbulence fluctuations in the flow domain and its effects on pin surface heat 

transfer. The pins used in this study are G2TV and G2TRV. The Nusselt number is 

normalized to get Frossling number. Figure 4.116 shows the comparison for a laminar 

case and a turbulence model for pin surface average thermal performance. 

From the figure we can see that from switching from the turbulence model to laminar, 

we see a decrease in heat transfer performance from row 4 pins. This is due to the 

absence of turbulence fluctuations. In comparison to literature for a wall bounded pin 

setup the heat transfer performance on the pins plateaus out after row 4 pins this could be 

seen in the next section, this behavior could be seen in the turbulence case form the 

figure. According to the literature by Williamson (1996), the Reynolds number used in 

the study (with respect to pin diameter not with the 2H) is within the shear – layer 



155 
 

transition regime (ReD = 1000 to 200,000). 

 

 

Figure 4.116 Pin surface average Nusselt number laminar case 
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experimental comparison needs to be done to properly understand the relation between 

the heat transfer characteristic and CFD models in an infinite pin configuration. 

 

 

Figure 4.117 Pressure drop across the channel for laminar case 
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Figure 4.118 Thermal performance of laminar case 
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order to obtain a single value of Nusselt number for each row and Reynolds number with 

a reported uncertainty of ± 6% (Ames, Dvorak & Morrow, 2005).  The experimental 

setup with pin CP1 was run for 3 Reynolds numbers, 3000, 10,000 and 30,000. The 

Reynolds number were calculated based on the maximum velocity to match literature. 

The uncertainty in this experiential study is calculated by using root sum square 

method (Moffat, 1998; Prasad & Ricklick, 2017). The uncertainty for the three Reynolds 

number 3,000, 10,000 and 30,000 are calculated to be ± 2.4%, ± 1.1% and ± 1%. The 

uncertainty for pin surface average Nusselt number for the three Reynolds number are 

calculated to be ± 6.5%, ± 5.6% and ± 5.6%. The uncertainty for average endwall Nusselt 

number for the three Reynolds number are calculated to be ± 9.4%, ± 8.7% and ± 8.2%. 

The uncertainty for Frossling number for the three Reynolds number are calculated to be 

± 6.6%, ± 5.6% and ± 5.6%. The uncertainty for channel average Nusselt number for the 

three Reynolds number are calculated to be ± 6%, ± 5.3% and ± 5% (Pai, Prasad & 

Ricklick, 2020). Figure 4.119 – Figure 4.121 show the comparison between Ames’s data 

and the analytical solution for the cases. 

 

 

Figure 4.119 Comparison of analytical solution with Ames for Re = 3,000 (Pai et al., 

2020). 
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In Figure 4.119, ‘Exp’ represents experimental data computed from endwall 

temperatures using ESM method. The values obtained are in close agreement with 

Ames’s data. The highest and lowest percentage difference in Frossling number is about 

11% obtained for row 5 and 3.5% for row 1 (Pai et al., 2020). 

In Figure 4.120, for 10,000 Reynolds number case, we see that the highest and lowest 

percentage difference in Frossling number is about 33% for row 1 and about 0.23% for 

row 5 in comparison to Ames’s data. From rows 3 – 5 the experimental data is in good 

agreement with Ames. This gives validity to the ESM method (Pai et al., 2020). 

 

 

Figure 4.120 Comparison of analytical solution with Ames for Re = 10,000 (Pai et al., 

2020). 
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Ames’ experimental data (Pai et al., 2020). 

 

 

Figure 4.121 Comparison of analytical solution with Ames for Re = 30,000 (Pai et al., 

2020). 
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difference of 7.3% and 6.3% (Pai et al., 2020). On comparison, the experimental endwall 

Nusselt number has good agreement with the data from Ames et al. (2007), Metzger & 

Haley (1982) and VanFossen (1982). The uncertainty for Ames experimental endwall 

data was given to be ± 9%. 

 

 

Figure 4.122 Comparison of average endwall and pin Nusselt numbers (Pai et al., 2020). 

 

 

Figure 4.123 Comparison of Channel average Nusselt number (Pai et al., 2020). 
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In Figure 4.123 the channel average Nusselt number data presented, is thus an area 

weighted average, weighing in the contribution of the pin and endwall based on the 

corresponding area, assuming all 56 pins saw a heat transfer coefficient equal to the 

average of the 12 pins tested in the present study (Pai et al., 2020).From Figure 4.123, we 

can see that the area weighted channel average of the Nusselt number is in close 

agreement with Ames et al. (2007). On comparison, the maximum and minimum 

percentage difference was about 10.7% and 0.8% (Pai et al., 2020).  

4.3.2. Endwall Nusselt Number 

Figure 4.124 shows the endwall Nusselt number contour post processed from TSP for 

Reynolds number of 12,000. Figure 4.125 – Figure 4.127 shows the spanwise average 

endwall Nusselt number for the pins CP1, BP1 and BP2 for three Reynolds number 

2,000, 4,000 and 12,000.  

 

 

Figure 4.124 Endwall Nusselt number contour for Reynolds number = 12,000 
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The Nusselt number result is normalized to get Frossling number. From the Nusselt 

number contour we can see that the best performing pin is the cylindrical pin CP1, 

followed by BP2 and BP1. Looking at the wake created by the first row of pins on the 

endwall, we can see that the cylindrical pin CP1 has a wider wake region, endwall wake 

region is similar to CP1 and BP1 the elliptical pin has a narrower wake region leading to 

a lower heat transfer rate. 

 

 

 

Figure 4.125 Spanwise average endwall Nusselt number for Reynolds number = 2,000 

 

As the flow moves through the channel the magnitude of the wake generated by the 
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number cases, pin CP1 is the best performer followed by pin BP2 and BP1. This trend 

was also captured by the computational study for higher Reynolds number case. 
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Figure 4.126 Spanwise average endwall Nusselt number for Reynolds number = 4,000 

 

 

Figure 4.127 Spanwise average endwall Nusselt number for Reynolds number = 12,000 
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4.3.3. Pressure Drop Along the Channel 

The pressure data are obtained from the side wall in the test section. Each port is 

located between two rows of pins, first port is located before the first row and the last 

port is located after the last row. The pressure drop across the channel is calculated based 

on the difference between the first port and the subsequent port similar to the 

computational study. Figure 4.128 – Figure 4.130 shows the pressure drop data. The 

experimental uncertainties are approx. 11%, 7% and 5% for Reynolds number case of 

2000, 4000 and 12000. 

  

 

Figure 4.128 Pressure drop along the channel for Reynolds number = 2,000 

 

From these figures we can see that the pressure drop across the channel for the three 

pins are similar for all the Reynolds number, with pin CP1 and BP2 having the highest 

pressure drop flowed by pin BP1. Since pin CP1 and BP2 are cylindrical in nature the 

wake produced by these pins are larger in magnitude compared to pin BP1 which in 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

∆
P

 (
P

a)

Row Number

CP1 BP2 BP1



166 
 

elliptical in nature this leads to a reduction in static pressure loss across the channel. 

 

 

Figure 4.129 Pressure drop along the channel for Reynolds number = 4,000 

 

 

Figure 4.130 Pressure drop along the channel for Reynolds number = 12,000 
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4.3.4. Reynolds Number Effects 

Figure 4.131 shows the Nusselt number variation across different Reynolds number. 

From this result, it can be seen that the heat transfer performance between pin CP1 and 

BP1 is maintained between 10 – 15%. Whereas BP2 has almost the same performance as 

CP1. The uncertainty in the results is approx. 9.6% for Reynolds number of 2,000 and 

approx. 9.1% for Reynolds number case of 4,000 and 12,000. The Reynolds number has 

an uncertainty of approx. 3% overall.  

 

 

Figure 4.131 Nusselt number over various Reynolds number 

 

Figure 4.132 – Figure 4.134 shows the thermal performance of the pins for the three 

Reynolds number. The experimental uncertainties are approx. 10% for normalized 

Nusselt number and 9% for normalized friction factor for Reynolds number case of 

2,000, 9% and 5% for Reynolds number case of 4,000, and 9.3% and 3.5% for Reynolds 
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Figure 4.132 Thermal performance for Reynolds number = 2,000 

 

 

Figure 4.133 Thermal performance for Reynolds number = 4,000 

 

 

Figure 4.134 Thermal performance for Reynolds number = 12,000 
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Since the Nusselt number and friction factor are normalized with respect to CP1, any 

data point above CP1 in the y axis means it performs well in heat transfer and any data 

point to the left of CP1 in the x axis means it performs well in pressure drop. 

In terms of thermal performance standpoint we cans see from the results above that 

the pin BP1 in comparison to CP1 has approximately 36 % improvement in friction factor 

at the cost of 10 % in heat transfer for Reynolds number of 12,000. This is similar in 

comparison to the computational study which shows 50% improvement in friction factor 

at the cost of 19 % in heat transfer for the higher Reynolds number case. 

4.3.5. Spectral Analysis 

Pressure data is obtained from the Kulite pressure probes in time at 22.5 mm behind 

rows 1, 3 and 5 for a duration of 10 seconds with 2000 samples a second. The amplitude 

spectrum of the pressure fluctuations is then plotted with frequency for a Reynolds 

number case of 12,000. For the sake of brevity only one Reynolds number case number 

will be discussed. Plotting the pressure fluctuations will give two dominant frequencies 

for the pin, one related to the drag and the other related to the lift as explained in the 

computational study. The frequency for the drag will be twice that of the lift.  

Figure 4.135 shows the FFT data for row 1 of pin CP1. Initially as seen in the figure 

there is a lot of noise in the lower frequency ranges which is attributed to the inlet 

(entrance) section, cropping the x axis gives a better range of the amplitude. Figure 4.136 

– Figure 4.138 shows the FFT analysis for pin CP1, BP1 and BP2. From Figure 4.136 we 

can see that there are two main frequency in the spectrum around 210 Hz and 415 Hz 

corresponding to lift and drag generated by the pin. These are present in all three rows 1, 

3 and 5. 
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Figure 4.135 FFT experiment – CP1 row 1  

 

 

 

 

Figure 4.136 Experiment FFT – CP1 
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Figure 4.137 Experiment FFT – BP2 
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Figure 4.138 Experiment FFT – BP1 

 

From Figure 4.138 we can see that there are two main frequency in the spectrum 

around 240 Hz and 415 Hz corresponding to lift and drag generated by the pin. These are 

present in all three rows 1, 3 and 5. In comparison to CP1 and BP1, we can see the 
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4.4. Experimental Results – Final Pin Design 

The final pin design consists of pins from group 1, 2 and 3. From the computational 

study we saw that the performance of group 2 and 3 pins is better than group 1 pins. 

Hence the thermal performance group 2 pins are evaluated experimentally. Due to 

experimental limitations only pins G2TV, G2E and G2TRV were studied for Reynolds 

numbers 15,000, 30,000, 60,000 and 85,000. The Reynolds number is based on the inlet 

velocity and characteristic diameter of 2H.  

Table 4.1 shows the comparison of mass flux used in the CFD simulation and the 

experimental setup, and they are within 5% of each other. Hence for this study a 

comparison could be made with the computational study for Reynolds number of 15,000 

and 30,000. A notable difference between the experimental and the computational setup 

is that the latter has an inlet section to fully develop the flow hydro dynamically, whereas 

the CFD setup does not have an inlet section. In order to have a proper comparison for 

heat transfer results, the results from the experiment and CFD are normalized with 

respect to data from G2E. 

 

Table 4.1 

Mass flux comparison  

Reynolds number CFD (Kg/m2.s) Experiment (Kg/m2.s) % difference 

15,000 4.62 4.55 1.52 

30,000 9.24 8.84 4.33 

 

4.4.1. Endwall Nusselt number 

A smooth channel test was done in order to establish confidence in the results 

obtained from our test setup and measurement techniques before progressing further. The 
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spanwise averaged Nusselt number for smooth channel was compared with Gnielinski 

correlation (Gnielinski, 1976) as shown in equation 42. 

 𝑁𝑢𝐷 =  
(𝑓 8)(𝑅𝑒𝐷 − 1000)𝑃𝑟 ⁄

1 + 12.7(𝑓 8⁄ )
1

2⁄ (𝑃𝑟
2

3⁄ − 1)
 (42) 

Where f is the friction factor which is calculated using Darcy–Weisbach equation 

(Equation 32). This correlation is valid for 0.5 < Pr < 2000 and 3000 < ReD < 5 ×106. 

Figure 4.139 shows the spanwise average Nusselt number for the smooth channel test. As 

we can see for the figure that there is a deviation at the starting, this is due to the absence 

of a heated inlet section. Since heating begins at the start of the test section, the impact of 

thermal development of the flow is seen up to approximately at an X/Dh of 4, at this point 

we can say that the flow becomes fully thermally developed. Comparing the result to the 

correlation we can see that the spanwise average is in good agreement, well within 10% 

of given uncertainty. 

  

 

Figure 4.139 Spanwise average Nusselt number for Smooth channel 
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Figure 4.140 shows the post processed image of TSP for a smooth channel test. The 

white lines in the contour are the space between the strips which are discarded in post 

processing, as these regions are not subjected to the given heat flux. 

 

 

Figure 4.140 Temperature contour (TSP) 

 

 Figure 4.141 shows the end wall Nusselt number contour for Re of 30,000. From the 

figure we can see that behind row 1 the wake region is much narrower for pin G2TRV in 

comparison to the other pins, this trend can be seen almost behind every row for G2TRV. 

We can also see the same behavior in CFD contour results shown in Figure 4.77. Looking 

at the data downstream of the channel we can see that pin G2E has an increase in 

magnitude of heat transfer compared to other two pins.  

 

 
Figure 4.141 Nusselt number contour for Re = 30,000 
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As explained in the CFD results this is due to pin G2E having a higher magnitude of 

flow mixing compared to other pins, related to the structure of each pins wake. Figure 

4.142 – Figure 4.145 show the spanwise average endwall Nusselt number for all 4 

Reynolds number. The results are normalized to obtain Frossling number. 

 

 

Figure 4.142 Spanwise average Nusselt number for Re = 15,000 

 

 

Figure 4.143 Spanwise average Nusselt number for Re = 30,000 
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Figure 4.144 Spanwise average Nusselt number for Re = 60,000 

 

 

Figure 4.145 Spanwise average Nusselt number for Re = 85,000 
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loss of uniqueness of the pin wake structure.  

On comparing between the bio pins and pin G2E, we can see that the pin G2E still 

has a better heat transfer augmentation downstream of the channel. This is due to G2E 

having periodic wake shedding which leads to an increase in turbulence fluctuations at 

the endwall as the flow moves through the channel. But the bio pins G2TV and G2TRV 

having reduction in wake size due to the presence of the undulation leads to a reduction 

in magnitude of flow mixing downstream of the channel thereby leading to the reduction 

in endwall Nusselt number. 

4.4.2. Pressure Drop Along the Channel 

The pressure data are obtained from the side wall in the test section. Each port is 

located between two rows of pins, first port is located before the first row and the last 

port is located after the last row. The pressure drop across the channel is calculated based 

on the difference between the first port and the subsequent port similar to the 

computational study. Figure 4.146 – Figure 4.151 shows the comparison of pressure drop 

data for experiment and CFD results for Reynolds number case of 15,000 and 30,000, 

with experimental uncertainties of 7% and 5.5%. 

 

 

Figure 4.146 Pressure drop along the channel for G2E – Re = 15,000 
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Figure 4.147 Pressure drop along the channel for G2TV – Re = 15,000 

 

 

Figure 4.148 Pressure drop along the channel for G2TRV – Re = 15,000 

 

 

Figure 4.149 Pressure drop along the channel for G2E – Re = 30,000 
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Figure 4.150 Pressure drop along the channel for G2TV – Re = 30,000 

 

 

Figure 4.151 Pressure drop along the channel for G2TRV – Re = 30,000 
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Figure 4.152 Pressure drop along the channel for Re = 15,000 

 

 

Figure 4.153 Pressure drop along the channel for Re = 30,000 

 

 

Figure 4.154 Pressure drop along the channel for Re = 60,000 
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Figure 4.155 Pressure drop along the channel for Re = 85,000 

 

Also as explained previously G2E has the periodic wake shedding which leads to 
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wake magnitude leading to decrease in static pressure loss. This can be seen in the 

pressure drop results. 
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 𝐴𝑐 =  
𝑉𝑜𝑙𝑢𝑚𝑒

𝐻𝑒𝑖𝑔ℎ𝑡
 (44) 

This methodology was implemented for pins G2E, G2TV and G2TRV at Reynolds 

number of 60,000. The Nusselt number is normalized to get Frossling number, as shown 

in Figure 4.156. The uncertainty in the results is approx. 4.5% for G2TV, G2TRV and 

G2E. From the figure we can see that the heat transfer on the pins surface increases to 

row 3 – 4 and gradually decreases, this is seen in CFD results Figure 4.55. 

 This is due to the increase in bulk temperature of the core flow as the flow moves 

downstream of the channel. This increase in bulk temperature is due to heat extraction 

from walls leading to a decrease in heat transfer on the pin surface. Also as seen in CFD 

results the pin G2E performs better in pin surface heat transfer in comparison to the bio 

pins, with G2TV and G2TRV almost being the same in performance.  

 

 

Figure 4.156 Pin row average Nusselt number for Re = 60,000 
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From this result, it can be seen that the difference between the heat transfer performance 

is maintained between 1 – 2%. With G2E being the best performer follower by G2TV 

and G2TRV. The uncertainty is the results are approx. 9.4% for Reynolds number case of 

15,000 and 30,000 and approx. 8.5% for Reynolds number case of 60,000 and 85,000. 

The uncertainty in the Reynolds numbers is approx. 2.8%. 

 

 

Figure 4.157 Endwall Nusselt number over Reynolds number 
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Figure 4.158 Thermal performance comparison for Re = 15,000 

 

 

Figure 4.159 Thermal performance comparison for Re = 30,000 
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Figure 4.160 Thermal performance at various Reynolds number 
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 The Nusselt number and factor values in Figure 4.160 are normalized with respect to 

smooth channel data. From this result we can see that thermal performance trend is 

similar to the trend seen in CFD results. One notable difference is that for a high 

Reynolds number of 85,000 the thermal performance of G2TV and G2TRV are the same. 

And also, the difference in heat transfer between G2E and the bio bins decreases from 

5.5% to 3.5% as the Reynolds number is increased, with an overall improvement in 

friction factor performance by 14%.  

4.4.5. Spectral Analysis 

Pressure data is obtained from the Kulite pressure probes in time at 17 mm behind 

rows 1 and 5 for a duration of 10 seconds with 2000 samples a second. The amplitude 

spectrum of the pressure fluctuations is then plotted with frequency for a Reynolds 

number case of 30,000. Plotting the pressure fluctuations will give two dominant 

frequencies for the pin, one related to the drag and the other related to the lift as 

explained in the computational study. The frequency for the drag will be twice that of the 

lift. Initially the pressure fluctuation for smooth channel data is plotted with respect to 

their frequency to determine the frequencies not related to the pins later on. 

Figure 4.161 shows the FFT data for smooth channel pressure fluctuations. From the 

figure we can see a lot of noise in the lower frequency ranges, which are attributed to the 

inlet section. The frequencies around 500 to 650 Hz is caused by the blower used in the 

experiment. The frequencies around 220 Hz and 260 Hz and its harmonics could be due 

to the noise generated by another test section connected to the by bass flow of the blower. 

Hence the lower frequencies before 200 Hz can be cropped, to better represent the data. 

Figure 4.162 – Figure 4.163 shows the FFT data for the pins at row 1 and row 5. 



188 
 

 

 

Figure 4.161 FFT – Smooth channel 

 

 

 

 

Figure 4.162 FFT – Row 1 
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Figure 4.163 FFT – Row 5 
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magnitude at the center region, this aids in heat transfer near the endwall and reduces 

pressure drop in the flow.  

We can also see that TI is higher throughout the wake region, suggesting that the 

wake is broken down as seen in literature. As the flow moves downstream, the flow gets 

accelerated through the channel leading to an increase in the size of the wake, but the bio 

pin G2TV in comparison to G2E still keeps the shape of the wake with higher TI near the 

endwall than at the center region. This leads to the reduction in pressure loss in the 

channel while maintaining the heat transfer at the endwall. 

 

 

    

Figure 4.164 TI for pin G2TV (top) and G2E (bottom) behind row 1 (left) and 5 (right) 

pin  
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5. Conclusions 

The objective of this study has been to characterize and compare the aero-thermal 

behavior of bio-inspired pin geometries with a standard circular and elliptical pin fin for 

different Reynolds number. As mentioned in the methodology two set of pin designs 

were made and each one having its own group. The initial pin design has the bio pins 

BP1 and BP2 and the conventional pins CP1 (cylindrical) and EP1 (elliptical), with BP1 

being the bio pin with elliptical structure and BP2 being the bio pin with cylindrical 

structure. Both these pins BP1 and BP2 are non-uniformly scaled up versions of the 

actual whisker geometry. Whereas the final pin design is a scaled up version of the actual 

whisker geometry, this is done to study the effect of the actual whisker shape in thermal 

performance.  

The behavior of the pin design in aero-thermal performance was done by comparing 

the spanwise average Nusselt number on the end-wall, row-wise pin surface average 

Nusselt number, circumferential distribution of Nusselt number and pressure coefficient 

and also a comparison of friction factor. The results of the entire study have been 

summarized in the tables given below.  

The results are in terms of channel average, endwall average and pin surface average 

enhancement ratios normalized with respect to the baseline case. From the given 

enhancement ratios, a greater value indicates a better performance. The enhancement 

ratios are given in terms of thermal performance at constant pressure drop and at constant 

pumping power respectively, the latter is the one with the denominator raised to one 

third. Table 5.1 shows the thermal performance numbers for the initial pin design 

obtained from the computational study. 
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Table 5.1 

Initial pin design – CFD – Thermal Performance 

  Endwall average Pin surface average Channel average 

Re Case 

𝑁𝑢
𝑁𝑢𝐶𝑃1

𝑓
𝑓𝐶𝑃1

 

𝑁𝑢
𝑁𝑢𝐶𝑃1

(
𝑓

𝑓𝐶𝑃1
)

1
3⁄

 

𝑁𝑢
𝑁𝑢𝐶𝑃1

𝑓
𝑓𝐶𝑃1

 

𝑁𝑢
𝑁𝑢𝐶𝑃1

(
𝑓

𝑓𝐶𝑃1
)

1
3⁄

 

𝑁𝑢
𝑁𝑢𝐶𝑃1

𝑓
𝑓𝐶𝑃1

 

𝑁𝑢
𝑁𝑢𝐶𝑃1

(
𝑓

𝑓𝐶𝑃1
)

1
3⁄

 

2,700 

CP1 1 1 1 1 1 1 

BP1 1.511 1.075 1.673 1.191 1.538 1.094 

BP2 0.9426 0.997 0.979 1.035 0.949 1.003 

EP1 1.9284 1.075 2.222 1.239 2.012 1.121 

5,200 

CP1 1 1 1 1 1 1 

BP1 1.608 1.066 1.762 1.169 1.631 1.082 

BP2 0.966 0.983 1.024 1.041 0.983 0.999 

EP1 2.096 1.063 2.452 1.242 2.205 1.118 

15,000 

CP1 1 1 1 1 1 1 

BP1 1.596 1.013 1.798 1.141 1.596 1.013 

BP2 1.008 1.004 1.021 1.017 1.008 1.004 

EP1 2.066 1.006 2.467 2.467 2.066 1.006 

 

In Table 5.1 the enhancement ratios are normalized with respect to results from CP1, 

so a value greater than 1 indicates better performance in comparison to CP1. From the 

table we can see that pin EP1 and BP1 are performing better than pin CP1 in terms of 

thermal performance at constant pressure drop and pumping power, with a maximum 

difference of about 100% for pin EP1 and 54% for BP1 at constant pressure drop and 

about 12% for pin EP1 and 11% for pin BP1 for constant pumping power.  

Table 5.2 shows the thermal performance result for the initial pin design from the 

experimental study. This similar to the results seen in the computational study. The bio 

pin BP1 performs better in comparison to CP1 in terms of thermal performance at 

constant pressure drop and pumping power, with a maximum difference of 40% and 10% 

respectively. This shows that in comparing the initial pin design group of pins the best 
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performing pin is EP1 followed by BP1 and BP2. Having the undulation on the pins 

benefits in terms of reduction in pressure drop at a small cost of heat transfer. 

 

Table 5.2 

Initial pin design – Experiment – Endwall thermal performance 

Re Case 

𝑵𝒖
𝑵𝒖𝑪𝑷𝟏

𝒇
𝒇𝑪𝑷𝟏

 

𝑵𝒖
𝑵𝒖𝑪𝑷𝟏

(
𝒇

𝒇𝑪𝑷𝟏
)

𝟏
𝟑⁄

 

2,000 

CP1 1 1 

BP1 1.314 0.983 

BP2 0.984 0.962 

4,000 

CP1 1 1 

BP1 1.369 1.009 

BP2 0.958 0.956 

12,000 

 

CP1 1 1 

BP1 1.412 1.049 

BP2 0.978 0.972 

 

Table 5.3 show the thermal performance results for the final pin design from the 

computational study. The enhancement ratios are normalized with respect to smooth 

channel data and cylindrical pin data. Hence a pin which has a higher value is the better 

performer. From group 1 pins in the final pin design, we can see that the cylindrical pin 

G1C and the elliptical pin G1E are the better performer in comparison to the bio pins. 

The angle of the undulations cause a difference of 3% in thermal performance at constant 

pressure drop and 1% in thermal performance at constant pumping power requirement.  

Looking at the performance of group 2 and 3 pins, we can see that the bio pins are the 

best performer in comparison to G2E and G2C with a maximum difference of 37% in 

thermal performance at constant pressure drop. As seen before the angle of the 
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undulations doesn’t affect the results significantly. Removing the streamwise or the 

spanwise undulation decreases the thermal performance at constant pressure drop by 5% 

for pin G2TVST and by <1% for pin G2TVSP, but in terms of thermal performance at 

constant pumping power there is an increase in performance by 1%. Increasing the 

number of undulations on the pin increases the magnitude of thermal performance at 

constant pressure drop by a small amount but decreases the performance at constant 

pumping power by 3%. For the pins inspired from the bio pins design, pin NC1 and NC2, 

both have a decrease in performance at constant pressure drop but have an increase in 

performance for constant pumping power by 2.5%. 

 

Table 5.3  

Final pin design – CFD – Thermal performance – Re = 30,000 

 Endwall average Pin surface average Channel average 

Case 

𝑁𝑢
𝑁𝑢0

𝑓
𝑓0

 

𝑁𝑢
𝑁𝑢0

(
𝑓
𝑓0

)

1
3⁄

 

𝑁𝑢
𝑁𝑢𝐶

𝑓
𝑓𝐶

 

𝑁𝑢
𝑁𝑢𝐶

(
𝑓
𝑓𝐶

)

1
3⁄

 

𝑁𝑢
𝑁𝑢0

𝑓
𝑓0

 

𝑁𝑢
𝑁𝑢0

(
𝑓
𝑓0

)

1
3⁄

 

G1C 0.328 1.006 1 1 0.379 1.162 

G1E 0.446 0.936 1.176 0.805 0.537 1.128 

G1TP 0.371 0.843 1.126 0.834 0.465 1.057 

G1TRP 0.368 0.846 1.092 0.820 0.454 1.044 

G1TPR 0.377 0.856 1.124 0.834 0.465 1.057 

G1TPZ 0.381 0.851 1.127 0.821 0.474 1.059 

G2C 0.273 0.986 1 1 0.315 1.137 

G2E 0.355 0.952 1.244 0.926 0.419 1.125 

G2TV 0.375 0.914 1.408 0.950 0.456 1.111 

G2TVR 0.379 0.922 1.410 0.951 0.456 1.111 

G2TVZ 0.385 0.922 1.412 0.938 0.465 1.113 

G2TRV 0.379 0.873 1.483 0.948 0.469 1.080 

G2TVST 0.358 0.934 1.286 0.931 0.428 1.117 

G2TVSP 0.372 0.933 1.387 0.963 0.448 1.122 

NC1 0.301 0.956 1.135 0.999 0.355 1.126 

NC2 0.344 0.963 1.335 1.037 0.406 1.139 
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Table 5.4 show the thermal performance results for the final pin design from the 

computational study for a lower Reynolds number of 15,000. A similar conclusion could 

be drawn for this case as well, with the bio pins performing 8% better in terms of thermal 

performance at constant pressure drop but has a 2% decrease in thermal performance at 

constant pumping power. 

 

Table 5.4  

Final pin design – CFD – Thermal performance – Re = 15,000 

 Endwall average Pin surface average Channel average 

Case 

𝑁𝑢
𝑁𝑢0

𝑓
𝑓0

 

𝑁𝑢
𝑁𝑢0

(
𝑓
𝑓0

)

1
3⁄

 

𝑁𝑢
𝑁𝑢𝐶

𝑓
𝑓𝐶

 

𝑁𝑢
𝑁𝑢𝐶

(
𝑓
𝑓𝐶

)

1
3⁄

 

𝑁𝑢
𝑁𝑢0

𝑓
𝑓0

 

𝑁𝑢
𝑁𝑢0

(
𝑓
𝑓0

)

1
3⁄

 

G2C 0.348 1.087 1 1 0.408 1.273 

G2E 0.419 1.026 1.148 0.901 0.506 1.237 

G2TV 0.437 0.971 1.308 0.931 0.547 1.212 

G2TRV 0.436 0.927 1.356 0.925 0.553 1.174 

 

 

 Table 5.5 shows the thermal performance result for the final pin design from the 

experimental study. The thermal performance data is normalized with respect to smooth 

channel data, hence a higher value indicates better performance. From the results we can 

see that the bio pins perform better in comparison to elliptical pin G2E in terms of 

thermal performance at constant pressure drop and pumping power, with a maximum 

difference of 11% and 13% for the lower Reynolds number case. As the harbor seal 

whisker is elliptical in nature a good comparison would be with respect to the 

conventional elliptical pin G2E and from the results we can see that the bio pins perform 

better in this comparison. 
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Table 5.5  

Final pin design – Experiment – Endwall thermal performance 

Re Case 

𝑁𝑢
𝑁𝑢0

𝑓
𝑓0

 

𝑁𝑢
𝑁𝑢0

(
𝑓
𝑓0

)

1
3⁄

 

15,000 

G2E 0.296 0.098 

G2TV 0.318 0.106 

G2TRV 0.333 0.111 

30,000 

G2E 0.323 0.107 

G2TV 0.371 0.123 

G2TRV 0.387 0.129 

60,000 

G2E 0.205 0.068 

G2TV 0.219 0.073 

G2TRV 0.221 0.076 

85,000 

G2E 0.205 0.068 

G2TV 0.233 0.077 

G2TRV 0.229 0.076 

 

 Hence it can be seen from this study that the pin geometries inspired from harbor seal 

whiskers do have the potential to improve thermal performance. Furthermore, the impact 

of endwall heat transfer, pin surface heat transfer and pressure drop in the channel are 

related to the magnitude of wake created by the pins, flow acceleration and turbulence 

mixing in the channel. This is based on the pin shape and design considered in this 

current study, hence other engineered pin designs apart from NC1 and NC2 can be 

implemented such as, helical strake on a circular cylinder. Helical strakes are used in 

cylindrical towers to minimize flow induced vibrations by reducing the wake size 

generated by these towers.  

 As discussed in the literature review, numerous studies have been carried out on pin 

shapes, such as oblong pins, teardrop shaped pins, NACA airfoil shaped pins, triangular 

pins and so on. This shows that there are other engineering designs and also other 
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potential nature designs available to be implemented in a pinfin channel configuration for 

a thermal management purpose, with harbor seal whisker pin designs being one more 

potential solution. 
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APPENDIX 

A.1.  Reynolds Number for a Harbor Seal Whisker 

 

 Harbor seals can swim up to 12mph, hence using dynamic similarity of Reynolds 

number (Equation 45 and Equation 46) the velocity used in this study was calculated for 

the final pin design. 

 𝑅𝑒1 =  𝑅𝑒2 (45) 

 Where Re1 is the Reynolds number of the actual seal whisker and Re2 is the scaled up 

version of the seal whisker geometry for the final pin design study. The condition for Re1 

is sea water and the conditions for Re2 is air. 

 𝜌1𝑉1𝐿𝐶1

𝜇1
=  

𝜌2𝑉2𝐿𝐶2

𝜇2
 

(46) 

 Where LC1 and LC2 are the characteristic length scale for Re1 and Re2. Since the 

whiskers are scaled uniformly in all dimensions for the final pin design, 

 𝐿𝐶2 =  12 × 𝐿𝐶1 (47) 

 Hence the velocity for the scaled version of the whisker is calculated to be approx. 

7.1 m/s, therefore in the computational study 3.925 m/s and 7.85 m/s inlet velocity 

conditions were used. 

A.2.  3D Printed Harbor Seal Whisker Geometries 

The bio pins, both the initial pin design and the final pin design geometries are 3D 

printed using Shapeways 3D printing services. The material used are Nylon 12, and 

Aluminum alloy and steel alloy for pins which are internally heated. Figure A.1 – Figure 

A.2 shows the 3D printed geometries for the experiment. 
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Figure A.1 3D printed geometries – Initial Pin Design 

 

 

Figure A.2 3D printed geometries – Final Pin Design 

 

A.3.  Time step 

The time step for the CFD simulations are calculated based on the shedding 

frequency of the pin geometries. The shedding frequency (f) is calculated based on the 

Strouhal number (St).  

 
𝑓 =  

𝑆𝑡 × 𝑉

𝐷𝐶
 

(48) 

Where V is the flow velocity and Dc is the characteristic diameter based on the pin 

diameter. Time period (T) of the wake shedding is given by, 

 
𝑇 =

1

𝑓
 

(49) 

In order to capture the unsteadiness of the wake generated by the pin geometries the 

time step (t) used in the simulation is given by, 



206 
 

 
𝑡 =

𝑇

20
 

(50) 

For the final pin design, the time step calculated for an elliptical geometry is about 

0.28 – 0.29 ms and for the cylindrical geometry is about 0.183 – 0.22 ms. Hence a time 

step of 0.1 ms is used for all cases. 

A.4.  Plots  

 

Figure A.3 – Figure A.10 shows the plots for the CFD results of final pin design with 

result from G2C removed to properly show the difference in comparison with the bio and 

elliptical pins. 

 

 

Figure A.3 Spanwise average endwall Nusselt number for group 1 pins 
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Figure A.4 Spanwise average endwall Nusselt number for group 2 and 3 pins 

 

 

Figure A.5 Group 1: Row average Nusselt number 
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Figure A.6 Group 2 and 3: Row average Nusselt number 

 

 

Figure A.7 Group 1: Pressure drop along the channel 
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Figure A.8 Group 2 and 3: Pressure drop along the channel 

 

 

Figure A.9 TKE – Group 1 
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Figure A.10 TKE – Group 2 and 3 
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