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ABSTRACT 

Researcher: Woo-Jin Choi 

Title: COST OPTIMIZATION MODELING FOR AIRPORT CAPACITY 
EXPANSION PROBLEMS IN METROPOLITAN AREAS  

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2021 

The purpose of this research was to develop a cost optimization model to identify an 

optimal solution to expand airport capacity in metropolitan areas in consideration of 

demand uncertainties. The study first analyzed four airport capacity expansion cases from 

different regions of the world to identify possible solutions to expand airport capacity and 

key cost functions which are highly related to airport capacity problems. Using mixed-

integer nonlinear programming (MINLP), a deterministic optimization model was 

developed with the inclusion of six cost functions: capital cost, operation cost, delay cost, 

noise cost, operation readiness, and airport transfer (ORAT) cost, and passenger access 

cost. These six cost functions can be used to consider a possible trade-off between airport 

capacity and congestion and address multiple stakeholders’ cost concerns.  

This deterministic model was validated using an example case of the Sydney 

metropolitan area in Australia, which presented an optimal solution of a dual airport 

system along with scalable outcomes for a 50-year timeline. The study also tested 

alternative input values to the discount rate, operation cost, and passenger access costs to 

review the reliability of the deterministic model. Six additional experimental models were 

tested, and all models successfully yielded optimal solutions. The moderating effects of 
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financial discount rate, airport operation cost, and passenger access costs on the optimal 

solution were quantitatively the same in presence of a deterministic demand profile. 

This deterministic model was then transformed into a stochastic optimization 

model to address concerns with the uncertainty of future traffic demand, which was 

further reviewed with three what-if demand scenarios of the Sydney Model: random and 

positive growth of traffic demand, normal distribution of traffic demand changes based 

on the historical traffic record of the Sydney region, and reflection of the current COVID-

19 pandemic situation. This study used a Monte Carlo simulation to address the 

uncertainty of future traffic demand as an uncontrollable input. The Sydney Model and 

three What-if Models successfully presented objective model outcomes and identified the 

optimal solutions to expand airport capacity while minimizing overall costs. The results 

of this work indicated that the moderating effect of traffic uncertainties can make a 

difference with an optimal solution. Therefore, airport decision-makers and airport 

planners should carefully consider the uncertainty factors that would influence the airport 

capacity expansion solution. 

This research demonstrated the effectiveness of combining MINLP and the Monte 

Carlo simulation to support a long-term strategic decision for airport capacity problems in 

metropolitan areas at the early stages of the planning process while addressing future 

traffic demand uncertainty. Other uncertainty factors, such as political events, new 

technologies, alternative modes of transport, financial crisis, technological innovation, 

and demographic changes might also be treated as uncontrollable variables to augment 

this optimization model.   
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CHAPTER I 

INTRODUCTION  

World Air Transport Statistics 2019, published by the International Air Transport 

Association (IATA), showed that global air traffic had reached 8.8 billion passengers in 

2018 and was forecasted to double by 2037 and would reach 19.7 billion passengers by 

2040 (IATA, 2019). While the recent dramatic plunge in air traffic demand was due to 

the COVID-19 pandemic (IATA, 2020), limited airport capacity has long been a 

challenge for many metropolitan regions worldwide, impeding the mobility of people and 

goods. Hamzawi (1992) showed that aircraft operation delays at airports exponentially 

grow when the traffic demand starts to exceed approximately 80% of the airport capacity. 

Therefore, in general, attempts to resolve airport congestion largely focus on finding 

methods to increase airport capacity. 

There are multiple solutions to increasing airport capacity, but the planning 

process is inherently cumbersome in large metropolitan areas (Sismanidou & Tarradellas, 

2017). As a popular option, expanding existing airports is usually constrained by three 

major factors: investment capability, community concerns on environmental issues, and 

availability of land (Organization for Economic Co-Operation and Development 

[OECD], 2014). If existing airports cannot be expanded, developing a new airport within 

a reasonable distance from population centers can be an alternative solution. However, 

creating sufficient land for the new airport in a remote location and providing 

connectivity to population centers requires extensive investments in surface transport and 

infrastructure development (OECD, 2014). Furthermore, the relocation of resources to 

the new airport imposes extra costs on airlines and other aviation stakeholders. 
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According to the IATA and Airports Council International (ACI) (2017), as 

shown in Figure 1, 45 of the 100 busiest airports in the world, as measured by passenger 

traffic, have been experiencing over-capacity problems either with the runway or terminal 

facilities, during 2016. By ACI’s 2018 Policy Brief (ACI, 2018), though a group of 50 

countries introduced a USD 355 billion airport investment plan between 2018 and 2022, 

it is anticipated that more than USD 433 billion will be required to meet the expected air 

traffic demand by 2022. This gap indicates the critical importance of investment planning 

and stakeholders’ decision-making in increasing airport capacity. 

 

Figure 1 

Worldwide Airport Overcapacity Problem with 100 Busiest Airports 

 

Note. 45 out of the 100 busiest airports in the world exceeded either runway or terminal 

facility design capacity in 2016. Adapted from “IATA-ACI NEXTT Program Brochure” 

by IATA (2017, p. 2).  
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 In 2019, based on its bi-annual survey, Airports Council International-North 

America (ACI-NA) predicted that the total capital costs of U.S. airports between 2019 

and 2023 would be more than USD 128 billion (ACI-NA, 2019). As shown in Table 1, 

the majority of necessary capital costs are planned for allocated to large hub airports in 

metropolitan areas. Compared to ACI-NA’s 2017 report (ACI-NA, 2017), which 

predicted costs of about $100 billion, this projection showed a significant increase. 

Meanwhile, the approximate average annualized capital cost of USD 25.6 billion between 

2019 and 2023 appears to be significantly higher than the funding available through 

Airport Improvement Program (AIP) grants, Passenger Facility Charge (PFC) revenue, 

and net income from airport operations (ACI-NA, 2018). The current funding system in 

the United States is not sufficient to support the demand for expanding its airport capacity 

in a timely manner, which is essential for a safe and efficient air transport system. 

 When airport facilities fail to meet the demand needs either of the society or 

global economy, there might be challenges in the economic growth of the cities, states, 

and regions. Thus, developing an optimal solution to increase airport capacity appears to 

be of critical importance not only for the stakeholder working for the airport and aviation 

industry but also for many different parties who are related to urban planning and policy 

making. As a famous example, the British Chambers of Commerce have consistently 

called for a third Heathrow runway development to keep the UK economy competitive 

and they also warned that repeated delays and losing efficiency could cost the UK 

economy more than £30bn between 2020 and 2030, with the country losing out on trade 

to Germany and France (Burridge, 2019). 
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Table 1 

U.S. Airport Capital Cost Projection per Year and Category ($ in Millions) 

Airport Type  2019 2020  2021  2022  2023  Total  Percent  

Large hub  20,129 16,776 16,549 13,982 13,630 81,066 63.3% 

Medium hub  3,142 2,705 3,313 3,441 4,935 17,537 13.7% 

Small hub  2,385 1,999 1,651 2,043 1,319 9,398 7.3% 

Non-hub  1,099 1,115 1,132 1,149 1,166 5,660 4.4% 

Other a  2,809 2,851 2,893 2,937 2,981 14,471 11.3% 

Total  29,563 25,446 25,539 23,551 24,032 128,131 100.0% 

 
Note. Data from ACI-NA annual publication in 2019. Extracted from 

https://airportscouncil.org/wp-content/uploads/2019/02/2019TerminallyChallenged-Web-

Final.pdf. a ‘Other’ category includes non-commercial service airports and seven 

proposed new airports based on the FAA’s NPIAS report (2019-2023). 

 

In many metropolitan areas, as shown in Table 2, the planned airport capacity 

improvement programs have not been implemented in a timely manner (Santos & 

Antunes, 2014), mainly due to significant extensions of the initial planning phase. 

Among many factors, the options for capacity expansion, whether to expand existing 

airports or to develop a new airport, appear to be a dominant factor that causes delays in 

the planning and decision-making process. Also, environmental concern to expand the 

existing airport infrastructure or developing a new airport site has been another major 

issue to delay the decision-making. 
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Table 2  

Example Cases of Major Airport Project Delays in Metropolitan Areas 

Metropolitan 
City 

Airport Type of 
Expansion 

Plan 
Initiated 

Major Issues Current 
Status 

(Planned) 
Finish 

Munich, 
Germany 

Munich Greenfield 
Development 

1963 Location, Traffic 
forecast, 
Environmental 
effects 

Operation / 
Expansion 
Planning 

1992 

Berlin, 
Germany 

Branden-
burg 

Greenfield 
Development 

1992 Location, Design 
changes, Cost 
overrun 

Construction 
/ Activation 

2020 

Ho Chi Minh, 
Vietnam 

Long 
Thanh 

Greenfield 
Development 

2006 Financial 
Feasibility, 
Financing 

Design 2025 

Pusan, Korea Kimhae Mega-
Expansion 

2000 Expansion vs. 
New Airport, 
Conflict among 
stakeholders 

Planning / 
Suspension 

2026 

London, UK Heathrow Mega-
Expansion 

1968 Expansion vs. 
New Airport, 
Conflict among 
stakeholders 

Planning / 
Suspension 

2026 

Sydney, 
Australia 

Western 
Sydney 

Greenfield 
Development 

1972 Remote 
Location, 
Conflict with the 
existing airport 

Design 2026 

Chicago, 
USA 

South 
Suburban 

Greenfield 
Development 

1968 Politics, Conflict 
with O’Hare and 
Midfield airports 

Planning Not 
Confirmed 

 

Note. The cases above were selected and analyzed by the researcher. The information on 

the expected finish year is retrieved from the latest announcement by the concerned 

airport authorities.  

 

 To better understand the complex nature of planning airport capacity expansion in 

metropolitan areas, the background and major causes of long-term delays must be 

analyzed. Among the projects shown in Table 2, three projects that have been delayed for 

several decades and are not yet complete were reviewed: Western Sydney Airport 
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development in Australia, London Heathrow Airport expansion in the United Kingdom, 

and Long Thanh Airport development in Vietnam.  

 Like many other metropolitan regions, Sydney has long experienced an airport 

capacity problem associated with its single airport situation. The Kingsford Smith Airport 

is located 8 km away from the central business district (CBD) at a small coastal site of 

907 hectares (2,241 acres) (OECD, 2014). While air traffic demand has rapidly increased 

for the last 2 decades, the airport’s night-time curfew and proximity to the CBD make it 

difficult to utilize the existing infrastructure extensively or to develop further capacity. 

For several decades, the Australian government has evaluated multiple solutions to build 

a new airport infrastructure. The critical issues that complicated the decision-making 

process were related to site location, air traffic networks, and airline marketing and 

competition (OECD, 2014). Finally, the Western Sydney Airport project commenced in 

2018 and is expected to be completed by the end of 2026. Because this new airport will 

be located about 45 km from the CBD, accessing it will be less convenient for passengers 

and airlines. Furthermore, transforming the current single airport operational model into a 

multi-airport system may prove problematic. Meanwhile, it is expected to resolve the 

environmental concerns of the communities regarding both noise and air pollution 

(Western Sydney Airport Co., 2014). 

 Another well-known case, the expansion of Heathrow airport, provides important 

lessons that can help with understanding the complex environment of airport capacity 

planning. There had been lengthy debates on whether to develop a new airport or to 

expand existing airports to tackle the airport capacity issue of the London metropolitan 

area. Considering the potential economic benefits and severe competition with other 
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major hub airports, the capacity expansion of Heathrow airport has been the British 

government’s preferred option since the 1990s. After almost 30 years of prolonged 

review, the government gave the go-ahead to a third runway plan at Heathrow Airport. It 

launched a public consultation process as part of its masterplan and proposed a phased 

airport expansion plan: the runway construction will be completed by 2026, and the rest 

of the airport infrastructure, including new terminals, are to be completed by around 2050 

(Burridge, 2019). However, the British Court of Appeal recently ruled the Heathrow third 

runway expansion plan is unlawful due to increasing climate change concerns, and this 

expansion plan is unlikely to re-start in the short-term (Tophem, 2020). 

 Long Thanh International Airport in Viet Nam is proposed to become an 

international hub airport in Ho Chi Minh City. The proposed site is located approximately 

40 km east of the city center, covering about 5,000 hectares (12,355 acres). The new 

airport site has been prepared to accommodate four runways in the final phase and handle 

beyond 100 million passengers per annum. This scale of the airport would become one of 

the largest airports in the world. It plans to have three major expansion phases over three 

decades; the first phase is scheduled for completion by 2025, and the next two phases are 

to be completed between 2030-2035 and 2040-2050, respectively. While the National 

Assembly approved this ambitious plan in 2015, a decision was made that the investor 

would use its funds and that the government could not guarantee any loan taken for the 

project. Due to the investment requirements of USD 4.8 billion and potential competition 

with the existing Than Son Nath Airport, funding for the project has made it uncertain 

whether the project will be completed on time (Center for Asia Pacific Aviation [CAPA], 

2019). 
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 From reviewing these three cases, it is apparent that airport capacity problems at 

the municipal level have caused complex situations and delayed definitive decision-

making. Several critical reasons for this issue can be summarized: limited financial and 

land availability, lumpy capital investment requirements under uncertain traffic demand 

which means airport infrastructure cannot be acquired in small increments but must be 

obtained in large and discrete units, conflicting stakeholders’ interests over multiple 

solutions, and the future environmental impact on the metropolitan areas. The lessons 

learned from these cases supported the development of the research questions and 

objectives of this study. 

Many factors affect the decision of whether to expand the existing airport(s) or to 

build a new airport, and it is apparent that different stakeholders pursue their own 

interests (Martín & Voltes-Dorta, 2011b). Among the various factors delaying the 

stakeholders’ decision-making, the financial concern is a significant aspect, as it can 

easily override the future benefits from timely capacity expansion (Xiao et al., 2017). 

This is mainly because airport expansion works typically involve massive investment 

based on future infrastructure needs forecasted by uncertain traffic demand. 

 According to IATA (2020), air passenger traffic as measured by revenue 

passenger kilometer dropped 94.3% year-on-year in April 2020, which was the largest 

decrease in history caused by the large-scale worldwide lockdowns linked to the COVID-

19 pandemic, and it was still down 75.3% in August 2020. This decline has shown across 

all regions. As stated by the ACI media release article (ACI, 2020), the recovery of 

overall air traffic demand is anticipated to take up to 18 months to reach pre-crisis traffic 

volume. However, with the uncertainty of the further impact of the current situation, there 
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is a likelihood of re-evaluation of necessity and timeline for airport capacity expansion 

plans for the majority of airports. 

Meanwhile, the environmental costs associated with community concerns can also 

complicate the planning and decision-making processes for airport capacity expansion in 

metropolitan regions (OECD, 2014). Community concerns usually include noise level, air 

and water pollution, loss of wildlife habitats, traffic congestion, and a host of other 

environmental concerns (OECD, 2014). A recent decision of the British Court of Appeal 

to ruled the Heathrow third runway expansion plan as unlawful, which was made 

primarily because the expansion plan did not take climate commitments into account. The 

ruling occurred while public concerns about climate change were rapidly rising, and the 

government passed legislation with the target of net zero emissions by 2050 (Tophem, 

2020). 

Therefore, to develop capacity planning for airport infrastructure projects, it is of 

critical importance to involve not only financial factors but also consider various non-

financial factors such as social, environmental, congestion, and technical aspects. It is 

also vital to study other related stakeholder costs, such as airlines, communities, and 

passengers, so that the decision can be supported by the related stakeholders. 

Three significant areas of literature have been found regarding airport capacity 

expansion problems: airport site location study (Daskin, 1995; Hammad & Akbarnezhad, 

2017; ReVelle & Eiselt, 2005; Yang et al., 2016), airport capacity expansion model 

(Marshall, 2018; Martin & Voltes-Dorta, 2011; Sun & Schonfeld, 2015), and airport 

network design (Clark et al., 2018; Santos & Antunes, 2014; Wandelt et al., 2017). Those 

studies aimed to maximize the traffic throughput or operational efficiency of the 
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concerned airports, and little attention has been paid to assessing multiple solutions at a 

metropolitan level to decide airport capacity investment.  

A review of existing literature, as shown in chapter two, reveals the limitations of 

assessing the complex dynamics of cost functions to expand airport capacity under future 

traffic uncertainty. Moreover, previous research that studied the relationship between cost 

functions and airport capacity focused on a few major cost elements in the development 

and operation of airport infrastructure without sufficiently considering an overall 

framework and the multi-faceted cost mechanism over time. Therefore, this research, 

which focused on the comprehensive cost functions of airport development and 

operations, attempted to address these significant literature gaps and proposed a cost 

optimization model that can be used in considering future airport capacity expansion in 

large metropolitan areas. 

Statement of the Problem 

The existing literature (Marshall, 2018; Martin & Voltes-Dorta, 2011; Sun & 

Schonfeld, 2015) regarding airport capacity expansion problems has primarily addressed 

the costs and benefits of investing in an individual airport without assessing multiple 

solutions for the overall airport system of metropolitan areas. While such measures may 

result in locally improved solutions for a particular airport, they are often sub-optimal for 

the airport systems of metropolitan areas. Thus, they do not sufficiently support effective 

decision-making during the early planning stages.  

Another major problem with the acquisition of airport capacity and future airport 

operations is associated with potential fluctuations in air traffic demand (Luke & Walters, 

2013). Under the current liberalization and cost-competitive business environment, 
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airport capacity expansion planning at a metropolitan level requires careful consideration 

of future demand uncertainty. Hence, the airport capacity decision-making process needs 

to take into account the dynamics and possible trade-off among cost functions, associated 

with the uncertainty of future air traffic demand. 

Purpose Statement 

This research intended to develop a quantitative optimization model that can help 

determine optimal solutions for airport capacity expansion in large metropolitan areas. 

Using a mixed-integer nonlinear programming (MINLP) method, it aimed to develop an 

optimization model to identify the optimal solution for expanding airport capacity with a 

specific interest in minimizing the total costs over time. After the development of the 

general optimization model with a deterministic approach, the effects of uncertainties of 

air traffic demand and unexpected events on capacity planning were examined using a 

Monte Carlo simulation method. This approach helped to analyze various what-if 

scenarios in major metropolitan areas by simulating key objective functions or constraint 

variables. 

Significance of the Study 

This study aimed at expanding the understanding of capacity expansion planning 

for transportation infrastructure by building an optimization model specifically tailored to 

the airport system in large metropolitan areas. Theoretically, this optimization model 

improved the body of knowledge by assessing various solutions for expanding airport 

capacity as a system within metropolitan areas. Moreover, by adding a what-if simulation 

framework to the deterministic optimization model, it could address uncontrollable input 

variables such as air traffic demand and catchment population. The optimization model 
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also provided a foundation for future research questions related to specific cases in 

metropolitan areas.  

Practically, the results of this research will provide airport authorities and 

planners with an evidence-based assessment model to scrutinize solutions for airport 

capacity expansion concerning their competitive outcomes, connectivity, and overall user 

benefits. By changing an objective function, decision-makers can also modify and 

customize the optimization model to choose an optimal solution based on their specific 

needs and priority functions. The key contributions of this work can be elaborated as 

below:  

(1) analysis of various cost functions for airport capacity expansion and the 

formulation of cost assessment models along with the nonlinear traffic growth effects;  

(2) an optimization model for assisting aviation authorities in their strategic 

decisions regarding the expansion of the airport capacity of large metropolitan areas in 

consideration of multiple capacity expansion solutions; and 

(3) provision of several model enhancements under different what-if scenarios for 

modifying the presented solution through a series of computational tests. 

Research Questions 

This study was designed to answer the question of what are the critical costs for 

expanding airport capacity in metropolitan areas and how airport stakeholders can 

identify the optimal solution that helps to minimize overall costs under the future air 

traffic demand uncertainty. More specifically, this research aimed to help to answer the 

following three questions: 
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Q1. What are the key cost functions related to airport capacity expansion, and 

how are they related to traffic change over time? 

Q2. Using the identified key cost functions, how can an optimum solution for the 

airport capacity expansion be determined in terms of minimizing related costs? 

Q3. How can the optimum solution be decided in consideration of various factors 

that may impact future traffic demand? 

Delimitations 

This study focused on the impact of acquisition and environmental costs directly 

incurred in the expansion of airport capacity in large metropolitan areas. Because the 

modeling outcomes from one airport or metropolitan area may not be generalized to 

another airport, multiple sources were used to collect required data from various airports 

in Asia, the USA, Oceania, and Europe. The selected instances helped establish cost 

parameters to build an MINLP model. Therefore, the optimization model obtained can be 

generalizable to most metropolitan areas worldwide, thus becoming a useful tool for 

supporting the decision-making process. 

In order to produce a generalizable optimization model, any specific factors that 

can vary depending on geographical and business environments such as ownership 

structure and governance of airports were not considered in this research. Also, it did not 

produce a model that captures political and economic factors, such as taxations and 

revenues both from aeronautical and non-aeronautical activities. Moreover, it did not 

address induced costs or benefits such as job creation, quality of services, and economies 

of scale, which may be related to many compounding variables that cannot be controlled 

within this study. In the meantime, expanded operational considerations such as cost of 
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initial operational inefficiency, training, and relocation, which could cost more at a new 

airport than an existing airport, are addressed with the Operation Readiness and Airport 

Transfer (ORAT) cost. 

Limitations and Assumptions 

The airport capacity expansion problems of metropolitan areas usually engage 

many different variables and uncertainties, which can vary depending on geographical, 

social, political, and economic conditions. Therefore, developing plausible scenarios and 

assumptions that apply to most metropolitan areas is essential to ensure the validity of the 

research outcomes. Thus, the proposed optimization model utilized information and 

parameters from multiple metropolitan cases and global practices.  

However, it was also essential to understand the limitations of the information 

collected from the case studies and existing literature, which have different operational 

conditions and geographical factors. Therefore, it was imperative to limit the scope of the 

model by simplifying its assumptions and input parameters by considering generally 

applicable industrial practices, as shown below: 

(1) The time horizon of the study is aligned with the typical planning and 

development period of airport capacity expansion projects.  

(2) Having a macro-level analysis, the researcher considered expanding entire 

airport facilities rather than prioritizing any specific component of the airport. Therefore, 

sub-components such as airfield, cargo, and passenger terminal of an airport system were 

not modeled into the optimization model. 
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(3) Among various demands, annual passenger traffic was taken as a primary 

parameter in the development of this optimization model. Other traffic profiles, such as 

cargo traffic or aircraft movement, were not considered. 

(4) This research did not consider political or socio-economic factors that can be 

influenced by different local conditions. 

(5) In this study, traffic demand was associated with the origin and destination 

passengers, and transfer traffic demand was not considered as a discrete input variable. 

Summary 

Due to complex stakeholder structures and lumpy investment requirements, the 

capacity expansion of airports for accommodating the growing air traffic demand has 

become one of the key challenges in many metropolitan areas. Several solutions exist to 

solve this issue, either with a multi-airport or single airport scenario. It has been a 

pervasive industrial practice to take a qualitative approach influenced by political factors 

or assess each of these solutions individually to make a decision. However, with the 

presence of multiple decision factors and uncertainties in traffic demand, budget, airport 

location, and network, the decision-making process for airport capacity expansion has 

often resulted in social conflicts and prolonged delays. These delays often negatively 

impact the sustainable growth of the air transportation industry.  

The researcher intended to evaluate these various solutions quantitatively and 

developed a useful optimization model for airport capacity expansion. The outcomes of 

this research established a hypothetical scenario and modeling parameters to evaluate and 

compare the various solutions for capacity expansion, with a focus on minimizing the 

costs of airport capacity expansion. The optimization model presented is expected to help 
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decision-makers determine an optimal solution with a focus on both cost and time 

efficiency. 

Definitions of Terms 

Aeronautical revenue  Airport user charges generated by flight operations. 

Air Cargo Commercial freight, including express packages and 

mail, transported by passenger or all-cargo airlines. 

Air Carrier An airline providing scheduled air service for the 

commercial transport of passengers or cargo. 

Airfield A defined area on land or water including any 

buildings, installations, and equipment intended to 

be used either wholly or in part for the arrival, 

departure, or movement of aircraft. 

Airport An area of land or water that is used or intended to 

be used for the landing and takeoff of aircraft, and 

includes its buildings and facilities, if any. 

Airport Access Plans Includes the proposed routing of airport access to 

the central business district and to points of 

connection with existing or planned ground 

transportation arteries. 

Airport Authority Similar to a port authority but with the single 

purpose of setting policy and management direction 

for airports within its jurisdiction. 
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Airport Master Plan A document presenting the planner’s conception of 

the ultimate development of a specific airport. It 

presents the research and logic from which the plan 

was evolved and displays the plan in a graphic and 

written format. 

Airport-To-Airport Distance The great-circle distance, measured in statute miles, 

between airports. 

Capacity A measure of the maximum number of aircraft 

operations that can be accommodated on the airport 

component in an hour. 

Catchment area  A geographic area from where a large proportion of 

an airport’s outbound passengers originate. A 

geographical area is considered a catchment area of 

an airport if it controls at least 25 % of the 

passengers originating from that area (UK CAA, 

2011). 

Charter A nonscheduled flight offered by either a 

supplemental or certificated air carrier. 

General Aviation All civil aviation operations other than scheduled 

air services and non-scheduled air transport 

operations for remuneration or hire. 

Ldn Day-night sound levels; a method of measuring 

noise exposure. 
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Non-aeronautical revenue Airport charges that are not directly related to flight 

operations. 

List of Acronyms 

ACI    Airport Council International 

AIP    Airport Improvement Program 

ARC    Aerodrome Reference Code 

CBD    Commercial Business District 

CPI    Consumer Price Index  

ERAU     Embry-Riddle Aeronautical University 

FAA    Federal Aviation Administration 

GA    General Aviation 

IATA    International Air Transport Association  

ICAO    International Civil Aviation Organization 

ILP    Integer Linear Programming 

IRB     Institutional Review Board 

LOS    Level of Service 

LP    Linear Programming 

MAP   Million Annual Passenger 

MAS   Multi Airport System 

MILP   Mixed Integer Linear Program 

MINLP   Mixed Integer Non-linear Programming 

NSW    New South Wales 

OECD   Organization for Economic Co-operation and  
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Development 

ORAT    Operation Readiness and Airport Transfer 

RAAF     Royal Australian Air Force 

SACL     Sydney Airport Corporation Limited 

SARP    Standards and Recommended Practices 

WLU    Work Load Units 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

This chapter presents the existing literature related to four main categories: (1) the 

capacity planning of transportation infrastructure, (2) airport capacity and network 

modeling, (3) airport capacity expansion solutions and cost functions, and (4) the 

theoretical foundation for optimization and simulation modeling. Each section details the 

importance and theoretical framework of the capacity planning of airport infrastructure 

based on existing literature. 

Furthermore, this chapter focuses on various research methods used for airport 

capacity planning and their practical applications in supporting the decision-making 

processes of airport stakeholders. For developing an optimization model for airport 

capacity planning, this research primarily focuses on the development of linear 

programming and a Monte Carlo simulation model. Hence, this chapter also provides the 

rationales, model parameters, and independent variables that are necessary to develop an 

optimization model, how they can be treated, and the applicable algorithms for this study. 

Capacity Planning for Transportation Infrastructure 

Capacity planning is the process of determining the future capacity provision 

levels of specific facilities over a planning horizon (Sun, & Schonfeld, 2015). In the 

context of expected long-term demand growth, the core of this process is to determine the 

optimal timing and level of capacity acquisition or expansion. A large body of literature 

can be found on capacity planning in transportation sectors, such as logistics (Crainic et 

al., 2009; Darayi et al., 2019), railway (Anoop et al., 2018; Burdett, 2016; Lai & Shih, 

2013), highway (Lu & Meng, 2017), aviation (Clark et al., 2018; Marshall, 2018; Martin 
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& Voltes-Dorta, 2011; Sun & Schonfeld, 2015; Wandeltet al., 2017), seaport (Dong et al, 

2015), and multi-modal network design (Bevrani et al. 2017; Pimentel et al., 2013).  

In transportation capacity planning, it is common to engage long lead times to 

adapt capacity. The initial development of a new highway, high-speed railway, or airport 

may take ten years or more, which requires demand forecasts for the next 10-30 years 

(Proost & van der Loo, 2010). Regarding the challenge of the long-term demand forecast 

in transport, Proost and van der Loo (2010) described two major streams of literature. 

First, traffic demand is stochastic in that it is difficult for stakeholders to know the 

aggregate level of future demand or the required capacity. Second, traffic demand has a 

macroeconomic uncertainty, and the demand levels are unknown to the planner. 

Therefore, one of the most crucial areas in the capacity planning process of transportation 

infrastructure is demand forecasting. As large-scale projects usually require massive and 

lumpy investment, demand forecasting is an essential part of the planning process (Solak 

et al., 2009). Its most critical difficulty is associated with the unpredictability of the long-

term demand that cannot be justified due to the uncertainty of the future (Xiao et al., 

2013). The existing literature presents several areas of methodological improvement that 

can tackle the challenges of demand forecasting. 

First, sensitivity analysis can be used to deal with future uncertainty as it can 

suggest more reliable outcomes based on different market scenarios (Burghouwt, 2007; 

Sismanidou & Tarradellas, 2017). Second, improvement can also be achieved by 

incorporating multiple decision factors from the broad spectrum of stakeholders into the 

planning and decision-making processes (Armstrong and Green, 2005; Burghouwt, 

2007). Each stakeholder can have different interests and considerations, so engaging 
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multiple stakeholders in the forecasts can also be a safeguard against prejudices 

associated with infrastructure project planning. Finally, freeing the planning process from 

political influences is a complicated matter; therefore, forecast analyses may often end up 

with wrong figures to meet the regulators’ expectations. Thus, when it comes to capacity 

planning for major transportation infrastructure projects, it is necessary to involve various 

non-economic factors—such as social, environmental, congestion, and technical 

aspects—along with financial feasibility.  

Transportation network design, an essential topic in transportation studies, has 

been recently studied to optimize throughput and productivity. While a paper by Farahani 

et al. (2013) covered its definitions, formulations, classifications, and solutions based on a 

deterministic model, the effects of uncertainties such as demand were analyzed either 

with stochastic programming (Liu et al., 2009; Ukkusuri and Patil, 2009) or robust 

optimizations (Lou et al., 2009; Sharma et al., 2009; Yin et al., 2009). Lai and Shih 

(2013) proposed a stochastic model to select capacity expansion projects for North 

American freight railroad networks. While Lai and Shih (2013) made significant 

progress, their study had significant limitations. For instance, the capacity increment 

resulting from implementing one project is difficult to estimate due to the complex 

interactions among various railroad system components. More importantly, the penalty 

costs due to congestion effects should be nonlinear to demands, contrary to the assumed 

linear relation. 

Proost and van der Loo (2010) recommended considering the competition among 

multiple transportation modes when it comes to capacity planning for transportation 

infrastructure in metropolitan areas. When there are more than two competing modes 
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without monopolistic conditions such as competition between railways and airlines, 

alternative objectives and how they may lead to changes in airport behavior under 

demand uncertainty must be considered. This recommendation gave great importance to 

this study because multiple airports that serve one metropolitan area may be in a 

competitive position. 

Airport Capacity and Network Modeling 

Within the airport business and engineering field, there is abundant literature 

highlighting the importance of capacity expansion planning. While applications in other 

industrial domains can shed light on the airport capacity expansion problem, there is a 

particularly important factor in the airport industry that needs to be addressed. By nature, 

as long as traffic demand is growing, airport facilities are subject to congestion (Sun & 

Schonfeld, 2015), and complex relations between demand and delay costs need to be 

considered. Therefore, from the planning perspective, it is desirable to secure excess 

capacity in advance to mitigate potential delays with limited capacity. The insufficient 

consideration of congestion effects can result in the underestimation of capacity needs, 

increasing delay costs. 

In contrast, the literature dealing with airport expansion and construction 

problems at the network level is meager (Santos & Antunes, 2015). Optimizing airport 

capacity and network in a metropolitan area is of critical importance because the airports 

are not functionally or managerially independent. Many researchers (Burghouwt, 2007; 

Sismanidou & Tarradellas, 2017; Szyliowicz & Goetz, 1997; Xiao et al., 2013) have 

stated that more flexible and practical approaches will improve the conventional study 

models of master planning and financial feasibility. 
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As shown in Table 3, three areas of study on airport capacity and network 

problems were found in the existing literature: airport site location (Hammad et al., 2017; 

Yang, Yu, & Notteboom, 2016), airport capacity expansion model (Marshall, 2018; 

Martin & Voltes-Dorta, 2011; Sun & Schonfeld, 2015), and airport network design 

(Clark et al., 2018; Magnanti & Wong, 1984; Wandelt et al., 2017). Each is relevant to 

the study. It must be noted that the previous studies emphasized the importance of airport 

planning in terms of the capacity expansion of a single airport or network efficiency from 

the regional perspective. However, discussions of airport expansion at the network level 

within the metropolitan area are relatively meager, particularly in the field of 

optimization (Santos & Antunes, 2014). 

To develop the framework of the study, the researcher reviewed three recent 

studies that developed optimization models for airport capacity and network problems. 

Santos and Antunes (2014) introduced an optimization model to support the decision-

making process in long-term airport network expansion. Using an application example 

case, they aimed to maximize passenger throughput within the airport network. The 

researchers first tested a hypothetical small-scale system and expanded the study into the 

evolution of major airport networks in the United States. 
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Table 3 

Recent Aviation Research for Airport Capacity and Network Problems 

Author Year Purpose Variables Sample Methodology Finding 

Hammad, 
Rey, and 
Akbarnezhad  

2017 To solve the problem 
of airport location and 
environmental impact 

Noise, 
catchment 
areas, and total 
travel time 

Transport 
network 
composed of 
12 nodes and 
28 links 

Mixed-integer 
linear program 
(MILP) model 

Airport location could 
significantly affect the 
total noise levels. 

Marshall  2018 To explore airport 
expansion, planning, 
the links to national 
geographies, and the 
issues 

None UK Airports Case study Climate change 
movements find new 
strengths; financing is a 
key factor for airport 
expansion problems. 

Martín & 
Voltes-Dorta 

2011a To explore the 
problem of airport 
capacity expansions 
under MAS 

Labor, 
materials, and 
capital 
expenditures 

161 airports 
worldwide 

Bayesian 
inference and 
Markov chain 
Monte Carlo 
methods 

Cost efficiency at a 
system level is 
significantly lower than 
the observed at the 
individual airports. 

Santos and 
Antunes  

2014 To support the 
decision-making to 
maximize passenger 
throughput 

Throughput, 
capacity, 
impact of 
travel costs 

28 
metropolitan 
areas in the 
USA 

Optimization 
model  

An optimization model 
for airport expansion, 
while complying with a 
given budget. 

Sun and 
Schonfeld  

2015 To analyze how 
capacity expansion 
decisions for airport 
systems should be 
made  

Capital cost, 
operating cost, 
and delay cost

None, 
Scenario-
based 

Deterministic 
total cost 
minimization 
model 

Computational tests 
demonstrate the 
validity of developed 
models and proposed 
algorithms. 

Sun and 
Schonfeld  

2016 To optimize facility 
development decisions 
for airport systems in 
the presence of 
demand uncertainty 

Capital cost, 
operating cost, 
and delay cost

None, 
Scenario-
based 

Mixed-integer 
nonlinear 
program 
(MINLP) 

Demonstrate the 
capability of the 
proposed MINLP 
model and the 
computational 
efficiency of the 
solution method. 

Xiao, Fu, & 
Zhang  

2013 To analyze the effects 
of demand uncertainty 
on airport capacity 
planning and choices 

Commercial 
revenue, 
capital cost, 
and airport 
operation cost 

None, 
Scenario-
based 

Linear 
programming 

Optimal airport 
capacity under 
uncertainty will be 
larger than the case 
with deterministic 
mean demand. 

Xiao, Fu, 
Oum, & Yan 

2017 To develop a multi-
stage game model that 
identifies the optimal 
airport capacity to be 
invested 

Capacity, 
service charge, 
demand, 
capital cost, 
reserve cost 

None, 
Scenario-
based 

Linear 
programming 

Using real options in 
capacity planning can 
be a valuable tool for 
airports to battle 
uncertainty. 

Yang, Yu, & 
Notteboom 

2016 To solve an airport 
location problem as a 
function of 
accessibility 
considerations 

Spatial area, 
population, 
and social 
consumption 
level 

101 Chinese 
airports 

Structural 
equation model 

Optimal airport 
location pattern ranges 
from a single airport to 
a multiple airport 
network. 
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Sun and Schonfeld (2014) developed a deterministic optimization model to 

expand airport capacity within a single airport system, with a focus on minimizing costs 

and transformed the model into a stochastic model. They developed an optimization 

model based on the outer-approximation technique to solve airport expansion decision-

making problems by considering capital costs, operating costs, and delay costs. 

Computational tests with airfield systems, terminals, and cargo facilities demonstrated the 

validity of the airport expansion models and the efficiency of the algorithms. As a result, 

the optimal model reduced the total costs by 18.8% with the numerical example (Sun & 

Schonfeld, 2014). 

Hammad and Akbarnezhad (2017) studied the problems of airport facility location 

and environmental impact and used a mixed-integer linear programming (MILP) method. 

Focusing on optimizing noise impact, the coverage of catchment areas, and the required 

passenger travel time on the existing road network, they suggested changes to traffic on 

the road network and solved airport location problems for the Sunshine Coast network in 

Queensland, Australia. The results indicated that the airport location could significantly 

affect the total noise levels of the surrounding population centers and the passengers’ 

travel time on the road network. 

Airport Capacity Expansion Solutions and Cost Functions 

The airport capacity problem can be mitigated with various aviation stakeholders, 

such as aviation administration, municipalities, and airlines, by using different measures 

(Santos & Antunes, 2014). Useful short-term tools may include demand management, 

such as airline slot re-allocation and congestion charges for de-peaking traffic, or 

advanced process management systems, such as off-airport check-in and the United 
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States NextGen (FAA, 2012). On the other hand, long-term solutions such as expanding 

the existing infrastructure or developing a new airport are essential to meet increases in 

future demand. 

Cost Functions for Airport Capacity Expansion 

While there have been quite a few studies on the cost functions of the air transport 

industry (Caves et al., 1980), insufficient financial data on airport capacity expansion 

limits the choice of model specification and estimation methodology (Martín & Voltes-

Dorta, 2011a). Consequently, there have been limited efforts to standardize an airport-

specific cost estimation methodology. 

Expanding the capacity of airports in metropolitan areas is a complex undertaking 

that requires significant capital expenditure, often under uncertain conditions. In this 

study, the six major costs were identified to be significantly related to airport capacity 

problems and analyzed to develop an optimization model. 

Capital Costs. In infrastructure development, capital costs are significant in 

making an investment decision due to its massive and lumpy investment requirement 

(Xiao et al., 2017). In the airport domain, the capital costs can be categorized by the 

following sub-groups: 

(1) Land acquisition. Land purchasing, soil investigation, grading, fencing, 

drainage system, etc.  

(2) Access infrastructure. Highway, airport access road, railway, and traffic 

control system, etc. 

(3) Utility installation. A power station, electricity, water, communication, water, 

waste, etc. 
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(4) Civil works. Movement of land, runway, taxiways, lay-bys, aprons, etc. 

(5) Building works. A control tower, terminal building, fire and rescue service 

building, power plant, other buildings, etc. 

(6) Navigational aids. Ground lighting. Approach lighting, radar, control tower, 

transmitter center, etc.  

(7) Special airport systems. Security, flight information, baggage handling, 

airport operation database, deicing, passenger boarding bridge, etc. 

Operation Costs. To date, passenger movement, aircraft movement, and air 

freight have been used as prominent output measures to develop cost functions in the 

existing literature. The existing research generally considers a unit passenger or aircraft 

movement would require similar costs to handle (Keeler, 1970; Main et al., 2003, Oum et 

al., 2008). However, multiple researchers have challenged this monolithic and unitized 

cost assessment approach because the same volume of passenger and freight does not 

necessarily require a similar level of resources in physical or financial terms (Martín & 

Voltes-Dorta, 2011b). 

In the meantime, existing literature generally agrees on the presence of the 

economy of scale in airport operations (Martín & Voltes-Dorta, 2011b) and recommends 

the use of broad and representative data for a proper estimation of airports’ cost function. 

Hence, the researcher used actual benchmarked cost information from the industry in 

terms of type and size of airports and developed the operation cost function. 

Delay Costs. Delay at airports happens as a consequence of the rapidly growing 

air traffic in comparison to the supplied airport capacity, which has been one of the most 

severe concerns of the industry (Karaman, 2018). Many major hub airports accommodate 
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air traffic volume beyond capacity during peak-demand seasons, which causes congestion 

and delays at the airports. For redistributing the traffic at the peak-hours to off-peak 

hours, major hub airports charge differentiated landing fees based on the extent of airport 

congestion. This is a standard industry practice used to encourage airlines to shift small 

and inefficient fleets away during peak traffic time (Hu et al., 2018). The delay costs are 

generally nonlinear (Sun & Schonfeld, 2015). There is plenty of literature on airport 

congestion pricing and capacity financing/cost recovery (Gillen et al., 1987; Gillen et al., 

1989; Morrison, 1987; Oum and Zhang, 1990; Verhoef, 2017; Zhang and Zhang, 2001; 

Zhang and Zhang, 2003).  

Noise Costs. Environmental concerns have been increasingly highlighted in air 

transport, especially in densely populated metropolitan areas. Major airports that are 

adjacent to local communities have developed and managed specific measures, such as 

noise mitigation procedures, curfew, noise surcharges, and noise penalties, to mitigate 

environmental problems (Morrell & Lu, 2000). The aircraft noise surcharge has been 

increasingly used by major airports adjacent to population centers to encourage the 

operation of environmentally friendly aircraft and to cover the costs for implementing 

noise management programs. 

In 2014, Lu developed a systematic aircraft noise charge scheme, based on noise 

social costs, for application in Taiwan by attempting to put noise nuisance into monetary 

terms. He suggested that the total and average noise social cost per flight at one airport is 

different from another, depending mainly on the size of the noise contour and the number 

of residents affected. 
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The schemes for applying these charges vary significantly from country to 

country and even among airports within the same country. Noise-related costs generally 

have several charging mechanisms, based on the noise charge mechanisms chosen and 

the variables used in the noise charge formulas, as listed below: 

(1) percentages of surcharges/discounts based on landing fee; 

(2) landing fee according to aircraft acoustic category; 

(3) noise surcharges based on noise levels, and aircraft weight and noise 

surcharges based on aircraft acoustic categories; and 

(4) night surcharges. 

Passenger Access Costs. A large number of studies found accessibility to 

airports, including access time, costs, and convenience, to be one of the critical factors 

affecting the passengers’ choice of airport transport (Budd et al., 2011; Carstens, 2014; 

Pels et al., 2003; Tsamboulas & Nikoleris, 2008). Airport accessibility determines 

whether it is convenient for passengers to travel to the airport by road or railway. It can 

be measured by travel distance, time, or cost (Yang et al., 2016). It is becoming 

increasingly important to plan multiple modes of transportation connecting population 

centers to major airports to provide passengers more choices for their airport trips and 

reduce access costs and time (Akar, 2013).  

Operational Readiness and Airport Transfer (ORAT) Costs. The process of 

taking a newly built airport facility and turning it into a fully functioning airport requires 

careful and sensitive management (Martín & Voltes-Dorta, 2011a). An ORAT program is 

critical in the formulation of new processes, staff training, and testing of each new system 

and procedure, from passenger and baggage handling to security and airside operations. If 
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the existing airport is to be closed once the new airport opens, there will be 

decommissioning costs as well. This program requires thorough cost planning at the 

onset of the project. In this research, ORAT costs were expected to differentiate the costs 

between a new airport and an existing airport. Despite the importance of the ORAT costs 

in expanding airport capacity, literature that studies the cost functions of airport 

commissioning and de-commissioning is scarce. 

Integrated Cost Pattern with Time Series 

Cost functions for airport capacity expansion are closely related to its time frame, 

which is associated with long-lead project time and future traffic uncertainty. While 

delaying capital investments in airport infrastructure by multiple years can be 

worthwhile, the early investment in airport capacity can prevent airports from falling 

short of the demand. Several solutions can be considered to measure these costs and 

benefits before actual capital investment. 

Under a single airport condition, each aforementioned cost function is connected 

to traffic patterns and airport capacity. These cost functions have direct and indirect 

relationships primarily with airport capacity and traffic demand over time, which is 

illustrated in Figure 2. While capital costs and capacity expansion follow a step-curve, 

noise costs and passenger access costs are proportional to a non-linear passenger traffic 

growth line. Passenger traffic beyond the airport capacity incurs delay costs until 

additional capacity is added to the airport. 
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Figure 2 

Simplified Cost Pattern for Airport Capacity Expansion on Time Series 

 

Note. Bar graphs for cost functions and line graphs for airport capacity comparing to 

annual passenger traffics. No consideration for operational expenses and revenue. Non-

scale and schematic representation developed by the researcher based on Martín & 

Voltes-Dorta (2011a), Sun & Schonfeld (2015), and Xiao et al. (2013). 

 

Gaps in the Literature 

Through the literature review, the researcher found that existing studies on airport 

capacity planning and decision making have certain deficiencies:  

(1) Previous studies mostly emphasized the importance of airport planning in the 

development and capacity expansion of a single airport or specific components of the 

airport, such as the passenger terminal (Solak et al., 2009), runway system (De Neufville 

& Odoni, 2003), baggage reclaim (Young & Jeong, 2015) and boarding gate (Chen & 
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Schonfeld, 2013). Optimization models that considered multiple solutions to solve the 

capacity problem in metropolitan areas were not found.  

(2) Within an optimization approach, traffic demand uncertainty has not been 

adequately studied in the investigations of airport capacity planning and optimization 

models. The use of a simulation method is expected to develop a quantifiable 

optimization model and help solve this complex planning problem.  

(3) Existing studies regarding airport capacity expansion show limited cost 

profiles that are primarily related to airport authorities’ activities with operations and 

construction works. Costs to be borne by other stakeholders, such as airlines, passengers, 

and communities, were barely studied. In this optimization model, other cost functions 

such as noise, ORAT, and passenger access costs are included to address multiple 

stakeholders’ needs.  

(4) Correlations between demand changes, increases in infrastructure capacity, 

and the associated cost profile over time have not been discussed. For instance, existing 

studies did not adequately address the capacity constraints and associated congestion 

effects while considering non-linear cost functions over time. Both linear and non-linear 

methods were used in this study to explain these relationships and solve the associated 

problems. 

Theoretical Foundation for Modelling 

Optimization Method 

The optimization method primarily deals with the maximization or minimization 

of mathematical functions and has contributed to solving complex problems in many 

diverse fields, such as applied science, engineering, economics, transportation, logistics, 
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finance, and statistics, both practically and academically. Today, decision-making for 

complex systems is very complicated and beyond human capability.  

The aviation industry was one of the first domains to apply operations research 

and optimization methodology on a large scale (Cynthia & Lavanya, 2009). As early as 

the late 1950s, operations researchers were beginning to study how the developing fields 

of mathematical programming could be used to address many diverse and complicated 

problems faced by the aviation industry (Bazargan et al., 2013). Since then, many 

aviation-related issues have been the focus of active research.  

Historical optimization-based approaches involved a sequential process and the 

assumption that future operation conditions would be known and deterministic, which 

resulted in solutions that were generally sub-optimal and myopic (Barnhart & Marla, 

2009). For instance, the day-to-day operations of the aviation industry often face 

unexpected events such as crew disability, mechanical failure, and congestion at airports, 

which require alternative plans. To overcome this, researchers have taken to robust 

optimization approaches that reflect the stochastic nature of the aviation industry and 

developed extended optimization models that integrate many related factors and variables 

(Jiang & Barnhart, 2009). Table 4 shows recent aviation research that used optimization 

modeling to systematically address dynamic or complex problems of the industry.  
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Table 4 

Recent Aviation Research Using Optimization Modeling 

Author(s) Area of Study Year 
Guo, Y., Wood, J., Pan, W., & Meng, Q. Inventory optimization of 

airport perishable emergency 
supplies 

2018 

Ribeiro, N. A., Jacquillat, A., Antunes, A. P., 
Odoni, A. R., & Pita, J. P. 

An optimization approach for 
airport slot allocation 

2018 

Updegrove, J. A., Jafer, S., Jessica Updegrove, 
& Shafagh Jafer 

Optimization of air traffic 
control training 

2017 

Samà, M., D’Ariano, A., D’Ariano, P., & 
Pacciarelli, D. 

Scheduling models for optimal 
aircraft traffic control at busy 
airports 

2017 

Rosenow, J., Lindner, M., & Fricke, H.  Impact of climate costs on 
airline network and trajectory 
optimization 

2017 

Ren, H., Chen, X., & Chen, Y. Reliability-based aircraft 
maintenance optimization and 
applications 

2017 

Zhang, M., Yu, H., Yu, J., & Zhang, Y. Dispatching plan based on the 
route optimization model 

2016 

Lernbeiss, R. Arrival time optimization at 
hubs of network airlines 

2016 

Weiszer, M., Chen, J., & Locatelli, G. Integrated airport ground 
operations 

2015 

Zhivov, A., Schad, S., Herron, D., Fiedler, L., 
Liesen, R. J., Steitz, P., & Shepherd, N.  

Airport energy consumption 
optimization 

2014 

Dunbar, M., Froyland, G., & Wu, C. Aircraft routing, crew pairing, 
and re-timing. 

2014 

Yang, S. W., & Tong, M.  Optimization of airport capacity 
dynamic system 

2014 

Inoue, H., Kato, Y., & Sakagami, T. Airline network optimization 2013 
Raj, A. J., Nithyanandam, G. K., & Jayaraj, S. Airline revenue management 2012 
Zhang, M., Guo, S., & Li, T. The express aviation network 

hub optimization 
2011 

Zachary, D. S., Gervais, J., & Leopold, U. Reduction of aviation noise and 
emissions 

2010 

 

Airport Industry and Optimization Method. The air transport sector greatly 

relies on the available capacity of the airport infrastructure to accommodate future growth 

in traffic demand. Simultaneous operations of aircraft ground movement, as well as 

passenger and baggage flow in time-sensitive environments at airports, increase 
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operational complexity and safety concerns. Moreover, due to the complicated 

stakeholder structure and increasing non-aeronautical business activities, the theoretically 

available capacity of an airport cannot effectively be utilized (Sun & Schonfeld, 2015).  

Under this environment, decision-making for both capacity expansion and 

operation planning becomes incredibly complex. Therefore, optimization modeling can 

be a useful and powerful tool for preparing systematic plans in advance and enhancing 

operational efficiency at airports, while maintaining high-level safety procedures in all 

foreseeable conditions. 

Linear Programming. Linear programming (LP) is a mathematical technique 

designed to support the optimization method and help operation managers determine the 

best way to utilize limited resources to reach the desired objective of either maximizing 

the benefit or minimizing the costs (Tiwari & Kumar, 2018). There are different methods 

for solving LP problems, from the simplex method and Big M method to integer 

programming, non-linear programming, dynamic programming, stochastic programming, 

and goal programming (Rama et al., 2017).  

Integer linear programming (ILP) is a subset of the broader field of LP. Both 

methods seek optimal values either by minimizing or maximizing an objective function 

of a set of decision variables. The transportation problem is an excellent example of a real 

integer linear programming problem (Price & Carter, 2017). In LP, the decision variables 

are continuous, whereas, in ILP, the decision variables are restricted and can take only 

discrete values (Rama et al., 2017). In other words, if the decisions have to be discrete, 

such as the number of passengers at an airport, the ILP method needs to be used. On the 

other hand, if some other decisions are continuous, such as the water usage of a city, LP 
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modeling is suitable. In case there are multiple variables mixed between discrete and 

constant values, a mixed-integer linear programming (MILP) method can solve the 

problems. For instance, in a simple manufacturing problem, MILP can determine the 

number of check-in counters and staff at an airport that should serve the passengers for a 

certain period to maintain the promised level of service. If the MILP model needs to deal 

with both continuous and discrete variables, and nonlinear functions are embedded in the 

objective function, as in the study, then mixed-integer nonlinear programming (MINLP) 

can be used. 

Simulation Model 

Simulation modeling has been a widely used and popular method in operations 

research and management science to evaluate complex systems (García, 2017). The 

simulation method considers a series of assumptions to operate a specific system, which 

support the development of mathematical and logical relationships among its components 

to investigate various issues in the system. Simulation models are such widely used tools 

to understand the potential effects of changes in existing systems or the behavior of new 

systems. Using the simulation method has the following benefits (García, 2017): 

(1) New policies, rules, and procedures can be tested without changing the 

existing systems; hence, fewer resources and costs are required compared to the actual 

implementation. 

(2) A simulation model can investigate the behavior of non-existent or newly 

invented systems. 
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(3) The model can respond to what-if questions and deal with the uncertainty of 

the system’s environment. This is particularly useful for this study, as it can help explore 

different future operational scenarios. 

Simulation modeling has been actively used in the airline and airport industry in 

recent years (Bazargan et al., 2013). Future traffic demand forecasting cannot be accurate 

due to many compounding factors and complicated mechanisms that can generate 

uncertainty in the future demand forecast (Seger & Kisgyorgy, 2018). Therefore, it is 

risky to take a single measure of future traffic without consideration of the uncertainty. 

Moreover, under the current deregulated and highly competitive air transportation market 

conditions, airlines can and do make sudden changes to fares, flight schedules, and 

service networks (Sun & Schonfeld, 2015). For instance, the introduction of low fare 

services can very quickly generate a substantial increase in traffic at an airport; however, 

the traffic decreases when an airline collapses or abandons hub operations at the airport. 

Such radical changes affect both major and small airports significantly. As shown in 

Table 5, research using simulation modeling in the aviation domain encompasses a wide 

range of activities, including planning, engineering, procurement, day-to-day operations, 

and business management. 
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Table 5 

Recent Aviation Research Using Simulation Modeling 

Author(s) Area of Study Year 

He, C. & Wang, C. Airport access transport mode 2018 

Verma, A., Tahlyan, D., & Bhusari, S.  Passenger service time 2018 

Storer, L. N., Williams, P. D., & Joshi, M. M. Clear‐Air turbulence to climate change 2017 

Zheng, J., Qiao, H., & Wang, S. The effect of a carbon tax in the aviation 
industry  

2017 

Das, K. P., & Dey, A. K. Risk of aviation accidents 2016 

Hang Li Xiao-Bing Hu Xiaomei Guo Zhen Xu 
P.H.A.J.M.van Gelder. 

The vulnerability of civil aviation network 
system to spatially localized hazards 

2016 

Felix, M., & Reis, V.  Performance of check-in in airports 2016 

Mori, R. Airport ground and runway performance 2015 

Li, T. General aviation demand forecasting models 2014 

Khodayari, A., Olsen, S. C., & Wuebbles, D. J.  Aviation NO x -induced effects forecast 2014 

Sari, D., Ozkurt, N., Akdag, A., Kutukoglu, M., & 
Gurarslan, A.  

Level of aircraft noise 2014 

Zou, X., Cheng, P., & Cheng, N. Airport runway capacity estimation 2014 

Huszar, P., Teyssèdre, H., Michou, M., Voldoire, 
A., Olivié, D. J. L., Saint-Martin, D., Halenka, T. 

Future impact of aviation on climate 2013 

Ivannikova, V., & Kryshkevych, K.  Manpower planning of airlines 2013 

Boril, J., Jalovecky, R., & Ali, R. Human-machine interaction used in aviation 2012 

Ashford, N. J., Mumayiz, S., & Wright, P. H. Airport landside operation  2011 

Graf, M., & Kimms, A. Option-based revenue management of airline 
alliance 

2011 

Vera-Morales, M., & Hall, C. Aircraft performance and emission 2010 

Sudars, M. Aircraft guidance system 2009 

Foyle, D. C., & Hooey, B. L. Aviation human performance 2008 

Lee, L. H., Lee, C. U., & Tan, Y. P. Flight scheduling 2007 

 

The Airline Industry. In airlines that operate and manage immense resources and 

staff, simulation models must come out of a solid strategy that considers the complex 

business environment and incorporates their current operation status, potential changes, 
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and future directions. Simulation modeling can help make appropriate decisions in the 

following areas: 

(1) fare structure (discount, normal, or luxury) for meeting customer demands; 

(2) promotion and advertising budgets and the recruitment of salespeople; 

(3) the fleet size, acquisition plan, and setting of a maintenance policy; 

(4) fuel procurement planning, hedging, and budgeting; 

(5) route scheduling to serve customer demands;  

(6) a roster, training, and compensation system; and 

(7) currency plans, dividends, and cash management that increase profitability. 

The Airport Industry. Airports have faced multiple challenges with dynamic 

market environments of constant operational changes, such as demand fluctuation, 

deployment of new technology, and capacity expansion (An & Yang, 2013). In a 

competitive and dynamic environment, simulation tools can deal with the change in 

operational/physical conditions. Recently, advancements in computer technologies, 

software systems, and data processing techniques have strengthened simulation 

technologies by adding sophisticated data analytics and machine learning-based models. 

Irvine, Budd, & Pitfield (2015) used Monte Carlo simulation to quantify and 

compare various solutions to solve a capacity problem in the London metropolitan region 

with three key candidate solutions: a new international airport development in the 

Thames Estuary; additional runways at Heathrow, Gatwick, or Stansted; and improving 

operational procedures at Heathrow. The simulation results suggested that it will be 

financially and environmentally challenging to develop the mega-infrastructure in a 

remote area, even though developing the new airport would be the most effective way to 
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increase capacity on a large scale. New runways at Heathrow, Gatwick, and Stansted 

would provide more modest capacity increases in airport capacity in the London 

metropolitan area. 

Currently, many major airport operators have used simulation modeling to 

estimate the impact of potential changes with various passenger traffic, aircraft traffic, 

baggage movements, and other sub-processes. Quite a few simulation studies are found in 

airport master planning, airspace procedures, terminal passenger flow analysis, curbside 

capacity studies, and airport environmental impact analysis. 

Summary 

Optimizing airport capacity and network in a metropolitan area can be of critical 

importance to ensure sustainable development of the aviation industry. While literature is 

abundant on airport site selection, airport capacity expansion model, and airport network 

designs, literature that discusses airport expansion at a metropolitan level as part of the 

overall transportation system is relatively meager, particularly in the field of optimization 

(Santos & Antunes, 2014). Therefore, this study attempt to fill the gap by presenting an 

optimization model for the capacity planning of the airport system at a metropolitan level 

as an integrated decision-making framework. 

The MILP method has been widely used, demonstrating that it can provide an 

optimization model to address the complex environment of capacity planning, which 

engages multiple variables mixed between discrete and continuous values. Because the 

MILP model developed by this work aimed to handle optimization problems that include 

nonlinear functions, the MINLP was considered the most suitable method to solve the 

problem. Furthermore, to address the unpredictability of future traffic, different areas of 
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methodological improvement using simulation methods as well as varying scenarios of 

the market have been identified in the existing literature to deal with the limitations of 

forecasting. 

The review of the cost functions related to airport capacity expansion and 

congestion in metropolitan areas revealed several key aspects: (1) Airport capacities are 

limited mainly due to massive investment requirements and constraints of the land; (2) 

The type of capital expenditure and ORAT costs required to expand airport capacity can 

vary depending on the type of projects, such as developing a new airport or expanding 

existing airports; (3) Considerable time is needed to implement a capacity expansion 

project and increase the planned capacity; (4) The performance functions such as delay as 

a function of the facility utilization rate and associated delay costs are essentially 

nonlinear; and (5) Social and environmental costs can be mitigated by developing 

optimized airport networks under a multi-airport system. 

Therefore, this research addresses the following aspects of the problem: (1) 

Focusing on cost minimization, various solutions to expand airport capacity should be 

modeled to optimize airport capacity planning; (2) The nonlinear response of congestion 

to the system capacity utilization rate should be handled with effective methods; and (3) 

Special considerations for future traffic demand uncertainty must be included in an 

airport capacity planning model intended to be practically useful.  
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CHAPTER III 

METHODOLOGY 

Due to the complexity of the problems discussed and the uncertainty of future 

traffic demand, this research required a robust mathematical modeling process. A 

combination of the MINLP and the Monte Carlo analysis helped develop a useful 

optimization model that can identify the optimal solution for expanding airport capacity 

under uncertain market conditions. 

Research Method Selection 

To develop an optimization model for airport capacity expansion in metropolitan 

areas, the researcher used a quantitative research method in the form of an optimization 

model. This helped deal with the cost minimization of mathematical functions to expand 

the airport capacity and solve complex problems at the metropolitan level. The key to this 

optimized decision model was to transform both controllable inputs and uncontrollable 

inputs into projected results, which were one of the outcomes of this research. An LP 

method was used to find the optimal solution that can fulfill the intended objective, 

subject to the given constraints. 

As discussed in chapter two, LP is a mathematical technique designed to support 

the optimization method and help operation managers determine the best way to utilize 

available resources and achieve the required objective of either maximizing benefit or 

minimizing costs. As this research needed to handle multiple variables mixed between 

discrete and continuous values, some of which have nonlinear functions, the MINLP 

method can solve the problems. 
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After the development of the general MINLP model, a Monte Carlo method 

simulated potential values for the uncontrollable input variables. More specifically, the 

simulation analyzed a variety of combinations of these inputs over time, such as 

passenger traffic level and traffic growth. This simulation process yielded a range of 

possible outcomes, based on the specific traffic demand scenarios to define probability 

distribution. 

Population and Sample 

Metropolitan areas are the target population of this research. While there are 

many different ways to list global metropolitan areas, such as by population and urban 

area size, the air traffic profile of the cities was primarily used to determine the 

population for this study. Airbus, one of the major aircraft manufacturers defined an 

industrial term “Aviation Mega City” (2019), which serves over 10,000 daily long-haul 

passengers. These aviation mega-cities are expected to rise from 66 cities in 2018 to 83 

cities in 2028 and 95 cities in 2038. In 2018, the 66 aviation mega-cities handled 40% of 

all passengers, over 70% of long-haul passengers, and 35% of short-haul passengers. 

Many of these aviation megacities developed the need for more than one airport, and 

some have even three or four today (Airbus, 2019). 

These aviation mega-cities have been and will serve as centers for long-haul air 

travel. Although they have a potential for future growth as global hub airports, they are 

exposed to significant risks with major airlines’ decisions with their hubbing strategy and 

potential relocation to another airport. Because of their crucial roles as global aviation 

hubs and the constant expansion of airport capacity they require, the 66 aviation 

megacities shown in Table 6 comprise the population of this study.  
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Table 6 

Aviation Mega Cities in 2018 

City Name Region Name City Name Region Name 

Abu Dhabi Middle East Los Angeles North America 

Addis Ababa Africa Madrid Europe 

Amsterdam  Europe Manchester Europe 

Atlanta North America Manila Asia/Pacific 

Auckland Asia/Pacific Melbourne Asia/Pacific 

Bangkok Asia/Pacific Mexico City Latin America 

Barcelona Europe Miami North America 

Beijing Asia/Pacific Milan Europe 

Bogota Latin America Montreal North America 

Boston North America Moscow CIS 

Brisbane Asia/Pacific Mumbai Asia/Pacific 

Brussels Europe Munich Europe 

Buenos Aires Latin America New York City North America 

Chicago North America Osaka Asia/Pacific 

Dallas North America Panama Latin America 

Delhi Asia/Pacific Paris Europe 

Denpasar Asia/Pacific Perth Asia/Pacific 

Doha Middle East Reykjavik Europe 

Dubai Middle East Rome Europe 

Dublin Europe San Francisco North America 

Frankfurt am Main Europe Santiago Latin America 

Guangzhou Asia/Pacific Sao Paulo Latin America 

Hong Kong Asia/Pacific Seattle North America 

Honolulu North America Seoul Asia/Pacific 

Houston North America Shanghai Asia/Pacific 

Istanbul Middle East Singapore Asia/Pacific 

Jakarta Asia/Pacific Sydney Asia/Pacific 

Jeddah Middle East Taipei Asia/Pacific 

Johannesburg Africa Tokyo Asia/Pacific 

Kuala Lumpur Asia/Pacific Toronto North America 

Lima Latin America Vancouver North America 

Lisbon Europe Washington, D.C. North America 

London Europe Zurich Europe 

Note. Data retrieved from “2019-2038 GMF – Data spreadsheet” by Airbus, 2019, 

https://www.airbus.com/aircraft/market/global-market-forecast.html 
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Each aviation mega-city has unique characteristics and dynamics regarding air 

traffic demand, catchment, airport infrastructure capacity, and costs for airport capacity 

expansion. Therefore, representative sample cities were selected for case studies to 

collect the necessary data and establish practical considerations for the optimization 

model. Each case study helped to understand the significance and dynamics of different 

cost functions for the four proposed solutions, providing vital information to develop a 

deterministic cost optimization model. 

Sampling Frame 

For selecting representative samples, it was critical to identify all the relevant 

solutions that can resolve airport capacity problems. As illustrated in Figure 3, the 

capacity limitation issue can be alleviated using four solutions:  

Solution 1. Expanding the capacity of an existing airport. 

Solution 2. Developing a new airport and closing down the existing airport. 

Solution 3. Developing a new airport and pairing it with the existing airport.  

Solution 4. Modernizing or expanding secondary airports to collaborate with a 

primary airport. 

Expanding the capacity of existing airport facilities is the most common method 

used to accommodate increasing demands (Martín & Voltes-Dorta, 2011a). However, 

community agreements generally constrain this due to environmental issues such as noise 

and air pollution. Moreover, shortages of available land and problems with existing 

infrastructure have often made expansions difficult. Moreover, capacity expansion 

projects may disrupt the day-to-day operations of the airport, thus decreasing the airports’ 

throughput and productivity. 



47 

 

Figure 3 

Major Solutions for Airport Capacity Expansion in Metropolitan Regions 

 

Note. Conceptualized airport capacity expansion scenarios sketched by the researcher. 

The solution 1 and 2 are regarded as a single airport operation system, while the solution 

3 and 4 are under a multi-airport system. 

 

Developing a new airport adjacent to the population center and closing down the 

existing airport can be a feasible solution to supply additional capacity without interfering 

in the existing airport operations. However, building or relocating an airport on green-

field sites may not be a simple solution. Massive investment is required to acquire and 

prepare the new airport site preparation, and the development of access infrastructure for 

airport users may be cost prohibitive (OECD, 2014).  
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Another solution is to operate a multi-airport system (MAS) by integrating the 

existing airport with either a new or existing secondary airport that has idle capacity. 

Many metropolitan regions serving more than 10 million passengers per annum have 

several airports under the MAS framework (De Neufville, 1995). The typical MAS 

features a primary airport that serves as a gateway or international hub for the major 

network carriers, with secondary airports focusing on domestic, short-haul, and low-cost 

traffic (Martín & Voltes-Dorta, 2011a). Table 7 shows major cities from around the 

world to exemplify these four solutions. 

Four case studies were conducted to review the cost mechanism for expanding 

airport capacity in metropolitan areas:  

Case 1: Hong Kong – Hong Kong International Airport (Solution 1); 

Case 2: Munich – Munich Airport (Solution 2); 

Case 3: Seoul – Incheon and Gimpo airports (Solution 3); and 

Case 4: New York – JFK, Newark, and La Guardia airports (Solution 4). 

By analyzing and comparing the four cases and incorporating the outcomes into 

the optimization model, the outcomes from this study can be used to solve any type of 

airport capacity expansion problems. As each case city shows specific constraints and 

conditions to expand its airport capacity, the case studies helped construct a deterministic 

optimization model as well as expand the model into stochastic what-if models under 

various operational scenarios. Localized cost factors such as statutory costs and taxation 

were not considered because they can vary by country. None of these cases was 

preferable to the others because the nature and value of each case have been shaped by 
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the different strategic approaches and locational decisions made in response to various 

socio-economic and political situations. 

 

Table 7 

Example Cases of Airport Capacity Expansion in Major Cities 

Type 
City 

Americas Europe Asia / MENA 

Solution 1. Expansion of 
Existing Airport 

Atlanta, San Diego, 
Boston, Vancouver 

Madrid, Lisbon, 
Amsterdam, 
Zurich, Dublin 

Hong Kong, Jakarta, 
Hanoi, Delhi, Abu 
Dhabi 

Solution 2, Developing a 
New Airport and Closing 
an Existing Airport 

Denver, Mexico City Munich, Berlin, 
Istanbul 

Doha, Jeddah, Kuala 
Lumpur 

Solution 3. Developing a 
New Airport and 
Competition or 
Collaboration with an 
Existing Airport 

Houston, Washington, 
Montreal 

London, Paris, 
Milano 

Dubai, Seoul, 
Bangkok, Beijing, 
Shanghai, Ho Chi 
Minh, Osaka, Mumbai 

Solution 4. Primary-
Secondary Airports 
Competition or 
Collaboration 

New York, LA, San 
Francisco, Chicago, 
Dallas, Miami, 
Toronto 

Brussel, 
Frankfurt, 
Rome, 
Barcelona  

Manila, Tokyo, 
Singapore, Melbourne 

Note. Cities having passenger volumes greater than 20 million are selected. Data 

collected by the researcher in 2019. 

 

Design and Procedures 

The researcher assessed an optimal solution for metropolitan areas that may 

involve various solutions and be solved through complete enumeration. The research 

process, as shown in Figure 4, begins with an analysis of the airport cost functions for 
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expanding airport capacity and operating ground infrastructure under multiple, plausible 

airport capacity expansion solutions. 

The researcher used data collected from relevant case studies to formulate the 

decision variables, related parameters, and constraints and to develop a standard cost 

optimization MINLP model. A general model was further developed and validated by 

using the case of Sydney’s metropolitan region, which is introduced in this chapter. Then, 

LINGO 18.0 software was used to identify an optimal solution and required investment 

profile over the planning horizon.  

As a final step, What-if analyses were conducted to evaluate changes in the 

coefficients and their effects on the optimal solution. Three scenarios were considered to 

develop the what-if models, as below.  

(1) Annual growth rates of passenger traffic demand are randomly selected using 

a Monte Carlo simulation method;  

(2) A major airline changes with its business strategy and relocates its hub-base to 

another city – Permanent decrease of the traffic demand; and 

(3) A pandemic disease causes a strong downturn in passenger traffic demand and 

will show resilience after several years from the event – Temporal decrease of the traffic 

demand. 
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Figure 4 

MINLP and Simulation Model Flowchart 

 

 
 
Note. Research procedure for identifying an optimal solution to expand airport capacity 

in metropolitan areas. 

 

Data Sources 

As the outcomes of this study aimed to help establish a decision-making 

framework to expand airport capacity in metropolitan areas, both industrial practices and 

a theoretical foundation from existing academic research are required. Along with the 

literature’s established cost models for developing and operating airport infrastructure, 

recent cases of airport capacity expansion projects were reviewed and analyzed. Four 
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recent cases on airport capacity expansion policy-making and project delivery and the 

OECD’s study “Expanding airport capacity under constraints in large urban areas” 

(OECD, 2013) were used as the primary sources of reference. All this data is publicly 

available from each source’s respective websites. 

As discussed in the literature review, only a few studies were found to deal with 

the cost of airport capacity development and operations. The researcher referred to the 

mathematical formula from the cost function analysis conducted by Martín and Voltes-

Dorta (2011a), Sun and Schonfeld (2015), and Xiao et al. (2013) to build the cost model 

after verifying the data obtained from the case study in this step. Table 8 exhibits the cost 

elements that were identified from the literature review and selected four cases, which 

were used to build a cost optimization model. Detailed review of the case studies and cost 

function analysis are shown in Chapter 4. 

Ethical Considerations 

This research involved neither human subject testing nor data collection or 

experimentation involving human subjects. Therefore, it does not require Institutional 

Review Board (IRB) approval. The archival data from existing research and selected case 

projects were used as the primary method of data collection to develop the MINLP model 

and conduct the Monte Carlo simulation. 
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Table 8 

Airport Expansion Cost Functions for Each Solution 

Solutions Description Cost Elements 

I Expanding the existing airport  
 

 Operation and delay costs 
 Noise costs 
 Capital costs: Airport expansion costs 
 Access costs 

II Developing a new airport and 
closing the existing airport 

 Operation and delay costs 
 Capital costs 

o Land acquisition,  
o Airport development, and  
o Access infrastructure costs 

 ORAT costs 
 Access costs 
 Airport decommissioning costs 

III Developing a new airport and 
pairing it with the existing 
airport 

 Operation and delay costs 
 Noise costs 
 ORAT costs 
 Capital costs 

o Land acquisition,  
o Airport expansion, and 
o Access infrastructure development 

 Access cost 
IV Primary – Secondary airport 

collaboration 
 Operation and delay costs 
 Noise costs 
 ORAT costs 
 Capital costs 

o Airport expansion, and 
o Access infrastructure development 

 Access costs 

 
 
Model Development and Constructs 

Mathematical Optimization Model Development 

After the required data were collected, the cost functions and input variables were 

identified to define the objective function. In this stage, it should be clearly defined how 

the model behaves and what are the basic requirements and information necessary to 

develop the model in the next step.  
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A mathematical MINLP model was constructed considering the non-linear nature 

of air traffic growth and traffic-associated costs at a macro-planning level. It is essential 

as well as challenging to plan the future airport capacity to meet the long-term traffic 

demand in a changing environment with various uncertainties (Sun & Schonfeld, 2015). 

The demand fluctuations under deregulated market conditions add another layer of 

complexity to the decision-making process. Thus, a deterministic optimization model was 

developed and then expanded to a stochastic optimization model to address the concerns 

with future traffic demand uncertainty. 

Sydney as a Case Metropolitan Region 

The applicability of the proposed model was tested using a case metropolitan 

region. In this study, the Sydney metropolitan area was taken as a case region to validate 

the mathematical optimization model. 

Current Operations. Sydney has reached a stage where no spare capacity is left. 

Kingsford Smith Airport (KSA), as a primary gateway to Australia, has begun to 

experience excessive demand. Passenger traffic demand has been anticipated to rise at 

about 3.4% per annum, and the aircraft movement growth would be at a rate of 1.2% 

(Joint Study, 2012). KSA is sensitive to weather conditions. Storms and strong winds 

often prevent KSA from full capacity operations. Without any disruptive event like the 

COVID-19 pandemic, all slots between 6 AM and 12 PM and between 4 PM and 7 PM 

on weekdays were expected to be reserved unless a capacity increase is made in a timely 

manner (Joint Study, 2012). By 2027, no more slots would be available for new flights 

(OECD, 2014). Before the Covid-19 pandemic, it was challenging for airlines to secure 

additional slots at popular time windows, even when weather conditions are benign. 
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Delay Level and Limitation at KSA. In 2014, arrival delays were about six 

minutes and departure delays were about twelve minutes on average during peak periods 

(OECD, 2014). As another constraint, flight procedures at KSA need to comply with an 

operational plan that can distribute aircraft noise across different suburbs.  

Currently, KSA has an operational limit of flight at 80 movements per hour. 

However, KSA can deal with a maximum of 87 movements under good weather 

conditions (Joint Study, 2012). Because the airport site is relatively small, there are 

currently only a few ways in which the airport can expand its capacity to tackle the 

challenges.  

Other Existing Airports in Sydney. Two existing airport sites have the potential 

to provide Sydney with additional airport capacity: Bankstown Airport, which is the main 

general aviation airport, and Richmond Air Force Base. Bankstown Airport is located in 

the west part of Sydney and can handle regional aircraft as it has a small and constrained 

site. Infrastructure modernization and better connectivity to Sydney Airport for transit 

passengers are the keys to make this option viable. Another option is to transform the 

Richmond Air Force Base into a commercial airport by developing a long runway, which 

enable it to accommodate commercial flights. However, transforming the airbase into a 

commercial airport and improving connectivity to population centers will require a 

massive investment. 

New Airport Opportunity. Western Sydney Airport (WSA) has been 

investigated by the Australian government for several decades as an attractive option for 

the government’s urban development plans in the western part of the Sydney region. As 

substantively expanding KSA would be complicated and replacing it completely would 
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be difficult, WSA can be a feasible solution for the sustainable growth of Sydney’s 

aviation market in the long term. A site was selected near WSA at Badgery’s Creek area, 

which is located about 45 km from the CBD, to develop a Greenfield airport. Currently, 

the design and construction of Western Sydney Airport are underway, and the 

government set a goal to inaugurate the new airport in 2026. Figure 5 depicts the location 

of the existing airports and the proposed new airport. 

 

Figure 5 

Airports and Aerodromes in the Sydney Metropolitan Region 

 

Note. Geographical map to display the locations of airports and population centers in the 

Sydney metropolitan area. Modified by the researcher using the information from 

“Western Sydney Airport Environmental Impact Study” by Western Sydney Airport Co., 

2014, https://www.westernsydneyairport.gov.au/sites/default/files/WSA-EIS-Volume-1-

Chapter-7-Airspace-architecture.pdf. 
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Referring to this example case, a deterministic airport capacity expansion model 

was developed while considering the four plausible solutions, as shown in Figure 3. Four 

airports have the potential to develop future airport networks in the Sydney metropolitan 

area: one existing primary airport, two potential secondary airports, and one potential 

new airport to serve nine population centers. The design of the airport network was 

modeled in the form of a mixed-integer non-linear programming (MINLP) problem to 

determine the optimal solution. This general model served to formulate the costs of 

expanding the capacity of the future airport network in the Sydney region.  

Variables, Scales, and Parameters 

A decision variable for this study is an optimal solutions of airport capacity 

expansion and each airport’s ultimate capacity within the metropolitan area. In the 

MINLP model, a binary variable is used to indicate the operational status of each airport, 

showing whether it is to be operational or not at the specific time. Table 9 shows the list 

of variables that were used in the optimization model. In this model, using given 

constraints and operational conditions on existing airport and population centers as input 

variables, required cost information was produced as output variables. Two decision 

variables were the number of airports in the metropolitan area and target capacity of each 

airport as identified as an optimal solution. 
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Table 9 

Input, Output, and Decision Variables  

Variable Type Description 

Initial Airport Capacity (IAC) 

Maximum Airport Capacity (MAC) 

Distance (DAP) 

Passenger Demand (PXD) 

Demand Population Center (PCD) 

Capital Costs (CC) 

Fixed Capital Costs (FCC) 

Land Acquisition Costs (LAC) 

Access Infrastructure Costs (AIC) 

Utility Development Costs (UDC) 

Variation Capital Costs (VCC) 

Airfield Costs (AFC) 

Terminal and Building Costs (TBC) 

Navigational Aid Costs (NAC) 

Airport System Costs (ASC) 

Operation Costs (OPC) 

Delay Costs (DG) 

Noise Costs (NC) 

Access Costs (AC) 

Unit Access Cost (UAC) 

ORAT Costs (ORC) 

Commissioning Cost (CMC) 

De-commissioning Cost (DCC) 

Relocation Cost (RLC) 

Training Cost (TRC) 

 

Supplied Airport Capacity (SAC) 

Number of airports 

Target Airport Capacity (TAC) 

Input 

Input 

Input 

Input 

Input 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

Output 

 

Output 

Decision 

Decision 

Existing airports’ base annual passenger capacity 

Airport’s maximum annual passenger capacity 

Distance between airports and population centers 

Annual passenger demand at a specific time 

Annual passenger demand at the population center 

Costs to expand the airport capacity 

Fixed capital costs to expand the airport capacity 

Fixed capital costs to purchase the required airport land 

Fixed capital costs to build access infrastructure (Road/Rail) 

Fixed capital costs to connect utilities (hydraulic/power/comm) 

Variable capital costs to expand the airport capacity 

Variable capital costs to build airfield facilities 

Variable capital costs to build terminals and vertical assets 

Variable capital costs to install NAVAIDs facilities 

Variable capital costs to develop airport special systems 

Costs to maintain facilities and provide required services 

Costs occurred from operational delay and congestion 

Costs to address aircraft noise pollution 

Costs for passengers, visitors, and staff to access airports 

Individual Unit Cost to access airports 

Costs for operational readiness and airport transfer 

Costs for commissioning new airports / new facilities 

Costs for de-commissioning airport/facilities to be closed 

Costs to relocate resources to new airport/facilities 

Costs to provide staff with required familiarization training 

for new airport/facilities 

The airport’s supplied passenger capacity at a specific time 

The number of airports serving a metropolitan area 

Passenger capacity of each airport at the end of the period 

Note. These variables were used to develop an MINLP optimization model. The model also 

generated a separate variable table to develop the Monte Carlo trials. The objective function and 

deterministic model section of this chapter contain a detailed discussion of these variables. 
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Parameters: 

i = A component airport in a metropolitan area, I={1, 2, …, a}, i ∈ I 

j = A component population center in a metropolitan area, J={1, 2, …, p}, j ∈ J 

y = Period within the planning horizon, Y={0, 1, 2, …, t}, y ∈ Y 

k = Binary variable, whether airport i provide services in period y, k={0 or 1}.  

δy = Discount coefficient for the year y, δ = 1/(1+discount rate) 

 

Cost Functions  

The objective of this MINLP model is to identify an optimal solution to minimize 

the total cost for airport capacity expansion to meet the target traffic demand. The total 

cost includes capital costs (CC), operation costs (OPC), delay costs (DC), noise costs 

(NC), passenger access costs (AC), and ORAT costs (ORC). By the inclusion of the six 

cost functions, this study can provide an optimization model that can address multiple 

stakeholders’ needs and concerns. For instance, including delay costs and ORAT costs 

can help to expand the model’s interest and benefits to the areas of airlines and airport 

tenants. 

Capital Cost. Capital costs include various costs, as described in chapter two. 

According to Sun and Schonfeld (2015), it can be generally divided into fixed costs and 

variable costs. While the fixed costs are incurred once a project is initiated and 

independent of the capacity increment size, the variable costs depend on the planned 

capacity increment. The capital costs of Airport i in period y can be written as: 

 

CCiy = FCCiy + VCCiy       (1) 

FCCiy = LACiy + AICiy + UDCiy      (1.1) 
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VCCiy = AFCiy + TBCiy + NACiy + ASCiy     (1.2) 

 

While the fixed capital costs include land acquisition, access infrastructure, and 

utility installation, variable capital costs are incurred to develop in-site airport 

infrastructure and facilities, such as airfields, passenger terminals, cargo facilities, 

navigational aids, and special airport systems. The fixed capital costs are to be considered 

only for developing a new airport in the metropolitan area.  

Operation Cost. Airport operation costs are primarily spent to maintain and 

operate airport infrastructure and facilities. Therefore, they are highly related to the 

supplied airport capacity. In this research, in order to avoid unnecessary addition of the 

capacities to airports compared to the demand requirement, operating costs are 

considered. According to Sun and Schonfeld (2015), operating costs of component i in 

period y can be estimated by the unit operating cost (UOPC) multiplied by the supplied 

capacity (SAC), as shown below:  

 

OPCiy = UOPCiy × SACiy       (2) 

 

Delay Cost. Airports experience increasingly larger delays when demands keep 

growing, but the capacity is fixed, causing high costs to aviation stakeholders, especially 

when the demand exceeds the capacity limit of the airport. While the delay costs increase 

in proportion to traffic demand growth, the curve is nonlinear in general. According to 

Sun and Schonfeld (2014), delay costs are airport traffic demands multiplied by the delay 

level (DL) as a function of the capacity utilization rate, which can be written as follows: 
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DCiy = DLiy × PXDiy        (3) 

 

In different practical settings, the delay function can assume various mathematical 

forms (Sun & Schonfeld, 2014). In airports, because various facilities have different 

operating characteristics, either simulation or benchmarking is the dominant method for 

estimating the delay cost. In this study, a delay function is denoted as the following 

exponential form: 

 

DCiy = 𝐷    × PXDiy      (4) 

where: 

D0 is a delay parameter, PXDiy and SACiy are passenger demand and 

supplied airport capacity of Airport i in period y. 

Noise Cost. By using the hedonic method proposed by Morrell and Lu (2000), the 

annual total noise social cost of airport i in period y can be derived using the following 

formula: 

 

NCi = INDI × Pi × (Nai – N0) × Hi       (5) 

 

Here, INDI is a Noise Depreciation Index (NDI), and Pi is the annual average house 

rent adjacent to the airport i. Hence, INDI×Pi can present the annual noise social cost per 

residence per dB(A). The noise level above the ambient level is shown as (Nai - N0), 

where Nai is the average noise level for the ath section of the noise contour, and N0 is the 
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ambient noise level. Then, the outcome is multiplied by Hi, the number of households 

within the affected noise area. 

Due to the unknown factors of the noise-affected zone and contour within each 

metropolitan area, localized noise studies are necessary to build an optimization model 

based on the specific noise conditions. In a general term, the costs to provide noise 

abatement measures to mitigate the negative impact of aircraft noise on the affected 

households can be denoted below. 

 

NCiy = Average cost to retrofit noise-affected houses (RHC)× Hiy  (6) 

  

ORAT Cost. ORAT costs are a one-off cost element that occurs for airport 

capacity projects while commissioning new airport facilities or expanding existing 

facilities. The costs for decommissioning existing airport facilities can also be considered 

as ORAT costs. The costs for shifting resources and staff between the new and existing 

airports are also included when the capacity of airports is to be increased. ORAT costs 

can be written as:  

 

ORCiy = CMCiy + DCCiy + RLCiy + TRCiy     (7) 

 

Access Cost. Access costs are directly proportional to the passenger demand 

between an airport and population centers. Therefore, the access costs between Airport i 

and Population Center j in period y can be written as below. A parameter R0 is a 

meeter/greeter/staff ratio against the number of passengers: 
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ACjy = DAPjy × PXDjy × (1+R0)× UAC     (8) 

 

Present Value. Airport capacity planning usually involves a long-term period 

analysis. Due to the long-term period of planning, the researcher considered the value of 

all future cash flows over the entire planning period of an investment discounted to the 

present: 

 

 PV = Ct/(1+ρ)t        (9) 

 

where: 

 Ct = cost at time t. 

 ρ = discount rate. 

 t = years over which the future costs are expected to occur. 

 

Data Analysis Approach 

Assumptions 

The problem of expanding airport capacity and appropriately distributing air 

traffic is quite complicated. Therefore, other than the five key assumptions in chapter 

one, some simplifying assumptions were made in modeling to construct the optimization 

model, as listed below. 

(1) As the economic life of airport infrastructure generally exceeds 50 years’ 

planning horizon of this study, replacement or decommissioning costs were considered 

only for the case of downsizing or closure of an existing airport, which is presented as the 

Solution 2 in Chapter 3. 
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(2) Air traffic was not segregated by traffic type such as international vs. domestic 

or long-haul vs. short-haul. Each airport is expected to be capable to accommodate all 

types of air traffic demand.  

(3) For the general model, the passenger traffic and population of each population 

center constantly increase at a fixed annual rate throughout the timeframe of the study. 

This assumption was removed when a stochastic model is developed using a Monte Carlo 

method. 

(4) Delay costs exponentially increase until additional capacity is provided to the 

airport through capacity expansion. 

(5) Operating costs of each airport are assumed to be fixed at the rate per supplied 

airport capacity, but they can vary depending on the airport type. The operating costs 

consider both operation and maintenance activities associated with the day-to-day 

operation of the airport. 

(6) This model evaluated a time value of money when calculating capital costs 

and other non-capital costs. Therefore, cost variables were discounted or inflated due to 

the time factor. 

(7) A noise cost is incurred only after air traffic is increased at an airport. 

(8) The passenger access cost is formulated by multiplying (i) the distance 

between airports and the population centers, (ii) the surface traffic demand from each 

population center, and (iii) the ground access costs per passenger per mile. 

(9) Internal funding sources finance all required costs; thus, it does incur 

additional financing costs apart from the financial discount rate. 

(10) The maximum number of airports in this metropolitan area was not limited. 
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(11) The maximum fiscal budget for capital costs was not limited. 

(12) Whereas it takes multiple years to implement an airport capacity expansion 

project, in this study, the extra capacity is assumed to be added to the airport without a 

lead time to complete the capacity expansion project. 

(13) In this model, any alternative mode of transportation such as high-speed rail 

connecting to other cities which may absorb the air transport demand or a new type of 

aircraft technology such as vertical take-off and landing aircraft were not considered.  

Type of Constraints 

In this optimization model, there are four major types of constraints. 

(1) Airport capacity of the metropolitan area: The ultimate capacity of each 

airport in metropolitan areas is to be limited to a certain passenger volume per annum.  

(2) Demand vs. Capacity: Airports cannot handle passenger traffic demand 

beyond the supplied capacity of the airports. 

(3) Integer nature of variables: Passenger demand and capacity are treated as 

integer variables. 

(4) Airport capacity: While the traffic demand of airports may decrease, airport 

capacity cannot be reduced. 

Model Validity 

It is important to validate the input data, the performance of the optimization 

model, and the efficiency of the proposed algorithms. It is also necessary to validate 

whether the model outcomes appropriately vary when coupled with the proposed key 

constraints. First, to validate the integrity of the mathematical computations proposed in 

the model, the model formula and cost input data were reviewed before executing the 
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model for the optimal solution analysis. Each computation and variable in the model were 

manually examined to ensure that it produces an expected result when executed. 

Second, to validate the proposed optimization model, the researcher took the 

example of the Sydney metropolitan area to validate the model outcomes. The results 

were expected to confirm whether the proposed solution for airport capacity expansion 

can considerably minimize the total cost requirements. Additionally, a computational 

study was conducted to test the proposed model by adopting different constraint values: 

maximum budget, target airport capacity, number of airports in the metropolitan area, and 

elimination of noise and delay costs from the model. 

Model Reliability 

To ensure the optimization model yields feasible optimal solutions from expanded 

applications, the researcher developed various experimental models using different values 

for three independent variables: annual discount rate, operation unit cost, and passenger 

access unit cost. Because each experiment model used different assumptions, statistical 

analysis to compare the outputs from the different models was not required. 

Data Analysis Process 

The MINLP model can be solved using multiple methods. However, due to a 

large number of variables in this optimization model and the non-linear nature of the air 

traffic growth pattern, solving it either graphically or algebraically is almost impossible. 

To handle the complex algorithm and mathematical model, LINGO 18.0 was used to 

identify the optimal solution.  

This step found an optimal solution to expand airport capacity at a minimum cost 

for the metropolitan area. The limitations of the traditional deterministic approach, which 
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may result in the inability to guarantee the optimality of a solution, can be overcome by 

using simulation methods to solve stochastic optimization problems (Anani et al., 2017). 

Thus, the researcher attempted to analyze multiple plausible what-if demand patterns 

focused on future traffic demand due to uncertainties in social, economic, and 

demographic changes. The input parameters, such as the passenger traffic demand and 

distribution of catchment, are discrete stochastic variables. The optimization model was 

therefore simulated as a stochastic discrete event model with stochastic input variables 

using a Monte Carlo method that characterized the uncertainty inherent in the aviation 

system.  

The what-if model formulated using a Monte Carlo simulation framework 

randomly selected annual growth rates for the passenger traffic and catchment 

distribution within the metropolitan area to provide values for the annual traffic demand. 

Normal probability distributions were used to generate the what-if demand patterns, 

which addressed the aforementioned uncontrollable input variables and the uncertainty in 

the future air traffic demand. In this final step, Lingo software’s stochastic programming 

functions were used to analyze the impact of the changes in traffic demand and catchment 

population (input variable) on the proposed solution (output variable). 

In this study, the term what-if modeling refers to multi-stage stochastic modeling, 

and the term stage means time series, which is an important concept considering the 

uncertain future traffic demand. Multi-stage decision-making with uncertainty usually 

involves a complex process to find an optimal solution for a long-time horizon. In a 

simple form, the multi-stage decision modeling for a T+1 stage can follow an alternating 

sequence of uncontrollable events and decisions, as illustrated in Figure 6 below. In 
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period 1, the same parameters and input variables were used as the previously defined 

deterministic model. Then, each decision at the end of each time series leads to an 

uninterrupted sequence of following a decision sequence until the next uncontrollable 

event occurs. Then, each random observation is linked to an uninterrupted occurrence of 

the random event until the next decision point. 

 

Figure 6 

Multi-stage What-if Modelling Scheme 

 

  

In this stochastic model, random variables that have a continuous event 

probability make it computationally impossible to handle the infinite number of possible 

outcomes. A Monte Carlo sampling method can approximate the challenging problem by 

taking a finite scenario approach. In a model with a single stochastic parameter that 

shows a continuous distribution, infinite event probability can be discretized by 

producing certain sample points and constructing a finite optimization model (Lindo 

Decision for Airport 
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Decision for 
Airport I at the 
end of Period T 

Period T-1 Period T Period T+1

Event ꞷ or  
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System, 2020). Using this approach, the multi-stage stochastic program can be expanded 

using the simplistic form below with the pre-defined deterministic model. 

 

Minimize: 

ci0xi0 + E1ci1xi1 + E2ci2xi2 … + Etcitxit      (10) 

 

where:  

Et = the finite random outcomes from an event at time t. 

 cit = the coefficient at Airport i at time t. 

 xit = the cost at Airport i at time t. 

 

Then, Step 6 of the model procedure which was shown in Figure 4 can be further 

detailed, as shown in Figure 7. 

The models also executed various sensitivity analyses to see how certain 

constraints on the input variables, such as the available budget, maximum number of 

airports, and maximum future capacity, affect the pre-defined objective function and 

optimal solution. Moreover, by changing the objective function from cost minimization 

to other considerable functions, such as maximizing productivity or passenger benefits, 

this model was tested to see if it can accommodate other optimization functions. 
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Figure 7 

Stochastic Model Development Steps 

 

Note. Schematic sequence of developing a stochastic model. Adapted from “Setting up 

SP Models,” by Lindo System Inc., 2018, Lingo 18 User Manual, p. 740. 

 

Summary 

MINLP and a Monte Carlo analysis are combined to develop an effective decision 

model with an optimization approach, focusing on solving airport capacity expansion 

problems at the metropolitan level. This mathematical optimization model aimed to 

identify an optimal solution for expanding airport capacity under uncertain market 

conditions. The air traffic and airport capacity of the Sydney region was reviewed to 

validate the general optimization model. 

Step 1. Defining a general model

•Build a general model with a deterministic approach. The 
traffic demand is included in the general model as if they 
were deterministic.

Step 2. Identifying uncontrollable variable(s)

•Each uncoltrollable variable is to be identified at the 
modelling stage, which was known as controllable 
variable(s).

Step 3. Identifying initial decision and recourse 
variables

•Each initial decision variable and recourse variable are to 
be identified, which will be treated as controllable 
variables.

Step 4. Defining distribution patterns

•The probability distributions of the uncontrollable 
variable(s) are to be defined.
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The optimal solution for metropolitan areas involves four plausible solutions—

expanding an existing airport, developing a new airport and closing down the existing 

airport, developing a new airport and co-operating with the existing airport, and pairing 

the existing airport and the secondary airport under the MAS operation environment—

and can be solved through complete enumeration. The research process began with an 

analysis of the airport cost functions for expanding airport capacity and operating ground 

infrastructure. Then, the researcher used data collected from relevant case studies to 

formulate the required decision variables, modeling parameters, and constraints. A 

deterministic cost optimization MINLP model was then developed, which allowed the 

researcher to identify an optimal solution. At the end of the research, the researcher 

conducted what-if analyses under various demand scenarios to assess the impact of 

uncertain future traffic demand on the proposed optimal model.  
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CHAPTER IV 

RESULTS 

The purpose of the study was to develop an optimization model for airport 

capacity development in metropolitan areas with a focus on cost minimization under an 

uncertain air traffic demand pattern. To solve this problem, the optimization method was 

used to build a base decision model with a deterministic approach. This deterministic 

model was validated by using the case of the Sydney metropolitan area, and its reliability 

was tested by changing the values of various input variables. Then, this deterministic 

optimization model was expanded to a stochastic model using the Monte Carlo 

simulation method.  

This chapter analyzes and compares the results of the various deterministic and 

stochastic model outcomes. A total of 12 MINLP optimization models were developed to 

achieve the goal of this study, as shown in Table 10. While the General Model and 

Stochastic Model present mathematical models that can be used by any airports or 

metropolitan areas, these two mathematical models cannot present scalable model 

outcomes without specific model input parameters. Therefore, to overcome this issue, 

using the case of the Sydney metropolitan area, Sydney Model, Experiment 1-3 Models, 

and What-if 1-3 Models present scalable model outcomes and compare differences 

between the deterministic and stochastic models. 
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Table 10 

MINLP Optimization Models Overview 

Model Model ID Description 

Deterministic General Model General A mathematical model to build a general model 
structure with a deterministic approach. Traffic 
growth rate as a controllable variable. 

Deterministic Sydney Model Sydney  Scalable model to validate the General model by 
using Sydney Case. 

Sydney Experiment Model 1-1 Experiment 1-1 Experimental model to test the reliability of the 
General Model by differentiating a financial 
discount rate. Sydney Experiment Model 1-2 Experiment 1-2 

Sydney Experiment Model 2-1 Experiment 2-1 Experimental model to test the reliability of the 
General Model by differentiating operation 
costs. Sydney Experiment Model 2-2 Experiment 2-2 

Sydney Experiment Model 3-1 Experiment 3-1 Experimental model to test the reliability of the 
General Model by differentiating passenger 
access costs. Sydney Experiment Model 3-2 Experiment 3-2 

Stochastic General Model Stochastic A mathematical model to expand a deterministic 
model to a stochastic model. The traffic growth 
rate becomes an uncontrollable variable.  

Sydney What-if Model 1 What-if 1 What-if scenario model by using random annual 
growth rates between 0%-5.8%. 

Sydney What-if Model 2 What-if 2 What-if scenario model by using annual growth 
rates with a normal distribution pattern without 
an upper or lower limit of changes. 

Sydney What-if Model 3 What-if 3 What-if scenario model reflecting the recent 
COVID-19 pandemic effect. 

 

Deterministic MINLP Model 

General Model 

As discussed in the previous chapters, this cost optimization model has a focus on 

six cost elements that are highly related to airport capacity problems: capital cost, 

operation cost, delay cost, noise cost, passenger access cost, and ORAT cost. Using a 

deterministic approach, an objective function of the optimization model is to minimize 
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overall costs over the timeline of the model and to find the optimal solution for airport 

capacity expansion. Also, this optimization model has a strong focus to decide a timeline 

of airport expansion in the region to support a long-term traffic demand. The objective 

function of the model and the decision variable of the target capacity of each airport can 

be written as Equation 11.  

 

min δy×∑∑ (kiy×CCiy + kiy×OPCiy + kiy×DCiy + kiy×NCiy + kiy×ORCiy)  

+ δy ∑∑∑ (kiy×ACijy)        (11) 

where: 

y = period within the planning time horizon. 

i = existing or potential airports within the metropolitan area. 

j = population centers within the metropolitan area. 

δ = discount coefficient. 

k = Binary variable, whether airport i provide services in period y, k={0 or 1}.  

CC = capital costs. 

OPC = operation cost. 

DC = delay cost. 

NC = noise cost. 

ORC = ORAT cost. 

AC = access cost. 

 

 y   i 

 y   i   j 
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The six cost functions are described in detail in Chapter 3 as Equations 1, 2, 4, 6, 

7, and 8, and they are summarized below. δ is the discount rate as described in (9) to 

calculate a present value (PV) of cost C in the future at time t. 

 

CCiy = FCCiy + VCCiy       (1) 

FCCiy = LACiy + AICiy + UDCiy      (1.1) 

VCCiy = AFCiy + TBCiy + NACiy + ASCiy     (1.2) 

OPCiy = UOPCiy × SACiy       (2) 

DCiy = 𝐷    × PXDiy      (4) 

NCiy = Average cost to retrofit noise-affected houses (RHC)× Hiy  (6) 

ORCiy = CMCiy + DCCiy + RLCiy + TRCiy     (7) 

ACjy = DAPjy × PXDjy × (1+R0)× UAC     (8) 

where: 

FCC = Fixed Capital Cost. 

VCC = Variable Capital Cost. 

LAC = Land Acquisition Cost. 

AIC = Access Infrastructure Development Cost. 

UDC = Utility Development Cost. 

AFC = Airfield Cost. 

TBC = Terminal and Building Cost. 

NAC = Navigational Aids System Cost. 

ASC = Airport Special System Cost. 

UOPC = Unit Operation Cost per Passenger. 
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SAC = Supplied Airport Capacity. 

PXD = Passenger Demand. 

H = The number of houses that are affected by the airport operations. 

CMC = Commissioning Cost. 

DCC = De-commissioning Cost. 

RLC = Relocation Cost. 

TRC = Training Cost. 

DAP = Distance between Airport and Population Center. 

UAC = Unit Access Cost. 

R0 = Meeter/Greeter/Staff ratio against Passenger Demand. 

 

This General Model denotes the objective function to minimize six key cost 

functions for the expansion of airport capacity in the metropolitan areas to support a long-

term traffic demand. Also, the outcome of the model can be used as a decision-making 

support tool to determine when and which candidate airport will be developed or 

expanded to handle the exceeding traffic beyond the existing airport capacity. From this 

model formulation, the target capacity of each airport (TAC) that is the decision variable 

of the optimization model can be written as Equation 12.  

 

TACi = IACi +∑SACiy       (12) 

where: 

TAC = Target Airport Capacity. 

IAC = Initial Airport Capacity. 

y 
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SAC = Supplied Airport Capacity. 

y = period within the planning time horizon. 

i = existing or potential airports within the metropolitan area. 

 

Since demand and capacity have a strong correlation and the number of passenger 

traffic is finite, we can write the following constraints: 

 

 SAC ≥ PXD         (13.1) 

 TAC ≤ MAC         (13.2) 

 PXD, IAC, SAC, TAC, MAC ≥ 0 and integer     (13.3) 

 kiy = 1 if Airport i is operating in period y, otherwise 0   (13.4) 

 

Here, SAC and MAC denote supplied airport capacity and maximum airport 

capacity respectively, and PXD is passenger demand. In this model, DC shows nonlinear 

patterns as per the proposed formula defined in Chapter 3. A discount rate and passenger 

traffic demand also add nonlinear attributes to the optimization model. Overall, this 

optimization model needed to solve airport capacity problems in consideration of both 

continuous and discrete variables, and nonlinear functions in the objective function and 

the constraints. Therefore, mixed-integer nonlinear programming (MINLP) was identified 

to solve this airport capacity problem. 

Model Validation: Sydney Model 

 Model Description. To validate the General Model and to produce scalable 

research outcomes, a Sydney Model was developed by using a case of the Sydney 
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metropolitan area. The Sydney metropolitan area was selected to validate the General 

Model because the Sydney region can provide all four possible airport capacity expansion 

solutions as defined in Table 7: Solution 1. Expand existing commercial airport(s); 

Solution 2, Develop new airport(s) and close existing airport(s); Solution 3. Develop new 

airport(s) to handle exceeding traffic beyond the capacity of the existing airport(s); and 

Solution 4. Transform non-commercial airport(s) into commercial airport(s) to resolve 

the over-capacity problem in the metropolitan area.  

The general situation of the Sydney region’s airport capacity problems in 2011 

and potential solutions are described in Chapter 2. Specific conditions to develop the 

deterministic case MINLP model are to be considered as shown in Table 11, Table 12, 

and Table 13, which have been extracted from two major data sources: Sydney Airport 

Master Plan 2033 (Sydney Airport Corporation Limited, 2013) and the Joint Study 

conducted by Australian and NSW Government (2012) to assess the requirement for 

additional aviation capacity for the Sydney metropolitan region. Both studies show data 

collected from various research in 2011. 

Key Input Parameters. In this study, the Sydney Model used the input 

parameters based on the information presented in the aforementioned two existing 

studies, Sydney Airport Master Plan (2013) and the Joint Study (2012), and was 

compared to the stochastic model which incorporates various demand forecasts scenarios. 

This comparison provides a meaningful research outcome to understand the impact of the 

demand uncertainty on the proposed optimization model and highlight the importance of 

the stochastic model over the deterministic model.  
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Table 11 

Key Parameters for Sydney Model  

Timeline 50 years: Year 0 – Year 50 

Sydney Region 
Passenger Demand 
Forecasta 

Base year for Year 0: 37.0 MAP 
Forecast for Year 10: 50.6 MAP 
Forecast for Year 25: 75.8 MAP 
Forecast for Year 50: 145.7 MAP 
Annual passenger traffic growth:  

- 3.7% (2011-2020), 2.8% (2020-2035), 2.6% (2035-2060) 
- Average Growth Rate: 2.8% / Standard Deviation: 0.00356 

Discount Rateb 7% per annum for a discounted rate, 3% per annum for CPI rate increase 

Airport Operation 
Costs (OPC)c 

OPC(AU$)/Pax Capacity = Type 1: 6, Type 2: 6, Type 3: 8, Type 4: 5 

Airline Passenger 
Delay Costs (DC) 

DC per passenger per hour:  
AU$ 40.06 (Business) / AU$13.67 (Leisure) 

Average Noise 
Abatement Costd 

AU$20,000 per affected house in terms of the population within a 20 
Australian Noise Exposure Forecast (ANEF) contour 

ORAT Costs ORC(AU$)/Pax Capacity = Brownfield: 6, Alteration: 8, Greenfield: 10 

Surface Transport 
Demand Ratio 

Passenger: Employee: Meeter/Greeter = 56%: 24%: 20%  

Required Land 
Sizee 

Type 1 Full-service International Airport: 1,012.6 ha 
Type 2 Land-constrained International Airport: 944.9 ha 
Type 3 Limited-service Regular Passenger Transport Airport: 723.3 ha 
Type 4 Minimum-service Airport Servicing GA / Limited RPT: 366 ha 

Constraints A legislated cap of 80 aircraft movements per hour will be maintained at 
Sydney (Kingsford‐Smith) Airport. 

 
Sydney Airport and Bankstown Airport cannot construct additional 
runway due to land constraints. 

Note. All figures presented in this table are extracted from the Joint Study (Australian and NSW 

Government, 2012). aThe underlying assumption for the air traffic demand of the Sydney region is that 

additional airport capacity can be developed to eliminate current capacity constraints that can not be 

provided by the existing Sydney Airport. bThe analysis timeframe of this study was over a 50-year time 

horizon, using a 7% real discount rate based on Commonwealth evaluation guidance. cOperating costs were 

estimated by Airbiz as a part of the Joint Study (2012) based on benchmarking airports in Australia. d The 

number of persons residing within 20 ANEF contours is assumed by WorleyParsons as a part of the Joint 

Study (2021). eGeneric airport types 1, 2, 3, and 4 are defined by the Joint Study (2012). 
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Table 12 

Potential Airport Expansion in Sydney Metropolitan Region  

Airport 

Commercial Operations in 2012 Potential Expansion  

Airport 
Type 

Site Available 
Capacity 

Airport 
Type 

Conversion 

Required 
Investment 

(Billion AU$)a 

Maximum 
Capacity / 

ARC Codeb

Weighted 
Distance 

to Centersc

Kingsford 
Smith 
(SYD) 

International 
+ Domestic 

907 ha 
(2241ac)

48MAP Type 2  
 Type 2 

72MAP: 5.2 72MAP / 
Code 4F 

22.52km

Bankstown 
(BWU) 

GA 313 ha 
(770ac) 

Nil Type 4  
 Type 3 

1MAP: 0.3 
5MAP: 1.7 
15MAP: 4.7 

10MAP / 
Code 3C 

23.34km

Richmond 
(RCM) 

Air Force 
Base 

800 ha 
(1977ac)

Nil Type 4  
 Type 2 

1MAP: 0.15 
5MAP: 0.5 
10MAP: 3.85 
20MAP: 5.4 
32MAP: 10.8 

32MAP / 
Code 4E 

54.18km

Western 
Sydney 
(W_SYD) 

Not existing Nil Nil Nil  
 Type 1 

10MAP: 3.27 
15MAP: 4.15 
37MAP: 9.9 
60MAP: 13.7 
82MAP: 17.5 

82MAP / 
Code 4F 

51.31km

Note. All figures presented in this table are extracted from the Joint Study (Australian and NSW 

Government, 2012) and the base date of all costs is 1 January 2011. aThe required investment 

costs are discounted at 7% per annum to 2011 and no budget limitation is considered in this 

deterministic model. Based on the defined capital investment program of each airport, linear 

equation models are produced: CCSYD=216.7×Increased Passenger Capacity, 

CCBWU=313.5×Increased Passenger Capacity, CCRCM=333.8×Increased Passenger Capacity, 

CCWEST_SYD=FCC(Land Acquisition) + 210.3×Increased Passenger Capacity. bAerodrome 

Reference Code (ARC) Codes are defined by ICAO, which is shown in ICAO Annex 14. 

cWeighted average distance to/from population centers is calculated as shown in Table 13 based 

on the airport passenger demand profile in 2011. (Joint Study, 2012). 
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Table 13 

Major Population Centers in the Sydney Metropolitan Region  

Population Centre 
Origin/ 
Destination 
Demand Ratioa 

Distance to/from Airports (km)b 

SYD BWU RCM W_SYD 

Sydney Inner & East 46.6% 13.6 24.8 64.2 60.3

Sydney North 16.7% 22.8 27.4 53.8 57.5

Sydney West 10.9% 16.1 4.4 56.8 36.5

Hurstville 6.2% 8.7 13.2 63.2 47.9

Parramatta 4.2% 26.4 13.9 35.8 34.8

Penrith 3.6% 59.1 48.1 24.5 18.6

Sutherland 3.3% 18.3 23.9 74.5 59.4

Campbelltown 2.9% 43.6 27.9 62.3 30.7

Blacktown 2.9% 44.3 28.4 26.6 32.8

Liverpool 2.7% 26.2 6.1 49.4 25.4

Weighted Average 
Distance 

100% 22.5 23.3 54.2 51.3

Note. aThe origin and destination demand of airport users in the Sydney region was sourced from 

Booz & Company, which was part of a Joint Study by the Australian and NSW Government 

(2012). The National Visitors Survey 20052009 (NVS) and the International Visitors Survey 

2005-2008 (IVS) provide information on the profiles of passengers traveling to and from the 

Sydney Airport. bDistance between airports and each region is measured by the shortest surface 

access route using Google Map. 

 

 The Sydney Model algorithms and input data to solve this MINLP problem are 

included in Appendix A. This model has a deterministic nature to decide the airport 

capacity expansion options without consideration of uncertain future air traffic demand. It 

also aims to provide a projection for the required costs to achieve the proposed 

objectives.  
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Model Outcomes. Sydney Model was performed using software from LINDO 

System Inc called Lingo. The researcher used Extended LINGO/Win64 Release 18.0.44. 

Figure 8 shows the model output summary status. This MINLP model contains 3,717 

variables which include 388 non-linear variables. Out of the total of 7,774 constraints, 

1,767 constraints show a non-linear nature. Using a PC with Intel Core i3@ 2.00GHz 

CPU and 8GB RAM with a Microsoft Windows 10 operating system, it took 69 seconds 

and 1,737 iterations to solve this deterministic MINLP model. 

 

Figure 8 

Sydney Model Output Status Summary 
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 Table 14 presents the projected annual passenger demand for the Sydney region 

for a 50-year timeline and proposed airport capacity to accommodate the demand. The 

outcomes from the Sydney Model suggest a dual airport system in Sydney, from the cost 

minimization perspective: The existing Sydney Airport and new Western Sydney Airport 

are identified to serve the air transport industry within the Sydney region from Year 23. 

In the meantime, Bankstown Airport and Richmond Airport are not identified as cost-

efficient solutions to service the growing air traffic demand of the Sydney region. 

 

Table 14 

Sydney Model: Traffic Demand and Airport Capacity (Passengers in Thousand)  

Year 1 6 11 16 21 26 31 36 41 46 50 

Demand 36,967 44,011 52,029 59,790 68,710 78,784 89,528 101,739 115,614 131,382 145,532

Capacity            

SYD 48,000 48,000 52,029 59,790 68,710  72,000  72,000 72,000 72,000 72,000 72,000

BWU 0 0 0 0 0 0 0 0 0 0 0

RCM 0 0 0 0 0 0 0 0 0 0 0

W_SYD 0 0 0 0 0  6,784  17,528  29,739  43,614  59,382  73,532

Total  48,000  48,000  52,029  59,790  68,710  78,784  89,528 101,739 115,614 131,382 145,532

Note. This table shows the optimized airport capacity solution using the traffic forecast date from 

the Joint Study (2012) conducted by the Australian and NSW governments. 

 

Between Year 1 and Year 23, the existing Sydney Airport will serve as the sole 

airport in the Sydney region by increasing its capacity from its current capacity of 48 

million passengers per year (MAP) to its maximum capacity of 72 MAP. Because the 

traffic demand is forecasted to outpace the current capacity of Sydney Airport from Year 
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9, an additional capacity expansion for Sydney Airport needs to be considered in the 

early stage. Once the traffic demand reaches the maximum capacity of Sydney Airport, 

Western Sydney Airport will be operational to accommodate the exceeding traffic 

demand from Year 24. Figure 9 presents the air traffic demand and capacity projection 

over time. 

 

Figure 9 

Sydney Model: Traffic Demand vs. Airport Capacity Projection 

 

Note. This line chart shows the optimized airport capacity expansion solution to accommodate 

future air traffic demand of the Sydney region which was forecasted by the Joint Study (2012). 

As shown in this figure, a dual airport solution is recommended to minimize overall cost 

requirements. 

 

 Table 15 projects the cost profile to develop and operate the dual airport system in 

the Sydney region for a 50-year timeline. Figure 10 presents the capacity expansion costs 

over time. Whereas the total traffic demand is expected to grow at a steady rate, as shown 
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in Figure 9, the cost graph shows a slow decreasing slope from Year 10 except for Year 

22 because of 4% of the annual discount rate applied to each cost element. Year 22 shows 

a stiff increase in the capital cost due to the investment to inaugurate the new Western 

Sydney Airport in Year 23. Figure 11 and Figure 12 illustrate the required costs to 

provide the required airport capacity and operate the airport facilities over time for 

Sydney Airport and Western Sydney Airport, respectively. A capital cost input is 

required for Sydney Airport between Year 9 and Year 23 to add the capacity up to its 

maximum capacity of 72 MAP. In Year 22, significant capital investment is shown for 

the inauguration of Western Sydney Airport, which requires fixed capital costs to the new 

airport site. The continuous capital cost will be invested on Western Sydney Airport from 

Year 23 to accommodate the growing traffic demand. 

 

Table 15 

Sydney Model: Airport Capacity Expansion Cost Projection (AUD in Thousand) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Capital Cost  -  -  201,145  189,990  179,454  150,655  140,716  131,432  122,761  114,661  108,569

Operation 
Cost 

 288,000  227,610  202,782  191,536  180,914  170,499  159,250  148,744  138,930  129,764  122,869

Delay Cost  2,847  47,839  50,695  47,884  45,228  41,156  36,694  32,838  29,491  26,576  24,509

Noise Cost  -  23,849  18,538  17,510  16,539  3,587  3,350  3,129  2,922  2,730  2,584

ORAT Cost  -  -  834  787  744  1,363  1,273  1,189  1,110  1,037  982

Access Cost  163,004  153,373  149,025  140,761  132,954  139,093  146,327  150,161  151,340  150,468  148,623

Total  453,851  452,672  623,023  588,471  555,836  506,355  487,612  467,494  446,557  425,238  408,137

Note. This table presents the overall cost information to provide the required airport capacity in 

the Sydney region based on the traffic forecast date from the Joint Study (2012) conducted by the 

Australian and NSW Government. A 4% discount rate per annum is applied. 
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Figure 10 

Sydney Model: Capacity Expansion Total Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from Sydney Model to provide the required 

airport capacity in the Sydney region through a dual airport solution. A peak cost input in 2022 

will be required to purchase airport land for Western Sydney airport. 

 

Figure 11 

Sydney Model: Sydney Airport Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from Sydney Model to expand the capacity 

of the existing Sydney Airport.  
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Figure 12 

Sydney Model: Western Sydney Airport Cost Projection (in AUD) 

 

Note. This Figure shows annual cost inputs from Year 22 to develop and operate the new Western 

Sydney Airport. 

 

 Using the case of the Sydney region, the General Model was successfully 

validated, yielding an optimal solution along with scalable model outcomes over 50 

years. Given that the traffic demand growth rate is fixed, four cost functions that are 

correlated with passenger demand - operation cost, passenger access cost, delay cost, and 

noise cost - show a steady and continuous growth trend, following the traffic demand 

pattern. Capital cost and ORAT cost are directly influenced by airport capacity increase 

and required to be invested in advance to cater for the increasing future traffic demand. 

Reliability Test: Six Experiment Models  

 In optimization models, reproducibility and reliability are key features to ensure 

the effectiveness of the model and avoid potential model processing issues for future 

expanded applications. In complex and long-term multi-period MINLP models like this 
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study, challenges can occur when the model does not present solid boundary conditions 

or the solution is prone to slightly off from the boundary. Also, vanishing eigenvectors 

are a problem in MINLP models that do not have a pendant in MILP. 

Therefore, the primary objective of the model reliability experiment was to 

compare the performances of the optimization model system under the different 

operational scenarios using the same model structure, in contrast to the baseline 

operational scenario. In particular, this experiment engaged different input parameters 

such as operation costs, access unit costs, and financial discount ratio. The result of the 

reliability experiment using six Experiment Models is shown in Table 16. 

All six Experiment Models which are intended to validate the reliability of the 

Base Model present effective model outcomes to achieve the cost minimization goal. 

Like the Sydney Model, Experiment Model 1 and Experiment Model 2, which applied 

differentiated discount rates and operation unit costs, recommend a dual airport solution 

from Year 23. The existing Sydney Airport is suggested to accommodate the traffic 

capacity at the maximum allowable capacity and then a new Western Sydney Airport will 

be operational to handle the exceeding air traffic demand. Figure 13, Figure 14, Figure 

15, and Figure 16 demonstrate different levels of the discount rate and operation unit cost 

do not affect the optimal solution proposed by the Sydney Model.  

In contrast to Experiment Model 1-2 which used a 6% annual discount rate and 

shows a stiff downward trend of the time-cost graph, as displayed in  

Figure 20, Experiment Model 1-1 presents a gradual upward trend, as shown in 

Figure 19, due to the lower financial discount rate within the cost optimization model. 

Both Experiment Model 1 and Experiment Model 2 indicate the discount rate and 
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operation unit cost do not affect the model outcome in terms of the optimal solution of 

the airport expansion. 

Importantly, Experiment Model 3 indicates that the different levels of passenger 

access cost to/from airports may suggest a different solution. Experiment Model 3-1, 

which incorporates a lower rate of access unit cost at AU $0.07/km per passenger, 

presented a similar solution to the Sydney Model, Experiment Model 1, and Experiment 

Model 2: Western Sydney Airport needs to be operational when Sydney Airport reaches a 

maximum capacity from Year 23, as shown Figure 17. Lower access costs can be 

achievable by introducing a more convenient mode of public transportation between 

population centers and airports, such as train and bus systems. Experiment Model 3-2 

considered a higher rate of access unit cost at AU $1.5/km per passenger. It can happen 

when the airport system does not provide an efficient public transportation system and 

motivates passengers and airport visitors to use private vehicles or taxis. This model 

recommends the early introduction of a dual airport system of Sydney Airport and 

Western Sydney Airport from Year 9 to achieve the cost optimization goal, as shown in 

Table 17 and Figure 18.  

The result from Experiment Model 3 demonstrates the effectiveness of the model. 

By splitting the catchment of the passenger demand into two distant airports, Sydney and 

Western Sydney Airports, the dual airport system can contribute to achieving the cost 

optimization goal by reducing passenger access costs. Table 17 shows a comparison of 

the six Experimental Models against the Sydney Model in terms of cost proportion 

among the six cost components. A more detailed review of this difference is discussed in 

Chapter 5. 
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Table 16 

Sydney Base Model vs. Six Experiment Models: Model Performance 

Model ID 
Manipulated 

Input 
Variable 

Parameter 

Result 

Model 
Performance 

Sydney Model Experiment Model Runtime Iteration

Sydney 
Model 

- - - Success 00:01:09 1737

Experiment 
1-1 Model 

Discount Rate 4% 2% Success 00:01:32 2041

Experiment 
1-2 Model 

Discount Rate 4% 6% Success 00:01:11 1076

Experiment 
2-1 Model 

Operation 
Unit Cost 

SYD, RCM 
W_SYD: AU$6, 
BWU: AU$8 

All Airports: AU$5 Success 00:00:41 1064

Experiment 
2-2 Model 

Operation 
Unit Cost 

SYD, RCM 
W_SYD: AU$6, 
BWU: AU$8 

All Airports: 
AU$10 

Success 00:00:43 951

Experiment 
3-1 Model 

Access Unit 
Cost 

AU$0.11/km AU$0.07/km Success 00:00:42 878

Experiment 
3-2 Model 

Access Unit 
Cost 

AU$0.11/km AU$0.15/km Success 00:01:43 2,832

Note. This table shows the overall comparison of the six Experiment Models to test the reliability 

of the General Model, by differentiating input values of the three parameters: discount rate, 

operation unit cost, and access unit cost. All six models successfully present an optimal solution 

to minimize the cost to meet the increasing air traffic in the Sydney region.  
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Table 17 

Sydney Base Model vs. Six Experiment Models: Model Outputs Comparison 

Model ID Proposed Solution

Total Costs
(Y1-Y50, 

in 
AU$000s) 

Cost Distribution (%) 

Remark 
CC OPC DC NC ORC AC 

Sydney 
Model 

Dual Airports  
SYD: Y1-Y50  
W_SYD: Y23-Y50 

25,259,885 26.2% 34.9% 7.6% 2.1% 0.2% 29.0% Figure 9 
Figure 10

Experiment 
1-1 Model 

Dual Airports  
SYD: Y1-Y50  
W_SYD: Y23-Y50 

42,105,310 27.3% 33.7% 7.5% 1.7% 0.2% 29.7% Figure 13
Figure 19

Experiment 
1-2 Model 

Dual Airports  
SYD: Y1-Y50  
W_SYD: Y23-Y50 

17,031,179 27.6% 34.8% 7.5% 2.3% 0.2% 27.6% Figure 14
 
Figure 
20 

Experiment 
2-1 Model 

Dual Airports 
SYD: Y1-Y50  
W_SYD: Y23-Y50 

23,836,811 27.8% 31.0% 8.1% 2.2% 0.2% 30.7% Figure 15
Figure 
21 

Experiment 
2-2 Model 

Dual Airports  
SYD: Y1-Y50  
W_SYD: Y23-Y50 

30,942,668 21.4% 46.8% 6.2% 1.7% 0.2% 23.7% Figure 16
Figure 22

Experiment 
3-1 Model 

Dual Airports 
SYD: Y1-Y50 
W_SYD: Y23-Y50 

22.652,467 29.2% 38.9% 8.5% 2.3% 0.2% 20.9% Figure 17
Figure 23

Experiment 
3-2 Model 

Dual Airport 
SYD: Y1-Y50  
W_SYD: Y9-Y50 

28,297,552 24.0% 31.1% 6.7% 1.8% 0.2% 36.2% Figure 18
Figure 24

Note. The model output values provide cost profiles from the six Experiment Models. 
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Figure 13 

Experiment Model 1-1: Demand vs. Capacity (Discount Rate = 2%) 

 
Note. This figure shows the airport capacity distribution results of Experiment Model 1-1 for 50 

years. The proposed capacity expansion solution is identical to the Sydney Model. 

 

Figure 14 

Experiment Model 1-2: Demand vs. Capacity (Discount Rate = 6%) 

  
Note. This figure shows the airport capacity distribution results of Experiment Model 1-2 for 50 

years. The proposed capacity expansion solution is identical to the Sydney Model. 
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Figure 15 

Experiment Model 2-1: Demand vs. Capacity (Operation Unit Cost = AU $5) 

 
Note. This figure shows the airport capacity distribution results of Experiment Model 2-1 for 50 

years. The proposed capacity expansion solution is identical to the Sydney Model. 

 

Figure 16 

Experiment Model 2-2: Demand vs. Capacity (Operation Unit Cost = AU $10) 

 
Note. This figure shows the airport capacity distribution results of Experiment Model 2-2 for 50 

years. The proposed capacity expansion solution is identical to the Sydney Model. 
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Figure 17 

Experiment Model 3-1: Demand vs. Capacity (Access Unit Cost = AU $0.07/km) 

 
Note. This figure shows the airport capacity distribution results of Experiment Model 3-1 for 50 

years. The proposed capacity expansion solution is identical to the Sydney Model. 

 

Figure 18 

Experiment Model 3-2: Demand vs. Capacity (Access Unit Cost = AU $0.15/km) 

 
Note. This figure shows the airport capacity distribution results of Experiment Model 3-2 for 50 

years. This model requires Western Sydney Airport’s early entry into the market to reduce 

passenger access costs across the Sydney region. 
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Figure 19 

Experiment Model 1-1: Total Cost Projection (Discount Rate = 2%) 

 
Note. This figure shows the overall cost profile presented by Experiment Model 1-1 by using a 

lower discount rate of 2% compared to the Sydney Model. 

 

Figure 20 

Experiment Model 1-2: Total Cost Projection (Discount Rate = 6%) 

 
Note. This figure shows the overall cost profile presented by Experiment Model 1-2 by using a 

higher discount rate of 6% compared to the Sydney Base Model. 
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Figure 21 

Experiment Model 2-1: Total Cost Projection (Operation Unit Cost = AU $5) 

 
Note. This figure shows the overall cost profile presented by Experiment Model 2-1 by using a 

lower operation unit cost of AU $5/passenger compared to the Sydney Model. 

 
Figure 22 

Experiment Model 2-2: Total Cost Projection (Operation Unit Cost = AU $10) 

  
Note. This figure shows the overall cost profile presented by Experiment Model 2-2 by using a 

higher operation unit cost of AU $10/passenger compared to the Sydney Model. 
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Figure 23 

Experiment Model 3-1: Total Cost Projection (Access Unit Cost = AU $0.07/km) 

 
Note. This figure shows the overall cost profile presented by Experiment Model 3-1 by using a 

lower access unit cost of AU $0.07/passenger-km compared to the Sydney Model. 

 

Figure 24 

Experiment Model 3-2: Total Cost Projection (Access Unit Cost = AU $0.15/km) 

 
Note. This figure shows the overall cost profile presented by Experiment Model 3-2 by using a 

higher access unit cost of AU $0.15/passenger-km compared to the Sydney Model. 
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 Using three experiment models with different input values of discount rate, 

operation unit cost, and passenger access cost, the reliability of the General Model and 

the Sydney Model was tested. Experiment Model 1 used different discount rates. While 

the cost projection curve between Experiment Model 1-1 and Experiment Model 1-2 

shows the significant difference over 50 years affected by the differentiated input value, 

the same optimal solution as the Sydney Model was yielded by the model outcome. 

Experiment Model 2, which used differentiated operation unit costs, also presented the 

same optimal solution as the Sydney Model, showing differentiated cost projection with 

airport operation cost. Meanwhile, different input values of passenger access unit cost 

yielded different optimal solutions: Experiment Model 3-2, which used a higher rate of 

passenger access cost, suggested an earlier entry of the new Western Sydney Airport than 

Experiment Model 3-1 to achieve the cost minimization goal by splitting passenger 

catchment into two airports. 

Generalizability 

As discussed in Chapter 3, three measures were considered to ensure the 

generalizability of the optimization model. First, four case studies were conducted to 

identify the required cost functions of this model. Each case study can represent one of 

the four possible solutions to expand airport capacity in metropolitan areas. From each 

case study, as shown in Table 18, required cost functions for this optimization model 

were included in the study  
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Table 18 

Case Study: Airport Expansion Key Cost Functions 

City Airport Solution Cost Elements 

Hong Kong  Hong Kong 
International 
Airport 

Single airport system, 
continuously expanding 
an existing airport  

 Airport operations 
 Operation delay 
 Noise abatement 
 Airport facility expansion 
 Passenger access 

Munich Munich 
Airport 

Single airport system, 
developing a new airport, 
and closing the existing 
airport 

 Airport operations 
 Airport development 

o Land acquisition  
o Airport infrastructure  
o Access infrastructure 
o Utility connection 

 ORAT activities 
 Passenger access 
 Airport decommissioning 

Seoul Incheon and 
Gimpo airports 

Dual airports system, 
developing a new airport 
and pairing with the 
existing airport 

 Airport operations 
 Operation delay 
 Noise abatement 
 ORAT activities 
 Airport development 

o Land acquisition  
o Airport infrastructure  
o Access infrastructure 
o Utility connection 

 Passenger access 

New York JFK, Newark, 
and La 
Guardia 
airports 

Multi-airport system, 
activating or expanding 
secondary airports to 
accommodate market 
growth 

 Airport operations 
 Operation delay 
 Noise abatement 
 ORAT activities 
 Airport conversion, expansion 

o Land acquisition 
o Commissioning 
o Facility modernization and 

expansion 
 Passenger access 
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Second, the case of the Sydney metropolitan area is selected to validate this model 

because the Sydney region may consider all four possible solutions to deal with the 

airport capacity expansion problem.  

Solution 1. Expansion of existing Sydney airport until it reaches the maximum 

allowable capacity; 

Solution 2, Developing a new Western Sydney Airport and closing an existing 

Sydney Airport; 

Solution 3. Developing a new Western Sydney Airport to set up a dual airport 

system along with the existing Sydney Airport; and 

Solution 4. Conversion either of Bankstown GA Airport or Richmond Airbase 

into a commercial airport to relieve the airport capacity issue of the Sydney region. 

Last, because this optimization model took a quantitative research method and 

was developed using mathematical functions, any localized input variable can directly 

affect the output and decision variable of the model. Therefore, any localized cost factors 

such as statutory costs and taxation were not considered because they can vary by airport, 

city, or country.  

Stochastic MINLP Models  

The current deregulated and competitive market environment necessitates airlines 

to quickly respond to changing market conditions. As a result, airlines may suddenly 

change fares, flight schedules, and service networks (de Neufville and Barber, 1991). For 

example, the new entrant of low-cost carriers can generate unprecedented traffic demand 

for the region and require airports to accommodate the increased demand in a short 

timeframe in order not to lose the demand growth opportunity. On the other hand, air 
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traffic demand may fall back when major air carriers cease the operations or abandon any 

major route at the airport, which radically affects the capacity and operation planning of 

the airport. Therefore, it is critically important for airport operators to develop multiple 

plausible demand scenarios due to the uncertainties from political, economic, social, 

technological, and demographic changes. In this chapter, the deterministic general 

MINLP model was extended into the multi-stage stochastic model by considering various 

plausible traffic scenarios of the market. 

Stochastic Model 

The stochastic optimization models are developed using Extended LINGO/Win64 

Release 18.0.44. Its stochastic programming solver provides various functions to support 

the development of an optimization model under uncertainty through a multistage 

stochastic process. The researcher first selected an input variable that has uncertainty and 

identified the distribution functions of the specific variables. Then, the stochastic solver 

optimized the stochastic model by minimizing the overall cost over the 50-year planning 

horizon. 

The stochastic version of the airport capacity expansion optimization model can 

be formulated by combining the format of the general model and the multi-stage 

stochastic model, which are pre-defined as Equation 11 and Equation 10, respectively, 

and can be written as: 

 

min δy×∑∑ (Ey×kyi×CCyi + Ey×kyi×OPCyi + Ey×kyi×DCyi + Ey×kyi×NCyi + 

Ey×kyi×ORCyi) + δy ∑∑∑ (Ey×kyi×ACyij)     (14) 

 

 y  i 

y   i   j
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where: 

 Ey = finite random outcomes or probability from an event at time y. 

 kyi = binary variable, 1 = serviceable, 0 = non-serviceable. 

 CCyi = capital cost at Airport i at time y. 

 OPCyi = operation cost at Airport i at time y. 

 DCyi = delay cost at Airport i at time y. 

 NCyi = noise cost at Airport i at time y. 

 ORCyi = ORAT cost at Airport i at time y. 

 ACyi = access cost between Airport i and Population Center j at time y. 

δ = discount coefficient. 

 

Three what-if scenarios that take different traffic demand assumptions into 

considerations were selected to develop the stochastic decision-making models. Detailed 

model parameters for the three what-if models are shown in Table 18. In the stochastic 

models, only future traffic demand will be treated as an uncontrollable variable. Other 

model parameters such as cost functions and airport profiles will remain the same as the 

model parameters that are used in the Sydney Base Model. 
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Table 19  

Traffic Demand Parameters for Three What-if Models  

Model What-if Model 1 What-if Model 2 What-if Model 3 
Traffic Growth 
Scenario 

Random growth of 
air traffic demand 
between 0 – 5% (low 
and upper limit) 

Normal distribution 
of annual traffic 
growth rates based 
on Sydney’s previous 
25 years’ records (no 
low or upper limit) 

Reflection of the 
pandemic COVID-19 
impact on air traffic 
demand (no low or 
upper limit) 

Traffic Growth Rate 
- Mean              
- Median                     
- Highest                     
- Lowest                      
- Standard Deviation 

 
2.87  
2.85  
4.09  
1.01 
0.62

 
3.25 
2.42 

18.81 
-11.98 

7.31

 
2.70 
2.73 

93.15 
-65.07 
19.39

Traffic Forecast 
- Year 0 
- Year 10 
- Year 25 
- Year 50 

 
37.0 MAP 
46.0 MAP 
67.0 MAP 

146.9 MAP

 
37.0 MAP 
45.9 MAP 
59.9 MAP 

156.9 MAP

 
37.0 MAP 
32.2 MAP 
51.1 MAP 

121.9 MAP

 

What-if Model 1: Random Growth of Air Traffic Demand 

Annual growth rates of passenger traffic demand are randomly selected for annual 

traffic growth between 0% - 5.7%. In this What-if Model, traffic volume does not consistently 

increase. Also, the traffic volume is not expected to decrease. Figure 25 shows 500 randomly 

chosen numbers, which consist of 10 observed numbers per time series. Using these 

randomly distributed growth rate values, Table 20 shows detailed air traffic parameters 

that were used to develop this What-if Scenario. 
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Figure 25 

What-if Model 1: Scatter Chart of 500 Random Values (1.00 - 1.057) 

 

Note. 10 random values were generated per each time series between 0% and 5.7%, and the averaged 

value per period was used to define the annual traffic demand growth rate of each time series. 

 

Table 20  

What-if Model 1: Traffic Demand Parameters  

Timeline 50 years: Year 0 – Year 50 

Sydney Region 

Passenger Demand 

Forecast 

Year 0:               37.0 MAP 

Year 10:             46.0 MAP 

Year 25:             67.0 MAP 

Year 50:           146.9 MAP 

Annual Traffic 

Growth (%) 

Mean:                         2.87 

Median:                      2.85  

Highest:                      4.09  

Lowest:                       1.01  

Standard Deviation:    0.62  

Note. This what-if scenario assumes that traffic demand in the Sydney region would not decrease over 

a 50-year time horizon and will have both upper and lower limit of annual traffic demand changes. 
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Table 21 presents the projected annual passenger demand for the Sydney region 

for a 50-year timeline and proposed airport capacity to cater to the demand. The MINLP 

model suggests a dual airport system in Sydney from the cost minimization perspective. 

The existing Sydney Airport and Western Sydney Airport are required to serve the air 

transport industry within the Sydney region. In the meantime, Bankstown Airport and 

Richmond Airport are not recommended as cost-efficient solutions to service the growing 

air traffic demand of the Sydney region. 

 

Table 21 

What-if Model 1: Traffic Demand and Airport Capacity (in thousand passengers) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Demand 36,967 43,300 49,964 56,760 64,648 72,404 84,525 99,551 117,346 131,575 146,977

Capacity            

SYD 48,000 48,000 49,964 56,760 64,648 72,000 72,000 72,000 72,000 72,000 72,000

BWU - - - - - - - - - - -

RCM - - - - - - - - - - -

W_SYD - - - - - 404 12,525 27,551 45,346 59,575 74,977

Total 48,000 48,000 49,964 56,760 64,648 72,404 84,525 99,551 117,346 131,575 146,977

Note. This table shows the optimized airport capacity solution from the stochastic MINLP model. 

A dual airport solution is suggested. 

 

Between Year 1 and Year 25, the existing Sydney Airport will serve as the sole 

airport in the Sydney region by increasing its capacity from its current capacity of 48 

MAP to its maximum capacity of 72 MAP. Because the traffic demand is forecasted to 

outpace the current capacity of Sydney Airport from Year 10, additional capacity is 

required for Sydney Airport to accommodate the exceeding passenger volume. Once the 
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traffic demand reaches the maximum capacity of Sydney Airport in Year 26, Western 

Sydney Airport will be operational to handle the exceeding traffic demand. Figure 26 

depicts this information graphically. 

 

Figure 26 

What-if Model 1: Demand vs. Airport Capacity Projection (in Annual Passenger) 

 

Note. This line chart shows the optimized airport capacity expansion solution to accommodate 

uncertain future air traffic demand of the Sydney region. The total capacity curve follows the 

demand curve from Year 10. 

 

 Table 22 shows the required total and each component costs to develop and 

operate the dual airport system in the Sydney region for a 50-year timeline. Figure 27 

depicts this information graphically. Whereas the total traffic demand is expected to grow 

at a steady rate, as shown in Figure 26, the cost graph shows strong fluctuations from 

Year 10 when Sydney Airport reaches the maximum capacity. From Year 11, different 

levels of capital costs are required, depending on the random growth of the air traffic. 
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Table 22 

What-if Model 1: Airport Capacity Expansion Cost Projection (in thousand AU$) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Capital Cost - - 212,096 184,278 200,934 376,978 98,068 149,812 140,584 101,261 120,472

Operation 
Cost 

288,000 227,610 194,734 181,829 170,220 156,692 150,351 145,546 141,011 129,954 124,089

Delay Cost 2,847 46,306 48,683 45,457 42,555 39,085 35,359 32,358 29,803 26,604 24,692

Noise Cost - 23,859 19,548 16,984 18,519 12,705 2,334 3,566 3,347 2,410 2,868

ORAT Cost - - 879 764 833 815 887 1,355 1,271 916 1,089

Access Cost 163,004 150,895 143,110 133,627 125,095 115,975 131,426 144,807 154,825 150,786 150,666

Total 453,851 448,672 619,053 562,940 558,157 702,253 418,427 477,446 470,844 411,934 423,878

Note. This table presents the overall cost information to provide the required airport capacity in 

the Sydney region based on the results of the base deterministic MINLP model. A 4% discount 

rate per annum is applied. 

 

Figure 27 

What-if Model 1: Capacity Expansion Total Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from the What-if Model 1 to provide the 

required airport capacity in the Sydney region through a dual airport solution. A peak cost inputs 

indicate the required capital cost to add additional airport capacity. 
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 Figure 28 and Figure 29 illustrate the required costs to provide the required 

airport capacity and operate the airport facilities for Sydney Airport and Western Sydney 

Airport, respectively. The cost requirements per year vary due to the random rate of 

traffic increase and associated cost inputs to the airport infrastructure expansion. In Year 

26, significant capital investment is shown for the inauguration of Western Sydney 

Airport, which requires fixed capital costs for land acquisition, access infrastructure, and 

utility connection to the new airport site. 

 

Figure 28 

What-if Model 1: Sydney Airport Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from the What-if Model 1 to expand the 

capacity of the existing Sydney airport. A capital cost input is required between Year 9 and Year 

23 to increase the capacity up to its maximum allowance of 72 MAP. 



109 

 

Figure 29 

What-if Model 1: Western Sydney Airport Cost Projection (in AUD) 

 

Note. This Figure shows annual cost inputs from Year 22 to develop and operate Western Sydney 

airport. 

 

What-if Model 2: Normal Distribution of Traffic Growth Rates 

This model uses a normal distribution pattern for annual traffic growth with 10,000 

observations. From the historical air traffic trend between 1985 and 2019 and future traffic 

forecast from the Joint Study (Australian and NSW Government, 2012), Mean Value = 2.8% and 

Standard Deviation = 8.08 are suggested for this What-if Scenario 2. The input parameters of 

passenger demand used for this what-if scenario were produced by a Monte Carlo 

simulation model using randomly selected numbers to account for uncertain future 

market environments. In this scenario, traffic demand may have sudden positive or 

negative impacts caused by changes in airline hub strategy or unforeseen external events 

which were not considered in the Sydney Model and What-if Model 1.  
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Testing of the traffic demand uncertainty used various numbers of observations 

ranging from 50 up to 100,000 to ensure the number of observations was adequate to 

expect consistent model outcomes from the simulation. Noticeable aberrations with the 

mean and standard deviation data were found when fewer than 500 observations were 

used. The results were identical from the observation numbers more than 500, as shown 

in Table 23. The researcher conducted 10,000 trials, and the normal distribution 

histogram from the analysis is presented in Figure 30. Table 24 provides air traffic 

demand input parameters that were used for this What-if scenario model. 

 

Table 23 

What-if Model 2: Observed Mean and Standard Deviation per Seed Values 

Observations Mean Standard Deviation 

50 2.57 8.53

100 2.47 8.18

250 2.48 8.08

500 2.50 8.10

750 2.50 8.08

1000 2.50 8.08

5000 2.50 8.08

10000 2.50 8.08

100000 2.50 8.08

Note. With more than 500 observations, the mean values from this testing present the same value 

of 2.50. 
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Figure 30 

What-If Model 2: Annual Traffic Change Normal Distribution 

 

 

Table 24 

What-If Model 2: Traffic Demand Parameters  

Timeline 50 years: Year 0 – Year 50 

Sydney Region 
Passenger Demand 
Forecasta 

Year 0:               37.0 MAP 

Year 10:             45.9 MAP 

Year 25:             59.9 MAP 

Year 50:           156.9 MAP 

Annual Traffic 
Growth (%) 

Mean:                           3.25 

Median:                        2.42  

Highest:                      18.81  

Lowest:                     -11.98  

Standard Deviation:     7.31 

Note. The underlying assumption of this model is that the air traffic demand changes within the Sydney 

region will follow previous historic traffic demand patterns and have no upper or lower limit of annual 

traffic demand changes. The analysis timeframe for the economic impact of the project is over a 50-year 

time horizon. 
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Using the normal distribution function of Lingo Ver. 18, What-is Model 2 was 

developed, as shown in Table 25 and Figure 31, which presents the projected annual 

passenger demand for the Sydney region for a 50-year timeline. This What-if model 

proposes a three-airport system in the Sydney region, utilizing the existing Sydney 

Airport, Western Sydney Airport, and Bankstown Airport to serve the future demand. 

Between Year 1 and Year 29, with the slow growth of the traffic demand, the 

existing Sydney Airport will serve as the sole airport in the Sydney region while it 

increases its capacity up to the maximum level. From Year 30, additional capacity is 

handled by Western Sydney Airport, which will reach the maximum capacity of 82 MAP 

in Year 39. Bankstown Airport will need to be transformed into a commercial airport 

from Year 49 to form a part of Sydney’s multi-airport system with a 3.6 MAP airport 

capacity. 

 

Table 25 

What-if Model 2: Traffic Demand and Airport Capacity (in Thousand Passengers) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Demand 36,967 33,230 51,550 41,155 54,885 61,438 79,628 85,571 108,305 131,890 156,897

Capacity            

SYD 48,000 48,000 51,550 51,550 54,885 61,438 72,000 72,000 72,000 72,000 72,000

BWU - - - - - - - - - - 3,602

RCM - - - - - - - - - - -

W_SYD - - - - - - 7,628 16,672 36,305 60,345 82,000

Total 48,000 48,000 51,550 51,550 54,885 61,438 79,628 88,672 108,305 132,345 157,602

Note. This table shows the optimized airport capacity solution from the What-if Model 2. A 

multi-airport system utilizing three airports is suggested. 
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Figure 31 

What-if Model 2: Demand vs. Airport Capacity Projection (in Annual Passenger) 

 

Note. This line chart shows the optimized airport capacity expansion solution to accommodate 

future air traffic demand of the Sydney region. As shown in this figure, a dual airport solution is 

recommended to minimize overall cost requirements. 

 

 Table 26 shows the required total and each component cost to develop and 

operate the multi-airport system in the Sydney region for a 50-year timeline. Figure 32 

depicts this same information graphically. The cost graph shows strong variances in Year 

11, between Year 20 and Year 33, and between Year 38 and Year 49, when major 

capacity expansion projects will be undertaken to maximize the capacity of Sydney 

Airport and inaugurate Western Sydney Airport. Between Year 49 and Year 50, a 

significant investment of capital costs will be injected to inaugurate Bankstown Airport 

with a 3.6 MAP capacity. 
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Table 26 

What-if Model 2: Airport Capacity Expansion Cost Projection (in Thousand AU$) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Capital Cost - - 500,346 - 317,665 117,452 144,703 - 402,808 - -

Operation 
Cost 

288,000 227,610 200,913 165,136 144,513 132,959 141,639 129,639 130,146 130,714 134,072

Delay Cost 2,847 27,270 50,228 26,313 36,128 33,239 34,053 28,738 28,174 26,584 26,062

Noise Cost - - 46,114 - 29,277 10,825 3,445 - 9,590 - -

ORAT Cost - - 2,075 - 1,317 487 1,309 - 3,644 - -

Access Cost 163,004 115,799 147,652 96,887 106,203 97,712 116,840 110,582 136,633 151,306 161,913

Total 453,851 370,680 947,330 288,337 635,106 392,676 441,990 268,960 710,997 308,605 322,048

Note. This table presents the overall cost information to provide the required airport capacity in 

the Sydney region based on the results of the base deterministic MINLP model. A 4% discount 

rate per annum is applied. 

 

Figure 32 

What-if Model 2: Capacity Expansion Total Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from the What-if Model 2 to provide the 

required airport capacity in the Sydney region through a three-airport solution. A peak cost input 

indicates the required capital cost to add additional airport capacity. 
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 Figure 33 and Figure 34 illustrate the required annual costs to expand airport 

capacity and operate the airport facilities for the existing Sydney Airport and Western 

Sydney Airport, respectively. The cost requirements per year vary due to the associated 

capital cost inputs to the airport infrastructure. In Year 29, significant capital investment 

is shown for the major expansion of Western Sydney Airport, which requires fixed 

capital costs to double the size. 

 

Figure 33 

What-if Model 2: Sydney Airport Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from the What-if Model 2 to expand the 

capacity of the existing Sydney airport. A capital cost input is required in Year 11, Year 21, and 

between Year 25 and Year 30 to add the capacity up to its maximum allowance of 72 MAP. 
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Figure 34 

What-if Model 2: Western Sydney Airport Cost Projection (in AUD) 

 

Note. This figure shows annual cost inputs from Year 30 to develop and operate Western Sydney 

Airport. 

 

What-if Model 3: Reflection of Pandemic COVID-19 Impact 

The COVID-19 pandemic has caused a striking downturn in passenger traffic 

demand, but demand is expected to eventually show resilience; this is considered a 

temporal but significant decrease of the traffic demand for a short-term period. IATA 

published a post-COVID traffic forecast in 2020, which projects that 2019 level traffic 

would be recovered by 2024, as illustrated in Figure 35 (IATA, 2020), which is one of 

the critical assumptions of this what-if stochastic modeling. In the meantime, the actual 

air passenger traffic volumes of the Sydney region between 2010 (Year 1) and 2020 

(Year 11) are reflected in this model to make the What-if scenario most realistic. Also, in 

this model, air traffic volume can be either increase or decrease like What-if Model 2. 

Table 27 shows detailed parameters for this What-if Model. 
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Figure 35 

Outlook for Air Transport Passenger Traffic Demand 

 
Note. Adapted from “Outlook for Air Transport and the Airline Industry” by IATA, 2020, 

https://www.iata.org/en/iata-repository/pressroom/presentations/outlook/ 

 

Table 27  

What-if Model 3: Traffic Demand Parameters  

Timeline 50 years: Year 0 – Year 50 

Sydney Region 
Passenger Demand 
Forecasta 

Year 0:                     37.0 MAP 
Year 10a:                  32.2 MAP 
Year 12b:                    7.8 MAP 
Year 16c:                  44.3 MAP 
Year 25:                   51.1 MAP 
Year 50:                 121.9 MAP 

Annual Traffic 
Growth (%) 

Mean:                                2.70 
Median:                             2.73  
Highest:                           93.15  
Lowest:                          -65.07  
Standard Deviation:        19.39 

Note. This model used the actual passenger traffic data between 2010 and 2020 published by Sydney 

International Airport Corporation at https://www.sydneyairport.com.au/investor/company-information/asx-

newsroom. a The pandemic COVID-19 started to have an impact on air traffic demand in the Sydney region 

from Year 10. b Air traffic demand is expected to drop at the lowest point in Year 12. c It is forecasted for 

the Sydney region to recover its pre-COVID-19 air traffic volume of 2019 by Year 16.  
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Table 28 presents the annual passenger demand for the Sydney region affected by 

the pandemic COVID-19 event and the optimized airport capacity to cater to the 

modified demand. While this What-if MINLP model still suggests a dual airport system 

in Sydney from the cost minimization perspective, Western Sydney Airport is required to 

serve the air transport industry within the Sydney region once the affected traffic is 

recovered from the COVID-19 downturn and reaches the current Sydney Airport’s 

capacity of 48 MAP. Bankstown Airport and Richmond Airport are not identified as cost-

efficient solutions to service the growing air traffic demand of the Sydney region, even 

under this What-if scenario. 

 

Table 28 

What-if Model 3: Traffic Demand and Airport Capacity (in Thousand Passengers) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Demand 36,967 41,105 11,245 44,375 42,171 55,877 57,535 69,783 82,928 111,710 121,866

Capacity            

SYD 48,000 48,000 48,000 48,000 48,000 48,000 56,093 59,667 72,000 72,000 72,000

BWU - - - - - - - - - - -

RCM - - - - - - - - - - -

W_SYD - - - - - 7,877 10,115 10,115 11,569 39,710 49,866

Total 48,000 48,000 48,000 48,000 48,000 55,877 66,209 69,783 83,569 111,710 121,866

Note. This table shows the optimized airport capacity solution from the stochastic MINLP model. 

A dual airport solution is suggested. 

 

Between Year 1 and Year 23, the existing Sydney Airport will serve as a sole 

airport in the Sydney region by utilizing its current capacity of 48 MAP without adding 
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infrastructure, due to the plunge of the traffic impacted by the COVID-19 pandemic 

during Year 11 and Year 15. After the full recovery of air traffic by Year 16, additional 

airport capacity required for the Sydney region will be accommodated by Western 

Sydney Airport until it reaches its phase 1 capacity of 10 MAP until Year 28. From Year 

29 to Year 38, Sydney Airport will increase the capacity up to 72 MAP. From Year 38, 

Western Sydney Airport will handle the growing demand and increase the capacity by 50 

MAP in Year 50. Figure 36 depicts this information graphically. 

 

Figure 36 

What-if Model 3: Demand vs. Airport Capacity Projection (in Annual Passenger) 

 

Note. This line chart shows the optimized airport capacity expansion solution to accommodate 

future air traffic demand of the Sydney region. As shown in this figure, a dual airport solution is 

recommended to minimize overall cost requirements. 

 

 Table 29 shows the required total and each component cost to develop and 

operate the dual airport system in the Sydney region for a 50-year timeline. Whereas the 
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total traffic demand is forecasted to dramatically deviate from its trend line, as depicted 

in Figure 36, the already secured capacity cannot be reduced and remains as redundancy. 

The gap between traffic volume and airport capacity means unnecessary operation costs 

because it is associated with the supplied airport capacity, which is illustrated in Figure 

37. From Year 24, different levels of the capital cost investment are required, depending 

on the random growth of the air traffic. 

 

Table 29 

What-if Model 3: Airport Capacity Expansion Cost Projection (in Thousand AU$) 

Year 1 6 11 16 21 26 31 36 41 46 50 

Capital Cost - - - - - 360,272 - 188,996 - 10,877 100,824

Operation 
Cost 

288,000 227,610 187,079 153,765 126,384 120,926 117,770 102,024 100,423 110,334 102,888

Delay Cost 2,847 41,729 2,566 32,855 24,388 28,526 24,999 24,027 23,490 23,661 21,512

Noise Cost - - - - - 8,577 - 17,419 - 258 2,400

ORAT Cost - - - - - 3,259 - 783 - 98 912

Access Cost 163,004 143,245 32,208 104,470 81,601 104,885 77,621 88,872 85,572 117,934 115,167

Total 453,851 412,585 221,854 291,091 232,373 626,448 220,390 422,123 209,486 263,165 343,706

Note. This table presents the overall cost information to provide the required airport capacity in 

the Sydney region based on the results of the base deterministic MINLP model. A 4% discount 

rate per annum is applied. 
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Figure 37 

What-if Model 3: Capacity Expansion Total Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from the What-if Scenario-3 model to 

provide the required airport capacity in the Sydney region through a dual airport solution. A peak 

cost input indicates the required capital cost to add additional airport capacity. 

 

 Figure 38 and Figure 39 illustrate the necessary costs to add the required airport 

capacity for Sydney Airport and Western Sydney Airport, respectively. The cost 

requirements per year vary due to the random rate of traffic increases and decreases with 

the airport infrastructure expansion. From Year 24, Sydney Airport and Western Sydney 

Airport will form a dual airport system to support increasing air traffic demand in the 

Sydney region. 
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Figure 38 

What-if Model 3: Sydney Airport Cost Projection (in AUD) 

 

Note. This figure shows the total cost estimate results from the What-if Scenario-3 model to expand 

the capacity of the existing Sydney airport. A capital cost input is required between Year 28 and Year 

30 and between Year 35 and Year 39 to add the capacity up to its maximum allowance of 72 MAP. 

 

Figure 39 

What-if Model 3: Western Sydney Airport Cost Projection (in AUD) 

 

Note. This Figure shows annual cost inputs from Year 36 to develop and operate Western Sydney 

airport. 
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Comparison of Deterministic vs. Stochastic Models 

 Table 30 presents the overall comparison of the model outcomes between the 

deterministic Sydney Model and the three What-if Models, which were developed using a 

stochastic approach. Even with the significant difference of the presented future traffic 

demand among the four scenarios, the optimization model successfully yielded the model 

outcomes with optimal capacity expansion solutions to minimize the overall costs.  

Whilst the Sydney Model, What-if Model 1, and What-if Model 3 suggest a dual 

airport solution by utilizing Sydney Airport and Western Sydney Airport to handle the 

future traffic demand, What-if Model 2 proposes a three-airport solution and recommends 

Western Sydney Airport’s maximum capacity utilization. This result indicates that the 

optimal solution of airport capacity expansion can vary depending on the future traffic 

demand profile. 

Figure 40 illustrates the traffic demand comparison between the Sydney Base 

Model and three What-if scenario models. Whilst the Sydney Model and What-if Model 

1 show a gradual increase of the traffic demand at a steady rate, What-if Model 2 and 

Model 3 present strong fluctuation of the future demand change, which would cause 

unnecessary cost expenditure due to the gap between supplied capacity and actual 

demand. Careful consideration of airport capacity expansion strategy and decision-

making will be required to minimize the overall costs.  
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Table 30 

Sydney Model vs. What-if Model Outputs Comparison 

Model ID 
Proposed 
Solution 

Annual Traffic 
Growth (%) 

Total Costs 
(Y1-Y50, in 
AU$000s) 

Target Capacity  
(Year 50, in thousand passengers) Remark 

Total SYD W_SYD BWU 

Sydney 
Model  
(fixed 
growth) 

Dual Airports:  
 SYD: Y1-50  
 W_SYD: Y23-
50 

Mean:      2.85
Median:   2.60 
Highest:   3.50 
Lowest:    2.60 
S. Dev:     0.35

25,259,885 145,532 72,000 73,532 - Table 14
Table 15

What-if 
Model 1: 
Random 
Rate  
(0-5.7%) 

Dual Airports:  
 SYD: Y1-50  
 W_SYD: Y27-
50 

Mean:       2.87
Median:    2.85 
Highest:    4.09 
Lowest:     1.01 
S. Dev:      0.62

24,263,080 146,977 72,000 74,977 - Table 21
Table 22

What-if 
Model 2: 
Normal 
Distribution 

Multi-Airports:  
 SYD: Y1-50  
 W_SYD: Y30-
50 
 BWU: Y49-50 

Mean:       3.25
Median:    2.42 
Highest:   18.81 
Lowest:   -11.98 
S. Dev:      7.31

22,041,104 157,601 72,000 82,000 3,601 Table 25
Table 26

What-if 
Model 3: 
COVID-19 

Dual Airports:  
 SYD: Y1-50  
 W_SYD: Y24-
50 

Mean:        2.70
Median:     2.73 
Highest:    93.15 
Lowest:   -65.07 
S. Dev:    19.39

17,563,488 121,866 72,000 49,866 - Table 28
Table 29

 

Figure 41 depicts the annual cost comparison between Sydney Model and three 

What-if Models. The cost graph has a strong relationship with the traffic demand pattern: 

Sydney Model and What-if Model 1 show less fluctuation compared to What-if Model 2 

and Model 3. While What-if Model 2 will require the larger target airport capacity in the 

Sydney region than Sydney Model and What-if Model 1, the required total cost over time 

for the What-if Model 2 is less than that of the other two models. This scenario considers 

a low growth rate of the traffic demand at the beginning of the model timeline, which 

does not require airport capacity expansion projects until Year 20. The model considers a 

financial perspective of the investment, so delaying the capital investment until the 
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additional capacity is required by the market demand helps to achieve the cost 

minimization goal.  

What-if Model 3 projects the smallest investment over time due to the COVID-19 

pandemic impact between Year 10 and Year 15. The plunge of the air traffic demand 

does not necessitate airport capacity expansion projects until Year 23. The gap of air 

traffic demand between What-if Model 3 and the other three models makes a significant 

difference in the required costs over time. 

 

Figure 40 

Traffic Demand Comparison 
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Figure 41 

Annual Cost Comparison 

 

 

Summary 

The proposed MINLP model was validated using the example case of the Sydney 

region, which presented an optimal solution of a dual airport system in the Sydney region 

for the 50-year timeline. Its model reliability was also tested through six Experiment 

Models by introducing different input values for three independent variables: discount 

rates, operational unit costs, and passenger access unit cost. All six models ran 

successfully and yielded meaningful model outcomes. Sydney Model and the six 

Experiment Models consistently yielded similar results as an optimal capacity expansion 

solution: a dual airport system in the Sydney region is needed by introducing a new 

Western Sydney Airport into the market to cater to the exceeding air traffic demand 

beyond the maximum capacity of the Sydney Airport.  

 ‐

 200,000,000

 400,000,000

 600,000,000

 800,000,000

 1,000,000,000

 1,200,000,000

 1,400,000,000

 1  3  5  7  9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39  41  43  45  47  49

A
N
N
U
A
L 
 C
O
ST

TIMELINE

Sydney Model What ‐if Model 1 (Random Growth)

What ‐if Model 2 (Normal Distribution) What ‐if Model 3 (COVID‐19 Event)



127 

 

The deterministic MINLP model was expanded to a stochastic model to address 

concerns with the uncertainty of traffic demand. Three What-if scenario models were 

developed by differentiating the approach with the traffic demand uncertainty: random 

annual growth rates between 0% and 5%, normal distribution of annual growth rates 

based on Sydney aviation market’s previous traffic history, and devastating air transport 

market situation reflecting the COVID-19 pandemic event. The introduced stochastic 

model successfully responded to the three different demand scenarios and yielded 

optimal solutions to minimize the required costs for the next 50-year timeline.  

The results of the stochastic MINLP model demonstrated the adequacy and 

usefulness of the proposed optimization model to support decision-making for airport 

capacity expansion problems under the future traffic demand uncertainty.  
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter focus on discussing the results produced from Chapter IV and 

answering the three research questions presented in Chapter I. It also describes the overall 

achievement of the optimization model, outcomes produced by the various optimization 

models, and conclusions of the present study. The limitations of this study are discussed 

to provide recommendations for future research.  

The main purpose of this research was to develop an optimization model to 

identify an optimal solution for airport capacity expansion in metropolitan areas. As a 

first step, a deterministic MINLP model was developed with the inclusion of six cost 

functions: capital cost, operation cost, delay cost, noise cost, ORAT cost, and passenger 

access cost, all of which are highly related to airport capacity problems. This 

deterministic MINLP model was validated using an example case of the Sydney 

metropolitan area for a 50-year timeline. The Sydney Model was augmented into six 

additional experimental models by differentiating input values of three independent 

variables to test the reliability of the model. 

This deterministic model was then extended to a stochastic MINLP model to 

address concerns with the uncertainty of future traffic demand. Whereas future traffic 

demands were treated as controllable input variables within the deterministic MINLP 

model, it became an uncontrollable input variable when a stochastic model was 

developed. Three what-if scenarios were used to compare the model outcomes with the 

deterministic Sydney Model: random growth of traffic demand, normal distribution of 

traffic demand changes based on the historical traffic record, and reflection of the current 
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COVID-19 pandemic situation. To deploy a stochastic approach into the deterministic 

model, the researcher used a Monte Carlo simulation method for the treatment of 

uncontrollable future traffic demand. The Sydney Model and three what-if models 

successfully produced objective outcomes and identified optimal solutions to expand 

airport capacity while minimizing overall costs. 

Discussion 

This study presents both deterministic and stochastic models to optimize the 

overall costs for airport capacity expansion over time in the presence of demand 

uncertainty. The impact of demand uncertainties on airport capacity problems was 

reviewed by comparing deterministic and stochastic optimization models.  

Deterministic MINLP Model 

As described in Chapter 3, a deterministic mathematical model was first built 

based on the literature review and four case studies that represent each type of airport 

capacity expansion solutions. This model was named General Model and used to develop 

both scalable deterministic and stochastic models. In the deterministic model, the traffic 

growth rate was treated as a controllable variable. Because this General Model presents 

only a mathematical form as an outcome, it was necessary to use an actual case to 

confirm the validity and effectiveness of the model. To overcome this challenge, this 

General Model was validated by the case of the Sydney region based on the various 

assumptions which were presented by the Australian and NWS government in 2011. 

Then, six experiment models were developed to confirm the reliability of the model using 

the Sydney Model with a variation of the values for three input variables: discount rate, 

operation unit cost, and passenger access unit cost.  
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The air traffic demand, total airport capacity, and costs of each experiment model 

against the Sydney Model are presented in Figure 42, Figure 43, and Figure 44. Whereas 

traffic demand and airport capacity follow steady growth curves at a fixed rate increase, 

change of the values with the three input variables yielded significant cost gaps between 

Sydney Model and the experiment models. The six experiment models successfully 

demonstrate the reliability of the General Model by generating the same optimal solution 

of a dual airport system and target airport capacity. 

 

Figure 42 

Demand-Capacity-Cost Comparison: Sydney Model vs. Experimental Model 1 
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Figure 43 

Demand-Capacity-Cost Comparison: Sydney Model vs. Experimental Model 2 

 

 

Figure 44 

Demand-Capacity-Cost Comparison: Sydney Model vs. Experimental Model 3 
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From this deterministic optimization model development, the MINLP 

formulations for the airport capacity problem in metropolitan areas can be characterized 

by the three aspects below: 

1) In the General Model, several variables were defined as integer variables such 

as passenger demand and airport capacity. Integer variables, due to the combinatorial 

nature of the optimization problem, helped to simplify the computing process to find an 

optimal solution; 

2) A majority of the variables in this model have a nature of continuous variables 

such as six cost variables and distance between airports and population centers. The 

researcher notes that continuous variables were often bounded based on operational 

constraints and assumptions; and 

3) Nonlinearities in the objective and constraints were essentially required to 

reflect real-world operational conditions on this optimization model. In this model, 

financial discount rate, passenger demand, and delay costs are populated as non-linear 

variables or constraints. Noting that nonlinearities can come from products of continuous 

as well as discrete variables, they are expected to affect modeling outcomes and solution 

processes. 

Stochastic MINLP Model 

 One of the principal assumptions of deterministic optimization models is that all 

input data or variables are known with certainty. However, in real-world situations, 

certain data or variables are highly changeable and sometimes unpredictable. In the 

General Model, future traffic demand cannot be taken as a deterministic factor due to an 

externality of the air transport industry. For instance, when an airline changes its market 
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strategy for the coming seasons or the global economy experiences a large-scale 

recession, the demand for air traffic would be significantly affected. The main reason 

why the long-period optimization model is difficult and complex is primarily due to the 

uncertainty about the market demand and future state of the industry. Some action or 

decision must be taken based on the best assumptions of the possible future, but its 

consequence can become massive.  

If air traffic demand for a city or region is forecasted to be strong and immediate 

action is required to increase its airport capacity radically, then developing a brand-new 

airport at a large scale would be regarded as a wise decision. On the other hand, if the 

expected market demand disappears in the region and the airport cannot accommodate 

the expected traffic, the regional municipality or airport operator shall bear the costs to 

maintain the infrastructure until the traffic is recovered. However, if the distribution 

probabilities for the future air traffic demand are known, the stochastic optimization 

modeling technique can tackle the challenges with the uncertainty problem in the 

deterministic optimization model.  

 After validation and reliability test of the deterministic General Model were 

successfully implemented, the General Model was transformed into the stochastic 

optimization model by using the Monte Carlo simulation method. Then, three What-if 

Models were developed using the Sydney Model with the variation of future traffic 

demand growth scenarios: What-if Model 1, Model 2, and Model 3 consider a random 

traffic growth between 0 – 5.7%, random traffic growth based on the normal distribution 

of the 25-year record of the Sydney region, and reflection of COVID-19 pandemic effect 

respectively.  
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The total costs, air traffic demand, and airport capacity of three What-if Models 

are presented in Figure 45, Figure 46, and Figure 47. What-if Model 2 and What-if Model 

3 used a more realistic approach than What-if Model 1 by using actual traffic data of the 

Sydney region. The sudden increases in the cost curve shown in the three model 

outcomes can be explained by initial capital investment for the required capacity 

expansion of airports and ORAT activities. In the meantime, cost decreases primarily 

result from a reduced traffic demand associated with passenger access cost, noise cost, 

and congestion cost. Capital cost, operation cost, and ORAT cost are correlated to airport 

capacity in this model. 

The three what-if models helped to demonstrate the effectiveness of the 

Stochastic Model by yielding differentiated model outcomes responding to each traffic 

demand scenario. While What-if Model 1 and Model 3 proposed a dual airport system by 

utilizing the existing Sydney Airport and new Western Sydney Airport, What-if Model 2 

suggested a three-airport system by converting Bankstown Airport into a commercial 

airport. The Stochastic Model was able to develop an optimal solution to expand airport 

capacity in metropolitan areas under the uncertainty of the future traffic demand. 
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Figure 45 

Demand-Capacity-Cost Comparison: What-if Model 1 

 

 

Figure 46 

Demand-Capacity-Cost Comparison: What-if Model 2 
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Figure 47 

Demand-Capacity-Cost Comparison: What-if Model 3 
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Table 31 

Optimization Model Results (Passengers in Thousand) 

Model 
Passenger 
Demand    
(in Y50) 

Target Capacity (in Y50) / Operation Timeline 

SYD BWU RCM W_SYD 

Sydney Model 145,532 72,000 / 
Y1-Y50

0 0 73,532 / 
Y23-Y50

Sydney What-if Model 1 146,977 72,000 / 
Y1-Y50

0 0 74,977 / 
Y26-Y50

Sydney What-if Model 2 156,896 72,000 / 
Y1-Y50

3,600 / 
Y49-Y50

0 82,000 / 
Y30-Y50

Sydney What-if Model 3 121,866 72,000 / 
Y1-Y50

0 0 49,866 / 
Y24-Y50

 

Sydney Model, What-if Model 1, and What-if Model 3 identified a dual airport 

system utilizing the existing Sydney Airport and new Western Sydney Airport as an 

optimal solution to minimize the cost over a 50-year timeline. Meanwhile, What-if Model 

2 requires a three-airport system in the Sydney region by converting Bankstown Airport 

into a commercial airport. The three-airport system is required because the forecasted 

market demand exceeds the combined maximum capacity of Sydney Airport and Western 

Sydney Airport from Year 49. The time to introduce the new Western Sydney Airport to 

the market varies between Year 23 and Year 30 because of the difference in market 

demand and the capacity expansion plan of the existing Sydney Airport. Even though air 

traffic demand has recently plummeted due to the impact of the COVID-19 pandemic, the 

needs for the Western Sydney Airport are not largely affected, which indicates the 

introduction of Wester Sydney Airport can be an effective solution to accommodate 

increasing air traffic demand in the Sydney region from the cost optimization perspective.  
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Figure 48 exemplify the significant difference in future demand and cost profiles 

between the deterministic model and stochastic model by comparing General Model and 

What-if Model 3. This figure illustrates the impact of changes in traffic demand and 

airport capacity on six cost functions. While passenger access costs directly correlate 

with the passenger demand, operations costs and noise costs are influenced by the 

increase of airport capacity. Capital costs and ORAT costs occur when passenger demand 

exceeds the existing airport capacity, which requires the addition of airport capacity. 

Delay costs, as discussed in Chapter 3, have a complex cost function in a proportion to 

the ratio of the square of passenger demand to an airport capacity. 

 

Figure 48 

Demand-Capacity-Cost Comparison: Sydney Model and What-if Model 3 

 

 

Answers to Research Questions 

The conclusions for each of the three research questions follow next. 

Q1. What are the cost functions related to airport capacity expansion, and how are 

they related to traffic demand change over time?  
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From four case studies and the literature review, six cost functions were identified 

as key components for the airport capacity expansion problem: capital cost, operation 

cost, delay cost, noise cost, ORAT cost, and passenger access cost. Financial discount 

rates, passenger demand, and delay costs were populated as non-linear variables or 

constraints, which gave a nonlinear nature to all six cost functions over time. This study 

also found tradeoffs among the six cost functions over time. Traffic demand growth 

necessitates the capacity expansion of airports, which requires an investment in capital 

costs and ORAT costs. While the increased airport capacity results in additional costs for 

airport operations and noise abatement, the increased airport capacity can reduce delay 

costs by alleviating airport congestion. Meanwhile, passenger access cost is directly 

proportional to the level of passenger traffic demand. 

Q2. How can an optimum solution for the airport capacity expansion be 

determined by the proposed cost functions in terms of minimizing related costs? 

The objective function of this optimization model is the net present value of total 

cost, which includes the aforementioned six cost functions. The correlation of the six cost 

functions with traffic demand changes over time and future cost discounted enabled the 

optimization model to identify the optimal solution in terms of cost minimization. The 

consideration of capital cost, operation costs, and ORAT costs can help to avoid the early 

addition of airport capacities unwarranted by traffic demand. Also, the inclusion of the 

delay costs will prevent delay of airport capacity projects which can help to reduce 

stakeholders’ unnecessary costs from airport congestion. The inclusion of noise costs and 

passenger access costs explored identifying optimal airport locations in terms of 

minimizing the cost imposed on airport users and communities.  
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Q3. How can the optimum solution be decided in consideration of various factors 

that may impact future traffic demand? 

 Deregulated and competitive market conditions have created substantial demand 

uncertainty for the airport industry. Airlines can select their hub locations and routing 

strategy depending on the market environment. Also, the impact of pandemic diseases or 

global financial crisis can largely impact air travel demand. In the presence of the air 

traffic demand uncertainty, the researcher considered three what-if demand scenarios, 

both airline-driven demand changes and the pandemic impact on the aviation market. The 

demand uncertainties were found to interact with the cost functions of the optimization 

model. The stochastic approach and use of the Monte Carlo simulation method 

demonstrated the effectiveness of identifying an optimal solution in the face of 

uncertainties of future demand.  

Conclusions 

Theoretical Implications  

The present research provides important contributions to the body of knowledge, 

particularly to the literature on airport capacity problems. Firstly, while each cost 

function serves as an independent component of the optimization model to identify an 

optimal solution, at the same time it interacts with other cost functions and demand 

changes over time. The research formulated six cost functions in the optimization model 

to address the specific needs of various airport stakeholders. No previous airport capacity 

optimization model was found that introduced a wide range of cost functions. Also, a 

trade-off effect between the costs for airport capacity increases and airport congestion 

was considered.  



141 

 

Secondly, the results of the research are not only the cost optimization model for 

airport expansion but also an integrative optimization model to solve airport choice 

problems in metropolitan areas. To achieve this goal, airport access and noise problems 

are incorporated into the optimization model as part of the mathematical form. The 

different levels of airport access and noise costs imply the impact on the communities, 

passengers, and employees, which can be regarded as such a critical subject when 

deciding on airport location. 

Thirdly, in the presence of air traffic demand uncertainty in a competitive market 

environment, the findings demonstrated the effectiveness and benefits of a combination 

between the mixed-integer non-linear programming (MINLP) and the Monte Carlo 

simulation method. To the best of the knowledge of the researcher, the present study is 

the first to use the combination of the two research methods to identify an optimal 

solution for airport capacity expansion over time in metropolitan areas.  

Lastly and importantly, the research also contributes to the body of knowledge by 

introducing an optimization model to solve airport capacity problems in metropolitan 

areas. Airports in metropolitan areas are highly dependent on the urban economy and 

social dynamics, so the integrated development of airports within the metropolitan region 

is critical. Hence, the consideration of connectivity between airports and population 

centers and aircraft noise issues within the optimization model will support decision-

makers taking a more strategic approach for the planning and decision process. 

Practical Implications 

This research has been motivated by real-world problems with airport capacity 

issues which can be observed in many metropolitan areas. Because this problem can 
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engage various types of stakeholders, such as airport operators, airlines, tenants, 

employees, communities, and passengers, the cost functions need to address their 

concerns. For instance, the cheapest solution would be to develop a new airport in a 

remote area from population centers to reduce land acquisition costs. However, this 

approach would require more costs over time for passengers to access the airport. 

Similarly, developing a new airport next to a large residential area would incur excessive 

noise costs to the communities, even though it would help passengers reduce access 

costs. 

Additionally, three What-if Models under the stochastic approach can help the 

airport industry to better understand the potential impact of air traffic uncertainty on the 

future costs for airport development and operations. For instance, the model outcomes 

from What-if Model 3 can support airport authorities and operators to re-establish the 

future expansion strategy and modify the current investment plan in consideration of the 

COVID-19 pandemic impact. 

Limitations 

Chapter 1 of this dissertation describes several limitations and delimitations for 

the present study. Also, Chapter 3 presents many assumptions to formulate the 

optimization algorithm of the model. Because this optimization model had a strong focus 

on minimizing overall costs to expand airport capacity, other sources of optimization 

such as maximizing profits or throughputs were not considered. If the objective function 

changes, the optimization model may suggest different solutions. 

Another limitation of this research is related to the large scale of the model to 

solve the airport capacity problem in metropolitan areas. Having a macro view on the 
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problems, several practical factors such as the economies of scale and each component of 

airports such as runway and cargo terminal were not considered. This study also did not 

consider a seasonal factor of the airport peak-time operations, which can be further 

reviewed and incorporated into this optimization model. In contrast to most previous 

studies which focused on one specific component of the airport system, the present study 

provides a global planning model, considering multi-airport systems in metropolitan 

areas.  

Last, it needs to be noted that this study did not take into account the impact of 

political events or socio-economic factors such as change of government or job creations 

associated with airport expansion, which may lead to a radical decision about airport 

capacity projects. The present research intentionally excluded the political or socio-

economic factors to have a pure focus on the cost function and demand uncertainties of 

the industry.  

Recommendations 

 The results of the present study indicated that future traffic demand uncertainty 

may have an impact on the optimal solution to expand airport capacity in metropolitan 

areas. Therefore, regulators, airport authorities, and airport planners should carefully 

consider the uncertainty factors that would influence the future demand profile. Because 

the number of demand scenarios that can be considered is finite, a careful approach to 

select the meaningful demand scenarios can be one of the major concerns with the future 

study. Also, by careful examination of the latest actual traffic data from reliable data 

sources, researchers can produce more feasible demand scenarios. 
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When developing an optimization model, it is important to understand that the 

model can become complex in proportion to the number of input variables such as the 

number of airports and population centers and the planning period. As reviewed in the 

discussion section of this chapter, optimization models can become quite large if the 

number of input variables cannot be controlled, which is particularly true for multi-period 

optimization models. Therefore, a careful selection of input variables and constraints 

during the modeling process is a key for the successful development of the optimization 

model. Pre-processing with a simplified model structure can help to reduce the potential 

problem when a full-scale optimization model is processed. Also, the use of integer 

variables can be an effective measure to reduce the complexity of the model.  

Future Research Opportunities 

This section proposes opportunities for future research to augment the presented 

optimization model and to improve the accuracy of the model performance. Three areas, 

as below, are identified to expand the benefits of this optimization model. First, different 

sources of uncontrollable variables can be considered to augment the stochastic 

optimization model. Additional uncertainty factors, such as competition with high-speed 

trains, financial crisis, political events, airline competition and consequent airfare 

changes, technological innovation, and demographic changes might also be populated as 

uncertain and uncontrollable variables. 

Second, future studies could consider additional constraints in consideration of 

real-world problems associated with financing and resource capacity: availability of land, 

maximum allowable fiscal budget, and the maximum number of airports in consideration 

of the size of the metropolitan area. By modifying the mathematical model algorithm, any 
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other constraints can be added to the optimization model. However, because the nature of 

different constraints may clash with each other during the modeling process, careful 

treatment is required to consider additional constraints. For instance, if the maximum 

budget allowance cannot pay for the required capital cost, the model needs to be 

structured for a capacity expansion project to be implemented under the budget 

constraints and over the multiple-year timeline.  

Last, while this optimization model was developed to identify an optimal solution 

for airport capacity issues in metropolitan areas in terms of minimizing required costs, it 

can also be used to optimize other interested objective functions. For instance, this model 

can be used to find an optimal solution to maximize social benefits, passenger 

throughput, and commercial revenues. Different types of decision-making research 

methods such as Markov process model, dynamic programming, and goal programming 

can be considered, tailored to the objective functions. 
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APPENDIX A 

Sydney Model Algorithms and Input Data 
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APPENDIX B 

Demand Comparison: Sydney Model, What-if Model 1, 2, and 3  

 

 

 
  

Passenger Demand Demand Growth Passenger Demand Demand Growth Passenger Demand Demand Growth Passenger Demand Demand Growth

1 36,967,350                    36,967,350                         36,967,350                   36,967,350                  

2 38,279,690                    1.035 38,250,486                         1.035 39,111,417                   1.058                       35,986,799                   0.973                            

3 39,638,618                    1.035 39,169,645                         1.024 38,858,892                   0.994                       37,602,505                   1.045                            

4 41,045,788                    1.035 40,148,102                         1.025 34,204,389                   0.880                       38,629,304                   1.027                            

5 42,502,913                    1.035 41,791,363                         1.041 31,670,552                   0.926                       39,022,004                   1.010                            

6 44,011,766                    1.035 43,300,867                         1.036 33,229,605                   1.049                       41,105,429                   1.053                            

7 45,574,183                    1.035 44,338,788                         1.024 39,478,526                   1.188                       42,614,222                   1.037                            

8 47,192,066                    1.035 45,670,725                         1.030 40,809,068                   1.034                       44,034,832                   1.033                            

9 48,867,384                    1.035 46,967,773                         1.028 41,035,354                   1.006                       44,375,769                   1.008                            

10 50,602,176                    1.035 48,459,469                         1.032 45,631,200                   1.112                       32,194,925                   0.726                            

11 52,029,157                    1.028 49,964,135                         1.031 51,549,587                   1.130                       11,245,000                   0.349                            

12 53,496,379                    1.028 50,981,904                         1.020 51,296,195                   0.995                       7,871,500                     0.700                            

13 55,004,976                    1.028 52,475,163                         1.029 46,120,477                   0.899                       11,245,000                   1.429                            

14 56,556,116                    1.028 53,954,437                         1.028 46,589,648                   1.010                       21,719,962                   1.932                            

15 58,150,998                    1.028 55,170,030                         1.023 43,517,448                   0.934                       32,194,925                   0.986                            

16 59,790,856                    1.028 56,760,581                         1.029 41,154,945                   0.946                       44,375,769                   0.876                            

17 61,476,958                    1.028 57,974,689                         1.021 40,760,129                   0.990                       38,864,819                   1.034                            

18 63,210,608                    1.028 59,553,339                         1.027 40,825,678                   1.002                       40,181,446                   1.014                            

19 64,993,147                    1.028 61,136,862                         1.027 43,698,754                   1.070                       40,738,559                   1.017                            

20 66,825,953                    1.028 62,538,730                         1.023 51,367,843                   1.175                       41,411,421                   1.018                            

21 68,710,444                    1.028 64,648,786                         1.034 54,885,466                   1.068                       42,171,306                   1.049                            

22 70,648,078                    1.028 65,846,728                         1.019 54,759,358                   0.998                       44,256,994                   1.078                            

23 72,640,353                    1.028 67,228,850                         1.021 52,750,133                   0.963                       47,722,916                   1.057                            

24 74,688,810                    1.028 68,810,072                         1.024 51,799,102                   0.982                       50,445,096                   1.013                            

25 76,795,034                    1.028 70,339,719                         1.022 59,937,215                   1.157                       51,121,030                   1.093                            

26 78,784,025                    1.026 72,404,189                         1.029 61,437,827                   1.025                       55,877,434                   1.040                            

27 80,824,531                    1.026 75,212,023                         1.039 63,342,324                   1.031                       58,115,629                   0.996                            

28 82,917,886                    1.026 77,995,619                         1.037 58,244,346                   0.920                       57,901,473                   1.143                            

29 85,065,459                    1.026 80,388,524                         1.031 67,597,212                   1.161                       66,209,061                   0.946                            

30 87,268,654                    1.026 82,950,506                         1.032 77,304,128                   1.144                       62,628,724                   0.919                            

31 89,528,912                    1.026 84,525,736                         1.019 79,628,430                   1.030                       57,535,662                   0.979                            

32 91,847,710                    1.026 86,872,170                         1.028 88,671,987                   1.114                       56,298,703                   0.930                            

33 94,226,565                    1.026 89,465,304                         1.030 84,589,256                   0.954                       52,339,604                   1.132                            

34 96,667,033                    1.026 92,915,980                         1.039 83,266,092                   0.984                       59,254,264                   1.076                            

35 99,170,709                    1.026 96,624,256                         1.040 85,744,381                   1.030                       63,742,051                   1.095                            

36 101,739,230                  1.026 99,551,970                         1.030 85,571,335                   0.998                       69,783,388                   1.067                            

37 104,374,276                  1.026 103,421,555                       1.039 85,616,018                   1.001                       74,458,249                   1.122                            

38 107,077,569                  1.026 106,873,766                       1.033 88,110,135                   1.029                       83,569,937                   0.975                            

39 109,850,878                  1.026 110,980,924                       1.038 96,391,362                   1.094                       81,497,719                   0.913                            

40 112,696,015                  1.026 114,004,044                       1.027 98,727,862                   1.024                       74,404,766                   1.115                            

41 115,614,841                  1.026 117,346,642                       1.029 108,305,220                 1.097                       82,928,406                   1.130                            

42 118,609,265                  1.026 120,532,603                       1.027 113,530,071                 1.048                       93,702,374                   1.054                            

43 121,681,244                  1.026 122,088,678                       1.013 115,391,868                 1.016                       98,768,114                   1.101                            

44 124,832,788                  1.026 125,120,139                       1.025 132,344,664                 1.147                       108,734,959                 1.024                            

45 128,065,957                  1.026 128,646,024                       1.028 131,496,422                 0.994                       111,395,821                 1.003                            

46 131,382,865                  1.026 131,575,293                       1.023 131,889,859                 1.003                       111,710,480                 1.008                            

47 134,785,681                  1.026 135,318,610                       1.028 142,525,087                 1.081                       112,617,720                 1.052                            

48 138,276,630                  1.026 138,245,551                       1.022 143,316,536                 1.006                       118,454,452                 0.983                            

49 141,857,994                  1.026 142,900,278                       1.034 157,601,513                 1.100                       116,382,403                 1.047                            

50 145,532,116                  1.026 146,977,222                       1.029 156,896,513                 0.996                       121,866,505                 0.915                            

Mean 1.028 1.029 1.032 1.027

Median 1.026 1.028 1.024 1.027

St. Dev. 0.00357 0.00626 0.07308 0.19392

Sydney Model What‐if Model 1 What‐if Model 2 What‐if Model 3
Year
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