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Abstract 
Microbial ecosystems are complex, with hundreds of members interacting with 
each other and the environment. The intricate and hidden behaviors underlying 
these interactions make research questions challenging – but can be better 
understood through machine learning. However, most machine learning that is 
used in microbiome work is a black box form of investigation, where accurate 
predictions can be made, but the inner logic behind what is driving prediction is 
hidden behind nontransparent layers of complexity.  

Accordingly, the goal of this dissertation is to provide an interpretable and 
in-depth machine learning approach to investigate microbial biogeography and to 
use micro-organisms as novel tools to detect geospatial location and object 
provenance (previous known origin). These contributions follow with a 
framework that allows extraction of interpretable metrics and actionable insights 
from microbiome-based machine learning models. The first part of this work 
provides an overview of machine learning in the context of microbial ecology, 
human microbiome studies and environmental monitoring – outlining common 
practice and shortcomings. The second part of this work demonstrates a field 
study to demonstrate how machine learning can be used to characterize patterns 
in microbial biogeography globally – using microbes from ports located around 
the world. The third part of this work studies the persistence and stability of 
natural microbial communities from the environment that have colonized objects 
(vessels) and stay attached as they travel through the water. Finally, the last part 
of this dissertation provides a robust framework for investigating the microbiome. 
This framework provides a reasonable understanding of the data being used in 
microbiome-based machine learning and allows researchers to better apprehend 
and interpret results.  

Together, these extensive experiments assist an understanding of how to 
carry an in-silico design that characterizes candidate microbial biomarkers from 
real world settings to a rapid, field deployable diagnostic assay. The work 
presented here provides evidence for the use of microbial forensics as a toolkit to 
expand our basic understanding of microbial biogeography, microbial community 
stability and persistence in complex systems, and the ability of machine learning 
to be applied to downstream molecular detection platforms for rapid and accurate 
detection.  
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1 Machine learning Applications in Microbial Ecology, 
Human Microbiome Studies, and Environmental 
Monitoring 

Preface 
It is common for microbiome researchers to employ machine learning to 
investigate their research questions. This section provides an overview of many of 
these studies as they relate to our health and built environments. We discuss a 
variety of machine learning algorithms that are common to microbiota analysis – 
along with a comparison to traditional multivariate statistics. Additionally, this 
section compares open-source machine learning toolkits that can be used to 
investigate microbial data. Following this, we present an argument for the need 
for reporting interpretable metrics in microbiome-based machine learning studies. 
As reproducibility is a concern in studies that employ machine learning, more 
interpretive open-source software should be acknowledged as an integral part of 
the modern workflows of investigating microbiota. 

This section aimed to review machine learning in the context of microbes as they 
relate to our health and built environments. Provided was an in-depth overview 
of microbiome studies employing a variety of machine learning algorithms – from 
microbial ecology to the human microbiome and environmental monitoring. We 
then proceeded to compare the machine learning algorithms (supervised and 
unsupervised) used in these studies, with brief mention of advantages over 
traditional multivariate statistics. Additionally, provided was a thorough 
comparison of open-source toolkits that can be used for predictive and exploratory 
machine learning modeling of microbial datasets. Our review followed with 
mentions of shortcomings of common machine learning practice in the 
experimental microbiome literature, and how machine learning interpretation 
could be improved and reported. As reproducibility is a concern in studies that 
employ machine learning, more interpretive open-source software should be 
acknowledged as an integral part of the modern workflows of investigating 
microbiota. 

Abstract 
Advances in nucleic acid sequencing technology have enabled expansion of our 
ability to profile microbial diversity. These large datasets of taxonomic and 
functional diversity are key to better understanding microbial ecology. Machine 
learning has proven to be a useful approach for analyzing microbial community 
data and making predictions about outcomes including human and 
environmental health. Machine learning applied to microbial community profiles 
has been used to predict disease states in human health, environmental quality 
and presence of contamination in the environment, and as trace evidence in 
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forensics. Machine learning has appeal as a powerful tool that can provide deep 
insights into microbial communities and identify patterns in microbial community 
data. However, often machine learning models can be used as black boxes to 
predict a specific outcome, with little understanding of how the models arrived at 
predictions. Complex machine learning algorithms often may value higher 
accuracy and performance at the sacrifice of interpretability. In order to leverage 
machine learning into more translational research related to the microbiome and 
strengthen our ability to extract meaningful biological information, it is important 
for models to be interpretable. Here we review current trends in machine learning 
applications in microbial ecology as well as some of the important challenges and 
opportunities for more broad application of machine learning to understanding 
microbial communities. 
 

1.1 Introduction 
Environmental microbial communities are extremely diverse and play a role in 
driving many biogeochemical cycles and regulating human health. These 
environmental communities also have various applications in biotechnology. The 
ability to probe microbial diversity has been enabled through the increasing 
availability of high throughput sequencing (HTS) technologies. The microbial 
diversity of the human microbiome as well as soil and ocean microbial 
communities has been expanded through large-scale collaborative sequencing 
efforts such as the Human Microbiome Project [1] and the Earth Microbiome 
Project [2] as well as the TARA OCEANS project [3]. These large-scale efforts have 
provided baseline data for the microbial communities found in diverse settings. 
The low cost of sequencing now allows for large scale studies of systems and the 
generation of microbial community profiles for hundreds and thousands of 
samples. This scale of data necessitates methods capable of extracting meaningful 
information from these large datasets. Natural microbial communities have the 
potential to provide key insights into environmental phenomena and may be 
useful in predicting environmental phenomena. Machine learning (ML) has been 
employed to find patterns in data that can be predictive of various phenomena. In 
recent years machine learning has been applied to microbial community data to 
classify samples and predict various outcomes [4], [5], [6]. There is potential for 
expansion of the use of ML for microbial ecology studies. In this review, we seek 
to provide an overview of ML applications in microbial ecology and present some 
challenges and opportunities for the expansion of ML applications in the study of 
microbial communities. 
 

1.2 Next-generation sequencing methods in microbial ecology 
Molecular methods have been used in microbial ecology for decades employing 
sequencing of ribosomal RNA genes to profile microbial diversity in settings 
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ranging from soil and aquatic environments to hydrothermal vents and the built 
environment [7], [8], [9]. With the expansion of high throughput sequencing, the 
ability to generate thousands of sequences from hundreds of samples in a single 
sequencing run is possible [10], [11]. The application of next generation 
sequencing in microbial systems follows a pipeline that includes both wet lab and 
computational methods (Fig. 1.1). A goal of molecular profiling of microbial 
communities is to obtain a comprehensive assessment of the taxonomic and 
functional diversity of a community. In order to obtain this assessment, there are 
a number of important considerations that must be addressed during the analysis 
pipeline. The pipeline starts with wet lab methods for molecular profiling of 
microbial communities, which involves sample collection, extraction of nucleic 
acids from the environment or host and library preparation for sequencing Fig. 
1.1. There are a number of biases that can be introduced with the wet lab portion 
of the methods [12]. In particular, extraction of DNA with different methods can 
result in differential extraction efficiencies for different taxa and thus has the 
potential to skew diversity assessments. Often sequencing of DNA for microbial 
community profiling can take the form of marker gene surveys which profile the 
diversity of either taxa (small subunit rRNA such as the 16S rRNA for bacteria and 
archaea and 18S rRNA for eukaryotes) or of a particular functional gene. The 
choice of sequencing primers for marker gene surveys can also introduce bias as 
degenerate primers are not truly universal and may miss key microbial groups. 
These biases are important to consider in planning study design. Alternatively, 
shotgun metagenomic methods can be employed to profile the complement of 
genes that are present in a sample. 

Figure 1. 1 
Illustrative pipeline for the investigation of microbial communities using 
metagenomics. 

Sequencing depth is another key consideration in the process of profiling 
microbial communities. Sequencing is a sampling-based approach. Therefore, 
with increased sequencing depth, the diversity of reads is more completely 
sampled and thus diversity estimates are more reflective of the natural system. 
After sequencing, the primary analyses are computational. While the 
computational portion of the pipeline greatly depends on the goals of the study, 
often this portion is divided into sequence processing to generate a table of 
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samples and taxonomic features in each sample followed by analysis methods to 
assess and link microbial diversity with various outcomes. A lot of work has been 
done related to processing of sequencing reads into meaningful data tables. This 
has included methods for binning marker genes into operational taxonomic units 
(OTUs). These OTUs are features that are representative of some biologically 
meaningful categories. Methods such as UCLUST [13] (often implemented in 
QIIME1 [14]) and mother [15] bin 16S rRNA reads based on percent identity to 
other reads in the dataset into OTUs. More recent methods have sought to cluster 
sequences into identical groups rather than cluster by some fixed percent identity. 
These approaches such as DADA2 [16] have employed denoising algorithms to 
correct sequencing errors and then dereplicate sequences into bins of identical 
sequences known as Amplicon Sequencing Variants (ASVs) or Exact Sequence 
Variants (ESVs). Each of these methods has advantages and limitations. They are 
all similar in that they are approaches for grouping marker gene sequences into 
biologically meaningful bins that result in feature tables for downstream analysis. 

Much of the downstream analyses of feature tables generated from microbial 
community data has focused on the application of commonly used ecological 
measures for processing microbial community data. Methods such as alpha 
diversity assessments as well as beta diversity and multivariate statistics have 
been commonly used. A number of issues have been identified related to the 
application of methods designed for datasets with tens of features to highly 
dimensional datasets with thousands of features [17]. For example, specific 
diversity metrics have been shown to be highly impacted by the dimensionality 
and scale of the data, while others are less prone to errors resulting from highly 
dimensional data. Additional metrics, such as UniFrac distances, were developed 
that allowed researchers to more fully extract meaningful information from these 
marker gene surveys [18]. However, many of these methods seek to understand 
the data through decreasing dimensionality of the data and often can lose some of 
the important information that is contained within the rich datasets of microbial 
community profiles. For example, principal coordinate analysis (PCoA) is 
commonly used to assess overall differences in diversity. PCoA analysis is 
performed using distance or dissimilarity matrices of the microbial community 
profiles using metrics such as UniFrac distance or Bray-Curtis dissimilarity. While 
useful, these methods collapse the highly dimensional datasets and assess overall 
similarity or dissimilarity. This process can often lose important information and 
bias observations to highly abundant or highly prevalent features. 

OTU-level analyses have also been important for analyzing the relationship 
between particular features in microbial data and specific outcomes. Indicator 
Species Analysis has been important for environmental monitoring. In Indicator 
Species Analysis, the prevalence of a species or OTU is linked to particular 
treatments or environmental states. Each OTU is given an indicator value (IndVal) 
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which details how indicative that species is of the particular outcome. 
Additionally, differential abundance analysis has often been used to better 
understand differences between samples, categories, or particular outcomes on the 
level of particular features. Methods such as DESeq2 [19] and 
metagenomeSeq [20] have been used to identify which features are differentially 
abundant between different categories. DESeq in particular was originally 
developed to understand differentially expressed genes in RNASeq datasets. One 
advantage of the use of these methods for differential abundance analysis is that 
these approaches have been designed to work well with sequencing datasets and 
use normalization approaches tailored specifically to sequencing data. One of the 
limitations of differential abundance analysis is the ability to understand the 
importance of multiple features or the interaction of features in a particular 
outcome. Differential abundance analyses treat features as independent and it can 
be difficult to glean how increased or decreased abundance of groups of features 
may be a hallmark of a particular sample type or treatment category. 

In addition to the methods described above, advanced computational methods are 
being employed to assist in analyzing the increasing amounts of data. In particular 
ML is being used with increasing frequency to use microbial communities to 
predict different outcomes. ML has advantages in that it is able to more fully 
appreciate the depth of data generated in microbiome studies as well as build 
predictive models for outcomes based on microbial community data. In the 
following sections we will provide an overview of commonly used ML methods, 
discuss key steps to be considered in the ML process and provide examples of how 
ML can be used in microbiome studies in the human microbiome, environmental 
monitoring, and forensics. 

1.3 Machine learning and microbial community data analysis 
In the context of microbial ecology, applied machine learning involves creating 
and evaluating models that use algorithms capable of recognizing, classifying and 
predicting specific outcomes from data. ML approaches take various forms 
including unsupervised, semi-supervised, reinforced, or supervised learning [21]. 
For example, often the goal of supervised machine learning (SML) applied to 
microbial community data is to construct a decision rule (i.e. a model) from a set of 
collected observations (i.e. samples) to predict the condition (i.e. response label (Y); 
such as an assigned category or value to each observation that have meaning to 
the model-operator) of an unlabeled sample using a set of measurements from 
next generation sequencing instruments. In microbiome studies this input data 
takes the form of a frequency count matrix of the observed microbial taxa from a 
sample (i.e., input variables (X) and their assigned values). Input variables are often 
referred to as features and samples as observations and will be used interchangeably 
throughout this review. 
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Figure 1. 2 
Schematic representation of unsupervised and supervised forms of learning 
and several ML methods predicting three conditional response labels 
(blue/red/yellow). (A) Depicts a common microbial frequency matrix containing 
observations or samples (N), features (X1, …, X23) and multiple class labels (Y). 
Input data are algorithmized and processed to either predict which 
cluster Y belongs to (unsupervised) or to find a best fit decision boundary 
between X and Y (supervised). (B) Linear SVM classifier demonstrating 
separation between class labels where the hyperplane maximizes the distance 
(margin) between the nearest data training points. Support vectors refer to the 
three position vectors drawn from the origin of the sample positions (dashed 
circle) with the goal of maximizing the distance between the optimal hyperplane 
and the support vectors (max-margin) so that a decision boundary can be drawn. 
(C) A decision tree constructed for the classification of samples into Y based on 
input feature values. Trees start from a root node (t0) and are grown to various leaf 
nodes (closed circle) to end at a terminal node (dashed circle) so that bootstrap 
aggregated predictions across terminal nodes are averaged across k-trees for best 
predictions of Ŷ. (D) A neural network displaying the structure of successive 
layers. Input values of X are transmitted to the proceeding hidden layer which 
passes weighted connections to the output layer for predictions of Ŷ. 
 
While there are other forms of learning that have been used on microbial 
community data, this manuscript discusses unsupervised techniques and 
supervised machine learning methods commonly applied to microbial datasets. 
The principal distinction between unsupervised (USML) and supervised machine 
learning (SML) is that in USML samples are segregated using features without any 
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reference to response labels and the prediction is to which cluster a response may 
belong to, whereas the SML finds a best fit decision boundary between features 
and response labels [22] (Fig. 1.2A). A more precise overview of these methods is 
introduced below. 
 

1.3.1 Unsupervised multivariate analysis common to marker-gene analysis 

Unsupervised techniques are often employed for initial exploratory analysis of 
high-dimensional metagenomic data and for generating hypotheses for 
subsequent analysis as they aid in visualization and can search for structure in 
data that do not have predefined response labels assigned to observations. These 
methods operate with the goal of identifying homogenous subgroups by 
clustering data (hierarchical or centroid) or to detect anomalies by finding patterns 
through dimensionality reduction (DR) techniques. An example of DR by some 
unsupervised techniques (Principal Coordinate Analysis: PCoA and t-Distributed 
Stochastic Neighbor Embedding: t-SNE) is to take data points from a high-
dimensional feature set and project them in low-dimensions to encapsulate the 
largest amount of statistical variance in a set of observations while preserving 
structure and minimizing information loss [23]. In USML, input data is either 
continuous data of features for each observation or a distance matrix of similarities 
between community composition. Observations that cluster together in USML 
represent microbial communities from samples that are more similar in 
composition. 
 

1.3.1.1 K-means clustering (centroid) 

The objective of K-means [24] is to cluster samples into a specified number of (k) 
non-overlapping subgroups (clusters) using distances calculated between features 
so each data point belongs to only one group. This technique assigns data points 
to a cluster such that the sum of squared distance between data points and the 
centroid (average of all data points represented by the geometric center of the 
cluster) is minimized. By reducing intra-cluster variation, data points are arranged 
to construct a cluster that assumes a spherical shape surrounding the centroid and 
allows different subgroups of data to remain as far apart as possible. A drawback 
of K-means is that it cannot construct clusters well on data points that are 
distanced to a more complex geometric shape. An additional constraint is that a 
pre-defined number of clusters is required, which necessitates assumptions to be 
placed on the structure of data prior to analysis. 
 
1.3.1.2 Principal Coordinate Analysis (PCoA) 

In PCoA analysis, data are decomposed into components to maximize the linear 
correlation between data points in a dissimilarity matrix, such as microbial taxa as 
input features [25]. Through a “coordinate transform”, x number of data points are 
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replaced to newly derived y coordinates, thus reducing the dimensionality of a 
dataset by discarding the coordinates that may not capture a threshold of variance 
in the microbial community data. This technique preserves the global structure of 
the data while projecting it to low dimension. By mapping nearby points to each 
other and faraway points to each other, linear variance in the global relationships 
of the data are maximized to retain a faithful representation of the actual distances 
between original data points [23]. This method works from distance matrices 
calculated from biologically meaningful metrics such as UniFrac and is commonly 
employed in microbial analysis [26]. 

1.3.1.3 t-Distributed stochastic neighbor embedding (t-SNE) 

In t-SNE analysis, data points are transformed and assigned a probability based 
on similarity to define relationships in high-dimension, guided by a Students t-
distribution to help reduce crowding of data points during visual projection [27]. 
As the name entails, this method tries to identify close neighbors (samples with 
similar measurements) and tries to arrange these points in a low-dimension 
projection such that the close neighbors remain close and distant points remain 
distant. In contrast to PCoA that tends to preserve long distances for global 
retention of the original data, t-SNE tries to represent local relationships in the 
data, thus capturing non-linear variance and is not as faithful to the original state 
of the data [23]. Certain fields that use high-dimensional data currently benefit 
from the local non-linear structure of this method, such as single cell RNA-seq [28]. 
T-SNE is not commonly employed for metagenomic data despite its utility as a
promising exploratory technique for the analysis of microbial
communities [29], [30].

1.3.2 Supervised machine learning methods common to microbiome study 

Supervised machine learning (SML) is a more elaborate form of exploring marker-
gene datasets since unlike unsupervised methods, response labels (Y) are assigned 
to each sample in the dataset, grouping them into meaningful categories. A more 
targeted investigation of data can be achieved since the model is being trained to 
learn the structure of features (X) (training set) to create rules where they can serve 
as predictors of phenomena or outcome. In other words, which feature (X) maps 
to the response label (Y). Once trained, this model can intake new unlabeled 
samples with similar features (testing set) and predict their output (Y) based on 
what it has learned from the training set. SML can be used with continuous 
numerical outputs (regression: Y = ℝ.; continuous traits such age, blood pressure, 
concentration of contaminant) or categorical outputs (classification: X → Y; binary 
or symbolize grouped conditions such as ‘diseased’ or ‘healthy’). The following 
section seeks to provide an overview of some of the most common SML algorithms 
for microbiome-based prediction tasks (outlined as implemented methods 
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in Table 1.1). We have focused our overview to primarily classification 
approaches, although this collection of methods could apply to regression as well. 

Table 1. 1 
Summary of ML techniques used for microbiome-based prediction tasks. This 
table briefly summarizes each technique, provides the source of the software, 
noteworthy ML implementations and interpretation of its result with reference to 
either the source study or specific studies that have applied these techniques for 
microbiome profiling. This table is not exhaustive but mentions current and 
commonly employed ML and ML related pipelines tailored to the characteristics 
of microbiome data or that are domain agnostic but relevant to research questions 
relating to the microbiome. 
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Software 
name Summary Source Example 

Impleme-ntation Remarks URL 

SIAMCAT (*) 

Statistical 
Inference of 
Associations 

between 
Microbial 

Communities 
And host 

phenoTypes 

R package 
‘SIAMCAT’ 

https://siamca
t.embl.de/

FS, ML, INTERP, 
VIS 

Confounder 
analysis 

Enables cross-
study comparison 

Advances 
visualization 

https://www.b
iorxiv.org/cont
ent/10.1101/20
20.02.06.931808

v2  

DeepMicro (*) 

Deep 
representation 

learning for 
disease 

prediction 
based on 

microbiome 
data 

Python: 
https://github.
com/minoh020
1/DeepMicro  

DR, ML 

Deep 
representation 
learning using 

autoencoders to 
handle high-

dimensional data 

Accelerates model 
training and 

hyperparameter 
optimization 

https://www.n
ature.com/artic
les/s41598-020-

63159-5 

MetAML (*) 

Metagenomic 
prediction An
alysis based 

on Machine L
earning 

Python: 
https://github.
com/segatalab

/metaml  

FS, ML, INTERP, 
VIS 

Enables cross 
study comparison 

of models on 
single cohorts, 
across stages of 
same the same 

study and across 
different studies. 

https://journal
s.plos.org/plos
compbiol/articl
e?id=10.1371/jo
urnal.pcbi.1004

977 

mAML (*) 

An automated 
machine 
learning 

pipeline with 
a microbiome 
repository for 

human 
disease 

classification 

Python: 
https://github.
com/yangfengl
ong/mAML1.0 

Web: 
http://lab.mal
ab.cn/soft/mA

ML/ 

FS, ML, INTERP, 
VIS 

Automates 
optimized, 

interpretable and 
reproducible 

models 

Deployed on a 
user-friendly 

web-based 
platform 

Advanced visuals 

https://pubme
d.ncbi.nlm.nih.
gov/32588040/ 

BiomMiner (*)  

An advanced 
exploratory 
microbiome 
analysis and 
visualization 

pipeline 

Docker: 
https://mbac.g
mu.edu/mbac_
wp/biomminer

-readme/ 

FS, DR, ML, 
INTERP, VIS 

Automatically 
tunes optimal 

hyper-parameters 

Tailored to 
clinical datasets 

Generates web-
enabled visuals 

https://journal
s.plos.org/plos
one/article?id=
10.1371/journal
.pone.0234860 

MIPMLP (*)  

Microbiome 
Preprocessing 

Machine 
Learning 
Pipeline 

Python: 
https://github.
com/louzounla
b/microbiome
/tree/master/

Preprocess 

Web: 
http://mip-

mlp.math.biu.a
c.il/Home 

FS, DR, ML, 
INTERP, VIS 

Approaches for 
standardized ML 

preprocessing 

Consensus 
methods for 

optimal 
performance 

https://www.b
iorxiv.org/cont
ent/10.1101/20
20.11.24.397174
v1.full#ref-12 

MicrobiomeA
nalystR (*) 

Comprehensiv
e statistical, 
functional, 

R package 
‘MicrobiomeAn

alystR’ 

FS, DR, ML, 
INTERP, VIS 

Comprehensive 
analysis reporting https://www.n

ature.com/artic
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and meta-
analysis of 

microbiome 
data 

 

 
Web: 

https://www.
microbiomeana

lyst.ca/ 

Real time 
feedback and 

recommendations 
 

Visual 
comparison with 
a public dataset 

 

les/s41596-019-
0264-1 

Meta-Signer 
(*) 

 

Metagenomic 
Signature 
Identifier 

based on Rank 
Aggregation 
of Features 

 

 
Python: 

https://github.
com/YDaiLab/

Meta-
Signer/tree/m

aster/src 

FS, ML, INTERP 

Ensemble 
learning for 

feature ranking 
 

Identifies a robust 
set of highly 

informative taxa 

https://www.b
iorxiv.org/cont
ent/10.1101/20
20.05.09.085993

v1 

QIIME2 (*)  

Quantitative 
Insights Into 

Microbial 
Ecology 

https://qiime2.
org/ 

FS, DR, ML, 
INTERP, VIS 

Automatic 
tracking of data 

provenance 
 

Multiple user 
interfaces 

 
Plugin support 

https://www.n
ature.com/artic
les/s41587-019-

0209-9 

mothur (*) 
  

Microbial 
community 

analysis 
pipeline 

http://mothur.
org/ 

FS, DR, ML, 
INTERP, VIS 

Can handle data 
from multiple 

sequencing 
platforms 

 
Encapsulates 

large elements of 
the pipeline in 

single command 
 

https://aem.as
m.org/content
/75/23/7537 

scikit-learn 

Simple and 
efficient tools 
for predictive 
data analysis 

Python: 
https://scikit-
learn.org/stabl

e/ 

FS, DR, ML, 
INTERP, VIS 

Robust machine 
learning library 

and support 
system 

 
Supports end-to-
end projects with 

extensive 
documentation 

https://arxiv.o
rg/abs/1201.04

90 

Keras Simple deep 
learning API 

R package 
‘keras’ 

 
Python: 

https://pypi.or
g/project/Kera

s/ 

FS, DR, ML, 
INTERP, VIS 

High-level 
learning API that 
limits the number 

of user actions 
 

Multiple 
deployment 
capabilities 

 
Provides clear 
and actionable 
error messages 

https://link.spr
inger.com/cha
pter/10.1007/9
78-1-4842-2766-

4_7 

caret 

Classification 
And 

REgression 
Training 

R package 
‘caret’ 

FS, DR, ML, 
INTERP, VIS 

Streamlines 
complex 

predictive tasks 
 

Large library of 
available models 

http://topepo.
github.io/caret

/index.html 

mlr Machine 
learning in R 

R package 
‘mlr3’ 

 

FS, DR, ML, 
INTERP, VIS 

Modern and 
extensible ML 
framework for 

https://joss.the
oj.org/papers/
10.21105/joss.0

1903 
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https://mlr3.m
lr-org.com/ 

developers and 
practitioners 

 
Provides a unified 
interface to many 

learners 

H2O.ai Fast scalable 
ML API 

R package ‘h2o’ 
 

Python: 
http://h2o-

release.s3.amaz
onaws.com/h2

o/rel-
zermelo/3/ind

ex.html 

FS, ML, DR, 
INTERP, VIS 

End-to-end 
engine specialized 

for big data 
 

Parallel 
distributed ML 

algorithms 
 

Automatic ML 
interface 

https://journal
s.plos.org/plos
one/article?id=
10.1371/journal
.pone.0238648 

iml 
Interpretable 

machine 
learning 

R package ‘iml’ FS, ML, INTERP, 
VIS 

Feature effects on 
the influence of 

predictions 

https://joss.the
oj.org/papers/
10.21105/joss.0

0786 

LIME 

Local 
interpretable 

model-
agnostic 

explanations 

R package 
‘lime’ 

 
Python: 

https://github.
com/marcotcr/

lime 

FS, ML, INTERP, 
VIS 

Explains 
individual 

predictions of a 
black box ML 

model 
 

Model-agnostic 

https://arxiv.o
rg/abs/1602.04

938 

inTrees Interpretable 
tree ensembles 

R package 
‘inTrees’ FS, ML, INTERP 

Extracts, 
measures, prunes, 

selects and 
summarizes rules 

from a tree 
ensemble 

 
Specific to 

decision trees 

https://link.spr
inger.com/artic
le/10.1007/s41
060-018-0144-8 

dtreeviz Decision Tree 
Visualization 

Python: 
https://github.
com/parrt/dtr

eeviz 

FS, ML, INTERP 

Advanced 
visualizations 

 
Provides user-

friendly 
interpretations of 
prediction paths 

 
Specific to 

decision trees 

https://explain
ed.ai/decision-

tree-
viz/index.html 

ranger 
RANdom 

forest 
GEneRator 

R package 
‘ranger’ FS, ML, INTERP 

Fast 
implementations 
of random forests 

optimized for 
high-dimensional 

data 
 

Has advanced 
and convenient 

functions for 
decision trees 

https://arxiv.o
rg/abs/1508.04

409 

partykit 
A toolkit for 

recursive 
partitioning 

R package 
‘partykit’ FS, ML, INTERP 

Can coerce tree 
models from 

different sources 
into a unified 
infrastructure 

 
Contains a variety 
of novel decision 

https://dl.acm.
org/doi/10.555
5/2789272.2912

120 



 

13 

FS, Feature Selection; DR, Dimensionality Reduction; ML, Machine Learning; 
INTERP, Interpretation Measures; VIS, Visualization Outputs. (*) Denotes 
whether the software Is microbiome-specific (as opposed to domain agnostic). 
 

1.3.2.1 Random Forests (RF) 

Random forests [31] have been extensively deployed to solve a variety of problems 
in microbiota analysis. This method constructs multiple forests composed of 
decision trees by using the information contained in input features (abundance of 
microbial taxa, for example) to successively split samples based on their assigned 
(Y) values. The forests are guided by bootstrapping (drawing a random subset of 
samples with replacement, to be drawn multiple times) and a node splitting 
criterion that uses the information contained in a random subset of features to 
decide how to split each node in each tree (Fig. 1.2C), where the best split is 
selected based on a node impurity estimate (the likelihood of misclassifying new 
samples as a classifier) or the prediction squared error (as a regressor) [32]. The 
fact that hundreds or thousands of decision trees are being constructed in each 
forest using a subset of both samples and features allows an aggregate average of 
the predictions made at each terminal node (Fig. 1.2C). The combination of 
bootstrapping and then aggregating is jointly known as bagging (bootstrap 
aggregating) and frames RF as an ensemble learning method, where multiple 
forests are leveraged to obtain better performance than any single decision tree 
alone [33]. By this effect, RF are an ideal framework for consistently identifying 
“true effects” in complex and heterogenous data (multiple feature types; 
numerical or categorical). Additional factors that make RF appealing in practice is 
that they are an off the shelf, computationally tractable and top performing 
classifier that are robust to outliers, inherently noisy and non-linear data (such as 
metagenomic), and errors in manually curated response labels [34], [4]. Using 
SML with highly dimensional data with limited numbers of observations, such as 
microbial community data, can lead to overfitting. The RF method is less prone to 
overfitting than other SML methods, which contributes to its appeal in microbial 
community analysis [35]. Lastly, decision tree models in general are considered 
interpretable in their evaluation as they aid in extracting meaningful information 
from RF models [36] (Fig. 1.3). 
 

tree 
implementations 

 
Parameterization 
requires expertise 
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Figure 1. 3 
Depiction of performance-interpretability trade-off and random forests 
interpretation. Note that these figures are fictional and are not based on 
experimental quantification (the axes in this figure lack meaning). (A) 
Performance-interpretability tradeoff of commonly deployed algorithms in 
microbiome research. However, in practice, the models characterized here tend to 
varying degrees of accuracy and interpretability based on experimental 
procedure. Had a plot been generated from experiment, model choice and 
complexity could vary such that inconsistent illustrations could arise. By way of 
example: tuning models to become more accurate could result in the belief that 
more accurate models are less interpretable and may not respect whether the 
model infrastructure supports inherently easier interpretation. (B) Hypothetical 
extraction of ‘association’ rules that measure frequent microbial community 
member interactions from fictional decision tree ensembles (tree1, …, tree k) for 
low error predictions of Ŷ. Additionally diagramed is a feature ‘importance’ 
schematic that scores each feature on its relative importance in making predictions 
of Ŷ. 
 

1.3.2.2 Gradient Boosting (GB) 

Gradient boosting [37], when used for decision trees, is an ensemble method that 
uses a process called boosting to combine individual learning algorithms (decision 
trees) successively to arrive at a strong learner. Gradient boosted trees contrast RF 
as an ensemble learner in that each decision tree is constructed in series in attempt 
to reduce the errors of the preceding tree, rather than in parallel. In addition, each 
tree built in GB is a fixed size and is fit on the original data, instead of 
bootstrapping samples as done in RF. Similar to RF, both numerical and 
categorical features can be used, but may be harder in practice to find optimal 
tuning parameters for a good model fit, such as the number of tree estimators. This 
method in particular is sensitive to outliers but efficient for both classification and 
regression, with reports of achieving similar or better accuracy to RF [38].  
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1.3.2.3 Support Vector Machines (SVM) 

The goal of an SVM [39] is to find the best generalized line separation of response 
labels (Y) through a hyper-plane that maximizes the margin between different 
values of Y (or each class) in the label data. A decision boundary is drawn such 
that each class is separated while keeping maximum distance from the closest 
samples as possible (called support vectors that dictate this decision boundary) 
(Fig. 1.2B). SVMs are in the category of linear discriminant SML techniques. 
Although, if a hyperplane cannot justify the separation between classes with a 
clear margin of separation (in the case of non-linear metagenomic data), a so called 
“kernel trick” for a nonparametric form of SVM can be introduced to transform 
the data and satisfy a non-linear separation [40]. Several factors contribute to the 
success of SVM in microbial community analysis in that it is effective in the high-
dimensional nature of the data, where X > N (or the number of members of a 
microbial community as features is larger than the sample set) and that it is also 
computationally tractable since the decision function only uses a subset of the data. 
These models can handle various feature types but can be inherently hard to 
interpret as they do not directly provide probability estimates in their evaluation. 
 
1.3.2.4 L2 regularized logistic regression 

Regularization is a technique used to reduce overfitting. For example, if a model 
is parameterized to learn every small bit of information in the structure of the 
microbial community composition under a given set of labels in training, it may 
not generalize well to make predictions on samples collected and processed 
outside of the training set and is considered overfit. Ridge (L2) 
regression [41] satisfies a model that reduces variance without increasing bias and 
is achieved by placing restrictions on the complexity of parameters (i.e. where to 
ultimately draw the decision boundary to separate response labels). This 
technique adds information to features used in training the model and by adding 
a penalty term to a loss function (estimation of how wrong the relationship is 
between X and Y), enables a constraint on parameter complexity so as to not 
capture every specific detail of the training data. Ridge regression can be used for 
both classification and regression but can be computationally expensive in the case 
of large input feature space. 
 

1.3.2.5 Neural Networks 

Neural networks [42] use a hierarchical model building architecture where 
multiple structured networks of interconnected nodes (neurons) are constructed 
with weights attached at each edge of the network to facilitate mapping inputs 
of X to responses Y (weights being parameters to define strength of connection, 
for example) (Fig. 1.2D). Networks are interconnected through a feed-forward 
propagation mechanism, where each neuron receives input from preceding 
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neurons. The network starts from input layers (microbial taxa feature set; X1, X2, 
…, Xi), that are linked to each neuron in the one or many hidden layers that use a 
backpropagation algorithm to maximize the weights placed at each neuron to 
improve predictive power. This process is iterative, where the last hidden layer is 
met by an output layer to produce a predicted response output (Y) (Fig. 1.2D). 
Neural networks are very dynamic in their ability to identify intricate structure in 
very high-dimensional and complex datasets, making them a tractable technique 
to investigate the role of microbes in complex settings [43]. Neural nets are often 
referred to as “black box” methods as it can be difficult to interpret how decisions 
are made. 
 
1.3.2.6 Deep vs. shallow learning 

Deep learning is a family of both unsupervised and supervised techniques that 
belong to the class of neural networks (Fig. 1.2D). Despite shallow networks 
(dependent on number of layers), all non-deep learning methods such as those 
summarized above can be qualified as shallow learners. Whereas deep learning 
methods automatically alter raw input features by successively extracting 
abstractions of the data to be used as more discriminative features to the learning 
process, shallow learners are more of a manual process that depend on domain 
knowledge for a reduced selection of features that would serve as good inputs for 
a model to make accurate predictions with (i.e., which microbial taxa are 
differentially abundant between response labels). 
 
Shallow learners can also benefit from feature engineering, where new features are 
handcrafted as composites, or abstract representations of multiple raw features 
using heuristics of the domain problem (i.e., agglomerating multiple high-
resolution taxonomic features (ASVs) into a single lower resolution feature 
(Phyla)). 

Although deep learning has shown to create models that are more accurate 
compared with shallow learning methods for microbiome-based prediction 
tasks [44], the models often sacrifice interpretability or understanding of the inner 
logic behind the predictions, which, for microbial-based applications can be 
rewarding in addition to predictive accuracy. An example of learning 
performance-interpretability trade-off is displayed in Fig. 1.3A. 
 
1.4 Advantages of machine learning vs. classical statistics for 

microbial community data 
Microbial ecology has for long relied on traditional statistical analyses to 
summarize data, test hypotheses, and to interpret interactions between features 
and responses on microbial datasets [45]. However, researchers and developers 
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are starting to realize the enormous potential for machine learning in the microbial 
realm. ML methods have some advantages over standard statistical methods. A 
principal distinction between statistical models and ML is that the goal of the 
former is to describe and infer the relationships between variables, whereas the 
latter is designed to optimize the ability to predict an outcome on an external 
dataset. For example, typically SML will use a training set (supplied labels) to learn 
patterns associated with an outcome and a test set (hidden labels) to determine the 
performance of the model. On the other hand, statistical models are primarily 
interested in determining the relationship of the values to the outcome and unlike 
many studies that use ML, most do not require partitioning the data to measure 
performance. 
 
Classical statistical analysis presents microbial ecologists with a two major issues: 
(1) the assumption that features of metagenomic data are independent and 
identically distributed is often harmed through molecular methods of sample 
processing and sequencing; and (2) that data with NGS imposed 
characteristics [46] such as being high-dimensional (number of data points is 
large), sparse (contain a lot of zeros), and compositional (feature set of microbial 
taxa may be co-abundant and are a part of a unit sum) often cannot be met by 
specific assumptions in classical statistics [47]. Many machine learning methods, 
such as the ones summarized above, can accommodate these dynamics of marker-
gene data for a robust interrogation of the complex association patterns in 
microbial communities. 
 
Some of the benefits ML has over classical statistics is that it is particularly effective 
in identifying subtle variation in microbial community structure and can identify 
specific bacterial taxa that underlie prediction of a conditional outcome. Another 
strength of ML is its ability to model a non-linear combination of bacterial count 
data and environmental parameters (a feature space resembling the real-world 
system) that do not need to assume complex transformations or preprocessing, 
which are challenging to molecular data. 

However, since ML can operate without explicit user-instruction, is highly 
configurable, and requires a considerable amount of data, the tendency of these 
methods to overfit data are often overlooked. ML interpretation is also model-
specific, meaning that some ML algorithms have easily understandable metrics 
that can be used to evaluate how the model arrived at the prediction (random 
forests), while some only provide vague accuracy statistics (neural networks). A 
consequence of these less interpretable ‘black box’ machine learning methods is 
that they may leave the user without the utility to uncover associations that 
underlie predictions, or to access probability thresholds of why certain 
observations were grouped to a particular response output. 
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We urge that there is no best use scenario when it comes to ML, and that individual 
researchers should select methodologies that are consistent with the specific 
domain problem, the questions being asked, and based on available data. If the 
goal of the research is to build a predictive understanding of an outcome based on 
microbial community data, SML has appeal since these algorithms are tailored to 
optimize predictive accuracy. However, if the goal is to relate specific microbial 
groups to particular outcome, classical statistical models have utility as well. 
Statistical models have strengths in microbial community analysis, but SML can 
provide a research strategy that can be based on less a priori assumptions of the 
data (such as formulating decisions based on predefined significance level) and 
more emphasis can be placed on ML to identify intricate associations and 
confounding variables that may be hard to detect but are often responsible for 
cause-effect. 
 
In practice, ML can perform surprisingly well on datasets that are sampled from 
and represent messy real-world systems, such as the human body, soil, and 
water [48], [49], [50] and demonstrates superiority over traditional multivariate 
statistics in analyzing metagenomic data. In addition to these benchmarks, there 
is an increase in the development of microbiome-specific 'pipelines' that have user-
friendly ML implementation and can be accessed through web-interfaces, the 
statistical compute language R [51], or Python [52]. A collection of methodologies 
is described in Table 1.1 and although not exhaustive, mentions microbiome-
specific or domain-agnostic procedural extensions of predictive data analysis, 
such as interpreting and visualizing model outputs, as will be described moving 
forward. 
 
1.5 Optimizing model construction and evaluation 
In most domains, input features can be challenging and economically expensive 
to obtain. In the case of marker-gene analysis there is often an overabundance of 
features as a result of how high-throughput sequencing platforms capture genetic 
diversity within samples. It is therefore the goal of those using machine learning 
on microbiome data to consider feature selection methods to identify and remove 
non-informative, noisy or redundant features. As opposed to using every available 
feature in training a model, carefully selecting features may lower the cost of 
computation, reduce the complexity of the model for easier interpretation, and in 
some cases improve generalized predictive performance of the model. 

In most cases, it then becomes tractable to understand microbial community data 
at a deeper and more targeted level, since feature selection allows for easier 
evaluation of the relationship between each input feature (i.e., as a microbial taxa) 
to a response label, or whether any features are used together to drive predictions. 
In addition to its predictive capabilities, ML can be used as a powerful data mining 
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tool and to access a translational component of data, such as assessing whether 
feature-response label linkages in a model correspond to similar conditions in the 
real-world system after which the model is constructed. A noteworthy caveat of 
using SML in translational research is that it would require subsequent testing and 
hypothesis validation independent of the modeling procedure to conclude such 
relationship, since this initial interpretation is at the level of the model only. 

The use of ML in microbiome research is motivated by a range of research 
questions and expected outcomes of modeling. This makes ML a very dynamic 
approach to predictive and exploratory modeling with many user defined 
parameters to be considered for each objective. Many of the ‘pipelines’ described 
in Table 1.1 enforce optimal parameter tuning of ML and associated post-
hoc analysis that enables more of an understanding of microbiome-specific 
research questions; however, it should be noted that the more informed a 
researcher is of how parameterization benefits their domain problem and research 
questions, the better. Likewise, as ‘pipelines’ offer more customization to allow 
more user-defined decision making, there calls for an increase in knowledge of the 
broadly applicable methodologies for predictive data analysis. 
 
Accessibility of evaluation metrics that aid this interpretation may depend on 
which learning method is used. It is integral to consider this at the point of model 
selection in order to optimize ML for microbial community analysis. The 
remainder of this section will describe various techniques for feature selection, 
preferred model evaluation metrics and post-hoc model interpretations, with 
consideration of why particular methods may be better for certain problems. 
 
1.5.1 Exploring feature selection methods 
It is often the case that features in microbiome data greatly exceed the number of 
samples, which can lead to a model overfitting, provides overoptimistic model 
evaluations, and may limit cross-study comparison [53]. Feature selection 
methods generally dictate how well a model generalizes to novel input data by 
allowing for fewer and more discriminative features that maximize performance. 
This section discusses three main categories of feature selection: filter methods, 
wrapper methods, and embedded methods. 
 
Filter methods are typically a pre-processing step performed outside of the 
modeling procedure that statistically measure and score correlations (i.e., 
univariate or multivariate: Spearman’s rank correlation [54], MANOVA [55]) 
between input features so that only those passing some relevant criteria can be 
considered for downstream modeling. Although filter methods are advantageous 
in that they are easy to parameterize, computationally inexpensive and scalable, 
they can be challenging for the following reasons: (1) choosing a specific method 
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assumes prior assumptions about the relationships in the input feature space (2) 
filter methods become challenging when trying to satisfy a specific research 
question and account for potential feature heterogeneity or the multicollinearity 
and complex covariance structure of microbial community data and (3) since filter 
methods are done prior to modeling, they place no consideration on whether a 
specific ML model would maximize performance using the reduced set of features. 
Wrapper methods repeatedly construct models (e.g., classifiers) by iteratively 
adding (forward selection), removing (backwards elimination) and ranking 
(recursive elimination) features to search for an optimized combination that 
improves or marginalizes performance of preceding models. Since wrapper 
methods are a repeated learning process that can exhaust through features, it is 
not as ideal as filter methods because it becomes computationally expensive with 
the high-dimensional structure of metagenomic data. 

Embedded methods are a more computationally tractable approach to feature 
selection by relying on the algorithm itself to inform a ‘useful’ feature. As 
discussed earlier, decision tree algorithms GB and RF satisfy the objective of 
modeling a problem and inherently have a built-in feature selection method that 
operates during model training. Importantly, this provides embedded methods 
the ability to search the full feature space, that is, if the algorithm infrastructure is 
in place to handle such high-dimensional data. To this extent, many feature-
response associations have the potential to be discovered that would otherwise 
have been disregarded had data been pre-processed with restrictive assumptions 
prior to modeling with a filter method, or if certain potentially important features 
were left out of a resulting wrapper method if not considered a part of the ‘optimal 
feature subset’. For these reasons, and on the basis of computational tractability, 
embedded methods are an ideal practical feature selection method for optimizing 
microbial-based ML models. 

Despite not being as extensively reported in studies that profile the microbiome, 
new feature selection regimes that are more biologically motivated, such as 
taxonomy-aware hierarchical feature engineering (HFE) [53] are starting to gain 
traction and may be ideal for when embedded methods struggle with using the 
full search space when using very high-dimensional datasets. 
 

1.5.2 Evaluating and interpreting estimator performance 
For binary classification tasks (assigning samples to one of two response labels), 
receiver operating characteristic (ROC) [56] curves can be used to assess 
performance of the model at various decision thresholds by plotting TPR (true 
positive rate – sensitivity) as a function of the FPR (false positive rate – 1-
specificity). By extension, computing the area under the ROC curve 
(AUC) [57] can provide a measure of how well the model could discriminate Ŷ. 
AUC can range from 0.5 (separation of Ŷ was no better than random chance) to 1.0 
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(perfect separation of Ŷ), assumes that the cost of misclassifying each response 
label is equal and is sensitive to when response labels are skewed. 
 
For multiclass classification (assigning samples to more than two responses), we 
advocate that logistic loss (logloss), also known as cross-entropy loss be used, as it 
measures the quality of predictions using the probabilistic confidence of sample 
separation into respective Y labels and penalizes incorrect or uncertain 
predictions [58]. A low logloss is preferred and reflects the distribution of the 
certainty of predictions and like AUC, is also sensitive to when response labels are 
skewed. 
 
When predicting continuous labels in regression, mean squared error (MSE) is a 
preferred metric that averages the squared difference of the known 
continuous Y value and the predicted value of Ŷ. This metric is desired because it 
is differentiable, which can be optimized better. A lower MSE is favorable as it 
measures how close a fitted line is to the data points. 
 
Often in practice, these metrics are computed for predictions on a single cross-
validated model rather than on separate models from splitting the same dataset 
into a training and testing set. Cross-validation is a method that holds out samples 
which are later used to validate prediction accuracy during the learning process 
and generally leads to models that are less biased and not as overoptimistic as 
compared to train/test splitting [36]. 
 
While accuracy measures as described above are useful, they cannot be used to 
explain why a model made a certain prediction. Typically, many algorithms 
have ad-hoc implementations for model interpretation, such as measuring the 
‘importance’ of each feature or multiple features to response labels. In RF, for 
instance, this is usually done by permuting, or re-arranging the values of input 
features during the learning process, such that, if a feature is ‘important’, changing 
its values will lead to increased error rates in aggregated predictions. This process, 
also called variable importance, is often guided by model-specific information, 
such as the correlation structure between predictors, and usually scales features to 
have a maximum value of 100 to indicate the relative importance (Fig. 1.3B). 
 
1.5.3 A use case summary of current software implementations 
Table 1.1 describes recently developed and commonly employed toolkits 
designed to assist researchers through the steep learning curves of predictive data 
analysis. For instance, SIAMCAT [59] and BiomMiner [60] are comprehensive ML 
‘pipelines’ tailored to clinical microbiome datasets. These pipelines include the 
ability to perform cross-study comparison, automatic tuning of optimal 
parameters for dimensionality reduction, feature selection and predictive 
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modeling, provide post-hoc interpretable measures of feature ‘importance’, and 
can demonstrate the influence of different parameter choices on resulting 
classification accuracy. 
 
Another variety includes web-based tools such as MicrobiomeAnalystR [61], 
which is an ML-toolkit deployed through a web-interface to assist users who may 
lack computational expertise or resources. MicrobiomeAnalystR provides real-
time comprehensive analysis reporting, recommendations, and visual 
comparisons of an implemented model to public datasets. Moreover, commonly 
used analysis pipelines such as QIIME2 [62] and mother [15] include 
implementations of SML algorithms such as RF and SVMs. 
 
Another implementation of ML is DeepMicro[ref], which has been shown to 
perform well when using the microbiome to predict various diseases through deep 
representation learning. This method uses autoencoders to transform high-
dimensional microbiome data into low-dimensional representations, then applies 
classification algorithms on the various learned representations. This method 
accelerates model training and parameter tuning by significantly reducing 
dimensionality of the microbiome profiles. 

Many re-implementations of the original RF, namely cforest [63] and ranger [64], 
include novel resampling schemes for more unbiased estimates of prediction 
accuracy, measures of feature importance, and for computational efficiency on 
high-dimensional data. By extension, tools like inTrees [65] and dtreeviz can be 
used for ad-hoc knowledge discovery, such as to interpret predictions of black box 
models. These systems are designed for extracting, measuring and summarizing 
rules that govern splitting criteria in decision tree ensembles. A brief schematic 
illustration of this process is displayed in Fig. 1.3B. 
 
Other software such as LIME [66] and iml [67] seek to offer robust, model-agnostic 
explanations. These include measuring feature effects on the influence of 
predictions, and in the case of decision tree algorithms, approximating black box 
predictions by constructing less complex 'surrogate’ trees that provide accessible 
interpolations. 
 
As comprehensive as some of the ML-toolkits described above may seem, they are 
still limited in their customization and cross-platform implementation. Given 
these constraints, more advanced users may consider domain agnostic end-to-end 
ML platforms with parallelized implementations for predictive data analysis, such 
as scikit-learn [68], keras [69], caret [70], and H2O.ai [71]. These ‘pipelines’ enable 
more customization for parameter tuning and parameter choices, allow multiple 
models to be built from scratch and ensembled using the same re-sampling 
parameters and provide more access to raw model contents (i.e., indexed 
predicted probabilities during cross-validation, as opposed to just an accuracy 
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metric). Although less intuitive, these methods allow more in-depth analysis than 
the more automated, user-friendly microbiome-specific platforms that are built for 
execution efficiency on smaller ML workloads, rather than for scale. 
 
Nevertheless, the domain specific tools described in Table 1.1 are useful for 
putting into context the biological relevance of the domain problem, allow fast and 
easy exploration, and serve as a good starting point for microbiome-based 
predictive data analysis. These ‘pipelines’ are also beneficial for those with a more 
advanced understanding of ML. While often the choice of pipeline comes down to 
optimization and comfortability as well as if visual outputs are necessary for data 
reporting, it is best practice to choose methodologies handle the characteristics of 
microbiome data and are interpretable, especially if the goal is to translate the 
research into diagnostics. 
 
Aside from software implementations, it is worth mentioning that there are a few 
public repositories for curated microbiome datasets and related metadata from 
some of the most cited studies in the field of microbial ecology: GMRepo [72], 
MLrepo [73], curatedMetagenomicsData [74] and MicrobiomeHD. These public 
repositories can be used to practice ML, benchmark new approaches, and for 
cross-study comparison. 
 
1.5.4 Machine learning for classification of human disease from 

microbiome data 
Microbiome data has been used to link microbial community composition and 
disease state [75]. Diseases such as Inflammatory Bowel Disease, metabolic 
syndrome, obesity, hypertension, cancer, neurological diseases, among others 
have been linked to the human microbiome [76]. Many studies have sought to 
statistically link diversity metrics such as alpha diversity or abundance of 
particular taxonomic groupings with disease states [77]. However, as sample 
numbers have increased, these broad level relationships often do not hold up. For 
example, in studying obesity, it had been proposed that some taxonomic markers 
(Firmicutes and Bacteriodetes) [78] as well as decreased alpha diversity [79] were 
indicators of obesity. Reanalysis of this data, aggregating data across studies, 
demonstrated that some of these coarse measures for the microbiome did not 
adequately predict obesity across larger datasets [80]. The complexity and 
interpersonal variation within the microbiome of humans has complicated the use 
of the broad level metrics. 
 
SML has been proposed as an alternative to other methods for associating 
microbiome with an outcome as SML may be a more robust analysis tool for 
predicting disease state based on microbial community profiles. Table 
1.2 summarizes key studies employing SML to link microbial community data to 
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a specific outcome to illustrate how SML has been previously used and highlight 
some considerations in employing SML to study microbial communities. One 
recent study used fecal microbial community profiles to predict the presence of 
colonic neoplasia [76]. The use of SML allows for models optimized for prediction 
of disease to be trained and validated on out of training set data that will enable 
more robust determination of the link between microbial communities and health 
states. This study explored multiple SML methods for this classification problem 
including L2 Regularized Linear Regression, RF, and SVM. This study found that 
many methods resulted in highly performing models, with RF performing the best 
(AUROC curve 0.695). Other models such as L2-regularized logistic regression, 
XGBoost, L2-regularized SVM with linear and radial basis function kernel all 
performed similarly with AUROC between 0.668 and 0.680. Interestingly, they 
found that while RF performed the best out of the tested models, some more 
interpretable approaches, such as L2-regularized logistic regression, had similarly 
high accuracies. These authors proposed that while more complicated models 
such as RF may result in higher accuracies, interpretability is an important factor 
in considering study design and the application of SML. 
 
Table 1. 2 
Studies using Machine learning in microbial ecology and microbiome studies. 
 

System Classification Input data Number of 
samples Method Training and 

Validation Reference 

Human 

Colonic screen 
relevant 

neoplasias 
 

16S rRNA 

172 patients 
with normal 

colonoscopies, 
198 with 

adenomas, and 
120 with 

carcinomas 
 

L2-
regularized 

logistic 
regression, 
L1- and L2-
regularized 
SVM with 
linear and 

radial basis 
function 

kernels, a 
decision 
tree, RF, 

and 
gradient 
boosted 

trees 

80% Training 
20% Validation 

20% Test 
 

Five-fold cross 
validation 

Topçuoğlu 
et al 2020 

[78] 

Human 

Personalized 
postprandial 

glycemic 
response 

16S rRNA 

900 samples 
800 in training 

100 in 
validation 

Gradient 
boosted 

trees 

800 samples 
used and 

validated with a 
leave one out 

cross validation 
scheme 

100 Sample 
validation 

cohort 

Zeevi et al 
2015 [84] 

Environmental Crop 
Productivity 

Shotgun 
metageno

mic 
12 samples RF 

10 samples as 
training set 

2 samples as 
validation set 

(all 

Chang et 
al 2017 

[91] 
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combinations of 
the 12 samples 

Environmental DOC level 16S rRNA 302 samples 

feed-
forward 
neural 

network 
regression 

and RF 

257 samples as 
training set and 

51 as test set 

Thompson 
et al 2019 

[92] 

Environmental 

Environmental 
quality status 

associated with 
salmon farms 

SSU RNA 
(bacteria 

and 
ciliates) 

152 across 
seven salmon 

farms 

RF and 
SVM 

Models trained 
on six of the 

salmon farms 
and tested with 

the seventh 

Cordier et 
al 2018 

[93] 

Environmental 

Environmental 
impacts of 

marine 
aquaculture 

SSU RNA 
(five 

marker 
genes – 

one 
bacterial, 

one  
foraminife

ral, and 
three 

universal 
eukaryote) 

144 Sediment 
samples RF 

Models trained 
on four of the 
salmon farms 

and tested with 
the other farm 

Frühe et al 
2020 [94] 

Environmental 

Environmental 
quality status 

associated with 
salmon farms 

Bacterial 
16S rRNA 

12 sediment 
samples 

collected from 
six sites 

RF 

12 samples 
validated with a 

leave one out 
cross validation 

scheme 

Dully et al 
2020 [95] 

Environmental 
Contamination 
state (uranium, 

nitrate, oil) 
16S rRNA 

93 samples for 
ground water 

contamination. 
42 samples for 

oil 
contamination 

RF 

Performance 
metrics were 
determined 

from a confusion 
matrix based on 

out-of-bag 
predictions 

 

Smith et al 
2015 [89] 

Environmental Glyphosate 
presence 16S rRNA 

32 16S rRNA 
gene samples 

and 32 16S 
rRNA samples 

ANN and 
RF 

32 samples used 
and validated 

with a leave one 
out cross 

validation 
scheme 

 

Janßen et 
al 2019 

[88] 

Forensic Postmortem 
Interval 16S rRNA 

144 sample 
swabs were 
taken from a 

total of 21 
cadavers 

 

SVR, K-
neighbor 

Regression, 
Ridge 

Regression, 
Lasso 

Regression, 
Elastic Net 
Regression, 

RF 
regression, 
Bayesian 

Ridge 
Regression. 

80% of samples 
for training set 

and 20% of 
samples for 

validation set 

Johnson et 
al 2016 
[102] 

Forensic Postmortem 
Interval 16S rRNA 176 samples RF, SVM, 

ANN 

70% for training 
and 30% for 

testing. 
Accuracy 

determined by 
mean absolute 

Liu et al 
2020 [103] 
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error and 
goodness of fit 
of 15 models. 

Forensic 
Geospatial 

location (port 
of origin) 

16S rRNA 1,218 samples RF 

repeated k-fold 
cross validation 

(k 10 with 3 
repeats) 

 

Ghannam 
et al 

2020[51] 

 
The use of the microbiome to personalize treatment was further investigated in 
another study examining the interpersonal variation in the changes in blood 
glucose observed following meals (postprandial glycemic response (PPGR)). 
Previous studies have shown high interpersonal variability in PPGR in response 
to the same food [81]. This suggests that some foods might result in a high PPGR 
in some patients and low PPGR response in others. This finding coupled with the 
high interpersonal difference in microbiomes, led Zeevi et al (2015) to develop a 
classifier that could relate foods with the microbiome and other physiological data 
to accurately predict the PPGR of patients [82]. The authors used GB for regression 
to relate patient data, information about the meal, and the patient’s microbiome to 
predict the PPGR. This study revealed that the SML models that incorporated 
microbiome data were able to more accurately predict PPGR than meal 
carbohydrates or meal calories alone. The combined microbiome and patient data 
model’s prediction of PPGR was correlated with the measured PPGR with a 
Pearson correlation of 0.68. The model was trained using a cohort of 800 
individuals and validated on a different 100 individuals. This type of analysis 
using ML with patient and microbiome information allows for a more tailored 
treatment that accounts for the high interpersonal variation that is often observed 
with human disease [83]. 
 
1.5.5 Machine learning for classification in environmental 

monitoring 
In addition to prediction or disease state in the human system, coupling SML and 
microbial community profiling of microbial communities in the environment 
shows promise for the purpose of environmental monitoring [84]. Just like in the 
human environment, microbes in soil, water, or air can rapidly respond to changes 
in their environment. These changes in microbial community composition can 
often occur in a predictable manner. SML has been used in both natural and 
industrial settings to use microbial information to aid in predicting environmental 
quality [85], contamination state [86], [87] as well as rates of various processes 
including copper bioleaching [88], Previous studies have used microbial 
biomarkers as indicators of particular environmental processes or outcomes. 
Indicator species analysis has been used to identify taxa that are related to 
particular phenomena or treatments that could be used as biomarkers for that 
phenomena. However, like differential abundance analysis, indicator species is 
performed by analyzing the prevalence and abundance of individual features in 
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different categories and is not able to identify complex interactions between 
microbes in the dataset and the possibility that large groups of microbes may 
respond to the treatment. 
 
ML is gaining popularity in predicting environmental phenomena from 
environmental microbial community data to develop and predict environmental 
health indices. One such study used SML to relate the microbial community 
present in agricultural soil with crop productivity [89]. In this study the authors 
coupled SML with metagenome wide association studies to identify potential 
differences in the microbial communities that were related to crop productivity. 
RF models built from metagenomic data were able to predict the crop productivity 
with an accuracy of 0.79. Another study sought to relate dissolved organic carbon 
(DOC) with microbial community composition [90]. RF and artificial neural 
networks (ANN) were used to construct models to predict the DOC concentrations 
of leaf litter based on microbial community composition. The models from this 
study were reasonably accurate with the ability to predict DOC correlating with 
observed DOC with a Pearson correlation coefficient of 0.636 and 0.676 for the 
feed-forward ANN and the RF models respectively. Interestingly, these 
researchers compared the important features identified through SML with 
indicator species identified in indicator species analysis. While they found some 
overlap in the features identified in both methods, only about 30% of the features 
were shared between indicator species analysis and RF. This suggests that ML 
often uses distinct features for classification than what would be identified 
through differential abundance or indicator species analysis and may be able to 
more sensitively identify groups of features that are related to an outcome. 
 
Biotic indices have been used to assess environmental health as biotic organisms 
are impacted by the overall ecological quality status of an environment and may 
be more sensitive than measurement of abiotic factors. Therefore, various 
organisms have been proposed as indicators of environmental health. SML can be 
used to associate environmental genomic profiles with environmental quality 
status, which is commonly used by regulators to guide decision making in 
restoration and environmental monitoring [85]. A number of studies have 
provided a framework for the use of SML to identify patterns in microbial 
eukaryote and bacterial communities to predict biotic indices and environmental 
quality status using salmon farming as a test case. Cordier et al. (2018) [91] used 
various marker genes targeting the small subunit rRNA for bacteria, ciliates, and 
universal eukaryotes to compare the performance of SML to predict the 
environmental quality status and biotic indices compared to using environmental 
DNA to measure known indicator taxa. They found that SML outperformed the 
use of metazoan-assigned OTUs. The predictions obtained from metazoan-
assigned OTUs had kappa values between 0.211 and 0.569, whereas the SML 
models had kappa values raging from 0.755 to 0.881. Following on from this study, 
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Frühe et al (2020) [92] compared the performance of SML with standard IndVal 
approach for prediction of environmental status. The indicator species approach 
directly from OTUs/ASVs has appeal due to there not being a need to assign 
taxonomy to the OTUs/ASVs like in the metazoan-assigned OTUs approach. This 
study found that SML outperformed the IndVal approach for prediction of 
environmental status. Furthermore, bacterial communities were better able to 
predict environmental quality status salmon farming compared to ciliates. These 
studies illustrated the utility of SML for environmental biomonitoring. However, 
these studies used training and validation data generated from the same lab. In 
order for this type of ML-coupled to molecular analysis approach to be used for 
environmental monitoring, there needs to be high replicability and generalization 
of the models. Therefore, Dully et al 2020 [93] performed an inter-lab validation 
study for the prediction of biological indices. In this study two series of samples 
were collected and split into technical replicates. From each site, biological 
replicates were also sampled. The authors of this study found that there was 
greater variability in diversity between biological replicates compared to technical 
replicates processed in each lab, which suggests that molecular methods can be 
standardized and have good replicability. Furthermore, SML models constructed 
from the two labs produced highly correlated data. These studies combine to 
demonstrate the promise, generalizability, and robustness of linking SML with 
environmental genomic data to assess environmental health status, which can 
guide decisions related to environmental health. 
 
The prediction of environmental contamination is another growing area of interest 
in the application of SML and microbial ecology. Often contamination is identified 
in the environment through direct measurement of the contaminant of interest. 
While measuring of the contaminant is the gold standard for contaminant 
detection, often the contaminant may be present transiently. In these cases, the 
contaminant may not be detectable at the time of sampling. Smith et al (2015) 
demonstrated that RF could be used to predict the presence of uranium and nitrate 
contamination in groundwater [87]. This study demonstrates that a single set of 
microbial community profiles can be used to predict any number of response 
variables. Further, RF models were able to predict the presence of oil in the ocean 
with near perfect accuracy (F1 score of 0.98). Notably, RF could classify samples 
into no-oil, oil, and past oil contamination based on the microbial community 
alone. The past oil category contained samples that at one point in time had 
detectable levels of oil, but at the time of sampling, there was no detectable oil. 
This finding indicates that ML methods can identify patterns in the microbial 
community that are indicative of current and past contamination. The ability of 
the RF models to identify past contamination could be indicative of ecological 
resiliency and stability that allows microbial communities to maintain the 
signature of oil after the oil was no longer present. 
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The ability to predict contamination in the environment has been expanded to 
other systems including prediction of the herbicide glyphosate in the Baltic 
Sea [86]. In the Janßen et al (2019) study, the authors employed artificial neural 
networks and RF to predict the presence of glyphosate. Expanding on the previous 
work showing the ability of SML to predict contamination, Janßen et al (2019) 
identified important features through constructing a series of models leaving out 
individual features and monitoring the changes in accuracy of the models. This 
type of approach can be used to interrogate some of the more complex and less 
transparent approaches such as Artificial Neural Networks (ANNs). Another 
novel aspect of the work of Janßen et al (2019) is the use of a random forests 
proximity matrix as the dissimilarity measure in PCoA. This approach resulted in 
clearer separation of samples on the PCoA analysis compared to using a Bray 
Curtis dissimilarity matrix. 
 
While these studies demonstrate the ability of ML to predict the presence of a 
specific contaminant in an environmental sample, other work has been used to 
predict more general properties such as environmental impacts of hydraulic 
fracturing as well as location and residence time of ballast water [94], [95], [96]. In 
both of these cases the specific relationship between the features and the output 
variable may not be clear. In other words, when predicting the presence of a 
specific contaminant, a single feature may increase or decrease in abundance in 
direct response to the contaminant due to the toxicity of the contaminant or ability 
of the contaminant to stimulate growth of the microorganism. These more generic 
phenomena may result in indirect impacts on the microbial community that are 
detectable using ML. These studies demonstrate that it is possible to detect and 
classify contamination both specifically and more generically using ML. 
Interrogation of the important features used in these classifiers may provide 
insights into specific biomarkers of contamination that could be used as tools for 
environmental monitoring. 
 
In addition to the applied outcomes described above, SML has potential to be used 
to better understand the ecology of microorganism in the environment. Smith et 
al 2015 [87] demonstrated that microbial community composition as determined 
by 16S rRNA can be used to predict a diverse set of geochemical factors including 
pH, manganese and aluminum. Alneberg et al (2020) [97] also highlight the 
application of SML to predict the ecological niche of microbial groups with a focus 
on microbial communities from the Baltic Sea. The authors of this study use 
metagenomic binning to obtain 1962 metagenome assembled genomes (MAGs) 
representing the majority of prokaryotic diversity in in the Baltic Sea. These 
prokaryotic clusters demonstrated distinct ecological preferences along the 
various environmental gradients observed. Ridge Regression, RF, and GB were 
used to predict the niche gradient of the prokaryotic cluster based on the 
functional profile of genes found in each cluster. The authors of this study found 
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that the predicted niche gradient agreed with the observed niche gradient with a 
Spearman’s rank correlation of 0.70 – 0.81. These studies highlight the fact that 
SML can be useful in identifying patterns in natural microbial communities and 
predicting the niche of an organism. 
 
1.5.6 Microbial communities and machine learning for forensics 
Microbes have been used for forensic applications for a long time. Normally 
microbial forensics is used to identify the source of particular organisms related to 
bioterrorism, disease, or contamination. However, it is possible to use microbial 
community composition as a tool for trace evidence [98], [99]. Previous work has 
shown the utility of microbial community composition in determining 
postmortem intervals (PMI). Various studies have examined the ability of the soil 
and skin microbiome to serve as a molecular clock for postmortem intervals. Other 
studies have used ML models constructed from skin microbiota to assess the 
PMI [100], [101]. Soil evidence has also been used as forensic information. In the 
same way that pollen can be used to identify the source of a particular soil sample, 
the microbial community in a soil sample may provide information about where 
that soil was derived. Metagenomic information from soils has been used to 
differentiate soil from different locations [102], [103]. These studies demonstrated 
that information contained within the microbial community from the soil sample 
could be used to identify the source of the soil. These studies used hierarchical 
clustering and non-metric multidimensional scaling (NMDS) to differentiate 
groups. More recently, SML has been applied to determining the geographic 
source of an ocean water sample based on the microbial community [50]. 
Ghannam et al (2020) [50] demonstrated that RF could be used to accurately 
differentiate the location of sampling of water from 20 different locations. This 
study is important in that it shows that SML can be used to identify important 
trace signals in the microbial community of water that can accurately distinguish 
between 20 diverse locations from around the world as well as specifically identify 
the location of collection within locations close in proximity to each other. 
 
1.6 Summary and outlook 
This review has sought to provide an overview of how ML has progressed the 
field of microbial ecology. Despite the unprecedented sophistication and promise 
of ML algorithms, there exist several outstanding issues that should be considered 
when applying ML to marker-gene datasets. Although ML models can be 
consistently constructed to produce high accuracy metrics on complex data, the 
underpinning decision support systems can often be largely black box methods of 
investigation where the rational and logic behind predictions are hidden behind 
layers that are challenging to interpret [104]. 
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The large majority of studies using ML to investigate microbiome datasets gauge 
and validate hypotheses and report findings through performance and may 
apply post-hoc procedures to identify important biological taxa using variable 
importance metrics. However, due to the complexity of some modeling methods, 
inferring biological importance from feature importance could be problematic. 
Therefore, there is a need for increased interpretability in ML models used in 
microbial ecology studies. Often the learning algorithms applied to marker-gene 
datasets are developed and implemented for improved performance, rather than 
for model interpretation [104], [105]. In order to glean biologically meaningful 
data from these ML methods, it may be important to consider the choice of model 
with preference toward more interpretable algorithms as well as novel methods 
for interpreting models such as permutational approaches. Microbial ecology 
studies that demonstrate model transparency are limited to reporting single 
feature to response interaction or are overburdened by investigating feature 
contributions to each observation for accumulated local explanations of modeling 
procedures [48], [76], [106], [107]. 
 
There have been major improvements for model specific and model agnostic 
approaches for model interpretation [66], [108], [109], [110], [111], some were 
described in this review. However, these methods often cannot account for hidden 
heterogenous effects of the full feature space, which can reduce model fidelity and 
mislead researchers depending on algorithm selection. 
 
Here, we argue that while methods for inferencing how single microbial 
community members influence single predictions are beneficial (local 
interpretations), appreciating the inner workings of multiple microbial 
community members and how they generally discern a group of the same 
response label is more robust and generalizable (global interpretation). In the 
context of microbial ecology, the lack of global interpretation techniques makes it 
challenging to inference on the basis of the full feature space and to identify all 
potential features that are interacting to most frequently to predict response labels 
with the least error. Often a condition is not attributable to a single feature, but 
multiple features. One of the strengths of ML is the ability to appreciate these 
groups of features in making a prediction. However, in interpreting a model, a 
focus on the importance of a single feature may limit the applicability to the real-
world system that is being modeled (i.e., appreciating the full microbial 
community rather than subsets). 

In high-risk domains like human health and biology, the ability to interpret and 
generalize a model has many downstream benefits, such as identifying biological 
relevance that support hypotheses of the system being investigated and the ability 
to extract actionable insights about the community of study. Many of the 
implementations described in this review seek to extract actional information from 
microbiome datasets that can be used in the clinic, environmental monitoring 
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applications, and forensics. It is important that in implementing the use of ML-
identified biomarkers in diagnostic application that there is a need for common 
acceptance and trust of the algorithms employed which lead to critical decisions 
relating to the microbiome [112], [113], [114], [115], [116]. 

While other disciplines of biology such as single-cell RNA seq, drug discovery and 
development, and neuroscience have attempted to bring interpretation to black 
box ML models [117], [118], [119], [120], [121], investigation into microbial ecology 
applying ML on marker-gene datasets is lagging behind. This is surprising since 
there has been a rapid expansion of microbiome related research that will continue 
to expand. With a lack of interpretation of ML in this field, fundamental dynamics 
of a microbial system will be left unreported. 
 
It is notable to mention that as a result of the structure of marker-gene datasets 
from HTS platforms, Classification and Regression Trees (CART) algorithms 
continue to dominate the field of microbial ecology. However, deep learning is a 
promising approach to revolutionize how we investigate microbial communities. 
Considerations should be placed on whether deep learning is necessary to 
investigate metagenomic datasets, since, although the inner workings of neural 
networks are the focus of ongoing research [122], [123], they are some of the most 
notorious black box methods that lack interpretability. In some cases, it may be 
better to choose a model that can be more easily interpreted over a more complex 
model that has a higher performance metric. 
 
There are still a number of open questions and considerations that need to be taken 
into account when considering the use of employing SML for monitoring and 
diagnostics. One of the first considerations is the need for sufficient replication in 
experimental design. Human microbiome studies have paved the way with high 
replication with hundreds of samples used in training algorithms. However, for 
environmental monitoring, sample collection is often costly, which can limit 
replication. In cases where sample replication is limited, some test and validation 
approaches may be more useful. For example, a leave-one-out validation strategy 
could be useful when replication is low and the splitting of samples into a training 
and test set would result in even less replication. Another consideration is 
sampling depth. As was discussed earlier, diversity estimates from sequencing 
data highly depends on sequencing depth. Therefore, it is important to ensure the 
diversity of the samples have been sufficient covered in constructing models to be 
used in SML. This is an example of how an understanding of ecological diversity 
measures and coverage estimates (e.g. Good's coverage) may be an important first 
step in determining if the obtained data is sufficient for development of SML 
models. Another important question that must be addressed is the level of 
accuracy that a model must obtain to be useful for its purpose. This question is a 
little more difficult to answer and depends highly on the domain problem. In 
certain domains higher accuracy may be required for a model to be of use. While 
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100% accuracy may not be achievable in noisy real-life environments, it is 
important to consider the level of accuracy that is needed. This may vary between 
medical diagnostics, forensics, and environmental monitoring applications. 

If we are to move toward a translational framework for microbiome analysis 
where features extracted from ML models are used to inform development of 
particular treatments or monitoring approaches, it is important to have a thorough 
understanding of the interpretability of the models. It is also important to ensure 
that ML is used to complement other approaches for profiling microbial 
communities that confirm the choice of selected biomarkers. Overall, it is 
important to consider how ML models are interpreted and reported in situations 
where actionable insight can be extracted from modeling procedures and used to 
construct downstream molecular applications such as in health and environmental 
diagnostics.  
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2 Biogeographic Patterns in Members of Globally 
Distributed and Dominant Taxa Found in Port 
Microbial Communities 

 
Preface 
This section attempts to determine if natural microbial communities in aquatic 
environments can be used to characterize geospatial location on a global scale. This 
approach is leveraging the fact that microbes are ubiquitously dispersed and 
abundant throughout most environments, and how the types of microbes can vary 
in each location. We needed to collect real-world data, so we chartered research 
vessels and sampled the water at a variety of different locations near busy ports. 
Here we characterize the relation of microbes to geospatial location, which is 
possible by identifying differences in genetic material from the microbes collected 
(DNA) at each location. This allows an accurate and quantifiable fingerprint of one 
location in relation to another – and can be used to probe microbial biogeography. 
Below, a detailed experimental design of the sampling regime along with detailed 
methods used to assess these research questions are explored. 
 
Abstract 
We conducted a global characterization of the microbial communities of shipping 
ports to serve as a novel system to investigate microbial biogeography. The 
community structures of port microbes from marine and freshwater habitats 
house relatively similar phyla, despite spanning large spatial scales. As part of this 
project, we collected 1,218 surface water samples from 604 locations across eight 
countries and three continents to catalogue a total of 20 shipping ports distributed 
across the East and West Coast of the United States, Europe, and Asia to represent 
the largest study of port-associated microbial communities to date. Here, we 
demonstrated the utility of machine learning to leverage this robust system to 
characterize microbial biogeography by identifying trends in biodiversity across 
broad spatial scales. We found that for geographic locations sharing similar 
environmental conditions, subpopulations from the dominant phyla of these 
habitats (Actinobacteria, Bacteroidetes, Cyanobacteria, and Proteobacteria) can be used 
to differentiate 20 geographic locations distributed globally. These results suggest 
that despite the overwhelming diversity within microbial communities, members 
of the most abundant and ubiquitous microbial groups in the system can be used 
to differentiate a geospatial location across global spatial scales. Our study 
provides insight into how microbes are dispersed spatially and robust methods 
whereby we can interrogate microbial biogeography. 
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2.1 Introduction 
There is increasing knowledge of the vast diversity and the abundance of microbes 
on our planet. However, we are only beginning to understand microbial dispersal 
and the potential for microbes to exhibit distinct biogeographic patterns. It has 
been proposed that the selection of microbes in certain locations occurs through 
various processes such as the environmental conditions (temperature, salinity, pH, 
etc.), ecological drift, diversification, and dispersal limitation (1–4). Numerous 
studies have outlined the relative influences of these proposed ecological drivers, 
which vary drastically across ecosystem type (terrestrial; in soil and sediments, 
marine and human) (5–9). This has resulted in a lack of consensus as to the 
seemingly stochastic nature of diversity observed within microbial communities 
and their geographic distribution. 
 
Previous studies have applied high-throughput sequencing as a means of 
characterizing the microbial community composition and their underlying global 
spatial relationships (10–12). It is apparent that under similar environmental 
conditions, microbial communities can have distinct compositions across space 
and time (13–15). These efforts, however, have primarily been studied between 
local or unique habitats (such as extreme environments) (9, 16–19). Presently, the 
extent of variation within microbial communities on both local and regional spatial 
scales sharing similar environmental conditions is understudied, despite being an 
important component to understanding microbial biogeography. Microbial 
assemblages from aquatic communities surrounding shipping ports are a novel 
system for microbial ecologists to query biogeography in part because of the 
similar physiochemical conditions found between both local and regional scales in 
these ports. 
 
Interfacing this unique, global data set with machine learning (ML) has allowed 
us to identify stark contrasts in the microbial community composition across a 
broad geographic range. We were able to observe subpopulations of the highly 
abundant and ubiquitous microbes of the same phyla that dominate these 
communities. Portions of the community belonging to the “rare biosphere” have 
been suggested to constitute much of the diversity across large spatial and 
temporal scales (18, 20–22) and are often attributed to the underlying distinction 
of a geographic location. As a result, observing variation in global biogeography 
through members of dominant taxa might be overlooked, and it may be possible 
to now explore this through certain machine learning applications. Applying 
machine learning to questions of biogeography may allow for resolution of fine-
scale geographic differences by using a set of data that contains both microbial 
composition and class labels (geographic location to which the sample belongs) 
and learns from the relationship between these two to potentially find the 
microbial taxa which are most associated with a geospatial location (23). 
Leveraging the abilities of machine learning approaches, distinctions within 
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seemingly similar microbial communities across a global scale may allow for the 
future prediction or classification of a geospatial location based on a microbial 
community and could provide insights into the key microbial groups found in 
distinct geographic locations. 
 
The coupling of cost-effective next-generation sequencing (NGS) technologies 
with well-established molecular techniques has allowed us to explore machine 
learning in the context of biology, ecology, and Earth science in unprecedented 
ways (24–27). Until now, the full potential of using machine learning to 
understand biogeography has yet to be achieved. This is largely a consequence of 
limited global microbial data sets with sufficient replication ranging across large 
spatial and physiochemical gradients that have been processed through 
standardized methodology. Here, we are seeking to combine high-resolution 
sequencing with machine learning to observe trends in biodiversity, investigate 
the potential for there to be biogeographic patterns in the microbial communities 
of ports, and determine the potential for machine learning to identify patterns in 
microbial community data not fully appreciated through the use of traditional 
statistical approaches used in ecology (27, 28). 
 
Here, we investigate the global biogeography of microbial communities found to 
occupy shipping ports to determine whether there is a biogeographic signal to 
taxon distribution throughout this system. In determining the underlying 
distinctions in microbial community structures between these locations, we 
performed a community analysis of each microbial population from these ports 
through 16S rRNA amplicon sequencing. Amplicon sequence variants (ASVs) (29) 
were assigned to provide the highest resolution possible using this marker gene. 
As a result, we were able to investigate and identify taxon-spatial relationships 
across large spatial scales, with high resolution, using machine learning. We 
collected a total of 1,218 marine and freshwater samples from 604 geospatial 
locations spanning eight countries and three continents to catalogue 20 ports (each 
with metadata), initiating an expansive ecological study of port-associated 
microbes. Additionally, this data set provides a foundation for data mining and 
comparative ecology by accompanying the larger Tara Oceans Project (30) and 
Global Oceans Sampling Expedition (GOS) (31), with a focus on shipping ports. 
The aim of this project is to provide the framework to globally observe the process 
of microbial biogeography. 
 

2.2 Results 
2.3 Port sampling and microbial diversity profiling 
To better understand how microbial community composition is influenced by 
geospatial location, we used 1,218 surface water samples from 604 locations 
surrounding ports spanning the Great Lakes, Pacific Ocean, Atlantic Ocean, North 
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Sea, Sea of Japan, South China Sea, Mediterranean Sea, and Adriatic Sea (Fig. 2.1). 
These samples were both from marine and freshwater settings and are 
representative of 20 globally important ports across a range of sizes and ship traffic 
levels, and they also vary environmentally by pH (5.67 to 9.33), temperature (3.1 
to 30.8°C), and salinity (0.040 to 42.35 practical salinity units [psu]). 
 

 
Figure 2. 1 
Map of port sampling locations. Displayed on the map are the port locations from 
which samples were collected. All of the sampled ports are binned by the region 
in which each port is located (East Coast of the United States, West Coast of the 
United States, Asia, Europe, and the Great Lakes). Sampling depth is displayed by 
the number of surface water samples collected at each location (n = 1,218). 
 
For these 1,218 samples, 86,411 amplicon sequence variants (ASVs) (29) were 
identified to assess diversity within microbial communities using the 16S rRNA 
marker gene. Instead of assigning traditional operational taxonomic units (OTUs), 
where sequencing reads are clustered by some fixed percent identity threshold, 
the raw sequence reads were denoised to account for the introduction of any DNA 
amplification and sequencing errors. By resolving these errors from our next-
generation sequencing results, it is possible to dereplicate the reads and examine 
potentially meaningful information between biological sequences that differ by as 
little as one nucleotide. This single-nucleotide differentiation in the 16S rRNA 
marker gene of these bacteria, from all 1,218 samples, allows us to achieve a finer 
resolution of all the diversity within our data set. 
  

1
2
3

1 2 3
12
3456

123
4

1
2

3

−50

0

50

−100 0 100 200
long

lat

Venice   56

Naples   55

Martigues  61

Rotterdam  61

Wilhelmshaven  61

Seattle   60

Oakland  58

Los Angeles  64

New York  63

New Orleans  62

Galveston  52

Norfolk   59

Charleston  59

Baltimore  60

Samples (n)Location

Busan   63

Hong Kong  66

Singapore  62

Keweenaw  75

Green Bay  60

Duluth Superior 61

1
2
3
4
5
6

1
2
3

1
2
3
4
5

1
2
3

1
2
3East U.S West U.S Great LakesEurope Asia

5



 

44 

2.4 Characteristics of the dominant microbial taxa of global port 
microbiomes 

To investigate the distinct biogeographic patterns in the microbial communities of 
ports, we demonstrated that the taxonomic compositions from our sampling 
locations vary globally. There were four key bacterial phyla in our data set that 
dominated throughout all 20 port locations by being both highly prevalent (within 
50% or more samples) and highly abundant (those with ≥10% of total 16S rRNA 
reads with taxonomic assignments at the phylum level). Collectively, these 
dominant phyla (Actinobacteria, Bacteroidetes, Cyanobacteria, and Proteobacteria) 
accounted for 92% of the total 16S rRNA reads across all samples and contained 
within them 84% of the total ASVs that were assigned throughout the data set. 
 
The following six bacterial classes represented the majority of the variation of these 
four phyla in their assigned amplicon sequences (e.g., a bacterial class had ≥40% 
of its respective phylum’s ASV content): Acidimicrobiia, Actinobacteria, Bacteroidia, 
Oxyphotobacteria, Alphaproteobacteria, and Gammaproteobacteria. Proteobacteria was 
the most abundant phylum overall (42% of total rRNA reads) across all 20 ports 
and included two of the six most dominant classes (Alphaproteobacteria and 
Gammaproteobacteria), which represented 21% and 20% of the total rRNA gene 
reads, respectively. Together, these six bacterial classes represent 91% of the total 
16S rRNA reads and 81% of the total assigned ASVs in this global study and were 
sufficient to assess the majority of the diversity throughout our sampling locations 
(see Table S1 in the supplemental material). These six classes were used to 
demonstrate data set-wide taxonomic composition throughout these globally 
distributed ports (Fig. 2.2). Despite such a high prevalence of these classes, there 
was substantial variation across all locations, with the highest range of variability 
belonging to the Cyanobacteria. For example, the Oxyphotobacteria dominated 
Galveston, TX, in the East Coast of the United States (44% average relative 
abundance) compared to the two port locations with the lowest abundances for 
this class, Rotterdam and Wilhelmshaven in Europe (0.01% and 1%, respectively). 
Additionally, the Gammaproteobacteria dominated Hong Kong in Asia (47%) and 
were least abundant in the East Coast in Galveston, TX, and New Orleans, LA 
(8%). 
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Figure 2. 2 
Taxonomic composition and abundance of dominant bacteria across ports 
globally. Taxon plot of the composition and relative abundance of the top six 
dominant bacterial classes across each local port and the region to which they 
belong based on all 16S rRNA reads. Any bacterial class that did not comprise ≥ 
40% of the ASVs belonging to the top four dominant phyla (Actinobacteria, 
Bacteroidetes, Cyanobacteria, and Proteobacteria) was categorized as “other.” 
 
Table 2. 1 
16S rRNA read and ASV distribution of dominant taxa. Distribution of 16S rRNA 
reads after diversity profiling (ASV assignment) of dominant taxa. Bacterial classes 
comprising ≥40% of the ASV content of their respective phyla (assigned ASVs) 
were chosen as “dominant” classes for downstream analysis  
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Total 16S rRNA reads for dominant phyla 13,733,236 
Total ASVs assigned during diversity profiling 3,214 

Phylum 
% Total 
Reads % Total ASVs Assigned 

ASVs 
Actinobacteria 12.09 7.56 243 
Bacteroidetes 26.07 29.37 944 
Cyanobacteria 11.74 4.6 148 
Proteobacteria 42.76 43.06 1384 

Total 92.66% 84.59% 2,719 
Class    

Acidimicrobiia 3.80 3.14 101 
Actinobacteria 8.15 4.01 129 
Bacteroidia 25.48 28.84 927 
Oxyphotobacteria 11.74 4.60 148 
Alphaproteobacteria 21.56 19.60 630 
Gammaproteobacteria 20.91 20.87 671 

Total 91.64% 81.06% 2,606 
 
In addition to understanding fine-scale differences between each port, we also 
sought to determine broader spatial-scale patterns in biogeography of these 
microbial communities observed from the different regions. We analyzed the 
variability in the relative abundances of these dominant six classes after grouping 
each of the 20 port locations into one of the following five geographic regions: East 
Coast of the United States, West Coast of the United States, Europe, Asia, and the 
Great Lakes. 
 
Our analysis of these regional taxon-spatial associations shows a substantial 
abundance of the Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, and 
Oxyphotobacteria compared to the underrepresented Acidimicrobiia and 
Actinobacteria across all regions (Fig. 2.3 and Fig 2.4). Notably, the Great Lakes 
have a much higher average relative abundance of Actinobacteria (19%) than do the 
other regions (average relative abundance, <10%). The Alphaproteobacteria 
predominate in the West United States (35%) and have the lowest representation 
in the Great Lakes (11%). The Oxyphotobacteria are more abundant in the samples 
from the East United States (median relative abundance, 17%) than the lowest 
median relative abundance belonging to samples from Europe (0.3%). Excluding 
Actinobacteria in the Great Lakes and Oxyphotobacteria in Europe and the West 
Coast of the United States, the six dominant classes had an average relative 
abundance of >10% across all regions (Fig. 2.3). 
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Figure 2. 3 
Boxplot of dominant bacterial classes. Box plot displaying the differences in 
community composition of the top 10% most common (dominant) bacterial classes 
represented as a percentage of relative abundance. Each box represents the 
interquartile range (IQR) between the first and third quartiles (25th and 75th 
percentiles, respectively), and the median is represented by the vertical line inside 
the box. The lines protruding from either side of the box are the lowest and highest 
values within 1.5 times the IQR from the first and third quartiles, respectively. The 
relative abundances of all samples of these six dominant bacterial classes in each 
region are represented by density in Fig 2.4. The numbers of samples (n) of each 
region are as follows: East, 355; West, 182; Europe, 294; Asia, 191; and Great Lakes, 
196. 
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Figure 2. 4 
Violin plot of relative abundance. Violin plot of relative abundances. Shown are 
the density and distribution by relative abundances of the six dominant bacterial 
classes within all samples (n = 1,218) and for each region. The wider the 
distribution, the more samples share similar relative abundances for that taxa. The 
shape is estimated via a kernel density estimation. 
 

2.5 Machine learning uncovers the biogeographic component of 
microbial communities 

Microbial data are known to be both highly dimensional and compositional 
(32, 33), and in many cases, the microbial features of the data set are shared 
between categories to which they belong (e.g., sample type). As a result, many 
machine learning techniques are often a good approach for understanding how 
microbial count features of a data set correlate to each other and to a dependent 
variable (outcome). Compared with the typical statistics used throughout ecology, 
biogeography, and Earth sciences (33–36), machine learning offers a robust, data-
driven estimations of the taxon-spatial associations across globally distributed 
locations. 
 
We first display the potential to differentiate spatial locations from microbial 
community data with a multivariate discriminant technique (analysis of similarity 
[ANOSIM]) applied to both local (all 20 ports) and regional (five regions) scales to 
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assess the ANOSIM in beta diversity. There were more similarities in the microbial 
communities between the five regions than between the 20 local locations 
(ANOSIM for regions, |R| = 0.609, P < 0.001; for local port locations, |R| = 
0.905, P < 0.001 for Bray Curtis dissimilarity; Fig. 2.5), where a higher |R| value 
suggests more dissimilarity between communities on the regional or local spatial 
scale. Similar performance was observed for additional distance metrics 
(Table 2.2). 
 

 
 
Figure 2. 5 
Analysis of similarity of taxonomy to location. ANOSIM plot displaying the 
dissimilarity between and within local locations (ports) and regions to the 
microbial communities sampled from them (via Bray-Curtis dissimilarities with 
999 permutations). The horizontal line in each box indicates the median; the 
bottom half of the box indicates the 25th percentile, and the top indicates the 75th 
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percentile. Whiskers project to the most extreme data point, and the width of each 
box is directly proportional to the sample size at each port or region. A higher |R| 
value represents more dissimilarity between taxonomy and local port or regional 
scales and is based on the difference of mean ranks between and within groups. 
 
Table 2. 2 
Various dissimilarity indices through ANOSIM. Various dissimilarity indices 
through ANOSIM to complement the Bray-Curtis metric that was reported. All 
ANOSIM |R| statistics displayed with 999 permutations and at 0.001 significance. 
 

ANOSIM dissimilarity metrics 

Dissimilarity metric Local Region 
 |R| 
Canberra 0.9607 0.6402 
Manhattan 0.5653 0.2541 
Jaccard 0.9048 0.6092 
Jensen-Shannon 0.9325 0.6242 

 
Additionally, we assessed the community composition through principal-
coordinate analysis (PCoA; using Jaccard distances) to observe patterns in the 
microbial community composition at the regional scale. This form of unsupervised 
learning is able to simplify the complexity of high-dimensional data sets while 
retaining trends within bacterial features by transforming it to fewer dimensions. 
As expected, given how this is an oversimplification of the observed bacterial 
diversity, only 13.8% of the variation within these communities across each region 
could be explained by this technique (Fig. 2.6). 
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Figure 2. 6 
Principal coordinate analysis (PCoA) plot of the global microbial community. 
(PCoA) plot of the global microbial community. This PCoA displays how much of 
the total sample variance can be explained in the community of all local port 
samples (n = 1,218) using 3,214 ASVs grouped by region (via Jaccard index). 
Ellipses were calculated assuming a multivariate t-distribution with a confidence 
level of 0.95. Coordinate points clustered closer to each other have more similar 
microbial communities. The axes indicate coordinate one (Axis.1) and coordinate 
two (Axis.2), where the percentages in parentheses explain the variation of the 
whole bacterial community from all of these regions. 
 
Last, we assessed these taxon-spatial relationships through supervised machine 
learning. We were able to find distinctions in the bacterial community for each of 
the sampling locations locally (all 20 ports) and regionally (five regions) across our 
global data set. Using random forests (RF; a form of supervised learning) (37), two 
independent models were used to classify these local and regional geospatial 
locations (Y) from their microbial community alone. At both local (Y = 20) and 
regional (Y = 5) levels, all samples (n = 1,218, as observations) were able to be 
accurately binned into the respective geospatial location from which they were 
collected with high performance. However, these models had slightly more 
misclassifications while partitioning microbial communities on a local scale 
(logarithmic loss [logloss], 0.101; accuracy, 0.994) than on a regional scale (logloss, 
0.045; accuracy, 0.995) (Table 2.3). Given how these models used the same 
microbial community structure (3,214 high-resolution bacterial predictors [p]; as 
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ASVs), the difference in performances between local and regional models suggests 
that while able to perform global spatial-scale classifications from microbial 
communities alone, there were more differences within the microbial communities 
between regions than there were locally between ports in the same region. 
 
Table 2. 3 
Model performance index. Machine learning classifier performance index of each 
taxonomic resolution at either the local port or regional scales. These metrics are 
reported as the macro averaged results of the ensemble of random forests tuned 
by the same hyperparameters. 
 

Model 
resolution 

Metric Predictors 
Accuracy logloss Precision/Recall p 

Local: Y = 20  

Phylum 0.84150114 0.58928161 0.85460672/0.83943254 24 
Class 0.91242087 0.44398276 0.92566468/0.91223214 38 
Order 0.9654911 0.28712688 0.97033929/0.96514087 114 
Family 0.97759414 0.25411364 0.98079497/0.97707738 223 
Genus 0.97806738 0.1352262 0.98106349/0.97784722 484 
ASV 0.99478113 0.10128259 0.99547619/0.995 3,214 
Region: Y = 5  

Phylum 0.90991625 0.33421786 0.91091799/0.9037573 24 
Class 0.95531278 0.2656141 0.95568987/0.95368017 38 
Order 0.98300733 0.16181949 0.98246165/0.98374711 114 
Family 0.98277012 0.1286815 0.98300881/0.98234723 223 
Genus 0.98930743 0.07437649 0.98949777/0.99056985 484 
ASV 0.99535038 0.04514882 0.99497995/0.99539333 3,214 

 
Here, classification performance is observed through a reduction in logloss and its 
relation to increased accuracy. Model accuracy is the overall proportion of 
correctly classified samples to the local or regional scale to which they belong. 
Logarithmic loss (logloss) measures the quality of predictions and is the 
probabilistic confidence of how each sample was classified to its local port or 
region (Y) and works by penalizing the incorrect or uncertain predictions. A low 
logloss is preferred and reflects the distribution of predictions made on a sample 
toward the true location to which it belongs and how close each sample 
(observation) was to being misclassified to incorrect geospatial locations. 
 
Interestingly, our ANOSIM results indicated more dissimilarities in the microbial 
community locally than between five regions, which is in contrast to the RF models 
which performed better when binning samples into their respective region rather 
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than their individual port. Multidimensional scaling through principal-coordinate 
analysis of the global port microbial community composition suggested fewer 
distinctions in microbial community composition than revealed by modeling 
through RF. Taken together, these results suggest that the ability for a microbial 
community to be differentiated on the basis of location is possible through a 
variety of metrics. However, modeling through RF achieved the highest accuracy 
in differentiating between samples, suggesting that this form of learning can 
identify differences in the microbial community better than do many of the 
standard methods for examining microbial community composition. 
 

2.6 The most abundant microbial taxa can be used to discriminate 
geospatial locations 

The focus of many studies in microbial biogeography has been toward “rare” 
indicator species as biomarkers for biogeography, as they are assumed to be 
present in one location and not another (38). Alternatively, highly abundant taxa 
are easier to detect, as they can differ from the rare biosphere by many orders of 
magnitude in abundance (18). Therefore, a more generalizable approach for 
studying biogeographic patterns of microbes may be to leverage the dominant 
taxa of a system (39). 
 
By observing the overall importance of each bacterial ASV predictor used in both 
models (local and regional), we identified the microbial taxa responsible for the 
distinction of these globally distributed geospatial locations. There were 342 of 
3,214 ASV predictors used in both models that were considered important (overall 
importance, ≥1 predictor; local, 250 predictors; regional, 92 predictors). Of these 
predictors, 68 were shared between the two models. These shared bacterial 
predictors were classified into eight bacterial classes. Notably, 91.17% of these 68 
shared predictor ASVs belong to the six most dominant bacterial classes reported 
previously (Fig. 2.2), while the remaining two classes (“other”) accounted for only 
8.82% (Fig. 2.7A). 
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Figure 2. 7 
Distributions of shared bacterial classes between machine learning models. 
Distributions of shared bacterial classes between machine learning models. (A) 
Donut chart showing percentages of the 68 shared ASV bacterial predictors after 
binning the ASVs into the dominant bacterial classes to which they belong. (B) 
Violin plot (shape via kernel density estimation) of the variable importance by 
distribution and density of the 68 shared predictor ASVs (overall variable 
importance, ≥1) and binned by the bacterial class to which the ASV belongs, 
displayed between both local (port) and regional machine learning models. Here, 
overall importance for each predictor is the scaled mean decrease in accuracy 
across all class labels (Y) (port, Y = 20; region, Y = 5). The wider the distribution 
means, the more similar the importance that ASV predictors belonging to the 
bacterial class share. 
 
The 68 shared predictors were sorted by their overall importance to show how the 
dominant bacterial taxa are leveraged to make predictions on both local and 
regional scales (Fig. 2.7B). There were more ASVs considered important in the 
model used to classify a sample into individual ports than to regions, suggesting 
that more of the overall community was found to be important while identifying 
distinctions at the highest resolution of spatial scales. The majority of the 
predictors used in local classifications were distributed across wider ranges of 
importance, whereas predictors used to make regional classifications are weighted 
more similarly (Fig. 2.7B and Fig. 2.8). 
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Figure 2. 8 
Frequency polygon of shared bacterial predictors from local and regional 
models. Shared bacterial predictors from local and regional models. This displays 
the 68 shared predictors from our ASV models (from Fig. 2.7). The ASV predictors 
were binned into their respective taxonomic classes to show the frequency of 
features across the variable importance gradient. The y axis is the proportion of 
ASVs belonging to each of the bacterial classes, and the x axis is their overall 
importance to the model. 
 
The local model leveraged predictors belonging mostly to the Bacteroidia to 
accurately classify samples, while the regional model used predictors from 
the Alphaproteobacteria (e.g., there is a higher density of predictors in higher overall 
importance for these classes). (Fig. 4B). Bacteroidia and 
Alphaproteobacteria accounted for a large proportion of shared predictors (33.8% 
and 17.6%, respectively). Between the two models, predictors belonging to 
the Oxyphotobacteria shared similar overall importance and only accounted for 
4.41% of the shared predictors. Similarly, the Acidimicrobiia also accounted for 
4.41% of the shared predictors and had nominal influence as an important 
predictor, with the highest overall importance of an Acidimicrobiia ASV being 
8.25 in the local model and 18.56 regional model. 
 
These results align with the distribution of relative abundances of these six 
dominant classes reported earlier (Fig. 2.2 and Fig 2.3). The Proteobacteria and 
Bacteroidetes were the two most dominant phyla and accounted for the highest 
percentage of total sequencing reads, along with the two most dominant bacterial 
classes belonging to the phyla Alphaproteobacteria and Bacteroidia (Table S1). 
Oxyphotobacteria had the widest range of variability in relative abundance across 
all samples. Further, there is a correlation between how these models utilize 
members of the Alphaproteobacteria and Bacteroidia and their relative abundances 
on a local or regional scale. Sequence variants of Alphaproteobacteria were 
considered the most important to the regional model, while variants from 
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Bacteroidia were most important to the local model. The choice of members of these 
classes as being the most important to these models is consistent with the increased 
differences observed between relative abundances of Alphaproteobacteria observed 
between regions and of Bacteroidia observed between local ports (Fig. 2.2 and Fig. 
2.3). 
 
These models used information about members of the most dominant and 
ubiquitous classes of microbes to make accurate classifications. This suggests that 
subpopulations in dominant, globally dispersed species are best at explaining 
geographic patterns in microbial populations. More so, the use of high-resolution 
ASVs in this study allow for the dissection of fine-scale differences that may 
represent distinct species, or potentially subspecies, in these populations. These 
fine-scale differences are able to discriminate between geography at both local and 
regional spatial scales with high accuracy through machine learning. Observing 
these regional geographic patterns through abundant taxa has been a challenge 
largely due to a lack of sufficient sampling density and uniformity in sampling 
and processing methodology on large spatial scales (9). 
 

2.7 Environmental conditions do not fully explain microbial-
spatial diversity on a global scale 

How microbial community composition differs between geospatial locations 
could be attributed to differences in environmental conditions. It has been 
suggested that the observed composition of abundant taxa in marine 
environments is likely a reflection of both historical and current environmental 
influences (18). A number of environmental variables were measured at the time 
of sample collection, including conductivity, optical dissolved oxygen (ODO) 
content, pH, salinity, total dissolved solids (TDS) content, and temperature. The 
distribution of these six physiochemical variables and their association with each 
region were analyzed. Each region displayed distinctions between each other for 
each physiochemical condition other than pH (assessed through analysis of 
variance [ANOVA], P < 0.001). (Fig. 2.9). Further, we correlated the abundance of 
each bacterial class with these same physiochemical variables for each region 
(Fig. 2.10). There are many taxa that are strongly correlated with these measured 
environmental variables. These findings follow previous work that has shown that 
the environment plays a key role in selecting for the microbial taxa present in a 
location in marine environments (40, 41). 
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Figure 2. 9 
Comparative ANOVA of physiochemistry across each region. Annotated 
ANOVA of physiochemistry across each region. This annotated ANOVA displays 
the association of each geographic region and six of the measured environmental 
variables. All comparisons displayed are considered significantly different 
between each region (P < 0.001). 
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Figure 2. 10 
Taxonomic association with region and physiochemistry. Taxonomic association 
with region and physiochemistry. Displayed are the correlations between the 
taxonomic abundances of 38 bacterial classes (after agglomerating all 3,214 ASVs 
used in our models) and environmental variables at each geographic region. A 
correlation test (Pearson coefficient |r|) was performed, and 
associated P values were adjusted for multiple comparisons for environmental 
variables (Benjamini-Hochberg). 
 
Our classification models were able to accurately discriminate between all 20 ports 
and five regions by modeling only relative abundances of microbes from the 
sampled community. To further understand the relationship between 
environmental conditions and the biogeographic diversity of port microbes, we 
sought to quantify the amount of variance in the microbial community explained 
by these measured environmental variables. Across all samples from the 20 port 
locations, these six physiochemical parameters and their corresponding microbial 
community composition were used to perform a permutational multivariate 
analysis of variance (PERMANOVA) (42). This analysis was performed to find the 
significant conditions that could explain the observed diversity. Conductivity, 
salinity, and TDS content displayed significant contribution as environmental 
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factors [adonis, Pr(>F) = 0.001, R2 = 0.833; 0.002 and 0.002, respectively), which 
cumulatively explains 83% of the variation in microbial diversity within all 20 port 
locations as one global community. While these environmental variables were 
considered significant across our data set, the majority of the significance from 
conductivity could arise from the range of variability in this environmental 
parameter across samples, for example, since our samples used in analysis come 
from environments that are either marine water, brackish water (East Coast United 
States), or freshwater (Great Lakes) (Fig. 2.9). A constrained analysis of principal 
coordinates (CAP; Bray-Curtis) was subsequently performed on all six of the 
physiochemical parameters and microbial community data from the 20 geospatial 
locations. As expected, given the dimensions of the data set, these six 
environmental conditions could only explain 22.2% of the observed diversity 
within this global study (Fig. 2.11). 
 

 
Figure 2. 11 
Constrained Analysis of Principal Coordinates (CAP) of beta diversity and 
physiochemistry. (CAP) plot of beta diversity and physiochemistry. CAP plot 
(Bray-Curtis distances) displaying the measured environmental variables and 
their association to sample variance within the microbial community (grouped by 
region) of all 3,214 ASVs used in modeling. ANOVA on constrained axis used in 
this ordination, F = 94.66, P < 0.001. 
 
These findings, along with how our ML models perform independent of any 
physiochemical parameters supplied, show that although the microbial 
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community may be influenced by its environment, the measured environmental 
information alone is not sufficient to explain the observed biogeographic 
separation in the microbial community composition. 
 

2.8 Differentially enriched taxa lose discriminant ability across 
large spatial scales 

To better understand the microbial groups that explain the observed differences 
in the microbial communities between locations, we employed pairwise 
differential abundance (DA) analysis. This approach is commonly used in 
microbial ecology to identify taxa that are overrepresented in a particular sample 
(43). After assigning all 3,214 ASVs used in this study into 38 bacterial classes, 
pairwise DA analysis was done comparing each location against all other locations 
for these 38 bacterial classes in all of the 20 ports in a one-versus-all manner, 
resulting in 7,220 pairwise comparisons. Our analyses indicated a complement of 
microbes that are differentially present in these ports around the world. 
 
A large proportion of these bacterial classes (30/38 [78%]) displayed positive 
enrichment (log fold change [logFC], ≥ 2; adjusted P value [false-discovery 
rate{FDR}], ≤0.05) in one location over at least one other location. We have termed 
this the enrichment factor (EF). For example, a bacterial class with an EF of 12 for 
a location means that the bacterial class has a greater abundance (or is enriched) 
in that location than in 12 other locations. Our results indicate that each location is 
composed of a unique consortium of enriched taxa. By assigning an EF, we can 
ascribe a single bacterial class to a geospatial location that can discriminate it from 
others. Of the most dominant bacterial classes previously described, only four of 
the six (Acidimicrobiia, Actinobacteria, Gammaproteobacteria, and Oxyphotobacteria) 
were differentially abundant with an EF of ≥1. Alphaproteobacteria and Bacteroidia 
were not considered differentially enriched in any one location more than another 
(EF, 0), as the relative abundance across each location is too similar to differentiate 
geospatial location. Of the 30 bacterial classes that were differentially enriched, 28 
unique bacterial classes had an EF of ≥10 throughout all 20 locations (Fig. 2.12). 
The distribution of how the 28 unique bacterial classes predominated these 
locations regionally are as follows: East Coast of the United States, 21 classes; Asia, 
9 classes; Great Lakes, 14 classes; Europe, 18 classes; and West Coast of the United 
States, 5 classes (Fig. 2.12). The reported enrichments of the dominant classes at 
EF of ≥10 were congruent with the relative abundances reported earlier and allow 
for better differentiation than with abundances alone (Fig. 2.2 and 2.3). 
 



 

61 
 

(E) East Coast U.S

Baltimore

Charleston

Galveston

New Orleans

New York

Norfolk

Actinobacteria
Anaerolineae

Chloroflexia
Deinococci

Deltaproteobacteria
Gemmatimonadetes

Oxyphotobacteria
Phycisphaerae

Planctomycetacia
Thermoleophilia

Hydrogenedentia
Oxyphotobacteria

Thermoleophilia
Acidimicrobiia
Anaerolineae

Clostridia
Deinococci
Mollicutes

Nitriliruptoria
Oxyphotobacteria

Phycisphaerae
Planctomycetacia

Rhodothermia
Thermoleophilia

Acidimicrobiia
Acidobacteriia
Actinobacteria

Armatimonadia
Bacilli

Chloroflexia
Clostridia

Gemmatimonadetes
Holophagae

Hydrogenedentia
Nitrospira

Phycisphaerae
Thermoleophilia

Clostridia
Gemmatimonadetes

Anaerolineae
Deinococci

Deltaproteobacteria
Hydrogenedentia

Mollicutes
Oxyphotobacteria

Phycisphaerae
Rhodothermia

Thermoleophilia

13
16
14
14
12
15
13
16
13
15
15
11
10
12
16
10
15
11
14
16
16
13
15
16
10
18
14
11
12
13
10
15
19
15
18
13
12
10
14
16
15
11
11
15
13
16
12
12

(W) West Coast U.S
Los Angeles

Oakland
Seattle

Kiritimatiellae
Lentisphaeria
Rhodothermia

Mollicutes
Nitrospinia

16
10
12
10
17

(R) Europe

Martigues

Naples

Rotterdam

Venice

Wilhelmshaven

Armatimonadia
Chloroflexia
Deinococci

Bacilli
Campylobacteria

Clostridia
Erysipelotrichia

Kiritimatiellae
Negativicutes

Rhodothermia
Actinobacteria

Armatimonadia
Chloroflexia

Clostridia
Phycisphaerae
Rhodothermia
Acidimicrobiia

Clostridia
Deltaproteobacteria

Erysipelotrichia
Mollicutes

Nitrospinia
Nitrospira

Thermoleophilia

14
13
11
16
18
17
12
18
16
12
13
16
15
12
11
11
12
14
12
17
16
17
18
16

(A) Asia

Busan

Hong Kong

Singapore

Lentisphaeria
Bacilli

Campylobacteria
Clostridia

Lentisphaeria
Mollicutes

Bacilli
Clostridia

Gammaproteobacteria
Lentisphaeria

Mollicutes
Nitriliruptoria

Nitrospinia
Oxyphotobacteria

19
17
17
10
12
17
17
10
10
12
16
10
17
11

(L) Great Lakes

Duluth

Green Bay

Keweenaw

Acidobacteriia
Actinobacteria

Armatimonadia
Chloroflexia
Deinococci

Gemmatimonadetes
Holophagae

Hydrogenedentia
Oxyphotobacteria

Phycisphaerae
Thermoleophilia

Acidobacteriia
Actinobacteria

Armatimonadia
Chloroflexia
Deinococci

Deltaproteobacteria
Gemmatimonadetes

Oxyphotobacteria
Phycisphaerae

Planctomycetacia
Thermoleophilia

Acidobacteriia
Actinobacteria
Anaerolineae

Armatimonadia
Chloroflexia

Gemmatimonadetes
Holophagae

Phycisphaerae
Thermoleophilia

16
13
17
14
14
15
17
10
11
12
12
16
14
11
15
15
11
15
13
11
10
17
16
13
17
17
15
17
17
14
12

Region Location Bacterial Class EF
Acidimicrobiia
Acidobacteriia
Actinobacteria
Anaerolineae
Armatimonadia
Bacilli
Campylobacteria
Chloroflexia
Clostridia
Deinococci
Deltaproteobacteria
Erysipelotrichia
Gammaproteobacteria
Gemmatimonadetes
Holophagae
Hydrogenedentia
Kiritimatiellae
Lentisphaeria
Mollicutes
Negativicutes
Nitriliruptoria
Nitrospinia
Nitrospira
Oxyphotobacteria
Phycisphaerae
Planctomycetacia
Rhodothermia
Thermoleophilia

A A
L L

L
L E

E
ER

R
RLL
R
EEL
ER
R
A
L
E
EE
R
A
A
R
E
wRA
ER
E
EEE

E
E
E

L

A B



 

62 

Figure 2. 12 
Cluster Dendrogram of pairwise comparisons from differential abundance 
analysis. Cluster dendrogram of pairwise comparisons from differential 
abundance analysis. (A) Dendrogram displaying the 28 unique bacterial classes 
across all locations with an EF of ≥10. The colored line projecting from each 
location indicates which class(es) had the highest EF in that location. (B) Displayed 
for each of the 28 bacterial classes is which location (indicated by color) had the 
highest total EF for that class along with which region in which it is located 
(indicated by letter). 
 
Although DA analysis could identify the dominating bacteria in different ports, 
we observe that for multiple bacterial classes, the same EF was observed at 
multiple locations (Fig. 2.12B). Collectively, the use of EF profiles could only 
differentiate 15 different geospatial locations using 24 bacterial classes, while our 
machine learning models found 68 subpopulations belonging to eight bacterial 
classes adequate enough to differentiate all 20 port locations (Fig. 2.7B and 2.12B). 
Machine learning approaches are able to integrate the interaction of multiple 
features for classification, which is not possible when considering each microbial 
class independent of each other as DA analysis does. This outlines another 
strength of the use of machine learning approaches for understanding microbial 
diversity and biogeography. 
 
The use of enrichment factor and DA analyses did not pick up on some of the most 
abundant and prevalent taxa that were found to be important for the machine 
learning classification (Alphaproteobacteria and Bacteroidia). Instead, low-
abundance and low-prevalence taxa were used as discriminators of geospatial 
location. This observed limitation of DA analysis is consistent with the more 
generalizable approach of leveraging the highly abundant and ubiquitous taxa for 
discriminating globally distributed geospatial locations. In the case of ML, as 
shown with our modeling, accurate classifications are achieved by incorporating 
the entire community, despite using either all high-abundance taxa, low-
abundance taxa, or a mixture of these taxa. This discrepancy between DA analysis 
and ML may be that the ML models were constructed using ASVs and that the DA 
analysis was done using an agglomerated table at the taxonomic class level. The 
use of the class taxon table in the DA analysis was out of the necessity to limit the 
number of comparisons needed. However, some resolution in the data was lost by 
agglomerating ASVs into a single class category. Therefore, ML allows for an 
appreciation of high-resolution microbial count data to observe biogeography.  
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2.9 The ability to discriminate patterns of biogeography is apparent 
at the phylum level 

Our previous machine learning models performed very well at the highest level 
of resolution (ASVs). Therefore, we wanted to determine the ability lower levels 
of resolution of the microbial community to discriminate geographic location. To 
decrease resolution, all 3,214 raw sequence variant features (ASVs) from our 
amplicon reads were binned into their respective taxonomic level (phylum, class, 
order, family, and genus) and modeled through RF to predict local and regional 
spatial scales from our samples (n = 1,218). Interestingly, the ability for machine 
learning to establish contrasts in geospatial diversity is apparent at lower 
taxonomic resolution than expected (Fig. 2.13). 
 

 
Figure 2. 13 
Machine learning model performance at each taxonomic resolution. Filled line 
plot displaying overall logarithmic loss (logloss) and accuracy in our machine 
learning models at each level of taxonomic resolution. Taxonomic resolution is in 
increasing order on the x axis along with the number of predictors (p) used in each 
model. These models vary in their feature space or number of predictors and class 
labels (Y) (port, Y = 20; region, Y = 5). All of these multiclass classification models 
were transformed to 20 one-versus-all or 5 one-versus-all binary classification 
tasks based on Y. The performance metrics logloss and accuracy are expressed as 

0.2

0.4

0.6

0.8

1

LogLoss Accuracy

0

Phylum Class Order Family Genus ASV

0

0.2

0.4

0.6

0.8

1

24 38 114 223 484 3214

Port Region

M
od

el
 P

er
fo

rm
an

ce

Taxonomic Resolution

(p)



 

64 

the respective models’ macro averaged results of the ensemble of random forests 
tuned by the same hyperparameters. 
 
There were considerable improvements in our performance metrics 
(logloss/accuracy) between spatial scales (local or regional) with models built from 
the lowest to highest levels of taxonomic resolution (phylum to genus) (Table 2.3). 
As taxonomic resolution increased, there was a consistent increase in accuracy and 
decrease in logloss, indicating that our models performed better with increasing 
taxonomic resolution. Overall, the regional models outperformed the local port 
models, supporting our earlier findings that learning the biogeography of each 
sample becomes more challenging as the number of potential geographic locations 
(Y) it could have come from increases (Fig. 2.13). 
 
Even at the lowest taxonomic resolution of phylum, our models were quite 
accurate in differentiating geospatial locations locally (logloss, 0.58; accuracy, 0.84) 
and regionally (logloss, 0.33; accuracy, 0.90). These accuracies are well above what 
would be expected for random classifications taking place in our models (based 
on model kappa, local, 0.83; region, 0.88). The highest reduction of logloss was 
observed between class-order resolution in both the local and region models (local, 
0.16; regional, 0.1) (Fig. 2.13 and Table 2.3). 
 
It is notable that of the ASV models which are composed of all ASVs, 3,214 
performed better than all lower levels of taxonomy (phylum to genus), where the 
features arise from agglomerating all 3,214 ASVs into their respective taxonomic 
levels. This observed trend in increased resolution (e.g., increased predictors [p]) 
to model performance can be explained by how lower-taxonomic resolutions offer 
a lower bacterial feature space for which models learn. This finding likely suggests 
that ML model performance is a result of how much of the microbial community 
it has available to make data-driven spatial distinctions. Although we observe this 
resolution-performance scaling, an interesting finding is that at the phylum level, 
enough differences in the community were observed to bin all samples into their 
respective port and region with relatively high accuracy. Additionally, we display 
the ability to agglomerate taxa, which reduces the dimensionality of the data by 
more than an order of magnitude and results in only a marginal decrease in 
classification performance (Fig. 2.13). 
 
To determine how these models leverage what we know about the underlying 
structure of the microbial community at these spatial locations, we assessed the 
regional model at the taxonomic class-level resolution (logloss, 0.26; accuracy, 0.95) 
(Table 2.3). In this model, the top 10 important bacterial classes and their overall 
importance across each region were assessed. This reflects how well these bacterial 
classes could be leveraged by the ML model to help differentiate samples from all 
20 ports or five regions. We found that five of the 10 important predictors were 
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among the most dominant classes in this data set, as reported previously, each 
with an overall variable importance of >50% (Fig. 2.14). Acidimicrobiia, Bacteroidia, 
and Oxyphotobacteria were considered most important for samples from Europe 
(overall importance, 100%, 97.88%, and 51.94%, respectively), while the 
importance of Actinobacteria and Gammaproteobacteria was highest for samples 
from Asia (71.17% and 59.14%, respectively). The overall importance of these taxa 
in differentiating each region through ML is not directly proportional to the 
average relative abundance reported for these regions. 
 

 
Figure 2. 14 
Distribution of taxonomic importance by region. Displayed are the important 
predictor variables identified by the regional model at taxonomic class-level 
resolution (Fig. 2.13) and are taxa that are best at differentiating geospatial 
location. The red lines indicate that these taxa were among the top six dominant 
bacterial classes. The overall variable importance is the scaled mean decrease in 
accuracy for that predictor across all regions (Y = 5) and for the ensemble of 
random forest classifications (these predictors were consistently important across 
the decision trees in the model). The heat map to the right displays the distribution 
of overall importance across each region to show the relationship between these 
bacterial taxa and how they were leveraged by the model to classify samples into 
each geographic region. 
 
It is notable that during these taxon-spatial assessments through ML, Europe has 
the lowest average relative abundance for Acidimicrobiia and the highest 
for Bacteroidia despite the two taxa having the highest variable importance in this 
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region (Fig. 2.3 and 2.14). In differentiating regions employing DA analysis 
through enrichment, we observe the opposite behavior. This could be indicative 
of these ML models making classifications off a common trend in the microbial 
abundance (low abundance in one location over others). This finding suggests that 
caution must be used while inferring associations of a microbial community based 
on the interpreted importance of taxa in a machine learning model. As such, the 
variable importance of a taxon is not a direct representation of its biological 
enrichment in a particular location. 
 
Alphaproteobacteria was the only dominant bacterial class that was not considered 
an important predictor in the bacterial class-level resolution regional model. 
Interestingly, the absence of this class as part of the top 10 important predictors is 
consistent with DA analysis results, where Alphaproteobacteria could not be 
considered differentially enriched in any one location more than another. Despite 
how Alphaproteobacteria seemed negligible when observed from both a lower 
resolution (ML model, class) and DA analysis (Fig. 2.12 and Fig. 2.14), the ML 
model utilizing the highest-resolution predictors (ASVs) 
found Alphaproteobacteria to be quite a significant predictor. Sequence variants 
of Alphaproteobacteria were given the highest overall importance in our ASV 
models regionally (100%), while the same variant was given an overall importance 
of 42.67% locally (Fig. 2.7 and Fig. 2.8). The combination of these findings suggests 
that computationally, these ML models are using different microbial community 
information at each level of taxonomic resolution to make their predictions and to 
maintain high accuracy. Biologically, this suggests that biogeographic patterns 
exist in the presence of distinct ASVs within ubiquitous classes which are present 
at similar abundances throughout these locations (e.g., ASVs can differentiate 
location, but the total abundance of the bacterial group to which the ASV belongs 
is not observably different between locations). 
 
Gammaproteobacteria had relatively similar average relative abundance across all 
regions (Fig. 2.3). Our machine learning model assigned an overall importance 
to Gammaproteobacteria commensurate to how useful it was to the model for 
making spatial distinctions across all regions (33.12% to 59.14%) (Fig. 2.14). This 
could provide insight into how bacterial taxa with low variability in abundance 
between locations contribute to machine learning model performance. Similar and 
notable distinctions between the ML overall importance and DA analysis 
enrichment metrics were found for the two dominant classes that were not 
considered differentially enriched (Bacteroidia and Alphaproteobacteria) yet were 
assigned an overall variable importance of 100% and 0%, respectively 
(Fig. 2.14 and Fig. 2.15). 
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Figure 2. 15 
Radar chart of enrichment factors of important predictor taxa. Radar chart of 
enrichment factors of important predictor taxa. These plots show the enrichment 
factor (EF) of the top 10 important predictor taxa (Fig. 2.14) assigned during DA 
analysis. The vertical axis represents an EF scale of 1 to 20 (as there are 20 local 
ports). The numbers around the radar charts correspond to the taxa in the legend 
and indicate those considered most important in their ability to differentiate these 
geographical regions. 
 

2.10 Summary and outlook 
The ability for us to accurately differentiate between locations using microbial 
abundance information at high taxonomic levels (albeit low resolution compared 
to ASVs) suggests that broad differences exist in these microbial communities 
globally. However, these ML models were slightly more accurate with higher-
resolution data, which signifies the importance of geographically distinct 
subpopulations of the dominant and ubiquitous groups. 

This study reports the microbial biogeography of 604 locations belonging to 20 
shipping ports distributed globally. We provide a comprehensive data set for the 
largest study of port-associated microbial communities to date that permits the 
robust analysis of microbial biogeography across global spatial scales and 
physiochemical gradients. Accompanying the larger Tara Oceans Project (30) and 
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Global Oceans Sampling Expedition (GOS) (31), this work expands our ability to 
understand the biogeography of microorganisms in our world’s marine and 
freshwater aquatic ecosystems. 
 
We identified how much of the complex microbial community structure could be 
explained in these locations by enrichment through differential abundance 
analysis and machine learning. Our machine learning models could detect 
biogeographical patterns in the presence of distinct ASVs within the most 
ubiquitous and abundant groups (Actinobacteria, Bacteroidetes, Cyanobacteria, 
and Proteobacteria), despite these groups having seemingly relatively equal 
abundances throughout each location. Distinctions in the microbial community for 
all 20 ports and five regions into which they group were observable at the lowest 
level of taxonomic resolution (phylum) and became more granular as we increased 
to the highest resolution (ASVs) both locally (for phylum, logloss, >0.58; accuracy, 
0.84; for ASV, logloss, 0.10; accuracy, 0.99) and regionally (for phylum, logloss, 0.33; 
accuracy, 0.90; for ASV, logloss, 0.04; accuracy, 0.99). 
 
Machine learning could discern how each location contained a distinct 
composition of sequence variants belonging to these highly abundant taxa better 
than could commonly used multivariate discriminant techniques and differential 
abundance analysis. This strongly suggests that between machine learning, 
commonly used multivariate discriminant techniques, and differential abundance 
analysis, ML is an optimal approach to uncover biogeographic patterns. Our ML 
models could appreciate the nature of microbial count data in how both high- and 
low-abundance bacterial features of the community are distributed across samples 
and therefore across geospatial locations. As such, these ML models provide a way 
of finding patterns in diversity and gauging the relative importance of taxa in the 
overall microbial community at each location on a global scale. Notably, we 
observed biogeographic patterns in the microbial community composition at a 
regional scale, where this has previously been a challenge in microbial 
biogeography across large sampling densities and spatial scales (9). 
 
The work presented here only included samples from a single time point, all 
during the summer. Therefore, we were unable to address the impact of seasonal 
changes and/or severe weather events on the observed biogeographic patterns. 
Since microbial communities are known to vary by season and in response to 
episodic weather events, we expect there be seasonal impacts on the observed 
patterns. Analysis of the microbial diversity across two seasons, fall and summer, 
in the Great Lakes stations used in this study (Duluth, MN; Green Bay, WI; and 
Keweenaw, MI) shows that the microbial community composition in these 
locations maintained geospatial taxonomic indicators through these two seasons 
(44). Future work could include investigation into the temporal dynamics of the 
observed microbial biogeography of this system. It has been shown previously 
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that community composition shifts in response to seasonal changes can be 
detected at the level of major taxa (41). We expect that despite the changes in 
community composition, the dominant and ubiquitous groups would remain 
throughout seasonal changes. In contrast, taxa that are less abundant and 
considered rare are seldom retrieved by common molecular techniques that we 
use on large-scale sampling expeditions (45). Our observation that members of 
abundant and ubiquitous groups are indicators of geospatial location suggest that 
these biogeographic patterns may be robust to seasonal changes. Despite 
longitudinal research showing how dominant bacteria of a system persist 
throughout the year (40, 41, 45–47), more work is needed to observe exactly how 
abundant taxa may proportionally stabilize their community composition across 
large spatial scales and after seasonal changes. 
 
Additionally, severe weather events may perturb the system and may result in 
transient excursions in microbial community composition. Future studies could 
investigate the ability of the machine learning classifiers developed in this study 
to accurately classify samples from a location before, during, and after severe 
weather events to clarify the persistence of biogeographic patterns despite 
perturbations. While our study demonstrates the utility of random forests machine 
learning in modeling and identifying biogeographic patterns, additional work is 
required to more fully appreciate and model the impact of temporal variation, 
both seasonal and short term, on biogeographic patterns in microbial 
communities. Furthermore, while our results suggest that random forests machine 
learning can be used to more fully appreciate biogeographic patterns, more work 
could be performed that characterizes the potential for random forests to be 
applied for modeling of temporal variation in microbial communities. 

Although we observed that several existing methods were able to provide insights 
into our global microbial data set, machine learning appears to provide to deepest 
insights. This in part may be due to the high-dimensional, highly compositional, 
and naturally sparse (e.g., contains a lot of zeros) nature of microbial community 
data (32). There still, however, remains a challenge in ecology to accurately infer 
associations between microbial communities (48) and, further, their association 
between geographic locations (39). Despite observing clear trends in biogeography 
through this robust system, this outlines the urgency to develop statistical 
methods that are biologically motivated enough to understand the complex taxon-
spatial relationships in microbial count data. 
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2.11  Materials and methods 
 

2.11.1 Port Selection 

Twenty ports were selected to cover globally important ports that varied across a 
range of environmental conditions, ship traffic, and traffic type (cargo or 
passenger) and covered multiple continents and various bodies of water. Samples 
were collected from the following ports: in the Great Lakes at Duluth, Green Bay, 
and Keweenaw; in the East Coast of the United States at New York (NY), New 
Orleans (LA), Galveston (TX), Norfolk (VA), Charleston (SC), and Baltimore (MD); 
in the West Coast of the United States at Seattle (WA) and Oakland and Long 
Beach (CA); in Europe at Venice and Naples (Italy), Martigues (France), Rotterdam 
(the Netherlands), and Wilhelmshaven (Germany); and in Asia at Busan (South 
Korea), Hong Kong, and Singapore. 
 

2.11.2 Sampling 

The samples used in this study (n = 1,218) were collected from 604 locations across 
eight countries and three continents at a total of 20 ports spanning the Great Lakes, 
Pacific Ocean, Atlantic Ocean, North Sea, Sea of Japan, South China Sea, 
Mediterranean Sea, and Adriatic Sea. All samples were collected between May and 
August 2017. Between 27 and 38 sampling stations were chosen in each port to 
provide sufficient replication and adequate representation of the range of 
conditions found within that port. At each station, surface water samples (1 liter) 
were taken from various locations within that port, each with metadata. Samples 
were subsequently filtered through a glass fiber prefilter with a 1.6-µm pore size 
(47-mm diameter) and a 0.2-µm pore-size polyethersulfone (PES) membrane 
postfilter (47-mm diameter) (Sterlitech Corporation) using a Cole-Parmer 
Masterflex E/S 115 VAC portable sampler. Filters were placed in 2-ml Eppendorf 
tubes with 500 µl RNA/DNA shield (ZymoBIOMICS) and stored at ambient 
temperatures until transported back to the laboratory to be stored at –80°C. 
Multiparameter data of water quality (conductivity, ODO, pH, salinity, TDS 
content, temperature, and dissolved oxygen content) along with global 
positioning system (GPS) coordinates of each sampling site were recorded in 
situ with a YSI ProDSS digital sampling system that was calibrated before each 
sampling trip. 
 

2.11.3 DNA extractions 

DNA was extracted from each filter using the ZymoBIOMICS DNA microprep 
D4305 kit (Zymo Research, Irvine, CA, USA), and for each sample, both the 
prefilter (1.6-µm pore size, 47-mm diameter) and postfilter (0.2-µm, 47 mm 
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diameter) were cut in half, where one half was to be used in the DNA extraction 
and the other half stored as a contingency. 
 

2.11.4 DNA sequencing 

First-stage amplification PCRs were carried out in 25-µl mixtures consisting of 
12.5 µl Phusion high-fidelity PCR master mix (Thermo Fisher Scientific, Waltham, 
MA, USA) containing deoxynucleoside triphosphates (dNTPs) at a concentration 
of 200 mM each, optimized reaction buffer, 1.5 mM MgCl2, and 1 U high-fidelity 
polymerase per reaction in 96-well VWR polypropylene plates. The primer pair 
515f and 926r was used at a concentration of 0.4 µM to amplify a construct that 
spans the variable regions 4 and 5 (V4–V5) of the 16S rRNA gene (49). The PCR 
thermal cycler settings were as follows: 95°C for 3 min; 25 cycles of 95°C for 30 s, 
55°C for 30 s, and 72°C for 30 s; and 72°C for 5 min. PCR cleanup was performed 
after first-stage amplification PCR to remove residual primers and excess reagents 
from PCR mixtures. For this cleanup, we followed the MiSeq library preparation 
guide (Illumina, San Diego, CA) and deviated from the standard protocol by using 
AxyPrep Mag PCR cleanup beads (Corning, Big Flags, NY, USA), using 10 mM 
Tris at a pH of 8 (down from 8.5) and by using 28 µl AxyPrep beads in the second-
stage cleanup since the PCR volume was 25 µl (down from 50 µl). Second-stage 
indexing PCRs took place under the same mixture conditions as first-stage 
amplification PCR and with primers that contained a unique index sequence for 
each sample and the Illumina sequencing adaptors. An additional PCR cleanup 
was done after second-stage PCR, eluting to a final volume of 50 µl. Library 
preparation and sample pooling were performed according to the MiSeq 16S 
sequencing library preparation guide (Illumina). The products from the second-
stage indexing PCR and subsequent cleanup stages were pooled into a library for 
sequencing at an equimolar concentration of 10 nM after ensuring that primer 
contamination was absent or at a minimum using a 2100 Bioanalyzer (Agilent, 
Santa Clara, CA). Denaturation and dilution of the pooled 16S rRNA gene library 
were performed according to the MiSeq 600-cycle V3 reagent kit guide (Illumina) 
to produce a 2 × 300-bp paired-end run. These samples were sequenced over three 
separate sequencing runs containing 672, 480, and 396 samples, respectively. 
 

2.11.5 Computational analysis and visualization 

All statistical analysis, machine learning models, and visualization were 
conducted on a local server (Red Hat Enterprise Linux server 7.3 [Maipo]; 256 Gb 
of random-access memory [RAM]) and on R environment version 3.5.0 (50) using 
the following packages and associated dependencies: DADA2 (51), phyloseq (52), 
DESeq2 (53), hpgltools (54), microbiome (55), microbiomeSeq, vegan (56), caret 
(57), caretEnsemble (58), and randomForest (59), the visualization packages 
ggplot2 (60) and plotly, and through rawgraphs.io. 
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2.11.6 ASV identification and taxonomic profiling 

Raw 16S rRNA sequencing reads were demultiplexed using the Illumina MiSeq 
platform. Through the divisive amplicon denoising algorithm (DADA2 package) 
(51) in R, primer nucleotides were removed, and overlapping paired-end reads 
were merged, quality filtered, and cleansed of internal standard phiX; to 
distinguish amplification and sequencing errors from true biological variation in 
our collected samples, amplicon sequence variants (ASVs) were inferred. To 
account for learning the inherently different error rates in each of the three 
separate sequencing runs, samples (672, 480, and 396) from each run were inferred 
independently (from >100 million bases) so as not to bias the true sequence 
diversity contained in the final data set of the combined samples. The three 
independent ASV count tables were merged and then used to resolve and remove 
chimeric artifacts with higher accuracy as a result of the resolution of ASVs. 
Traditionally with OTU picking, chimeric sequences are removed in a 
conservative manner, as closely related sequences are later merged into the same 
OTU. While using ASVs, a more sensitive removal is accomplished by performing 
a Needleman-Wunsch global alignment of each sequence, finding bimeras (two-
parent chimeras) and localizing combinations from a left and right parent chimera 
that overlaps the child sequence exactly. From 52,316,084 paired-end input reads, 
a total of 23,235,684 nonchimeric reads passed our filtering parameters and were 
used in ASV identification and analysis in this study. We obtained a count table 
analogous to the generally used OTU table; similarly, our features in this table are 
composed of the uniquely inferred ASVs that map how many of these amplicon 
variants were observed in each sample. Taxonomy of ASVs was assigned through 
DADA2 (51) with a reimplementation of a rapid assignment naive Bayesian 
classifier that compares our biological sequence variants to a training set of 
previously accurately classified sequences using the SILVA v132 training set 
(61, 62). 
 

2.11.7 Dimensionality reduction and normalization of data 

A series of filtering criteria were applied to the final sequencing count table of 
1,514 samples and 117,397 ASVs. Initially, only samples only from open water and 
those that had >1,000 16S rRNA reads were chosen to be in our data set for 
microbial community analysis. Additionally, every ASV that was not under the 
kingdom Bacteria was removed, along with a prevalence filtering step to only keep 
ASVs that were within ≥15 samples (e.g., an amplicon sequence variant had to be 
present in 15 or more samples from 1,218 total samples). Subsequently, singleton 
ASVs that either had a quantity of one in any sample or were only present in one 
sample along with ASVs that summed to zero across all samples were removed, 
resulting in a data set of 1,218 open-water samples and 3,214 ASV features. The 
absolute ASV read counts were logarithmized with the standard log10(x + 1) using 
the transform function in the microbiome package in R (55); this count table was 
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used for all downstream statistical analysis and machine learning. To simplify 
downstream visualization, supply count tables with reduced feature dimensions, 
and compare lower-taxonomic-level model performance against high-resolution 
ASVs both locally and regionally, phyloseq (52) was used to agglomerate all 3,214 
ASVs into their respective levels of taxonomy (phylum to genus). 
 

2.11.8 Annotation of environmental conditions 

All 3,214 ASVs were used to identify which environmental conditions were 
considered significant in explaining beta diversity in our microbial community 
across spatial scales. PERMANOVA (42) was conducted using distance matrices 
(Bray-Curtis) with 999 permutations in vegan (56), and significance (P < 0.001) was 
assessed through F testing based on the sequential sums of squares between the 
physiochemical parameters chosen and the five geographic regions to which the 
local ports were assigned. To account for the trends in environmental conditions 
and their correlation to each region, these same physiochemical parameters were 
used to annotate an ANOVA of each condition across all regions (P < 0.001). In 
order to detect the biotic relationships of the taxa and their association to the six 
physiochemical parameters, we used our ASVs to identify correlations using 
Pearson coefficient |r| (63), and associated P values were adjusted for multiple 
comparisons for environmental variables (Benjamini-Hochberg). Finally, to define 
how well these six physiochemical parameters could explain the total sample 
variance in the microbial community, a constrained analysis of principal 
coordinates (CAP; Bray-Curtis) was applied to all 3,214 ASVs using vegan (56). 
 

2.11.9 Analysis of similarity and ordinations 

To show whether the microbial community structures of the 3,214 ASVs were 
significantly different between local ports and regional ports, ANOSIM (|R|) was 
performed on absolute ASV counts using a Bray-Curtis dissimilarity matrix with 
999 permutations. To visualize differences within this community, a principal-
coordinate analysis (PCoA) was generated using phyloseq (52) using the 
ordination function (Jaccard index) and visualized through the plot_ordination 
function, where ellipses were calculated assuming a multivariate t-distribution 
with a confidence level of 0.95. 
 

2.11.10 Differential abundance analysis and identification of enrichment factors 

We used the count table that was agglomerated to the class level as a sufficient 
level of taxonomic resolution to detect differentially abundant taxa between all 
ports. These data were used to create an experimental design model with hpgltools 
(54) so that a pairwise contrast could be made for each of 20 locations against the 
other and across all features (38 bacterial classes), with n biological replicates 
supplied as n samples per location, ranging from 52 to 75, with a total of 1,218 
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samples (Fig. 2.1; samples [n]). These counts were normalized assuming a negative 
binomial distribution, and a parametric gamma-family generalized linear model 
fitting scheme was applied over taxon-wise dispersion estimates using DESeq2 
(53). Of these 7,220 pairwise comparisons, taxa were only considered differentially 
enriched and were assigned an enrichment factor (EF) if they satisfied the 
following conditions: had a logFC of ≥2, had an adjusted P value (FDR) of ≤0.05, 
and were in one location over at least one other location. 
 

2.11.11  Machine learning 

Our normalized ASV and agglomerated genus, family, order, class, and phylum 
count matrices were used as input data from which to learn. The same 
hyperparameters were chosen to ensemble the random forests in caret (57) and 
caretEnsemble (58) as follows: repeated k-fold cross-validation (k = 10 with 3 
repeats) so as to estimate the generalization performance of the models, ntree = 501 
(number of trees grown), and a random search for best mtry (the number of 
predictors sampled at each node); last, input data were centered by removing the 
mean value of each feature and scaled by dividing nonconstant features by their 
standard deviation. All models were trained with a multiclass summary function 
so that macroaveraged results of the ensemble of all random forests tuned by these 
same hyperparameters could be reported. As these are multiclass classifications, 
depending on the model type (local, Y = 20; regional, Y = 5), each model was 
transformed to either 20 one-versus-all or 5 one-versus-all binary classification 
tasks. Each model in the ensemble was fit with the same resampling indexes across 
each k-fold.  



 

75 

2.12 References 
1. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH. 2008. 
A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci U S A 105:7774-
8. 
2. Fierer N, Lennon JT. 2011. The generation and maintenance of diversity in microbial 
communities. Am J Bot 98:439-48. 
3. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. 2012. Beyond biogeographic 
patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497-506. 
4. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, 
Darcy JL, Lynch RC, Wickey P, Ferrenberg S. 2013. Patterns and processes of microbial 
community assembly. Microbiol Mol Biol Rev 77:342-56. 
5. Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of 
soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ 
Microbiol 75:5111-20. 
6. Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE, 
Abu Al-Soud W, Sorensen S, Bardgett RD, Singh BK. 2017. It is elemental: soil nutrient 
stoichiometry drives bacterial diversity. Environ Microbiol 19:1176-1188. 
7. Hernando-Morales V, Ameneiro J, Teira E. 2017. Water mass mixing shapes bacterial 
biogeography in a highly hydrodynamic region of the Southern Ocean. Environ Microbiol 
19:1017-1029. 
8. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial 
community variation in human body habitats across space and time. Science 326:1694-7. 
9. Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, White D, Climo MD, 
Hinze AM, Morgan XC, McDonald IR, Cary SC, Stott MB. 2018. Microbial biogeography of 925 
geothermal springs in New Zealand. Nat Commun 9:2876. 
10. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, 
Townsend AR, Cleveland CC, Stanish L, Knight R. 2011. Global patterns in the biogeography of 
bacterial taxa. Environ Microbiol 13:135-144. 
11. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, 
Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of 
sequences per sample. Proceedings of the National Academy of Sciences 108:4516-4522. 
12. Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, Bertilson S, 
Kirchman DL, Lovejoy C, Yager PL, Murray AE. 2012. Pole-to-pole biogeography of surface and 
deep marine bacterial communities. Proceedings of the National Academy of Sciences 109:17633-
17638. 
13. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine 
MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, 
Staley JT. 2006. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 
4:102-12. 
14. Gonzalez A, King A, Robeson Ii MS, Song S, Shade A, Metcalf JL, Knight R. 2012. 
Characterizing microbial communities through space and time. Current Opinion in 
Biotechnology 23:431-436. 
15. Gibbons SM, Gilbert JA. 2015. Microbial diversity--exploration of natural ecosystems 
and microbiomes. Curr Opin Genet Dev 35:66-72. 
16. Mandakovic D, Rojas C, Maldonado J, Latorre M, Travisany D, Delage E, Bihouee A, 
Jean G, Diaz FP, Fernandez-Gomez B, Cabrera P, Gaete A, Latorre C, Gutierrez RA, Maass A, 
Cambiazo V, Navarrete SA, Eveillard D, Gonzalez M. 2018. Structure and co-occurrence patterns 
in microbial communities under acute environmental stress reveal ecological factors fostering 
resilience. Sci Rep 8:5875. 



 

76 

17. Raes EJ, Bodrossy L, van de Kamp J, Bissett A, Ostrowski M, Brown MV, Sow SLS, Sloyan 
B, Waite AM. 2018. Oceanographic boundaries constrain microbial diversity gradients in the 
South Pacific Ocean. Proc Natl Acad Sci U S A 115:E8266-E8275. 
18. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. 2009. Ecology of the rare microbial 
biosphere of the Arctic Ocean. Proc Natl Acad Sci U S A 106:22427-32. 
19. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, 
Bardgett RD, Maestre FT, Singh BK, Fierer N. 2018. A global atlas of the dominant bacteria found 
in soil. Science 359:320-325. 
20. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, 
Herndl GJ. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc 
Natl Acad Sci U S A 103:12115-20. 
21. Vergin K, Done B, Carlson C, Giovannoni S. 2013. Spatiotemporal distributions of rare 
bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquatic 
Microbial Ecology 71:1-13. 
22. Szabó K, Itor P, Bertilsson S, Tranvik L, Eiler A. 2007. Importance of rare and abundant 
populations for the structure and functional potential of freshwater bacterial communities. 
Aquatic Microbial Ecology 47:1-10. 
23. Mohri M, Rostamizadeh A, Talwalkar A. 2018. Foundations of machine learning, Second 
edition. ed. The MIT Press, Cambridge, Massachusetts. 
24. Smith MB, Rocha AM, Smillie CS, Olesen SW, Paradis C, Wu L, Campbell JH, Fortney 
JL, Mehlhorn TL, Lowe KA, Earles JE, Phillips J, Techtmann SM, Joyner DC, Elias DA, Bailey KL, 
Hurt RA, Jr., Preheim SP, Sanders MC, Yang J, Mueller MA, Brooks S, Watson DB, Zhang P, He 
Z, Dubinsky EA, Adams PD, Arkin AP, Fields MW, Zhou J, Alm EJ, Hazen TC. 2015. Natural 
bacterial communities serve as quantitative geochemical biosensors. MBio 6:e00326-15. 
25. Knights D, Costello EK, Knight R. 2011. Supervised classification of human microbiota. 
FEMS Microbiol Rev 35:343-59. 
26. Roguet A, Eren AM, Newton RJ, McLellan SL. 2018. Fecal source identification using 
random forest. Microbiome 6:185. 
27. Thessen A. 2016. Adoption of Machine Learning Techniques in Ecology and Earth 
Science. One Ecosystem 1:e8621. 
28. Paliy O, Shankar V. 2016. Application of multivariate statistical techniques in microbial 
ecology. Mol Ecol 25:1032-57. 
29. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace 
operational taxonomic units in marker-gene data analysis. ISME J 11:2639-2643. 
30. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, 
Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d'Ovidio F, Engelen 
S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain 
J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, 
Kandels-Lewis S, Tara Oceans c, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, 
Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach 
J, Wincker P, Karsenti E, Raes J, Acinas SG, et al. 2015. Ocean plankton. Structure and function 
of the global ocean microbiome. Science 348:1261359. 
31. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, 
Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, 
Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, 
Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, 
Frazier M, Venter JC. 2007. The Sorcerer II Global Ocean Sampling expedition: expanding the 
universe of protein families. PLoS Biol 5:e16. 
32. Lo C, Marculescu R. 2017. MPLasso: Inferring microbial association networks using prior 
microbial knowledge. PLoS Comput Biol 13:e1005915. 
 



 

77 

33. Cutler DR, Edwards TC, Jr., Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. 
Random forests for classification in ecology. Ecology 88:2783-92. 
34. Olden JD, Lawler JJ, Poff NL. 2008. Machine learning methods without tears: a primer 
for ecologists. Q Rev Biol 83:171-93. 
35. Prasad AM, Iverson LR, Liaw A. 2006. Newer Classification and Regression Tree 
Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 9:181-199. 
36. Elith J, H. Graham C, P. Anderson R, Dudík M, Ferrier S, Guisan A, J. Hijmans R, 
Huettmann F, R. Leathwick J, Lehmann A, Li J, G. Lohmann L, A. Loiselle B, Manion G, Moritz 
C, Nakamura M, Nakazawa Y, McC. M. Overton J, Townsend Peterson A, J. Phillips S, 
Richardson K, Scachetti-Pereira R, E. Schapire R, Soberón J, Williams S, S. Wisz M, E. 
Zimmermann N. 2006. Novel methods improve prediction of species’ distributions from 
occurrence data. Ecography 29:129-151. 
37. Breiman, L. 2001. Random Forests. Machine Learning 45, 5-32, doi:10.1023/a:1010933404324. 
38. Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. 2016. How do ecologists select 
and use indicator species to monitor ecological change? Insights from 14 years of publication in 
Ecological Indicators. Ecological Indicators 60:223-230. 
39. Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity. Proc Natl Acad 
Sci U S A 113:5970-5. 
40. Ward CS, Yung CM, Davis KM, Blinebry SK, Williams TC, Johnson ZI, Hunt DE. 2017. 
Annual community patterns are driven by seasonal switching between closely related marine 
bacteria. ISME J 11:2637. 
41. Bunse C, Pinhassi J. 2017. Marine Bacterioplankton Seasonal Succession Dynamics. Trends 
Microbiol 25:494-505. 
42. Schaerer LG, Ghannam RB, Butler TM, Techtmann SM. 2019. Global Comparison of the 
Bacterial Communities of Bilge Water, Boat Surfaces, and External Port Water. Appl Environ 
Microbiol 85. 
43. Pedros-Alio C. 2012. The rare bacterial biosphere. Ann Rev Mar Sci 4:449-66. 
44. Liao J, Cao X, Wang J, Zhao L, Sun J, Jiang D, Huang Y. 2017. Similar community assembly 
mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui 
Plateau, China. Limnology and Oceanography 62:723-735. 
45. Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, 
Rengefors K, Tranvik L, Bertilsson S. 2013. Biogeography of bacterial communities exposed to 
progressive long-term environmental change. The ISME Journal 7:937-948. 
46. Anderson MJ. 2005. Permutational multivariate analysis of variance. Department of 
Statistics, University of Auckland, Auckland 26:32-46. 
47. Paulson JN, Stine OC, Bravo HC, Pop M. 2013. Differential abundance analysis for microbial 
marker-gene surveys. Nat Methods 10:1200-2. 
48. Cai W, Lesnik KL, Wade MJ, Heidrich ES, Wang Y, Liu H. 2019. Incorporating microbial 
community data with machine learning techniques to predict feed substrates in microbial fuel 
cells. Biosens Bioelectron 133:64-71. 
49. Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assessing small subunit 
rRNA primers for marine microbiomes with mock communities, time series and global field 
samples. Environ Microbiol 18:1403-14. 
50. R Development Core Team. 2017. R: A Language and environment for statistical computing. 
51. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: High-
resolution sample inference from Illumina amplicon data. Nat Methods 13:581-3. 
52. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis 
and graphics of microbiome census data. PLoS One 8:e61217. 
 
53. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol 15:550. 



 

78 

54. Belew, A., Hughitt, K. 2018. hpgltools: A pile of (hopefully) useful R functions. R package 
version 2018.03. 
55. Lahti, L., Shetty, S. 2017. microbiome: Utilities for microbiome analysis. R package 
version 2.4-3. 
56. J. Oksanen, R. Kindt, P. Legendre, B. O'Hara, G. Simpson, P. Solymos, M. Stevens, H. 
Wagner. 2017. vegan: Community ecology package. R package version 2.4-3. 
57. Kuhn, M. 2018. caret: Classification and Regression Training. R package version 6.0-80. 
58. Deane-Mayer, Z., Knowles, J. 2016. caretEnsemble: Ensembles of Caret Models. R package 
version 2.0.0. 
59. Liaw, A. & Wiener, M. 2002. Classification and Regression by randomForest. R News 2(3),18-
-22. 
60. Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New 
York) 
61. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. 2013. 
The SILVA ribosomal RNA gene database project: improved data processing and web-based 
tools. Nucleic Acids Res 41:D590-6. 
62. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 
73:5261-7. 
63. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, 
Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, 
Skidmore AK, Zurell D, Lautenbach S. 2013. Collinearity: a review of methods to deal with it and 
a simulation study evaluating their performance. Ecography 36:27-46. 



 

79 

3 Persistence and stability of aquatic microbial 
communities on surface objects: A longitudinal 
experimental design for object provenance 

 
Preface 
The work described previously in Chapter 2 demonstrates the ability to accurately 
classify a location a sample was taken from using the microbial community profile 
alone. In order to extend this application into a real-world detection scheme – we 
designed a longitudinal field experiment to determine if microbes can serve as 
indicators of object provenance (previous known origin). More specifically, we 
sought to detect provenance of vessels in marine and freshwater settings as they 
travel from one location to another. This form of detection is made possible by 
understanding the microbial community persistence and stability dynamics of this 
system in the aggregate and with a subset of the most robust candidate taxa in the 
community. 
 
Abstract 
The work presented here provides a systematic way of investigating microbial 
communities in the Chesapeake Bay — a real world, complex ecosystem that is 
abundant with different microbes. We aim to understand the microbial 
communities of this system by transecting from the home port of Baltimore to the 
destination port of Norfolk, sampling along the way using two research vessels 
for two independent voyages (296km each). By understanding the microbes from 
the open water in this system, we can gain insight into how an object (a vessel) is 
effectively seeded from and adopts the signatures of the open water in the system. 
We investigate this because if a microbe from the open water colonizes an object 
that is moving, and persists on the object across space and time, the microbial 
signature is likely a good indicator of that object’s geospatial history. The work 
presented here provides a better understanding of how microbes in aquatic 
systems can be leveraged as utility for object biosensors. 
 

3.1 Introduction 
The oceans and other aquatic systems have been important in globalization, 
enabling around eighty percent of global trade by volume/value, military 
mobilization, leisure and personal travel, etc. (1, 2). Maritime Domain Awareness 
(MDA) surveillance systems such as Automated Identification Systems (AIS) 
estimate that an average of 200,000 vessels transit the oceans each day(3). The 
requirement for AIS transponders only applies for large vessels (greater than 300 
gross tonnage) or those used as passenger ships.  This means that many smaller 
craft are able to subvert surveillance technologies described above and are 
responsible for a range of illicit maritime crimes and other unlawful acts, including 
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transport of illegal goods (arms and drugs), human trafficking, smuggling of 
migrants, unregulated fishing and piracy and is responsible for a large percentage 
of transnational crime globally(1, 3, 4).  
 
A measurable understanding of the origin of objects passing through exclusive 
economic zones (EEZs), the high seas and other navigable waterways can be 
beneficial to law enforcement and national security – as noted by the National 
Strategy for Maritime Security, a plan to achieve Maritime Domain 
Awareness/MDA through the National Security Presidential Directive-
41/Homeland Security Presidential Directive-13 (NSPD-41/HSPD-13) (Maritime 
Security Policy, December 21, 2004)(5). 
 
Natural microbial communities have enormous potential as toolkits for forensic 
science, and possibly serve as “fingerprints” to establish object provenance 
(previous known origin). A wide variety of microbes are ubiquitously and 
abundantly dispersed through our planet – each with their own unique DNA(6). 
As objects pass through our natural and built environments, they will adopt the 
resident microbes of each geospatial location – and this gradually forms a 
colonization fingerprint that can be used to determine where the object has been 
through space-time(6, 7). 
 
As mentioned throughout this dissertation, applications like this are made 
possible by a timely coupling of less expensive and accessible molecular platforms 
and computation: high-throughput next-generation sequencing (NGS) and 
machine learning (ML). This complement gives the ability to harness the power of 
microbes as sensors of particular phenomena that we are interested in and often 
in a non-invasive way. For example, machine learning coupled to microbiome data 
has enabled identifying individuals from their personalized microbiome(8), 
estimating post-mortem intervals(9), identifying clandestine grave sites(10) and 
tracking food sources(11). There however has been a focus primarily on human 
microbiomes. More recently, scientists have started to examine the potential for 
machine learning to use microbial communities for environmental diagnostics(12, 
13). However, little work has been done to characterize microbiomes of many 
objects in the built environment – which can provide insights into the history of 
that object. Since objects possess a dynamic and unique microbiome that changes 
over time in response to surrounding environment (7), this approach has great 
potential such as in our application. 
 
Our previous work has shown that microbes can be used to discriminate 
geospatial location at global scales of which we sampled(6), suggesting microbes 
can be used as sensors of object provenance. Other work from our group has 
shown that vessels from around the world are home to a diverse community of 
bacteria that are in some ways shaped by the waters in which they come in 
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contact(14, 15). By way of real-world experiment, we leverage that in a 1ml of 
surface seawater there can be approximately 105-106 microbes present(16). These 
microorganisms are able to be picked up by moving objects and carried from one 
destination to another. In this study we followed the microbial community (using 
the 16S rRNA gene-marker) of two vessels and the surrounding water through 
which they passed over a transect down the Chesapeake Bay from Baltimore to 
Norfolk and back. This work advocates an enhanced and innovative perspective 
of using natural microbial communities in complex environments as forensic tools 
and provides a framework for the integration of field sampling, data acquisition, 
and computational techniques necessary to approach such a problem. Lastly, the 
data generated as part of the experimental field design complements public 
datasets accessible to other researchers to validate and benchmark hypotheses 
relating to the study of natural microbial communities in complex settings. 
 

3.1.1 Field design and sampling 
 

 
Figure 3. 1 
Illustration of experimental design: field work, molecular and computational 
workflow. (A) Depicted is a map of 25 sampling stations (colored circles on map) 
(coordinates supplied in Supplementary Data) along the Chesapeake Bay spanning 
a transect between the port of Baltimore, MD (B: Red) and Norfolk, VA (N: Blue). 
For the analyses in this Chapter, samples along the transect were divided into three 
groups (1) Port of Baltimore (Red), (2) Chesapeake Bay (Yellow) and (3) Port of 
Norfolk (Blue). A number of samples were collected from the vessel and 
surrounding open water at each sampling station as follows: R, rear; F1, open water 
filtered through a pre-filter (see methods); F2, open water filtered through a post-
filter (see methods); BW, bilge water inside of the engine compartment; BF, bilge 
biofilm inside of the engine compartment; H, hull (side). Sample positions R, BW, 
BF, H were swab samples taken from the surface of the vessel – and F1, F2 samples 
were collected as 1L of surrounding open water and subsequently filtered to 
collect biomass through a pre and a post filter that have different pore sizes. Two 
independent voyages were chartered to transit from Baltimore to Norfolk and 
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back, sampling both directions for a total of 616 samples to be used in a 
downstream in silico detection scheme and to test for system robustness. (B) 
Illustrates the molecular techniques used to prepare sequencing libraries of the 16S 
rRNA gene marker and identify shared sequences between both voyages. (C) A 
detection scheme using machine learning that identifies object provenance from 
learning the vessel’s home port resident microbial signatures (Baltimore) and intra-
transit to destination signatures (mid Chesapeake Bay – Norfolk). In addition to 
collecting biological samples, multiparameter data of water quality (Conductivity, 
ODO, pH, Salinity, TDS, Temperature, Dissolved Oxygen, Total Dissolved Solids) 
along with the GPS coordinates of each sampling site was recorded in situ with a 
YSI ProDSS digital sampling system calibrated before each sampling trip. Nutrient 
data (phosphate, silicate, nitrate, ammonia), total organic carbon (TOC) and 
chlorophyll content was recorded for each station on each transit. Additional 
information regarding this experimental field design can be found in materials and 
methods. 
 
Previous work indicated that microbes in port water exhibit some sort of 
biogeography, suggesting that natural microbial communities can serve as sensors 
for object provenance(6). The aim of this experimental design is to extend this 
information to potentially use microbes as quantitative indicators of the 
transmission of a vessel through space and time. For this test case, we have 
designed a field experiment to acquire the datasets necessary to ultimately train 
and validate a machine learning model objectivizing previous known origin of an 
object, provided a sample has been taken from the object. More specifically, we 
aim to investigate if upon sampling a vessel that leaves from the port of B and 
arrives at the port of N, what is the retention and level of detection of the microbial 
signatures of the home port B, and can these signatures geospatially quantify, with 
accuracy, the previous port the vessel was stationed in, or detect if it has traveled 
along a specific route (Fig 3.1). 
 
We chartered two research vessels to transit from the port of Baltimore (B) to 
Norfolk (N) and back on independent voyages for a total of four transits along the 
Chesapeake Bay (C). Along departing and returning transits on both vessels, 
samples were collected at the same stations from the surrounding open water, the 
transom of the vessel (rear (R)), hull of the vessel (side) (H) and bilge compartment 
water (BW) and biofilms (BF) (engine room that collects water) to sample 25 
stations on departing transits (B to N) and 9 stations on the returning transits (N 
to B) (Fig 3.1A) for a total of 616 samples including processing blanks and negative 
controls. 
 
We chose to sample the boat at specific locations (R, H, BW, BF) because R and H 
are constantly being splashed by surrounding water (representative of F1/F2) – 
and also because surrounding water influxes into the bilge compartment (BW). 
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The bilge of a vessel is generally where the engine is held and is the lowest 
compartment which collects water during transit. Microbes that enter the bilge 
compartment through open water influx are effectively shielded from outside 
environmental perturbation and are given the opportunity to colonize to form 
biofilms (BF). This process of how microbes can colonize artificial surfaces to form 
biofilms has been well characterized in marine settings(17, 18). Since the formation 
of a biofilm provides advantages to microbes by supporting the stability of the 
community and various ecological and biogeochemical functions – this 
compartment may support the longest microbial signature retention over time 
(Fig. 3.1B). More so, biofilms can be more resistant to change from influx of new 
organisms into the bilge compartment relative to other positions on the vessel. 
 
Although microbes have many ways of colonizing a vessel, we hypothesize that 
the microbial community of a boat will be shaped by two communities. The first 
is defined by the microbial signature acquired at the home port from sitting at the 
dock, and the second would be any new microbial assemblages picked up by the 
vessel from the water during its transit. While microorganisms can colonize the 
outside of the vessel (R and H), these boat sites are exposed to the environment 
and thus may be more variable than BW and BF. 
 
Additional factors behind choosing these sampling positions and sample sizes at 
each station stem from previous studies including our global sampling expedition 
for geospatial signatures(6) and associated work(14, 15). Here, we show that 
taking low bio-mass samples (swabs) at the selected locations on the vessel (Fig. 
3.1A) still provides enough genetic information to obtain sufficiently 
representative microbial community profiles for predictive algorithms to 
recognize biological differences between sampling stations (Fig. 3.1C). In addition 
to taking biological samples, multiparameter data of water quality (Conductivity, 
ODO, pH, Salinity, TDS, Temperature, Dissolved Oxygen, Total Dissolved Solids) 
along with the GPS coordinates of each sampling site were recorded in situ with a 
YSI ProDSS digital sampling system calibrated before each sampling trip. Further, 
nutrient data (phosphate, silicate, nitrate, ammonia), total organic carbon (TOC) 
and chlorophyll content was recorded for each station on each transit so that causal 
ecological influence on microbial signatures can be inferenced (environmental 
data supplied in Supplementary Data). 
 

3.2 Results 
3.2.1 General characterization of system-wide microbial 

community 
Determining if and where there are apparent distinctions in the samples collected 
in our system in the aggregate is important for selecting a set of microbial 
candidates as the most robust signatures and for machine learning model building. 
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Initial analysis of all samples taken from the system either on the vessel or from the 
open water is displayed in Fig. 3.2. Here, similar patterns in sample composition 
were observed across both vessels and from the open water sampled from 
independent voyages (taken at different times), which suggests relative 
community stability across the system during the time period of sample collection 
and indicates that our experimental design is relatively robust (i.e., not limited to 
single type of vessel or very short distances). This clustering of the PCoA (Fig. 
3.2A) suggests that samples collected from the vessel (BW/BF) are clearly separable 
from the open water (F1/F2), which we know seed these compartments(14). 
Notably, locations such as H/R are also known to be seeded by open water. The 
samples from these surface locations (external: exposed to environment) share 
more similar community compositions to open water (F1/F2) than do the 
compartmentalized (internal: shielded from environment) surface locations of the 
vessel (BW/BF) have to open water (Fig. 3.2B). 
 

 
Figure 3. 2 
Principal Component Analysis (PCoA) and distance metrics of variability in 
microbial communities. (A) PCoA plot comparing the entire microbial 
community composition of samples taken to display inter-boat variation between 
compartmentalized sampling positions of the vessel (BW/BF; shielded from 
environment) and external sampling positions (H/R; exposed to environment) as 
well as the open water (F1/F2). These ordinations are faceted by both voyages (vessel 
A and B) as illustrated in Fig. 3.1A. (B) PCoA plot displaying inter and intra-
variation of each sampling position calculated using Bray-Curtis dissimilarity. (C) 
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Divergence plot showing the intra-location variation in community dissimilarity 
between each voyage. (D) Divergence plot showing the inter-vessel variation in 
community dissimilarity from all sample types (BF/BW/H/R/F1/F2) between 
each sampling station across the Chesapeake Bay (296km) for each voyage. A loess 
(locally weighted scatterplot smoothing) function with a y ~ x formula was used 
to better track divergence across the transect. 
 
 
Intra-geospatial location (B/C/N) variability between each voyage (Fig. 3.2C) 
reveals that there are differences in microbial community composition between 
Baltimore, Chesapeake Bay and Norfolk, which supports an argument for resident 
microbes serving as signatures of detection across the transect. Looking at the 
inter-vessel divergence between each sampling station for each voyage (Fig. 3.2D), 
upon leaving home port (Baltimore), the open water microbial community 
diverges from the resident microbiome of the port of Baltimore – and continues to 
diverge as the vessel transits the middle of the Chesapeake Bay. Upon reaching 
the final destination (Norfolk), the microbial community diverges again – to what 
resembles more of a near-shore community profile, similar to earlier stations of 
Baltimore. To potentially explain observed divergence, when comparing 
divergence results to the PCoA plot (which clusters each sample in terms of 
similarity), it is observed that although each voyage is variable, the microbial 
community composition is still relatively similar in the aggregate. 
 
These preliminary clustering results may suggest that compartmentalized 
positions of the vessel (BW/BF) that are shielded from the external environment 
(constant splashing, winds, environmental parameters) may influence a microbe’s 
ability to colonize the surface of the compartment for longer retention. The open 
water is generally going to be more of a homogenous community composition than 
communities found in a compartment. Thus, the community composition 
observed between external sampling positions and open water support the 
hypothesis that as an object moves through the open water, the microbes present at 
each geospatial location along the transect (captured in F1/F2) will reflect the 
community composition on the external and compartmentalized surfaces of the 
vessel (H/R/BF/BW) (Fig. 3.2AB). However, investigating specific retention times 
of microbes in the water and the microbes at each sampling location on the vessel 
requires a more thorough analysis. 
 

3.2.2 Generalizing candidate biomarkers 
In order to develop a system for detection of past location, we wanted to focus on 
a subset of the community that would be the most informative for model 
construction and as detectable signatures. Moving forward with all 
characterizations of this system, we use a derived set of 9 ‘persistent’ microbial 
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features (single nucleotide variants (ASVs, as taxa))(19) (Fig. 3.3). These features 
were chosen based on the fact that they are both detectable (≥0.001 relative 
abundance (RA)) and frequently observed (≥.5 prevalence/frequency) in the 
aggregate of samples along the transect from Baltimore (B) to Norfolk (N) across 
the Chesapeake Bay (C). The microbial ASVs are identified as a ‘core’ biome that 
are the most robust and persistent genetic signatures in the system as well as 
strong indicators of geospatial location. We chose to focus on abundant and 
prevalent ASVs because ‘rare’ or underrepresented microbial taxa may be harder 
to consistently detect due to variation and other biases introduced during sample 
processing. For example, we are considering a good microbial signature to one that 
is present in the system and retained through the majority of samples throughout 
the 296km voyage using vessel A on day 1-5 and was also present and retained on 
the voyage using vessel B on day 6-10, as illustrated in Fig. 3.3. 
 

 
Figure 3. 3 
Schematic illustration to identify a core biome of the system. 
 
 
This heuristic threshold of detection/prevalence is chosen for computational and 
practical feasibility and for parsimonious model selection given that this model 
criterion can generalize to downstream molecular detection applications.  Other 
thresholds may be useful to address other questions from this dataset. Examples 
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of translational applications from in silico modeling – such as the translational 
potential of this work is described extensively in the next chapter. 
 
Certain ASVs may be ‘persistent’ resident members of the microbial community 
of open water (F1/F2) surrounding Baltimore (detectable at sampling stations near 
Baltimore) and are retained as the voyage continues to Norfolk (detectable at 
sampling stations near Norfolk). Using taxa that may be easily washed away (only 
retained from 0-100km, hypothetical) or are only present in certain sampling 
stations (Figure 3AB) does not allow for robust and generalizable biomarkers to 
be identified through the system. The reasons for loss of signature may result from 
many things in this dynamic system and is not limited to but can include the 
inability to rapidly become abundant by colonizing or adapting to environmental 
conditions (e.g., constant mixing, low nutrient availability, salinity, inability to 
adhere to vessel material, …). 
 
Finally, the approach of using the core microbiome for detection is well suited for 
downstream modeling, such as a supervised machine learning algorithm that can 
use a feature space fully comprised of the microbial community, and not external 
metadata (environment, time, …). By selecting a core microbiome that is present 
on multiple vessels, we effectively reduce the inter-vessel and inter-open water 
sample variation such as in noisy and spurious taxa resulting from confounding 
variables that are not collected during sampling (e.g., nutrients on vessel: 
enhanced biofilm formation), while capturing the subtle intra-variation of the 
microbial communities across the system as ‘signals’ of detection (Figure 3B). In 
systems like the human microbiome, where there is high inter-personal variation 
in microbial community composition, this approach using the core microbiome to 
classify outcomes may allow for the construction of more generalizable models. 
 

3.2.3 Taxonomic profiling 
The generalized approach of ‘core’ microbiota described in Section 3.2.2 and 
displayed in Fig. 3.1 and Fig. 3.3 is first demonstrated here by taxonomically 
profiling the community of our system (Fig. 3.4). Relative abundance profiles of 
the 9 ASVs (system’s ‘core’ biome) reveal fine scale differences in microbial 
community composition between signatures sampled from each voyage. Of the 9 
core ASVs, sp1 and sp2 (Cyanobacteria) are observed system-wide at high 
proportions. This is consistent with what is expected to be observed – since our 
samples were derived from surface water, we expected that photosynthetic 
microbes that occupy the surface water during the day would be abundant in our 
surface water samples. 
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Figure 3. 4 
Taxonomic assignment and profiling of system-wide sampling regime. (A) 
Taxonomic assignment of each ‘core’ microbiota from highest resolution (ASV) to 
lowest resolution (Phylum). (B) Microbial community composition of samples 
taken from the system. The X axis is representative of relative abundance of each 
signature faceted by samples taken from the vessel (positions: BF/BW/H/R) and 
from the open water (positions: F1/F2) during both voyages across the distance of 
the Chesapeake Bay. 
 
Although consistent in both voyages, samples from BF have a less diverse 
microbial community composition compared to all other samples, which is to be 
expected since the formation of a biofilm is usually dominated by few 
organisms(20). A closer look at Cyanobacteria specific ASVs (sp1, sp2) is outlined in 
Supplemental File 1, where we compared their relative abundance to the total 
community rather than just to the other signature taxa as presented in Fig. 3.4. 
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However, it is notable to mention that assuming Cyanobacteria in this system are 
phototrophic, these taxa could also survive as heterotrophs on the available 
nutrients after having been carried from open water (F1/F2) to the bilge 
compartment (BW) to ultimately form a biofilm (BF) in the absence of sunlight(21). 
 
However, we would still expect there to be a lower representation of viable 
Cyanobacteria in a bilge tank. Similar work has explored this and found increased 
enrichment of Cyanobacteria in open water (F1/F2) relative to bilge (BW/BF)(14) 
(log2-fold change of 3.1-5.5), and is consistent with what we show with 
Cyanobacteria signatures in this study (sp1, sp2). It is worth mentioning that 
Cyanobacteria analyzed as part of the mentioned in Schaerer et al may not map to 
similar taxa as in this study, since sp1 and sp2 here are derived from a different 
amplicon reads (ASVs).  However, the fact that cyanobacteria are found in both 
surface water and in the bilge compartment is consistent across studies from 
diverse settings and varied vessels. 
 
Analyzing other taxa, a large proportion of sp11 is consistently present in F1 
samples (filter: 1.6-um pore size) relative to F2 samples (filter: 0.2-um pore size), 
across both voyages. This enrichment in the larger pore size filters could indicate 
that sp11 (Planctomycetes) could be particle attached. This is consistent with other 
studies that have shown that many members of the Planctomycetes often live 
associated with particles and are recovered on larger pore sized filters(22). Their 
presence at lower abundance on the smaller filter (F2) could potentially be 
explained by when water is filtered through the larger pores of F1 into F2 samples, 
increased abundance of the same, or a variety of different microbes can be 
liberated from particulate matter of the surface samples F1 (e.g., organic matter). 
This could also indicate that microbes could be then better captured by molecular 
detection techniques(23), such as sp4, sp9 and sp31 signatures as observed in F2. 
Together, these results suggest that a higher resolution of the distribution of 
signature taxa is reflected through analyzing biomass collected on F2 samples, and 
other compartments that resemble similar patterns, such as on the vessel itself (R, 
H, BW) (Fig. 3.4B). 
 
In this system, we hypothesized that all sample types are primarily seeded by the 
surrounding open water, either through splashing or inflow, since work in similar 
systems showed that roughly 40% of the bilge communities (BW/BF) and 52% of 
the surface communities (R/H) are sourced from surrounding open water, or what 
is effectively captured in F1 and F2(14). Thus, the observed consistencies between 
each voyage type support that our experimental design and sampling regime is 
robust to distance (at least 296km), vessel type and to the particular seasonality of 
this system of when we sampled (environmental data along with season can be 
accessed in Supplementary Data). 
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Overall, profiles between samples from each position are consistent between both 
voyages. The microbial community diversity in BF is the least variable across both 
voyages, which could also support this sample type as the most stable for 
signature retention. Early-voyage sampling stations seem to have the most 
community variability as compared with mid-voyage and late-voyage samples, 
which could indicate that increased dynamics in community composition in 
coastal water could influence community turnover (e.g., taxa gain/loss) compared 
to the conditions that mid-bay communities are exposed to(14). Some work has 
been done to assess community turnover as a function of seasonality and severe 
weather events in aquatic systems(24, 25). After a perturbation event, microbial 
communities seem to stabilize back to a ‘resident’ community profile, which may 
support the work shown here that resident signatures are robust to season and 
time or will shift back to a steady state community. 
 
It is notable to mention that these profiles in Fig. 3.4B are a result of DNA 
sequencing and observed taxa profiles could have come from either having 
sampled and sequenced free nucleic acid from ‘core’ microbiota that were part of 
influx through the voyage, rather than viable cells as part of the sampled biofilm 
(BF). More work would have to be done looking at the RNA level or using 
alternative methods for inferring viability of these signature taxa. 
 

3.2.4 Enrichment profiles of signature taxa 
Signature taxa that would be useful for determination of provenance would 
require the ability of a resident microbe to be picked up by an object and carried 
through a system as a persistent signature of geospatial location. This section more 
quantitatively analyzes these patterns of signature taxa using differential 
abundance profiling (Fig. 3.5). Different measures of association between 
signature taxa can be assessed as either being enriched in sample types from bilge 
(BW/BF) or open water (F1/F2). Focusing on the same ASVs as characterized in 
Fig. 3.4 in order, Cyanobacteria (sp1, sp2) show different enrichment profiles 
(Abundance (log10-scale)) despite both being assigned to the same Genus. 
Additionally, these taxa show different patterns of enrichment with sp1 being 
significantly enriched in the open water relative to bilge (logFC: 2.09). For 
Actinobacteria (sp4, sp7, sp9, sp35), excluding sp4, these taxa share the same 
taxonomic assignment through Genus and appear to have inconsistent enrichment 
profiles, with sp7 slightly enriched in bilge (logFC: 1.18) and sp9 and sp35 enriched 
in open water (logFC: 3.23, 2.31 respectively). Although not significant, the profiles 
seem to be impacted by difference in prevalence. The Planctomycetes (sp11, sp38) 
deviate at Class and are both significantly enriched in open water relative to bilge 
(logFC: 5.47, 4.14, respectively). Planctomycetes appear to be significant by all 
metrics provided: (-log10(adj. p value)), generalized fold change and with respect 
to prevalence. 



 

91 

 
Figure 3. 5 
Differential abundance analysis for signature taxa. This plot provides various 
measures of association between signature taxa and sample positions from bilge 
and open water samples from both voyages (n = 199; 100 open water, 99 bilge). All 
axis values are provided underneath each analysis. Differentially abundant 
features are represented as bean plots to show abundances (log10) of each 
signature in the sample distribution used from bilge (BW/BF) or open water (F1/F2) 
samples. Vertical lines in each bean plot represent the mean value for each taxon 
in the sample distribution. Significance is computed by a Wilcoxon test followed 
by multiple hypothesis testing correction and is meant to denote how ‘important’ 
enrichment is for each signature taxa in bilge relative to open water. Fold change is 
the generalized fold change in enrichment, or the geometric mean of differences 
between each signature taxa in bilge relative to open water. AU-ROC (Area Under 
the Receiver Operating Characteristic Curve) is computed as a non-parametric 
measure of enrichment (corresponding to the effect size of the Wilcoxon test). AU-
ROC here measures the observed difference in read counts in the sample 
distribution for each signature (sample separability) where an AU-ROC from 0.5-
1 is in favor of taxa being enriched in bilge and an AU-ROC from 0-0.5 is in favor 
of open water. Prevalence shift indicates the difference in prevalence (proportion of 
samples the taxa is in) of each signature taxa between bilge and open water. 
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The only signature taxa belonging to Proteobacteria (sp31) seems to be significantly 
enriched as well as substantially more prevalent in open water relative to bilge. This 
is consistent to the taxonomic profiles of sp31 shown in Fig. 3.4B, where there is 
notably more abundance and prevalence for this taxon in samples from the open 
water relative to bilge. 
 
In the aggregate, there seems to be a key role in prevalence leading observed 
enrichment, which is consistent to an intuitive perspective of this system, since a 
low prevalence of a certain taxa may impact its ability to be detected as a signature. 
A higher overall prevalence should indeed be detected in the seeding source of 
open water (F1/F2) – rather than the compartments it sinks into (BW/BF/R/H) 
(Fig. 3.4B). However, in ideal conditions (proper nutrients, …), it can be expected 
that certain taxa can be enriched in a biofilm (BF) relative to the source of the biofilm 
over an adequate amount of time/distance. 
 
Although each signature taxa are more prevalent in open water as compared with 
bilge. It is notable that each taxon is at least present in bilge, which support 
previous results that influx from open water is effectively seeding this 
compartment. It is also worthwhile to mention that signatures enriched in bilge are 
not indicated to be significant, and that the largest generalized fold change in 
enrichment also have the largest shift in prevalence (Fig. 3.5). 
 
The data presented in this section supports similar work(14) that show ASVs that 
map to similar taxa as our signatures are as well enriched in open water relative to 
bilge – and was previously described in the above Section 3.2.3. Together, these 
results suggest that system dynamics for signature retention are consistent in other 
similar systems, and that very few taxa are consistently found in bilge from 
different ports located in different regions around the world(14). This indicates 
that there are no single nucleotide variants of microbes that are globally found in 
the bilge compartment of vessels – and the resident signature in bilge is rather 
representative of the microbes that enter this compartment by being docked at 
home port or through influx along transit, further suggesting bilge could maintain 
the most persistent signature. As to what could explain the variation observed so 
far, more targeted approaches will be used to explore research questions in the rest 
of this chapter and moving forward. 
 

3.2.5 Temporal and environmental dynamics of microbial 
persistence 

In order for microbial communities to serve as biomarkers of provenance in this 
system, the microbial community of the open water and the vessel must have some 
stable state and the signature taxa must remain on the vessel for a period of time. 
To explore this, we move beyond studying the spatial variation of microbial 
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communities in this system and look toward the temporal component of our 
longitudinal sampling design – addressing questions related to the persistence of 
signature taxa on the vessel. 
 

 
 
Figure 3. 6 
Environmental gradient and signal tracking profiles across the system. (A) 
Heatmap showing the environmental parameters across the Chesapeake Bay 
(296km2). Each tile along the x-axis in the heatmap (25 total) represent sampling 
stations from Baltimore (B) to Norfolk (N), as described in Fig 3.1 and Fig. 3.3. 
Environment is represented as Z-score values to show how each environmental 
parameter deviates from the mean. (B) Taxonomic ‘signal’ profiles (absolute 
abundance) of signature taxa faceted by sample type across each voyage along the 
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Chesapeake Bay. For ease of visualization, all sample types for each taxon were 
plotted across a continuous x-axis. A different color spanning each 296km2 
segment represents ‘signal’ across the full voyage (25 sampling stations), in order. 
Both plots in A and B represent a continuous voyage along the x-axis, covering all 
sampling stations. Raw values of each environmental parameter as well as time in 
between each sample station can be accessed in Supplementary Data. (C) 
Correlation between abiotic and biotic features of the system. Mantel statistic (r) 
measures the correlation between each parameter and absolute abundance (using 
dissimilarity matrices (Jaccard). Mantel statistic (r) can range from -1 (strong 
negative correlation) to 1 (strong positive correlation). Significance is calculated by 
permuting N rows and N columns of one of the dissimilarity matrices, because 
there are N(N-1)/2 entries for just N observations, thus cannot be accessed directly 
from the correlation. Raw values of each environmental parameter as well as time 
in between each sample station can be accessed in Supplementary Data. 
 
This section examines the limits of signature detection by investigating how taxa 
can be traced through the environment along voyages, both on the object (vessel) 
and from the seed (open water). Here, we visually represent the environmental 
gradient probed at each sampling station and the temporal variability in microbial 
abundance across each voyage (Fig. 3.6). The environment and abundance visuals 
are from independent analyses and can be assessed in parallel to inference 
potential ecological interactions on observed community stability. Together, this 
will demonstrate whether patterns of microbial diversity within the ‘core’ 
microbiome are robust to distance, time, and whether taxonomic patterns reflect 
environment across the Chesapeake Bay, as demonstrated using two independent 
research vessels.  
 
To explore these relationships, each taxon is tracked as a ‘signal’ across each 
voyage and for each sample type in the system (Fig. 3.6B). Here, ‘detection’ targets 
temporal variability along the voyage and will be discussed in terms of ‘signal’ 
peak, which represents absolute abundance (read counts in the sample 
distribution). It is worth mentioning that although a ‘signal’ may show a low 
read/abundance throughout the voyage for some sample types, such as in the 
bilge biofilm (BF), these taxa were still detectable by our methodology: sampling, 
filtering, molecular processing and sequencing (see methods). Subsequently, these 
analyses indicate that a sufficient number of taxa are present for detection by 
potential downstream molecular platforms. These include other sensitive and 
specific sequence-independent molecular techniques such as LAMP (Loop-
mediated isothermal amplification)(26) and SHERLOCK (Specific high-sensitivity 
enzymatic reporter unlocking)(27). Although the qualitative aspect of this figure 
can be deceiving, it is important to consider the relation of absolute counts (y-axis) 
while comparing taxa at each sample position, as a seemingly similar ‘signal’ may 
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be orders of magnitude higher in some sample types for certain taxa. These taxa 
are detectable, albeit in low abundance in all sample types. 
 
Since each voyage covered a distance of 296km from Baltimore (B) to Norfolk (B) 
– one can attempt to relate the environmental parameters to the observed 
microbial persistence in this system. This approach would further an 
understanding of gain/loss ‘detection’ of single nucleotide variants across 
distance, and potentially time. Some work has been done to characterize microbial 
persistence on objects in built environments(28, 29). Others have looked at the 
colonization of inanimate objects in oceans at lower depths(30). Microbial 
persistence however is highly dependent upon the system, and generalizations are 
constrained to microbial behavioral patterns in response to extraneous 
determinants and assumed perturbations of a particular system (e.g., confounders; 
resident microbial gene expression, mixing patterns, environmental parameters, 
etc.). In effect, inferences made here to the causal effect of environment on 
microbial persistence is strictly hypothetical – more so since the gene-marker 
resolution being used is 16S rRNA, and functional annotations of these signature 
taxa cannot be made. For example, metabolic capabilities such as substrate 
utilization at each sampling station for these taxa cannot be inferred from 16S 
rRNA sequencing alone. Although, long-term studies conducted in marine 
settings show that microbiota response to seasonal dynamics is highly 
predictable(25, 31), and although primary succession after a perturbation event is 
more variable, the microbial community has shown to stabilize. This response has 
been shown to be partially driven by predictable seasonal succession(24, 32).  
Community assembly is also known to be driven in part by environmental 
selection, biotic interactions, as well as dispersal(33). With that, the role of 
environment on ecological interactions can still provide insights for new research 
questions. This is explored below, first, with a high-level overview of trends 
observed from ‘signal’ in terms of signature retention, followed by relating these 
trends to environmental parameters. 
 

3.2.6 Characterizing signal of detection 
As a high-level overview, most signatures show gradual trends of decrease in 
abundance over time, such as sp7, while others show a gradual increase (sp1, sp2, 
sp11). Notably, there is a gradual increase in abundance for F2 samples for most 
taxa starting around the same sampling station in the 296km transect. Also 
observed is a trend toward increased abundance overall for many taxa for voyage 
1 relative to voyage 2, which could indicate that vessel material could influence 
colonization patterns (see methods). Consistent in both voyages, there seems to be 
a trend of increase and then decrease in abundance across the transect in sample 
type H. These results suggest that the method of microbial seeding may play a role 
in ‘signal’ variability. Additionally, since H (side of vessel) receives its microbial 
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signature input from the open water splash during transit, the rate at which the 
vessel is traveling could influence the strength of this signal. 
 
Taxa that are most consistent between both voyages correspond to Cyanobacteria 
(sp1, sp2) and Proteobacteria (sp31) – which is the only phyla of its kind in the ‘core’ 
biome. Interestingly, Cyanobacteria appear to be the most abundant in the system 
(Fig. 3.4), contrasted by Proteobacteria – the only phyla with zero prevalence in any 
bilge biofilm (BF) samples on either voyage but shows a relatively consistent 
‘signal’ in other sample types across the transect of both voyages. Between both 
voyages, Cyanobacteria (sp1, sp2) located in the bilge water (BF) and sp9 (one of four 
signature variants belonging to Actinobacteria) in the bilge water (BW) are a good 
example of this (Fig. 3.4B). Interestingly, some taxa (e.g., sp7; voyage A) exhibit 
consistent trends in having increased ‘signal’ early on in the transit (from 
Baltimore) and then drop off later in the transit (approaching Norfolk) – 
suggesting that these taxa may be strongly indicative of home port (Baltimore). 
 
In order for a microbe to liberate a ‘signal’, it should persist (i.e., is constantly 
prevalent at some threshold of detection) and have low variance in abundance 
across the transect (296km), which denotes how robust the ‘signal’ is. For example, 
a detectable ‘signal’ matters less about high abundance and more about prevalence 
across distance/time. In analyzing the longitudinal taxon distribution of each 
sample type through the system, inter-voyage variability could be a result of vessel 
type, as each vessel may vary by its ability to be seeded by the open water (e.g., 
splashing, rate of influx into bilge, etc.). Moreover, bilge biofilm (BF) is the least 
variable of the sampling positions in the aggregate, which suggests long-term 
geospatial history. This may be partly because this compartment can sustain a 
signature of resident microbes because it is less exposed to the outside 
environment, but still allows influx of microorganisms in from the open water. Each 
vessel was observed to carry a distinct ‘signal’ profile for each signature taxa (Fig. 
3.6B) and may be reflective of the environmental parameters along the voyage 
(which needs to be further investigated) as well as specific selective forces unique 
to that vessel (cleaning history, vessel material, inboard vs. outboard motors, etc.). 
 
One thing that is apparent are that the ‘core’ taxa are persistent in the system in 
the aggregate and at some point, are picked up by the vessel and carried to another 
destination – further supporting that microorganisms have the ability to be used 
as detectable sensors of objects passing through an environment. 
 

3.2.7 Impact of environmental parameters on signal variability 
In analyzing the longitudinal taxon distribution of each sample type through the 
system, there could be many extraneous determinants of the observed inter-
voyage variability. To determine the causal influence of abiotic factors on 
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microbial abundance and therefore on ‘signal’ of detection, we collected a range 
of environmental parameters across the transect of Baltimore to Norfolk at each 
sampling station alongside sample collection (Fig 3.6A). Correlations between 
absolute abundance and environmental parameter across each transect are 
displayed by a Mantel statistic (r) and corresponding Significance value (Fig. 
3.6C). The environmental factors that most strongly influence the microbial 
community compositional and stability on the vessel itself and in the open water are 
temperature (r: voyage A; 0.2031, voyage B; 0.2011), nn (nitrate) (r: voyage A; 0.1246, 
voyage B; 0.1809), tn (total nitrogen) for voyage B (r: 0.2275), salinity (r: voyage A; 
0.2654, voyage B; 0.2102).  
 
This demonstrates that although we observe similar Mantel r for environmental 
parameters in each voyage, there is variability between abundance (‘signal’) – 
suggesting that the environment alone cannot fully explain the microbial 
persistence and stability observed in this system. For example, viewing the 
taxonomy profile (Fig 3.4B), sp1 has a different abundance between voyage A and 
voyage B, and the correlation between significant parameters are relatively similar 
between these voyages. This is consistent to Chapter 2, Fig 2.9, Fig 2.10, Fig 2.11, 
where it was observed that similar environmental drivers are somewhat important 
but could only explain 22.2% of the observed microbial diversity and community 
stability variability in on a global scale. 
 
In this study and in this particular system, if an environmental parameter had a 
large impact on the ‘signal’ of detection, we would expect there to be a higher 
mantel correlation. Although, it is noteworthy to mention that if we extended our 
sampling across season, there may have been notable differences between these 
abiotic correlations to microbial abundance. 
 

3.3 Summary and outlook 
This chapter demonstrates the microbial community structure and dynamics for 
the vessel-associated microbial community of two vessels along two independent 
voyages on an extended transit. Surprisingly, preliminary comparisons show 
similar microbial community composition of the vessel and open water despite 
sampling on independent voyages (e.g., different dates) (Fig. 3.2). This led us to 
probe for taxa responsible for observed similarities and uncover to what extent 
these taxa are robust to system dynamics and temporality. 
 
By viewing the community from the perspective of a shared ‘core’ set of taxa, we 
could still thoroughly investigate research questions and better understand the 
system in the aggregate (Fig. 3.3). Additionally, we demonstrated that our derived 
signatures are robust to the complexity of this real-world system. For example, 
these signatures persist at least across a distance of 296km, and are present across 
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the two vessels tested despite the overall high variability in the microbial 
community between the two vessels. 
 
This system-wide signature profiling supports our sampling regime and the use 
of a generalized feature set, since, after resolving the microbiota to a ‘core’ biome, 
there are still enough differences in community composition that given the proper 
quantitative analysis – large enough disparity in community composition of 
sample types can be quantified over the distance across the Chesapeake Bay (Fig. 
3.4, Fig. 3.6). 
 
To the extent of seeding, we demonstrated that the majority of signature taxa are 
enriched in open water relative to bilge. Hence, we conclude that microbes present 
in the bilge compartment arrive from influx seeded by open water. (Fig. 3.5). It is 
however notable to mention that other compartments such as hull (H) and rear (R) 
are also seeded by the open water microbial community. The results presented here 
also demonstrate which sampling position on the vessel has the most stable 
microbial community over time, supporting that bilge derived samples are most 
robust to complex dynamics of the system (Fig. 3.6). 
 
Consistent to other work as part of an earlier project(6, 14), the variability between 
microbial communities in the bilge compartment from around the world suggests 
that there are no single nucleotide variants (ASVs) that are globally found in the 
bilge tank of all boats sampled but is rather representative of the microbes that 
enter this compartment as it is docked at home port and along its transit. This is 
further supported by analyses presented here (Fig. 3.5, Fig. 3.6). 
 
Also, we demonstrate here that vessels can carry microbes from one place to 
another and that these microbial passengers can serve as fingerprints of geospatial 
locations of where the vessel has passed (Fig. 3.6B). From here, we concluded that 
both the bilge (BW/BF) and the boat surface (H/R) can be used for determining 
provenance, but that likely the bilge may be ideal for long-term microbial signature 
retention. This is partly because it is less exposed to the outside environment, but 
still has influx of microorganisms from the open water. Moreover, bilge biofilm 
(BF) is the least variable of the sampling positions and may be indicative of long-
term geospatial history, as this compartment can sustain a signature of resident 
microbes. It is however worth mentioning that not all signature taxa could persist 
in the bilge tank, and that there was observed variability between vessel type (Fig. 
3.6B). In particular there appears to be vessel-specific differences most markedly 
observed in the bilge biofilms (BF). The bilge compartment may lead to less 
turnover relative to microbes colonizing external positions of the vessel (H/R), 
although, less turnover also indicates most stable sample type. There is also a 
possibility that distinct nutrients supplied to microbes in the bilge compartment, 
such as hydrocarbons from products used in the engine compartment and lack of 
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sunlight, could contribute to turnover and selection of a particular community not 
related to geospatial location. Similarly, the rate at which influx of open water is 
seeded into the bilge compartment could influence signature retention and could 
potentially be a reason for observed variability between voyages and vessels. With 
that, each vessel was observed to carry a distinct ‘signal’ profile for each signature 
taxa (Fig. 3.6) and may be reflective of the environmental parameters along the 
voyage as well as specific selective forces unique to that vessel (cleaning history, 
vessel material, inboard vs. outboard motors, etc.). 
 

3.3.1 A note on future work: 
3.3.1.1 Confounders 
Extraneous determinants of taxonomic signal variation could be partially 
explained by abiotic factors, such as environmental parameters (Fig. 3.6), or the 
likeness of a particular taxon to adhere to each vessel used in this system. 
However, these, and other system confounders still need to be explored, including 
the potential for other sources of microbes such as the seeding of noisy and 
spurious taxa from air, ran and/or snow biomes to impact resident signature taxa 
thus influencing ‘signal’ of detection. This concept has begun to be explored in 
similar settings(15). Additional confounding variables such as boat type (influence 
on engine compartment, rate of influx through travel velocity, ability for microbes 
to adhere to specific vessel material, hydrocarbon release), boat management 
(cleaning and maintenance) and whether or not a vessel has a home port could all 
impact the ability for microbes to serve as biosensors as explored in this study. 
 
Similar work would have to be done to address some specific details for signature 
retention, such as assessing the delayed response of one taxon to another, or taxon 
to environmental parameter. Ecological interactions such as cooperation and 
competition in response to environment are one example that and may limit the 
ability of microbes to colonize a surface and establish themselves in boat 
microbiome – and have shown to be factors in characterizing the persistence of 
taxa on an object(34). A more expansive study that uses more vessels and transects 
longer distances would help to clarify if the approach of using a ‘core’ microbiome 
might control for many of these potential confounding factors. 
 

3.3.1.2 Detection in alternative stable states 
Much of the work presented here is seeking to understand microbial community 
stability in response to changing environmental conditions over distances and 
time.  It is important when considering community stability to identify the 
taxonomic level at which community stability is measured. Detection of 
alternative stable states is something of interest. Contrasting the community 
composition at various levels of taxonomic resolution could result in varying 
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estimates of system stability. For example, observing the system by agglomerating 
ASVs into lower resolution taxonomic levels (Phylum – Genus) could allow more 
conservative estimates of community stability – but could tend toward less 
specificity in real-world translational applications. 
 
The role of community stability could be better assessed through comparing high-
frequency sampling for equidistant but shorter time points combined with low-
frequency and longer time points, as well as with analysis at varying levels of 
taxonomic resolution. It is therefore appropriate to consider sample frequency in 
the specific system being studied – as well as with consideration to any 
downstream application that is being considered (e.g., molecular detection 
platforms). Hence, experimental design targeting real-world application should 
foremost consider what would be required to integrate findings into state-of-the-
art molecular technologies in translation. Additionally, more work for steady-state 
and resident microbial communities and how they respond to a rare perturbation 
event would be useful in assessing how robust this approach is. 
 

3.3.1.3 Inferring function 
As previously mentioned, and despite presenting environmental parameters as a 
function of persistence, functional annotations of microbes cannot extensively be 
considered in this work. This limits a comprehensive assessment of microbial 
persistence in this system as it would help address a lot of questions of how 
environment could sustain specific signatures in the event of a predictable altered 
state (seasonal succession patterns, …). Whole genomic sequencing, at least on the 
‘core’ taxa identified as persistent and detectable signature taxa would have been 
beneficial, and since all samples used in this study were stored as contingency, it 
could be pursued in later work. This work would also help to clarify the 
persistence of particular taxa and the appropriate level of resolution for 
considering microbial stability. Many microbial with nearly identical 16S rRNA 
genes have been shown to vary greatly in their genomic and functional content. 
Therefore, a better understanding of the functional genetic content of these core 
taxa would not only help with defining the impacts of the environment on 
community composition, but also allow for a better identification of how 
populations of microbes vary as a function of distance and persist on vessels. 
 

3.3.1.4 Moving toward a more targeted analysis 
Through our other work, we demonstrate that some methods are proven to be 
more promising in investigating microbial interactions through machine 
learning(35). Here, rather than traditional competition-cooperation models 
adopted from ecology, machine learning can find very small but meaningful 
patterns in very large and complex data. 
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Our long-term goal is to be able to identify a subset of taxa that are useful as 
biomarkers of provenance to be able to develop those into a rapid detection 
technology. Here we used the ‘core’ microbiome approach to narrow in on a subset 
of taxa that would be useful in predicting past location and be robust to inter-
vessel variability. In order to understand the role of certain signature taxa and their 
weight on predicting object provenance, it is necessary to use more targeted 
approaches, such as exploratory and predictive machine learning. However, the 
use of machine learning in environmental systems – especially pertaining to the 
microbiome, is limited. The following Chapter demonstrates a comprehensive, 
ground-up in silico workflow to investigate this specific question of object 
provenance – and other questions relating to microbiome research. These new 
computational methods are essential for identifying the biomarkers of maritime 
provenance, interpreting machine learning algorithms, and better understanding 
how microbial interactions inform model prediction. 
 

3.3.1.5 Conclusions 
It is fair to state that microbial persistence can be highly subjective to the system, 
and generalizations are constrained to microbial behavioral patterns in response 
to extraneous determinants and assumed perturbations of a particular system 
(e.g., confounders; resident microbial gene expression, mixing patterns, 
environmental parameters, …). In effect, inferences made here to the causal effect 
of microbes as biosensors of object provenance and of microbial persistence 
patterns may be limited to this specific system. However, this work demonstrates 
that a subset of microbes can persist on ships over long distances and can provide 
information about the previous location of these vessels. Our approach of using a 
‘core’ microbiome may be helpful in addressing systems with high variability. 
 

3.3.1.6 Contributions 
This work will hopefully provide insight into the interpretability and capabilities 
of this widely studied system and similar systems from a practical and theoretical 
point of view. Lastly, the data generated as part of this experimental field design 
complements public datasets accessible to other researchers to validate and 
benchmark hypotheses relating to the study of natural microbial communities in 
complex settings. To the best of our knowledge at the time of writing this 
dissertation – this is the only publicly known experimental design of its kind – set 
out to predict vessel provenance and provides a detailed study into the dynamics 
of boat-associated microbial communities during transits. 
 

3.4 Methods 
All data referred to in methods can be found in file: Supplementary Data 
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3.4.1 System selection and sampling 
The Chesapeake Bay spanning from Baltimore, MD to Norfolk, VA was an ideal 
system to study vessel-associated microbes and satisfy sufficient replication and 
adequate representation of the range of conditions found within these systems and 
nearby ports. The samples used in this Chapter (n = 616) were collected from June 
24, 2018 to July 3, 2018 (details of which samples were collected on specific 
date/time can be accessed in Supplementary Data). Sampling stations were chosen 
to represent an appropriate longitudinal distribution across the transect to collect 
samples necessary to construct machine learning models. Two independent 
research vessels were charactered in collaboration with Chestertown, MD as 
follows: Voyage A: ‘Callinectes’: fiberglass hull with ablative marine hull paint, 
and Voyage B: ‘Lookdown’: aluminum coated in Kevlar, with ablative marine hull 
paint. Samples were collected across 25 sampling stations (coordinates supplied in 
Supplementary Data) spanning 296km along the Chesapeake Bay. At each station, 
surface water samples (1 liter) were taken and subsequently filtered through a 
glass fiber prefilter with a 1.6-µm pore size (47-mm diameter) (F1) and a 0.2-µm 
pore-size polyethersulfone (PES) membrane postfilter (47-mm diameter) (F2) 
(Sterlitech Corporation) using a Cole-Parmer Masterflex E/S 115 VAC portable 
sampler. Sample positions R, rear; BW, bilge water; BF, bilge biofilm; H, hull, were 
swabbed samples from the surface of the vessel. Filters and swabs were placed in 
2-ml Eppendorf tubes with 500 µl RNA/DNA shield (ZymoBIOMICS) and stored 
at ambient temperatures until transported back to the laboratory to be stored at –
80°C. Multiparameter data of water quality (conductivity, ODO, pH, salinity, TDS 
content, temperature, and dissolved oxygen content) along with global 
positioning system (GPS) coordinates of each sampling site were recorded in 
situ with a YSI ProDSS digital sampling system that was calibrated before each 
sampling trip. Nutrient data (phosphate, silicate, nitrate, ammonia), total organic 
carbon (TOC) and chlorophyll content was recorded for each station on each 
transit. Detailed metadata as described here can be found in Supplementary Data. 
 

3.4.2 DNA extractions 
DNA was extracted from each filter (F1/F2) and from two swabs from each 
sampling station and sampling position of the vessel (using the ZymoBIOMICS 
DNA microprep D4305 kit (Zymo Research, Irvine, CA, USA. For each open water 
sample, both the prefilter (F1) (1.6-µm pore size, 47-mm diameter) and postfilter 
(F2) (0.2-µm, 47 mm diameter) were cut in half, where one half was to be used in 
the DNA extraction and the other half stored as a contingency. Since swabs 
contained low biomass, both swabs used in sample collection were treated as a 
single sample DNA extraction. 
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3.4.3 DNA sequencing 
First-stage amplification PCRs were carried out in 25-µl mixtures consisting of 
12.5 µl Phusion high-fidelity PCR master mix (Thermo Fisher Scientific, Waltham, 
MA, USA) containing deoxynucleoside triphosphates (dNTPs) at a concentration 
of 200 mM each, optimized reaction buffer, 1.5 mM MgCl2, and 1 U high-fidelity 
polymerase per reaction in 96-well VWR polypropylene plates. The primer pair 
515f and 926r was used at a concentration of 0.4 µM to amplify a construct that 
spans the variable regions 4 and 5 (V4–V5) of the 16S rRNA gene. The PCR thermal 
cycler settings were as follows: 95°C for 3 min; 25 cycles of 95°C for 30 s, 55°C for 
30 s, and 72°C for 30 s; and 72°C for 5 min. PCR cleanup was performed after first-
stage amplification PCR to remove residual primers and excess reagents from PCR 
mixtures. For this cleanup, we followed the MiSeq library preparation guide 
(Illumina, San Diego, CA) and deviated from the standard protocol by using 
AxyPrep Mag PCR cleanup beads (Corning, Big Flags, NY, USA), using 10 mM 
Tris at a pH of 8 (down from 8.5) and by using 28 µl AxyPrep beads in the second-
stage cleanup since the PCR volume was 25 µl (down from 50 µl). Second-stage 
indexing PCRs took place under the same mixture conditions as first-stage 
amplification PCR and with primers that contained a unique index sequence for 
each sample and the Illumina sequencing adaptors. An additional PCR cleanup 
was done after second-stage PCR, eluting to a final volume of 50 µl. Library 
preparation and sample pooling were performed according to the MiSeq 16S 
sequencing library preparation guide (Illumina). The products from the second-
stage indexing PCR and subsequent cleanup stages were pooled into a library for 
sequencing at an equimolar concentration of 10 nM after ensuring that primer 
contamination was absent or at a minimum using a 2100 Bioanalyzer (Agilent, 
Santa Clara, CA). Denaturation and dilution of the pooled 16S rRNA gene library 
were performed according to the MiSeq 600-cycle V3 reagent kit guide (Illumina) 
to produce a 2 × 300-bp paired-end run for 649 total samples including processing 
blanks. 
 

3.4.4 Computational analysis and visualization 
All statistical analysis, machine learning models, and visualization were 
conducted on a local server (Red Hat Enterprise Linux server 7.3 [Maipo]; 256 Gb 
of random-access memory [RAM]) and on R environment version 3.6.3 using the 
following packages and associated dependencies as follows (in no particular 
order): phyloseq, tidyverse, microbiome, eulerr, microbiomeutilities, pheatmap, 
Biostrings, MicrobeDS, dplyr, vegan, ggpubr, missForest, Hmisc, mi, grid, 
forecast, tseries, reshape2, randomForest, inTrees, caret, caretEnsemble, ggplot2. 
 



 

104 

3.4.5 ASV identification and taxonomic profiling (denoising) 
Raw 16S rRNA sequencing reads were demultiplexed using the Illumina MiSeq 
platform. Through the divisive amplicon denoising algorithm (DADA2 package) 
in R, primer nucleotides were removed, and overlapping paired-end reads were 
merged, quality filtered, and cleansed of internal standard phiX; to distinguish 
amplification and sequencing errors from true biological variation in our collected 
samples, amplicon sequence variants (ASVs) were inferred. To account for 
learning the inherently different error rates from the sequencing run, all samples 
were used to infer errors (from >100 million bases) so as to identify true diversity 
contained in the final data set. The subsequent ASV count tables was merged and 
then used to resolve and remove chimeric artifacts with higher accuracy as a result 
of the resolution of ASVs. Traditionally with OTU picking, chimeric sequences are 
removed in a conservative manner, as closely related sequences are later merged 
into the same OTU. While using ASVs, a more sensitive removal is accomplished 
by performing a Needleman-Wunsch global alignment of each sequence, finding 
bimeras (two-parent chimeras) and localizing combinations from a left and right 
parent chimera that overlaps the child sequence exactly. From 234,064 paired-end 
input reads, a total of 89,521 nonchimeric reads passed our filtering parameters 
and were used in ASV identification and analysis in this study. We obtained a 
count table analogous to the generally used OTU table; similarly, our features in 
this table are composed of the uniquely inferred ASVs that map how many of these 
amplicon variants were observed in each sample. Taxonomy of ASVs was 
assigned through DADA2 with a reimplementation of a rapid assignment naive 
Bayesian classifier that compares our biological sequence variants to a training set 
of previously accurately classified sequences using the SILVA v132 training set. 
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4 A translational microbiome: Interpreting exploratory 
and predictive black-box machine learning models. 

 
Preface 
Demonstrated above in Chapter 2 and Chapter 3, microbial communities can be 
used as tools for biosensing geospatial location, and microbes are shown to attach 
to objects in these environments, which suggests microbes as tools for object 
provenance. This chapter is concerned with the inferential validation of using the 
‘core’ taxa identified in Chapter 3 to predict the provenance of a vessel in aquatic 
systems. However, this approach largely relies on machine learning, which is a 
black box method of investigation. In order to properly validate whether 
predictions from machine learning models hold true to the biological system – a 
framework to extract biologically meaningful information from models that are 
otherwise uninterpretable must be developed and employed. The following work 
demonstrates a robust means of investigating microbiome datasets with a 
benchmarking dataset from the human microbiome, which links microbes to host 
subjects. This work is two-fold, to satisfy the specific research question of object 
provenance, while also providing a framework to more thoroughly investigate 
how patterns in microbial datasets can be linked to a conditional outcome through 
machine learning – a current gap in microbiome research at the time of writing 
this dissertation. The work presented here leads into the importance of forward 
thinking for in-silico models to translational molecular applications. 
 
Abstract 
Microbial ecosystems are rather complex, with hundreds of members interacting 
with each other and the environment. The intricate and hidden behaviors 
underlying these interactions make research questions challenging – but can be 
investigated using machine learning. By probing a microbial community using 
exploratory and predictive machine learning – we can begin to uncover system-
wide patterns. This allows us to leverage this information and extend the 
application of microbes to be used as novel tools – such as biosensors of object 
provenance. This study explores how microbial community interactions that are 
linked to a system-state can be identified using some of the most widely used 
machine learning methods in microbiome analysis. This framework allows 
researchers to extract from these algorithms a reasonable biological understanding 
of the system being studied to better apprehend and interpret their results when 
using machine learning. 
 
Introduction 
Machine learning, as discussed throughout this dissertation – is fast becoming a 
routine tool for analyzing data and making predictions, with numerous health and 
environmental applications related to the microbiome(1-4). High-throughput 
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sequencing has enabled very targeted and inexpensive marker-gene studies with 
sufficient replication to benefit from machine learning in prediction of outcome(4). 
As such, the use of both human and environmental associated microbial 
community composition as predictive biomarkers of conditions of interest is now 
possible. This has led to the broad adoption of algorithmically informed decision 
support systems that catalyze our understanding of the microbiome in disease 
states, forensics, ecology and complex biochemical pathways(5-7). Discussed in 
Chapter 1, machine learning algorithms are exceptional at making predictions but 
have many limitations. A significant limitation is that often machine learning 
models are black box methods of investigation where the rationale behind 
decisions being made are hidden behind layers of non-transparent complexity(8, 
9). Here, we address this issue, because black box modeling obstructs our 
understanding of the microbiome and potentially thwarts high-impact 
translational advances from the actionable insights that could be extracted from 
modeling procedures. These include, for example, constructing sensitive and 
robust molecular detection tools for complex biomarkers of disease states or 
environmental contaminants that are foreshadowed by microbial communities(10, 
11). 
 
Typically, machine learning generalization is defined as the model’s ability to 
adapt to perform on new, unseen data, using the same set of predictive features 
used to create a model(12). Here we argue that while using machine learning to 
make predictions using microbiome data, investigators should aim for both a 
model’s ability to perform well on unseen data and that meaningful community 
member interactions can be measured, and actionable insight can be extracted. By 
inferencing machine learning models trained on microbial datasets using human 
interpretable outputs, researchers can expect to (1) provide transparency and gain 
a deeper understanding of the intra- and inter-microbial community interactions 
in various systems (2) determine the stability of the microbial community and 
mechanism(s) responsible for a transition from one state to another (e.g., from 
‘healthy’ to ‘diseased’) and (3) identify robust, multi-microbe (taxa) biomarkers 
that can be used to more accurately predict an outcome relating to human health 
and outcomes in the built and natural environments. 
 
Indeed, the ultimate goal of machine learning in microbial analysis is to train 
algorithms to recognize microbial behavioral patterns as they are in the nature of 
the system(13). In order to gain biologically meaningful insights from machine 
learning, it is important that the models we use be interpretable such that the 
information being used by the model to make a decision is clearly accessible. With 
a sizeable gap between domain expertise of microbiology and machine learning, 
there are few techniques that offer transparent outputs for machine learning 
models constructed using metagenomic sequencing data. Although several recent 
pipelines suggest improvements of machine learning interpretability in microbial 
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analysis(14-16), these developments, along with the majority of progress in 
biological machine learning, still focus on performance metrics and putative single 
microbe-response variable interactions and fail to appreciate the importance of 
microbial ‘associations’ predictive of an outcome. One of the strengths of machine 
learning is the ability to identify complex feature interactions that are predictive 
of a particular outcome.  Previous methods that only determine single-feature 
importance are limited because in the real-world system after which machine 
learning models are constructed, the cause of a condition being studied is often 
attributed to multiple taxa, rather than single taxon-condition linkages as reported 
in most studies(4). This suggests the need to explore, develop, and apply 
biologically motivated algorithms to provide interpretations that measure relevant 
knowledge and properly describe what a model has learned from microbiome 
data. 
 
To approach this issue, we explore the application of interfacing microbiome data 
with machine learning interpretability by (1) deriving ‘association’ rules from a 
fitted model (or models) and (2) provide descriptive accuracy by displaying how 
the derived decision rules impact model performance, and (3) present analyses in 
an intuitively comprehensible manner. Our framework discretizes a high-
dimensional frequency count matrix into a list of interaction terms that objectively 
capture learned microbial relationships as simple, interpretive and generalizable 
plain-text conditional statements. The derived rules are meant to denote 
biologically meaningful co-abundant patterns, multicollinearity and the complex 
covariance structure of high-throughput next generation sequencing data. 
 
We aim to produce models that are both accurate and transparent to microbiome 
researchers and offer the ability to debug and audit models – which allows 
integrating outputs into translational molecular applications at scale, with speed 
and with low overhead processing. Beyond applying these methods to continue to 
probe object provenance, we expect this work to serve as a meaningful perspective 
to further our understanding of the microbiome and for developments of 
interpretable, biologically motivated machine learning algorithms for marker-
gene datasets.  
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4.1 An argument for interpretable machine learning in microbiome 
research 

Both domain experts in microbiome research and machine learning developers 
struggle to properly verify, interpret and evaluate inner logic and reasoning 
behind the use of decision support systems(17, 18). By loose definition, 
interpretability is the degree to which a human can understand the cause of a 
decision or consistently predict a model’s result(8). To this extent, we define 
interpretable machine learning as measuring relevant knowledge and the ability 
to properly describe what a model has learned from data. Thus, interpretations 
applied to the microbiome would allow a mechanistic view of the role of microbes 
in our health and environment that drive accurate decision making and prediction. 
 
Interpretable machine learning is a domain-specific challenge and potential reason 
for why there are so few descriptive learning frameworks for microbial analysis, 
despite the many real-world implications that would result from it. For example: 
medical microbiology relies on Koch’s postulates to determine microbial agents of 
disease – which requires a clear cause and effect determination between a specific 
microbe and disease state. However, microbiome studies often identify dysbiosis 
as a cause of disease despite how these health states are often less 
quantifiable. While machine learning allows for clarity to be brought to 
quantifying dysbiosis – without interpretable metrics – the ability to apply Koch’s 
postulates and determine cause and effect of microbiome associated diseases 
remains implausible. 
 
A noteworthy constraint to machine learning as it relates to domains that would 
greatly benefit from interpretability (not limited to the microbiome) is the social 
acceptance and trust that we can integrate machines and algorithms to drive 
critical reasoning. For wide-scale implementation, regulatory oversight and to 
ensure human acceptance and trust, the microbiome research community must 
consider the rigorous evaluation and scientifically verifiable interpretability of 
user-level computational reasoning that has significant impact on our everyday 
life – which is partly achievable through interpretable and descriptive machine 
learning(18, 19). 

 
In view of recent, interpretable ML has been approached in biological disciplines 
including single-cell RNA seq, drug discovery and development, and 
neuroscience(20-24). In the case of microbiome research, the role of microbial 
community membership interactions in model prediction are often left unreported 
or left open to speculation. The traditional extent of model transparency is gauged 
by single feature (nucleotide sequence variants or OTU clusters) importance on 
the model as a whole and the association of that single feature to a response 
variable and does not account for which features of the community may be 
interacting with each other to explain decisions being made(25-27). 
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Historically, computational tools used to analyze taxa-distributions and co-
occurrence patterns in multivariate microbiome datasets have been borrowed 
from other disciplines and tailored to accommodate marker-gene analysis(28). 
Novel machine learning techniques that can analyze microbiome datasets for 
actionable insight are no exception, since they can be and often are borrowed from 
disciplines that focus on developments that are not biologically motivated(17, 29, 
30). Health and environmental domains such as the microbiome can benefit from 
the ability to debug and audit models. This could include leveraging domain 
specific knowledge to discern whether a model is incorporating rules consistent 
with experimentally determined biological phenomena to make predictions rather 
than predictions from phenomena resulting from data structure, preprocessing or 
model parameterization. Additionally, an interpretable microbiome-based model 
would be of interest to other disciplines that may be able to incorporate 
information from microbes to enhance existing toolkits (forensics, biomarker 
prediction, etc.)(31, 32). 
 
Further, the ability to interpret these machine learning models has potential to 
drive translational research and provide the ability to satisfy Koch’s postulates in 
linking microbiome function and human and ecosystem health. Further, the ability 
to identify the taxa and interactions that are related to a particular outcome will 
enable not only detection of disease states and environmental outcomes but may 
provide a framework for interventions that can restore the perturbed state to the 
healthy state.  Within machine learning, there are various models that have been 
applied to microbiome data which vary in transparency. While advances have 
been made in explainable AI(4), sometimes the choice of a slightly lower 
performing model in favor of increased explainability would be justified to enable 
a more thorough understanding of the system and translation. 
 
Despite the need for improvements on machine learning interpretability in 
marker-gene analysis, it is notable to mention that in our current state – machine 
learning continues to facilitate the progression of microbiome related research(4).  
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4.2 Study Framework: A scalable methodology for interpreting 
microbiome-based machine learning 

As prefaced, before pursuing machine learning in the context of predicting object 
provenance, we first demonstrate the proposed framework for biologically 
interpretable machine learning in a use-case using a well-known microbiome 
study. The choice of this dataset extends the framework to provide other 
microbiome researchers additional tools for investigating the human microbiome. 
Further, to demonstrate that this framework is robust and that the methods used 
are domain agnostic (i.e., not limited to very specific domain problems such as 
vessel provenance) and can be applied to many problems in microbiome work. 
 
The workflow developed in this study is first summarized using the ‘moving 
pictures of the human microbiome’ dataset(33) from two healthy host subjects, one 
male and one female sampled daily for 15 months and 6 months, respectively – at 
three body sites (gut (stool), sebum (left and right palms) and tongue (saliva)). This 
dataset is suited for this analysis as it is a dense microbiome study and has 
sufficient sample sizes to model microbe-host interactions from multiple body 
sites (Fig. 4.1). The taxonomic features used in modeling (ASVs (Amplicon 
Sequence Variants)) are not provided with biologically meaningful ranks as were 
in previous chapters but are supplied with full range of taxonomic resolution 
(Phylum - Genus) in Supplemental Data. Using the experimental conditions 
described above, an initial black box model using random forests is fit and 
optimized to determine interaction effects and additional post-hoc explorative 
models are constructed to provide additional descriptions of the interaction 
effects. These analyses are demonstrated with binary classification but can be 
extended to multi-class classification and regression problems and using a variety 
of tree ensemble algorithms. 
 

 
Figure 4. 1 
Illustrative workflow for interpretive microbiome-based machine learning. 
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Model agnostic methods such as Local Interpretable Model-agnostic Explanations 
(LIME)(34) and iml(35) offer metrics for individual feature – response effects (local 
interpretation) but fail to indicate the marginal effects of features acting together 
to influence certain states in the system (global interpretation). The analyses 
presented here allow a comprehensive audit of the data by identifying a list of 
decision rules and provide constituent feature and whole rule ‘impact’ metrics. 
This allows researchers to weight interaction terms and parse out biologically 
meaningful contributions from microbial assemblages (e.g., co-occurring taxa) that 
are reasonably expected to occur within a study cohort or in the environment and 
are otherwise inextricably linked(25, 36). This explorative and predictive 
framework is described in the following two steps. 
 

4.2.1 Identify generalized feature set 
The previous Chapter deliberates the use of a generalized set of features. Here, we 
repeat this process. The features chosen to model are selected from a ‘core’ biome 
(10 ASVs – as taxa) shared between the two states/classes (male (M3)/female (F4)). 
How these core taxa were derived is similar to the previous chapter (Section 2), and 
also is described in this chapter (see methods). Using such a feature space comprised 
of highly prevalent and detectable taxa in both states is contrary to traditional 
biomarkers such as Indicator Species analysis(37), since the taxa associated with 
traditional biomarkers often use single taxa only present and prevalent in one state 
and not the other. Our approach aims to identify the hidden heterogenous effect 
of all taxa together and identify robust and generalizable multi-taxa biomarkers. 
In many systems, like the human microbiome, there is large inter-personal 
variation, which can make generalization difficult. The approach of using core 
microbiome effectively reduces the inter-sample variance while capturing subtle 
differences in intra-personal variation between taxa that are shared but are still 
strong predictors between each class/state in the system (Fig. 4.1). Modeling using 
taxonomic features that are not categorized as ‘core’ may identify taxa as 
biomarkers of inter-individual differences. These inter-individual biomarkers are 
noisy and often spuriously result from personal lifestyle (i.e., interaction, activity, 
diet, hygiene, which is not accounted for in the feature space) and is a less 
generalizable and robust approach as using a ‘core’ biome comprised of highly 
detectable and prevalent taxa throughout a population/cohort. Important earlier 
studies on the human microbiome project (NIH: HMP)(38), and other proposed 
strategies for comprehensive sampling(39), did not necessarily account for the 
future of powerful predictive models to be built around targeted sampling 
regimes, such as with object provenance. 
 
Some work has been done to characterize a ‘core’ human microbiome using the 
same resolution gene-markers as in this dissertation (16S rRNA)(40). Using the 
stool biome as an example: if we consider how the microbial community 
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composition between male/female is variant to each sampling type (stool, skin, 
mouth, etc.), our approach of using a generalized feature set (as intra-personal 
‘core’) of a sample population could lead to more accurate and generalizable 
models across the entire, or similar populations. Using such a feature set helps to 
normalize confounders from data points which cannot be accounted for all of the 
time (e.g., lifestyle metadata) and allow for models built solely on a search space 
indicating a microbial community (Fig. 4.1). Although this generalization is 
toward human microbiomes, the same concept can be applied to object 
microbiomes, as in the research question this work concerns. 
 

4.2.2 Association rule mining 
The principal methodology behind this approach is to identify significant feature 
interaction effects that occur in the aggregated voting process of many types of 
ensembles (e.g., random forests, regularized random forests, boosted trees). These 
types of models are appealing as they create an ensemble of decision trees that can 
be used in evaluating and identifying features consistently found in decision trees. 
A more thorough review of these processes is described in Chapter 1. Here, we 
describe feature interaction as derived from the model where two or more features 
(taxa) act together to influence and explain how predictions are made in a 
biological sense for samples/observations (Fig. 4.1). 

 
This heuristic approach is three-fold. First, for practical and computational 
feasibility since a more complex model (i.e., a large feature space/increased 
parameters) would make the number of interaction terms containing noisy or non-
informative but eligible features predominate each node. Second, a moderate 
number of predictors such as the shared ‘core’ biome between both states still 
generates a sufficient number of interaction terms from an interpretive and 
parsimonious standpoint. More so, exhaustively searching/screening a large 
feature space (many more features) could incur a penalty on account of spurious 
interactions overshadowing the small number of truly informative interactions, 
whereby a number of false positives could be identified. Third, all interaction 
terms are screened by a frequency and error threshold. A higher frequency 
indicates that interactions involving the same group of features are occurring at 
subsequent nodes and are more likely to be a global interaction across the 
observed range of samples and predictors in the cross validated ensemble (final 
model fit).  
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4.3 Issues with traditional machine learning metrics in microbiome 
research (use-case) 

To demonstrate this framework sequentially and for context, a machine learning 
model was first constructed to accurately predict whether a stool sample could 
differentiate the host subject it was collected from (male (M3) or female (F4)) (Fig. 
4.2B). Like many other machine learning models in the microbiome literature, this 
model was constructed to optimize performance, rather than for explanation. 
Hence, we are left largely with a black box model – where biologically meaningful 
metrics (as shown in Fig. 4.1) such as microbial interactions that drive the accurate 
decision boundary between male/female are hidden or inaccessible. Before 
demonstrating how interpretive metrics can be brought to the model – first 
outlined are some issues relating to traditional interpretation metrics (often in the 
form of performance) to put things into perspective. 
 

 
Figure 4. 2 
Black box model of stool sample to host subject. Displayed are model assessment 
and metric outputs for a random forest model parameterized to make accurate 
predictions of host subject (male, M3 (128 samples); female, F4 (131 samples)) on 
the basis of stool samples containing 10 ‘core’ taxa. (A) A grid search showing a 
threshold of optimal hyperparameters, mtry: number of predictor features (ASVS) 
to be randomly sampled as candidates at each split, and ntree: number of trees to 
grow in the cross-validated ensemble. (B) AUC-ROC (Area Under the Receiver 
Operating Characteristic) curve as a measure of the performance of repeated cross-
validation classification at various thresholds. This is plotted as TPR (true positive 
rate – sensitivity) as a function of the FPR (false positive rate – 1-specificity). By 
extension, computing the area under the ROC curve (AUC) can provide a measure 
of how well the model could discriminate predictions of male vs. female samples. 
A higher AUC is preferred and can range from 0.5 (separation of samples was no 
better than random chance) to 1.0 (perfect separation of samples). (C) Variable 
importance plot describing which ASVs are ‘important’ in making accurate 
predictions. More information on how random forests work is thoroughly 
discussed in Chapter 1. All raw values for this model including predicted 
probabilities at each fold (k) in the cross-validation can be accessed in 
Supplementary Data. 
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Machine learning is a very dynamic process and is highly configurable to each 
domain problem. The complexities of model construction can, and often does, 
hinder a microbiome researchers’ ability to understand the underlying biological 
complexity inside of an already complex modeling procedure. For example, often, 
it is widely acceptable to find an optimal model through a grid-search to test a 
gradient of hyperparameters together and localize a set yielding the highest 
performance metric (Fig. 4.2A). Accepting a model strictly on the basis of a 
performance metric is effectively cherry-picking the most ‘accurate’ model. In 
general, marginal increases in performance can correspond to learning more 
irrelevant noise in the data – with clear correlation between better performance 
and overfit models(41). As shown in Fig. 4.2B, this model was specifically tuned 
to reach a top performance AUC-ROC of 0.92, where 1.00 assumes perfect 
separation of samples into their respective class. Although AUC-ROC is well 
established metric – it does not mean that it an end-all metric, or that it needs to 
be fully optimized to achieve high performance. This is because the predicted 
probability distribution of samples a model is trained on is dynamic to the 
biological questions being asked. For example, often research questions can be 
satisfied with a model that has a lower performance metric but is generalizable 
and more interpretable, which has a better trade-off than optimizing performance 
to overfit a noisy and non-generalizable model. With variable importance (Fig. 
4.2C), researchers continue to struggle with and outline the issues of using this 
metric in bioinformatics and related scientific fields – as this metric cannot reliably 
select accurate predictors in higher-dimensional data and is largely bias in most 
application(42, 43). This is because truly uninformative features (ASVs in this case) 
may be artificially preferred and selected in variable selection process while 
building trees – more so if a performance metric is optimized for.  
 
Researchers are going to continue to use machine learning to help investigate 
biological problems. Moving forward, there must be a better solution to model 
more consistently to the real-world – as unknowingly modeling on noise is not 
actionable or valuable. Such a framework, as described through this Chapter, will 
show how interpretation can assist the black box modeling process and shine light 
on complex biological questions.  
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4.4 Modularity-based interpretation 
There are some tools that allow insight into machine learning models – but there 
is not a widely accepted, robust and uniform machine learning framework to 
thoroughly investigate microbial associated outcomes(4). Often, microbiome 
researchers are tasked to come up with creative and novel methods to do so. As 
shown here, a good approach is to combine many different analytical tools that are 
borrowed from fields such as microbial ecology, or from machine learning 
development and theory. This approach as demonstrated here and is termed 
‘modularity-based interpretation’ – identifying the additive structure of a black box 
model(44). Modular approaches have been used in estimating biodiversity(45), 
and has been extensively studied for understanding community structures in 
complex systems with deep learning(46). This section will show how such an 
approach enables inference beyond what can be drawn from performance metrics 
(e.g., commonly reported: accuracy, AUC, etc.) alone and can increase the extent 
to which the black box is opened of the fitted model. 
 
It is worth mentioning again that the techniques that will be described are not 
limited to microbiome studies – as they can be employed in any study using 
machine learning with frequency count matrices as the search space, such as with 
DNA or RNA sequencing, with expression profiles, and even domains outside of 
biology(47). In fact, the basis of association rule mining was first developed to 
understand rule-based learners in the context of large-scale transactions for point-
of-sale (POS) systems in supermarkets(48). For example, to understand how 
people are likely to purchase certain grocery items that complement each other or 
based on product placement. To demonstrate the application framework, the 
prevailing question of object (vessel) provenance in marine settings using a rule-
based learner is explored below. 
 

4.4.1 Measuring microbial interactions 
The initial model presented (Fig. 4.2) is only meaningful and interpretable to the 
extent that is described. To expand on this, when the same data are modeled and 
parameterized in pursuit of additional post-hoc analyses (e.g., mining recurrent 
patterns), researchers can better navigate convoluted microbial assemblages in 
complex real-world systems after which the machine learning model is 
constructed. This includes but is not limited to the relative impact of each 
association rule to stable/altered states of the system or to explain why certain 
microbes interact more frequently. 
 
Below, we explore interpreting a black box model by (1) deriving ‘association’ 
rules from the fitted model and (2) by providing descriptive accuracy through 
displaying how the derived decision rules impact model performance, and (3) 
present analyses in an intuitively comprehensible manner. This framework 
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discretizes a high-dimensional frequency count matrix into a list of interaction 
terms that objectively capture learned microbial relationships as simple, 
interpretive and generalizable plain-text conditional statements. The derived rules 
are meant to denote biologically meaningful co-abundant patterns, 
multicollinearity and the complex covariance structure of high-throughput next 
generation sequencing data and are described in Fig. 4.3. 
 

 
Figure 4. 3 
Mined association rules and associated interpretation metrics. (A) Feature 
interaction terms (Definition 1: (rule) identified for each class (male/female). 
These rules meet a user-defined filtering criterion after being mined (frequency, 
error, complexity). Symbols above the bar plots represent boundaries of relative 
abundance for each ‘core’ community member satisfying each rule. (B) Feature 
interaction matrix (Definition 1: (pairwise) to examine the standalone and pairwise 
impact between any two features used in modeling. A higher value suggests that 
a constituent taxon or pairwise interaction is a strong influencer of predictions – 
and if we were to remove it, the model would become more error prone. (C) Model 
interpretation summary table displaying each rule (rule number), feature interaction 
(Definition 1: (rule), reduced performance by rule (rel. impact) (Definition 3), freq 
(Definition 4), err. (Definition 5), complexity (length) (Definition 6), class, the class 
membership the metrics belong to (male / female). 
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What will be described moving forward is a broad level overview of machine 
learning interpretation regarding human host subject predictions – since this 
section is meant to demonstrate how robust the framework is rather than to go 
into the biology of the human microbiome. Therefore, depictions will serve only 
as an introduction to the methods using an external microbiome dataset that is 
outside of the domain of object provenance. In the next section, a similar 
modularity-based approach will provide more detail of interpretation of results as 
they relate to the biological system of modeling object provenance in the 
Chesapeake Bay. 
 

4.4.2 Approach toward microbial interaction metrics 
For an interpretable machine learning model linking host subject – stool sample, a 
total of 9,834 interaction terms were fit to the final cross-validated model. These 
rules were subsequently pruned for a total of 10 relevant and non-redundant rules 
governing the majority of predictions throughout the training data (5 rules for 
each host subject: (male, M3 (85 samples); female, F4 (101 samples)) (Fig. 4.3A). 
The interaction rules derived from the microbial community composition could be 
used to predict either host with 87% accuracy. To test the how valid these 
interactions are as predictive multi-taxa biomarkers, the same 10 rules were used 
to construct a model to predict out-of-sample data (n=73) from the same hosts, 
achieving 79.5% accuracy (reproducible model can be found in Supplementary 
Data). 
 
Next, we asked to what extent the contribution of each feature from each rule had 
on the fitted model. This was accomplished by fitting a rule-wise permutation (i.e., 
mixing of values of each constituent taxon feature in each interaction term) to 
provide two additional interpretive model metrics that provide weight to 
interactions. The first, for the reduction in performance by constituent taxon 
feature (Ri) (constituent impact) and second, for each rule as a whole (RU) 
(interaction impact), where a higher value for each of these metrics indicates a 
higher overall impact on the global model performance (measured through a 
performance metric). The third metric is Fi, denoting a constituent taxon that is 
present as a feature in the search space used to construct the model but was not 
present after pruning relevant and non-redundant interaction terms. 
 
Notations 
RU = all taxonomic features in interaction (interaction impact) 
Ri = constituent taxon as feature present in interaction (constituent impact) 
Fi = constituent taxon as feature present in full feature set (e.g., not used as Ri) 
FU = full feature space (Fi, Fj) 
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Note: all source code can be found under ‘Data Code and Availability’; page xii. All 
interpretation metrics are in terms of classification, although can be reimplemented for 
regression. 
 
Note: Algorithms 1 & 2 were developed by Houtao Deng(29) and are adopted here 
to show detailed descriptions of the inner-workings of mining association rules 
from microbiome data. Algorithm 1 & 2 descriptions are directly from Houtao 
Deng(29) to preserve original meaning. 
 
Definition 1. Feature interaction (Figure 4.3A, B) 
In an interaction term (rule), Feature interaction is described as a conjugate 
variable-value pair that can be extracted from the root node to the leaf node in a 
tree. This was motivated by algorithms from original work on interpretable tree 
ensembles(29) and were reimplemented as a custom method for a tunable caret 
(classification and regression training) train function(49). Another form of feature 
interaction (pairwise) can be used to examine the standalone and pairwise impact 
of features used in modeling, measured as (Err(Fi) + Err(Fj)) - Err({Fi,Fj}) after 
permuting a combination of any two features – motivated by algorithms for 
interaction measures for accuracy reduction(30). 
 
Algorithm 1 
ruleExtract(ruleSet, node, C): function to extract rules ruleSet from a decision tree. 
In the algorithm, let C denote the conjunction of variable-value pairs aggregated 
from the path from the root node to the current node, Cnode denote the variable-
value pair used to split the current node, leafNode denote the flag whether the 
current node is a leaf node, and prednode denote the prediction at a leaf node.  
 

 
 
Other other than computational cost and complexity of the model 
(parameterization: maxDepth, …, and dimensions: (X) feature by (N) sample), there 
are not many constraints to how many rule conditions there can be. As such, this 
same work provides an efficient way to conditionally prune and extract rules 
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based on quality or by meeting some user-defined criteria to help address research 
questions, such as Relative impact, Frequency, Error, Complexity (Figure 4.3A), 
or a combination of multiple metrics – as will be explored below. 
 
Algorithm 2 
condExtract(condSet, node, C, maxDepth, curretDepth): function to extract 
conditions condSet from a tree ensemble. In the algorithm, let C denote the 
conjunction of variable-value pairs aggregated in the path from the root node to 
the current node, Cnode denote the variable-value pair used to split the current 
node, leafNode denote the flag whether the current node is a leaf node. Note one 
can set a maximum depth maxDepth of the tree where the conditions are extracted 
from. In a decision tree, most useful splits tend to happen in top levels of the trees 
(i.e., when depth is small), so setting a maximum depth can reduce computations, 
and may also avoid extracting overfitting rules. maxDepth=-1 means there is no 
limitation on the depth. 
 

 
 
Note: Definitions 2 & 3 are adopted from the work of Sejong Oh(30) on feature 
interaction measures in terms of prediction accuracy, and were reimplemented as 
a custom method to extract interpretable metrics (notably, to permute {ASVi, 
ASVj} ⊂ FU and {ASVi, ASVj} ⊂ RU)) from a tunable caret (classification and 
regression training) train function(49). 
 
Definition 2. Reduced performance by feature (feature impact) (Figure 4.3B, C) 
A reduction in performance of the model was measured after permuting each 
feature in the search space {ASVi, ASVj} ⊂ FU. A permuted feature is an effective 
measure of impact and has been studied extensively for determining feature 
importance from decision tree algorithms(43, 47, 50). By randomizing the values 
of a feature, the relationship between feature – response is broken and the 
corresponding loss function (generally an indication of performance) dictates 
model dependence on that feature for accurate predictions. This is especially 
important to note that in this method – permuting variables not only breaks the 
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relationship of feature to a response label, but in turn any interaction terms it that 
feature could be included in. 
 
Definition 3. Reduced performance by rule (relative impact) (Figure 4.3C) 
The reduced performance of an interaction rule can be defined in the context of 
reduced performance by constituent feature. Instead of permuting each feature 
used in the search space as in Definition 2 – the rules as a whole are permuted 
here (meaning all feature involved in a rule are permuted together), and reduction 
in performance is measured after each rule is permuted. Hence, a relative impact 
of each rule is reported. 
 
Note: the motivation behind Definitions 4, 5, 6 were developed by Houtao 
Deng(29) and are adopted here to determine rule importance and validity through 
filtering criteria – along with detailed descriptions of the inner-workings of mining 
association rules from microbiome data. 
 
Definition 4. Frequency (Figure 4.3C) 
All interaction terms were screened by a Frequency metric to help determine the 
overall importance of a rule. Here, the Frequency of a rule is the proportion of 
samples that satisfy a rule condition (the number of times a rule could classify a 
sample into its proper class). A higher frequency indicates that interactions 
involving the same group of features are occurring at subsequent nodes and are 
more likely to be a global interaction across the observed range of samples and 
predictors in the cross validated ensemble (final model fit). 
 
Definition 5. Error (Figure 4.3C) 
All interaction terms were screened by an Error metric to help determine the 
overall importance of a rule. Here, the Error of a rule is defined as the number of 
samples that were incorrectly classified governed by the rule divided by the total 
number of samples that were satisfied by the same rule. 
 
Definition 6. Complexity (Figure 4.3C) 
Rule Complexity is measured as length of variable-value pairs in a rule (number 
of features). In this modeling regime, if two rules have similar Frequency and 
Error, the rule of smaller length is chosen to be displayed since it is inherently 
more interpretable. 
 
This work together suggested domain agnostic machine learning interpretation 
techniques could be wrapped in an accessible and intuitive format for microbiome 
researchers – providing graphical summary reports to help investigate the 
microbiome.  
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4.5 Predicted probability thresholds 
In classification machine learning, each prediction of the class of an observation 
carries with it a predicted probability (ranging from 0.0-1.0). These predicted 
probabilities indicate for each sample the level the probability of a class 
membership (male or female) it belongs to – and is a good way to interpret the 
decision threshold between samples in a model (Fig. 4.4A). Often the class labels 
from predictions are accepted without consideration of predicted probabilities. 
Here, labels are not necessarily required, and instead, likelihood estimates for the 
class that each sample belongs to is assigned – and can later be interpreted in the 
context of the microbial community (Fig. 4.4B). It is notable to mention that this 
metric can satisfy multiple class memberships (Yi,Yj), and can help quantify 
microbial community members used as predictive features in machine learning. 
 

 
Figure 4. 4 
Core biome community profile over sample-wise predicted probability 
distribution. (A) Relative abundance of shared ‘core’ microbial community 
profiles between male/female samples. Samples with predictions below user-
defined threshold (predicted probability: 0.75) are denoted with a dashed line and 
are represented by an index corresponding to sample number in the training data. 
(B) Predicted probability distribution aligned to sample-wise community 
composition profiles to show the distribution of probabilities dynamic to 
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community composition. (C) Resolved samples that are ‘misclassified’, or that 
were predicted below the 0.75 probability threshold. Additionally, plotted are 
profiles of mean relative abundance (MRA) of all samples that are above the 0.75 
predicted probability threshold (n ≥ 0.75) (solid line) compared to samples 
predicted below the probability threshold (n ≤ 0.75) (dashed line). A star (*) in a 
boxplot denotes that the feature had a higher MRA in the sample that was 
predicted below 0.75. 
 
When a predicted probability assigned to a sample is below a user-defined 
threshold (≤0.75, for example), this likely suggests that the microbial community 
composition of that sample resembles more of the opposing, or another class (for 
more than two-class classification). Fig. 4.4 provides a way to screen such samples, 
where three samples from each class were assigned ≤0.75 predicted probabilities 
for the actual class membership each of the samples belonged to (Fig. 4.4A). These 
‘misclassified’ samples are further interrogated in Fig. 4.4C, where the relative 
abundance of ‘core’ microbes in those samples appear to be dominated by ASV702 
(female) and ASV1174 (male). Interestingly, when comparing this to Fig. 4.4A, 
abundance of these same taxa in ‘accurately’ classified samples is the opposite – 
where ASV702 was dominant in male samples and ASV1174 was dominant in 
female samples in the aggregate. 
 
Further, Fig 4.4C provides differences in mean relative abundance (MRA) for each 
taxon in each class membership. Here, female samples: (ASV2090, A1922, ASV1319 
and ASV171), and male samples: (ASV3615, ASV2247, ASV1922, ASV1174, 
ASV171), are all in lower proportion in the samples ≤0.75, compared with samples 
≥0.75. It is also notable to mention taxon denoted with (*), as this demonstrates 
that for the three samples ≤0.75, the taxon has a greater difference in MRA than in 
samples predicted above the threshold ≥0.75. 
 
To take a further look into predicted probabilities as a valuable metric, more in-
depth profiles relating to the same model can be displayed to identify additional 
trends. Fig. 4.5A shows clear trends within each feature (ASV) along the class 
membership and corresponding predicted probability assigned to a sample (based 
on quantiles). Viewing trends in ‘core’ microbiota from a log10(x+1) abundance, 
ASV96 seems to be more abundant in female samples along quantile 0-0.25. When 
viewed from Fig. 4.5B, the MRA seems to be relatively consistent across each 
quantile, other than the last quantile (>0.75), which shows that ASV96 is less 
representative in male samples. Similar trends can be observed for ASV702 and 
ASV1174. Some ASVs (notably ASV171) have a low overall abundance and thus a 
low MRA in each predicted probability quantile. This does not indicate that these 
taxa are unimportant drivers of prediction – but that their membership in the 
feature space holds value in the aggregate. Downstream, this could mean that an 
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interaction term containing ASV171 and another taxon, or multiple other taxa, 
could contribute to a high feature impact (Fig. 4.3C (rule 3)). 
 

 
Figure 4. 5 
Predicted probability associated community differences. (A) A heatmap showing 
microbial community abundance (log(10x+1)) profiles for each feature, distributed across 
each class (male/female) and across predicted probability quantiles (quarters: 1-4).  (B) 
Displayed is the mean relative abundance (MRA) of each ‘core’ ASV in each predicted 
probability quantile. This represents how much of a single ASV is contained within each 
predicted probability from 1;0-0.25, 2;>0.25-0.50, 3;>0.5-0.75, 4;>0.75-1.00. (C) 
Displayed is the mean relative abundance (MRA) of each ‘core’ ASV in each class 
membership (male/female). 
 
Together, these approaches to interpretation outlines differences in microbial 
community composition between each class membership and between each taxon 
being used as a predictive feature. Not only could features be measured in terms 
of constituent impact, but in interaction with multiple other features and 
compared to the community as a whole. From this, one can apply domain 
knowledge to optimize a more generalizable or accurate model for targeted 
research questions or integrate such analyses as common interpretable report 
metrics for microbiome-based machine learning tasks – either through 
experimental literature, or for molecular workflows.  
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4.6 Summary and outlook 
This work demonstrates a sound strategy for the interpretation of machine 
learning models built on microbial datasets and from the ecological context of 
microbial interactions. This framework provides methods that support commonly 
reported performance metrics to further validate research findings. From here, a 
variety of actionable insights can be extracted and linked back to the raw data used 
in model training and testing. 
 
Although demonstrated here are interaction terms and corresponding metrics in 
the context of microbial community members, it is notable to mention that these 
methods are domain agnostic, and most data points being used in modeling 
procedures from other domains are satisfied by the limits of this approach. 
 
While this was a proven and reproducible framework, work still needs to be done 
to wrap these functions into a user-end-ready package accessible to microbiome 
researchers (for both machine learning integration and for visual output). We plan 
to fine tune and publish these methods after ensuring that they are robust to 
variety of potential users. 
 
We would also like to add additional features to this package, such as guiding 
researchers on labeling schemes for model training. For example, in many cases, 
determining how and which samples are labeled can carry some subjectivity(51). 
In the case of determining host subject, the samples were collected from either 
host, making it easy to label samples. However, in the use-case of the work 
presented in Chapter 3 regarding object provenance using geospatially collected 
samples, it is up to the researcher to define the boundaries of the sample 
distribution. More specifically, in a model trained to predict if a vessel originated 
in Baltimore, the researchers must decide which samples should be labeled and 
learned as Baltimore, and which samples are anything but Baltimore, or Norfolk 
signatures. 
 
Since we now have a sound strategy for interpreting machine learning models, we 
plan to take the work presented in this section and apply it to the target problem 
of object provenance discussed in Chapter 3 and throughout this dissertation. This 
will allow us to probe deeply into machine learning models built on real-world 
microbial communities in the Chesapeake Bay and extract enough actionable 
insight to construct a robust molecular detection assay. 
 
Preliminary work suggests that it is possible. In this test case, we made the 
following assumptions: (1) when a vessel travels from Baltimore to Norfolk, the 
microbial signature ‘signal’ from home port is lost around half-way (~150km), and 
(2) samples for each class membership were determined with considerations of 
maintaining class balance and to account for parameterization (not having to 
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over/under sample) so that machine learning model fidelity, generality and 
inherent interpretability is not reduced (Fig 4.6). Although only these assumptions 
are presented here, there are plenty of assumptions one can make with this dataset, 
and we plan to try many more. The work to establish the best approach for 
modeling object provenance is ongoing and as we move this project forward, we 
plan to further validate this model for reproducibility. 
 
 

 
Figure 4. 6 
Schematic of framework to investigate target problem (vessel provenance). To 
put this future modeling procedure into perspective: (A) Shows the system wide 
sampling regime along the Chesapeake Bay (as thoroughly outlined in Chapter 3). 
(B) Illustrates the proposed modeling procedure based on assumption (i.e., which 
resident signatures of each locations do we want the model to learn) and shows 
the data that will be used to train and validate the model. Note that assumptions 
are necessary for better model generality, such as using domain-knowledge to 
assess how to determine which samples are labeled as each class membership 
(Baltimore (red)/Norfolk(blue)). 
 

4.7 Methods 
4.7.1 Dataset 
The workflow developed in this study is summarized using the ‘moving pictures 
of the human microbiome’ dataset(33) from two healthy host subjects, one male 
and one female sampled daily for 15 months and 6 months, respectively – at three 
body sites (gut (stool), sebum (left and right palms) and tongue (saliva)). Only 
stool samples were used to demonstrate this framework. This dataset is suited for 
this analysis as it is a dense microbiome study and has sufficient sample sizes to 
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model microbe-host interactions from multiple body sites and has been 
benchmarked in multiple other studies. 
 

4.7.2 Interpretation metrics 
Section 4.4.2 provides comprehensive methodology of the algorithms and re-
implementations of the original work of Houtao Deng (29) and Sejong Oh(30), to 
bring interpretation to microbiome-based machine learning. The code and data 
used that support the findings of this study are available from the corresponding 
author upon reasonable request. 
 

4.7.3 Computational analysis and visualization 
All statistical analysis, machine learning models, and visualization were 
conducted on a local server (Red Hat Enterprise Linux server 7.3 [Maipo]; 256 Gb 
of random-access memory [RAM]) and on R environment version 3.6.3 using 
custom functions and the following packages and associated dependencies as 
follows (in no particular order): phyloseq, tidyverse, microbiome, eulerr, 
microbiomeutilities, pheatmap, Biostrings, MicrobeDS, dplyr, vegan, recipes, 
ggpubr, missForest, Hmisc, mi, grid, gridExtra, lattice, DMwR, purr, pROC, 
PRROC, reshape2, randomForest, inTrees, caret, caretEnsemble, ggplot2. 
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5 Conclusions 
This dissertation summarizes several approaches to understand microbial 
communities in complex systems, such as marine and freshwater settings. The 
objectives in this body of work were aimed overall at investigating if natural 
microbial communities that are everywhere in nature could be used to classify a 
location, and the provenance of an object in the environment. 
 
To summarize the overall contributions discussed throughout this dissertation: 
 

5.1 Chapter 1 

This section aimed to review machine learning in the context of microbes as they 
relate to our health and built environments. Provided was an in-depth overview 
of microbiome studies employing a variety of machine learning algorithms – from 
microbial ecology to the human microbiome and environmental monitoring. We 
then proceeded to compare the machine learning algorithms (supervised and 
unsupervised) used in these studies, with brief mention of advantages over 
traditional multivariate statistics. Additionally, provided was a thorough 
comparison of open-source toolkits that can be used for predictive and exploratory 
machine learning modeling of microbial datasets. Our review followed with 
mentions of shortcomings of common machine learning practice in the 
experimental microbiome literature, and how machine learning interpretation 
could be improved. As reproducibility is a concern in studies that employ machine 
learning, more interpretive open-source software should be acknowledged as an 
integral part of the modern workflows of investigating microbiota. 
 

5.2 Chapter 2 

This study was designed to probe microbial biogeography. We demonstrated an 
initial experimental field design and machine learning approach to test if natural 
microbial communities could discriminate geospatial location on a global scale. 
Here, we chartered research vessels to collect samples from 604 different locations 
around twenty busy ports across eight countries and three continents. We found 
that microbes can be used as accurate differentiators of geospatial location. Even 
at the lowest taxonomic resolution of phylum, our models were accurate in 
differentiating all twenty geospatial locations (logloss, 0.58; accuracy, 0.84) and 
when these locations were binned into regions (logloss, 0.33; accuracy, 0.90). These 
accuracies are well above what would be expected for random classifications 
taking place in our models (based on model kappa, local, 0.83; region, 0.88). This 
work demonstrated that microbes can be used as tools for indicating geospatial 
location in marine and fresh-water systems. This suggested that objects that 
occupy and pass through these systems may be able to pick up microbes and carry 
them as they move around – and was the basis for moving forward. 
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5.3 Chapter 3 

Extending the work in Chapter 2, here we tested the stability and persistence of 
microbes that colonize vessels as they travel through the water. To characterize 
this, we designed a field experiment in the Chesapeake Bay, chartering two 
research vessels for two independent voyages from the home port of Baltimore to 
the destination port of Norfolk (296km). Samples were collected along the way 
from the surrounding open water (the seed) and from the surface of the vessel. 
These results show similar microbial community composition from vessel and open 
water despite sampling on independent voyages (e.g., different dates) (Fig. 3.2). This 
led us to probe for taxa that are most robust to system dynamics (abiotic 
parameters, etc.) and temporality. By viewing the community from the perspective 
of a shared ‘core’ set of taxa, we could still thoroughly investigate research 
questions and better understand the system in the aggregate (Fig. 3.3). 
Additionally, we demonstrated that our nine derived taxa are robust to the 
complexity of this real-world system. For example, these signatures persist at least 
across a distance of 296km, and are present on both vessels sampled despite the 
overall high variability in the microbial community between the two vessels. This 
data suggested that we could potentially interface machine learning modeling on 
these robust ‘core’ biomarkers as features to detect the previous known origin of a 
vessel. 
 

5.4 Chapter 4 

In order to properly validate our machine learning model built to detect object 
provenance, and whether predictions being made hold true to the biological 
system – a framework to extract biologically meaningful information from models 
that are otherwise uninterpretable was developed and employed. Otherwise, our 
approach would have been purely a black box form of investigation. Existing tools 
for machine learning interpretation is mostly focused on providing researchers 
with more accurate models, rather than proving interpretation metrics to help 
inference the data points (microbial taxa) that are driving accurate models. Here, 
we demonstrated that while methods for inferencing how single microbial 
community members influence single predictions are beneficial (local 
interpretations), appreciating the inner workings of multiple microbial 
community members and how they generally discern a system state is more robust 
and generalizable (global interpretation) – and can help extend work. Often a 
condition in a system (disease state, contamination, etc.) is not attributable to, or 
cannot be remediated by a single taxon, but multiple taxa. One of the strengths of 
machine learning is the ability to appreciate these groups of features in making a 
prediction. However, using traditional interpreting metrics that focus on the 
importance of a single feature may limit the applicability to the real-world system 
that is being modeled (i.e., appreciating the full microbial community rather than 
a single taxon, or subsets of the community). This framework provides novel ways 
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to extract a reasonable biological understanding of the data being used in the 
model. For example, likelihood estimates that a sample belongs to a particular 
class membership which can be observed in the context of the microbial 
community profile (Fig 4.4). This framework is robust to other microbiome-based 
machine learning tasks (independent of domain) – and can be employed by other 
researchers to better apprehend and interpret their results. Ultimately, this 
framework is what is going to allow us better to understand our machine learning 
models built to detect object provenance – along with helping extend these models 
to a real-world application. 
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6 Summary statements 
This work provides a case study for the use of natural microbial community data 
combined with machine learning to address forensic applications. We advanced 
the field by showing the feasibility of using machine learning to identify previous 
location from microbial community data. Additionally, we developed new 
approaches for interrogation of machine learning models constructed from next-
generation sequencing (NGS) data, allowing us, and others, to glean biologically 
meaningful information. This work lays the foundation for more in-depth study 
of the use of microbial communities in forensic applications. 


	APPLICATIONS OF MACHINE LEARNING IN MICROBIAL FORENSICS
	Recommended Citation

	Microsoft Word - Dissertation7_used4.2.docx

