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Abstract

Subarachnoid hemorrhage is a potentially devastating pathological condition in which

bleeding occurs into the space surrounding the brain. One of the prominent sources

of subarachnoid hemorrhage are intracranial aneurysms (IA): degenerative, irregular

expansions of area(s) of the cerebral vasculature. In the event of IA rupture, the

resultant subarachnoid hemorrhage ends in patient mortality occurring in 50% of

cases, with survivors enduring significant neurological damage with physical or cog-

nitive impairment. The seriousness of IA rupture drives a degree of clinical interest

in understanding these conditions that promote both the development and possible

rupture of the vascular malformations. Current metrics for the assessment of this

pathology rely on measuring the geometric characteristics of a patient’s vessel and/or

IA, as well as the hemodynamic stressors existing along the vessel wall. Compara-

tively less focus has been granted toward understanding the characteristics of much of

the bulk-flow within the vasculature and how it may play a role in IAs. Specifically,

swirling hemodynamic flow (vortices) have been suggested as a condition which ex-

acerbates vascular changes leading to IAs, yet quantified measurements of the spatial

and temporal characteristics of vortices remain overlooked.

This dissertation studies the role of the spatial and temporal characteristics of vortex

flow and how it plays a role on IA pathology. Its chapters are a collection of five (5)

xxxv



works into this matter. First, established methods for the identification of vortices

was investigated, and a novel method for vortex identification and quantification of

their characteristics was developed to overcome the limitations of previous methods.

Second, the developed method for vortex identification/quantification was then ap-

plied to a simulation study to improve predictive models aimed at predicting areas of

IA development from those unlikely to suffer this pathology. Third, assessing how the

simulated repair of one IA impacts changes to hemodynamic conditions within other

nearby un-repaired IAs in a multiple IA system. Fourth, it was determined if vor-

tex identification/quantification improved predictive models aimed at differentiation

ruptured from unruptured IAs. Fifth, impart vortical flow of differing characteristics

onto cultured vascular cells to determine if vortex stability imparts varied levels of

cellular changes.
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Chapter 1

Introduction

Subarachnoid hemorrhage is a potentially devastating pathological condition in which

bleeding occurs into the space surrounding the brain. One of the prominent sources

of subarachnoid hemorrhage are intracranial aneurysms (IA): degenerative, irregular

expansions of areas in the cerebral arterial system which occur in an estimated 3-

5% of the global population [130, 276, 348] with an estimated 0.15% - 0.7% of the

global population suffer the rupture of an IA each year [148]. In the event of IA

rupture, patient mortality occurs within 45-50% cases, with survivors enduring sig-

nificant neurological damage and physical or cognitive impairment [211, 348]. From

a clinical perspective, improved medical imaging techniques have increased the de-

tection of IAs, and novel surgical methods have helped to reduce the instances of IA
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rupture [186, 236]. Yet surgical interventions are not without inherent risks as com-

plications cause similar neurological damage as a ruptured IA [56, 208, 222]. Current

interventions focus on occluding blood flow into an IA through clipping or coiling.

IA clipping involves opening the skull to place a titanium clip around the opening

(ostium) of an IA, isolating it from the vascular flow. Yet a meta-analysis of stud-

ies between 1990 and 2011 showed this surgical methodology carried with it a 1.7%

and 6.7% mortality and morbidity rate respectively [189]. A more recent method to

prevent IA rupture is through coiling and stenting: the implantation of flexible wires

(coils) inside an IA to create an artificial thrombosis within the IA sac, with the

vascular stent supporting the weakened vasculature. Treatment of IAs with coiling

has been shown to have an 80-85% success rate [236], yet carries with it complica-

tion risks: coil slippage, incomplete occlusion, or coil compaction which can further

increase the risk of IA rupture [146, 208]. Surgical treatments to prevent identified

IAs from rupture also carry significant economic costs: surgical repair (without com-

plications) of IAs in the United States in 2012 cost an estimated $25,000 per patient,

with surgical complications resulting in a marked increase in costs estimated between

$35,000 - $70,000 [39]. While this cost can be impacted by the length of hospital stay,

hospital size and IA locale [29], the cost to patients is significant. Additionally, a

continued economic burden is placed upon patients and their caregivers if long-term

rehabilitation or home care is required post-surgery. Improved understanding of the

development and possible rupture of IAs could spur novel treatment methodologies

2



as well as aiding clinicians in determining the ideal treatment options to maximize

patient outcomes.

1.0.1 Hemodynamic Factors of Aneurysm Development

The development of IAs are thought to be triggered in part by alterations to arterial

cells due to the hemodynamic environment. Broadly speaking, the inner-most intima

layer of cerebral arterial vessels consists of a monolayer of endothelial cells (EC) en-

capsulating the vessel lumen (internal space of a vessel) and are directly exposed to

blood flow. This layer serves a dual purpose: hemodynamic mechanosensors which

transduce fluid force into biochemical signals for cellular cascades [46, 92], and a se-

lective permeability layer to govern the passage of biomacromolecules into arterial

tissue [31, 121, 242, 275]. The tunica media (middle layer) of arterial vessels contains

vascular smooth muscle cells (vSMC), elastic tissue, and collagen which regulate ves-

sel contraction and dilation in response to hemodynamic forces/blood pressure, and

help to maintain the biomechanical integrity of the vessel wall [37, 230]. Tangential

fluid stressors along the vascular wall, wall shear stress (WSS), are known to impact

vessel health, acting as a biological trigger for eliciting changes in the phenotype

and genetic/protein expression of EC and vSMCs[19, 21, 43, 52, 89, 192, 281, 342].

Low WSS (≤2dynes/cm2) is associated with atherosclerotic changes to the vessel

wall [50], whereas high WSS conditions are associated with local thinning of the wall
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[228]. In addition to WSS intensity, fluctuations in both WSS gradients [91], as well

as directionality [218, 297] have been linked with possible IA development. This as-

sessment of WSS and its derivatives have been utilized to determine areas of likely

aneurysm development, yet vary in both study outcomes and the predictive metrics

utilized [45]. A possible limitation of such studies is that they tend to only assess the

near-wall hemodynamic environment while overlooking the bulk flow patterns within

the vasculature.

1.0.2 Current Rupture Prediction Metrics

When dealing with an identified IA, the disparity between their estimated rupture

rate, risk of surgical complications, and possible unintended alterations to the hemo-

dynamic environment post-surgery must be taken into account by clinicians. The

need to properly weigh these concerns has led to significant interest in elucidating

metrics indicative of IA rupture. Proper identification of IAs at high risk of rupture

could significantly benefit-risk stratification, aiding clinical decision making and im-

proving patient health outcomes, while also limiting the occurrence of (potentially)

unneeded surgery.

Research has shown an array of risk factors exist which may signal IA rupture risk

[87, 187, 259, 311] with said factors generally separated into three categories:
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– IA morphological characteristics

– Vascular hemodynamics

– Patient health factors

Morphological factors such as IA size (volume), shape, aspect ratio, etc. have been

identified across a plethora of studies as helpful in the assessment of IA rupture poten-

tial [93, 147, 264]. However, many of these parameters vary in both their predictive

strength and to which parameters are “best” applied to models [15, 40, 164]. As per

example, IAs >10mm in size are often associated with high rupture risk, with IAs

>25mm thought to be at the greatest rupture risk. This prevailing thought leads the

majority of large IAs to undergo surgical treatment even though not all large IAs

rupture [234, 364, 372]. The inverse is seen in the assessment of small IAs (<4mm)

of which are thought to be at minimal rupture risk. The perceived low risk could

exclude many small IAs from surgical treatments, yet such IAs have been shown to

be at a not-insignificant risk of rupture [93]. While geometric analysis of a patient’s

IAs and surrounding arterial geometry give much needed insight to clinical treatment

planning, such information on its own would leave many IAs improperly assessed

concerning their risk of rupture.

Assessment of WSS characteristics are a further avenue investigated to determine

conditions symptomatic of IA rupture [49, 88, 164, 372]. Arterial cells are shown to
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maintain healthy physiological characteristics while exposed to laminar hemodynamic

patterns: flow following smooth paths, with minimal overlap between flow layers, and

WSS between 5 and 30 dynes/cm2 (varies by area of the vasculature). Yet in a similar

manner to IA development, studies are in conflict if lower [38, 233, 392] or higher

[89, 299] WSS values have greater impact on IA rupture. It has even been suggested

that both sides of WSS extrema impact possible rupture via eliciting differing cellular

changes[228, 308]. This duality of both high and low WSS impacting IA rupture

may make determining their usefulness towards rupture prediction arduous. In a

manner similar to IA development, fluctuations in WSS gradients and changes in

WSS directionality are theorized to impact IA rupture, yet studies carry their own

disagreements in prediction strengths [115, 307, 346, 370, 387]. The focus on WSS-

based measurements also overlook the complex bulk flow characteristics that exist

within the IA sac (Fig. 1.1)

Figure 1.1: The wall shear stress (N/mm2) distribution on the IA wall(A)
and blood flow pattern inside the IA, visualized via velocity streamlines
(mm/sec)(B). Solely analyzing WSS overlooks the disturbed/swirling flow
patterns (white arrow) that are generated in the IA sac.
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Combining the assessment of IA morphological characteristics, WSS and patient med-

ical information have been applied in a number of studies toward predicting the risk

of IA rupture. Yet the chosen indices and the resultant strength of models can vary

significantly between studies. A sample of recent investigations (2017-2019) and their

respective chosen metrics and prediction outcomes can be seen in Table 1.1.

This disparity between study outcomes for both IA development and rupture predic-

tion suggest that novel assessment methods are needed to improve the understanding

of characteristics indicative of this pathology.

1.0.3 Hemodynamic Swirling Flow: Vortices

Early investigations into the nature of IAs uncovered the non-random distribution

of areas likely to develop IAs: vessel bifurcations and areas of significant arterial

curvature (Fig 1.2). Within these locales, patterns of disturbed, swirling bulk flow

(vortices) exists, antithetical to physiologic laminar flow.

The presence of hemodynamic vortices have been correlated with a number of arterial

cellular changes indicative of IA development and rupture: altered cellular morphol-

ogy, mechanotransducive signaling [24, 149], protein expression [21, 50, 67, 107, 240,

246], and ability to maintain a selective permeability layer [209]. Changes to vSMC

have also been noted in areas of hemodynamic vortices, leading to reduced vessel
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Table 1.1
Recent articles for IA rupture prediction

Author-Year Parameters for
Analysis

Aneurysm
Location(s)

Ruptured IAs Unruptured
IAs

AUC orAccuracy

Qin et al., 2017[270] W, H, L, NW, Age,
AR, Dmax, HW, BF,
WSS, LSA, EL

MCA 36 31 0.931

Bijlenga et al.,
2017[36]

S, Age, Hyp, Race,
SAH

MCA, ICA,
ACA/PcomA/-
Post

598 243 0.681-0.756

Detmer et al., 2018[85] Age, Gender, S,
OSIm, NSI

ACA, AcoM,
BA, ICA, MCA,
PCom, VA

66 183 0.82

Kocur et al., 2019[183] S, H, W, NS, AR, BF,
H/W, SR, Aθ

AcoM, ICA,
MCA, Post

146 285 0.55-0.64

Wang et al., 2019[355] R, DD, NW, W, D,
Dia, AR, DW, BF,
SR, Fθ, LDθ, SDθ,

AcoM 214 147 0.846

Varble et al.,
2018[346]

Age, SR, AR, UI,
EL, NSI, WSS, OSI,
WSSG, RRT, LSA,
MWSS, PLc, EL

ACA, ICA,
MCA, PcoM,
Post

102 (Train)
14 (Test)

311 (Train)
115 (Test)

0.767

Jiang et al., 2018[163] L, H, AR, SR, UI,
EI, Dθ, NSI, NWSSa,
WSSm, WSSa,
NWSSa, NWSSm,
WSSG, LSA, OSI,
RRT, Pm, Pa, NPa,
NPm

ACA, AcoM,
ICA, MCA,
PcoM

167 167 0.81

Anterior communicating artery (AcoM), Anterior communicating artery (ACA), Internal carotid artery (ICA),
Middle cerebral artery (MCA), Posterior communicating artery (PcoM), Posterior inferior cerebral artery (Post),
Aneurysm angle (Aθ), Area (A), Aspect Ratio (AR), Bottleneck factor (BF), depth/width (DW), Diameter (D),
Energy Loss (EL), Flow angle (Fθ), Height (H), Hypertension (Hyp), Irregular shape (IR), Large daughter artery
angle (LDθ), Lateral angle ratio (LAR), Length (L), Low wall shear area (LSA), Mean diameter (MD), Mean wall
shear stress (MWSS), Non-sphericity index (NSI), Normalized pressure average (NPa), Normalized pressure max
(NPm), Normalized wall shear stress area (NWSSa), Normalized wall shear stress mean (NWSSm), Oscillatory
shear index(max) (OSIm), Pressure average (Pa), Pressure loss(coefficient) (PLc), Pressure max (Pm), Relative
residence time (RRT), Size ratio (SR), Small daughter artery angle (SDθ), Surface (S), Temporally averaged
WSS (TAWSS), Undulation Index (UI), Vessel angle (Vθ), Width (W), Wall shear stress (WSS), Wall shear
stress gradient (WSSG), Wormsley number (WN), Wall shear stress mean (WSSm).

contractility and mechanical integrity, conditions indicative of IA development and

rupture [170, 259]. Prolonged disturbed flow conditions are also linked to increased

cellular death (apoptosis) of EC and vSMCs, further weakening the vascular wall and

exacerbating this pathology [86, 177, 198].
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Figure 1.2: Common locales of aneurysms in the human vasculature. High
vessel curvature and bifurcations in the aortic and cerebral arterial system
are shown to be likely areas of aneurysm development (black boxes). Areas
represent aneurysm locations at the thoracic and abdominal portion of the
aortic vasculature as well as the internal carotid, middle cerebral, and basilar
arteries of the cerebral vasculature

While the presence of vortices has been linked with altered arterial cells, less is known

about the characteristics of vortices and if they can help lead to novel insights into the

risk of IA development and rupture. Current vortex analyses are typically restricted

to qualitative visual assessment of computational fluid dynamic (CFD) derived flow

or assessment of only votrices’ center-most (critical-point) regions[42, 252, 345]. Ad-

ditionally, in-vitro study of vortices often involve the generation of relatively simple
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and spatially stable vortices (compared to in-vivo counterparts) using specialized flow

chambers [23, 47, 62, 67, 68, 122, 318]. Such methods result in a narrow assessment of

vortices that may overlook important spatial and temporal flow characteristics that

could prove indicative of IA pathology. Research focused on understanding the im-

pact that vortex characteristics have on IAs, and determining if said analysis is useful

in differentiating IAs likely to rupture from those to remain asymptomatic[345] could

significantly improve the understanding, and eventual clinical management of, this

pathology.

1.0.4 Objectives and Contributions

The objectives of this work are composed of computational, analytic, and in-vitro

investigations of vortices and their relationship to IAs. Primarily these investigations

focus on determining if quantifying and analyzing the spatial and temporal charac-

teristics of vortices can be utilized to improve the understanding of IA development

and rupture. The contributions of each work toward this end are as follows: one)

develop a novel methodology for the identification of vortices beyond their critical-

point regions as a means to improve the quantification of their spatial and temporal

characteristics, two) determine the strength of vortex characteristics for predicting

areas of IA development, three) how the surgical repair of and IA may alter bulk-

flow characteristics within the vasculature and/or subsequent unprepared IAs, four)
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improve the differentiation of ruptured and unruptured IAs by analysis of vortex char-

acteristics, and five) determine if vortices of varied spatiotemporal stability trigger

differing levels of cellular change indicative of IAs. The combination of such an ana-

lytical methodology and an understanding of how vortex characteristics are indicative

of IA development, growth and rupture could give much-needed insight towards this

potentially life-threatening arterial malformation.
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Chapter 2

Hemodynamic Flow Vortex

Identification and Quantification of

Characteristics

Assessment of hemodynamics indicate that vortical flow spatial complexity may im-

pact IA pathology[43]. Yet the methods driving the identification of vortices in

many studies rely on visual assessment of velocity streamlines (lines tangental to

the velocity vector of flow), or analysis of only the critical point of vortex patterns

[42, 119, 284, 345]. Reliance on streamline visual assessments could lead to varied

inter-rater reliability while giving no quantifiable characteristics of flow. As for criti-

cal point methods, they assess pressure minimum locales to identify the center-most
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region of areas of swirling flow, yet give no information of the broader flow structural

characteristics. The initial goal of this dissertation was the development of an alter-

native technique for vortex analysis, expanding upon vortex core analysis to assess

the spatial and temporal characteristics of the broader structure of vortices [319]. For

this purpose, an initial method was investigated by expanding upon two established

vortex identification methods, the Q-criterion [150] and λ2 [159]. Additionally, an an-

alytical method based on Shannon’s informational entropy [291] was developed as an

alternative vortex identification metric not wholly reliant upon critical point analysis.

2.1 Generation of Hemodynamic Flow Data

To achieve the goal of this chapter, high resolution hemodynamic data is paramount

for the initial development of analytic techniques, especially due to the complex na-

ture of flow within IAs. In a clinical setting, time-resolved three-dimensional flow

velocity data (3D velocity vector fields) can be measured using phase-contrast mag-

netic resonance imaging (PC-MRI) or phase-contrast magnetic resonance angiography

(PC-MRA)[32, 227]. Yet, determining flow details in and around IAs has proven dif-

ficult using such methods. The complex, disturbed patterns of IA flow results in

incoherent velocities (at the sub-grid level) and these specific characteristics may not

be resolved using typical "averaged" velocity measurements at the relatively large

resolutions of medical imaging (at ≥1-mm scale)[2]. As a consequence of sub-grid
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limitations, clinical hemodynamic flow measurements may be subject to errors and

imaging artifacts[227, 315], altering the characteristics of vortices within IAs. CFD

applies aspects of fluid mechanics, data structures, and numerical analysis, alongside

advancements in computational power and mathematical models as a means to cal-

culate fluid flow within a defined system. This field of computational science has

garnered interest by the clinical and research community as a means to better under-

stand and analyze flow in and around IAs while being more robust against limitations

faced in in-vivo measured flow data [51, 370]. CFD simulation can achieve spatiotem-

poral resolutions at factors greater than MRI data, up to a computer’s memory limit,

and can generate data free from imaging errors and/or flow artifacts. High quality

flow data allows for the development of novel analytic techniques to be tested and

refined on data free from errors which may confound initial outcomes.

2.1.1 Modeling of "Patient-specific" Vasculature

Medical imaging data was taken from Digital Imaging and Communications in

Medicine (DICOM) files of ten (10) patient’s vasculature structure using digital sub-

traction angiography (DSA). These files were arbitrarily selected from an internal

database: five patients with a single bifurcation (terminal) aneurysm, and five with

a single sidewall aneurysm. Cases were chosen that had either an IA in the inter-

nal carotid artery (ICA) or the basilar artery (BA). A commercially available image
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segmentation package (Mimics Innovation Suite, version 17, Materialise Inc. Leu-

ven, Belgium) was used to reconstruct the vascular surface from scans, resulting in

’patient-specific’ vascular structures. All structures were loaded into the commercially

available computer aided design (CAD) 3-matic software (Version 9, Materialize Inc.,

Leuven, Belgium). The longest available upstream vessel section proximal to the

aneurysm was left intact to maintain as much of the patient geometry possible, while

much of the vasculature distal to the aneurysm was removed, leaving a small portion

as vessel outlets: for both ICA or BA IAs, the vessel bifurcation that occurs post-IA

was kept intact. Remaining surface irregularities were manually removed using the

localized smoothing function, and a 1st order Laplacian smoothing filter was used

post-editing to perform a global smoothing to the vessel structure. Cylindrical vessel

extensions 6 times the relative vessel diameter were added to both the inlet and out-

let vessels for each model using the open-source Vascular Modeling Toolkit (VMTK)

software (version 1.2). Vessel extensions help reduce the effects of inlet, plug-flow

conditions, allowing flow correction to parabolic flow indicative of physiologic hemo-

dynamic characteristics [266].

2.1.2 Mesh Generation

Processed vascular surface structures were converted into an unstructured, 3D, tetra-

hedralized volumetric mesh using an open-source mesh generator, Tetgen (version
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1.4.2) [301]. The mesh generation process was performed by an in-house Python

script derived from VMTK. Approximately, 1 million tetrahedral computing cells

were used per case, with the average mesh size as 0.0022-mm3, with 3 layers of prism

computing cells along the wall of vessels as a means to achieve greater WSS accuracy

[105]

2.1.3 CFD Simulation

To compute fluid velocity data in and around the IA, the time-dependent 3D Navier-

Stokes equations was numerically solved using a commercial CFD solved (ANSYS-

FLUENT Inc., version 14.0, Lebanon, NH) In the ANSYS-FLUENT solver, the

pressure-velocity coupling was obtained using the Semi-Implicit Method for Pressure

Linked Equation (SIMPLEC) algorithm [347] with a first-order streamline-upwind

stabilization approach. The explicit time-marching second-order scheme with a time

step of 1× 10−3 second (1000 steps per cardiac cycle) was used for computations.

Vessel walls were assumed rigid with a no-slip boundary condition. It is worth noth-

ing that blood vessels are naturally compliant and an assumed rigidity causes a rise

in overall wall shear stress values (30-50%), while flow pattern characteristics remain

similar or only have small localized changes [27, 255, 303]. This assumption ensures a
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reduced computational time and lessens required computer memory. Blood was con-

sidered an incompressible Newtonian fluid with a dynamic viscosity of 0.004 kg/m-s

and a mass density of 1040 kg/m3. Assuming blood as Newtonian is shown to increase

WSS while minimal changes occur in flow patterns [193]. A zero-pressure condition

was used for all vessel outlets. For the inlet flow rate, two pulsatile waveforms (one for

ICA and BA respectfully) at a rate of 60 bpm were derived from magnetic resonance

measurements taken from Gwilliam et al. [128] as patient-specific flow waveforms

were not available. Each case had its waveform scaled according to their inlet cross-

sectional area, standardizing the mean volumetric flow rate to either 280mL/min for

ICA cases or 180mL/min for BAs, values based on MR measured physiological rates

[101, 390]. Four (4) cardiac cycles were simulated per case at 20 data points per

cardiac cycle, with only the final cycle saved as a means to reduce initial transient

flow conditions.

A published method [161] was used to semi-automatically isolate and extract the IA

sac from its parent vessel. The isolated IA sac was sealed at the IA opening (ostium)

and converted to a binary mask, spatially-registered with the volumetric velocity data.

The mask allows the analysis of only the intra-aneurysmal velocity data, reducing the

time for computational analysis. Masked velocity data was re-sampled from a high-

resolution tetrahedral mesh to a 3D rectilinear grid format to mimic the data format

used by PC-MRI. This was performed so that the developed method(s) could easily

be adapted to in-vivo medical imaging data in the future. Re-sampling of data was
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performed for a range of voxel sizes (0.1-0.8mm) to assess its impact on identified

vortices.

All computational methods for the identification and quantification of the spatial and

temporal characteristics of vortices were performed using in-house scripts (C++ and

Python) developed using the open-source VTK/VMTK software package.

2.1.4 Vortex Core Identification and Analysis: λ2 and Q-

criterion Methods

Two of the most prominent methods for the identification of flow vortices via the

identification of critical point, rely on the analysis of the symmetric rate-of-strain

and skew-symmetric vorticity portion of a second order flow tensor. To achieve this,

the eigenvalues of the velocity gradient tensor field within a system is calculated

and when a pair of complex conjugate eigenvalues are identified, the tensor field is

deconstructed into its rate-of-strain and vorticity tensors as calculated in Equation

2.1.
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∇~u = S + Ω

S =
1

2

[
(∇~u) + (∇~u)T

]
Ω =

[
1

2
(∇~u)− (∇~u)T

] (2.1)

Where ∇~u is the calculation of the velocity gradient, S as the rate-of-strain tensor

and Ω as the vorticity tensor.

Using these values, Hunt, Wray and Moin [150] defined a vortex as a connected fluid

region with a positive second invariant ∇u, where the Euclidean norm of the vorticity

tensor dominates. This is referred to as the Q-criterion method

Q =
1

2

[
|Ω|2 − |S|2

]
> 0 (2.2)

Jeong and Hussain identified vortices as a connected flow region with two negative

eigenvalues and S2 and Ω2 as:

λ2 = (S2 + Ω2) < 0 (2.3)

This is referred to as the λ2 method.

These two methodologies were assessed using our simulated data. While from a math-

ematical perspective, a critical point is indicated by either a λ2 < 0 or Q > 0, setting
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analytical thresholds close to these values was found to overestimate areas of flow as

being indicative of a vortex. To limit the over-identification of areas of flow as part

of vortices, a number of computational thresholds were tested. Additionally, mod-

ifications to the Q and λ2 methodologies was performed through the normalization

their values by their ~u2 via Equation 2.4. Normalization was performed to narrow

the distribution of possible values for the identification methods, helping to minimize

marked differences in vortex characteristics due to slight changes in thresholds. Sub-

sequently, methods were also tested to determine its susceptibility to varying data

resolutions[319]. As previously stated, data resolution can vary significantly between

CFD derived data and clinically measured data, so having a analytical methodol-

ogy robust to differing data quality could help minimize research findings between

separate studies.

Q(x, t) =
Q(x, t)

|~u(x, t)|2

λ2(x, t) =
λ2(x, t)

|~u(x, t)|2

(2.4)

For all (10) simulated cases, multiple threshold values for λ2 and Q-criterion methods

(standard and normalized) were assessed within the intra-aneurysmal velocity data.

Based off each case’s resultant Q or λ2 values, five threshold values were tested:

† Mean.
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† Mean+Standard Deviation

† Mean+Half Standard Deviation

† Mean/2

† Mean/4

When the standard deviation was included as part of the threshold, the value was

added for the Q criterion threshold, and subtracted for the λ2 threshold. This was

done to account for the theoretical thresholds for vortex identification as > 0 for Q

and < 0 for λ2.

Identified vortex areas were mapped to 3D iso-surfaces: surface representation of

values within a given space, using the well-established marching cube algorithm[212].

The volume of identified iso-surfaces was calculated and averaged across the simulated

cardiac cycle. As a means to determine the stability of vortices, the degree of volume

overlap (DVO) between flow vortex regions of adjacent time-steps was calculated: i th

and (i+1)th. DVO values ranging from 0 indicating no overlap between vortex areas of

adjacent time-steps equating to low stability, to 1 as having no change in the spatial

characteristics indicating a completely stable structure. The temporally-averaged

DVO value (TA-DVO) and standard deviation of DVO over the cardiac cycle (STD-

DVO) were calculated for each case. Additionally, the number of spatially separated

vortices were calculated and their value averaged over all 20 time-steps.
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Figure 2.1: Variations of identified vortex volumes due to altered threshold
values in (a) TA1 and (b) SA1. Threshold values were tested for four vortex
extraction methods: standard Q-criterion, standard λ2 method, [normalized]
Q-criterion, and [normalized] λ2 method. Selected threshold values were
mean/4, mean/2, mean, mean ± (STD/2), and mean ± STD (added STD
for Q-criterion and [normalized] Q-criterion and subtracted STD for λ2 and
[normalized] λ2methods).

2.2 λ2 and Q-criterion Outcomes

Across all cases studied, a threshold larger than mean+0.5Std resulted in a significant

reduction in the overall identified vortex volume, with some cases having no vortices

identified (Figure 2.1). Alternatively, reducing threshold(s) past mean/2 resulted in a

significant increase in identified vortex volume, as regions (visually) corresponding to

minimal flow disturbances, unlikely to be a part of a vortex. A visual representation

of these changes can be seen in Figure 2.2.
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Figure 2.2: Extracted vortex cores (black surface) under varied analysis
threshold values. From left to right: mean/4, mean/2, mean, mean + (std/2),
and mean + std. All images were from case TA 1, [normalized] Q-criterion
at a 0.2mm resolution. At threshold values ≥mean + 0.5std, a reduction, or
lack of identified vortex structures occurred.

Changes to vortex characteristics under varied thresholds determined that, in terms

of the absolute volume change of identified vortices, the [normalized] Q-criterion and

[normalized] λ2 method proved more robust than their non-normalized counterparts:

smaller changes due to threshold variation. Visual assessment of the extracted vortex

iso-surfaces alongside their simulated velocity streamlines showed the normalized

identification methods better identified regions of swirling flow the the vortex core

without including large portions of the flow along the curvature of the aneurysmal

wall as shown in Figure 2.3. Further analysis of vortices under varied conditions

was performed using the normalize Q-criterion method. The summary of vortex

parameters measured using this method can be seen in Table 2.1.

Re-sampling of simulated data to varying voxel sizes determined spatial resolution’s

impact on the [normalized] Q-criterion method. In order to reduce the appearance

of small, isolated areas of flow being mistaken as part of vortex structure(s), only
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Figure 2.3: Comparison of identified vortex cores from four methods: (a)
standard λ2, (b) normalized λ2, (c) standard Q-criterion, and (d) normalized
Q-criterion. Top row is from one sidewall IA case, and bottom row is from a
terminal IA case. Velocity streamlines were visualize to represent simulated
flow patterns. Threshold values for each case were their means (for represen-
tative value), and only extracted vortex cores with a volume > 0.5mm3 are
shown.

connected vortex regions with a volume ≥ 0.5mm3 were analyzed. Through a visual

inspection, we found that as voxel size changed, structural characteristics of the vor-

tex core(s) were altered (Figure 2.4, which could lead to a misinterpretation of the

temporal flow characteristics within an IA when data resolution is not held constant

across studies. Data of resolution (<0.2mm) caused the vortex structure to become

fragmented, dividing larger iso-surfaces, creating a greater chance of small divided

vortices to exist below the chosen 0.5mm3 volumetric cut-off. Figure 2.5 shows how

changes to voxel sizes impact the mean DVO and the mean number of cores over the

cardiac cycle
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Figure 2.4: Alterations to vortex core characteristics over voxel sizes 0.1mm
to 0.8mm: (a) changes to the number of vortex cores and (b) changes to DVO.
Error bars stand for ± one STD.

Table 2.1
Summary of three vortex parameters in all 10 IA cases using the

Q-criterion method (normalized): average vortex volume, mean and
standard deviation of the number of vortex cores across cardiac cycle, and

mean and standard deviation of DVO across the cardiac cycle. The
identification threshold was set as mean + one STD.

Aneurysm Mean Vortex Volume
(mm3)

Mean Number of Cores Mean DVO

TA 1 2.015 1.048+0.218 0.301+0.082
TA 2 8.823 3.667+0.577 0.592+0.150
TA 3 2.021 1.191+0.402 0.651+0.147
TA 4 3.042 2.714+0.644 0.574+0.122
TA 5 0.504 0.762+0.768 0.382+0.386
SA 1 0.838 1.095+0.436 0.508+0.190
SA 2 4.783 2.905+1.221 0.420+0.184
SA 3 0.693 0.905+0.768 0.229+0.220
SA 4 2.570 1.429+0.507 0.594+0.143
SA 5 55.465 5.429+1.661 1.296+0.068
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Figure 2.5: Visual comparison of voxel size on extracted vortex core struc-
tures for case SA2. Voxel sizes: (a) 0.1mm, (b) 0.2mm, (c) 0.3mm, (d)
0.4mm, (e) 0.6mm, and (f) 0.8mm. Vortices were identified using the [nor-
malized] Q-criterion method, a threshold value of the mean [normalized] Q
value per case, and only cores with a volume > 0.5mm3 were saved. The
marked waveform shows the data point in the cardiac cycle used for extract-
ing the structures.

As the main goal of quantifying vortex spatiotemporal characteristics is to develop

novel indices for determining an IAs risk of rupture, the collinearity of vortex charac-

teristics to IA geometric characteristics was determined. Colinear variables applied to

statistical predictive models may inflate estimate variances and confound the relation-

ship between predictors and outcomes[165, 380]. Person’s linear correlation between

IA geometric characteristics and the quantified vortex variables was calculated and

can be seen in Table 2.2.

27



Table 2.2
Pearson’s linear correlation between geometrical parameters of IAs and

characteristics of their vortex structures

Mean Number Vortex Cores Terminal Aneurysms Sidewall Aneurysms Combined Data
Correlation coefficient p value Correlation Coefficient p value Correlation Coefficient p value

Aneurysm Volume 0.142 0.820 0.995 <0.001 0.814 0.004
Ostium Area 0.150 0.810 0.825 0.0855 0.621 0.0552

Ostium Circumference 0.125 0.812 0.774 0.125 0.560 0.093
Aneurysm Height 0.735 0.15 0.906 0.034 0.831 0.003
Aspect Ratio 0.596 0.289 0.659 0.227 0.616 0.0581

Volume/Ostium 0.233 0.706 0.998 <0.001 0.826 0.003
Mean DVO

Aneurysm Volume -0.522 0.366 -0.416 0.487 -0.416 0.231
Ostium Area -0.433 0.466 -0.691 0.196 -0.632 0.0499

Ostium Circumference -0.415 0.487 -0.743 0.150 -0.640 0.046
Aneurysm Height 0.036 0.954 -0.201 0.746 -0.227 0.528
Aspect Ratio 0.442 0.456 0.420 0.481 0.424 0.223

Volume/Ostium -0.637 0.248 -0.350 0.564 -0.375 0.286

2.3 Vortex Core Identification: Shannon’s Entropy

While the utilizing a normalized Q-criterion method was found to be most robust

critical-point method to altered threshold values and less apt to identify flow along

the IA wall as part of vortex structures, such methods are still solely dependent on

critical point analysis. Additionally, as seen in Figure 2.3, these methods tend to

result in a disjointed or fragmented vortex iso-surface which may result in a per-

ceived reduction in both the size of the vortex and its spatiotemoral stability, and

would make it susceptible to flow changes dude to flow data artifacts/errors. A novel

methodology for vortex identification was developed applying concepts from informa-

tional (Shannon’s) entropy [292] to overcome the shortcomings of strict critical point

methods.
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Shannon’s entropy expresses the information a system, specifically how determinis-

tic/the probability that a specific event will occur. High entropy equates that no

specific event is likely to occur at a greater extent over any other, with an entropy of

zero indicating only one specific event occurs. From the perspective of flow analysis,

Shannon’s entropy can be applied to determine the flow directionality within a given

region of interest (ROI). An overview of this methodology can be seen in Algorithm

1, with in-depth details provided below.

Algorithm 1 Pseudo Code: Normalized Entropy for Vortex Analysis
1: Input: aneurysmal velocity data (.vti format)
2: Allocate memory for and calculate orientation of 360 bins
3: for iteration = 1, 2, . . . , N (points in data) do
4: Calculate and normalize vector directionality
5: Determine normalized bin to which vector aligns
6: end for
7: for iteration = 1, 2, . . . , N (points in data) do
8: for iteration = 1, 2, . . . , K points around N do (11x11x11 ROI)
9: Calculate number of vectors aligned with each bin / K = p(xi)

10: end for
11: Calculate entropy in ROI: −

∑
p(xi)log2p(xi)

12: Normalize Entropy (normalized to log(K))
13: end for

The spatially-varying directionality of a flow field was determined by first dividing

its 3D angular space into 360 bins of equal area (Lepordi method)[202]. This creates

a series of ’cones’ with with surface patches connected to a unit sphere center 2.6.

Velocity vectors within the system are overlaid within this unit sphere, identifying the

cone to which each velocity vector aligns. The probability p(xi) of the velocity field

(X ) direction (x : ε(x1, x2...xn)) aligning with a specific bin determines the entropy
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of the system.

H(x) = −
∑
xiεX

p(xi)log2p(xi) (2.5)

To which the entropy H(x) is normalized against the maximum possible entropy within

the system (log(K))2.6.

NE(X) =
H(X)

log(K)
(2.6)

As the overall direction of velocity vectors within the flow field concentrate towards

the same bin, entropy is seen as a minimum (0), whereas the probability of vectors

occurring in any direction as equally likely results in a value closer to 1. For the

analysis of flow in this work, velocity vectors within a ROI around each voxel was

performed as to determine said voxel’s NE. The ROI was fixed at NxxNyxNz;Nx =

Ny = Nz = 11

While the use of Shannon’s entropy aims to overcome limitations of critical point

methods for vortex identification, sole reliance this method carries an inherent limi-

tation: the inability to distinguish between swirling flow and random (Brownian) flow

(Figure 2.7).
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Figure 2.6: Example of a unit sphere divided into ’bins’ of equal area using
the Leopardi method.

Figure 2.7: The relationship between 2D flow patterns, angular histogram
and entropy: (top) laminar flow, (middle) Brownian (random) flow, (bottom)
perfectly rotational flow. The left and right plots are the 2D vector flow field
and their histogram of angular vector direction respectively. Laminar flow
has an entropy value close to 0, while both random and rotational flow have
similar histogram frequency distribution with entropy values close to 1.

While the probability of vectors within Brownian and swirling flow both result in NE

towards 1, the two patterns represent different flow structures and must be properly

differentiated to identify vortices. The nature of randomized (Brownian) flow is such

31



that it is unlikely to contain a centroid region. This lack of a defined centroid region

in Brownian flow is exploited to help the developed Shannon’s entropy method better

identify areas of vortices. When a voxel is identified (via Shannon’s entropy) as

possibly belonging to a vortex region, its λ2 value is calculated. When this value is <

0, the dot product of the voxel’s normalized velocity vector ||~u|| and its eigenvector

(λu,) is calculated, determining the angle between the vector and its degree of change.

du(θ) = ||~u|| · λu (2.7)

The multiplication of du(θ) alongside a voxel’s NE allows for the differentiation of

swirling flow from Brownian flow as values <0.3 are likely to belong to Brownian

flow and can be excluded from additional analysis. For this dissertation, utilizing

Shannon’s entropy alongside Equation 2.7 to identify vortices will be referred to as

the combined entropy (CE) method.

CEx = NE(X) ∗ du(θ)x (2.8)
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2.3.1 CE Method Analysis

In a similar fashion as the assessment of the Q-criterion and λ2 methods, the CE

method was tested under varied conditions to determine its susceptibility to data

resolutions. Vortices analyzed using the CE method were found to have little to no

statistical differences in their resultant DVO values as a function of data resolution.

Yet, statistical differences (p < 0.05) in vortex volumes were noted in many of the TA

cases. Specifically, a marked increase was seen in vortex volumes between the voxel

sizes of 0.2 and 0.3 mm. Visual assessment of iso-surfaces in these cases shows a trend

where separate vortices in the 0.2mm voxel size, are connected in 0.3mm voxel data,

accounting for the increase in vortex volume. This similar phenomenon was not seen

in the sidewall IAs, where statistically significant increase in vortex volume was not

noted between 0.2mm and 0.3mm voxels. In contrast, a volumetric decrease was seen

in many of the SA vortex volumes at lower resolutions: ≥ 0.4mm. This difference in

IA type’s susceptibility to data resolution may be in-part due the nature flow entering

the IA sac. In TAs, the main flow jet tends to enter perpendicular to the IA ostium

where it then splits laterally within the IA sac (Figure 2.8). A larger voxel size may

cross this flow division, connecting otherwise distinct areas of swirling flow. Continued

analysis of vortices in other areas of the vasculature containing TAs (MCA, AcoM,

etc) should be investigated as IA locales may impact vortex characteristics. The ROI

size used in the CE method was also assessed to determine its impact on quantified

33



Figure 2.8: Comparison of vortex iso-surfaces between one example TA.
Black surfaces are vortices identified at 0.2mm and yellow at 0.3mm voxel
size. Streamlines show flow pattern and flow velocity (mm/s)

vortex characteristics. 3 ROI sizes were compared across all 10 cases: N7, N11, N15.

For all these tests, the voxel size of 0.2mm was held constant. The volume of identified

vortices were found to be statistically different between each ROI size (p < 0.05) with

an inverse relationship: as N increases, the vortex volume decreases.

Comparison of the DVO values between the CE and normalized Q-criterion method

showed an increase in value when applying the CE method: p-value < 0.001 (-0.359.-

0.177 95% CI). While differences were shown between the quantified characteristics of

vortices between these two methods, it is important to note that visual assessment of

iso-surfaces showed similar spatial placement between the two methods (Figure 2.9).
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Figure 2.9: Comparison of spatial placement of identified vortex iso-
surfaces between the (green) normalized Q-criterion method and (red) CE
method. Two representative cases shown: (left) sidewall IA and (right)
terminal IA, both vortices taken from the 5th step of the cardiac cycle.

2.4 Discussion

While the normalization of Q and λ2 methods helped to reduce the impact of varied

analytic thresholds on vortex characteristics quantified by the identification of crit-

ical points in flow, these methods were still subject to limitations. Such methods

are susceptible to both incorrect identification of vortex areas and generating dis-

jointed and/or highly fragmented vortex iso-surfaces. These limitations may alter

the assessed characteristics of vortex size and spatiotemporal stability. Additionally,

estimated parameters based on velocity field derivatives can be significantly influ-

enced by noise levels [129], making a vortex identification methodology solely reliant

on calculated derivatives (i.e. critical point methods).
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The developed CE method overcomes some of the inherent shortcomings of relying

solely on critical point analysis. First, Shannon’s entropy takes stock of the direc-

tionality of flow velocity vectors within an area as a means to assess patterns, gaining

a degree of protection from small scale flow changes. Second, the CE method is not

solely reliant on assessment of velocity vector gradients, which are susceptible to

noise in imaging data. The analysis of a broader area of the flow field shields not only

identifies the structure of vortices beyond their center-most points thus giving more

comprehensive information concerning vortex characteristics. It is worth noting that,

while ROI sizes significantly impact the resultant volume of vortices, changes to vor-

tex spatial temporal stability (DVO) are less susceptible to ROI size. Across the 10

cases analyzed, only 3 cases showed statistical decreases in DVO as an inverse of ROI

size. While there are statistical differences between the quantified spatial temporal

characteristics of vortices identified by the normalized Q-criterion and CE method,

with CE vortices being larger and more spatially stable, the spatial locations of iden-

tified vortices were similar between methods. These initial findings suggest that the

developed CE method identifies analogous area(s) of flow vortices recognized by more

long-standing critical-point methods.
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2.5 Conclusion

The developed CE method was found to be more robust than critical-point based

methods when quantifying vortex spatial stability across varied data resolutions and

methodical thresholds. Having an analytical method that is able to both overcome

the limitations inherent to solely critical-point analysis and evaluate a broader aspect

of vortex characteristics can help lead to novel information that may prove essential

for identifying conditions indicative of IA development and rupture. For the remain-

der of this dissertation, the developed CE method will be implemented during any

identification and quantitative analysis of flow vortices.
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Chapter 3

Vortex Analysis to Improve

Prediction of IA Initiation

In much of the human vasculature, blood flows in a laminar, mostly unidirectional

pattern. Yet investigations into the nature of IAs uncovered their non-random dis-

tribution in areas of the vasculature susceptible to disturbed flow: vessel bifurcations

or areas of significant vasculature curvature [118, 210, 237]. While such areas of the

vascular geometry are prone to IAs, the majority of the populace never develop an IA

in said areas. To understand this discrepancy, studies have attempted to elucidate the

conditions indicative of IA development that exist within these areas [55, 172, 311]. A

specific area of focus is on the role of complex vascular hemodynamics and how they

may be indicative of IA growth[195, 289]. Such studies have helped to understand
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the roll of the tangential fluid stressors, wall shear stress (WSS), impacting changes

to the vascular wall. In areas of the cerebral vascualture (prone to IA development)

WSS outside physiological ranges ( ∼ 15 - 30 dynes/cm2) or elevated WSS gradients

(high rates of WSS change at a distance for a given point in time) are associated

with IA development [6, 8, 48, 61, 89, 264]. However, in many of these studies,

only the correlation of WSS metrics to IA initiation sites were evaluated. Height-

ened areas of hemodynamic stressors are not wholly specific to IA areas, and not

all areas of heightened WSS gradients develop IAs. Limited specificity may reduce

any single index’s effectiveness to predict IA initiation, generate false positives, and

could account for inconsistencies among study findings [192, 218, 297]. Additionally,

WSS indexes only assess near-wall hemodyanmics, giving minimal insight to bulk

flow characteristics within the vessel. Failure to quantify hemodynamic vortex char-

acteristics overlook metrics that may prove beneficial to the identification of areas at

high risk of IA development. To address this limitation, the analysis of vortices using

the CM method was applied alongside WSS metrics to assess areas of eventual IA

development. The objectives of this aim were twofold. First, assessment of indices in

both areas of known IA development and nearby areas of no known IA development

was performed to improve the understand of indices’ relationship to IA initiation.

Second, determine whether or not combining vortices identified using the developed

CE method alongside near-wall hemodynamic indexes could improve the accuracy of

predicting IA initiation. As an additional means of strengthening this work, clinical
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data containing taken from patients with 2-4 closely-spaced side-wall IAs located at

the Internal Carotid Artery (ICA) were used so that multiple IA sites can be identi-

fied in the same vessel. To our knowledge, minimal work has been done in terms of

predicting the initiation of multiple ICA IAs.

3.1 Materials and Methods

3.1.1 Data-set

Since pre-aneurysm vascular geometries are scarce, a published computational

geometry-based surface reconstruction method was adopted to recreate said geome-

tries from patient medical imaging data [110]. Flow in and around sites of even-

tual IA formation was generated using these pre-aneurysm geometries in conjunction

with “patient-specific” computational fluid dynamics (CFD) simulations, similar to

methodologies adopted within other studies [61, 110].

From an internal database of 3D-DSA based on patient angiographic images data ob-

tained from standard clinical equipment, 18 subjects were identified who had multiple

closely-spaced sidewall IAs located within the supra-clinoid segment of the ICA. This

data set was aggregated using scans from the University of Wisconsin and Changhai
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Hospital (China), and was exempt by Michigan Technological University’s institu-

tional review board as it was a secondary analysis of existing data sets.

3.1.2 Model Creation

Vascular geometries were extracted from patient’s medical imaging data in an identi-

cal fashion as mentioned in section 2.1.1. Once all vascular geometries were obtained

and edited (i.e smoothed, removal of extraneous vascualture, etc), 2 groups of mod-

els were created: one with all IAs computationally removed from the vessel (Model

A), and the other with one IA intact (Model B). As vascular pathology may alter

hemodynamics [135, 323], the initial formation of one IA may disturb localized flow,

impacting the initiation of subsequent IAs. Model B data aimed to address this con-

cern, and was considered an additional benefit of this work. To create Model A, the

following process was used. First, a semi-automated IA removal method [110], im-

plemented in VMTK, removed all IAs and reconstructed the IA-free vessel geometry.

Next, the IA-free geometry was imported into the 3-Matic software program and the

geometry was projected onto the original vessel to remove unintended alterations to

parent vessel curvature that may occur during IA removal. Geometries were then

smoothed to remove surface irregularities. For Model B, the 3-Matic software was

used to re-attach one IA back onto a copy of the Model A vasculature. When the

vascualture contained tandem IAs, two IAs with distinct separation of their ostia
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Figure 3.1: Vascular model with all IAs intact (left), both IAs computa-
tionally removed: Model A (center) and 1 IA reattached: Model B (right).
Arrows identify the vessel IAs: white identifying the reattached proximal IA,
red identifying the distal IA.

along the longitudinal axis of the parent vessel, the proximal IA was kept intact. For

adjacent IAs with their two IAs opposite each other on the transverse axis of the

parent vessel, two Model Bs were generated, each with one of their IAs intact. An

example of an original vessel and their resultant Model A and B can be seen in Fig-

ure 3.1. All models were converted into an unstructured, 3D volumetric mesh using

the open-source mesh generator Tetgen via VMTK [300]. Approximately, 1 million

computing cells were used per case, with an approximate cell volume of 0.003mm3.
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3.2 CFD Simulations

Flow within the the created vascular models was simulated by numerically solving the

Navier-Stokes equation in the ANSYS-FLUENT software package, using the Gwilliam

waveform as the flow inlet boundary condition in a similar manner to that in Section

2.1.3. Additionally, as a differing waveform may impart alterations to the expression of

hemodynamic indexes, four (4) randomly selected cases were re-run with a waveform

from retrospectively gated phase contrast magnetic resonance images of older adults

(age 68 + 8 years) by Hoi et al. [144]. Figure 3.2 shows both the Gwilliam and Hoi

waveform. These 4 cases were compared to their Gwilliam waveform counterparts.

All simulations had their flow waveform scaled to the vessel’s inlet cross-sectional

area, standardizing the mean volumetric flow rate to 280mL/min or 240ml/min for

the Gwilliam and Hoi waveforms respectively. Four cardiac cycles were simulated

with 1000 time-steps per 1 second cardiac cycle. Twenty equally-spaced time points

were saved from the final cardiac cycle for data processing and analysis and four

randomly selected cases were re-run and sampled at forty equally-spaced time points

to assess the impact on calculated indexes.
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Figure 3.2: Wave forms of human vascular flow rates at the internal carotid
artery used as inlet boundary conditions for fluid dynamic simulations: taken
from Gwilliam[128] and Hoi[144]

3.2.1 Calculation of Hemodynamic Indexes

The following parameters were calculated from simulated flow data as they have

been linked with increased IA formation: WSS, WSS Gradient (WSSG), Oscillatory

Shear Index (OSI) [140], Aneurysm Formation Indicator (AFI) [218], and Gradient

Oscillatory Number (GON) [298]. Additionally, the mean number of flow vortices,

identified using our CE method, was calculated and tested to determine their impact

on prediction outcomes.

The ANSYS-FLUENT software calculated WSS via normal velocity gradient at the

vessel wall:

τw = µ
∂v

∂n
(3.1)
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where µ is the dynamic viscosity. WSS is known to regulate endothelial struc-

ture, function, and gene expression in the internal carotid artery of the cerebral

vasculature[154, 245].

The calculation of WSSG was taken from methods used in the literature [244, 297].

We assume that the vessel wall is represented by a set of surface triangles: given an

arbitrary triangle whose surface normal is n, τ , a function of WSS, locally resides in a

plane perpendicular to n. Mathematically, two orthogonal vectors p and q lie within

the plane can be constructed as follows: p is the flow direction at time t and q is

perpendicular to p and n. Thus, the WSSG is computed by taking local derivatives

of the WSS magnitude over the p and q directions for a given time instant t [244].

The WSSG was calculated using in-house VMTK scripts and is calculated as followed:

WSSG =

√
(
∂τp
∂p

)2 + (
∂τq
∂q

)2

∂τp
∂p

= ∇τ · α, ∂τq
∂q

= ∇τ · p, p =
τ

|τ |
, q = n× p

(3.2)

with the time-averaged WSSG calculated as

WSSGav =
1

T

∫ T

0

|WSSG|dt (3.3)

where the gradient operator 5 denotes partial derivatives of the magnitude of τ in

its coordinate directions. If the flow direction p in Equation 3.2 becomes an average
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flow direction over the cardiac cycle then the instantaneous spatial vector of WSS,

G = (∂τp
∂p
, ∂τq
∂q

), can be used to calculate the GON metric, which reflects oscillations

in the directionality of spatial gradients of WSS over the cardiac cycle:

GON = 1−
|
∫ T
0
Gdt|∫ T

0
|G|dt

(0 ≤ GON ≤ 1) (3.4)

T is the period of the cardiac cycle.

OSI is a nondimentional parameter, computing oscillations in WSS vector direction-

ality over the course of the cardiac cycle:

OSI = 0.5×

{
1−
|
∫ T
0
τidt|∫ T

0
|τi|dt

}
(3.5)

were τ i represents the WSS vector at a given time step across the duration of the

cardiac cycle (T). The OSI describes the changes of a WSS vector’s alignment with

the cardiac cycle’s temporally-averaged WSS vector. An OSI of 0 indicates no change

in directionality and 0.5 being a complete direction reversal.

AFI quantifies the variation in angle between the instantaneous WSS vector at a point

and its time-averaged WSS vector:

AFI = cos(θ) =
τi · τav
|τi| ∗ |τav|

(3.6)
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For each point along the vessel wall, the minimum AFI calculated during the cardiac

cycle was used to indicate the greatest deviation of the WSS vector from its mean

direction. A minimum AFI of -1, 0, and 1 indicate deviations of 180°, 90°, and

0°respectively.

The spatially averaged value of aforementioned indexes was identified within the

areas of known IA growth as well as in regions of interest (ROIs) with no known IA

initiation. Due to the limited specificity of indexes to IA areas, nearby ROIs with no

known IA initiation acted as a negative control for statistical analysis and predictive

modeling. An example of calculated indexes within areas of IA initiation and IA areas

absent of calculated indexes can be seen in Figure 3.3.

3.2.2 Regions of Interest

For areas containing IA sites, ROIs of vessel segments spanning the area(s) of the

removed IA’s ostium were chosen. For ROIs of non-IA initiation, three vessel segments

for each patient case were chosen. The length of each non-IA ROI equals the cross-

sectional diameter of their parent vessel(proximal to the first identified IA). Two

non-IA ROIs were chosen in tandem, proximal to the site of the first formed IA,

while the third was chosen immediately distal to the site of the last IA. In the event

that the third ROI encountered a vessel bifurcation, it was instead chosen directly
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Figure 3.3: Simulated flow showing elevated hemodynamic indexes (or re-
duced AFI) (top) or reduced indexes (or increased AFI) (bottom) at areas
of IA initiation: AFI, GON, WSS, WSSG. An identified vortex did occur
within one (of two) sites of IA initiation

proximal to the first two ROIs. All non-IA ROIs were divided laterally, and each side

investigated individually as stressors are not uniform around the vessel wall [196].

The division plane for non-IA ROIs was selected in relation to the Frenet Frame

normal of the vessel centerline tangent. The Frenet normal, defining the oscillating

plane of curvature at the midpoint of each ROI centerline was chosen for respective

cut planes. Examples of ROIs and chosen cut planes can be seen in Figure 3.4.
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Figure 3.4: Examples of ROIs for no IA development. (Left): ROIs were
either chosen with two proximal to the first IA and one distal to the last IA (A
and B), or all three ROIs proximal to the first IA (C and D). (Right): ROI
division in relation to the vessel Frenet Frame normal (yellow) and opposite
(red). The white line is the centerline following vessel curvature, with the
arrow pointing to normal.

3.2.3 Statistical Analysis

The mean values of WSS, WSSG, OSI, GON, and AFI along the ROIs and flow vor-

tices were determined within all ROIs. Prior to predictive modeling, the correlation

amongst variables was performed to eliminate redundant variables and subsequent

over-fitting in models. Multivariate logistic regression analysis (step-wise elimina-

tion) was then performed to identify index combinations significant in predicting IA

initiation. Model B was assessed separately from IA-free models (Model A). Using

Model B, how the presence of one proximal IA impacts predictive outcomes was eval-

uated, which could give much needed insight toward how multiple IAs alters flow

characteristics indicative of future IA development [365].
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The model(s) derived from multivariate logistic regression were tested using repeated

k-fold cross-validation (10 folds, 10 repeats). The area under the receiver operating

characteristic curve (AUROC) assessed grouped indexes as well as each variable in-

dividually to determine their strength towards predicting IA initiation. Statistical

analyses were performed using the R statistical platform (Version 3.4.4).

Explanation of logistical regression analysis and receiver operating characteristic

curves can be seen in Appendix A

3.3 Results

Correlation analysis among study indexes showed AFI and OSI as highly correlated

(cor=0.92, p<0.001). These indexes both relate alterations of WSS vector direction-

ality, giving grounds for their correlation. OSI was removed from subsequent analysis.

The correlation of spatial means of hemodynamic indexes to the occurrence of an IA

within all analyzed ROIs was assessed (Table 3.1). Our findings showed a lack of

strong correlative relation of area of known IA development to indices, stressing the

need of grouped parameters to improve predicative models.
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Table 3.1
Pearson’s correlation (and p-value) of mean of hemodynamic variables
within all regions of interest to the occurrence of an IA: Model A and

Model B data.

Variable Correlation:p-value Variable Correlation:p-value
Model A Model B

AFI -0.190 : 0.022 AFI -0.170 : 0.021
WSS 0.333 : < 0.001 WSS 0.309 : < 0.001
WSSG 0.241 : 0.004 WSSG 0.177 : 0.016
GON 0.221 : 0.008 GON 0.207 : 0.005
Flow Vortex 0.477 : < 0.001 Flow Vortex 0.381 : < 0.001

Step-wise multivariate logistic regression identified the index combination best suited

(from available data) to identify areas of IA initiation. In Model A, combining mean

number of vortices (MV), WSS and GON acted as the strongest parsimonious model

for predicting IA formation (Eq3.7). It is worth noting, mean GON values were found

to by highly right-skewed, with small values. The log transform of GON means was

taken to lower its weight on odds ratios and improve prediction models. The odds

ratio(s) of the chosen hemodynamic indexes show that the occurrence of flow vortices

increase the odds of the IA initiation by 14.34 times, elevated log transformed GON

increasing the odds by 6.45 times, and elevated WSS increasing odds by 1.33 times.

OddNoIA = exp2.66∗MV+1.864∗GON+0.286∗WSS+0.938 (3.7)

Repeated k-fold cross-validation with the combined MV+GON+WSS model showed

the strongest outcomes (AUROC 0.879, 95% CI 0.821-0.942) over any individual

index. ROC curves from model outcomes can be seen in Figure 3.5.
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Similar analysis was performed on Model B data, assuming development of the at-

tached IA impacted subsequent flow characteristics in areas of distal IA formation.

K-fold cross-validation of Model B data, using Model A indexes (MV+WSS+GON),

showed a slight reduction in predictive outcomes: AUROC 0.879 and 0.824 (CI 0.737-

0.912) for Model A and B, respectively: Figure 3.5. Model B’s analysis determined

the combination of MV+WSSG+GON indexes still created the parsimonious model,

yet the impact of each index was altered. The odds ratio for Model B based on the

MV+WSS+GON prediction was:

Odd1IAMV +WSS+GON
= exp1.789∗MV+1.69∗GON+0.219∗WSS+0.888 (3.8)

It was unclear if the change in outcomes arose from one of the IA ROIs no longer

being analyzed, or Model B’s remaining IA altering flow characteristics. To assess

if outcomes between Model A and B were attributed to altered hemodynamics, a

secondary analysis of Model A data was performed where ROIs coinciding with the

area(s) of IA reattachment (in Model B) were excluded, eliminating their impact on

outcomes. Subsequent k-fold cross validation with the MV+WSSG+GON predictive

model was performed for the secondary analysis of Model A data.

Secondary analysis of Model A data showed similar predictive outcomes to Model A’s

original analysis: AUROC of 0.883 (CI: 0.806-0.958) and 0.879 respectively. Yet the
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(Model A)

(Model B)

Figure 3.5: ROC curves of averaged prediction probabilities from repeated
k-fold cross-validation of regression modelling. The AUROC values of in-
dividual indexes were assessed (AFI, WSS, WSSG, GON, and MV) as well
as the parsimonious combined model (MV+WSS+GON). Top: Model A,
Bottom: Model B.

strength of GON marking an almost 2 fold increase in its odds ratio: 6.45 to 11.665

original vs secondary analysis respectively. Table 3.2 shows the odds ratios of indexes

under differing analyses.
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Table 3.2
Odds ratios of predictive indexes for the analysis of Model A (A1),

secondary analysis of Model A (A2), and Model B data (B). Analysis was
performed with the MV+GON+WSS indexes in predictive models. Values
in red indicating marked differences in index strength in relation to the A1

Model.

Model MV GON WSS
A1 14.34 6.45 1.33
A2 10.49 11.67 1.39
B 5.98 5.42 1.25

Quantified hemdoynamic indices were also assessed under altered simulation condi-

tions were to determine if significant differences occurred as such differences could

impact prediction outcomes. Table 3.3 shows that significant alterations to indices

between chosen waveforms, while mesh density had no significant impact. Alterations

in time-steps (data sampling rate) had no significant impact on AFI or GON values,

but did lead to alterations on WSS and WSSG values. In terms of impact on vortices,

Figure 3.6 shows the spatial similarities of between simulations run with the Gwilliam

waveform, Hoi waveform, and run with both a dense and less dense mesh, all sam-

pled at 20 time-steps per cardiac cycle. Additionally, Figure 3.6 shows the sampling

rate’s impact on vortices, comparing simulations run with the Gwilliam waveform

on the denser mesh at a 40 and 20 time-step sampling rate. Finally, changes to the

temporally-averaged volume of vortices, in areas of eventual IA development, were

compared between the four simulation conditions (Figure 3.8), with only a slight re-

duction (not-significant) change in vortex size when using the Hoi waveform compared
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Table 3.3
Percent change to hemodynaimc indexes in ROIs under varied simulation
conditions. Paired t-test was performed to determine statistical significance

of change.

AFI WSS WSSG GON
Comparison %Change %Change %Change %Change

p-value p-value p-value p-value
Waveform: -12.6% -10.14% -46.9% 114.60%

Gwilliam vs Hoi <0.001 <0.001 <0.001 <0.001
Mesh Density: -0.13% -2.39% -6.47% 4.98%

1.5 vs 6 million cells 0.862 0.08 0.09 0.44
Time-steps: 0.98% -10.52% -50.03% 0.201%

20 vs 40 per cycle 0.01 <0.001 <0.001 0.92

to the Gwilliam waveform.

3.4 Discussion

Reliance on assessing near-wall WSS to determine areas indicative of IA formation

have shown to vary in their success [120, 218, 228, 280, 297]. Furthermore, indices are

often only individually correlated only with areas of known IA development [61, 218].

This gives a restrictive appraisal of conditions indicative of this vascular pathology

as heightened expression of hemodynamic stressors are not wholly specific to areas

of IA formation. Assessment of areas of both known and no known IA development

showed minimal correlation to WSS indices, stressing the importance of adopting a
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Figure 3.6: Vortices identified (Red): Gwilliam waveform, lower mesh
density vs (Green): Gwilliam waveform, higher mesh density (20 time-step
sampling rate) vs (Black): Hoi waveform, lower mesh density. Columns
representing vortices at the 2nd, 10th and 15th cardiac cycle data point.

Figure 3.7: Vortices identified at 20 time-step (Green) and 40 time-step
sampling rate (Purple) over the cardiac cycle. Columns represent vortices
taken at three-equivalent time-points over the cardiac cycle.

multivariate approach to predictive modelling and analysis. Said near-wall indices

overlook bulk flow hemodynamic characteristics which may play a role in IA devel-

opment. The addition of our CE method for identifying vortices aimed to improved

the prediction of IA initiation by analyzing the relationship of vortices to IA devel-

opment. These results demonstrated that combinations of near-wall and bulk flow
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Figure 3.8: Temporally-averaged vortex volume in four randomly selected
cases run under varied simulation parameters: (Blue)Gwilliam waveform,
lower mesh density (20 time-steps), (Red)Gwilliam waveform, higher mesh
density (40 time-steps), (Yellow)Gwilliam waveform, higher mesh density
(20 time-steps), and (Purple)Hoi waveform, lower mesh density (20 time-
steps).

hemodynamic variables, specifically WSS, GON and vortices, improved the accuracy

of predicting areas of IA formation as indicated by the elevated AUROC in relation

to individual indexes. The adoption of WSS, GON and vortices into a predictive

model is supported by ideas that alterations in flow patterns and increasing shear

stress impact vascular endothelial cells [131] and could impact IA initiation [340].

Analysis showed that the application of vortices applied alongside known GON, and

elevated WSS improved the strength of IA prediction. The almost two fold increase
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in GON’s impact on prediction models between Model A and its secondary analysis

suggests that the flow vortices may trigger oscillating compression and tension forces

in the downstream vasculature, increasing the possibility of IA development [297].

The secondary analysis of Model A data made no distinct change to the impact of

WSS on prediction models. Understanding conditions that impact IA prediction and

development may benefit from leaving additional IAs intact and noting subsequent

changes to hemodynamics and predictions.

The presence of a singular IA has been shown to alter the localized hemodynamics

[319] and such changes may propagate downstream in the vasculature. An evaluation

of Model B (one IA intact) data showed that while alteration to the localized flow

did not change the indexes needed for the prediction model, it did alter each indexes’

predictive strength. The introduction of one IA into the vasculature altered local flow

conditions, reducing the odds ratio of both vortices (10.49 to 5.98) and GON (11.66

to 5.42) on IA prediction.

Assessment of hemodynamic indexes generated using differing inlet waveforms showed

marked changes. The Hoi waveform resulted in a 60.9% reduction in vortex volume in

relation to the Gwilliam waveform. Additionally the Hoi waveform lead to a reduction

in WSS, AFI, and WSSG values, and an increased GON, while maintaining a degree

of visual spatial consistency between indices generated by the Gwilliam waveform.

The changes to variable values was expected due to the lower volumetric flow rate
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in the Hoi waveform, coupled with its depressed peak amplitude. As both risk of IA

generation increases as a function of age [17] and characteristics of cardiac waveforms

vary across ages, a larger study using vascular models from patients of known age

(not available for this work) alongside an age appropriate waveform may help lead to

a clearer understanding of indices’ impact on predictive models. Spatial intensities

of the near-wall hemodynamic indices and vortex volume had minimal change when

analyzed under varied mesh density and sampling rate: percent difference 12.4% and

1.2% respectively.

It is worth noting, the hemodynamic variables were only assessed based off a patient’s

overall vessel geometry at a single given time-point. As no information was available

concerning their vessel geometry prior to IA development, certain assumptions had to

be made for this study. Both the choice of IA maintained (the proximal IA kept for

Model B simulations), and that the overall curvature in the internal carotid siphon

did not change significantly post-IA development were assumed. In order to better

validate predictive models, a continuous longitudinal study of patients would need to

be conducted, assessing possible changes to both vessel curvature and temporal order

of IA development.
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3.5 Conclusion

IA formation is a multi-faceted vascular pathology, with varying conditions impacting

their development [302]. A comprehensive analysis of near-wall and bulk-flow hemo-

dynamic indices applied to predictive modeling could help elucidate patients at risk

for developing an IA more-so than just the near-wall flow characteristics. Increased

WSS intensity and fluctuations, coupled with the presence of complex swirling flow

patterns indicate area(s) with a higher possibility of IA development. While the

adaptation of hemodynamic vortex analysis has shown to be beneficial in the identi-

fication of areas of likely IA development, this work gives no insight to the usefulness

of hemodynamic indices to assess the severity of (developed) IAs. Further analysis

of the hemodynamic patterns in resultant IAs was performed in Chapter 5 to help

overcome this limitation.
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Chapter 4

Two closely-spaced Aneurysms of the

Supraclinoid Internal Carotid Artery:

How Does One Influence the Other?

Of patients who suffer an aneurismal subarachnoid haemorrhage, 15-35% of cases

present with multiple IAs [99, 277, 350]. In many of the multiple IA cases, two

aneurysms occur on the same section of the parent artery; these we have defined as

closely-spaced aneurysms. When multiple IAs are detected, a clinical management

decision may result in the surgical treatment of only one IA with subsequent treat-

ment(s) onremaining IAs at a later time or not at all. Yet in a study study by Ferns

[108], PC-MRA imaging suggested that in a closely-spaced IA situation, once one IA
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was treated, the remaining IAs may grow.

To better understand the risks associated with multiple IAs, both Jain [155] and

Crompton’s [78] clinical observations found that the first (proximal) IAs in a paired

IA system had a higher chance to rupture. In an attempt to understand the factors be-

hind proximal aneurysm’s higher risk of rupture, Jain studied rubber aneurysm phan-

toms placed into a pulsatile flow circuit and observed that in distal aneurysms there

was a decrease in pressure variation as compared to that in the proximal aneurysm

[155]. Very recently, Jou and Britz represented a CFD case study where the computer-

simulated hemodynamics of eight small IAs (< 7 mm) from one patient were analysed

[166] to better understand the hemodynamic characteristics within multiple IAs. Yet

these studies give no indication into how an individual IA impacts subsequent IAs

within the same vessel. To our knowledge, while a few studies have looked into how

the the occlusion of flow into a proximal IA impacts subsequent near-wall hemody-

namic characteristics in any distal IAs[325], less is known of the impact on bulk-flow

characteristics within the non-repaired IA.

Using currently available CFD techniques in association with ”patient-specific" geo-

metrical models, an expansion on observations made by early studies was performed.

The goals of this project were the following: First), to identify those hemodynamic

features that might be particular to two closely-spaced IAs; and, Second, to identify
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the hemodynamic impacts of one IA onto the other. The second objective was in-

vestigated using modified geometrical models in which one of two closely-spaced IAs

was computationally removed. Quantitative metrics were selected to evaluate hemo-

dynamic features: kinetic energy density(KED), wall shear stress(WSS), oscillatory

shear index (OSI) flow vortex degree of volume overlap (DVO) using the developed

CE methodology. WSS and OSI are indications of the near-wall stressors placed upon

the aneurysm, KED indicates the energy within a system, and the vortex DVO al-

lowing for the quantification physiological flow stability. Assessment of these indices

could give insight to how conditions within an IA are altered in the event of the

surgical repair of another nearby IA.

From an internal database combining medical imaging data from University of Wis-

consin (USA), Changhai Hospital (China) and a public database1, 15 subjects were

identified who had at least two closely-spaced IAs located at the supra-clinoid seg-

ment of the ICA. All IAs were known to have been unruptured at the time of patient

imaging. The study was exempted by the institutional review board (IRB) at the

Michigan Technological University as this study was a secondary analysis of the ex-

isting data. Vascular structures were separated into one of two groups dependent on

the degree of ostium overlap between IAs: adjacent or tandem. Adjacent IAs (AA)

were defined as two IAs whose ostiums were directly opposite each other on the trans-

verse axis of the parent vessel, while tandem IAs (TA) were defined as two IAs with

1http://ecm2.mathcs.emory.edu/aneuriskweb/index
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a distinct separation (no ostium overlap) along the longitudinal axis of the parent

artery. This separation resulted in 8 patients with adjacent IAs and 7 patients with

tandem IAs. The appearance and basic geometrical parameters of these aneurysms

are shown in Figure 4.1 and Table 4.1 respectively.

4.1 Methods

Vascular geometries were extracted from patient’s medical imaging data, and volu-

metric meshes were made in an identical fashion as in section 2.1.1. For each subject

in the AA group, three meshes were created: one with both IAs present (Model A),

and two meshes with one of two IAs removed (Model B). In the TA group, two meshes

were created for each subject: one with both IAs present (Model A) and the other

with no proximal IA (Model B).

In order to create Model B meshes, the method for IA removal / reattachment used

in Chapter 3.1.1 was employed. All vessel surface geometries (Models A and B)

were converted into a unstructured, 3D, tetrahedralized volumetric mesh with ap-

proximately, 1 million computing cells were used per case, resulting in approximately

0.003mm3 cell volume.

Vascular blood flow patterns, flow velocity and WSS values were calculated using the
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Figure 4.1: Vascular models of closely-spaced, multiple ICA IAs in 15
subjects. In each model, arrows point to IAs. Each IA is label following the
same convention: group, case number and IA number. For instance, AA-1.1
stands for the first aneurysm in the case 1 of the Adjacent IA group.

67



Table 4.1
Geometric Characteristics of IAs: Volume, Ostium Area, Aspect Ratio, IA

Diameter, and Parent Vessel Diameter

Case Vol.
(mm3)

Ost. Area
(mm2)

Aspect
Ratio

Diameter:
IA(mm)

Vessel
Diameter
(mm)

AA1.1 45.14 14.19 1.11 4.42 3.98
AA1.2 5.56 6.61 0.55 2.12 3.98
AA2.1 2.69 6.44 0.55 2.09 3.91
AA2.2 322.92 33.72 1.22 8.51 3.91
AA3.1 42.740 11.14 1.09 4.34 4.84
AA3.2 21.68 12.99 0.65 3.46 4.84
AA4.1 23.38 17.14 0.59 3.55 5.36
AA4.2 14.59 9.62 0.75 3.03 5.36
AA5.1 9.35 7.71 0.68 2.61 5.31
AA5.2 71.65 7.76 1.61 5.14 5.31
AA6.1 211.82 20.21 1.41 7.40 4.87
AA6.2 27.47 11.81 0.85 3.74 4.87
AA7.1 31.70 15.25 0.91 3.93 4.66
AA7.2 89.19 20.89 1.16 5.54 4.66
AA8.1 16.55 13.01 0.67 3.16 4.50
AA8.2 25.02 17.10 0.60 6.63 4.50
TA1.1 6.75 4.90 1.19 2.34 4.17
TA1.2 7.98 2.24 1.81 3.81 3.65
TA2.1 6.13 4.45 0.98 2.27 3.58
TA2.2 1185.90 34.44 1.95 13.13 3.86
TA3.1 4.96 7.03 0.55 2.12 3.67
TA3.2 356.10 22.14 1.58 8.79 3.98
TA4.1 24.48 14.40 0.63 3.60 4.19
TA4.2 1116.11 21.05 2.85 12.87 4.72
TA5.1 1083.49 42.76 2.07 12.74 5.37
TA5.2 62.38 21.30 1.85 3.45 5.43
TA6.1 111.46 31.76 0.83 5.97 5.05
TA6.2 185.27 14.91 1.02 7.07 5.12
TA7.1 7.04 8.00 0.59 2.38 4.81
TA7.2 19.67 11.49 0.7 3.35 5.22

ANSYS-FLUENT software (v14.0 ANSYS-FLUENT Inc., Lebanon, NH) in the same

manner as in 2.1.3. The inlet waveform for all cases was taken from Gwilliam et. al

[128], with each case’s volumetric flow rate scaled to 280mL/min.
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Figure 4.2: Example of the vessel modification process: A Original vessel
structure (Model A). B Semi-automated computational removal of the IAs:
red is resultant vessel, white is original vessel, red arrow indicates unintended
IA removal, white arrow shows altered vessel curvature. C Modified vessel
from part B, projected onto original vessel to reclaim vessel curvature and
create area (white arrow) for needed IA reattachment, while slight errors due
to vessel projection in areas of (intended) removed IA (yellow arrow) were
removed by vessel smoothing. D Completed modification (purple) shows
Model B against original vasculature (white, Model A).

4.1.1 Analysis of Hemodynamic Parameters

Wall Shear Stress Wall shear stress (WSS) values were calculated by the ANSYS-

FLUENT solver (Equation 3.1) for all cases, across all data points (spatial and tem-

poral). For every IA, the spatio-temporal averaged wall shear stress (STA-WSS),

maximum WSS (MaxWSS), and mimimum WSS (MinWSS) values were calculated.

In addition, the Oscillatory Shear Index (OSI) was calculated using Equation 3.5.
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Kinetic Energy The spatially-averaged kinetic energy density (SA-KED) within the

IA dome was calculated as follows:

SA−KED =
1
2
ρ
∑
v2

n
(4.1)

Where v is the velocity values, ρ is the mass density of blood, and n is the number of

voxels within the IA. The SA-KED at each time-step (cardiac phase) was calculated,

as well as the spatio-temporally averaged KED (STA-KED) for all cases.

Degree of Volume Overlap Among Flow Vortices Identification of vortices within the

IA sac was performed using the CE method described in 2.3. Explanation of the

calculation of the degree of volume overlap (DVO) can be seen in Section 2.1.4. The

temporally-averaged DVO value (TA-DVO) and standard deviation of DVO values

over the cardiac cycle (STD-DVO) were calculated for each case. In the event that no

vortices could be identified in a specific IA, it was removed from any analysis dealing

with vortices (but remained for analysis of other characteristics).

4.1.2 Statistical Analysis

The paired t-test (or paired Wilcoxon-Mann-Whitney test for non-normalized data

distributions) was used to compare Model A and Model B differences across all time-

steps (final cardiac cycle) for the following characteristics: WSS, OSI, KED, and
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DVO. Paired t-tests were also performed to assess differences between the MaxWSS

and (largest) MinWSS across the cardiac cycle between the pre and post-remodelled

cases. To assess statistical differences between IA types (adjacent, proximal and distal

IAs), ANOVA tests (with Tukey post hoc analysis) were performed for the STA-WSS,

STA-KED and TA-DVO values. All statistical analyses were performed at a 0.05 level

of significance, and were measured with in-house scripts using the RStudio software

program (Version 1.0.136, RStudio, Boston, MA USA).

4.2 Results

4.2.1 Hemodynamic Characteristics Among IA Types

Initial comparisons of the STA-WSS, STA-KED, and TA-DVO values between IA

types can be seen in Figure 4.3. A trend across all IAs was seen in which the cal-

culated values are higher in the proximal IAs over distal or adjacent IAs, yet said

differences were not found to be statistically significant. Aneurysmal aspect ratios

(i.e IA height/ostium width) have been shown to be a geometric characteristic in-

versely correlated to IA WSS. To ensure that the relative differences of STA-WSS

between groups were not wholly driven by their aspect ratios, the calculated STA-

WSS were plotted in Figure 4.4 against their respective aspect ratios. The STA-WSS
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values for all IA types were shown to decrease in relation to their aspect ratios, yet

the rate at which the STA-WSS decreased (slope of the fitted line) was nearly 2 times

quicker for the proximal and adjacent IAs than for the distal IAs of similar aspect

ratios.

4.2.2 Inter-aneurysm “Damping" Effect (Model A vs. Model

B)

The magnitude of flow energy and WSS tends to follow the characteristic pattern of

the inflow waveform: peak WSS and energy values occurring near peak systolic flow,

and lower values during slow diastolic flow [14]. A small number of spiked increases or

decreases in measured values over the cardiac cycle, may skew the overall pattern of

hemodynamic changes between Models if only the spatio-temporally averaged values

are considered. To address this, comparative analysis between Models were made

using the values across all time-steps (SA-WSS, SA-KED, and DVO), as opposed to

assessing their temporally averaged characteristics.

Comparison of hemodynamic characteristics across all time-steps (SA-WSS, SA-KED,

and DVO) showed notable changes between Model A and Model B. In the presence

of adjacent IAs, the local flow of the parent artery is likely “split", supplying flow

into both IAs simultaneously. In Model B of the adjacent IAs, the splitting effect was
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Figure 4.3: Box plots of characteristic differences between adjacent (both),
proximal and distal IAs: (a) STA-KED, (b) STA-WSS and (c) TA-DVO.
The top and bottom of boxes indicate 75 and 25 percentiles, respectively. The
line inside each box represents their median. Error bars show the minimum
and maximum values. Circle markers indicate outliers. p-values displayed
for comparison between IA types
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Figure 4.4: A plot showing the relation between STA-WSS and the aspect
ratio in Model A

reduced, resulting in higher flow energy (SA-KED, SA-WSS) being directed into the

remaining IA. This increase in energy also coincided with a subsequent decrease in

IA DVO. In contrast, removal of the proximal IA resulted in lower flow energy within

the subsequent distal IA. Model B simulations for distal IAs were seen to have an

overall decrease in SA-KED and SA-WSS and an increase in DVO values. All these

changes were statistically significant. The analyses for MaxWSS and MinWSS across

the cardiac cycle showed no statistical significance between Models. The outcomes

of all statistical analyses for these hemodynamic characteristics are summarized in

Table 4.2.

Assessment of STA-WSS changes between Model A and Model B found that, while
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WSS magnitude changes occurred, the overall spatial patterns remained visually con-

sistent (see Figure 4.5). A quantitative assessment of the maximum OSI (MaxOSI),

identifying the greatest directionality change of the WSS, showed a decrease in adja-

cent IAs in Model B to compared to Model A, while values increased in distal IAs but

none of these changes were found to be statistically significant. In terms of changes to

DVO values, a decrease in vortex stability was noted after removal of one of the adja-

cent IAs, indicating flow in the remaining IA becomes significantly more unstable. As

for the distal IA (after proximal removal), a slight increase was seen in DVO values

but was not found to be significant. Outcomes of statistical tests for hemodynamic

variables between Models can be seen in Table 4.2.

Table 4.2
A summary of notable changes in hemodynamic parameters in Model B as
compared to those in Model A. A paired t-test (or Wilcoxon test) was

performed to assess changes across all time-steps of the final cardiac cycle.

Group Results p-value
Increase in SA-KED <0.001
Increase in SA-WSS <0.001

Adjacent Increase in MaxWSS =0.09
Increase in MaxOSI = 0.24
Decrease in DVO <0.001
No Change in MinWSS
Decrease in SA-KED <0.001
Decrease in SA-WSS <0.001

Distal Decrease in MaxWSS = 0.31
Decrease in MaxOSI =0.06
Increase in DVO = 0.153
No Change in MinWSS

To determine if IA geometry was a driving force behind the statistically significant

changes to vortex stability post vessel remodelling in adjacent IAs, linear regression

75



Figure 4.5: Plots showing spatial patterns of TA-WSS comparing between
Model A and Model B. Color bars were scaled to each IA grouping as to assess
spatial TA-WSS patterns. Pre representing all IAs intact (Model A), Post as
proximal IA removed, An1-2 as either An1 or An2 remaining (adjacent IAs).
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analysis was performed on temporally averaged mean percent change of DVO against

IA geometry: IA volume, ostium area, aspect ratio, parent artery diameter, and IA

diameter. A strong negative relationship was seen between the IA volume, IA diame-

ter, and ostium area of adjacent IAs in relation to their mean percent change in DVO.

Statistical testing was performed and found no distinct linear relationship in mean

percent change in DVO when compared to their IA geometry. Similar comparative

analysis was performed on the temporally averaged percent changes of SA-WSS and

SA-KED values in relation to IA geometry. No statistically significant linear compar-

ison was found between the degree of SA-WSS or SA-KED change vs IA geometry

for any of the IA groups.

Table 4.3
Linear Regression Analysis: Mean Percent Change to DVO in Relation to
IA Geometry: IA Volume, Ostium Area, Aspect Ratio, IA Diameter, and

Parent Artery Diameter. Only outcomes with statistical significance shown.

% Change DVO
Adja. Vol. Adja. Ost. Adja. IA Diam.

Corr. -0.734 -0.887 -0.673
p-value 0.016 0.0006 0.032
Slope -0.046 -0.786 -2.37
Y-int. 0.208 9.38 7.87
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4.3 Discussions

4.3.1 WSS Analysis

When faced with multiple IAs in a given section of cerebral vasculature, initial as-

sessments may result in only select IAs being surgically treated, leaving other IAs

intact. Yet current information on how closely spaced IAs impact each other’s hemo-

dynamics, or how the repair of a single IA may alter flow conditions in the untreated

IAs is limited. This study focused on identifying hemodynamic features particular to

closely-spaced IAs and assessing the hemodynamic impacts of one IA on the other:

WSS, KED, flow stability, and OSI.

In our study, as IA aspect ratio increased, the negative relation to lower STA-WSS

among proximal and tandem IAs were approximately 2 times greater than that which

occurred among distal IAs of similar characteristics (Figure 4.4). The probability that

there was stagnant flow in proximal and tandem IAs as compared to the distal IAs

(of similar aspect ratios) was supported by the relative higher TA-DVO values seen

in proximal and tandem IAs in relation to the distal IAs (Figure 4.3c). According

to the theory advocating slow flow as a risk factor for IA rupture, several of our

observations would indicate that these proximal IAs are, as earlier proposed by Jain
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and Crompton, more prone to rupture than are the distal IAs[78, 155]. In the majority

(71.4%) of the distal IAs, the presence of a proximal IA increased the distal IA’s SA-

WSS; possibility helping to limit destructive vascular remodelling that may occur

during low WSS [12, 370]. Assuming the theory of deleterious effects from slow or

stagnant flow to have some validity, our observations show that a proximal IA may

actually provide a protective effect to the distal IA of a tandem pair[155]. In such

a case, repair of a proximal IA may worsen conditions in a remaining distal IA by

decreasing both its SA-KED and SA-WSS while possibly leading to in increase in flow

stagnation. Yet in adjacent IAs, surgical/endovascular interventions on one IA may

altered localized flow conditions, leading to increased flow energy and WSS into the

remaining IA. It is worth noting, that while flow stressor and energy was altered post-

singular aneurysmal repair, less of a change was seen in the distribution of stressors

pattern or oscillations in stressor directionality (OSI).

The clinical impacts of aberrant WSS is known to trigger varying vascular degrada-

tion: with high WSS thought to impact IA growth, expansion, and mural cell death,

and low WSS thought to impact degenerative vascular inflammation [228]. Smaller

IAs tend to have higher WSS than larger IAs, yet both IA sizes are shown to have

lower WSS in their ruptured IAs then their unruptured counterparts [167, 386]. While

ruptured IAs tend to have lower WSS, there exists a degree of overlap in the range of

their hemodynamic values with unruptured IAs [88, 233, 374]. In this study the sta-

tistically significant decreases in STA-WSS within distal IAs post-proximal IA repair
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was noted. Such an impact could worsen hemodynamic conditions within an IA and

increase the likelihood of rupture.

4.3.2 Vortex Analysis

While assessment of near-wall flow stressors are often taken into account to assess

the potential severity of IAs and aid in the choice of clinical interventions, WSS

give little insight into the bulk flow patterns within the IA sac. Flow stagnation

is a proposed mechanism that create conditions impacting the weakening of an IA

wall[43, 51, 228, 274, 370]. Through this study, the stability of the vortex patterns

(DVO) identified by our CE method gives novel insight into hemodynamic changes

brought upon by the treatment of a single IA, which would be otherwise overlooked

only relying on WSS-based variables. Specifically, the simulated ”repair" of one of two

adjacent IAs was found to disrupt the stability of vortices in the remaining IA while

alterations to WSS-indices are less prevalent. The reductions in the quantified DVO

values indicate that, while an unrepaired IA still may pose a threat to patient health,

the reductions in flow stability caused by the repair of another IA may help reduce

risk severity. While increases in DVO values were seen in distal IAs post-proximal

repair, findings were not statistically significant. There may be conflicting factors

impacting the degree of change in DVO for proximal IAs, requiring further studies

with a greater number of cases to determine: distance between IAs or size of proximal
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IA.

4.3.3 Limitations

For this study, the number of patient data containing multiple IAs was limited and

all IAs in this study were unruptured. A greater number of cases analyzed could help

strengthen finding in this study, as well as determining if the characteristics of rup-

tured IAs amplify or dampen the changing hemodynamic characteristics in subsequent

IAs. Additionally, no information was available into the order of IA development (or

if the multiple IAs developed simultaneously). A longitudinal analysis of patients pre-

senting with IA(s) or in-vivo models pre and post IA development would be needed

to address this issue.

The simulated treatment of an IA in this study was done in an overly simplified

way. More specifically, the IA was completely removed and the vessel reconstructed,

resulting in no flow entering the “treated" IA. In the clinical setting, the complete

isolation of the IA from the blood stream is not always achieved [247]. Additional

studies mimicking varied repair parameters (e.g. different coverage values for flow

diverting stents or IA sac occlusion via coiling) would be provide more insight for

how clinical management of a singular IA impacts hemodynamics in any remaining

IAs. Furthermore, all proximal IAs regardless of their sizes were removed to simulate
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a clinical treatment procedure. However, in some scenarios, that implies that a

large distal IA would not be initially treated while the smaller proximal IA would

be treated. While small IAs are associated with their own risk of rupture [199],

the prevailing mindset is larger IAs pose a greater risk of rupture. Nevertheless,

the chosen methodological method or removal of the proximal IA regardless of size

difference was necessary for study consistency and distal IAs may have limited

impact on the hemodynamics in proximal IAs.

4.4 Conclusions

The focus of this work was to investigate altered hemodynamic conditions within a

multiple IA system pre and post treatment of a single IA. This study showed that

closely spaced IAs may exhibit significant hemodynamic alterations onto each other

when concerning WSS, KED and flow stability (DVO). These initial results suggest

that surgical or endovascular interventions on only one (of a multiple IA scenario)

could lead to detrimental hemodynamic changes into developed IAs. Understanding

these alterations may help uncover risk factor(s) pertaining to the post-surgery growth

of remaining IAs.
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Chapter 5

Vortex Analysis to Differentiate

Ruptured and Unruptured

Aneurysms of the Middle Cerebral

Artery

As mentioned previously, clinicians must make a diagnostic choice if surgical or

endoscopic-based interventions should be undertaken when an IA is identified. Yet

such treatments may be over perscribed as the majority of IAs remain at low

rupture risk, and possible surgical complications can cause patient morbidity or

mortality similar to that of IA rupture. IA geometric characteristics and their
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usefulness in predicting rupture have been extensively investigated with varying

success[163, 187, 213, 234, 370]. A number of studies have eluded to an increase

in IA size as a risk for both IA growth and rupture. [16, 125, 346]. A meta-analysis

performed by Brinjikji et al reported that IA ≤ 10 mm in size (diameter) grew at a

rate < 2.9% per year, while IAs > 10 mm were associated with growth rates of 9.7%

per year[40]. This growth was also reported with an associated IA rupture rate: 3.1%

per year compared with 0.1% per year for stable (non-growing) aneurysms (p ≤ 01).

Findings such as these suggest that IA size is indicative of rupture risk, with large IAs

(>10mm) thought to be at high rupture risk, leading the majority to undergo surgical

intervention [234, 364, 370]. Whereas small IAs (<4mm) are thought to be at low

rupture risk and thus are typically spared surgery, even though work suggests small

IAs rupture at not insignificant rates[199]. This leaves medium-sized IAs to which the

decision to perform clinical intervention based on geometric characteristics alone is

less ubiquitous. WSS and its derivatives are often incorporated alongside IA geometry

as a means to differentiate high risk IAs from those unlikely to rupture[192, 211, 370].

However, as previously mentioned in Chapter 1, indices based on WSS extrema

showed varying predictive strength across studies[36, 84, 163, 270, 345, 355]. The

combination of geometric indices having reduced usefulness in predicting medium-

sized IA rupture risk and the varying predictive strengths of WSS, emphasises the

need for novel analytic metrics to help differentiate which IAs should be subject to

surgical intervention.
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My previous work bolsters the idea that vortices within bulk heomdoynamic flow

(versus near-wall WSS) impact IA development[320, 321] and work from other groups

indicate that vortices play a role in IA rupture[345]. Yet, while a study by Varble et

al. [346] aimed to determine if a strong correlation between vortices and IA rupture

existed, findings showed minimal correlation. This weak association may have been

in-part due to the study focusing on identifying only the centroid region of vortices and

thus, limited the scope of assessed vortex characteristics. The goal in this work was

to assess the strength of the developed CE method for analyzing the broader spatial-

temporal characteristics of vortices to help improve the identification of characteristics

indicative or IA rupture in a cohort of 47 middle cerebral artery (MCA) aneurysms:

12 ruptured and 35 unruptured. Specifically if vortices help improve the assessment of

medium sized IAs (4-10mm), sizes difficult to assess using currently applied geometric

and WSS metrics. Insight into the characteristics of complex flow indicative of IA

rupture could help improve the understanding of this vascular pathology and could

one day aid in clinical decision making.

5.1 Computational Model Creation

From an internal database, patient-specific IA models were created from med-

ical imaging data (DICOM images of 3D rotational angiographies) acquired
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from three sources: University of Michigan Medical Center (USA), Chang-

hai Hospital at Shanghai (China), and the Aneurisk open-source repository

(http://ecm2.mathcs.emory.edu/aneuriskweb/index). The inclusion criteria were as

follows: (1) sufficient data quality to establish CFD models, (2) IA size (width) be-

tween 4 and 10 millimeters (clinically qualified as medium-sized IAs), and (3) IAs at

the M1 bifurcation the MCA. Only MCA IAs were analyzed in this work as differ-

ences in IA location (MCA, anterior communicating artery, internal carotid artery,

etc), or IA type (bifurcation, sidewall, fusiform), may have differing vortex charac-

teristics that would confound predictive models. To properly determine how these

different factors may impact vortex characteristics concerning rupture risk and would

require a more substantial data-set for proper analysis. As this was a retrospective

analysis of existing data, only angiographic data acquired post-rupture were available

for ruptured IAs.

Geometric (stereolithography [STL]) models were created by isolating the vessels

of interest in DICOM files and converting them into STL files and then edited in

the same manner as covered in section 2.1.1. Some STLs were directly available

from the Aneursik repository and Changhai Hospital. The available portion of the

parent vasculature proximal to the internal carotid artery siphon was maintained, all

secondary outlet vessels proximal to the IA were kept, and a portion of the parent

vessel distal to the IA was maintained as outlets. Example STLs can be seen in Fig

5.1
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Figure 5.1: Three examples of patient-specific vessel models of bifurcation
IAs of the M1 section of the MCA. White arrows indicate IAs

All models were converted into an unstructured, 3D tetrahedral volumetric mesh

under the VMTK framework. Each case contained 1.5-2 million mesh elements.

5.2 CFD Simulations

Blood flow velocity and WSS was calculated using the ANSYS-FLUENT software

(Version 17.0, ANSYS-FLUENT Inc., Canonsburg, PA, USA) using the same method-

ology as in section 2.1.3. The inflow waveform from Gwilliam et. al.[128] was applied

as velocity inlet boundary conditions for simulations in this work. As flow waveform

characteristics vary with age and may alter the simulated hemodynamic characteris-

tics, a secondary analysis of WSS and vortex characteristics was performed using a

waveform by Hoi et. al, taken from older patients (averaged 68 years old)[144] as was
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used in Chapter 3.

5.2.1 Aneurysm Geometric Characteristics

For the quantification of IA geometric characteristics, the IA sac was first isolated

from the vessel using a published method[264] and the resultant cut plane was capped

and identified as the IA ostium using an in-house script written in VMTK. The ge-

ometric values from IAs from the Michigan Medical Center and Changhai Hospital

were calculated using in-house scripts in VMTK. The geometric measurements calcu-

lated (using our in-house scripts) for IAs from the Aneurisk data-set were compared

with the measurements given by the Aneurisk repository to ensure similar values. For

the sake of reproducibility, we used the geometric values given by the Aneurisk site

for predictive modeling.

Seven (9) geometric parameters were calculated for each IA[93, 233, 264].

Aneurysm Surface Area and Volume: Measured directly from the isolated IA geom-

etry before and after ostium capping (respectively).

Aneurysm Height: Typical IA height measurement follows a straight line of the max-

imum stretch from the ostium centroid to the IA dome[93, 213]. Instead, this study

used a modified height measurement [110, 264]. The length of the centerline of the IA
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sac is measured, starting from the ostium centroid, following the shape of the IA sac,

to the highest point of the IA dome. The radius of the maximum inscribed sphere at

the centerline’s endpoint is added to the length measurement to fully measure the IA

height.

Vessel Diameter: The parent artery diameter value is computed at locations close

to the aneurysm ostium [264]. For terminal aneurysms, the vessel diameter of the

common branch was measured at the point prior to centerline splitting between the

daughter arteries, and both daughter arteries’ diameter were measured at the point

one (common artery) diameter away from the IA ostium cut. The average of the

three values was used as the value of the vessel diameter.

IA Width: The maximum width of the IA sac along the direction perpendicular to

flow entering the IA.

Size ratio(s) IA size ratios (width/vessel diameter and height/vessel diameter) were

calculated.

IA secondary bulb The presence or absence of secondary bulbous portions of the IA

wall was identified by a human observer. An example of an IA with/without bulb

can be seen in Fig5.2

Aspect Ratio: A modified calculation of the commonly defined aspect ratio (aneurysm

91



Figure 5.2: (Left) IA without a secondary bulbous portion of the IA wall.
(Right) IA with a secondary bulbous portion of the IA wall (arrow).

height/ostium diameter) was used by adapting the modified IA height calculation

height, and both the area and circumference of the ostium into the aspect ratio

calculation as the ostium diameter is rarely uniform for an IA[264].

AspectRatio∗ =
IAheight∗

4 ∗ (Ostiumarea/Ostiumcircumference)
(5.1)

The aspect ratio of an IA has been shown to be correlated with levels of hemodynamic

stressors and has been used as an ease-of-use method to assess conditions within an

IA [383].

5.3 Aneurysm Hemodynamic Characteristics

Wall Shear Stress: The calculation of WSS was performed by the ANSYS-FLUENT

commercial finite-element solver (ANSYS v17.0) by solving Equation 3.1.
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The spatial-temporally averaged value of the aneurysm’s WSS(STA-WSS) was

calculated alongside its temporally-averaged WSS minimum (TA-WSSMin) and

temporally-averaged WSS maximum(TA-WSSMax). Additionally, the temporally-

averaged low wall shear (≤2 dynes/cm2) area (TA-LSA) and low shear area standard

deviation (LSA-std) were calculated for each case.

Oscillatory Shear Index: The mean and standard deviation of OSI were calculated

for each case using Equation 3.5 .

For predictive modeling, all WSS variables were only evaluated across cardiac-cycle

systole. In relation to systole, the diastolic portion of the cardiac cycle typically has

a lower flow rate, minimal changes occurs to the flow pattern, and lasts for a greater

portion of the cardiac cycle. Averaging hemodynamic values over the entire cardiac

cycle may skew outcomes in relation to the characteristics of diastole. As to capture

the greatest degree of hemodynamic change for both WSS and vortex characteristics,

values (means, standard deviations) were assessed only across the systolic portion of

the cardiac cycle.
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5.4 Aneurysm Vortex Characteristics

In an similar manner to vortex characteristics described in Chapter 2, spatial temporal

characteristics of vortices were quantified: vortex volume, vortex surface area and

vortex stability (DVO). The number of vortices was not used in assessing statistical

characteristics as it was found that typically only one vortex was identified in an

MCA IA (regardless of rupture status) when using the developed CE methodology.

As vortex volume can be highly correlated with IA volume (see Table 2.2), it was

not used directly in predictive modeling as to avoid significant collinearity between

indices. Instead, the vortex volume was normalized to their IA volume, as well as

normalizing the surface area of the vortex iso-surface to its IA surface, indicating the

proportion of IA flow constituting a vortex. These new variables were called vortex

volume to IA volume (VtV) and normalized vortex surface (NVS) and their means

and standard deviations (across cardiac systole) were calculated.

5.5 Statistical Analysis / Predictive Modeling

Due to the number of potential variables used for rupture predictive modeling, pos-

sible non-linear relationships (between variables), and the potential for model over-

fitting, a statistical predictive method was required that could better contend with
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these conditions. The Support Vector Machine (SVM) methodology, a supervised

machine learning algorithm used for classification problems, was implemented for

this work[157, 306]. Given the multiple parameters thought to impact IA rupture,

SVM utilizes a structural risk minimization principle to determine a hyper-plane that

best divides binary outcomes: ruptured and unruptured IAs. The orientation of the

chosen hyper-plane aims to generate the largest minimum distance (margin) between

data points of each class.

An explanation of the equations behind SVM and the chosen kernel function (radial

basis function) can be seen in Appendix B.

A number of models were generated using different variable groups:

– Geometric

– WSS

– Vortices

– Geometric + WSS

– Geometric + Vortex

– WSS + Vortex

– All groups (Geometric + WSS + Vortex)

95



Statistical characterization modeling was performed via cross-validation (80%/20%

training/testing) over 100 iterations to help limit model over-fitting. The area under

the curve (AUC) of receiver operating characteristic (ROC) curves were quantified

for each iteration and averaged (over all iterations). Additionally, the total accuracy

of models and the percent of correctly identified ruptured and unruptured IAs (across

all iterations) were calculated.

A summary of the methodology used in this study, from the creation of vascular

models, simulation of flow, quantification of vortex characteristics, to the assessment

of vortices’ impact on statistical characterization can be seen in Figure5.3

5.6 Results

A summary of calculated indices can be seen in Table 5.1

5.6.1 Statistical Characterization Model Outcomes

Relying solely on WSS led a low AUC value, having minimal success for distinguish-

ing ruptured from unruptured MCA IAs (∼0.56 AUC). The geometric+WSS model

improved the resultant AUC compared with using just WSS indices, but still un-

derperformed when compared geometric indices alone (0.80 geometric model AUC).
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Figure 5.3: Summary of methodology for measuring vortex characteristics
and determining their impact on statistical characterization. Creation of
patient specific vascular models, generation of simulated blood flow data,
analysis of IA geometric and hemodynamic characteristics, modeling using
100-fold cross validation via Support Vector Machine methodology, analysis
of outcomes.

A characterization model solely utilizing vortex indices resulted in an AUC of only

0.62, performing better than their WSS counterparts but worse than the geometric

model. The proposed vortex indices alongside WSS improved the resultant AUC

over the WSS model alone but was similar to that of solely relying on vortex indi-

cies. Adapting all index groups into a statistical characterization model had similar

AUC values to that of the geometric (only) model. The ROC curves from statistical

characterization models and their AUC’s can be seen in Figure 5.4

Analysis of ruptured and unruptured IAs properly identified showed our geometric
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Characteristic Unruptured: 35 Cases Ruptured: 12 Cases Total: 47 Cases
IA Volume * 155.79±157.64 75.47±53.78 135.27±142.52
IA Height 6.52±2.60 5.64±1.48 6.30±2.38
IA Width 6.83±2.06 6.12±1.51 6.65±1.94

Size Ratio (Height) 2.90±1.30 3.00±0.99 2.92±1.22
Size Ratio (Width) 3.04±1.03 3.28±1.20 3.10±1.07

Aspect Ratio 1.61±1.61 1.73±0.86 1.64±1.45
Vessel Diameter * 2.31±0.46 1.97±0.38 2.22±0.47
Systolic Sta-WSS 6.59±7.51 6.48±4.44 6.56±6.81

Systolic TA-WSSMin 0.44±0.85 0.37±0.36 0.43±0.76
Systolic TA-WSSMax 47.60±51.15 62.28±69.40 51.35± 55.92

Systolic OSI 0.02±0.02 0.02±0.03 0.02±0.02
Systolic TA-LSA 39.76±27.75 31.81±23.31 37.73±26.67

Systolic TA-LSAstd 19.55±9.72 24.76±6.88 20.88±9.30
Systolic TA-DVO 0.73±0.13 0.78±0.14 0.74±0.13
Systolic STD-DVO 0.15±0.07 0.16±0.10 0.15±0.075

Systolic VtV 14.91±6.05 12.95±7.45 14.42±6.47
Systolic NVS 37.71±12.35 30.87±13.04 35.96±12.75

Intracranial Aneurysm (IA), Normalized Vortex Surface (NSV), Oscillatory Shear Index (OSI), Spatial-
temporally averaged Wall Shear Stress (STA-WSS), Standard Deviation Degree of Volume Overlap (STD-DVO),
Temporally Averaged Low Shear Area (TA-LSA), Temporally Averaged Low Shear Area Standard Deviation
(TA-LSAstd), Temporally Averaged Degree of Volume Overlap (TA-DVO), Temporally Averaged Wall Shear
Stress Minimum (TA-WSSMin), Temporally Averaged Wall Shear Stress Maximum (TA-WSSMax), Vortex
Volume to Aneurysm Volume (VtV).

Table 5.1
A list of geometric, wall shear stress (WSS), and vortex-related indices used

for statistical characterization. Parameters are listed as Mean + one
standard deviation. * indicates characteristics with statistical differences

between unruptured and ruptured IAs: t-test, p < 0.05.

model, while having the highest AUC overall, had limitations. Said model identified

90.5% of unruptured IAs across the 100 iterations of SVM modeling, while only

properly identifying 46.5% of the ruptured IAs. The vortex model had reduced success

in rupture IA identification but an increase in unruptured identification (29.4 and 94.5

% respectively) compared with its geometric counterpart. The geometric+vortex

model improved the identification of unruptured IAs yet showed reductions in the

success of identifying ruptured IAs when compared to the geometric model: 94.3 and

25.0 %.
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Figure 5.4: ROC curves averaged from 100 runs of cross-validation support
vector machine statistical characterization modeling. Outcomes: AUROC
(95% CI) for geometric, vortex, geometric+vortex, and all indices models.
WSS based model ROC curves (besides the ‘all’ model) are not shown for
ease of visualization.

Our WSS model overestimated almost all MCA IAs as unruptured, properly identi-

fying 97% of and only 2% of ruptured IAs in our data set. The WSS+vortex model

had similar outcomes in rates of unruptured and ruptured accuracy to that of the

vortex model alone.

While individual geometric, WSS and vortex indices showed mixed outcomes toward
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prediction outcomes, combining all indices into a model led to the strongest outcome

in terms of accuracy: an overall accuracy of 0.85, identifying 99.0% unruptured and

44.3% ruptured IAs.

The values for AUCs, total accuracy, and percent of properly identified unruptured

and ruptured IAs across all data sets and models can be seen in Table 5.2.

Table 5.2
AUC and accuracy calculated for all statistical characteristic models with
varied index groups for MCA IAs. Models consisted of geometric, wall

shear stress, and vortex indices.

Models Mean
(AUC 95% CI) Total Accuracy Ruptured

Identified (%)
Unruptured
Identified (%)

Geo 0.80(0.67-0.80) 0.80 46.5 90.5
WSS 0.56(0.32-0.79) 0.74 2.0 97.0
Vortex 0.62(0.37-0.86) 0.78 29.0 94.5

Geo + WSS 0.73(0.56-0.88) 0.76 44.5 87.0
Geo + Vortex 0.70(0.51-0.87) 0.77 25.0 94.3
Vortex + WSS 0.61(0.39-0.84) 0.77 27.0 93.7

All 0.78(0.64-0.90) 0.85 43.5 99.0

5.6.2 Changes Under Differing Waveform

The waveform used in this work was taken from work by Gwilliam et al.[128] and was

measured from patients of an median age of 28 years (range: 20-40 years). As the

chosen inlet flow waveform may impact hemodynamic characteristics (WSS and vor-

tices), a secondary analysis was performed to assess the impact that varied waveforms

(adjusted for age) may have on simulated values and prediction outcomes. Four (4)
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randomly selected cases had a second simulation performed using a waveform char-

acteristic of flow rates in the carotid bifurcation in older adults measured by Hoi et

al.[144]. The secondary (Hoi) inflow waveform was chosen from the characteristic of

flow from older adults (mean 68±8 years). Example of the differences between flow

waveforms and can be seen in Figure 3.2. Vortex characteristics of the cases run using

the Hoi inlet waveform were compared to their counterparts run with the Gwilliam

waveform. At a 0.05 level of significance, paired Welch’s two-sample t-test showed no

statistical difference for Systolic TADVO values between the waveforms: p-value 0.21

(95% CI: -0.03-0.15). No statistically significant reduction in the VtV generated with

the Hoi waveform was seen when compared to the Gwilliam waveform, though the

value was near-significance and may change if a a larger sample set were to be investi-

gated: p-value 0.05, 95%CI (-0.03-2.46). A statistically significant decrease was seen

in STA-WSS and TA-WSSMax values generated by the Hoi inlet waveform in com-

parison to the Gwilliam waveform: p-value < 0.001, (95%CI: 0.89–2.33) and p-value

< 0.001, (95%CI: 4.88-16.06) respectively. These changes were to be expected as the

Hoi waveform has a lower volumetric flow rate in comparison to the Gwilliam wave-

form. No statistical difference was seen in the TA-WSSMin between both waveforms:

p-value 0.09 (95%CI: -0.01 – 0.11).

For the assessment of differing waveform’s impact on characteristic outcomes, the Hoi

vortex and WSS values were not directly substituted into the data set. The available

ages of the cases in our data set fell in-between the age ranges of the Gwilliam and

101



Model AUC(95% CI): Accuracy:
Gwilliam (only) -
Gwilliam+modified

Gwilliam (only) -
Gwilliam+modified

All Indices 0.78(0.64-0.90) - 0.76(0.60-0.90) 0.85-0.82
WSS and Vortex 0.61(0.39-0.84) - 0.64(0.42-0.86) 0.77-0.79
Geo. and Vortex 0.70(0.54-0.87)-0.61(0.39-0.81) 0.77-0.77
Vortex 0.62(0.37-0.86)-0.58(0.35-0.82) 0.78-0.80

Table 5.3
Comparison of AUC and accuracy values of statistical characterization

outcomes from the Gwilliam waveform data only, and the
Gwilliam+modified waveform data.

Hoi waveforms (∼ 45 years) and an age-appropriate waveform was not available. To

account for this, the generated values for STAWSS, TA-WSSMin, TA-WSSMax, OSI,

TA-LSA, TA-LSAstd, TA-DVO, DVOSTd, VtV, and NSV (systolic values) from both

waveforms (for selected cases) were taken, and their midpoint value was used as an

assumed ‘age-appropriate’ outcome: this was considered a ‘modified’ output. These

modified outputs were substituted into the data table for the four selected cases, and

statistical characterization modeling was performed in identical manner as the initial

analysis (Gwilliam waveform data only). Comparison of outcomes with the Gwilliam

or Gwilliam+modified waveform data, showed slight changes in accuracy: reduced

accuracy when using all indices, but slight increased accuracy for the WSS+vortex or

vortex alone model(s). The largest degree of change in AUC was seen in the geometry

+ vortex model with a decrease from 0.70 to 0.61, yet no change occurred for the

overall accuracy. The resultant differences between the Gwilliam data outcomes and

the Gwilliam + modified data can be seen in Table 5.3
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5.7 Discussion

Initial analysis of our available MCA data, while not a robust enough study to suggest

modifying clinical practices in the assessment of MCA IA rupture potential, findings

suggests that the addition of vortex indices alongside geometric+WSS indices into a

statistical model helped to improve the differentiation of unruptured and ruptured

IAs. The sole application of geometric indices applied in a plethora of studies, showed

to be the strongest index group for properly distinguishing ruptured from unruptured

IAs in our data set. Yet geometric indices in this study had limited success in properly

identifying ruptured aneurysms, as well as misidentifying 10% of unruptured IAs. If

geometric indices were solely applied to assess the likelihood of rupture, such out-

comes would leave many at-risk aneurysms without needed clinical intervention, as

well as exposing many patients with low-risk IAs to an invasive interventional proce-

dure. WSS-based models in this study had significant difficulty identifying ruptured

IAs. Specifically our WSS-model tended to predict almost all IAs as unruptured,

unable to distinguish characteristics indicative of ruptured IAs. However, due to the

unbalanced number of unruptured and ruptured IAs in our data set (almost 3:1),

this underestimation of ruptured IAs still resulted in an accuracy of 0.74 even though

such models only correctly identified 2% of ruptured IAs. This outcome is consistent

with the theory that both ends of WSS extrema may contribute toward IA rupture,

making such indices of problematic use on their own [228]. The combination of both
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commonly used geometric and WSS characteristics into a predictive model also had

a reduced outcomes when compared with geometric characteristics alone. It is worth

considering, the choice of condensing the WSS information across the IA sac to single

numeric indices (WSS average, extrema, low-WSS coverage, mean OSI) may obfus-

cate stressor spatial information that would prove beneficial for predictive modeling,

contributing to the minimal success of current WSS indices.

In this work, the goal was to determine how the spatiotemporal characteristics of

swirling patterns in the bulk flow of IAs can be used to improve models for differ-

entiating ruptured and ruptured IAs among medium-sized MCA IAs. Current work

suggests the combination of IA geometric and near-wall WSS characteristics to dis-

cern the likelihood of an IA to rupture have limitations. Solely relying on vortex

characteristics, while having improved overall outcomes (accuracy 0.78) over WSS

indices (accuracy 0.74), were found lacking in comparison to established geometric

indices and had reduced success in properly identifying ruptured IAs versus a com-

bined geometric+WSS model. This indicates that vortices alone are not a suitable

replacement for IA geometric or WSS characteristics concerning rupture assessment.

Yet the inclusion of vortices alongside the geometric+WSS model helped to overcome

some of the limitation present in said combined model: specifically helping to im-

prove upon the proper identification of unruptured aneurysms (up to 99% accuracy).

Yet the addition of vortex indices to the geometric+WSS model has no significant
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impact on improving the identification of ruptured IAs: 44.5% to 43.5% ruptured ac-

curacy for geometric+WSS and geometric+WSS+vortex model respectively. Given

medium-sized IAs are common and their management strategies are arguably the

most difficult, quantifying the spatiotemporal characteristics of the bulk-flow within

such IA sacs may provide useful information often overlooked in the assessment of

ruptured and ruptured IAs.

Although our overall study design is appropriate for a feasibility study, there are

some limitations. The first limitation is that only a small number of MCA were used,

and further understanding of vortex characteristics indicative of both ruptured and

unruptured IAs may be achieved upon the introduction of additional cases. From a

perspective of statistical characterization, a 1:1 ratio between binary outcomes (un-

ruptured and ruptured IAs) is optimal for SVM [279], with many studies having a

closer 1:1 ratio [356, 385]. Removing unruptured IAs from the data set available for

this study to create a 1:1 ratio was not performed as only 24 cases would remain; a

number inadequate for robust statistical characterization. In a secondary analysis of

characterization sensitivity, we found that even a slight reduction in the overall num-

ber of unruptured cases led to undesirable outcomes. Using leave-one-out validation,

the analysis was performed on both our entire data set and a reduced data set where

3 randomly selected unruptured aneurysm cases were removed. This was performed

over 100 iterations and the 3 removed cases were changed each iteration. For each

iteration, the total accuracy of the model was calculated. The cumulative average
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Figure 5.5: The cumulative average of the total accuracy for vortex, ge-
ometric+vortex, and all models using our data sets with no cases removed
(solid lines) and 3 unruptured IA cases removed (dotted lines). For each
model, the removal of 3 cases caused a lower total accuracy compared to its
counterpart where no cases were removed.

for the total average was calculated across all 100 iterations, limiting the impact of

a possible outlier from skewing the assessed strength model outcomes ( The removal

of just 3 cases lowered the ability of models to accurately differentiate ruptured from

unruptured aneurysms (Figure 5.5).

This sensitivity to the removal of data would inhibit the ability to perform a relevant

analysis using a 2:1 or 1:1 ratio data set given the currently available cases. Addi-

tionally, given the size of the current data set, it would prove impossible to determine

if model outcomes were solely due to the reduction of the number of cases, or if our

chosen indices had less ability to correctly differentiate unruptured and ruptured IAs

than is currently suggested by our analysis. To properly determine the impact that
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the binary outcome ratio has on MCA IA analysis, additional ruptured cases will need

more robust data set as opposed to the removal of unruptured cases from currently

available cases.

Second, this work reveals that, while the strongest generated model benefited from

the application of quantitative analysis of vortex characteristics alongside IA geo-

metric and WSS indices, the said model has room for improvement: only identifying

43.5% unruptured IAs. Relying on idealized flow waveforms may constrain the char-

acteristics of generated vortices in IAs, reducing their usefulness in statistical charac-

terization. To improve upon these findings, measured patient flow waveforms should

be used as inlet boundary conditions for simulations as they would better represent

the flow patterns inherent in patient IAs. The choice of assumed vessel rigidity may

also impact simulated outcomes. While the vascular structures were taken from pre-

existing medical imaging, information regarding varied patient vessel stiffness, often

an impact of vascular pathology separate from a developed IA, was unavailable. Due

to this lack of information, vessel compliance could not be accurately simulated on a

case by case basis. Assumed vessel rigidity for simulated hemodynamics is an often

employed methodology, knowing that such assumptions increase pulse wave velocity

[203] and WSS in a rigid vessel [7] though similarities are observed in WSS distribu-

tion and low WSS areas between both types of simulations in arterial flow [303]. Yet

recent studies suggest that differences exist in near-wall velocity patterns in compli-

ant versus rigid IA simulations while bulk-flow aneurysmal patterns remain similar
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[335]. It is worth noting that variability in collagen architecture and the mechanical

strength of IAs vary even across the dome of a given unruptured IA [278], indicating

that simulating uniform vessel compliance across an an IA wall may cause unintended

errors in characterization model outcomes. Additionally, backwards traveling waves

can occur within the vascular system, especially at secondary outlet vessels connected

to the parent artery, and are impacted by vessel wall compliance. Unfortunately, less

is know to what extent these potential backwards traveling waves impact IA flow.

However, in earlier studies by a research group involving my advisor [156], simulation

methods were compared with phase-contrast magnetic resonance imaging in two in-

tracranial aneurysms. The gross hemodynaimcs obtained from in vivo measurements

(with the influence of backward-traveling waves) was comparable to CFD simulation

results without the consideration of the pulse wave, suggesting that such backward-

traveling waves may have minimal impact on aneurysmal bulk flow. Further studies

are required to determine if the degree of IA compliance impacts quantified vortex

characteristics and the outcomes of statistical characterization, especially in the even

of varied compliance across the same IA dome/possible wave reversal.

Third, only angiographic data post-rupture was available for the ruptured IAs in this

work. I recognize that slight variations in IA geometry may occur post-rupture. Such

changes could alter the distribution and intensity of WSS across the IA wall and/or

the characteristics of vortices. Yet less is know to when such geometric changes will
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occur: shortly before IA rupture, during rupture, or post-rupture. Thorough inves-

tigations in this matter are on ongoing [286, 305], and further work on how altered

IA sac geometry post-rupture impacts vortex characteristics should be investigated.

Additionally, while this work highlights the need to assess bulk-flow patterns of rup-

tured IAs, further work is needed to determine if the spatiotemporal characteristics

of vortices can improve the characterization of unruptured IAs likely to expand or

rupture. Longitudinal studies constituting hemodynamic analysis of unruptured IAs

and noting the vortex characteristics of those which remain stable versus those that

grow or rupture within a given period could give novel insight into the nature of this

pathology.

Although our CFD-simulated parameters, including vortex-related parameters, did

not show significant improvements in terms of IA rupture characterization, the use of

CFD for rupture risk assessment still could be meritorious as the current analysis of

hemodynamic parameters is sub-optimal. For instance, the choice of condensing the

WSS and vortex information across the entirety of the IA sac to single numeric indices

such as averages, extrema, or low-WSS coverage, may obfuscate spatial information

that would prove beneficial for statistical characterization, contributing to the min-

imal success of current indices. Looking forward, more innovative machine learning

methodologies are recommended to maximize the information obtained through CFD

simulations.
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5.8 Conclusion

The application of quantified spatiotemporal characteristics of hemodynamic vortices

within medium-sized MCA IAs was performed to determine their impact on models

for differentiating unruptured and ruptured IAs. Current models using geometric and

WSS based indices may have inherent limitations when applied to medium-sized IAs.

It was found that a combined geometric and WSS based model could be strength-

ened upon the inclusion of vortex indices, giving credence to the need for a further

understanding of the bulk-flow hemodynamic characteristics in the IA sac and their

relation to IA rupture. While this feasibility study is not enough to justify changes to

current clinical decision-making concerning assessing IA rupture risk, quantifying the

spatiotemporal characteristics of vortices may contain useful information overlooked

by assessing only the geometric and near-wall flow stressors within IAs. Continued

use of the identification of vortices and adapting their quantified spatiotemporal char-

acteristics into statistical characterization using larger data sets may one day uncover

information that can help clinical decision making concerning the assessment of, and

determining optimal treatments, for IAs.
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Chapter 6

Impact of Vortex Spatial and

Temporal Stability on Vascular

Endothelial Cells

Pathological weakening of the vascular wall, a known component of IA development

and possible rupture, is precluded by alterations to cellular functionality. From the

perspective of hemodynamics triggering such changes, significant attention is given
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to the inner most (intimal) layer of the cerebral vasculature comprised of an en-

dothelial cell (EC) monolayer. As mentioned in Chapter 1 the vascular EC mono-

layer comes into direct contact with blood flow and serves a dual purpose: hemo-

dynamic mechanosensors which transduce fluid force stressors into biochemical sig-

nal cascades[46, 92], and act as a selectively permeable barrier to plasma solutes

and biomacromolecules (>3nm3) as to limit the invasion of leukocytes and mono-

cytes into the vascular wall[44, 71, 168, 242]. Multiple in vivo and in vitro studies

have demonstrated that laminar hemodynamic flow promotes healthy EC physiology,

helps maintain cell-cell adhesion complexes, and limits the transport of inflammatory

molecules into the vascular media layer [37, 50, 68, 210, 230]. Whereas vortical flow

negatively impacts ECs, altering the cellular monolayer and its ability to maintain

vascular health, leading to a weakening of the localized arterial tissue. While a full

exposition into the cellular changes triggered by vortices is beyond the scope of this

dissertation, alterations to cell-cell adhesion, cell inflammatory adhesion markers, and

increased cellular death (apoptosis) are known to occur in vortical flow, contributing

to the development and possible rupture of IAs.

Vascular endothelial (VE)-cadherin is an EC specific adhesion molecule that sup-

ports cell-cell junctions. In laminar flow, these transmembrane proteins aggregate

to cellular peripheries and bind to one another to form well-defined connections

between ECs [229]. These connections promote vascular stability, regulate cellular
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turnover and/or cellular growth, and helps reduce cellular apoptosis[271]. Hemo-

dynamic vortices in turn cause a breakdown in VE-cadherin junctions, triggering a

loss of EC functionality[258, 287]. Also, while not directly tasked with the mainte-

nance of vascular permeability, the breakdown of VE-cadherin connections lead to

decreased regulation of macromolecules into the vessel wall as gaps now exist in the

EC monolayer[95, 229].

In a healthy vessel, the EC monolayer maintains antiatherogenic characteristics, in-

hibiting platelet and inflammatory cell adhesion along the arterial wall, limiting their

invasion into deeper layers of the vessel[5]. Increased arterial inflammation has shown

to be a significant factor in the pathogenesis of IAs and their potential rupture

[54, 139, 302]. Specifically, increased leukocyte and macrophage infiltrates in the

vessel wall give rise to proteases which degrade elastin [79] and trigger the breakdown

of exracellular matrix proteins [11, 188, 333, 339], weakening the strength of the ar-

terial wall. One of the molecules involved in the adherence of inflammatory cells,

impacting their ability to infiltrate into deeper layers of the vessel, is vascular cell

adhesion protein 1 (VCAM-1) [104]. This cell-surface protein allows for the binding

of leukocytes, monocytes or basophils, which trigger alterations to EC shape, aiding

in the migration of such proteins into deeper layers of the artery as the altered shapes

creates gaps in the cellular monolayer [74]. VCAM-1 is shown to have low expression

in laminar, atheroprotective hemodynamic conditions [352], whereas low stressor flow

vortices induce heightened VCAM-1 expression [275].
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When exposed to disturbed hemodynamic flow, the breakdown of cellular physiol-

ogy and altered functionality can result in the EC endoplasmic reticulum losing the

capacity to correctly fold cellular proteins. Instead, stress receptor-bound proteins

are released which signaling cellular death (apoptosis) [215]. One such family of

proteins are cysteine proteases (caspases) [70, 256, 288]. Active (cleaved) caspase-3

degrades multiple cellular proteins and triggers fragmentation of EC DNA, leading to

cellular death[226]. Increased cellular apoptosis exacerbates many of the aforemen-

tioned arterial changes: altered regulation of vessel permeability and reduced ECM

proteins/vessel mechanical strength. In-vitro studies have shown that the prolonged

exposure to vortical flow causes a marked increase of cleaved caspase-3 production

over cells exposed to laminar flow [288].

While such deleterious alterations to cells are imparted by vortical flow, the study

of such patterns is typically reserved to assessing differences between vortical and

laminar flow, with limited focus given to the characteristics of vortices. The study

and understanding of hemodynamic vortices’ on ECs have been facilitated in no small

part by specialized in vitro parallel plate flow chambers (PPFCs). PPFCs allow the

generation of controlled flow patterns onto cultured cells, while having reduced cost

and complexity than in vivo animal models[68, 176, 368]. The inclusion of a ”step-

down" section following a PPFC inlet was found to generate an area of low shear (<

2 dynes/cm2) vortical flow, followed by subsequent areas of flow reattachment and

resumed laminar flow [123]. Such chambers have allowed the investigation of both
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Figure 6.1: CFD simulated example of a ”step-down" of a PPFC. Step-
down area, flow inlet, flow vortex, and area of flow re-attachment identified
with a green, red, blue and yellow arrow respectively. Simulation data was
generated using ANSYS-FLUENT (version 19.0)

disturbed and laminar flow within a single chamber as can be seen in Figure 6.1.

Despite PPFC’s usefulness, they are not without limitations: only one vortex flow

pattern is typically generated and it remains spatially and temporally stable during

experimentation. Yet such highly stable vortices within the hemodynamic environ-

ment are unlikely in part due to the complex geometry of arterial areas known to

generate vortical flow (vasculature curvature and the aneurysmal sac) and the pul-

satile nature of hemodynamic flow rates in the arterial system. Generation of these

relatively simplistic vortices (in PPFCs) in relation to their in-vivo counterparts may

give a constrained understanding of how the characteristics of vortical flow impact

levels of cellular changes. As shown in Chapter 5, the spatiotemporal characteristics

of flow vortices are useful in differentiating ruptured from unruptured IAs, though

that work gave no information regarding to what degree (if any) differing vortex char-

acteristics/stability impart divergent levels of EC change. Assessment of flow vortices

of varying stability onto arterial cells could lead to novel insight of IA pathology.
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For the final aim of this dissertation, a modified PPFC with an array of obstacles

(baffles) introduced along the flow path to disrupt flow and generate multiple areas of

vortices onto cultured ECs was designed. CFD simulated flow within this chamber,

and the CE method developed in Chapter 2 quantified the spatial and temporal sta-

bility of distinct areas of vortical flow. Combining these in-silico and in-vitro methods

allow the application of vortices of known characteristics onto cultured ECs, giving

insight into how such patterns may lead to differing degrees of cellular change(s). This

aim focuses on highlighting how the stability of vortices impact the degree of change

to VE-cadherin, VCAM-1 and cleaved caspase-3 expression in human umbilical vein

endothelial cells (HUVEC). A greater understanding of the impact that hemodynamic

vortices of varied characteristics have on cellular/arterial changes will not only lend

validity towards my earlier work, but also help elucidate novel information concerning

the nature of IA development, growth and rupture.

6.1 Methods

6.1.1 Parallel Plate Flow Chambers

For this work, two chambers were designed: one generating laminar flow and one

disturbed flow.
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Typical PPFCs incorporate two plates spaced at a fixed height to create a flow chan-

nel, with Equation 6.1 governing the relationship between channel geometry, volu-

metric flow rate, and resultant WSS as described by Hochmuth et al. [143].

τ =
6Qµ

WH2
(6.1)

Q as the flow rate, W and H as chamber width and height respectively, µ (in Poise) as

fluid dynamic viscosity, and τ as shear stress (dynes/cm2). The laminar flow chamber

for this works was designed with dimensions of 14.5cm x 2.4cm x 0.045cm for length,

width and height respectively. Based off of these dimensions and Equation 6.1 a flow

rate of 40 ml/min was used to achieve a WSS value of 7.5 dynes/cm2. A recesses was

made in the bottom portion of the chamber to hold a glass slide: 7.5cm x 2.5cm x

0.1cm (l,w,h). This recess was made 5.5cm from the flow inlet, allowing initial flow

irregularities to be “washed out” and corrected to laminar flow before reaching the

cell slide. For the disturbed flow chamber, a design based off an expanded section

chamber [173, 239] and maze channel reactor[124] was utilized. The main body of

the flow chamber consists of an inlet and outlet connector of 0.3cm inner diameter,

and an expanded inner chamber of 7.5 cm x 2.5 cm x 0.4cm (l,w,h). The increased

height of the disturbed flow chamber versus the laminar chamber was specifically

designed to create low WSS throughout the chamber (< 1 dynes/cm2). As WSS

values may impart differing levels of changes to ECs [228], a very low WSS throughout

the chamber was chosen to ensure that disturbed flow characteristics would be the
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main difference between analyzed areas. The chosen inlet flow rate for the disturbed

chamber was set to 26.5 ml/min, allowing for a 15 dynes/cm2 WSS at the inlet based

on Equation 6.2 [80], followed by a sudden reduction in stressors within the chamber,

better mimicking WSS changes in values between the parent vessel and a developed

IA [354].

τ =
32 ∗Q
π ∗D3

(6.2)

Q is the volumetric flow rate (µl/sec), D is the diameter of the inlet (in mm). The

flow chambers were milled out of autoclavable polycarbonate plastic (McMaster-Carr,

product 8574K) by the Michigan Technological University Machine Shop. Diagrams

of the chambers can be seen in Figure 6.2.

The internal baffles required to generate flow vortices within the (disturbed) chamber

were molded out of a bioinert polymeric organosilicon polydimethylsiloxane (PDMS):

(Sylgard R 184, 10:1 w/w base to curing agent). Utilizing PDMS also enabled baffles

to undergo slight deformation when sealing the PPFC, lessening the change of cracking

the cell plate. Four internal baffles of 0.5 x 1.5 x 0.3cm (l,w,h) were created, with each

baffle 1 cm apart and connected by a 0.1cm thick ceiling, bringing the total height of

the baffle structure to match the height of the disturbed chamber.
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Figure 6.2: Diagram of the laminar parallel plate and disturbed flow cham-
ber. Both chambers contain a slide recces in their bottom plate to allow the
placement of a EC-seeded glass slide. The diameter of the inlet and outlet
port of each chamber (and bubble port for the laminar chamber) is 0.3cm ,
while the height of the flow area is 0.045cm and 0.4cm for the laminar and
disturbed flow chamber respectively. A silicone gasket is placed between the
top and bottom plates of (each) chamber to ensure a water tight seal. The
top and bottom plate of each chamber is held together by stainless steel axle
bolts and wing nuts.

6.1.2 Computational Fluid Dynamics

CFD simulations were performed to generate velocity flow data and assess the sta-

bility of vortices within the proposed channel designs. 3D models were created in

OpenSCAD (OpenSCAD-2019.05 x86 64-bit) and saved as STL files. These models

were imported into the ANSYS-FLUENT(Version 19.0) software package and con-

verted into volumetric meshes. The Navier-Stokes equations was numerically solved,

with the simulated fluid considered incompressible, Newtonian, and having properties
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Figure 6.3: Outcomes of simulated flow chambers: flow velocity streamlines
(white lines) andWSS (dynes/cm2) of Laminar and Disturbed flow chambers.
Example is for one time step.

mimicking cell culture medium: 998 kg/m3 density and 0.9 x10−3Pa·s dynamic viscos-

ity. To simulate the flow pattern generated by the peristaltic pump, video was taken

of pump-generated flow through a direct reading flowmeter (Cole-Parmer). Motion

tracking of the flowmeter ball in the video was performed by the Kinovea analytic

software (Kinovea-0.8.15, Joan Charmant & Contrib.) and converted into the volu-

metric flow rate over time. A user defined function for FLUENT was created based off

the calculated temporal volumetric flow rates and used to generate inflow boundary

conditions mimicking the oscillating flow pattern of the peristaltic pump. Flow was

simulated for 3 seconds at 1000 time-steps per second, with 20 equally spaced time

points saved across the final time step for analysis. Outcomes of simulated models

can be seen in Figure 6.3
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Figure 6.4: Simulated flow within the disturbed PPFC. Streamlines (white
lines) and 3D isosurfaces (red) highlighting the areas identified as vortices
using the developed CE method. Time steps 0, 5, 10, and 15 shown.

6.1.3 Quantification of Vortex Spatial Temporal Characteris-

tics

Analysis of the simulated velocity flow patterns within the proposed disturbed cham-

ber was performed prior to any in-vitro experimentation to ensure areas of vortices

with varied spatial and temporal characteristics were generated. Using the CE method

described in Section 2.3, five (5) distinct regions of each simulated chamber were iso-

lated and the vortices in each area were analyzed (Figure 6.4). The TA-DVO value

(as explained in 2.1.4) was calculated for each region and their values are reported in

Table 6.1.
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Flow Area Disturbed FlowTA-DVO±Standard Deviation
Area 1 0.743±0.11
Area 2 0.763±0.05
Area 3 0.625±0.14
Area 4 0.606±0.20
Area 5 0.672±0.12

Table 6.1
Calculated temporally-averaged DVO values from the simulated disturbed
flow chamber. No DVO values were calculated in the laminar chamber

simulation as no vortices were generated.

6.1.4 Cell Culture and Flow Chamber Experiment

Passage 4-5 human umbilical vein endothelial cells (HUVECs: Lonza, Walkersville,

MD), a cell line prominently used in in-vitro studies assessing flow and its impact on

ECs, were seeded at a density of 25,000 cells/cm2 onto a 75x25mm microscope slide

(Fisher Scientific, Waltham, WA). Prior to cell seeding, slides were coated with a 20

µg/mL bovine collagen (Sigma Aldrich, St. Louis, MO) solution prepared in 0.01 M

hydrochloric acid for 2 hr at room temperature. Cells were cultured in endotheilial cell

growth media (EGM, Lonza) which was changed every two days, and were maintained

in a 5% CO2, 20% O2, 37◦C incubator. Upon cells reaching 80% confluence, a slide

was placed into the bottom of a flow chamber, the PDMS baffles were place on top of

the slide (in the disturbed camber), and the top plate is screwed to the bottom plate,

with a silicone gasket between the top and bottom plates to help achieve a water tight

seal. The chamber was attached to a closed-loop system: peristaltic pump, cell culture

media reservoir with a 2nm pore filter for gas exchange, and flow chamber (see Figure
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Figure 6.5: Setup of flow chamber for experimentation. A Masterflex L/S
peristaltic pump (Cole-Parmer, Vernon Hills IL, USA) generated flow in a
closed loop system, drawing cell culture medium out of a reservoir (red circle)
with a 2nm pore filter for gas exchange (white arrow) and into the connected
disturbed flow chamber (blue square) with inserted PDMS walls (green ar-
row) and silicone washer (yellow arrow). Two, 3-way stopcocks were added
pre and post the flow chamber to allow the removal of any bubbles from the
flow system.

6.5). The assembly of the closed loop system was done within a sterile laboratory hood

to limit contamination. Flow experiments were carried out for 12 or 24 hrs in a 37 C◦

incubator with 5% CO2 humidified atmosphere. For cells used as static flow control,

a slide was cultured alongside those used for flow experimentation, and left in the

culture dish for an additional 12 or 24 hours (dependent on experimental time point).

After said time point was reached, the static cultured slide and flow experiment slides

were processed: immunoflourescent staining or extraction and collection of cells (from

culture slide) for analyzing protein concentration..
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6.1.5 Immunofluorescence

The following procedure was followed for the immunoflourescent staining and imaging

of cells. First, the cell slide was removed from the flow chamber post-experiment and

rinsed 3 times with phosphate-buffered saline (PBS). Second, cells were fixed with

4% paraformaldehyde for 25 minutes, and nonspecific binding was blocked with a

1% bovine serum albumin, 0.2% Triton X-100 solution in PBS (blocking buffer) for

30 minutes. Third, slides were either incubated with a cleaved caspase-3 mouse

monocolonal antibody (Cell Signalling 9664S, 1:100 dilution), VE-cadherin rabbit

monoclonal antibody (Cell Signalling 2500S, 1:200 dilution), and-or VCAM-1 mouse

monoclonal antibody (ThermoFisher Scientific MA5-11447, 1:100 dilution) overnight

at 4◦C. Fourth, the slides were rinsed 3 times with blocking buffer and incubated

with goat anti-rabbit IgG Alexa fluor 488 (1:200 dilution) and anti-mouse IgG Alexa

fluor 594 (1:200 dilution) secondary antibodies (R&D Systems Minneapolis MN) for

1 hour at room temperature. Fifth, cellular nuclei was stained with a 4’,6-diamidino-

2-phenylindole (DAPI) solution (1:1000 dilution) for 5 min at room temperature.

Finally, cells were rinsed in PBS 3 times and the slides were mounted with a glass cover

slip and aqueous mounting media. Immunofluorescent images were taken immediately

after mounting with an upright BX51 Olympus epifluorescence microscope. For each

of the five areas of interest, four sub-regions were selected and images were taken for

each antibody at 10x 20x and 60x magnification.
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6.1.6 Quantifying Protein Concentration

Commercial enzyme-linked immunosorbent assay (ELISA) kits (R&D systems) were

used to detect cleaved caspase-3, VE-cadherin, and VCAM-1 in cell supernatant. Af-

ter flow experimentation, the 5 areas of the cell slide were isolated with a glass cutter,

and the separated areas were placed into individual petri dishes. 200µl cell extraction

buffer was applied and cells were scraped off each isolated area. The cell/buffer su-

pernatant was collected into individual microcentrifuge tubes, oscillated for 24 hours

at 4◦C, then stored in a -80◦C freezer till all experiments were completed. Manufac-

turer’s instructions were followed to perform ELISA analysis. Standards were run in

triplicate and samples in duplicate. Optical density absorbance was measured at 450-

570 nm using an absorbance plate reader (VERSAmax microplate reader, Molecular

Devices, San Jose CA, USA). To account for for slight variations in the dimensions

of the isolated areas (due to glass cutting), concentrations were normalized by their

surface area against the ’ideal’ surface area: 375mm2. Measured values were also

normalized by the estimated cell number for each area. As cell counts could not

be directly estimated for the experiments in which cells were collected for ELISA

analysis, cell counts were instead estimated by assessing the number of DAPI-stained

cells in previously collected immunoflourescent images using the ImageJ image pro-

cessing program. For each area, cells were counted and averaged across their four

20x images, and these averages were used as an assumed cell count(s) for subsequent
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experiments per their flow condition: static, laminar, or disturbed. All counts were

normalized to the cells slides in 12-hour static culture. Estimated protein concentra-

tions of samples were determined by interpolation from a four-parameter logistic

standard calibration curve (https://www.aatbio.com/tools/four-parameter-logistic-

4pl-curve-regression-online-calculator). Concentrations were then adjusted for the

supernatant dilution factor (5x) as samples were diluted prior to ELISA analysis to

allow enough supernatant for all tests. Data were presented as fold change against

cells subject to static control for the 12 hour time-point.

6.2 Results

Considering flow conditions within the disturbed flow chamber, Area 1 was markedly

different from the other chamber areas. Due to its proximity to the fluid inlet: higher

areas of WSS (Figure 6.3) and bifurcated flow pattern occurred within this area (as

seen in Figure 6.6). Such characteristics are likely to alter the degree of cellular

changes within the cultured HUVEC monolayer in relation to the other flow areas,

confounding the interpretation of experimental outcomes. Recalling my work in Chap-

ter 5, the application of quantified vortex characteristics was limited to only IAs of a

similar type (bifurcation) and anatomical locale (M1 bifurcation of the MCA) as IA

types/locals have been shown to have differing intraneurysmal flow patterns (Figure

6.6) and rupture rates [93]. For the purposes of this work, cells from Area 1 were not
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Figure 6.6: Differences in type of vortices between Area 1 and the other
areas of the disturbed flow chamber. Area 1 generated a bifurcated vortex
(similar to that of bifurcation IAs), as opposed to non-bifurcated vortices in
the other areas. Non-bifurcated vortices were similar to patterns in sidewall
IAs.

compared alongside the other chamber areas.

Additionally, Area 5 of the disturbed flow chamber was noted as having irregularities

in experimental outcomes. Immunoflourescent imaging of cells exposed to disturbed

flow noted that significant cellular loss was often noted in Area 5. This loss of cells

was not seen across the other areas of the cellular monolayer in the same experiment,

nor did this loss in Area 5 occur across all disturbed flow experiments as seen in

Figure 6.7. Current rationale to the triggers for such (occasional) loss of cells in Area

5 is that it may result from irregularities in flow conditions near the chamber outlet

or weakened adherence of cells towards the outer edge of cultured slides. Weakened

initial adherence coupled with slow WSS vortical patterns may cause cells to detach

at a higher rate at the edge of a culture slide, even when compared to the other end of

the slide (Area 1) with its faster flow rate due to its proximity to flow inlet. Further

work is required to determine the cause(s) of cellular detachment in Area 5. As the
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(a) Area 3 (b) Area 5 (detached) (c) Area 5 (attached)

Figure 6.7: Immunoflourescent staining of cellular nuclei via DAPI (blue)
an distinct areas of the disturbed flow chamber. Areas a) 3 and b) 5 of the
same experiment, with Area 5 showing significant cellular loss. c) Area 5 of
a different experiment, showing significant cellular retention versus b). Scale
bar is 100µm

degree of cellular loss could not be reliably confirmed for experiments in which cells

were collected for ELISA, Area 5 was excluded from analysis for the purposes of this

work.

6.2.1 Morphological Alterations to Cells in Flow

Visual analysis of immunoflourescent images reveal morphological alterations for cells

dependent on their flow conditions can be seen in Figure 6.9A. In static culture

and laminar flow, cells show well-defined cell-cell adhesion complexes (VE-cadherin),

whereas disturbed flow causes significant gaps in cell adhesion as seen in Figure 6.9A.

After 24 hours of flow exposure, slight cellular loss was seen in laminar flow, yet VE-

cadherin still showed aggregation towards cell peripheries and a degree of retention

to the well-connected monolayer. Cells exposed to disturbed flow for 12 hours showed

significant gaps to be seen within the cellular monolayer, with further exacerbation
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after prolonged (24 hour) flow. ECs within healthy areas of the arterial system are also

found to be aligned toward flow directionality, while in atherosclerotic-prone regions,

ECs do not show distinct orientation to flow. To determine cell’s alignment to flow,

the angle between the longest distance across the boundary (Feret’s diameter) of DAPI

stained cell nuclei and the horizontal axis of the image was measured (using ImageJ).

Analysis of images reveal HUVECs exposed to laminar flow were highly oriented to

the direction of flow with 64.5±1.76% of cells having an orientation angle between

-30 and 30deg. Disturbed and static-culture control HUVECs showed no distinct flow

orientation, with 31.4±6.58% and 40.5±3.39% cells (respectively) oriented between -

30 and 30deg (Figure 6.9B). These changes to cellular orientation to flow is mirrored in

previously published work [265, 349]. Additionally, the distinct areas of the disturbed

flow chamber were investigated individually to determine if vortex stability alters the

degree of orientation. Figure 6.8 shows immunoflourescent staining of cells in Areas

1-4 of a disturbed flow experiment and the resultant circular histograms of their

cellular orientations. The normalized entropy value (Equation 2.6) of cell orientation

was calculated to assess the variation of (probable) cellular directionality between

the areas of vortices: higher entropy values contain a greater degree of variation in

cell directions / less distinct orientation. The differing areas of vortical flow where

found to have equivalent normalized entropy values, regardless of vortex stability:

normalized entropy values can be seen in Table 6.2

In addition to alignment towards flow, ECs demonstrate the capability to elongate
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in relation to stressors and flow directionality. Analysis of cellular VE-cadherin in

immunoflourescent images demonstrated that HUVEC’s aspect ratio (ratio of long

axis to short axis) in laminar flow was significantly increased versus those exposed to

disturbed flow: t-test p-value < 0.05 as is seen in Figure 6.9 C. In comparison, cells

exposed to disturbed flow showed similar aspect ratios to HUVEC in static culture.

This was expected as the lack of uniform flow directionality and low shear stress in

disturbed flow minimizes the ability of cells to elongate.

Figure 6.8: Orientation of HUVEC cells exposed to flow vortices of vary-
ing stability (TA-DVO) in the designed PPFC. Immunoflourescent staining
of VE-cadherin (green) and DAPI (blue) of four (4) distinct areas of flow
vortices and their resultant circular histogram of cell nuclei orientation to
horizontal axis of images.
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Flow Area: TA-DVO Normalized Entropy
Area 1: 0.74 0.967
Area 2: 0.76 0.976
Area 3: 0.62 0.971
Area 4: 0.60 0.973

Table 6.2
Normalized entropy of cellular angle (in relation to the horizontal axis of
immunoflourescent images) of HUVECs in 4 areas of disturbed flow with

varying temporal stability (TA-DVO).

Figure 6.9: Morphological analysis of changes to HUVEC cells in vortex
flow. A) Immunoflourescent staining of cells in flow conditions: (blue) DAPI,
(green) VE-cadherin, (red) VCAM-1, (yellow) scale bar at 100nm. B) Cir-
cular histogram of cell angle in relation to flow direction. Histograms are
constrained between -90 and 90 ◦. C) Comparative boxplots of cellular as-
pect ratios: * indicates statistical significance, p-value < 0.05.

6.2.2 Protein Concentration versus Flow Conditions

HUVECs subjected to laminar and disturbed flow were evaluated for their fold change

of VE-cadherin, VCAM-1, and cleaved caspase-3 compared to cells in static culture.

Outcomes of this analysis can be seen in Figure 6.10

VE-cadherin is of vital importance for the maintenance and control of the endothelial

cell monolayer via cell-cell adherence, while also aiding in the maintenance vascu-

lar permeability. In this work, expression of VE-cadherin was shown to decrease

when exposed to laminar flow in relation to static control. An averaged 0.33±0.12

fold reduction was seen in EC VE-cadherin after 12 hours of laminar flow exposure,

whereas exposure for 24 hours resulted in continued and statistically significant (p-

value < 0.05) reductions in comparison to its 12 hour counterpart: 0.75±0.07 fold
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Figure 6.10: Effects of laminar and disturbed upon VE-cadherin, VCAM-
1, and cleaved caspase-3 synthesis in HUVEC. Confluent monolayers of HU-
VECs were exposed for flow for 12 or 24 hrs and estimated protein concen-
trations were assessed by ELISA kits. Changes were expressed as fold change
in relation to the static flow control slides used for the 12 hour experiments:
* indicates p≤0.05 (One-way ANOVA with Tukey posthoc analysis).

average reduction. Differences were also seen in cellular VE-cadherin expression af-

ter 12 hours of disturbed flow exposure: a slight (0.09±0.04) average fold increase

followed by a marked reduction in its expression post-24 hour flow (0.67±0.13 av-

erage fold decrease). The correlation to this degree of change in relation to vortex

stability showed a negative trend, with higher stability relating to a greater decrease
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in VE-cadherin after 24 hours of disturbed flow exposure, though this trend did not

generate statistical significance: -0.848 correlation coefficient,p-value = 0.355.

Under pathological conditions, ECs show marked expression of surface molecules

which mediate the adhesion of inflammatory molecules such as lymphocyte, mono-

cyte, eosinophil and basophil adhesion [22, 69]. Heightened inflammatory protein

accumulation in the artery can lead to the degradation of the mechanical strength of

the vessel wall via increased protease expression which disrupts the internal elastic

lamina and collagen matrix of the arterial wall and promotes vSMC proliferation from

the media layer into the arterial neointima (thickened layer of arterial intima) [114].

Post-laminar flow exposure, HUVECs showed a reduction of the inflammatory adhe-

sion molecule VCAM-1 in relation to cells in static culture, with a greater reduction

as a function of time: 0.266±0.16 and 0.72±0.08 average fold decrease for 12 and

24 hours respectively. Hemodynamic vortices, deemed atheropromotive [68], showed

significant increases in VCAM-1 expression after 12 hours of flow: 1.63±0.8 average

fold increase. A slight positive trend for the degree of VCAM-1 in relation to flow

stability was seen after 12 hours of disturbed flow exposure. Yet due to only slight

reductions occurring between Area 2 and 3, no statistical significance was noted: 0.64

correlation coefficient, p-value = 0.558. A reduction in VCAM-1 expression was seen

in disturbed flow post-24 flow exposure. While an averaged 0.06±0.09 fold decrease

of VCAM-1 in relation to static culture controls was seen in the disturbed flow after

24 hours of disturbed flow exposure, a degree of VCAM-1 change was noted as a
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function of vortex stability. Area 2 with a TA-DVO of 0.76 showed slight increases in

VCAM-1 (0.04±0.17 fold increase) as opposed to the lower vortex stability of Areas

3 and 4 which showed reductions in VCAM-1 (0.1±0.27 and 0.14±0.45 fold decrease

respectively). These changes to VCAM-1 expression after 24 hours of disturbed flow

exposure showed a positive trend in relation to vortex stability: 0.99 correlation co-

efficient, p-value = 0.06.

Vascular cells exposed to pathological hemodynamic conditions for prolonged periods

of time exhibit a breakdown of cellular functionality [142]. Disturbed flow induces

endoplasmic reticulum stress which alters the proper folding of cellular proteins, with

the accumulation of misfolded proteins triggering the release of apoptotic signals

such as cleaved caspase-3 [181]. For HUVECs undergoing physiologic laminar flow

for 12 hours, a slight reduction in cleaved caspase-3 expression was found in relation

to static control cells: 0.19±0.03 average fold reduction. The continuation of lam-

inar flow conditions (24 hours) showed further reductions in the expression of this

apoptotic signaling protein, though these changes were not found to be statistically

significant: 0.43±0.1 fold decrease in relation to 12 hour static control. When ex-

posed to disturbed flow, a marked increased in the expression of cleaved caspase-3 was

noted. After 12 hours disturbed flow exposure, a 0.72±0.32 averaged fold increase of

cleaved caspase-3 occurred, with a larger 1.27±1.13 averaged fold increase after 24

hours of flow. Assessing the correlation of changes to this apoptotic signal to vortex
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stability noted a positive trend after 12 hours of flow though this trend was not sta-

tistically significant: correlation coefficients of 0.74 (p-value = 0.47). Thought after

24 hours of flow exposure, this trend became more prominent and was shown to be

statistically significant: correlation coefficients of 0.99 (p-value <0.05) for 12 and 24

hours respectively. Yet closer inspection of cleaved caspase-3 expression versus vortex

stability showed that after 24 hour disturbed flow exposure Area 2 showed a marked

increase over their 12 hour counterpart ( 1.27±0.21 vs 2.56±0.46, 12 vs 24 hours),

whereas Area 3 and 4 had slight reductions after 24 hours compared with their 12

hour counterparts (1.1±0.25 vs 0.78±0.13 for Area 3 and 0.53±0.23 vs 0.47±0.08 for

Area 4, 12 vs 24 hours).

While data from Area 1 of the disturbed flow chamber was not taken into account

for statistical comparison with the other areas, similar trends in the expression of

VCAM-1 and cleaved caspase-3 were seen between 12 and 24 hours as to what oc-

curred in Area 2 of disturbed flow. The expression of VCAM-1 in Area 1 after 24

hours of disturbed flow exposure, while still showing marked reductions in relation

to its 12 hour counterpart, maintained an overall increase in relation to the 12 hour

static control: 1.5±1.06 vs 0.12±0.21 for 12 and 24 hours respectively. Additionally,

an increase in cleaved caspase-3 was seen in Area 1 from 12 to 24 hours akin to what

occurred in Area 2, while this trend was not seen in Areas 3 and 4 which had reduc-

tion in cleaved caspase-3 from 12 to 24 hours. It is theorized that these differences in

outcomes (Areas 1 and 2 vs Areas 3 and 4) may be driven their differences in vortex
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Protein: Exposure Time Correlation Coefficient p-value
VE-cadherin: 12 Hours 0.412 0.729
VE-cadherin: 24 Hours -0.848 0.355
VCAM-1: 12 Hours 0.642 0.558
VCAM-1: 24 Hours 0.994 0.0610
Cas-3: 12 Hours 0.739 0.470
Cas-3: 24 Hours 0.999 0.0213

Table 6.3
(Pearson’s) correlation coefficient of protein concentration in cells exposed
to disturbed flow (only Areas 2-4) versus the stability of impacting vortices.

stability. Area 1 and 2 were noted as having a higher degree of vortex stability, 0.74

and 0.76 respectively, versus the lower stability of Areas 3 and 4 at 0.62 and 0.60.

Indicating that a higher degree of vortex stability may exacerbate the expression of

inflammatory markers and apoptotic signaling, and prolong their heightened expres-

sion over less stable vortices. Further analysis of alterations to HUVECs in bifurcated

vortices of varied stability would need be performed to assess if this trend persists in

such flow patterns.

6.3 Discussion

Swirling hemodynamic flow vortices are associated with degraded vascular physi-

ology via increased inflammation, reduced regulation of macromolecule permeabil-

ity, and weakened vessel mechanical strength, conditions indicative of the develop-

ment and rupture of IAs. As the endothelial monolayer is tasked with the regu-

lation of macromolecule permeability and triggering cellular signalling cascades in

relation to hemodynamic conditions, alterations to these cells are often studied in
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their relation to their role in IA pathology. While studies have highlighted the

detrimental impact that flow vortices have on EC health, knowledge concerning the

spatial and temporal characteristics of such patterns and how they may alter the de-

gree of EC change is often overlooked. In reference to my work in Chapter 5, the

assessment of vortex characteristics improved the differentiation of unrutpured and

ruptured IAs, yet gave no insight into the specific underlying cellular/arterial changes

which result from such characteristics. Therefore, as a means to broaden the under-

standing of IA pathology, alterations to ECs under vortices of varying conditions was

studied. This work evaluated the impact that flow vortex stability has on HUVEC

changes, primarily the expression of VE-cadherin, VCAM-1 and cleaved caspase-3.

While the laminar flow conditions applied to HUVECs in this study resulted in their

alignment with flow directionality, a decrease in the expression of VE-cadherin was

seen when compared with cells in static culture. Even when accounting for cell

count/possible cellular loss, this reduction became more pronounced with longer flow

exposure (24 hours). When exposed to disturbed flow patterns for 12 hours, HUVEC

cells slowed slight increases to VE-cadherin expression compared to static controls,

yet prolonged exposure to detrimental flow conditions caused a significant (p=0.002)

decrease in expression even after accounting for estimated cellular loss/detachment.

Additionally, a trend was seen in the degree of this degradation in relation to vortex

stability, with more stable vortices leading to a larger reduction in this protein after

24 hours though such differences were not statistically significant. It is worth noting,

140



that regardless of flow conditions, the dampening of VE-cadherin between 12 and 24

hours may be due to a time-delayed response via a needed down-regulation of cell-cell

adhesion to allow for cellular elongation and reorientation to flow conditions. In a a

study by Rami et al. VE-cadherin fluorescent intensity was shown to down-regulate

in the initial exposure to flow and can take upwards of 48 hours post-flow exposure

to be of a greater value than static control counterparts [273]. Experimentation with

longer flow exposure would help to bolster trends (concerning VE-cadherin) seen in

this work.

As inflammation is known to play a significant role in IA formation, assessing the im-

pact flow characteristics have on the expression of inflammatory adhesion molecules

can improve the understanding of IA pathology. When exposed to laminar flow at

7.5 dynes/cm2, HUVECs showed a reduction in the inflammatory adhesion molecule

VCAM-1, a molecule known to be elevated in aneurysmal tissue [104, 294]. Prolonged

exposure to laminar flow conditions, from 12 to 24 hours, showed a statistically sig-

nificant reduction in VCAM-1 (p=0.013). Such reductions were expected due to the

atheroprotective nature of laminar flow concerning vascular cells [33]. The assess-

ment of VCAM-1 in relation to disturbed flow conditions after 12 hours showed a

significant increase when compared to cells in both static culture and laminar flow.

In addition, a trend was seen when comparing VCAM-1 and the level of vortex sta-

bility when comparing areas 2, 3, and 4 of the disturbed chamber. Increased vortex

stability coincided with a higher expression of this inflammatory adhesion molecule
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after 12 hours of flow exposure, indicating that a more stable/stagnant flow vortex

exacerbates inflammatory conditions though this trend was not found to be statisti-

cally significant and requires additional experimentation for confirmation. In terms

of prolonged exposure to vortical flow, a significant reduction in VCAM-1 expression

overall was noted after 24 hours compared to 12 hours. The degree of this reduction

was seen to relate to vortex stability, with the greatest degree of VCAM-1 depression

seen in Areas 3 and 4 of lower vortex stability, even showing a slight fold-decrease

in expression than cells in the 12 hour static culture control. Meanwhile, cells ex-

posed to vortices of higher stability in Area 2 for 24 hours, while still having reduced

VCAM-1 expression in relation to their 12 hour counterparts, had a greater degree

of expression than those in lower vortex stability (Areas 3 and 4). While reduc-

tions in inflammatory markers have been shown to reduce as a function of time after

a degree of cellular damage [201], data from this study suggests that highly stable

vortices may prolong the expression of this protein, whereas less stable vortices may

have a reduced period of heightened VCAM-1 expression. Continued study with both

additional flow experiments and longer time points may help bolster seen trends of

inflammatory adhesion protein expression in relation to vortex stability.

The breakdown of EC functionality as a result of disturbed hemodynamic flow pat-

terns is known to trigger cellular apoptosis [158, 160], which is elevated in areas of

vessel remodeling [100, 216, 391] and IAs [127, 160]. Excessive cellular apoptosis

exacerbates the aforementioned changes indicative of IA development and possible
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rupture: alterations in macromolecule permeability due to degraded EC monolayer,

increased infiltration of inflammatory proteins into the vessel media, and a breakdown

of the mechanical characteristics of the vessel wall. Having a better understanding

of the degree of cellular death in relation to hemodyanmic conditions within the

aneurysmal sac could help improve clinical assessment of IA rupture risk. Similar to

the atheroprotective nature of laminar flow, the apoptotic signal cleaved caspase-3

was shown to be down-regulated for HUVECs in relation to static culture control.

Prolonged exposure to laminar flow (24 hours), showed further reduction of this apo-

totic signal in relation to 12 hour static control cells. Similar to VCAM-1 expression

in disturbed flow, cleaved caspase-3 showed a marked increased in relation to static

cultured control. When exposed disturbed flow for 12 hours, a statistically significant

difference was seen between Area 2 and 4, and Areas 3 and 4. In these areas, greater

vortex stability was related to elevated cleaved caspase-3, though the differences be-

tween Area 2 and 3 was not found to be statistically significant. It is worth noting

that while cleaved caspase-3 was still found to be elevated in areas of disturbed flow

after 24 hours in relation to HUVECs in static control, expressions in Areas 3 and 4

were lower than their 12 hour counterparts, while Area 2 showed a marked increase.

As previously noted, the flow vortex in Area 2 had the highest level of stability within

the flow chamber (0.76), whereas Areas 3 and 4 we markedly lower at 0.62 and 0.60

respectively. Such a difference in outcomes indicate that a stability ’threshold’ may
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exist which leads to exacerbated cleaved caspase-3 production over a longer time pe-

riod. While cells analyzed from Area 1 are excluded from comparisons to Areas 2, 3,

and 4 due to the differing nature of its flow conditions, a similar pattern of cleaved

caspase-3 increase between 12 and 24 hours was seen in this area (with a TA-DVO

value of 0.72). This similar trend of increased cleaved caspase-3 in Area 1 and 2

bolster this theory that heightened vortex stability may trigger increased expression

of this apoptotic signal over a longer period of time then less stable vortices.

6.4 Conclusion

Recent studies into hemodynamic conditions and their impact on IA development

and rupture indicate that disturbed blood flow creates a proatherogenic in the cere-

bral arterial system: degraded vascular permeability by down-regulation of cell-cell

adhesion molecules, and increased expression of inflammatory adhesion markers.

Significant alterations to arterial cells can induce cellular apoptosis, triggering fur-

ther breakdown of cellular/arterial functionality, degrading the overall mechanical

strength of the arterial wall. In the realm of computational simulation alongside

PPFCs, based on literature analyzed, this is the first study attempt to quantify the

spatial and temporal stability of vortices within a modified PPFC and relate these

levels to differing levels cellular changes. The initial data provided from this work

showes that vortices of greater spatial and temporal stability may worsen alterations

to ECs than more unstable flow patterns. While this work is still in its early stages,
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it signifies the importance of continued analysis of complex flow patterns of varied

characteristics to further understand the impact that hemodyanamic conditions have

on IA development and possible rupture. While this work indicates that heightened

vortex stability is linked with heightened levels of pathologic cellular changes, con-

tinued application these methods should be applied to assessing changes to a broader

range of cellular proteins, and further modified PPFCs capable of creating differing

vortex characteristics should be utilized to further understand cellular alterations in

disturbed flow.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Assessment of the hemodynamic environment has shown to be beneficial in identi-

fying conditions that promote the development and potential rupture of IAs. Yet

a significant portion of this research focuses solely on the near-wall shear stressors

(WSS) within arteries or a developed IA, overlooking bulk flow patterns and how their

characteristics may impact this arterial pathology. The foci of this dissertation were

to (1) develop a novel method for the identification of swirling flow patterns (vortices)

within the bulk arterial flow, (2) determine if quantifying and analyzing the spatial

and temporal characteristics of vortices can be utilized to improve the understand-

ing of IAs and (3) unravel the mechanistic links between swirling flow patterns and

changes observed in the endothelium. In the first aim of this work (Chapter 2) a
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method to both identify vortices and quantify their spatial and temporal character-

istics (i.e: size and stability) was developed using aspects of informational entropy.

This Combined Entropy method was found be to be better suited for the study of

vortices within the bulk flow of IAs than methods solely reliant on only identifying the

center-most critical point of vortex patterns. The CE method was more robust against

varying data quality (resolution), as well as identifying a broader area of the vortical

pattern(s) as opposed to vortices identified using critical point methods. Utilizing

this developed method, the second Aim (Chapter 3) of this dissertation showed that

the addition of quantified vortex characteristics alongside the assessment of near-wall

WSS improved the strength of statistical predictive models to determine areas of IA

development. The third Aim (Chapter 4) of this dissertation, showed that the surgical

repair of one IA may elicit significant hemodynamic alterations onto remaining IAs

in a closely-spaced, multiple IA system. In particular, alterations to hemodynamic

vortex stability were identified using the developed CE method, with such changes

being otherwise overlooked without the proper assessment of bulk-flow vortices. Clin-

icians may weigh such alterations in flow conditions in relation to the risks they pose

to patient health when deciding patient treatment options. The fourth Aim of this

work (Chapter 5) found that relying on both IA/arterial geometric characteristics

and WSS metrics have significant limitations when attempting to differentiate rup-

tured from unruptured IAs. Incorporating the spatial and temporal characteristics of

flow vortices within the IA sac alongside (often used) IA geometric and WSS metrics
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improved the accuracy of predictive models, giving new insight into the conditions

that may impact IA rupture. In the final aim of this work, Chapter 6, vortices of

varied characteristics were introduced onto cultured vascular cells utilizing a modified

parallel plate flow chamber capable of creating distinct areas of swirling flow. This

work found that vortices of increased spatial and temporal stability tended to trigger

worsening alterations to cells versus cells exposed to more unstable vortices: increased

expression of the inflammatory adhesion protein VCAM-1, and the apoptosis signal

cleaved caspase-3 in stable vortices versus their unstable counterparts. Such findings

help understand the alterations to the cellular environment that occur due to vortices

of varied characteristics and how such vortices may play a role in IA pathology.

7.2 Future work

Collectively, my dissertation research has shown that the identification of hemody-

namic vortices and quantification of their spatial and temporal characteristics im-

prove the understanding of conditions indicative of intracranial aneurysm pathology.

However, the body of work presented here is not meant as the culmination of this

topic. The majority of the work conducted gives credence to the needed continued

assessment of the vortical flow characteristics in this arterial pathology.

Of primary interest for future work is the application of the developed method of

vortex identification/quantification onto a broader range of aneurysm types and lo-

cales. In this current work, analysis of hemodynamic patters was limited to the vessels
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and/or aneurysms of either the internal carotid artery as in Chapters 2, 3, and 4 or

middle cerebral artery as in Chapter 5. In addition to extending the techniques devel-

oped into other areas of the human body, further improvements need to be performed

via the assessment of clinically measured flow data. A significant degree of analysis

in this work, while performed on patient-specific vascular structures, flow data itself

was generated utilizing generalized human flow waveforms. While it is possible to

gain insight into the impact of flow characteristics on IAs using such data, reliance on

generalized waveforms may cause a restrictive view of vortex characteristics within

the vasculature. Especially in the case of Chapter 5, patient flow characteristics can

vary based on health factors (e.g. heart rates), and these changes could alter flow

conditions indicative of aneurysm rupture. Future application of the developed vortex

analysis technique onto clinically-derived patient flow data should be seen as a high

priority to better understand the specific conditions that led to a patient’s aneurysm

development/rupture.

Additionally, while findings in Chapter 6 showed vortices of varying stability impart

differing levels of cellular changes (to cultured HUVECs), this was only analyzed for

a limited number of proteins and for only two chosen time points. A broad array of

cellular proteins are thought to play a role in the development and possible rupture

of IAs, stressing the need to further expand upon work of this nature. Also, future

variations to PPFC chamber (and baffle) design should be explored as to generate

differing vortex characteristics onto cultured cells, giving further insight into how
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vortex patterns impact IA pathology.
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Appendix A

Statistics: Logistic Regression

In logistic regression, there exists an input-output dataset (X,Y) ∈ XxY with an

unknown probability distribution P. The goal is to find a function fn : X → Y , that

is determined using a training set (X1, Y1,...,(Xn, Yn) of n random pairs distributed

as (X,Y). A desirable solution of f n is one that, given a new data-point x ∈ X, the

resultant f n(x) is an accurate prediction of the true output y ∈ Y . This desired

outcome not only relies on the chosen function, but also of the selecting of relevant

variables that are capable of achieving desired predictive accuracy. For models, it is

often preferred to find the function that achieves the desired accuracy while using the

minimal amount of variables required: i.e a parsimonious model. Brute-force methods

of testing all variable combinations becomes increasingly unviable, especially when

the number of variables in a dataset is larger than the number of n data points

(cases) available for analysis. One type of methodology to determine a desired model

is through the use of sparsity-based regularization methods [152, 329, 330, 394]
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A.1 Multiple Logistic Regression

Multiple logistic regression (MLR) analysis looks both to estimate the odds of a

dichotomous outcome occurring, and to determine the impact of an individual variable

(covariate) in relation to the other covariates in a model. The probability of an

outcome occurring in MLR can be calculated as such:

p̂ =
exp(b0 + b1X1 + b2X2 + ...+ bpXp)

1 + exp(b0 + b1X1 + b2X2 + ...+ bpXp)
(A.1)

p̂ being the probability of the desired outcome, X1 through Xp as the individual

dependent variables applied to the model, and b1 to bp being each variable’s (respec-

tive) regression coefficients. To determine the expected log odds ratios of the model’s

variables, the logit function of the above equation can be calculated:

logit[p̂] = ln[
p̂

1− p̂
]

= ln

[ exp(b0+b1X1+b2X2+...+bpXp)

1+exp(b0+b1X1+b2X2+...+bpXp)

1− exp(b0+b1X1+b2X2+...+bpXp)

1+exp(b0+b1X1+b2X2+...+bpXp)

]

= ln

[ exp(b0+b1X1+b2X2+...+bpXp

1+exp(b0+b1X1+b2X2+...+bpXp

1
1+exp(b0+b1X1+b2X2+...+bpXp

]

= ln[exp(b0 + b1X1 + b2X2 + ...+ bpXp]

= b0 + b1X1 + b2X2 + ...+ bpXp

(A.2)

Taking the logit of the desired outcome’s probability, transforms the occurrence of

the event given Xs into a simplified linear function.
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For each variable added to a regression model, the resultant R2 (coefficient of mul-

tiple determination) may increase, indicating an improved fit of the data. However

applying a large number of variables to a predictive model may result in over-fitting

without a significantly large dataset: large p, small n paradigm. In such an event,

the R2 values, regression coefficients, and any statistical significance (p-values) de-

termined may be misleading. To reduce the initial choices of variables in assessed

predictive models, the correlation between variables are determined by:

rjk =
sjk
sjsk

=

∑n
i=1(xij − xj)(xik − xk)√∑n

i=1(xij − xj)2
√∑n

i=1(xik − xk)2
(A.3)

with r as the Pearson correlation coefficient between variables xj and xk, n as the

sample size, and x is a variable sample mean. Correlations between the variables are

often displayed via a correlation table:

R =



1 r12 r13 . . . r1p

r21 1 r23 . . . r2p

r31 r32 1 . . . r3p

...
...

... . . . . . .

rp1 rp2 rp3 . . . 1


Initial correlation analysis of all available variables is performed to eliminate highly

correlated variables from analysis: i.e aneurysm volume and surface area are highly

correlated so surface area could be removed from analysis.
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From the remaining variables, stepwise MLR determines the parsimonious model. In

stepwise regression, linear regression is first performed for each variable one at a time,

and the variable with the highest R2 is kept for the model. Next, a multiple regression

step is performed with the kept variable and each remaining variable. The variable

with the largest increase in R2, if the p value of the R2 is below a desired cuttoff

(<0.05), is added to the model. The calculation of the p value of an increase in R2

resulting from the increasing of X variable(s) from a to b is as follows:

pab =
(R2

b −R2
a)/(b− a)

(1−R2
b)/(n− b− 1)

(A.4)

with the total sample size n.

Each time a new variable is added to the model, the impact of removing any of the

other variables (already added to the model) on outcomes is tested. The chosen

(removed) variable is excluded from the model if it does not make R2 significantly

worse. This process is continued till adding any new variables does not increase R2

and removing any variable does not significantly decrease R2

In the event that all of the independent variables in the model are completely uncor-

related with each other, the interpretation of coefficients are as such:

OR = exp(b1)
z (A.5)

Where z is the number of unit changes for a variable X, and OR is the odds ratio

230



resultant from said change. When the variables are not uncorrelated, theOR = expzb1

is expressed as the change of unit z for a variable adjusted in relation to the impacts of

the other variables in the model. This stresses the need to assess collinearity between

variables prior to model assessment.

A.1.1 Reciever Operator Characterisitics

To assess the diagnostic ability of predictive model(s), a receiver operating character-

istic curve (ROC) is deployed [134]. To determine the overall predictive strength of

a model, a ROC curve assesses a model’s predictive true positive rate (TPR) against

its false positive rate (FPR) (Equation A.6) as a discrimination threshold is varied

as a means to determine overall predictive strength.

TPR =
ΣTruePositive

ΣConditionPositive

FPR =
ΣFalsePositive

ΣConditionNegative

FNR =
ΣFalseNegative

ΣConditionPositive

Specificity =
ΣTrueNegative

ΣConditionNegative

(A.6)

When dealing with a binary classification, the predictive test measure for each in-

stance is denoted by a continuous random variable (x). Given a desired threshold

(T), each instance is positive if x>T and negative if x<T. Setting the probability

distribution functions of the positive and negative values of x to fp(x) and fn(x) re-

spectively.

231



TPR(T ) =

∫ ∞
T

fp(x)dx (A.7)

and the FNR as:

FPR(T ) = 1−
∫ ∞
T

fn(x)dx (A.8)

The ROC curve is generated by plotting TPR(T) against FPR(T) parametrically,

varying across T, or as a plot of:

ROC(T ) = 1− fp(f−1n (1− T )) (A.9)

over T from [0,1] where fp-1(1-T) = inf

Comparing the resultant ROC curves provides the selection of the desired model

based off of varying predictive accuracy. To quantify the predictive accuracy, the area

under the curve (AUC) of the ROC curve is calculated, as it equals the probability of

a classifier ranking a positive instance higher than a negative instance (both chosen

at random).

A =

∫ −∞
∞

TPR(T )FPR′(T )dT

=

∫ ∞
−∞

∫ ∞
−∞

I(T ′ > T )f1(T
′)f0(T )dT ′dT = P (X1 > X0)

(A.10)

The initial integral has reversed boundaries due to larger T values having a lower

value on the x-axis.
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Appendix B

Statistics: Support Vector Machine

Support-vector machine (SVM) is a supervised machine learning method utilizing

algorithms to analyze classification data for regression analysis.

Formally, a given training dataset has the following condition:

(x1, y1), ..., (xn, yn), ~xi ∈ Rdandyi ∈ (−1,+1) (B.1)

where ~xi and yi are a (feature) vector representing prediction parameters and a class

label (i.e. unruptured[-1] vs. ruptured[1]) for the ith case. The goal of SVM is

to decide which class a given data point should be in by viewing a data point as

a dimensional vector, and if such points can be separated with a (p-1)-dimensional

hyperplane. The hyperplane can be written as the set of points ~x, with ~w · ~x− b = 0,

where ~w is the normal vector to the hyperplane and b
||~w|| is the offset of the hyperplane

from the origin along ~w. Optimization of the hyperplane is obtained by finding the
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minimum of:

φ(w) =
1

2
||w2||subjectyi(w · xi + b) ≥ 1,∀(xi, yi) (B.2)

The yi(w · xi + b) ≥ 1 constraint means the predicted outcome isolated by the hyper-

plane is on the same side with the known rupture status.

The mapping of non-linear data to a hyperplane is done via a kernel function, defining

an inner product in higher dimensional space:

f(x) = sgn(
Ns∑
i=1

aiyiK(~xi, ~x) + b) (B.3)

The kernel function allows the calculation of the scalar product between data points

in high dimensional space without the need for directly calculating the mapping from

the input space to higher-dimensional space. A kernel function is valid if there is a

feature mapping φ in which:

K(~xi, ~xj) = φ(~xi · ~xj) (B.4)

B.0.1 SVM Kernel Selection

Four popular kernels are often used in the training of models and prediction outcomes:

linear, polynomial, radial basis, and sigmoid. These four kernels were tested to assess

their impact on model accuracy (for this work). Fig.B.1 shows the performance
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outcome of models (resultant AUC values) for each kernel. Each test was performed

using all available variables and 10-fold cross-validation was performed to determine

the idea gamma and cost value for each function. Of the tested functions, the radial

basis function kernel resulted in the strongest outcomes. The radial basis function is

calculated as:

KRBF (x, y, z) = exp(−γ||x− y||2) : γ =
1

2σ
(B.5)

With ||x − y||2 as the squared Euclidean distance between two feature vectors. A

low γ results in a low decision boundary (for the hyperplane) creating broad decision

regions. The cost parameter of SVM acts as a penalty for data point misclassification:

a small cost weakens the impact of misclassified data (high bias, low variance) whereas

a large cost results in a low bias, high variance in decision parameters.
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Figure B.1: Outcome of predictive model (using the geomet-
ric+WSS+vortex model) generated under varying SVM kernels: linear, poly-
nomial, radial basis function, and sigmoid. Cross-validation determined ideal
gamma and cost values for models. The AUC for each kernel was: 0.71, 0.68,
0.78 and 0.59 respectively.
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