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4.1 Possible cases for M̃Ṽ = (α, β, γ) . . . . . . . . . . . . . . . . . . . . 91

xiii





Acknowledgments

First and foremost I thank my Savior, the Lord Jesus Christ, for giving me the ability

to complete this dissertation.

For the LORD gives wisdom;

from his mouth come knowledge and understanding.

(Proverbs 2:6)

I am particularly grateful to my advisor, Fabrizio Zanello, for all of his guidance,

encouragement and patience.

Thanks to my committee members: William Keith, Bryan Freyberg and Vladimir

Tonchev. Professor Keith in particular gave very helpful advice during the many

meetings where we discussed some of the topics of this dissertation.

I am indebted to Jason Gregersen for using his Mathematica expertise to thoroughly

and painstakingly verify the code used in the proof of Lemma 4.3.18. I also appreciate

Jason’s mentorship over the past several years.

Samuel Judge also kindly checked this Mathematica code. However, I am grateful

even more for Sam’s friendship and support throughout my time at MTU.

xv



A very special thanks to my incredible wife, Casey, for her unwavering support and

her constant encouragement.

Thanks to my children, Levi, Eric and Tessa, for giving me perspective on what really

matters.

I am grateful to my parents, Dave and Cathy (and Paul and Cindy), whose support

started long before my time as a graduate student.

I would like to also express my gratitude to...

Mark Gockenbach, who provided wise career guidance as well as generous op-

portunities for professional growth at MTU.

Ann Humes, for her support and advice regarding my teaching duties.

Jeanne Meyers and Kim Puuri, for helping with the logistics of graduate school

life.

David Brown and the rest of my professors from BJU, for their continued interest

in my academic success.

My uncle, Tim Endean, for the encouragement he often gave during my graduate

work.

Tom Kestner, who kindly read a draft of this dissertation and suggested many

xvi



helpful corrections.

The many supportive friends I made at MTU, who are too numerous to list.

My church family, for their prayers and encouragement.

xvii





Abstract

This dissertation focuses on problems related to integer partitions under various finite-

ness restrictions. Much of our work involves the collection of partitions fitting inside

a fixed partition λ, and the associated generating function Gλ.

In Chapter 2, we discuss the flawlessness of such generating functions, as proved by

Pouzet using the Multicolor Theorem [25, 26]. We give novel applications of the Mul-

ticolor Theorem to re-prove flawlessness of pure O-sequences, and show original flaw-

lessness results for other combinatorial sequences. We also present a linear-algebraic

generalization of the Multicolor Theorem that may have far-reaching applications.

In Chapter 3, we extend a technique due to Stanton [37] to prove unimodality of Gλ

for certain infinite families of partitions λ in 5 and 6 parts.

Our most substantial work is presented in Chapter 4, where we initiate the study of

the novel poset Pn = {Gλ ∣λ ⊢ n}. We describe some general structural properties of

this poset. Of greatest significance is our result that two “balancing” operations on

the principal hooks of a partition λ produce generating functions at least as large

as Gλ (in the ordering of Pn), hereby imposing a strong necessary condition on the

maxima of Pn. We conjecture an asymptotic value of ∣Pn∣, and show that determining

∣Pn∣ exactly appears to be nontrivial. This we demonstrate by providing an infinite

xix



family of non-conjugate pairs of partitions that have the same generating function.

Finally, we prove asymptotic results on the number of maxima in this poset.

xx



Chapter 1

Introduction

1.1 Partitions

An integer partition of a positive integer n is a non-increasing sequence of positive

integers that sums to n. For example, 4, 2, 1, 1 is a partition of 8 since 4+2+1+1 = 8.

The Swiss mathematician Leonhard Euler was the first to begin a systematic study of

partitions, although some problems regarding partitions had been considered before

Euler [3]. Despite the fact that partitions are, at face value, a simple number-theoretic

concept, their study quickly developed into a rich research area of its own with deep

ties to other branches of mathematics such as combinatorics, algebra and analysis.

We refer the reader to [3, 4, 11, 33] for fuller historical details and the basics of the
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theory of partitions. In this dissertation, we will give some new results on partitions

subject to various finiteness restrictions.

We begin by providing some definitions and notation used throughout the work. We

denote the positive integers by P, and for n ∈ P, [n] denotes the set {1, 2, . . . , n}. We

use the vector notation λ = (λ1, λ2, . . . , λκ) to represent a partition of a number n ∈ P,

where λ1 ≥ λ2 ≥ ⋯ ≥ λκ ≥ 1 and λ1 + λ2 + . . . + λκ = n. For example, the partitions of 1

through 5 are given in the table below.

Table 1.1
Partitions of 1 through 5

n Partitions of n

1 (1)

2 (2), (1, 1)

3 (3), (2, 1), (1, 1, 1)

4 (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

5 (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

Alternatively, we sometimes use the multiplicity notation (at11 , a
t2
2 , . . . , a

t`
` ) (where

a1 > a2 > ⋯ > a`) to represent the partition having t1 parts of size a1, t2 parts of size

a2, etc.

2



For a partition λ = (λ1, . . . , λκ), the λi are called the parts of the partition, and the

parameter κ is called the length. We say that λ partitions n, denoted by λ ⊢ n, and

that the size of λ (denoted by ∣λ∣) is n. For example, the partition (5, 3, 3, 1, 1, 1) of

n = 14 has length 6 and contains parts 1, 3 and 5.

The number of partitions of n is given by the partition function, denoted by p(n).

Motivated by ring-theoretic considerations, we say p(0) = 1, and consider 0 to be

partitioned by the “empty” partition, ∅. Thus from Table 1.1, we see that the first

several values of the partition function are 1, 1, 2, 3, 5, 7.

The Ferrers diagram (or Ferrers shape) of λ = (λ1, . . . , λκ) is a left-justified array

of unit boxes (called cells) having λi cells in the ith row. For example, the Ferrers

diagram of the partition (7, 4, 4, 2, 1) is given below:

Figure 1.1: Ferrers diagram of the partition (7, 4, 4, 2, 1)

Reflecting the Ferrers diagram of λ about the main (northwest to southeast) diagonal

results in a new Ferrers diagram. We call the associated partition the conjugate of

λ, denoted λ′. More formally, λ′ is the partition having λi − λi+1 parts of size i for

1 ≤ i ≤ κ (where λκ+1 is defined to be 0).

The conjugate of (7, 4, 4, 2, 1) is (5, 4, 3, 3, 1, 1, 1), as visualized below:

3



Ð→

Figure 1.2: Ferrers diagrams of (7, 4, 4, 2, 1) and (5, 4, 3, 3, 1, 1, 1)

If λ = λ′, we say that λ is self-conjugate.

The Durfee square is the largest square that can fit inside the Ferrers diagram of λ.

(In the diagram above, the Durfee square has a side length of 3.) The (i, j) hook of λ

is the portion of the Ferrers diagram consisting of the (i, j) cell together with all cells

directly to the right of and below it. The hook length is the number of cells in the

hook. Cells strictly to the right are the arm of the hook, while cells strictly below are

called the leg. For example, the diagram below shows the (3, 1) cell (shaded black)

and the corresponding hook of length 6 (in bold).

Arm: Leg:

Figure 1.3: The (3, 1) hook in (7, 4, 4, 2, 1)

The (i, i) hooks (those along the main diagonal) are called principal. It follows that

the number of principal hooks of λ is equal to the length of the Durfee square. A

view of partitions that will prove useful is to regard a partition as the “interlocking”

4



of its principal hooks. For example, (7, 4, 4, 2, 1) is composed of its principal hooks

as seen below:

Ð→

Figure 1.4: Principal hooks of (7, 4, 4, 2, 1)

Throughout the rest of this dissertation we will assume all hooks are principal, even

if not explicitly denoted as such.

An alternative notation for partitions is the Frobenius notation. For a partition λ

having k principal hooks, let Ak, . . . ,A1 be the arm lengths of these hooks (proceeding

southeast from the (1, 1) cell), and similarly let Bk, . . . ,B1 be the lengths of the legs.

Then the Frobenius notation for λ is the following 2 × k array:

(Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
) .

Note that we will occasionally add commas for clarity, and that decreasing indices are

chosen because of a particular representation of partitions used heavily in Chapter

4. As visualized in the decomposition given in Fig. 1.4, the Frobenius notation for

(7, 4, 4, 2, 1) is ( 6 2 1
4 2 0 ). Note that the Ai’s and Bi’s are strictly decreasing for all i,

and furthermore A1, B1 ≥ 0. If λ partitions n, then we have
k

∑
i=1

(Ai +Bi + 1) = n. Also,

if λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
) then λ′ = (Bk Bk−1 ⋯ B1

Ak Ak−1 ⋯ A1
).

5



A major focus of this dissertation is the study of collections of partitions satisfying

certain finiteness conditions. In particular, we are interested in the set of partitions

whose Ferrers diagrams are restricted to fitting inside the Ferrers diagram of some

fixed partition. We say that a partition µ = (µ1, . . . , µη) fits inside a partition λ =

(λ1, . . . , λκ), denoted µ ⪯ λ, if η ≤ κ and µi ≤ λi for all i. The relation ⪯ indicates the

so-called Young order (see [43, p. 597]). If µ ⪯ λ and µ ≠ λ, we write µ ≺ λ.

This can be visualized as the Ferrers diagram for µ fitting entirely inside that of λ.

For example, (3,3,1) and (5,4,4,1,1) are two (of many) partitions that fit inside

(7,4,4,2,1), as illustrated below.

(3,3,1) ≺ (7,4,4,2,1) (5,4,4,1,1) ≺ (7,4,4,2,1)

Figure 1.5: Examples of inclusion in (7, 4, 4, 2, 1)

The relation ⪯ on the set of all partitions that fit inside some fixed partition λ produces

a partially ordered set, or poset. In general, a poset is a nonempty set together with a

relation defined on the set that is reflexive, antisymmetric and transitive. (For more

background on the theory of posets, see [33, Ch. 3].) We denote by Pλ the poset of

partitions fitting inside λ and ordered by ⪯.

For example, the Ferrers diagrams of all partitions in P(4,2,1) are shown below:

6



∅

Figure 1.6: The Hasse diagram for P(4,2,1)

Note in the diagram above that partitions are arranged vertically by size, and a

connecting line drawn between a partition µ of i and a partition λ of i + 1 indicates

µ ≺ λ. This is called the Hasse diagram for the poset P(4,2,1).

A chain in a poset is a subset of totally ordered elements. For example the following

is a chain in P(4,2,1):

∅ ≺ (1) ≺ (1, 1) ≺ (2, 1) ≺ (3, 1) ≺ (3, 1, 1) ≺ (3, 2, 1) ≺ (4, 2, 1).

A chain is called saturated if there is no element that can be inserted into the chain

(except possibly at the beginning or end). The chain shown above is clearly saturated.

7



A poset is graded (or ranked) if every maximal chain has the same number of elements,

or equivalently, if every saturated chain between two fixed elements has the same

length. This means that each element in the poset is some distance (rank) above the

smallest element(s).

It is not hard to see that the poset Pλ is graded for any partition λ. In this context

specifically, let ai be the number of partitions µ of i that fit inside λ. Then the

generating function for λ is given by

Gλ = Gλ(q) = ∑
µ⪯λ

q∣µ∣ =
n

∑
i=0

aiq
i.

For example, the generating function for (4, 2, 1) is

G(4,2,1) = 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 3q6 + q7.

Note that the coefficient of degree i is the number of Ferrers diagrams in row i in

Fig. 1.6. Since µ ⪯ λ if and only if µ′ ⪯ λ′, we see that Gλ = Gλ′ . Thus in studying

these generating functions, it suffices to consider partitions λ = (λ1, λ2, . . . , λκ) where

λ1 ≥ κ.

We will extensively study the following properties that are potentially relevant for the

8



coefficients of Gλ and other related sequences. A sequence a0, a1, . . . , an is symmetric

if ai = an−i for all i, where 0 ≤ i ≤ n. A sequence is unimodal if it is of the form

a0 ≤ a1 ≤ ⋯ ≤ aj ≥ ⋯ ≥ an for some j (that is, the sequence never strictly increases

after a strict decrease).

For example, the following sequence is unimodal:

1, 2, 4, 5, 6, 6, 5, 3.

The following sequence is symmetric but not unimodal:

2, 3, 4, 3, 5, 3, 4, 3, 2.

Unimodality is a well-studied property in combinatorics. For an exposition on the im-

portance and ubiquity of unimodality in combinatorics, algebra and related subjects,

see R. Stanley’s survey [31], and F. Brenti’s update [9]. The most desirable method

for proving unimodality (which is often very difficult to apply) is to give a combina-

torial proof. More generally, finding a combinatorial argument of some result (even

if it has already been verified with, say, an algebraic argument) remains one of the

most important types of open problems in combinatorics. For a comprehensive survey

(updated to 2003) about combinatorial techniques in partition theory specifically, see

9



[24].

We define a sequence to be flawless if ai ≤ ai+j for any nonnegative integers i and j

such that 2i + j ≤ n. We note that our definition of flawless is stronger than what

has been commonly given in the literature (e.g., [7], where this property is defined

as ai ≤ an−i for all i ≤ ⌊n
2
⌋). This stronger definition has been referred to as strongly

flawless [19]. However, the two definitions are equivalent if the sequence is increasing

throughout the “first half” (that is, a0 ≤ a1 ≤ ⋯ ≤ a⌊n
2
⌋). Many well-studied and

significant sequences for which flawlessness holds in the weaker sense also increase

throughout the first half. Thus it seems natural to define the flawless property as we

do here.

For example, the following sequence is flawless:

1, 2, 4, 5, 8, 8, 6, 5, 2, 1.

The following sequence is unimodal but not flawless:

1, 3, 4, 5, 5, 4, 4, 3, 2.

Observe that if a flawless sequence is non-unimodal, then this pathology must occur

in the second half. Also, proving that a symmetric sequence is flawless immediately

10



implies unimodality.

Flawlessness – though not as well-studied as unimodality – is a property enjoyed by

many important sequences in combinatorics and algebra. Motivation for studying

flawlessness typically comes from commutative algebra [15, 17, 29]. As an aside, we

remark that highlighting the presence of flawlessness in this area of combinatorics (see

Section 2.4.4) may hopefully lead to the discovery of more connections between the

subject areas. In general, flawlessness of a sequence seems to suggest the existence of

an underlying algebraic structure, or at least a linear-algebraic explanation [15, 34].

Notably, as we are going to re-prove in Chapter 2, pure O-sequences (the Hilbert

functions of pure monomial order ideals), and also in particular the f -vectors of

pure simplicial complexes (or equivalently, square-free monomial order ideals whose

maximal monomials all have the same degree) are flawless [7, 15, 17]. Certain other

Artinian level Hilbert functions of interest specifically in commutative algebra also

satisfy flawlessness. Also, h-vectors of matroid complexes are flawless, as conjectured

by T. Hibi [18] and proved by M. Chari [10] and T. Hausel [15]. For any unexplained

terminology from commutative algebra, we refer the reader to [5, 16, 22, 32].

In general, Hilbert functions that are not flawless suggest the existence of an un-

derlying algebraic pathology in those algebras which have that Hilbert function. In

particular, it is believed that all Artinian level Hilbert functions in 3 variables sat-

isfy flawlessness. Note that, should that fail, any level algebra with such a Hilbert
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function has a Gorenstein quotient that fails the Strong Lefschetz Property [8]. In

characteristic 0, this would contradict a famous conjecture in this area: that every

Gorenstein algebra in three variables has the Strong Lefschetz Property.

A q-analogue of a mathematical quantity is an expression in the variable q that

simplifies to the original quantity when q → 1. The standard q-analogue of n ∈ P,

denoted [n]q, is 1 + q + q2 + . . . + qn−1 = 1−qn
1−q . (Note that lim

q→1
[n]q = n.) Consequently,

the q-factorial of n is [n]q! = [1]q[2]q⋯[n]q. We can then define the q-binomial, or

Gaussian coefficient, [n
k
]
q
, by

[n
k
]
q

=
[n]q!

[k]q![n − k]q!
.

The q-binomial coefficients appear in many combinatorial contexts, but our interest is

in their connection to partitions. A standard result in partition theory is that [a+b
b
]
q

is the generating function enumerating all partitions fitting inside the “rectangle”

partition (ba) = (
a

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
b, . . . , b) (see e.g. [33] for a proof of this result). From this fact, it is

easy to see that any q-binomial is a symmetric polynomial with coefficients in P.

It is a well-known and important result in combinatorics that the coefficients of [n
k
]
q

form a unimodal sequence. This was first shown by J. Sylvester using the theory

of invariants [38], and proved in simpler linear-algebraic terms by R. Proctor [27].

Stanley (crediting the result to A. Iarrobino) also noted that unimodality is implied
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by the Hard Lefschetz Theorem [30]. Then in 1990, K. O’Hara provided a celebrated

combinatorial proof of this result [23, 43].

1.2 Outline of the Dissertation

Chapter 2 of this dissertation focuses on applications of a result (originally given in the

language of relation theory) due to M. Pouzet [12, 25], called the Multicolor Theorem.

We will show how this theorem brings under the same umbrella the flawlessness of a

broad range of combinatorial sequences. In particular, we show how flawlessness can

be proved using the Multicolor Theorem in each of the following settings:

1. The generating function of the order ideal generated by a single monic monomial

(known trivially by other techniques).

2. Pure O-sequences (first shown by Hibi [17], then Hausel [15] and re-proven here

using the results from the first application).

3. The generating function of compositions embedded inside a fixed composition

(our result).

4. The generating function of partitions fitting inside a fixed Ferrers diagram (first

observed by Pouzet in [26]).

5. The generating function of the poset of partitions fitting inside several fixed
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Ferrers diagrams of the same size (our result).

In particular, we will note that the Multicolor Theorem places the proof of the uni-

modality of the q-binomial coefficients in a much broader context.

The background of Chapter 3 is a paper by D. Stanton [37], in which he initiated

the study of the generating functions Gλ for arbitrary λ. His main interest was to

answer questions regarding the unimodality of these generating functions. We extend

a technique used by Stanton to prove unimodality for some novel infinite families of

partitions.

Chapter 4 contains the most significant and novel results of the dissertation. In that

chapter, we introduce the study of a new poset,

Pn = {Gλ ∣λ ⊢ n},

the set of distinct generating functions of partitions of n ordered in the following

natural manner: Gη ≤ Gλ if and only if Gλ − Gη has nonnegative coefficients. We

discuss some general structural properties of Pn. Most significantly, we prove that a

certain two “balancing” procedures on a partition λ produce partitions whose gen-

erating functions are at least as great (in the ordering of Pn) as Gλ. This gives a

necessary condition for the maximal elements in Pn. We then give a family of pairs of

non-conjugate partitions that have the same generating function, and conjecture the
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existence of more general families. Finally, we prove that the number of maxima in

Pn tends to infinity as n grows, and provide both a nontrivial lower and upper bound

(the latter assuming a certain conjecture) on this quantity.
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Chapter 2

Combinatorial Applications of the

Multicolor Theorem

2.1 Introduction

In this chapter we consider some results stemming from work by Pouzet [25], written

in French. This topic was subsequently presented in English by R. Fräıssé [12].

Our interest in this area was motivated by a letter written by Pouzet to Stanton ([26],

reproduced in Appendix D with permission from Stanton). In this letter, Pouzet ex-

plained a combinatorial application of his results, which were phrased in [25] using the
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language of relation theory. We generalize this application to several other combina-

torial settings. This gives a powerful new method of showing flawlessness for certain

sequences. (Recall that a sequence a0, . . . , an is called flawless if ai ≤ ai+j whenever

2i+ j ≤ n.) In particular, while some of the flawlessness results we discuss are already

known by other means, we demonstrate that they may be regarded as falling under

the same overarching umbrella.

Perhaps more significantly, we translate the key principle behind Pouzet’s result and

extend it to a simple yet crucial linear algebra framework. This is discussed in detail

in the next section.

In the last chapter of this dissertation, we mention some significant open problems

related to our work. There is hope that modifying the techniques discussed in this

chapter may lead to progress on those important questions.

2.2 The Full Rank Lemma

In this section, we present the general linear-algebraic idea that we distilled from

Pouzet’s work, which will be discussed in the next section. For any unexplained

linear algebra concepts, we refer the reader to [13, Ch. 3].

Consider two positive integers a and b where a ≤ b. Let U and V be vector spaces of
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dimensions a and b, respectively, over some field k. Then, given any injective linear

map T ∶ U → V and bases U for U and V for V , we can create the a × b matrix M

corresponding to T with respect to bases U and V . (Note a slight deviation from [13];

we adopt the convention of representing T by an a × b matrix operating on elements

of U by multiplying them on the left of the matrix, whereas conventional notation

represents T by a b × a matrix with elements in U multiplied on the right.) Since T

is injective, it follows that M has full rank (that is, Rank(M) = a), or equivalently

(under our convention), that the rows of M are linearly independent. We now state

our generalization of Pouzet’s theorem.

Lemma 2.2.1 (Full Rank Lemma). Let a ≤ b, and let M be an a × b matrix having

full rank. Consider taking a collection of t rows of M , and replace one of these rows

with a nonzero linear combination of the t rows, while eliminating the rest. Then the

resulting (a − t + 1) × b matrix has full rank.

Equivalently, we may say that the rows of the resulting matrix retain linear indepen-

dence. The proof of this lemma follows easily from basic linear algebra. Clearly this

procedure of combining/replacing rows can be repeated multiple times with other

collections of rows. At the end of this process, we are left with a full rank matrix,

which we call M ′.

From this very general observation from linear algebra, we consider the following

application to combinatorics. Suppose we have a collection of combinatorial objects,
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to each of which we can apply some statistic (call it degree as a generic term for

simplicity of notation) that yields a sequence: a0, a1, . . . , an. Suppose moreover that

this sequence is flawless.

As we saw in the previous discussion, we can create an ai×ai+j matrix M with linearly

independent rows. (Ideally, we wish to exploit some relationship between the two sets

of combinatorial objects counted by ai and ai+j that gives us a natural way of forming

this full rank matrix M as a sort of “incidence matrix” induced by the underlying

structure.)

Suppose furthermore that we have some “coarser” way to view this collection of

combinatorial objects. That is, consider partitioning the objects into equivalence

classes “modulo” some condition. This in turn yields a natural combining of rows of

M (as discussed above) to form a new matrix M ′. The number of rows would then

be the number of equivalence classes of degree i. If it can be demonstrated that the

number of columns of M ′ is no more than the number of equivalence classes of degree

i + j, then we have successfully shown that the generating function corresponding to

this new collection of objects is flawless.
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2.3 The Multicolor Theorem

All of the applications that we present of the concept discussed in the previous section

will begin with taking our collection of combinatorial objects to be the boolean algebra

Bn: all subsets of the set S = [n] = {1, 2, . . . , n}. The sequence a0, a1, . . . , an is the

binomial coefficients (n
0
), (n1), . . . , (

n
n
). We follow Fräıssé’s [12] terminology in the

following definition.

For positive integers i and j where 2i + j ≤ n, define the adjacency matrix, M , to be

the (n
i
) × ( n

i+j) matrix with rows labeled by the i-subsets of S and columns labeled

by the (i + j)-subsets of S, where Ms, t is 1 if the i-subset corresponding to row s is

contained inside the (i + j)-subset corresponding to row t, and 0 otherwise.

It is well known that the sequence of binomial coefficients is symmetric and unimodal,

and thus in particular flawless [31]. The next lemma implies this result by claiming

the stronger fact that the associated adjacency matrix has full rank. The proof of

this lemma can be found in [12].

Lemma 2.3.1 (Linear Independence Lemma). The rows of the adjacency matrix M

are linearly independent.

Lemma 2.3.1 implies that M produces an injection from the collection of i-subsets of
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S into the collection of (i + j)-subsets. In particular, we have the following:

Corollary 2.3.2. M determines an injection that maps each i-subset X to an (i+j)-

subset, Y of S that contains X.

Proof. Take an (n
i
) × (n

i
) square submatrix of M having full rank, or equivalently,

whose determinant is nonzero. Such a square submatrix exists since M itself has full

rank. We assert that, for any r, the rth row of M intersects some cth column in a

nonzero entry such that deleting the rth row and cth column yields an (n
i
)−1× (n

i
)−1

submatrix with nonzero determinant. For if this were not the case, then finding

det(M) using the recursive determinant formula with co-factor expansion along the

rth row would yield det(M) = 0, a contradiction.

Thus in the injection, we may take the subset X that labels the rth row to be mapped

to the subset Y which labels the cth column, where Mr, c ≠ 0. Recall that by definition,

Mr, c = 1 exactly when the i-subset labeling row c is contained in the (i + j)-subset

labeling column c. Thus we have that X ⊆ Y . The rest of this subset-preserving

injection can be completed inductively.

We can now begin discussing more precisely the concept of “coarsening” the collection

of subsets of S to some other collection of combinatorial objects of interest. Recall

that S has size n, and always in the following discussion we have arbitrary (but fixed)

degrees i and i+j such that 2i+j ≤ n. We use the notation (S
i
) to denote the collection
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of i-subsets of S.

Fix a set U = {u1, u2, . . . , um} of indeterminants, called colors, where m ≤ (n
i
). These

“colors” correspond to the collection of new combinatorial objects of degree i. Let

ci ∶ (Si) → U be any surjective function (called the i-color function). Note that ci

induces a partitioning of the collection of i-subsets of S into m nonempty classes

labeled by the colors in U .

Let Y be a subset of S of size i + j. Given an i-color function ci, the i-multicolor of

Y , denoted by multi(Y ), is the m-tuple y = (y1, y2, . . . , ym), where y` is the number

of i-subsets of Y having color u`. We say u` figures in the multicolor y if y` ≠ 0. Note

that ci uniquely determines multi, and the sum of the elements of multi is (i+j
i
).

Example 2.3.3. Consider S = {1, 2, 3, 4, 5}, and fix colors U = {1, 2, 3, 4}. Fix i = 2

and j = 2 (following the notation above). For any 2-subset {a, b} of S, suppose we

define the color function c2 to be c2({a, b}) = ∣a− b∣. (That is, the “color” of a subset

is the absolute value of the difference of its elements.) To see how the multicolor

function mult2 acts, consider the specific subset Y = {1, 3, 4, 5}. The 2-subsets of

Y are {1, 3}, {1, 4}, {1, 5}, {3, 4}, {3, 5}, {4, 5} having colors 2, 3, 4, 1, 2, 1,

respectively. Hence mult2(Y ) = (2, 2, 1, 1).

We can now state Pouzet’s original theorem, as presented in Fräıssé’s work [12].

Theorem 2.3.4 (The Multicolor Theorem). Let S = [n] and let i and j be positive
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integers where 2i + j ≤ n. Fix any surjective i-color function

ci ∶ (
S

i
)→ U = {u1, u2, . . . , um}.

Then the number of i-multicolors of (i+ j)-subsets of S is greater than or equal to the

number of colors of i-subsets of S.

More specifically, there exists an injection which associates each color u` of i-subsets

to a multicolor of (i+ j)-subsets in which u` figures (and moreover there is an (i+ j)-

subset having this multicolor).

We note that the first part of this theorem follows from Lemma 2.2.1, as applied

to the adjacency matrix M to form a new matrix M ′. The rows of this matrix are

labeled by the i-colors, and the columns are exactly the i-multicolors. Note that M ′

may have duplicate columns arising from multiple (i + j)-subsets having the same

i-multicolor. However, it is a simple result from linear algebra that deleting any

subsequently repeated columns does not change the linear independence of the rows.

After deleting these, we obtain a full rank matrix with rows labeled by the i-colors

and distinct columns equal to the i-multicolors. Thus we have at least as many

i-multicolors as i-colors. We will refer to this matrix as the reduced adjacency matrix.

The second part of the theorem follows from a similar argument as that used in the

proof of Corollary 2.3.2. Obviously a color u (labeling a row) figures in a multicolor
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(a column) if and only if the row and column in question intersect in a nonzero entry.

We can summarize the usefulness of the Multicolor Theorem in combinatorial settings

as follows (note that this is a specialization of the discussion from Section 2.2): Let C

be a collection of combinatorial objects with some statistic, deg ∶ C → [n]. Let Cl = {c ∈

C ∣ deg(c) = l}. Assume that we suspect a priori that the sequence ∣C1∣, ∣C2∣, . . . , ∣Cn∣ is

flawless. Again take S = [n]. Our goal is to find a surjective color function

ci ∶ (
S

i
)→ Ci

which uniquely defines the i-multicolor function

multi ∶ (
S

i + j
)→ P∣Ci∣,

and also to find an (i + j)-color function

c̃i+j ∶ (
S

i + j
)→ Ci+j

which together satisfy the following property: if for any two (i+ j)-subsets Y and Y ′

we have c̃i+j(Y ) = c̃i+j(Y ′), then multi(Y ) = multi(Y ′). We note that this property

could be verified by exhibiting an i-color preserving bijection between (Y
i
) and (Y

′

i
).

We also note that c̃i+j acts analogously to ci in the applications we consider.
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Alternatively, this condition can be stated as follows: if we know c̃i+j(Y ) for some

unknown subset Y , then we can uniquely determine multi(Y ). That is, there are at

least as many (i + j)-colors as i-multicolors of (i + j)-subsets. Then if 2i + j ≤ n, we

have an injection from Ci into Ci+j by the Multicolor Theorem. As a consequence, this

would show that ∣C1∣, ∣C2∣, . . . , ∣Cn∣ is flawless.

Recall that the reduced adjacency matrix has linearly independent rows labeled by

the i-colors, with distinct columns that are equal to the i-multicolors. Each column

is labeled by some (i + j)-subset, Y , as inherited from the original adjacency matrix.

Consider re-labeling each column by c̃i+j(Y ). Then if the condition discussed in the

previous paragraph holds, these (i + j)-color labels are all distinct. It will be useful

in the applications given in the next section to regard the columns as labeled in this

way.

2.4 Combinatorial Applications

2.4.1 The Order Ideal Generated by a Single Monomial

Borrowing language from combinatorial commutative algebra, we define a mono-

mial order ideal in the variables x1, x2, . . . , xk to be a set of monic monomials of non-

negative degree which is closed with respect to taking division. For the definitions
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and general theory of such structures, see [7, 22].

Let X = xn1
1 x

n2
2 ⋯xnkk be a monomial of degree n = n1 + n2 + ⋯ + nk. Our set of

combinatorial objects, C is the order ideal generated by X: the collection of all (monic)

monomials that divide X. This is denoted by C = ⟨X⟩. We define Ci = ⟨X⟩i ⊂ ⟨X⟩ to

be the collection of divisors of X having degree i.

The generating function for ⟨X⟩ is

F⟨X⟩(q) =
k

∏
i=1

(1 + q + q2 + . . . + qni).

It is a well-known fact in combinatorics (see e.g. [31]) that the product of symmetric

unimodal polynomials (with nonnegative coefficients) is again symmetric and uni-

modal. Thus F⟨X⟩(q) is symmetric unimodal, and in particular we trivially have that

F⟨X⟩(q) is flawless.

Despite this simple proof, we demonstrate how the flawlessness of F⟨X⟩(q) can be

shown using the Multicolor Theorem 2.3.4. Indeed, as a consequence of this we will

have the stronger result that the associated injection from ⟨X⟩i to ⟨X⟩i+j preserves

divisibility. That is, a degree i monomial A is mapped to a degree i+ j monomial B

where A∣B. Furthermore, in the next section we will use the corresponding reduced

adjacency matrices to show the non-trivial result that the generating function of the

order ideal generated by multiple monic monomials of the same degree is also flawless.
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This constitutes an original approach to proving this well-known result, which was

first demonstrated by Hibi [17], then Hausel [15].

We proceed to apply the Multicolor Theorem to re-prove the single monomial case.

Given the generating monomial X = xn1
1 x

n2
2 ⋯xnkk , partition S = [n] into k subsets,

A1, A2, . . . ,Ak, where A1 = {1, 2, . . . , n1}, A2 = {n1 + 1, . . . , n1 + n2}, etc. For any

subset W of S and any ` ∈ {1, . . . , k}, denote

W` =W ∩A`.

We “color” the i-subsets of S using monomials of degree i as follows: for any i-subset

X of S, define ci(X) to be the monomial

ci(X) = x∣X1∣
1 x

∣X2∣
2 ⋯x∣Xk ∣

k

dividing X. Similarly for any (i + j)-subset Y of [n], define

c̃i+j(Y ) = x∣Y1∣
1 x

∣Y2∣
2 ⋯x∣Yk ∣

k .

Suppose that for two (i+j)-subsets Y and Y ′ we have c̃i+j(Y ) = c̃i+j(Y ′). This implies

∣Yt∣ = ∣Y ′
t ∣ for all t ∈ {1, . . . , k}. Then for any monomial u = xb11 ⋯x

bk
k of degree i that
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divides X, the component corresponding to u in the multicolor of both Y and Y ′ is

(∣Y1∣
b1

)(∣Y2∣
b2

)⋯(∣Yk∣
bk

) = (∣Y
′

1 ∣
b1

)(∣Y
′

2 ∣
b2

)⋯(∣Y
′
k ∣
bk

).

Thus multi(Y ) =multi(Y ′).

Therefore, knowing c̃i+j(Y ) (that is, the degree i + j monomial corresponding to Y )

in turn uniquely determines multi(Y ). Importantly, note that this determination is

independent of the starting monomial X.

Thus there are at least as many (i+j)-colors as i-multicolors, and so by the Multicolor

Theorem 2.3.4 (and our discussion at the end of Section 2.3), the generating function

F⟨X⟩(q) is flawless.

2.4.2 An Extension to Pure O-sequences of Arbitrary Type

We now consider the order ideal generated by several monomials,

X1,X2, . . . ,X t,

of the same degree; that is, the collection of all monomials that divide any of the X`.

Such an order ideal is called pure of type t, and the coefficients of the corresponding
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generating function form a pure O-sequence, first introduced by Stanley [29]. We

refer the reader to [7] for the most comprehensive study of pure O-sequences. As

mentioned above, it is well known that pure O-sequences enjoy the flawless property.

We re-prove this fact here using the full rank reduced adjacency matrices given by the

Multicolor Theorem 2.3.4. Our proof shares some similarity to Hibi’s [17] in that we

also use induction on the number of monomial generators. However, the real essence

of our proof - showing the existence of injective linear maps - is closer in flavor to

Hausel’s technique from [15]. Using the Hard Lefschetz Theorem, Hausel showed

injectivity between graded pieces of a suitable quotient ring (namely, the Artinian

monomial level algebra corresponding via Macaulay’s inverse systems to our order

ideal; see [7, 15]).

We will illustrate the proof in the case of 2 and 3 generators, and from this it will

be easy to see that the general case holds by induction. Let X1 and X2 be monic

monomials of degree n. For degrees i and i+ j where 2i+ j ≤ n, let MX1 and MX2 be

the corresponding reduced adjacency matrices for ⟨X1⟩ and ⟨X2⟩, respectively. Form

the block matrix

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MX1 P

O MX2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where P and O represent zero matrices of appropriate sizes.

Note that the rows of N are linearly independent since MX1 and MX2 have full rank.
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For every degree i monomial u in ⟨X1⟩ ∩ ⟨X2⟩, replace the row of P labeled by u to

be the row of MX2 labeled by u, and then delete the row labeled by u in [O MX2
].

After this procedure we have a new matrix,

N ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MX1 P ′

O′ M ′
X2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where O′ is a zero matrix, and P ′ is now not a zero matrix unless ⟨X1⟩ ∩ ⟨X2⟩ = ∅.

The matrix M ′
X2

is simply MX2 with some rows deleted, and MX1 is unchanged. It

is easy to see that the rows of N ′ are linearly independent.

It is important to note that an (i + j)-color (that is, a monomial of degree i + j)

has exactly the same degree i monomial divisors (i-colors), regardless of the degree

n generating monomial. Recall also that the (i + j)-color label, c̃i+j(Y ), of a column

in turn uniquely determines the multicolor multi(Y ), and that this determination is

again independent of the generating monomial.

This implies that any two columns c1 and c2 of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MX1

O′

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P ′

M ′
X2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, respectively,

labeled by the same (i + j)-color are identical. Deleting these duplicate columns in
⎡⎢⎢⎢⎢⎢⎢⎢⎣

P ′

M ′
X2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

preserves the linear independence of the rows of N ′. Let us call the resulting

matrix MX1,X2 . Then MX1,X2 is a matrix whose rows are labeled by the degree i
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monomials in ⟨X1, X2⟩ and whose columns are labeled by (at least some of) the

degree i+ j monomials in ⟨X1, X2⟩. Since MX1,X2 has full rank, we have at least as

many degree i+ j as degree i monomials. Hence a pure O-sequence generated by two

monomials is flawless.

Suppose we have a third monomial, X3, of degree n with associated reduced adjacency

matrix MX3 (using the same i and j). Form the block matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MX1,X2 P

O MX3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

which has full rank as before. Repeat an analogous procedure as discussed above: for

every degree i monomial u in ⟨X1, X2⟩ ∩ ⟨X3⟩, replace the row of P labeled by u to

be the row of MX3 labeled by u, and then delete the row labeled by u in [O MX3
].

After this procedure we have a new matrix,

L′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MX1,X2 P ′

O′ M ′
X3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with linearly independent rows. Again deleting duplicate-labeled columns, we obtain

a matrix MX1,X2,X3 with linearly independent rows. The rows are labeled by the

degree i monomials, and the columns by (at least some of) the degree i+j monomials

of ⟨X1, X2, X3⟩.
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Clearly we can continue to add monomials of degree n and repeat this procedure in

a similar fashion. Thus inductively we conclude that the generating function of any

pure monomial order ideal, i.e., any pure O-sequence, is flawless.

Example 2.4.1. Consider the three monomials X1 = x2y2z2, X2 = x2y2t2 and X3 =

y3w3. By simple computations, the pure O-sequence for the order ideal ⟨X1, X2, X3⟩

is h0, h1, . . . , h6 = 1, 5, 11, 16, 14, 8, 3. Take i = 2 and j = 1 (so 2i+j = 5 < n = 6). Then

the corresponding reduced adjacency matrices as given by the Multicolor Theorem

2.3.4 (with rows and columns labeled for clarity) are the following:

MX1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xyz x2y x2z xy2 y2z xz2 yz2

x2 0 1 1 0 0 0 0

y2 0 0 0 1 1 0 0

z2 0 0 0 0 0 1 1

xy 1 2 0 2 0 0 0

xz 1 0 2 0 0 2 0

yz 1 0 0 0 2 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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MX2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xyt x2y x2t xy2 y2t xt2 yt2

x2 0 1 1 0 0 0 0

y2 0 0 0 1 1 0 0

t2 0 0 0 0 0 1 1

xy 1 2 0 2 0 0 0

xt 1 0 2 0 0 2 0

yt 1 0 0 0 2 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

MX3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y3 y2w yw2 w3

y2 3 1 0 0

yw 0 2 2 0

w2 0 0 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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The initial block matrix N for MX1 and MX2 is

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xyz x2y x2z xy2 y2z xz2 yz2 xyt x2y x2t xy2 y2t xt2 yt2

x2 0 1 1 0 0 0 0 0 0 0 0 0 0 0

y2 0 0 0 1 1 0 0 0 0 0 0 0 0 0

z2 0 0 0 0 0 1 1 0 0 0 0 0 0 0

xy 1 2 0 2 0 0 0 0 0 0 0 0 0 0

xz 1 0 2 0 0 2 0 0 0 0 0 0 0 0

yz 1 0 0 0 2 0 2 0 0 0 0 0 0 0

x2 0 0 0 0 0 0 0 0 1 1 0 0 0 0

y2 0 0 0 0 0 0 0 0 0 0 1 1 0 0

t2 0 0 0 0 0 0 0 0 0 0 0 0 1 1

xy 0 0 0 0 0 0 0 1 2 0 2 0 0 0

xt 0 0 0 0 0 0 0 1 0 2 0 0 2 0

yt 0 0 0 0 0 0 0 1 0 0 0 2 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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After changing rows of P and deleting rows of [O MX2
], we get

N ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xyz x2y x2z xy2 y2z xz2 yz2 xyt x2y x2t xy2 y2t xt2 yt2

x2 0 1 1 0 0 0 0 0 1 1 0 0 0 0

y2 0 0 0 1 1 0 0 0 0 0 1 1 0 0

z2 0 0 0 0 0 1 1 0 0 0 0 0 0 0

xy 1 2 0 2 0 0 0 1 2 0 2 0 0 0

xz 1 0 2 0 0 2 0 0 0 0 0 0 0 0

yz 1 0 0 0 2 0 2 0 0 0 0 0 0 0

t2 0 0 0 0 0 0 0 0 0 0 0 0 1 1

xt 0 0 0 0 0 0 0 1 0 2 0 0 2 0

yt 0 0 0 0 0 0 0 1 0 0 0 2 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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After deleting duplicate-labeled columns, we finally obtain

MX1,X2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xyz x2y x2z xy2 y2z xz2 yz2 xyt x2t y2t xt2 yt2

x2 0 1 1 0 0 0 0 0 1 0 0 0

y2 0 0 0 1 1 0 0 0 0 1 0 0

z2 0 0 0 0 0 1 1 0 0 0 0 0

xy 1 2 0 2 0 0 0 1 0 0 0 0

xz 1 0 2 0 0 2 0 0 0 0 0 0

yz 1 0 0 0 2 0 2 0 0 0 0 0

t2 0 0 0 0 0 0 0 0 0 0 1 1

xt 0 0 0 0 0 0 0 1 2 0 2 0

yt 0 0 0 0 0 0 0 1 0 2 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Adding in X3 and repeating the above procedure, we obtain MX1,X2,X3 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

xyz x2y x2z xy2 y2z xz2 yz2 xyt x2t y2t xt2 yt2 y3 y2w yw2 w3

x2 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

y2 0 0 0 1 1 0 0 0 0 1 0 0 3 1 0 0

z2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

xy 1 2 0 2 0 0 0 1 0 0 0 0 0 0 0 0

xz 1 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0

yz 1 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

t2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

xt 0 0 0 0 0 0 0 1 2 0 2 0 0 0 0 0

yt 0 0 0 0 0 0 0 1 0 2 0 2 0 0 0 0

yw 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0

w2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Thus h2 = 11 is less than or equal to h3 = 16, which illustrates flawlessness of the pure

O-sequence between degrees 2 and 3.

2.4.3 Compositions

A composition of a positive integer n is a vector c = (c1, c2, . . . , ck) ∈ Pk where c1 +

c2 + . . .+ ck = n. We will say that a composition b = (b1, b2, . . . , bm) is embedded in c if
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c has m (not necessarily consecutive) parts c`1 , c`2 , . . . , c`m with `1 < `2 < ⋯ < `m such

that b1 ≤ c`1 , b2 ≤ c`2 , . . . , bm ≤ c`m .

For this application, we take C to be the collection of all compositions embedded

inside c = (c1, c2, . . . , ck). The set Ci is the set of compositions of i embedded inside c.

We proceed to use the Multicolor Theorem 2.3.4 to show that the generating function

FC(q) =
n

∑
`=1

∣C`∣q` is flawless.

(We note that a different definition of inclusion of compositions is used by G. Andrews

[2] and B. Sagan [28], namely, that b fits inside c if m ≤ k and b` ≤ c` for all `. It

remains an open problem to apply the Multicolor Theorem to this scenario.)

First, partition S = [n] into k classes, A1, A2, . . . ,Ak, where A1 = {1, 2, . . . , c1}, A2 =

{c1 + 1, . . . , c1 + c2}, etc. For any W ⊆ S, denote W` =W ∩A`. Then for any i-subset

X, define ci(X) by

ci(X) = (a1, a2, . . . , ap)

if there are exactly p nonempty X`’s: X`1 , X`2 , . . . ,X`p with `1 < `2 < ⋯ < `p such that

ar = ∣X`r ∣ for all r ∈ {1, . . . , p}.

Similarly for any (i + j)-subset Y , define c̃i+j(Y ) to be

c̃i+j(Y ) = (b1, b2, . . . , bs)
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if there are exactly s nonempty Y`’s: Y`1 , Y`2 , . . . , Y`s with `1 < `2 < ⋯ < `s such that

bt = ∣Y`t ∣ for all t ∈ {1, . . . , s}.

Suppose for two (i + j)-subsets Y and Y ′ we have c̃i+j(Y ) = c̃i+j(Y ′). This implies

that there are indices `1 < `2 < ⋯ < `s and `′1 < `′2 < ⋯ < `′s such that ∣Y`t ∣ = ∣Y ′
`′t
∣ for all

t ∈ {1, . . . , s}.

(Note that if `i1 < `i2 , then `′i1 < `
′
i2

.) Let φ ∶ Y → Y ′ be any bijection satisfying

φ(Y`t) = Y ′
`′t

for all t ∈ {1, . . . , s}. Clearly such a bijection can be created since ∣Y`t ∣ = ∣Y ′
`′t
∣. Now let

X be any i-subset of Y having color ci(X) = (a1, a2, . . . , ap).

This means that there are indices `i1 , `i2 , . . . , `ip ∈ {`1, `2, . . . , `s} such that `i1 < `i2 <

⋯ < `ip and ar = ∣X`ir
∣ for all r ∈ {1, . . . , p}. But then since X`ir

⊆ Y`ir , we have that

φ(X`ir
) ⊆ Y ′

`′ir

for all r ∈ {1, . . . , p}. Since `i1 < `i2 < ⋯ < `ip , we have `′i1 < `
′
i2
< ⋯ < `′ip . Also, clearly

∣φ(X`ir
)∣ = ∣X`ir

∣ = ar

for all r ∈ {1, . . . , p}.
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Thus we conclude that ci(φ(X)) = (a1, . . . , ap), so φ is an i-color preserving bijection

between Y and Y ′, and thus multi(Y ) =multi(Y ′), as desired.

2.4.4 Partitions

The result of this section is due to Pouzet. Indeed, the discussion of this application

of the Multicolor Theorem 2.3.4 was the very content of the seminal letter written by

Pouzet to Stanton [26]. We rephrase Pouzet’s results in more combinatorial terms,

and add several original observations and implications.

Let n be a positive integer and let λ = (λ1, λ2, . . . , λk) be a partition of n. Our set of

combinatorial objects, C, is the collection of partitions fitting inside λ. Recall that a

partition µ = (µ1, µ2, . . . , µm) fits inside λ if m ≤ k and µ` ≤ λ` for all `. The set C`

is the collection of partitions of ` fitting inside λ. We will show that the generating

function Gλ =
n

∑
i=1

∣C`∣q` is flawless.

We again partition S = [n] into k classes, A1, A2, . . . ,Ak, where A1 = {1, 2, . . . , λ1},

A2 = {λ1 + 1, . . . , λ1 + λ2}, etc. For any W ⊆ S, denote W` =W ∩A`. For any i-subset

X of S, define ci(X) to be

ci(X) = (η1, η2, . . . , ηp)
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if there are exactly p nonempty X`’s: X`1 , X`2 , . . . ,X`p where ∣X`1 ∣ ≥ ∣X`2 ∣ ≥ ⋯ ≥ ∣X`p ∣

with ηr = ∣X`r ∣ for all r ∈ {1, . . . , p}.

Similarly for any (i + j)-subset Y , define c̃i+j(Y ) to be

c̃i+j(Y ) = (ζ1, ζ2, . . . , ζs)

if there are exactly s nonempty Y`’s: Y`1 , Y`2 , . . . , Y`s where ∣Y`1 ∣ ≥ ∣Y`2 ∣ ≥ ⋯ ≥ ∣Y`s ∣ with

ζt = ∣Y`t ∣ for all t ∈ {1, . . . , s}

Suppose for two (i+j)-subsets Y and Y ′ we have c̃i+j(Y ) = c̃i+j(Y ′). This implies that

there are indices `1, `2, . . . , `s and `′1, `
′
2, . . . , `

′
s such that ∣Y`t ∣ = ∣Y ′

`′t
∣ for all t ∈ {1, . . . , s}.

Let φ ∶ Y → Y ′ be a bijection satisfying

φ(Y`t) = Y ′
`′t

for all t ∈ {1, . . . , s}. Clearly such a bijection can be defined since ∣Y`t ∣ = ∣Y ′
`′t
∣. Now let

X be any i-subset of Y having color ci(X) = (η1, . . . , ηp). This means that there are

indices `i1 , `i2 , . . . , `ip ∈ {`1, `2, . . . , `s} such that ηr = ∣X`ir
∣ for all r ∈ {1, . . . , p}. But

then since X`ir
⊆ Y`ir , we have that

φ(X`ir
) ⊆ Y ′

`′ir
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for all r ∈ {1, . . . , p}. Also, clearly

∣φ(X`ir
)∣ = ∣X`ir

∣ = ηr

for all r ∈ {1, . . . , p}.

Thus we conclude that ci(φ(X)) = (η1, . . . , ηp), so φ is an i-color preserving bijection

between Y and Y ′, and thus multi(Y ) =multi(Y ′).

This shows that the generating function Gλ for the poset of all partitions contained

inside some fixed partition λ is flawless. Note how this was essentially the same proof

as the one given for compositions in the previous section.

Recall that a flawless sequence weakly increases throughout the “first half”. Thus, al-

though Gλ may in general be non-unimodal (see [37]), unimodality may only possibly

fail in the second half.

Consider the special case when λ is a rectangle, that is, when λ = (ba) where n = ab.

The poset, or more precisely, the lattice associated with this partition is denoted by

L(a, b) [34]. The corresponding generating function is obviously symmetric by the

structure of the b× a rectangle. Since it is also flawless as we have shown, we note in

particular that the generating function is unimodal.

Recall that these generating functions are the ubiquitous q-binomial coefficients.
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Hence, the result of this section re-proves the well-known fact that the q-binomial

coefficients are unimodal [23, 27, 38, 43], as mentioned in Chapter 1.

Furthermore, the injective maps from the Multicolor Theorem 2.3.4 assert some strong

structural properties of the poset L(a, b). As implied by the Multicolor Theorem, a

partition µ of i inside λ is mapped to a partition, η, of i+j. Furthermore, the “color”

µ figures in the multicolor of i + j. This implies that the partition µ fits inside η. In

other words, we have a Young order-preserving injection from degree i to i + j.

This observation gives a sort of “half-way” chain decomposition of L(a, b). In other

words, it is possible to partition the elements in L(a, b) between degrees 1 and ⌊n2 ⌋

into saturated chains that respect the Young order inclusion. Taking complements

of these chains in the rectangle also gives a “mirror image” chain decomposition of

the partitions in L(a, b) from degrees ⌈n2 ⌉ to n. It is not hard to see that this “upper

half” decomposition again preserves the Young order.

It is an outstanding open problem in this area to find a symmetric chain decomposition

of L(a, b) [30]. Such decompositions have been given for a = 3 (see [20]) and a = 4

(see [39]), while the result is trivial for a ≤ 2. The problem remains open for a ≥ 5.

The chains we discussed in the previous paragraph do not imply the existence of such

a decomposition because they are not symmetrically connected in the middle. That

is, we cannot guarantee that chains in the “first half” from degree i to degree ⌊n2 ⌋ will

always connect with chains in the “second half”, from degree ⌈n2 ⌉ to n − i.
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Manipulating these chains to construct a symmetric decomposition appears to be

difficult, if not impossible. However, this “half-way” decomposition so far appears to

be the strongest possible result short of actually proving that L(a, b) has a symmetric

chain decomposition. Note that this half-way decomposition also exists in the lower

half of the poset Pλ for any arbitrary partition λ.

2.4.5 Multiple Generators

In this section, we discuss an original result that is analogous to the flawlessness of

pure O-sequences. Note that the argument employed in Section 2.4.2 to extend flaw-

lessness from one to many generating monomials can be used in other combinatorial

settings as well. The crux of the proof in that section relied on the following property:

Regardless of the reduced adjacency matrix in which a particular (i + j)-color may

appear (as a column label), that (i+ j)-color gives rise to exactly the same i-colors of

the same multiplicity. That is, the nonzero entries of the i-multicolor vector are the

same and labeled by the same i-colors.

It is not hard to see that this same property holds in the case of partitions. For

instance, if

Λ1,Λ2, . . . ,Λs

are all partitions of n, then the generating function enumerating all partitions λ fitting
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inside any of the Λt is also flawless. We shall call the sequence of these coefficients a

pure P -sequence. In any other combinatorial setting that has this property, we may

extend the flawlessness of the single “generator” case to that of multiple generators

of the same degree.
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Chapter 3

Some New Families of Unimodal

Partitions

3.1 Introduction

The background of this brief chapter is Stanton’s paper [37], in which he initiated the

study of the generating function Gλ for an arbitrary partition λ = (λ1, . . . , λκ). His

main interest was to answer questions regarding the unimodality of these generating

functions. (For brevity we will say that λ is unimodal if the coefficients of Gλ are

unimodal.) Note that in this chapter, when discussing Gλ (where λ has κ parts), we

always implicitly assume that λ1 ≥ κ since clearly Gλ = Gλ′ .
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Stanton showed that partitions having κ ≤ 3 parts are always unimodal. He gave

several infinite classes of non-unimodal partitions with κ = 4 parts. He found no

examples of non-unimodal partitions having 5 or more than 6 parts, and discovered

only a finite number of non-unimodal examples in 6 parts. Stanton also conjectured

that all self-conjugate partitions are unimodal.

S. Zbarsky [42] gave more families of non-unimodal partitions. In fact, he proved

that a positive density (if such density exists) of partitions with κ = 4 parts are non-

unimodal. He also anticipated that Stanton’s non-unimodality findings were in some

sense comprehensive by conjecturing that, apart from finitely many examples with

κ = 6, there are no non-unimodal partitions with κ > 4 parts (up to conjugation).

Stanley and F. Zanello studied the analogous question of partitions with distinct parts

fitting inside a fixed Ferrers diagram [35]. Their findings regarding unimodality in

this framework strikingly paralleled Stanton’s results. Further investigation in this

area was done by L. Alpoge [1] and Zbarsky [42]. We note that Zbarsky’s conjecture

mentioned in the previous paragraph was given for both the arbitrary and distinct

part cases.

Returning to the context of Stanton’s original work [37] on partitions with arbitrary

parts fitting inside a fixed Ferrers diagram, our contribution in this area consists of

extending one of Stanton’s techniques for showing unimodality. In particular, we

provide two interesting new families of unimodal partitions. We believe that more
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can be done in this direction.

3.2 Results

For any generating function Gλ, we define the first difference, G∗
λ = (1 − q)Gλ, the

polynomial whose coefficients are the consecutive differences of the coefficients of Gλ.

It is clear that Gλ is unimodal if and only if the coefficients of G∗
λ are nonnegative up

to some degree t and then nonpositive after degree t.

Theorem 3.2.1. For any b ∈ P, partitions with κ = 5 or 6 parts having all parts of

size b or 2b are unimodal.

Theorem 3.2.2. In κ = 5 or 6 parts, if λ1 − λκ ≤ 1 then (λ1, . . . , λκ) is unimodal,

except for (10,9,9,9,9,9).

Proof. We indicate the proof of Theorem 3.2.2 for the partition (b+1, b, b, b, b). The

verifications for the rest of the cases and for Theorem 3.2.1 are performed analogously.

The generating function for λ = (b + 1, b, b, b, b) is

Gλ = [b + 5

5
]
q

+ qb+1[b + 4

4
]
q

= (1 − qb+1) (1 − qb+2) (1 − qb+3) (1 − qb+4) (1 + qb+1 − qb+5 − qb+6)
(1 − q) (1 − q2) (1 − q3) (1 − q4) (1 − q5)

. (3.1)
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As we have previously observed, it is well known that the q-binomial [b+a
a
]
q

is a

symmetric and unimodal polynomial, thus having its highest coefficient (the peak) at

degree(s) ⌊ab
2
⌋ and ⌈ab

2
⌉ [23, 27, 38, 43]. Since (3.1) is the sum of two q-binomials (one

shifted) with different peaks, it is easy to see that (3.1) is non-decreasing from degree

0 to ⌈5b
2
⌉ and then non-increasing from 3b+ 1 to 5b+ 1. Therefore the only interval in

which unimodality could possibly fail is between degrees ⌈5b
2
⌉ and 3b + 1.

Recall that Gλ is unimodal if and only if the coefficients of G∗
λ = (1 − q)Gλ are

nonnegative up to some degree t and then nonpositive after degree t. Based on what

we observed above, we know that the coefficients of G∗
λ are nonnegative for degrees

t ≤ ⌈5b
2
⌉ and then nonpositive for all degrees t ≥ 3b + 2.

Notice that we may rewrite (3.1) as:

Gλ = f5(q) (1 − qb+1) (1 − qb+2) (1 − qb+3) (1 − qb+4) (1 + qb+1 − qb+5 − qb+6) , (3.2)

where f5(q) =
5

∏
i=1

1

1 − qi
is the generating function for partitions with all parts less

than or equal to 5.

We relied heavily on Mathematica to symbolically prove the desired result (the full

code is provided in Appendix C.2). Using the SeriesCoefficient[] command, it is

possible to explicitly write the ith coefficient of f5(q) as a quartic polynomial in i

(dependent on the value of i (mod 60)). For example, if i = 1 (mod 60), the ith
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coefficient is

i4 + 30i3 + 310i2 + 1230i + 1309

2880
.

Multiplying (3.2) by (1 − q) and expanding gives

G∗
λ = f5(q)(1 − q − qb+2 + qb+7 − q2b+2 + q2b+3 + q2b+5 + q2b+6 + q2b+7 − q2b+8 − q2b+10

−q2b+11 + q3b+4 − q3b+7 − q3b+8 − 2q3b+9 + q3b+12 + q3b+13 + q3b+14 − q4b+7

+q4b+10 + q4b+11 + q4b+12 − q4b+15 − q4b+16 + q5b+11 − q5b+12 − q5b+15 + q5b+17).

Since unimodality might only possibly fail between degrees ⌈5b
2
⌉ and 3b + 1, we may

truncate the expression in the parenthesis above and need only consider coefficients

of the series

f5(q)(1− q− qb+2+ qb+7− q2b+2+ q2b+3+ q2b+5+ q2b+6+ q2b+7− q2b+8− q2b+10− q2b+11). (3.3)

By the definition of series multiplication, the coefficients of the series (3.3) will agree

with G∗
λ in all degrees i for i ≤ 3b + 3. (Note that we assume b ≥ 8 in order not to

conflate the terms −q2b+11 + q3b+4.) In particular, notice that the coefficients of (3.3)

will be correct from degrees ⌈5b
2
⌉ and 3b + 1. This is the only interval where we need

to show that G∗
λ does not have a positive term after a negative one in order to prove

unimodality of Gλ.
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Knowing the ith coefficient of fq(6), we used Mathematica to find the coefficients of

(3.3). The kth coefficient in this expression is a polynomial in b and k that depends

on the value of both b and k (mod 60). For instance, if b = k = 1 (mod 60), the kth

coefficient is

− 1

240
(61 − 100b + 55b2 + 25b3 + (33 − 70b − 35b2)k + (18 + 15b)k2 + 2k3) . (3.4)

For example, if b = 61 and k = 181, the expression above yields a coefficient of -1001.

Computationally, one can independently verify that the corresponding terms of the

generating function for (62, 61, 61, 61, 61) are 75831q180 and 74830q181, which yield

the term −1001q181 in the first difference. This coefficient matches the output from

(3.4) using k = 181 and b = 61.

There are potentially 3600 such expressions as (3.4), but with duplicates there happen

to be only 72 that are unique.

We used Mathematica to symbolically verify that the coefficient expressions found

in the previous paragraph are nonnegative on the interval from ⌊5b
2
⌋ to ⌊5b+5

2
⌋ and

nonpositive in the interval from ⌊5b+7
2

⌋ to 3b + 1.

Perhaps rather surprisingly, this did not require a significant breakdown into many

cases. We merely had to consider separate cases for the parity of b, and assumed b ≥ 33
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in order for the program to symbolically verify the desired result. The statement of

the theorem for b ≤ 32 is easily verified by direct computation.

Remark 3.2.3.

1. Note that this proof also yields the degrees of the peaks in the associated gen-

erating functions. Once again, we mention that the approach employed in our

argument is based on the technique Stanton developed in [37] for some of his

unimodality results. We are particularly grateful to him for a personal corre-

spondence in which he explained this technique in great detail.

2. The proof of Theorem 3.2.1 is completed by naturally extending the method

discussed above. We took the expressions for the kth coefficients of G∗
λ (of a form

similar to (3.4)) and, viewing them as cubics in k, determined the roots. These

cubics gave exactly one root in the relevant intervals. These roots correspond to

the degree in which G∗
λ switched from nonnegative to nonpositive in the sense

that the root and the actual peak differ by less than 1. Although these roots

were not generally identical for the various values of b and k (mod 60), they

appeared to be asymptotically equal, and linear in b. To find this slope, we

differentiated the appropriate root of one of these cubics (with respect to b)

and then took the limit of the root as b →∞. This indeed produced a desired

constant slope, r. For example, with the partition (2b, b, b, b, b), the slope r is

45

13
+ 15

13
sin(1

3
tan−1 (13

√
11

4
)) − 5

13

√
3 cos(1

3
tan−1 (13

√
11

4
)) = 3.42046 . . .
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Having this precise slope for this asymptotic linear expression was requisite for

Mathematica to symbolically check that the coefficients for G∗
λ were nonnegative

up to rb and nonpositive after rb+1. Using even a “close” decimal approximation

such as 3.4205 would not produce the correct root for a sufficiently large value of

b. Using this precise linear asymptotic for the root, Mathematica showed that

G∗
λ can never have a positive value followed by a negative one, thus proving

unimodality of Gλ.

3. We feel completely confident that Theorems 3.2.1 and 3.2.2 also hold for κ ≥ 7

parts. Applying the method discussed in the proof above may be possible for

smaller values of κ, but quickly becomes computationally infeasible as κ grows.
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Chapter 4

The Poset of Generating Functions

of Partitions of n

4.1 Introduction

The research presented in this chapter was inspired by an intriguing question posed by

F. Bergeron [6], and first related to the author by Stanley. Given integers a ≤ b ≤ c ≤ d

such that ad = bc, Bergeron conjectured that the polynomial [b+c
c
]
q
− [a+d

d
]
q

(which is

clearly symmetric) has nonnegative coefficients. It furthermore appears that the

coefficients of this polynomial form a unimodal sequence. This was conjectured by

Stanley and Zanello and first formally stated in [41] (see also [36]). Special cases of
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Bergeron’s conjecture have been proven by Stanley (for q = 1) and Zanello (for a ≤ 3)

(see [41], where in fact unimodality is also shown). We have found another simple

yet neat family for which both positivity and unimodality clearly hold.

Proposition 4.1.1. Taking a = m, b = m + 1, c = 2m and d = 2m + 2 (so ad = bc =

2m2 + 2m), we have

[3m + 1

2m
]
q

− [3m + 2

2m + 2
]
q

= qm+1[3m + 1

m − 1
]
q

.

Proof. This can be proved by a straightforward application of the definition of the

q-binomial coefficients.

Remark 4.1.2. It is natural to wonder if there are any other such elegant cases where

[b+c
c
]
q
− [a+d

d
]
q

is a shifted q-binomial. We note the following trivial case:

[n + 2

2
]
q

− [2n + 1

1
]
q

= q2[n
2
]
q

.

Computationally, we found no such example up to ad = bc = 1000 that was not a case

of either the preceding identity or the one given in Proposition 4.1.1.

In this chapter, we introduce the study of a poset that naturally places Bergeron’s pos-

itivity problem in a broader context. Recall that we define the poset Pn = {Gλ ∣λ ⊢ n},

the distinct generating functions of partitions of n. This set is partially ordered in

the following manner: Gη ≤ Gλ if and only if Gλ −Gη has nonnegative coefficients in
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every degree. We will see that Bergeron’s conjecture is equivalent to showing that

the generating functions of rectangles of size n form a chain in this poset, where the

chain increases to progressively more “square-like” rectangles.

We will give a number of results on this poset. Our main result is to prove that

a certain “balancing” procedure on the principal hooks of a partition yields a new

partition with a generating function at least as large (in the ordering on Pn) as that

of the original partition. This result agrees with the spirit of Bergeron’s conjecture,

which remains unproven. We will give a second balancing procedure of a slightly

different flavor which also yields a “better” generating function.

As noted before, for any partition λ of n, we have Gλ = Gλ′ (that is, λ and λ′

correspond to the same element of Pn). We will give some families of non-conjugate

pairs of partition having the same generating function. Despite these results, we

conjecture that the size of Pn is approximately p(n)
2 , which is equivalent to saying

that “almost all” non-conjugate partitions have different generating functions.

We will also give some constructions showing that the number of maxima in Pn tends

to infinity as n grows. The balancing procedures mentioned previously also give a

strong restriction on the structure of partitions corresponding to maxima in Pn. This

restriction reveals a curious connection to the first Rogers-Ramanujan identity from

partition theory [3]. In turn, we obtain an upper bound on the number of maxima

in Pn. Conditional to our conjecture on ∣Pn∣, we show that the number of maxima is
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negligible with respect to the entire size of the poset.

4.2 Discussion of the General Structure of Pn

Our goal in this section is to give an overview of some structural properties of Pn.

We encourage the reader to refer to the diagram provided at the end of this section

to aid in an intuitive understanding of the concepts discussed.

First, we observe that Pn is not graded. For example, in P9, the following are both

saturated chains having the same first and last elements:

G(9) ≤ G(3,3,3) ≤ G(7,1,1)

G(9) ≤ G(8,1) ≤ G(5,4) ≤ G(7,2) ≤ G(7,1,1)

Although the poset is not graded, there is still a heuristic sense of generating func-

tions being “large” (or “small”) relative to the whole, in the sense of having “many”

generating functions above (or below) them in the poset. It is in this sense that we

use these and similar terms for the remainder of this section.

Given some partition λ of n, we proceed to define two “balancing” operations on λ. In

the next section, we will prove the two Balancing Theorems (4.3.2 and 4.3.25) which
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assert that these balancing operations produce partitions with generating functions

at least as great as that of λ. In this sense, we have a method for “moving up” in the

poset Pn starting at the generating function corresponding to λ. This also allows us to

describe the location of generating functions associated with certain Ferrers shapes

in Pn. Furthermore, as mentioned above, the Balancing Theorems give a strong

restriction on the structure of partitions corresponding to maxima in Pn, which we

will discuss in more detail in Section 4.5.

Given a partition λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
) (in Frobenius notation), we define

λ̃ = ( Ãk Ãk−1 ⋯ Ã1

B̃k B̃k−1 ⋯ B̃1
) , where Ãi + B̃i = Ai +Bi, and Ãi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai − 1 if Ai > Bi + 1

Ai + 1 if Ai + 1 < Bi

Ai otherwise.

Note that the definition of Ãi determines the values of B̃i. This map from λ to λ̃

“balances” any principal hooks of the Ferrers diagram of λ that are “off-center” about

the main diagonal. We say that λ is balanced to λ̃.

Example 4.2.1. If λ = ( 9 5 1
5 4 3 ), then λ̃ = ( 8 5 2

6 4 2 ) and ˜̃λ = ( 7 5 2
7 4 2 ). The Ferrers diagrams

are:
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λ ∶ Ð→ λ̃ ∶ Ð→ ˜̃λ ∶

Figure 4.1: Illustration of the first balancing operation λ→ λ̃

We now introduce a second balancing operation on partitions. Note that even in

a completely balanced partition (i.e., λ = λ̃), hooks of even length cannot be evenly

balanced, but will remain offset by one in either the arm or the leg. For example,

the partition ( 9 4
8 5 ) is completely balanced, but the first hook is offset by one in the

arm, while the second hook is offset by one in the leg. We now consider offsetting all

hooks in the same direction.

For a partition λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
), define λ = ( Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
), where Ai = max(Ai, Bi)

and Bi = min(Ai, Bi). This map from λ to λ takes all principal hooks and offsets

them in the same direction.

Example 4.2.2. If λ = ( 12 4 3 0
8 7 2 1 ), then λ = ( 12 7 3 1

8 4 2 0 ). The Ferrers diagrams are:

λ ∶ Ð→ λ ∶

Figure 4.2: Illustration of the second balancing operation λ→ λ

We re-emphasize that the usefulness of these two balancing operations on λ is that
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they produce generating functions at least as large as Gλ in the ordering of Pn. (For

brevity, we say that they “improve” the generating function, even if they yield the

same function.) This is the assertion of the two Balancing Theorems, which we will

prove in the following section. In other words, these theorems claim that

Gλ ≤ Gλ̃ (Theorem 4.3.2)

and

Gλ ≤ Gλ (Theorem 4.3.25).

The Balancing Theorems give a necessary condition that maxima in Pn must corre-

spond to partitions whose principal hooks are completely balanced and then offset in

the same direction. However, this condition is by no means sufficient to guarantee

that a partition yields a maximum in Pn, as we show in the following example.

Example 4.2.3. The partition (m+1
m

) (in Frobenius notation) of 2m + 2 is completely

balanced. However, for m ≥ 2 its generating function in P2m+2 is not a maximum: the

partition (m 0
m 0 ) yields a greater one. Indeed, standard calculations show that

G(m 0
m 0 ) −G(m+1

m
) = q4[m]q[m − 2]q + qm+3[m − 1]q

(recall that [m]q = 1 + q + . . . + qm−1 is the standard q-analogue of m).
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Similarly in the odd case for P2m+1, we have

G( m 0
m−1 0 ) −G(m

m
) = q4[m]q[m − 3]q + qm+2[m − 1]q.

Next, we consider the q-binomials in Pn, which are the generating functions cor-

responding to rectangles. For a partition λ, rectangle or otherwise, note that the

penultimate coefficient in Gλ is the number of distinct part sizes in λ. This is equal

to the number of cells that can be removed from the Ferrers diagram of λ while

leaving behind a valid diagram. Such cells are called outer corners. Thus, the coeffi-

cient of the penultimate term for a rectangle is 1, while the corresponding term for a

non-rectangular partition is at least two.

From the previous paragraph, we see that the q-binomials are in some sense all at

the “bottom” of Pn; they cannot be larger than any non-rectangular shape. Un-

surprisingly, rectangles never yield maxima. For example, the rectangle (ba) (where

we can assume a > 1) has a strictly smaller generating function than the partition

(b + 1, ba−2, b − 1). Indeed, we have

G(b+1, ba−2, b−1) −G(ba) = qb+1G(ba−2, b−1) − qab.

Bergeron’s conjecture asserts that these form a chain in Pn that progresses towards
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q-binomials arising from more square-like rectangles. This chain (if it exists) is satu-

rated.

In addition to the q-binomials near the bottom of the poset, other small generating

functions are those that arise from partitions having a single hook or exactly 2 parts.

As we saw above, partitions with single hooks will not produce maxima (for n ≥ 6).

The First Balancing Theorem 4.3.2, which we prove in the next section, claims that

balancing a partition improves the generating function. Furthermore since balancing

any partition with exactly 2 parts (which is not a single hook) always yields a partition

with exactly one more outer corner (as long as n ≥ 8), this inequality is strict in the

penultimate degree. So partitions with exactly 2 parts can never yield maxima for

n ≥ 8.

Note that the small generating functions discussed above come from partitions with

few outer corners. In general, staircases (partitions of the form (k, k − 1, . . . ,3, 2, 1),

which have size (k+1
2
)) yield the largest possible number of outer corners. Thus, a

partition of n can have as many as ⌊
√

8n+1−1
2 ⌋ outer corners. Heuristically, it appears

that generating functions corresponding to partitions with many outer corners tend

to be larger in the poset than those corresponding to partitions with fewer outer

corners.

To give a more intuitive sense of these observations, we illustrate the Hasse diagram of

the poset P16 in Fig. 4.3 below. The nodes are labeled by Ferrers shapes of partitions
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having the associated generating function of the element in the poset. These labels

are not necessarily unique. For example, the node labeled by (6, 6, 4) could also

be labeled by (3, 3, 2, 2, 2, 2), the conjugate of (6, 6, 4). The labels in the diagram

below were chosen by first appearance in reverse lexicographical order.

Note that neither the partition (8, 5, 3) nor its conjugate appear as labels in the

diagram below. This is because G(8,5,3) = G(9,5,2), so both (8, 5, 3) and (9, 5, 2)

correspond to the same node, which is labeled below by the latter partition. This

concept of non-conjugate partitions of n yielding the same generating function (and

thus corresponding to the same element in Pn) will be discussed in more depth in

Section 4.4.
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Figure 4.3: Hasse diagram for P16
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4.3 The Balancing Theorems

The purpose of this section is to prove the two Balancing Theorems, which were

mentioned in the previous section.

4.3.1 The First Balancing Theorem

Recall the balancing operation λ→ λ̃ defined in the previous section. Given a partition

λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
), we define

λ̃ = ( Ãk Ãk−1 ⋯ Ã1

B̃k B̃k−1 ⋯ B̃1
) , where Ãi + B̃i = Ai +Bi, and Ãi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai − 1 if Ai > Bi + 1

Ai + 1 if Ai + 1 < Bi

Ai otherwise.

Note that the number and sizes of principal hooks are preserved from λ to λ̃. For

a partition µ = ( a` a`−1 ⋯ a1
b` b`−1 ⋯ b1 ), call wi = ai + bi the weight of the ith principal hook

(wi is simply hook length minus 1), and define the weight vector of µ by wt(µ) =

(a` + b`, . . . , a1 + b1). We will show the following:
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Lemma 4.3.1. For any integer vector w, we have

#{µ ⪯ λ ∣wt(µ) = w} ≤ #{µ̃ ⪯ λ̃ ∣wt(µ̃) = w}.

A few remarks on this lemma are in order. First, partitions of weight w ∈ Pk exist

in λ (or λ̃) if and only if wi ≤ Ai +Bi and wi > wi−1 + 1 for all i. In this case we say

that w is a valid weight vector for λ. Also, without loss of generality we may assume

that the length of w is equal to the number of principal hooks of λ. For if not (say, if

λ had k hooks and the length of w were ` < k), then any partition with weight w in

λ (or λ̃) would occupy only the ` outermost hooks of λ. Thus we could discard the

k − ` excess (inner) hooks of λ to obtain a partition with ` principal hooks, and the

resulting counts would be the same as those in the inequality above.

Theorem 4.3.2 (The First Balancing Theorem).

Gλ ≤ Gλ̃.

Remark 4.3.3. This theorem is easily verified in the single hook case (i.e., λ = (A
B
)) by

a simple injection. Without loss of generality we may assume A > B +1, so λ̃ = (A−1
B+1

).

Map µ = (a
b
) ⪯ λ to µ̃ ⪯ λ̃ as follows: If a < A, set µ̃ = µ. Otherwise (if a = A), set

µ̃ = (a+b−B−1
B+1

).

We will prove Lemma 4.3.1 by means of two rather technical lemmas. We proceed to
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provide the background necessary to state and prove these lemmas.

Given a partition λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
) and valid weight vector w = (wk, . . . ,w1), we can

represent all partitions µ ⪯ λ of weight wt(µ) = w in the following way:

On the coordinate axes, consider the diagonal x+y = wi, and place points (x, y) (with

nonnegative integer-valued coordinates) on this diagonal whenever x ≤ Ai and y ≤ Bi.

Such a point (x, y) corresponds to an ith principal hook of µ with arm length x and

leg length y. By construction this hook fits inside the ith principal hook of λ and has

weight wi.

⋰

x + y = wi

(x, y)

(Ai, Bi)

y

x

Figure 4.4: Correspondence between points and hooks

After placing such points on each diagonal line x + y = w1, . . . , x + y = wk, join any

point (x, y) on the ith diagonal to a point (X, Y ) on the (i+1)st diagonal if and only

if x < X and y < Y . This connection corresponds to an ith principal hook properly

“nesting under” an (i+1)st principal hook to form a valid portion of a Ferrers diagram,

as shown in Fig. 4.5.
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⋰

x + y = wi+1

(x, y)

x + y = wi

(X, Y )

Y

X

x
y

Figure 4.5: Correspondence between diagonals and consecutive hooks

Next, beginning at the second diagonal (x + y = w2) and proceeding to subsequent

ones, discard any points that do not connect to the lower adjacent diagonal. This

produces precisely the structure whose points on the line x + y = wi are inside the

Ai ×Bi rectangle for each i, with strictly northeast paths. We call this structure the

trellis for λ determined by w, denoted by Tλ,w.

Example 4.3.4. Let λ = ( 10 8 6 4
9 6 5 2 ), with w = (16,10,6,1). We have λ̃ = ( 10 7 6 3

9 7 5 3 ). The

trellises Tλ,w and Tλ̃,w are given below:

Tλ,w ∶

9

10

6

8

5

6

2

4

Tλ̃,w ∶

9

10

7

7

5

6

3

3

Figure 4.6: Trellises for ( 10 8 6 4
9 6 5 2 ) and ( 10 7 6 3

9 7 5 3 ) with w = (16,10,6,1)
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Consider points Q1, . . . ,Qk on the diagonals x + y = w1, . . . , x + y = wk, respectively,

where each Qi is connected to Qi+1. The path formed by traversing Q1 −Q2 −⋯−Qk

corresponds to a partition with weight w whose ith principal hook is given by Qi =

(xi, yi)↔ (⋯ xi ⋯⋯ yi ⋯ ).

Example 4.3.5. The path (0,1) − (4,2) − (5,5) − (10,6) in the trellis Tλ,w from Fig.

4.6 corresponds to ( 10 5 4 0
6 5 2 1 ) ⪯ λ having weight (16,10,6,1), as illustrated below:

9

10

6

8

5

6

2

4

Figure 4.7: Correspondence between trellis paths and partitions

We make the following important observation: the total number of partitions µ of

weight w in λ corresponds to the total number of paths Q1 −Q2 −⋯−Qk through the

trellis Tλ,w.

Example 4.3.6. Consider the construction of the trellis for λ = ( 14 8 7 4
12 10 5 2 ) with w =

(19, 14, 8, 4):

70



2

4

Ð→
5

7

2

4

Ð→

10

8

5

7

2

4

Ð→

12

14

10

8

5

7

2

4

Figure 4.8: Construction of the trellis for ( 14 8 7 4
12 10 5 2 ) with w = (19, 14, 8, 4)

For comparison with the trellis diagrams given above, consider the progression of the

more “balanced” trellis diagrams corresponding to λ̃ = ( 13 9 6 3
13 9 6 3 ) with the same weight

vector:

3

3

Ð→

6

6

3

3

Ð→

9

9

6

6

3

3

Ð→

13

13

9

9

6

6

3

3

Figure 4.9: Construction of the trellis for ( 13 9 6 3
13 9 6 3 ) with w = (19, 14, 8, 4)

Denote the points on the J th diagonal of Tλ,w by PJ = {(x1, y1), . . . , (xm, ym)}, where

xi+1 = xi − 1. Define C(PJ) = x1 − ym. (The function C measures the “centeredness”

of the points of PJ along the line y = x.)

Comparing Fig. 4.8 to Fig. 4.9 leads us to the following lemma:
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Lemma 4.3.7. Let λ be any partition and let w be a weight vector that is valid for

λ. Define PJ as above, and similarly let P̃
J

be the points on the J th diagonal of Tλ̃,w.

Then the following hold:

• If C(PJ) < −1, then {(x1 + 1, y1 − 1), . . . , (xm−1, ym−1)} ⊆ P̃
J
.

• If ∣C(PJ)∣ ≤ 1, then {(x1, y1), . . . , (xm, ym)} ⊆ P̃
J
.

• If C(PJ) > 1, then {(x2, y2), . . . , (xm − 1, ym + 1)} ⊆ P̃
J
.

In particular, for all cases we have #P̃
J ≥ #PJ .

Remark 4.3.8. Visually, Lemma 4.3.7 claims that the number of points on a diagonal

never decreases after balancing λ to λ̃, and the points on a diagonal are never less

balanced around y = x. Later, we will without loss of generality assume #P̃
J = #PJ .

Proof of Lemma 4.3.7. We proceed by induction on the number of principal hooks of

λ. Suppose λ is a partition with 1 principal hook, λ = (A
B
), and let w = (w) (where

w ≤ A +B). Without loss of generality we may assume A ≥ B (if not, conjugate λ).

If A = B, then λ̃ = λ and C(P1) = 0 so the statement is true. Likewise if A = B + 1,

0 ≤ C(P1) ≤ 1 and the statement is again easily verified since λ̃ = λ. If A > B + 1,

then λ̃ = (A−1
B+1

) and we have the following possibilities:

• If w ≤ B, then P1 = {(w, 0), . . . , (0, w)} = P̃
1
.
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• If B < w < A, then P1 = {(w, 0), . . . , (w −B, B)} (so C(P1) ≥ 1) and

P̃
1 = {(w, 0), . . . , (w −B − 1, B + 1)}.

• If w ≥ A, then P1 = {(A, w −A), . . . , (w −B, B)} (so C(P1) > 1) and

P̃
1 = {(A − 1, w −A + 1), . . . , (w −B − 1, B + 1)}.

In each instance we see that the statement of the lemma is true, thus verifying the

single hook case. (Note that this also follows from Remark 4.3.3.)

For some specific k ≥ 2, we assume now that the property holds for any partition

with k − 1 hooks. Let λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
) be any partition with k hooks, and let

w = (wk, . . . ,w1) be any valid weight vector for λ. Represent the points of Pk−1 and

Pk as Pk−1 = {(x1, y1), . . . , (xm, ym)} and Pk = {(X1, Y1), . . . , (Xn, Yn)} for Tλ,w.

Analogously let P̃
k−1 = {(x̃1, ỹ1), . . . , (x̃m̃, ỹm̃)} and P̃

k = {(X̃1, Ỹ1), . . . , (X̃ñ, Ỹñ)} in

Tλ̃,w. Furthermore, set d = C(Pk−1) and e = C(Pk).

Observe that the inductive hypothesis can be restated as follows:

• If d < −1, then x̃1 ≥ x1 + 1 and x̃m̃ ≤ xm + 1.

• If ∣d∣ ≤ 1, then x̃1 ≥ x1 and x̃m̃ ≤ xm.

• If d > 1, then x̃1 ≥ x1 − 1 and x̃m̃ ≤ xm − 1.
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Similarly, the conditions we must prove for P̃
k

relative to Pk can be restated as

follows:

• If e < −1, show that X̃1 ≥X1 + 1 and X̃ñ ≤Xn + 1.

• If ∣e∣ ≤ 1 show that X̃1 ≥X1 and X̃ñ ≤Xn.

• If e > 1 show that X̃1 ≥X1 − 1 and X̃ñ ≤Xn − 1.

To prove these inequalities, we need to determine constraints on the values of

X1, Xn, X̃1 and X̃ñ. Notice that adding a kth principal outer hook (together with a

valid weight to the weight vector) does not alter the original points and connections

of the trellis for the partition with k − 1 hooks (refer to Figs. 4.8 and 4.9 for an

illustration of this). With this in mind, we have bounds on the values of X1 and Xn

as discussed below.

To guarantee connectivity between the (k−1)st and kth diagonals, we see that Y1 > y1

(equivalently, wk −X1 > wk−1 − x1) and Xn > xm. Furthermore, since the points on

the kth diagonal correspond to hooks fitting in the outermost hook of λ, we have that

X1 ≤ Ak and Yn ≤ Bk (equivalently, wk −Xn ≤ Bk).

Thus X1 = min(wk −wk−1 + x1 − 1, Ak) and Xn = max(wk −Bk, xm + 1). Similarly for

Tλ̃,w we have X̃1 = min(wk −wk−1 + x̃1 − 1, Ãk) and X̃ñ = max(wk − B̃k, x̃m̃ + 1).
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Clearly the values of X1, Xn, X̃1 and X̃ñ break apart into many cases based on the

interdependencies of the other parameters. We now consider what the cases for those

other parameters may be. Recall that Ãk + B̃k = Ak +Bk, and the values of Ãk and

B̃k are determined as follows:

(Ãk, B̃k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ak − 1, Bk + 1) if Ak > Bk + 1

(Ak + 1, Bk − 1) if Ak + 1 < Bk

(Ak, Bk) otherwise.

Next, notice that the conclusion given by the inductive hypothesis depends on the

value of d, and similarly the property that we wish to show for P̃
k

with respect to Pk

is dependent on e.

To summarize, we have two cases for determining each of the values X1, Xn, X̃1, X̃ñ;

three cases for the values of Ãk (also determining B̃k); three cases for d and three cases

for e. Thus, there are altogether 432 different possible cases that must be considered.

We relied on symbolic logic computations in Mathematica to verify the inequalities

in question for each of these cases (in fact, it turned out that 331 of these cases yield

contradictory assumptions and can therefore be ignored, while for each of the valid

101 cases the desired result holds). The full code used for this verification is provided

in Appendix C.2.
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Example 4.3.9. It is beneficial to illustrate the verification of one of the cases in the

previous proof by hand. Consider the case where:

1. d > 1 (so x̃1 ≥ x1 − 1 and x̃m̃ ≤ xm − 1 by the inductive hypothesis)

2. ∣e∣ ≤ 1 (so we wish to show that X̃1 ≥X1 and X̃ñ ≤Xn)

3. Ak + 1 < Bk (implying Ãk = Ak + 1 and B̃k = Bk − 1)

4. Ak ≤ wk −wk−1 + x1 − 1 (implying X1 = Ak)

5. wk −Bk ≤ xm + 1 (implying Xn = xm + 1)

6. Ãk ≤ wk −wk−1 + x̃1 − 1 (implying X̃1 = Ãk = Ak + 1)

7. x̃m̃ + 1 ≤ wk − B̃k (implying X̃ñ = wk − B̃k = wk −Bk + 1)

From the cases above, we easily see that X̃1 = Ak + 1 > Ak =X1.

From (5) and (7) above, we have X̃ñ = wk − Bk + 1 ≤ xm + 2 = Xn + 1. Note that

e = X1 +Xn −wk, by definition. If X̃ñ = Xn + 1, then Xn = wk −Bk and e = Ak −Bk,

which contradicts the assumption that ∣e∣ ≤ 1. So we have X̃ñ ≤Xn, as desired.

Mathematica symbolically performed these types of comparisons for this and the

other 100 viable cases, and verified that the desired inequalities for each case were

true.
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Remark 4.3.10. From now on, we choose to discard any (potential) excess points in

P̃
J

that are (in general) not guaranteed to exist by Lemma 4.3.7. In other words, we

assume the following.

• If C(PJ) < −1, then P̃
J = {(x1 + 1, y1 − 1), . . . , (xm−1, ym−1)}.

• If ∣C(PJ)∣ ≤ 1 then P̃
J = {(x1, y1), . . . , (xm, ym)}.

• If C(PJ) > 1, then P̃
J = {(x2, y2), . . . , (xm − 1, ym + 1)}.

We move on to define more concepts and tools that will be used in the next lemma.

Let pJ = (p1, . . . , pm), where pi is the number of paths from any point on the first

diagonal of the trellis Tλ,w to the point (xi, yi) ∈ PJ . In other words, pi is the number

of partitions with outer hook (xi
yi
) fitting inside the innermost J hooks of λ and having

weight (w1, . . . ,wJ). We call pJ the path-counting vector to the J th diagonal, and we

define p̃J for P̃
J

similarly.

Remark 4.3.11. Note that
m

∑
i=1

pi = pJ ⋅ 1 is the total number of paths Q1 −Q2 −⋯−QJ

through Tλ,w from the first to the J th diagonal. (Here “ ⋅ ” denotes the ordinary dot

product and 1 is the all one vector of appropriate size.) Because of Remark 4.3.10,

pJ and p̃J have the same length. Note that Lemma 4.3.1 can be expressed as

pk ⋅ 1 ≤ p̃k ⋅ 1

(recall that k is the number of principal hooks of λ).
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Example 4.3.12. From Example 4.3.4, p4 = (15,20,19,16) and p̃4 = (14,19,22,19).

Thus p4
⋅ 1 = 70 < 74 = p̃4

⋅ 1.

Remark 4.3.13. For the remainder of this section, we will be working in a sufficient

level of generality that the connection of these trellis structures to partitions may in

a sense be ignored. We may simply regard a given trellis as a collection of vertices

and edges, with the property that points balance along y = x as given by Remark

4.3.10. Much of what follows will be dealing with relationships between certain 0-1

matrices. These more general results may be of some independent interest.

We now consider the correlation between these path-counting vectors in suc-

cessive diagonals. As before, PJ−1 = {(x1, y1), . . . , (xm, ym)} and PJ =

{(X1, Y1), . . . , (Xn, Yn)} are the points on successive diagonals of Tλ,w. Also, de-

fine σ = X1 − x1 and τ = Y1 − y1. (We similarly define P̃
J−1

and P̃
J
, together with

σ̃ = X̃1 − x̃1 and τ̃ = Ỹ1 − ỹ1.)

Viewing PJ−1 and PJ as the vertices of a bipartite graph (together with edge set

corresponding to the connections between PJ−1 and PJ), we consider the m×n biad-

jacency matrix, M . Its rows are labeled (in order) by the points of PJ−1 and columns

by the points of PJ . In particular, Mi, j = 1 if xi <Xj and yi < Yj, and 0 otherwise.

Remark 4.3.14. Note that M (of dimensions m × n) has the following properties:

1. Entries in any parallel of the main diagonal of M are the same, i.e., Mi, j =
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Mi+`, j+` whenever 1 ≤ i + ` ≤m and 1 ≤ j + ` ≤ n.

2. M has s = min(σ, n) ones in the first row (in columns 1 through s). This is

because we have an edge from (x1, y1) to (Xj, Yj) ∈ PJ whenever x1 <Xj ≤Xs

(note that y1 < Y1 ≤ Yj for all j).

3. Similarly to (2), M has t = min(τ, m) ones in the first column (in rows 1 through

t).

4. It follows from (1)-(3) that M is completely determined by s and t. Visually, s

is the number of edges from (x1, y1) to the points of PJ , and t is the number

of edges from (X1, Y1) to points of PJ−1. This is illustrated in Fig. 4.10.

⋅ ⋅
⋅ ⋅
⋅

(x1, y1)
(x2, y2)

(xt, yt)

(xm, ym) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(X1, Y1)
(X2, Y2)

(Xs, Ys)

(Xn, Yn)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅

⋅

⋮

⋮

s

t
M =

t
m
−
t

m − t n −m + t

m
−
n
+
s

n
−
s

n − ss

1 ⋅ ⋅ ⋅ 1 ⋅
⋅
⋅
⋅

1

⋅⋅
⋅
1⋅ ⋅ ⋅1

⋅
⋅

⋅
⋅1

⋅⋅
⋅

1
0

0

Figure 4.10: Correspondence between diagonals and biadjacency matrix

Remark 4.3.15. We derive a simple identity to be used later. Recall that σ =X1 − x1

and τ = Y1−y1. Furthermore, Yn = Y1+n−1 and ym = y1+m−1. Since d = x1−ym and
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e =X1−Yn, we have that e+n+τ =X1−Yn+n+Y1−y1 = x1+σ+1−ym+m−1 = d+m+σ.

Thus we have

e + n + τ = d +m + σ. (4.1)

The biadjacency matrix M provides the correlation between the path-counting vectors

pJ−1 and pJ as follows: Consider the matrix product pJ−1M . This yields a vector

with n components whose jth entry is pJ−1
⋅Mj (where Mj is the jth column of M).

Mj has a 1 in the ith entry if and only if (xi, yi) ∈ PJ−1 is connected to (Xj, Yj) ∈ PJ .

In other words, the jth entry of pJ−1M is the number of trellis paths starting from

the first diagonal and ending at (Xj, Yj). Thus we have the important identity

pJ−1M = pJ . (4.2)

We analogously define M̃ for P̃
J−1

and P̃
J

in the more balanced trellis. Because

of Remark 4.3.10, M̃ and M have the same dimensions. The m × n matrix M̃ is

completely determined by s̃ = min(σ̃, n) and t̃ = min(τ̃ , m).

Remark 4.3.16. Because of Remark 4.3.10, σ̃ and τ̃ are completely determined by –

and can be expressed in terms of – the parameters of the pre-balanced trellis. These

expressions for the various cases (and the corresponding expressions for s̃ and t̃) are

included in Appendix A for completeness sake. The conclusions given there follow

from Lemma 4.3.7.
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Let x be a vector of the form (
a≥0

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0,

b≥1
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1,

c≥0
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0). We will call such vectors

admissible. Define D(x) = a− c, the centeredness of x. Define B(x), the centering of

x, to be the admissible vector x̃ with numbers ã, b̃ = b, c̃ such that

(ã, c̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a − 1, c + 1) if a > c

(a + 1, c − 1) if a < c

(a, c) if a = c.

Note that x and B(x) have the same number of 1’s.

Example 4.3.17. For a = 4, b = 3, c = 1, we have x = (0,0,0,0,1,1,1,0) and

D(x) = 3. Then B(x) = (0,0,0,1,1,1,0,0), B2(x) = (0,0,1,1,1,0,0,0) and

B3(x) = (0,0,0,1,1,1,0,0), where Bi is the function B applied i times.

We now have the language necessary to state a general lemma that immediately

implies Lemma 4.3.1.

Lemma 4.3.18. Define pJ and p̃J as above, and let d = C(PJ). Let u be an ad-

missible vector with a + b + c = #PJ . Then pJ ⋅ u ≤ p̃J ⋅ ũ, where ũ is defined by the

following cases:

• If d < −1, then:

– If D(u) > d + 1, then ũ = u.
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– If d − 1 ≤D(u) ≤ d + 1, then ũ = B(u).

– If D(u) < d − 1, then ũ = B2(u).

• If ∣d∣ ≤ 1, then:

– If d − 1 ≤D(u) ≤ d + 1, then ũ = u.

– If D(u) < d − 1 or D(u) > d + 1, then ũ = B(u).

• If d > 1, then:

– If D(u) < d − 1, then ũ = u.

– If d − 1 ≤D(u) ≤ d + 1, then ũ = B(u).

– If D(u) > d + 1, then ũ = B2(u).

We will prove Lemma 4.3.18 by induction on the number of principal hooks of λ.

However, before giving the proof, we first show how it implies Lemma 4.3.1 and in

turn how Lemma 4.3.1 implies the First Balancing Theorem 4.3.2.

Proof of Lemma 4.3.1. In each of the three cases of Lemma 4.3.18, notice that if

D(u) = 0, then ũ = u. Thus since D(1) = 0, we have in every case that pk ⋅ 1 ≤ p̃k ⋅ 1.

As noted in Remark 4.3.11, this is a restatement of the inequality in Lemma 4.3.1.

Remark 4.3.19. Note that the proof of Lemma 4.3.1 only required the assertion of

Lemma 4.3.18 specifically for u = 1. However, the full generality of Lemma 4.3.18
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(allowing for any admissible vector u) seems to be necessary in order for the proof

by induction to be possible. Determining the appropriate conditions for induction to

work in the proof of Lemma 4.3.18 was a significant part of discovering the proof.

Proof of Theorem 4.3.2 (The First Balancing Theorem). All µ ⪯ λ, with µ of given

weight w, partition the same number. Thus they contribute to the coefficient of the

same degree in Gλ (similarly for µ̃ ⪯ λ̃, with wt(µ̃) = w). Thus the result follows from

Lemma 4.3.1.

The remainder of this section will be devoted to proving Lemma 4.3.18.

Proof of Lemma 4.3.18. We proceed by induction on the number of principal hooks

of λ.

Note that there are no “paths” leading to the points of P1 in the single hook case.

Because of the correspondence to partitions, the ith entry of p1 is the number of

partitions in λ having outer hook (xi, yi). This number is simply 1. So p1 = p̃1 = 1

and the inequalities in the lemma are trivially true (since u and B(u) always have

the same number of 1’s).

We assume now that Lemma 4.3.18 is true for any partition having some specific

number, k − 1, of principal hooks.
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Let λ be any partition with k hooks, and let w be a valid weight vector for λ.

As before, Pk−1 and Pk are the points on the (k − 1)st and kth diagonals of Tλ,w,

respectively, and pk−1 and pk are the corresponding path-counting vectors. Similarly,

we have P̃
k−1

, P̃
k
, p̃k−1 and p̃k for Tλ̃,w. Let d = C(Pk−1) and e = C(Pk).

For any admissible n-vector v (with a+ b+ c = n), we wish to show that pk ⋅v ≤ p̃k ⋅ ṽ.

Define V to be the n × b matrix whose ith column is all zero except for a 1 in the

(a + i)th position (note that this corresponds to a position of a 1 in v). We define Ṽ

based on ṽ similarly. Then MV is the m × b matrix consisting of the columns of M

whose indices correspond to 1’s in v, as illustrated below:

M =

t
m
−
t

m − t n −m + t

m
−
n
+
s

n
−
s

n − ss

1 ⋅ ⋅ ⋅ 1
⋅
⋅
⋅
⋅

1

⋅⋅
⋅
1⋅ ⋅ ⋅1

⋅
⋅

⋅
⋅

1
⋅⋅
⋅

1
0

0

v ∶ (0 0 1 1 0 0)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
a b c

MV

Figure 4.11: Structure of MV from M and v

Note that since pk = pk−1M (Equation (4.2)), the sum of the entries of pk−1MV is
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pk ⋅ v. That is,

pk ⋅ v = pk−1MV ⋅ 1. (4.3)

Observe that any permutation of the entries within a row of MV does not affect the

expression on the right-hand side of (4.3). With this in mind, we define MV to be

the matrix obtained from MV by “justifying” the 1’s in each row of MV to the left

(the number of 1’s in each row remains the same). So we have

pk ⋅ v = pk−1MV ⋅ 1. (4.4)

Let B (MV ) be the matrix obtained by replacing each nonzero column u of MV by

ũ, as dictated by the lemma. By the inductive hypothesis, pk−1
⋅u ≤ p̃k−1

⋅ ũ. Together

with (4.4), this implies that

pk ⋅ v ≤ p̃k−1B (MV ) ⋅ 1. (4.5)

From (4.2), we have p̃k = p̃k−1M̃ . We also consider M̃Ṽ (the matrix consisting of the

columns of M̃ corresponding to 1’s in ṽ with the 1’s in each row then justified left).

Analogously to (4.4), we have

p̃k ⋅ ṽ = p̃k−1M̃Ṽ ⋅ 1. (4.6)

Thus, in order to prove pk ⋅ v ≤ p̃k ⋅ ṽ, it suffices to show that p̃k−1B (MV ) ⋅ 1 ≤
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p̃k−1M̃Ṽ ⋅1. We will in fact demonstrate that M̃Ṽ −B (MV ) has nonnegative entries,

which produces the desired inequality since M̃Ṽ and B (MV ) are both 0-1 matrices.

We represent this claim simply as M̃Ṽ −B (MV ) ≥ 0 (where 0 denotes the all-zero

matrix of appropriate size). We will continue the proof of Lemma 4.3.18 after the

next remark and an example.

Remark 4.3.20. The preceding discussion allows us to no longer deal with path-

counting vectors and instead simply work with comparing 0-1 matrices that arise

from connections between the last two diagonals of a trellis diagram.

Example 4.3.21. Before continuing with the proof, we provide an example to give

some evidence and intuition to this claim.

Suppose in some trellis structure we have m = 8 points in Pk−1 and n = 10 points in

Pk. Moreover, suppose C(Pk−1) = d = −2, C(Pk) = e = 3 and M =
⎛
⎜⎜
⎝

1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1

⎞
⎟⎟
⎠

.

This implies M̃ =
⎛
⎜⎜
⎝

1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1

⎞
⎟⎟
⎠

. (An example with these specific values can be

seen in the trellis T(16 8 7
13 10 8), (20,11,8) in the 2nd and 3rd diagonals.)

It can be verified for these specific matrices that, for any v, we have M̃Ṽ −B (MV ) ≥ 0.

We illustrate the case v = (0,0,1,1,1,1,1,1,0,0). We have MV =
⎛
⎜⎜
⎝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

⎞
⎟⎟
⎠

, so

MV =
⎛
⎜⎜
⎝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟
⎠

. Because of the inductive hypothesis, any column u with D(u) <

d − 1 = −3 “balances” twice (ũ = B2(u)), which applies to the last two columns. Any
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column with −3 ≤ D(u) ≤ −1 balances once (applied to all other columns except the

first).

So we have B (MV ) =
⎛
⎜⎜
⎝

1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 0 0
1 1 0 0 0 0

⎞
⎟⎟
⎠

.

Since D(v) = 0 < e − 1, we have ṽ = v, so M̃Ṽ =
⎛
⎜⎜
⎝

1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1

⎞
⎟⎟
⎠

and M̃Ṽ =
⎛
⎜⎜
⎝

1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 0 0 0

⎞
⎟⎟
⎠

.

Therefore M̃Ṽ −B (MV ) =
⎛
⎜⎜
⎝

0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟
⎠
≥ 0, as desired.

Proof of Lemma 4.3.18, continued. It remains to prove in general the claim that

M̃Ṽ −B (MV ) ≥ 0. We begin by developing a simple method for representing and

comparing matrices M̃Ṽ and B (MV ). Note that by construction, the row sums of

M̃Ṽ (and therefore of M̃Ṽ ) form a unimodal sequence where consecutive terms differ

by at most 1. Moreover this sequence is strictly unimodal except for possibly admit-

ting a peak with multiplicity greater than 1. Also, because of the left-justification of

rows in M̃Ṽ , the column sums form a weakly decreasing sequence where consecutive

terms first repeat (if the sequence starts with m), then decrease by exactly 1 (if the

first and last rows of M̃Ṽ do not have the same number of zeros), then decrease by

exactly 2 for the remaining positive terms. So we conclude that if the (i, j) entry

of M̃Ṽ is a 1, then the (i − 1, j − 1), the (i, j − 1) and the (i + 1, j − 1) entries (if

they exist) are also 1’s. We remark that these claims can readily be visualized in the

illustrations in Appendix B.2.
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Thus M̃Ṽ of fixed dimensions m × b can be described by the three numbers α, β, γ,

where α (with 1 ≤ α ≤ b) indicates the index position of the last nonzero column, β

(with 1 ≤ β ≤m) indicates the row of the first 1 in column α, and γ (with β ≤ γ ≤m)

indicates the row of the last 1 in column α. Since M̃Ṽ is uniquely determined by

these three numbers, we write M̃Ṽ = (α, β, γ). Note that this 3-tuple representation

is completely determined by the last nonzero column of the matrix.

Example 4.3.22. The 8×6 matrix

⎛
⎜⎜
⎝

1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 0 0 0

⎞
⎟⎟
⎠

from Example 4.3.21 can be represented

as (6, 3, 5).

Proof of Lemma 4.3.18, continued. Analogously, we see that MV (of fixed dimensions

m × b) can also be uniquely expressed by a 3-tuple.

For the matrix B (MV ), we similarly let ρ be the index position of the last nonzero

column, and let η and ζ indicate the row of the first and last 1, respectively, in

column ρ. Unfortunately B (MV ) is not in general equal to the matrix determined

(as above) by (ρ, η, ζ). An instance of this can be seen in Example 4.3.21. However,

note that columns, u, of MV either all have nonnegative centeredness, or else they

all have nonpositive centeredness (i.e., either D(u) ≥ 0 or else D(u) ≤ 0 for all u).

Furthermore, the sequence of centeredness numbers of the columns weakly increases in

absolute value, from left to right, by at most 1. Under the assumptions of the inductive

hypothesis, namely the result of the lemma applied to columns of B(MV ), we infer
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from these observations that a column centered by two under B cannot be adjacent to

a (nonzero) column that is fixed under B. Also, if a column of MV is centered under

B, then nonzero columns to the right of it are also centered. Furthermore, notice

that consecutive columns with 0’s in the first and last entries always have the same

centeredness. (We remark that these observations are clearly illustrated in Appendix

B.2.) From this discussion, we conclude that, although B (MV ) ≠ (ρ, η, ζ), we do

have (ρ, η, ζ) −B (MV ) ≥ 0.

So to show that M̃Ṽ −B (MV ) ≥ 0, it suffices to show that (α, β, γ) − (ρ, η, ζ) ≥ 0.

Based on the structure of these matrices, we have that (α, β, γ)− (ρ, η, ζ) ≥ 0 if and

only if ρ ≤ α and

• If ρ = α, then η ≥ β and ζ ≤ γ, or else

• If ρ < α, then β − η ≤ α − ρ and ζ − γ ≤ α − ρ.

In order to determine (α, β, γ) and (ρ, η, ζ), it is necessary to examine a

rather large number of cases based on the comparative values of the parameters

n, m, s, t, a, b, c, d, e.

We first examine various cases for precisely determining the structure of MV . From

these we will obtain the form of MV (also M̃Ṽ by extension), and subsequently

determine the various possibilities for B (MV ). We refer the reader to Fig. 4.11
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for understanding why the following cases are relevant, and why the corresponding

implications hold.

Case 1. c ≥ n − s (implying the first row of MV is all 1’s)

Case 2. a < s and c < n − s (first row of MV contains 0’s and 1’s)

Case 3. a ≥ s (first row of MV is all 0’s)

For each of Cases 1.-3., we must also consider the following:

Case A. a ≥m − t (implying the last row of MV is all 1’s)

Case B. a <m − t and c < n −m + t (last row of MV contains 0’s and 1’s)

Case C. c ≥ n −m + t (last row of MV is all 0’s)

Illustrations of the 9 possible forms of MV are given in Appendix B.1.

From these, we can describe the structure of MV . The form of MV in Case 1. or

Case A. can be determined immediately. However, in order to determine the form of

MV in Cases 2.B., 3.B., 2.C., or 3.C., the following subcases must also be considered:

Case i. s + t ≤ b (implying the final column of MV is all 0’s)
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Case ii. s + t > b (implying the final column of MV contains 1’s)

Illustrations of the 13 possible forms of MV are given in Appendix B.2.

Since M̃ and Ṽ are matrices having the same structural properties as M and V , note

that replacing all parameter names (other than n, m and b, which are fixed under

balancing) with their respective “tilde” names (i.e., m− t−a→m− t̃− ã) produces all

possible cases for M̃Ṽ . Thus (noting some symmetries in the various cases) we have

from Appendix B.2 the following possible values for the matrix M̃Ṽ = (α, β, γ).

Table 4.1
Possible cases for M̃Ṽ = (α, β, γ)

Case M̃Ṽ

1̃.Ã. (b, 1, m)

1̃.B̃., 1̃.C̃. (b, 1, t̃ + ã)

2̃.Ã., 3̃.Ã. (b, n − s̃ − c̃ + 1,m)

2̃.B̃.̃i., 2̃.C̃.̃i., 3̃.B̃.̃i., 3̃.C̃.̃i. (s̃ + t̃ − 1, t̃ + ã, n − s̃ − c̃ + 1)

2̃.B̃.ĩi., 2̃.C̃.ĩi., 3̃.B̃.ĩi., 3̃.C̃.ĩi. (b, n − s̃ − c̃ + 1, t̃ + ã)

We now turn our attention to determining (ρ, η, ζ) for the various cases. Note that

we need only consider how the function B affects the last nonzero column of MV .

Once again, we have a further breakdown of the cases, dependent on the centeredness
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of this last nonzero column compared with C(Pk−1) = d as directed by the inductive

hypothesis. In each case, we use δ to represent the centeredness of this final nonzero

column of MV .

We are again able to take advantage of some symmetries (noticeable in Appendix

B.2) between the various cases. We have the following:

• For Case 1.A., B(MV ) ≤ (b, 1, m).

• For Cases 1.B. and 1.C., we have δ = −(m − t − a).

– If d < −1, then:

∗ If δ > d + 1, then: B(MV ) ≤ (b, 1, t + a)

∗ If d − 1 ≤ δ ≤ d + 1, then: B(MV ) ≤ (b, 2, t + a + 1)

∗ If δ < d − 1, then: B(MV ) ≤ (b, 3, t + a + 2)

– If ∣d∣ ≤ 1, then:

∗ If δ ≥ d − 1, then: B(MV ) ≤ (b, 1, t + a)

∗ If δ < d − 1, then: B(MV ) ≤ (b, 2, t + a + 1)

– If d > 1, then: B(MV ) ≤ (b, 1, t + a)

• For Cases 2.A. and 3.A., we have δ = n − s − c.

– If d < −1, then: B(MV ) ≤ (b, n − s − c + 1, m)

– If ∣d∣ ≤ 1, then:

92



∗ If δ ≤ d + 1, then: B(MV ) ≤ (b, n − s − c + 1, m)

∗ If δ > d + 1, then: B(MV ) ≤ (b, n − s − c, m − 1)

– If d > 1, then:

∗ If δ < d − 1, then: B(MV ) ≤ (b, n − s − c + 1, m)

∗ If d − 1 ≤ δ ≤ d + 1, then: B(MV ) ≤ (b, n − s − c, m − 1)

∗ If δ > d + 1, then: B(MV ) ≤ (b, n − s − c − 1, m − 2)

Before continuing to describe B(MV ) for Cases 2.B., 2.C., 3.B. and 3.C., we note a

few simplifications. In any of these cases we have δ = (t + a − 1) − (m − n + s + c − 1).

Furthermore, since s = σ and t = τ in these cases, the simple identity (4.1) we noted

in Remark 4.3.15 is equivalent to e + n + t = d +m + s. It follows that δ = a − c + d − e.

Consequently, note that the cases (δ < d− 1, d− 1 ≤ δ ≤ d+ 1, δ > d+ 1) are equivalent

to (a − c < e − 1, e − 1 ≤ a − c ≤ e + 1, a − c > e + 1). We proceed now with listing the

representations of B(MV ) for these remaining cases.

• For Cases 2.B.i., 2.C.i., 3.B.i. and 3.C.i. [and for 2.B.ii., 2.C.ii., 3.B.ii. and

3.C.ii., as given below in brackets], we have δ = a − c + d − e.

– If δ = 0, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

– If δ ≤ −1, then:

∗ If d < −1, then:
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· If δ < d − 1, then: B(MV ) ≤ (s + t − 1, t + a + 2, n − s − c + 3)

filler [(b, n − s − c + 3, a + t + 2)]

· If d− 1 ≤ δ ≤ d+ 1, then: B(MV ) ≤ (s+ t− 1, t+ a+ 1, n− s− c+ 2)

filler [(b, n − s − c + 2, a + t + 1)]

· If δ > d + 1, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

∗ If ∣d∣ ≤ 1, then:

· If δ < d − 1, then: B(MV ) ≤ (s + t − 1, t + a + 1, n − s − c + 2)

filler [(b, n − s − c + 2, a + t + 1)]

· If δ ≥ d − 1, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

∗ If d > 1, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

– If δ ≥ 1, then:

∗ If d < −1, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

∗ If ∣d∣ ≤ 1, then:

· If δ ≤ d + 1, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

· If δ > d + 1, then: B(MV ) ≤ (s + t − 1, t + a − 1, n − s − c)

filler [(b, n − s − c, a + t − 1)]
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∗ If d > 1, then:

· If δ < d − 1, then: B(MV ) ≤ (s + t − 1, t + a, n − s − c + 1)

filler [(b, n − s − c + 1, a + t)]

· If d − 1 ≤ δ ≤ d + 1, then: B(MV ) ≤ (s + t − 1, t + a − 1, n − s − c)

filler [(b, n − s − c, a + t − 1)]

· If δ > d + 1, then: B(MV ) ≤ (s + t − 1, t + a − 2, n − s − c − 1)

filler [(b, n − s − c − 1, a + t − 2)]

We again turned to Mathematica to symbolically compare (ρ, η, ζ) and (α, β, γ) for

the many possible valid cases (there are 1990 of them). In each case, Mathematica

verified that (α, β, γ) − (ρ, η, ζ) ≥ 0, thus completing the proof. The full code used

for this verification is provided in Appendix C.3.

Example 4.3.23. We illustrate the proof of Lemma 4.3.18 for two cases.

• Example 4.3.23.a.

Suppose we are in the following case for the various parameters (assuming as

always some arbitrary but fixed positive integer values of m and n):

– ∣d∣ ≤ 1 and e > 1

– σ = n − 1 and τ <m − 1 (so s = n − 1 and t = τ)

– Case 2.B.i. holds
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Recall that in any case, b ≤ n and t ≥ 1. Since we are assuming that s = n − 1

and s+t ≤ b (Case i.), it follows that s+t = b, so t = 1 and b = n (this also implies

a = c = 0). Since e > 1 we have a−c < e−1, which we noted is equivalent to δ < d−1

in Cases 2.B., 2.C., 3.B., or 3.C.. Thus B(MV ) ≤ (s+t−1, t+a+1, n−s−c+2) =

(b − 1, 2, 3).

We now determine M̃Ṽ for the current case. Since ∣d∣ ≤ 1 and e > 1, we have

(from the cases given in Appendix A) that (σ̃, τ̃) = (σ−1, τ+1) and also s̃ = n−2

and t̃ = t + 1 = 2. Also, since D(v) = a − c = 0, we have that ṽ = v so ã = a = 0

and c̃ = c = 0. So we are in Case 2̃.B̃. Also, since s̃ + t̃ = s + t ≤ b, Case i. still

holds. Thus we have M̃Ṽ = (s̃ + t̃ − 1, t̃ + ã, n − s̃ − c̃ + 1) = (b − 1, 2, 3). So we

see that M̃Ṽ = B(MV ) and we have the expected result.

• Example 4.3.23.b.

Suppose we have the following case:

– d > 1 and e < −1

– D(v) > e + 1 (i.e., a − c > e + 1)

– σ < n − 1 and τ =m + 1 (so s = σ and t =m)

– Case 2.A. holds and d − 1 ≤ n − s − c ≤ d + 1

We immediately see that B(MV ) ≤ (b, n − s − c, m − 1).

From Appendix A, we determine that s̃ = s+ 2 and t̃ =m− 1. Also, since e < −1

and D(v) > e + 1 we have ṽ = v, so ã = a and c̃ = c.
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The case that holds true for the “tilde” parameters is not completely determined

by the assumptions we made about the “non-tilde” ones, but we can rule out

some possibilities.

Note that since a < s (Case 2.), we have that ã < s̃, so Case 3̃. cannot hold.

Also, Case C̃. cannot hold, for if it did then we would have c̃ ≥ n −m + t̃, which

is equivalent to c ≥ n − 1. But this contradicts the fact that s ≥ 1 and c < n − s

(from Case 2.).

Case 1̃.B̃. cannot hold. For if it did, then Case B̃. gives ã <m− t̃ which implies

a < 1, so a = 0. Thus the general equality n = a + b + c gives n = b + c, and the

identity from Remark 4.3.15 is equivalent in this case to d = b − s + e + c + 1.

Furthermore, since we are assuming a− c > e+1, we have e+ c+1 < 0. Assuming

Case 1̃. gives c̃ ≥ n−s̃, which is equivalent to b−s ≤ 2. Combining the (in)equalites

from the end of the last three sentences gives d = b − s + e + c + 1 < 2, which

contradicts our assumption at the beginning of this example that d > 1.

So one of Cases 1̃.Ã., 2̃.Ã., or 2̃.B̃. holds. Note that s̃ + t̃ = s +m + 1 > b, so we

do know that Case ĩi. holds. We consider each of the possibilities:

– If Case 1̃.Ã. holds, then M̃Ṽ = (b, 1, m)

– If Case 2̃.Ã. holds, then M̃Ṽ = (b, n − s̃ − c̃ + 1, m) = (b, n − s − c − 1, m)

– If Case 2̃.B̃.ĩi. holds, then M̃Ṽ = (b, n−s̃−c̃+1, t̃+ã) = (b, n−s−c−1, m+a−1)

In each case, we have M̃Ṽ −B(MV ) ≥ 0, as expected.
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4.3.2 The Second Balancing Theorem

We now consider the second balancing operation on partitions, as introduced in Sec-

tion 4.2. As we proceed to prove, this balancing operation also improves the gener-

ating function of a partition.

For a partition λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
), define λ = ( Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
), where Ai = max(Ai, Bi)

and Bi = min(Ai, Bi).

Note that the number and sizes of principal hooks are preserved from λ to λ.

Lemma 4.3.24. For any integer vector w, we have

#{µ ⪯ λ ∣wt(µ) = w} ≤ #{µ ⪯ λ ∣wt(µ) = w}.

The theorem given below follows from Lemma 4.3.24 in exactly the same way that

Theorem 4.3.2 follows from Lemma 4.3.1.

Theorem 4.3.25 (The Second Balancing Theorem).

Gλ ≤ Gλ.

Remark 4.3.26. The two Balancing Theorems (4.3.2 and 4.3.25) produce sequences of
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partitions with successively improved generating functions. This is illustrated below.

The first inequality is from the Second Balancing Theorem; the second and third

follow from the First Balancing Theorem 4.3.2.

G(12 4 3 0
8 7 2 1 ) ≤

Ð→

G(12 7 3 1
8 4 2 0 ) ≤

Ð→

G(11 6 3 1
9 5 2 0 ) ≤

Ð→

G(10 6 3 1
10 5 2 0 )

Figure 4.12: Successively improved generating functions

Proof of Lemma 4.3.24. We prove the desired inequality with an injective argument.

For any partition µ ⪯ λ, let hi = (ai
bi
) represent the ith hook of µ. Since µ ⪯ λ, we have

that ai ≤ Ai and bi ≤ Bi.

We define a map from the set of partitions fitting inside λ to those fitting inside

λ as follows. Take any partition µ where µ ⪯ λ. Any hook of µ that fits in the

corresponding hook of λ is (initially) unchanged. Note that a hook hi = (ai
bi
) will not

fit in λ if and only if Bi = Ai and bi > Bi. All such hooks are “flipped”, that is,

(ai
bi
)→ (bi

ai
).

Clearly, all the hooks produced by this “flip/no flip” procedure will fit inside λ.

However, it is possible that the rows of the resulting array may not strictly decrease,
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meaning the array does not give a partition. For instance, if the ith hook is flipped

and the (i − 1)st is not, then there could be hooks ( bi ai−1ai bi−1
), where ai ≤ bi−1. To

correct this, we simply flip the (i − 1)st hook to obtain ( bi bi−1ai ai−1 ). This clearly fixes

the non-decreasing issue between the ith and (i − 1)st hooks. Furthermore, because

ai−1 < ai ≤ bi−1 ≤ Bi−1 ≤ Ai−1, we see that the flipped (i − 1)st hook fits inside λ. We

continue flipping subsequent hooks (hi−2, etc) until we reach a hook where the rows

of the array are strictly decreasing.

This issue of non-decreasing rows could also have happened between the (i+ 1)st and

ith hooks. We correct this in an analogous way by flipping hooks hi+1, hi+2, etc. The

argument for this case is essentially the same as that given in the paragraph above.

When this procedure is complete, we will be left with a partition µ in λ. It is not

hard to see that this map is indeed an injection. Suppose that µ ⪯ λ is the image of

some partition µ ⪯ λ as constructed by the map described above. To recover µ, first

flip all hooks in µ that do not fit inside λ. Once again we will, in general, be left

with an invalid array. To fix this, we incrementally flip any hooks before or after any

particular flipped hook that caused an issue until the array gives a valid partition.

The hooks that are flipped in this reversal are exactly those that were flipped from µ

to obtain µ.
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Example 4.3.27. To illustrate the map from the proof, consider

λ = ( 28, 26, 25, 17, 14, 12, 4, 3, 0
31, 23, 22, 19, 16, 10, 7, 3, 1 ) ,

which gives

λ = ( 31, 26, 25, 19, 16, 12, 7, 3, 1
28, 23, 22, 17, 14, 10, 4, 3, 0 ) .

Consider the following partition µ ≺ λ:

µ = ( 22, 20, 19, 17, 11, 7, 4, 2, 0
29, 22, 21, 17, 13, 9, 7, 2, 1 ) .

We show in detail how to obtain µ, emphasizing the flipped hooks for clarity. We

first flip the hooks of µ that do not fit inside the corresponding hooks of λ:

( 29, 20, 19, 17, 11, 7, 7, 2, 1
22, 22, 21, 17, 13, 9, 4, 2, 0 ) .

Next we iteratively flip adjacent hooks until the result is a valid partition:

( 29, 22, 19, 17, 11, 9, 7, 2, 1
22, 20, 21, 17, 13, 7, 4, 2, 0 ) ,

( 29, 22, 21, 17, 11, 9, 7, 2, 1
22, 20, 19, 17, 13, 7, 4, 2, 0 ) ,

so we conclude that

µ = ( 29, 22, 21, 17, 11, 9, 7, 2, 1
22, 20, 19, 17, 13, 7, 4, 2, 0 ) .
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For completeness’ sake, we show how to go backwards to recover µ. We first flip the

hooks of µ that do not fit in λ and proceed from there:

( 22, 22, 21, 17, 11, 9, 4, 2, 0
29, 20, 19, 17, 13, 7, 7, 2, 1 ) ,

( 22, 20, 21, 17, 11, 7, 4, 2, 0
29, 22, 19, 17, 13, 9, 7, 2, 1 ) ,

( 22, 20, 19, 17, 11, 7, 4, 2, 0
29, 22, 21, 17, 13, 9, 7, 2, 1 ) ,

which is µ.

As a final point of interest, note that the injection described here is not generally a

bijection. For example, the partition ( 31, 25
24 23 ) fits inside λ, but attempting to find a

preimage by reversing the map from the proof gives ( 24, 23
31, 25 ) , which is not in λ.

We now consider a certain refinement (which we call the principal hook refinement)

of partition generating functions. For a partition λ = (Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
), we can write the

generating function Gλ as

1+qG(Ak−1)G(Bk−1)+q4G(Ak−2,Ak−1−1)G(Bk−2,Bk−1−1)+. . .+qk
2

G(Ak−k,...,A1−1)G(Bk−k,...,B1−1).
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The polynomial associated with the term qi
2

in the expansion above is

qi
2

G(Ak−i,Ak−1−(i−1)...,Ak−i−1−1)G(Bk−i,Bk−1−(i−1)...,Bk−i−1−1).

This term counts the partitions inside λ having Durfee square of size i (that is, having

exactly i principal hooks).

Example 4.3.28. The generating function for ( 10 8 6 4
9 6 5 2 ) can be written as

G(10 8 6 4
9 6 5 2 ) = 1 + qG(9)G(8) + q4G(8,7)G(7,5) + q9G(7,6,5)G(6,4,4) + q16G(6,5,4,3)G(5,3,3,1).

Proposition 4.3.29. For any partitions µ = (µ1, . . . , µ`1) and η = (η1, . . . , η`2) (where

without loss of generality `1 ≥ `2), let µ̃j and η̃j be as follows:

(µ̃j, η̃j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µj − 1, ηj + 1) if µj > ηj + 1

(µj + 1, ηj − 1) if µj < ηj + 1

(µj, ηj) otherwise.

(If `1 > `2, we define η`2+1 = η`2+2 = ⋯ = η`1 = 0.) Then

GµGη ≤ G(µ̃1, µ̃2,...,µ̃`1)G(η̃1, η̃2,...,η̃`1).

Proof. Let λ be any partition whose qi
2

term in the principal hook refinement is

103



qi
2
GµGη. Note that the qi

2
term in the refinement of λ̃ will be

qi
2

G(µ̃1, µ̃2,...,µ̃`1)G(η̃1, η̃2,...,η̃`1).

These polynomials are the generating functions for partitions inside λ and λ̃, respec-

tively having i principal hooks.

Recall that the First Balancing Theorem 4.3.2 implies that there is an injection from

partitions µ in λ to partitions µ̃ in λ̃ such that ∣µ∣ = ∣µ̃∣. This followed from Lemma

4.3.1, which more strongly guarantees that this injection also preserves the number

and sizes of principal hooks. Thus we have the desired inequality.

Proposition 4.3.30. For any partitions µ = (µ1, . . . , µ`1) and η = (η1, . . . , η`2) (where

without loss of generality `1 ≥ `2), let µi = max(µi, ηi) and ηi = min(µi, ηi). Then

GµGη ≤ G(µ1, µ2,...,µ`1)
G(η1, η2,...,η`1)

.

The proof of Proposition 4.3.30 (using Lemma 4.3.24) is completely analogous to the

proof of Proposition 4.3.29, and is therefore omitted.
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4.4 Non-conjugate Partitions With the Same Gen-

erating Function

In this section, we consider the size of Pn: the number of distinct generating functions

of partitions of n. As we have seen before, any partition and its conjugate have the

same generating function. Representing the number of self-conjugate partitions of n

by sc(n), we have that

∣Pn∣ ≤
p(n) + sc(n)

2
.

As we will see, it is also possible for two non-conjugate partitions λ and η to share

the same generating function. Despite the existence of such partitions, computational

evidence suggests that the number of such examples is negligible with respect to the

total number of partitions of n. In other words, we expect that ∣Pn∣ ∼ p(n)+sc(n)
2 . (We

say that two arbitrary functions f(n) and g(n) are asymptotic and write f(n) ∼ g(n)

if lim
n→∞

f(n)
g(n)

= 1.)

The asymptotic formula for p(n), due to G. Hardy and S. Ramanujan [3, 14], is a

famous result from partition theory:

p(n) ∼ 1

4n
√

3
eπ

√
2n/3.
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M. Wildon proved in [40] that

sc(n) ∼ eπ
√
n/6

27/431/4n3/4 .

Since
√
n/6 <

√
2n/3, this easily implies the asymptotic

p(n) + sc(n) ∼ p(n).

This leads us to conjecture the following:

Conjecture 4.4.1.

∣Pn∣ ∼
p(n)

2

We now proceed to give an infinite family of pairs of non-conjugate partitions having

the same generating function.

Proposition 4.4.2. Let m, k, i ∈ P with i ≤m, and let x = (x1, x2, . . . , xk) be a binary

vector. Then setting

λ = (km − 1, (k − 1)m − 1, . . . ,2m − 1, m − 1, i − 1) + i(x1, x2, . . . , xk−1, xk, 0)

and

η = (km − 1, (k − 1)m − 1, . . . ,2m − 1, m − 1, i − 1) + i(xk, xk−1, . . . , x2, x1, 0),
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we have Gλ = Gη.

In the case when i = 1, we simply ignore the part of size 0 at the end of the partition.

Note that the condition i ≤m guarantees that λ and η are indeed partitions. Before

proving Proposition 4.4.2, we give a quick example:

Example 4.4.3. Let k = 5, m = 3, i = 2 and (x1, x2, x3, x4, x5, 0) = (1, 0, 1, 1, 0, 0).

Then we have

λ = (14, 11, 8, 5, 2, 1) + 2(1, 0, 1, 1, 0, 0) = (16, 11, 10, 7, 2, 1)

and

η = (14, 11, 8, 5, 2, 1) + 2(0, 1, 1, 0, 1, 0) = (14, 13, 10, 5, 4, 1)

The associated Ferrers shapes are:

λ ∶ η ∶
.

Figure 4.13: Ferrers diagrams for (16, 11, 10, 7, 2, 1) and
(14, 13, 10, 5, 4, 1)

It can be easily verified by a computer that

G(16,11,10,7,2,1) = G(14,13,10,5,4,1).
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Proof of Proposition 4.4.2. For simplicity, let µ = (km−1, (k−1)m−1, . . . ,2m−1, m−

1, i− 1) denote the “base” partition to which we are adding the vector of 0’s and i’s.

If x = 0, then λ = η and the result is trivial. So we may assume that ` > 0 entries of

x are nonzero: xj1 , xj2 , . . . , xj` . For any subset {j′1, j′2, . . . , j′s} of {j1, j2, . . . , j`}, there

are partitions in λ (and η) that “extend beyond” µ in exactly rows j′1, j
′
2, . . . , j

′
s. We

will demonstrate that λ and η both have an equal number of such partitions. Thus

we can expand the generating functions for λ and η into 2` matching components,

which gives Gλ = Gη.

Consider the partitions fitting inside λ that extend beyond µ in exactly s parts:

j1, j2, . . . , js (that is, precisely the entries xj1 , xj2 , . . . , xjs in x are nonzero). Similarly,

consider the partitions in η that extend beyond µ in parts j1, j2, . . . , js (appearing in

reverse order in η). It is not difficult to see (by the symmetry of the part sizes) that

the contribution from these two classes of partitions to Gλ and Gη, respectively, is

the same.

Indeed, the associated partitions in λ contribute to Gλ the following amount:

qM
s

∏
t=0

G((∣j′t+1−j
′

t∣−1)m−1, (∣j′t+1−j
′

t∣−2)m−1,...,2m−1,m−1, i−1), (4.7)
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where

M =m(j′1(k − j′1 + 1) + (j′2 − j′1)(k − j′2 + 1) + . . . + (j′s − j′s−1)(k − j′s + 1))

and we define j′0 = 0 and j′s+1 = k + 1.

By construction, replacing each j′t above with k − j′t + 1 produces the associated par-

titions in η (since these indices label rows of η in reverse order). Careful inspection

shows that the corresponding portion of the generating function contributing to Gη

is the same as (4.7).

For example, consider k = 12, m = 5, i = 4 together with the binary vector

(1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0).

This yields the partitions

λ = (63, 58, 49, 44, 43, 38, 33, 24, 23, 18, 13, 8, 3)

and

η = (63, 58, 53, 48, 39, 38, 33, 28, 19, 14, 13, 8, 3).

The partitions in λ having part sizes that extend beyond µ in exactly rows 2, 6, 11
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and 12 are counted by

q305G(4,3)G(14,9,4,3)G(19,14,9,4,3)G(3)G(3), (4.8)

as illustrated in the Ferrers shape below. (For clarity, the base partition µ is high-

lighted in light gray. All dark gray cells within the bold border must contribute to

the partitions being counted, while none of the cells with an “×” can contribute.)

λ ∶

××××

××××
××××

××××××××

Figure 4.14: Counting q305G(4,3)G(14,9,4,3)G(19,14,9,4,3)G(3)G(3) in λ

Similarly, the partitions in η having part sizes that extend beyond µ in the “symmet-

ric” rows 1, 2, 7 and 11 are also counted by (4.8), as illustrated below:

η ∶
××××××××

××××
××××

××××

Figure 4.15: Counting q305G(4,3)G(14,9,4,3)G(19,14,9,4,3)G(3)G(3) in η

As an example of the complete expansion, the generating functions for λ and η from
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Example 4.4.3 can be expressed as

Gλ = G(14,11,8,5,2,1) + q15G(1)G(11,8,5,2,1) + q27G(5,2,1)G(5,2,1) + q24G(8,5,2,1)G(2,1)

+q33G(1)G(2,1)G(5,2,1) + q33G(1)G(5,2,1)G(2,1) + q33G(5,2,1)G(1)G(2,1)

+q39G(1)G(2,1)G(1)G(2,1)

and

Gη = G(14,11,8,5,2,1) + q24G(2,1)G(8,5,2,1) + q27G(5,2,1)G(5,2,1) + q15G(11,8,5,2,1)G(1)

+q33G(2,1)G(1)G(5,2,1) + q33G(2,1)G(5,2,1)G(1) + q33G(5,2,1)G(2,1)G(1)

+q39G(2,1)G(1)G(2,1)G(2,1).

We only remark here that it can easily be shown that the family given above does

not affect the asymptotics of ∣Pn∣ as speculated in Conjecture 4.4.1. However, this

family does not cover all instances when two non-conjugate partitions have the same

generating function. For instance, computational evidence suggests that

G((2m+2j+i)j , (m+j)j−1, (m+j−1)i+1) = G((2m+2j+i)j−1,2m+2j, (m+j)j+i)
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for any i, j, m ∈ P.

An exhaustive classification of all such cases of distinct partitions λ and η where

Gλ = Gη (and λ′ ≠ η) seems quite difficult. Despite this, computational evidence

suggests that such cases are negligible with respect to the asymptotics of ∣Pn∣, as

given in Conjecture 4.4.1.

4.5 Maxima in Pn

In this section, we study the number of maxima in Pn, which we denote by Mn. From

the Balancing Theorems (4.3.2 and 4.3.25), we have a necessary condition on the

structure of partitions that yield maxima in Pn. This restriction on possible maxima

gives an upper bound on Mn.

Later in this section, we will describe a certain infinite family of partitions of n that

gives maximal generating functions in Pn. In particular, this will show that Mn ≫

n1/4, which implies lim
n→∞

Mn =∞ (if f and g are positive value functions, f(n) ≫ g(n)

means f(n) ≥ Cg(n) for some positive constant C and all n large).
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4.5.1 An Upper Bound On Mn

For any positive integer n, let sd(n) be the number of “super-distinct” partitions of

n, that is, partitions of n with consecutive parts differing by at least 2 (see [4, p. 23]).

Also, let Baln be the set of completely balanced (and all offset in the same direction)

partitions of n. In other words,

Baln = {(Ak Ak−1 ⋯ A1

Bk Bk−1 ⋯ B1
) ⊢ n ∣Ai = Bi or Ai = Bi + 1 for all i}.

By the Balancing Theorems (4.3.2 and 4.3.25), any maximum in Pn must be the

generating function of some partition in Baln. In other words, Mn ≤ ∣Baln∣. We will

use this to prove the following proposition.

Proposition 4.5.1.

Mn ≤ sd(n).

Proof. It suffices to show that ∣Baln∣ = sd(n). This follows from the following bi-

jective correspondence between partitions counted by sd(n) and partitions in Baln,

respectively:

(η1, . . . , ηκ)←→ (
⌈ η1−1

2
⌉ ⌈ η2−1

2
⌉ ⋯ ⌈ ηκ−1

2
⌉

⌊ η1−1
2

⌋ ⌊ η2−1
2

⌋ ⋯ ⌊ ηκ−1
2

⌋
) .
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Example 4.5.2. We illustrate this bijection for clarity sake. Consider

(18, 14, 11, 9, 4, 1), a partition in sd(57). Subtract one from each part size and divide

by two to form the columns of the Frobenius notation for the completely balanced

partition in Bal57:

(18, 14, 11, 9, 4, 1) ( 9 7 5 4 2 0
8 6 5 4 1 0 )

z→

Figure 4.16: Correspondence between (18, 14, 11, 9, 4, 1) and ( 9 7 5 4 2 0
8 6 5 4 1 0 )

To illustrate the other direction, consider ( 13 10 5 1 0
12 9 4 1 0 ) in Bal60. Sum the columns and

add one to each result to get the parts of the corresponding partition in sd(60):

( 13 10 5 1 0
12 9 4 1 0 ) (26, 20, 10, 3, 1)

z→

Figure 4.17: Correspondence between ( 13 10 5 1 0
12 9 4 1 0 ) and (26, 20, 10, 3, 1)

The first Rogers-Ramanujan identity (see for example [3]) asserts that sd(n) is equal

to the number of partitions of n with parts equal to 1 or 4 (mod 5). So the generating
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function for sd(n) is

∑
n≥0

sd(n)qn =
∞
∏
i=0

1

(1 − q5i+1)(1 − q5i+4)
.

M. Lugo showed in [21] that

sd(n) ∼ csc(π/5)
4π ⋅ 151/4n

−3/4eπ
√

4n/15.

Recall the well-known asymptotics for p(n), the partition function [3, 14]:

p(n) ∼ 1

4n
√

3
eπ

√
2n/3.

Thus if we assume Conjecture 4.4.1 from the previous section, then Mn is negligible

with respect to ∣Pn∣. In other words, we have

Mn

∣Pn∣
≤ sd(n)

∣Pn∣
≪ sd(n)

p(n)
≪ n1/4eπ

√
4n/15

eπ
√

2n/3
.

Then since
√

4n/15 <
√

2n/3, this discussion proves the following fact:

Theorem 4.5.3. If Conjecture 4.4.1 is true, then

lim
n→∞

Mn

∣Pn∣
= 0.
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4.5.2 A Lower Bound On Mn

We now show that the number of maxima in Pn tends to infinity as n grows. We

begin by showing how one particular partition yields a maximum in Pn, and then

discuss how to generate more maxima from this starting point.

For any positive integer n, it is easy to see that there exist unique positive integers k

and m such that

(k + 2

2
) − 3 ≤ n ≤ (k + 3

2
) − 4,

where n can be written in the form

n = (k + 1

2
) +m = (k + 1

2
) + ⌊m

2
⌋ + ⌈m

2
⌉ .

Indeed, from the inequality above we can determine that k = ⌊
√

8n+25−3
2 ⌋, and we also

have that k − 2 ≤m ≤ 2k − 1.

Lemma 4.5.4. For n ∈ P, let k and m be as defined above. Then the partition

Λ = (k + ⌈m
2
⌉ , k − 1, k − 2, . . . ,3, 2, 1⌊m

2
⌋+1)

yields a maximum in Pn, where 1⌊m
2
⌋+1 denotes the part of size 1 repeated ⌊m

2
⌋ + 1

times.
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Proof. Note that the shape of Λ is that of one large outer hook enclosing a “staircase”

of size k − 2. We observe two facts about GΛ:

• Since Λ has k outer corners, the penultimate term of GΛ is kqn−1.

• Since m ≤ 2k − 1, it is not hard to see that the coefficients of GΛ match the

partition function up to and including degree k + ⌊m
2
⌋ (the number of parts of

Λ). Furthermore, in the case when m is odd, the coefficient of qk+⌈
m
2
⌉ in GΛ is

p (k + ⌈m
2
⌉) − 1.

We claim that Λ is the only partition of n – up to conjugation – that satisfies these

two conditions. Indeed, in order to satisfy the second condition, the arm of the outer

principal hook must be at least k+ ⌈m
2
⌉−1, and leg at least k+ ⌊m

2
⌋−1 (recall that the

corner of the hook is not counted). Sharply meeting these bounds leaves us with (k−1
2
)

more cells for the portion of the partition within the outer hook. In order to satisfy

the first condition, the shape within the outer hook must have k−2 distinct part sizes.

This can only be obtained by constructing the k − 2 staircase within the outer hook,

so Λ is uniquely determined. It is clear from this discussion that no other partition of

n can have a coefficient at least k in the penultimate term and simultaneously satisfy

the second condition. Thus Λ yields a maximum in Pn.
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Our next goal is to show how more maxima in Pn can be generated starting from this

partition Λ. To do this, we require the concept of double outer corners of a partition.

A double outer corner is a pair of two adjacent cells in a partition such that, if both

are removed, a valid Ferrers diagram will be left. Therefore, a double outer corner

can arise either from a part that is at least 2 larger than the next part, or from a

repeated part size.

This concept is useful because it determines how many partitions of n− 2 fit inside a

given partition of n. In particular, if some partition has k outer corners and m double

outer corners, then the coefficient of the antepenultimate (third to last) degree in the

generating function is (k
2
) +m.

Example 4.5.5. The partition of n = 217 whose Ferrers diagram is shown below has

k = 10 outer corners and m = 6 + 5 = 11 double outer corners.

Figure 4.18: A partition with 10 outer corners and 11 double outer corners

Hence the number of partitions of size n − 2 = 215 that fit inside this partition (i.e.,

the coefficient of the q215 term in the generating function) is (10
2
) + 11 = 56.
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Lemma 4.5.6. For nonnegative integers k and t with 2t < k, the smallest partition

having k outer corners and 2t double outer corners is

( k+t−1, k+t−4, k+t−7, ⋯ , k−2t−1, k−2t−3, k−2t−5, ⋯
k+t−1, k+t−4, k+t−7, ⋯ , k−2t−1, k−2t−3, k−2t−5, ⋯ ) .

The last hook of this partition is either (1
1
) or (0

0
), depending on the parity of k.

Before proving Lemma 4.5.6, we give a small example.

Example 4.5.7. The smallest partition having k = 13 outer corners and 2t = 8 double

outer corners is ( 16 13 10 7 4 2 0
16 13 10 7 4 2 0 ), of size 111.

Figure 4.19: The smallest partition with 13 outer corners and 8 double
outer corners

In particular, no other partition of size less than or equal to 111 produces a generating

function that simultaneously has a penultimate term of k = 13 and an antepenultimate

term of (k
2
) + 2t = 86.

Proof of Lemma 4.5.6. Let η be a partition of smallest size having k outer corners
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and 2t double outer corners. We do not assume a priori that η is unique.

By minimality, we may assume that no part of η is repeated three or more times,

since removing all but two of a repeated part size does not alter the number of outer

(or double outer) corners. Analogously, no part is more than two larger than the

subsequent part.

Furthermore, if some part ηi is repeated, then all parts smaller than ηi are also

repeated. Otherwise, we could reduce the size of the partition by eliminating one of

the parts of size ηi and instead repeating the smaller part. (This reduction clearly

preserves the number of outer and double outer corners.) Analogously, if some part

ηj is two more than the subsequent part, then each of the parts greater than ηj is

also two more than the subsequent parts.

By the preceding paragraphs and under the assumption that 2t < k, the first part of

the partition is distinct and the last part is 1. Thus for some r, s ≥ 0 where r+ s = 2t,

each of the first r parts of η are exactly two larger than the next part, and the last

2s parts of η are (s, s, s − 1, s − 1, . . . ,2, 2, 1, 1). Since η has exactly k distinct part

sizes, it follows from this discussion that η is of the form

(k + r, k + r − 2, . . . , k − r + 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

, k − r, k − r − 1, . . . , s + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k−2t

, s, s, s − 1, s − 1, . . . ,2, 2, 1, 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2s

).

120



Hence the total size of η is

∣η∣ = 2(s + 1

2
) + s(k − 2t) + (k − 2t + 1

2
) + r(k − r) + 2(r + 1

2
).

Replacing s with 2t − r and simplifying, we obtain

∣η∣ = r2 − (2t)r + 2t(t + 1) + (k + 1

2
).

Regarding k and t as fixed and treating this expression as a quadratic in r, it is easy

to see that ∣η∣ is minimized precisely when r = t. This implies that there is a unique

partition of smallest size having k outer corners and 2t double outer corners. It is

easily checked that setting s = r = t gives the partition in Lemma 4.5.6.

We are now in a position to state the following:

Proposition 4.5.8. The poset Pn has at least ⌊
√

8⌊ k−2
2

⌋+1+1

2 ⌋ − 1 maxima, where k =

⌊
√

8n+25−3
2 ⌋.

Before proving Proposition 4.5.8, we give an important corollary that follows imme-

diately from it.

Corollary 4.5.9. The number of maxima in Pn goes to infinity as n increases. That

is,

lim
n→∞

Mn =∞.
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Proof. From Proposition 4.5.8, there are at least asymptotically (2n)1/4 maxima in

Pn.

Proof of Proposition 4.5.8. Let

Λ = (k + ⌈m
2
⌉ , k − 1, k − 2, . . . ,3, 2, 1⌊m

2
⌋+1),

as in Lemma 4.5.4. We construct ` = ⌊
√

8⌊ k−2
2

⌋+1+1

2 ⌋ − 1 partitions: Λ0, . . . ,Λ`−1, that

yield maxima in Pn. This is done by an iterative process on Λ of removing cells

from the outermost (principal) hook and distributing these cells to the interior k − 2

staircase.

We first take Λ0 = Λ. Then form Λ1 by removing one cell from both the arm and leg

of the outer hook of Λ0 and adding them to the second part and to the first part of

size 1 in Λ0.

Next, form Λ2 by removing two cells from both the arm and leg of the outer hook of

Λ1 and adding one to the second and third parts, and to the first parts of sizes 2 and

1 in Λ1.

In general, the partition Λj is formed by removing j cells from both the arm and leg

of the outer hook of Λj−1. Each of the first j parts of the inner staircase is increased

by one, as is each of the first occurrences of parts of size j, j − 1, . . . ,1 in Λj−1.
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The generating function of Λj satisfies the following:

• GΛj matches the partition function up to degree k + ⌊m
2
⌋− (j+1

2
), and is one less

than the partition function in degree k + ⌈m
2
⌉ − (j+1

2
).

• GΛj has coefficient k in the penultimate term.

• GΛj has coefficient (k
2
) + 2j + 2 in the antepenultimate term.

No other partition of n (up to conjugation) satisfies these three conditions. To see

this, note that the first condition above dictates precisely what the outer principal

hook of the partition is. In order to satisfy the last two conditions, the portion of the

partition within the outer hook must have k − 2 outer corners and 2j double outer

corners. This interior shape as constructed above is precisely the modified staircase

shape demanded by Lemma 4.5.6. Thus no other partition of n (up to conjugation)

satisfies these three conditions.

Example 4.5.10. Applying the argument given above to P87 produces four partitions

corresponding to maxima, whose Ferrers diagrams are illustrated below.
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Figure 4.20: Some partitions yielding maxima in P87
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Chapter 5

Conclusion

In this brief chapter, we summarize the main results of this dissertation and pro-

pose questions for future work. Rather than redefine the terms and notation in the

following discussions, we refer the reader to the appropriate chapter for the context.

5.1 Results and Questions for Chapter 2

5.1.1 Summary of Results

In Section 2.2, we presented the Full Rank Lemma 2.2.1, which is a linear-algebraic

generalization of Pouzet’s Multicolor Theorem 2.3.4.
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In Section 2.3, we demonstrated how the Multicolor Theorem can be applied to

prove the flawlessness of several significant combinatorial sequences. In particular, we

leveraged the Multicolor Theorem in the case of the order ideal generated by a single

monomial. We then extended this to multiple generators to re-prove flawlessness of

arbitrary pure O-sequences. Our next application was to the generating function

of compositions embedded inside a larger composition. We then discussed how the

Multicolor Theorem implies the flawlessness of Gλ, which had originally been observed

by Pouzet. Finally, we discussed an analogy of multiple generators (as in the case of

pure O-sequences) that carries over to other settings as well, including partitions.

5.1.2 Questions

In each case where we proved flawlessness, the full rank matrix M we started with

was the adjacency matrix from the boolean algebra.

It seems certain that further interesting flawlessness results can be obtained using the

Full Rank Lemma 2.2.1 without relying on the adjacency matrix from the boolean

algebra as the Multicolor Theorem 2.3.4 does. Broadly, we ask:

Question 5.1.1. What meaningful applications can be drawn from the Full Rank

Lemma that do not follow from the Multicolor Theorem?

Our second question deals with a conjecture of Stanley and Zanello (Conjecture 3.9
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in [35]).

Question 5.1.2. Can the Multicolor Theorem or the Full Rank Lemma be used to

prove that the generating function associated with a partition into distinct parts is

flawless?

Based on our efforts, it seems likely that working within the context of the Multicolor

Theorem is not the appropriate approach to answering this question. We believe that

the Full Rank Lemma could be applied to show this result, but to do this appears to

require some new ideas.

As mentioned in Section 2.4.3, our definition of composition “embedding” is not

the natural inclusion of compositions as defined by Andrews [2] and Sagan [28]. In

particular, the generating functions of the associated posets do not coincide.

Question 5.1.3. Are the generating functions corresponding to the poset of composi-

tions (under the Andrews-Sagan inclusion) also flawless?

Again we believe that the answer is yes, but suspect that the result falls under the

Full Rank Lemma and outside of the Multicolor Theorem.

Arguably the most significant open problem discussed here is the following:

Question 5.1.4. Can the “half-way” chain decomposition that we discussed in Section

2.4.4 be manipulated to create a full symmetric chain decomposition of L(a, b)?
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Finally, we observe that the extension from order ideals generated by a single mono-

mial to pure O-sequences is analogous to the extension from the poset generated by

a single partition to pure P -sequences. Pure O-sequences enjoy a rich connection to

such areas as algebraic combinatorics and combinatorial commutative algebra. Given

the interest in the poset Pλ generated by a single partition λ, we ask:

Question 5.1.5. What can be said about the general properties of pure P -sequences,

and what connections do they share with other areas of interest?

5.2 Results and Questions for Chapter 3

5.2.1 Summary of Results

In Chapter 3, we extended a technique due to Stanton to provide some new infinite

families of partitions λ where Gλ is unimodal. In particular, we proved that any

partition in 5 or 6 parts is unimodal if the difference between the first and last part

is at most one, with the single exception of (10, 9, 9, 9, 9, 9). We also proved that

any partition in 5 or 6 parts with part sizes b and 2b is unimodal for any given b ≥ 1.
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5.2.2 Questions

We expect that more results along the lines of these theorems could be obtained by

adaptations and/or generalizations of the technique discussed in the proof of Theorem

3.2.2. In particular, we ask:

Question 5.2.1. Can this technique be generalized to show the unimodality of any

partition in κ = 5, 6 or 7 parts where λ1 −λκ is bounded by a suitable constant (with

finitely many exceptions when κ = 6)?

We anticipate that this is feasible with more computations, but it would require some

additional analysis of the peaks. More ambitiously, we wonder:

Question 5.2.2. Can this technique be generalized to show that all partitions (with

finitely many exceptions when κ = 6) in κ = 5, 6 or 7 parts are unimodal?

A proof of this by the method discussed previously would likely break down into a vast

number of potential cases. It also appears unlikely in this situation that the peaks

could be explicitly found, thus requiring significant modification to the technique.

Therefore, applying this method to more general cases (multiple parameters, parti-

tions with many parts, etc.) appears intractable. A new approach seems necessary

in order to obtain more general unimodality results.
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5.3 Results and Questions for Chapter 4

5.3.1 Summary of Results

In Chapter 4, we introduced the study of the poset Pn, a natural context for Bergeron’s

conjecture. In Section 4.2, we demonstrated that Pn is not graded and gave a general

overview of some of its structural properties. We explained that partitions with

single hooks or only two parts give “small” generating functions, while heuristically,

partitions with more outer corners tend to be “higher” in the poset.

Our most significant results on the structure of Pn were the two Balancing Theorems

(4.3.2 and 4.3.25) from Section 4.3. These asserted that certain balancing opera-

tions on the hooks of a partition will improve the generating function. Proving the

First Balancing Theorem 4.3.2 involved translating the problem into the language

of trellis diagrams. Ultimately, we reduced the desired properties of these trellises

to claims about certain 0-1 matrices. Finally, analyzing and proving every possible

case involving these matrices required the help of Mathematica’s symbolic compar-

ison tools. The proof of the Second Balancing Theorem 4.3.25 was a much simpler

injective argument.

In Section 4.4, we considered some concepts related to the size of Pn. Based on
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computational evidence, we gave the conjecture that the size of Pn is asymptotically

p(n)
2 (Conjecture 4.4.1). We provided an example of an infinite family of pairs of

non-conjugate partitions that have the same generating function (Proposition 4.4.2).

Other examples outside this family exist, but giving a complete classification seems

to be very difficult. As we observed, such examples do not appear to affect the

asymptotics of ∣Pn∣.

Finally, Section 4.5 dealt with maxima in Pn. We demonstrated a neat connection to

the first Rogers-Ramanujan identity, which gave an upper bound on Mn (Proposition

4.5.1). Conditional to our conjecture on ∣Pn∣, we showed that asymptotically 100%

of the elements in Pn are not maxima (Theorem 4.5.3). On the other hand, we gave

a construction showing that Mn goes to infinity as n grows by bounding Mn from

below (Proposition 4.5.8).

5.3.2 Questions

Recall that the motivation behind the poset Pn was Bergeron’s conjecture. The

First Balancing Theorem 4.3.2 in particular appears to be of a similar flavor to that

conjecture.

Question 5.3.1. Can a modification or clever application of the First Balancing The-

orem be useful for making progress towards proving Bergeron’s positivity conjecture?
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Recall that Lemma 4.3.1 trivially implies the First Balancing Theorem. The proof of

this lemma – though it made use of some novel and intrinsically interesting concepts

– was long and complicated. We would like to see a simpler, more elegant proof. For

instance, we ask:

Question 5.3.2. Is there a combinatorial proof of Lemma 4.3.1?

In particular, it would be interesting to find an explicit injection that maps partitions

µ ⪯ λ to µ̃ ⪯ λ̃ in which every principal hook of µ̃ is at least as balanced as the

corresponding hook of µ.

One of the more interesting open problems arising from this work deals with the size

of Pn. In Conjecture 4.4.1, we guessed that ∣Pn∣ ∼ p(n)
2 . This appears to be a difficult

question to answer, and such a solution would be of general interest. A more complete

study of the topics in Section 4.4 may help shed light on this conjecture. A positive

answer to the following question would be a significant step in this direction.

Question 5.3.3. Is it possible to classify all pairs λ, η where λ′ ≠ η and Gλ = Gη?

Recall that Proposition 4.4.2 gave infinitely many pairs of non-conjugate partitions

having the same generating function. We also found instances of more than two (all

pairwise non-conjugate) partitions having this property. The smallest such example

occurs when n = 18: (10, 5, 2, 1), (8, 5, 4, 1) and (7, 6, 3, 2) all have the same gener-

ating function. We also found examples of 4 such partitions for larger n. This leads
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us to ask:

Question 5.3.4. For n ≫ 0, are there arbitrarily many (non-conjugate) partitions of

n that have the same generating function?

Finally, while we gave a lower bound and an upper bound (assuming Conjecture 4.4.1)

on Mn, we have no guess as to an asymptotic estimate.

Question 5.3.5. What is the size of Mn?
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Appendix A

Cases for σ̃ and τ̃

The cases for expressing σ̃ and τ̃ (as defined after Remark 4.3.15) in terms of the

parameters of the unbalanced trellis are given (by Remark 4.3.10) as follows:

• If d < −1, then

– If e < −1, then (σ̃, τ̃) = (σ, τ).

– If ∣e∣ ≤ 1, then (σ̃, τ̃) = (σ − 1, τ + 1).

– If e > 1, then (σ̃, τ̃) = (σ − 2, τ + 2).

• If −1 ≤ d ≤ 1, then

– If e < −1, then (σ̃, τ̃) = (σ + 1, τ − 1).

– If ∣e∣ ≤ 1, then (σ̃, τ̃) = (σ, τ).
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– If e > 1, then (σ̃, τ̃) = (σ − 1, τ + 1).

• If d > 1, then

– If e < −1, then (σ̃, τ̃) = (σ + 2, τ − 2).

– If ∣e∣ ≤ 1, then (σ̃, τ̃) = (σ + 1, τ − 1).

– If e > 1, then (σ̃, τ̃) = (σ, τ).

These give us the cases to consider for full determination of s̃:

• If σ < n − 1, then s = σ and

– If σ̃ = σ − 2, then s̃ = s − 2.

– If σ̃ = σ − 1, then s̃ = s − 1.

– If σ̃ = σ, then s̃ = s.

– If σ̃ = σ + 1, then s̃ = s + 1.

– If σ̃ = σ + 2, then s̃ = s + 2 ≤ n.

• If σ = n − 1, then s = n − 1 and

– If σ̃ = σ − 2, then s̃ = n − 3.

– If σ̃ = σ − 1, then s̃ = n − 2.

– If σ̃ = σ, then s̃ = n − 1.

– If σ̃ = σ + 1, σ + 2, then s̃ = n.
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• If σ = n, then s = n and

– If σ̃ = σ − 2, then s̃ = n − 2.

– If σ̃ = σ − 1, then s̃ = n − 1.

– If σ̃ = σ, σ + 1, σ + 2, then s̃ = n.

• If σ = n + 1, then s = n and

– If σ̃ = σ − 2, then s̃ = n − 1.

– If σ̃ = σ − 1, σ, σ + 1, σ + 2, then s̃ = n.

• If σ > n + 1, then s = n and s̃ = n.

Similarly, the cases for t̃ are:

• If τ <m − 1, then t = τ and

– If τ̃ = τ − 2, then t̃ = t − 2.

– If τ̃ = τ − 1, then t̃ = t − 1.

– If τ̃ = τ , then t̃ = t.

– If τ̃ = τ + 1, then t̃ = t + 1.

– If τ̃ = τ + 2, then t̃ = t + 2 ≤m.

• If τ =m − 1, then t =m − 1 and
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– If τ̃ = τ − 2, then t̃ =m − 3.

– If τ̃ = τ − 1, then t̃ =m − 2.

– If τ̃ = τ , then t̃ =m − 1.

– If τ̃ = τ + 1, τ + 2, then t̃ =m.

• If τ =m, then t =m and

– If τ̃ = τ − 2, then t̃ =m − 2.

– If τ̃ = τ − 1, then t̃ =m − 1.

– If τ̃ = τ, τ + 1, τ + 2, then t̃ =m.

• If τ =m + 1, then t =m and

– If τ̃ = τ − 2, then t̃ =m − 1.

– If τ̃ = τ − 1, τ, τ + 1, τ + 2, then t̃ =m.

• If τ >m + 1, then t =m and t̃ =m.
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Appendix B

Cases for MV and MV

B.1 Cases for MV

Case 1.A.

1
1 ⋅ ⋅ ⋅ 1

⋅
⋅
⋅
1⋅⋅⋅1

⋅
⋅
⋅

Case 1.B.

t
+
a

m
−
t
−
a

m − t − a n −m + t − c

1 ⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅
⋅
⋅
⋅
⋅
⋅
⋅

1⋅ ⋅ ⋅1
⋅

⋅
⋅

⋅
1

⋅
⋅
⋅
⋅
⋅
⋅

1

0

Case 1.C.

t
+
a

m
−
t
−
a

t+
a
+
b−

1
m
−
t−

a
−
b+

1

1 ⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅
⋅
⋅
⋅
⋅
⋅
1

⋅
⋅

⋅
⋅

⋅
⋅

⋅
1
⋅
⋅
⋅

.

1

0
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Case 2.A.

m
−
n
+
s+

c
n
−
s−

c

n − s − cs

1 ⋅ ⋅ ⋅ 1
⋅
⋅
⋅
⋅

1

⋅
⋅
⋅
⋅
⋅

11 ⋅⋅⋅⋅⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

1

0

Case 2.B.

t
+
a

m
−
t
−
a

m − t − a n −m + t − c

m
−
n
+
s+

c
n
−
s−

c

n − s − cs − a

1 ⋅ ⋅ ⋅ 1
⋅
⋅
⋅
⋅

1

⋅

⋅

⋅

⋅

1⋅ ⋅ ⋅1
⋅

⋅
⋅

⋅
1

⋅
⋅
⋅
⋅
⋅

1

0

0

Case 2.C.

t
+
a

m
−
t
−
a

s+
t−

1
m
−
t−

a
−
b+

1
n
−
s−

c

n − s − cs − a

1 ⋅ ⋅ ⋅ 1
⋅
⋅
⋅
⋅

1

⋅
⋅
⋅
⋅

1

⋅
⋅

⋅
⋅

⋅
⋅

1
⋅
⋅
⋅

1

0

0

Case 3.A.

a
−
s
+

1
m
−
a
+
s
−

1

m
−
n
+
s+

c
n
−
s−

c

1

⋅
⋅
⋅
⋅
⋅
⋅

1

⋅
⋅
⋅

11 ⋅⋅⋅⋅⋅

⋅

⋅

⋅

⋅

1

0

Case 3.B.

a
−
s
+

1
s
+
t
−

1
m
−
t
−
a

m
−
n
+
s+

c
n
−
s−

c

m − t − a n −m + t − c

1

⋅
⋅
⋅
⋅
⋅
⋅
⋅

1

⋅
⋅
⋅

1⋅⋅⋅⋅1
⋅

⋅
⋅

1

⋅

⋅

⋅

⋅

1

0

0

Case 3.C.

a
−
s
+

1

s + t − 1

m
−
t
−
a

n
−
s−

c
s+

t−
1

m
−
t−

a
−
b+

1

1

⋅
⋅
⋅
⋅
⋅
⋅
⋅

1

⋅⋅
⋅
1

⋅
⋅

⋅
⋅

⋅
⋅

⋅
1
⋅⋅
⋅

1

0

0
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B.2 Cases for MV

Case 1.A.

1
1 ⋅ ⋅ ⋅ 1

⋅
⋅
⋅
1⋅⋅⋅1

⋅
⋅
⋅

Case 1.B.

n −m + t − c m − t − a

t+
a

m
−
t−

a

1 ⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅
⋅
⋅
⋅
⋅
⋅
⋅

1

⋅
⋅

⋅
⋅

1 ⋅ ⋅ ⋅

1

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

1

0

Case 1.C.

t
+
a
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b
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m
−
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−
a
−
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b
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a
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a

1 ⋅ ⋅ ⋅ ⋅ ⋅ 1
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⋅

1
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⋅

1

0
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m
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n
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c
n
−
s−

c

n − s − cs

1 ⋅ ⋅ ⋅ 1
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⋅

1
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Case 2.B.i.

n −m + t − c m − t − a
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1
b−

s−
t+

2
m
−
n
+
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c−
1
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⋅
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⋅
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0

Case 2.B.ii.

n −m + t − c m − t − a

n
−
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⋅
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⋅
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⋅
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⋅
⋅
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⋅

1

0

0
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Case 2.C.i.
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−

1
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s + t − 1
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−
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−
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+
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⋅

⋅
⋅

⋅
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⋅
⋅
⋅
⋅
⋅

1

0

0

Case 2.C.ii.

n
−
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c
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t−
b

m
−
t−

a
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a
+
b
+
t
−

1
m
−
t
−
a
−
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+
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1 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
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1

⋅
⋅

⋅
⋅

⋅
⋅

⋅
1

⋅
⋅
⋅
⋅
⋅
⋅
⋅

1

0

0

Case 3.A.

a
−
s
+

1
m
−
a
+
s
−

1

m
−
n
+
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c
n
−
s−
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1

⋅
⋅
⋅
⋅
⋅
⋅

1

⋅
⋅
⋅
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⋅

⋅

⋅

⋅

1

0

Case 3.B.i.
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t+
a
−

1
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m
−
n
+
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1
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a
−
s
+

1
s
+
t
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2
m
−
a
−
t
+

1

1

⋅
⋅

⋅
⋅

1

⋅
⋅
⋅

1

⋅ ⋅
⋅

1⋅⋅⋅1

⋅
⋅
⋅
⋅
⋅
⋅

1
0

0

Case 3.C.i.

t+
a
−

1
b−

s−
t+

2
m
−
n
+
s+

c−
1

b − s − t + 1s + t − 1

a
−
s
+

1
b
+
s
+
t
−

2
c
−
n
+
m
−
t
+

1

1

⋅⋅
⋅⋅

1

⋅
⋅
⋅

1
⋅

⋅
⋅

1

⋅
⋅
⋅
⋅
⋅
⋅

1

0

0
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Case 3.B.ii.

n −m + t − c m − t − a

n
−
s−

c
s+

t−
b

m − t − a

a
−
s
+

1
b
−

1
m
−
a
−
b
+
s

1

⋅
⋅

⋅
⋅

⋅
⋅

1⋅⋅⋅
1⋅⋅⋅

1⋅⋅⋅⋅⋅1

⋅
⋅
⋅
⋅
⋅
⋅
⋅

1
0

0

Case 3.C.ii.

n
−
s−

c
s+

t−
b

m
−
t−

a

a
−
s
+

1
b
+
s
+
t
−

2
c
−
n
+
m
−
t
+

1

1

⋅
⋅

⋅
⋅

1

⋅⋅
⋅
1

⋅
⋅

⋅
⋅

1

⋅
⋅
⋅
⋅
⋅
⋅

1

0

0
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IsUnimodal[sequence_] := Module[{result, pastPeak},
Do[
result = True;
pastPeak = False;
Do[
If[pastPeak && sequence[[i - 1]] < sequence[[i]], result = False];
If[sequence[[i - 1]] > sequence[[i]], pastPeak = True],
{i, 2, Length[sequence]}];

Return[result], 1]]
QB[a_, b_] := QBinomial[a, b, q];
QB[a_, b_] := Product 1 - q^i , {i, a - b + 1, a} Product 1 - q^i , {i, 1, b}
Peaks[genfun_] := Flatten@

Position[CoefficientList[genfun, q][[2 ;;]], Max@CoefficientList[genfun, q]]

Appendix C

Mathematica Code

C.1 Code for Proof of Theorem 3.2.2
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The following cell is the generating function, G(q), for (b + 1, b, b, b, b). We know that this is non-
decreasing up to degree 5 b

2 and non-increasing from degree 3b+1 onward.

originalG = Simplify@FunctionExpand QB[b + 5, 5] + q^ b + 1 * QB[b + 4, 4]

gf[bb_] := Expand@Cancel[originalG /. b → bb];
gfStar[bb_] := Expand@Cancel[(1 - q) * originalG /. b → bb];

This simplifies to the fraction below:

G =
1 - q1+b 1 - q2+b 1 - q3+b 1 - q4+b 1 + q1+b - q5+b - q6+b

1 - q5 1 - q4 1 - q3 1 - q2 (1 - q)
;

We can check equality with the line below:

Simplify[originalG ⩵ G, Assumptions → q ≠ 1]

The following cell makes a list (of size 60) that gives the ith coefficient of the denominator of G(q)
(depending on the value of i (mod60)). This is the series f5(q), the generating function for all partitions
with 5 parts or fewer.

list = {};
Dynamic[prog1]
Do
AppendTo list, Together Expand FullSimplify SeriesCoefficient Denominator[G] -1,

{q, 0, n}, Assumptions → Mod[n, 60] ⩵ Mod[i, 60] ,
Assumptions → Mod[n, 60] ⩵ Mod[i, 60] && n ≥ 0 ;

prog1 = i, {i, 1, 60}

The function coeff[] below gives the actual ith coefficient of f5(q) symbolically in terms of i, if the
value of i (mod60) is known. The first argument is the congruence class of the index (mod60) (in other
words, telling us which value to pull from the list defined above). The second argument is the actual
coefficient that we want. For example, if we want the ith coefficient of f5(q)where i = 9 (mod60), then
we compute c(9, i).

coeff[ii_, i_] := list[[Mod[ii - 1, 60] + 1]] /. n → i;

The following cell contains the numerator of G*(q) := (1 - q)G(q).

numerator = Expand[(1 - q) * Numerator[G]]

Note that a truncation of the numerator to some degree n (whenmultiplied by the terms from f5(q)) will give
the correct coefficients of G*(q) for all degrees kwhere n- 14≤ k≤N- 1. Here, N is the lowest power
greater than n appearing in numerator. The upper bound N is obvious , for in the multiplication of
numerator by f5(q), adding in the qN term from the numerator can only contribute to terms with degree
greater than or equal to N. Thus all coefficients from the truncation must be correct up to degree N - 1.

The reason why the coefficients are correct even down to n - 14 is because the contribution to those terms by
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the kth coefficient formula we found for f5(q) is 0. From the definition of multiplication of two series, for a
term with degree less than n (say n - i), we would need to take expressions of the form coeff[Mod[60-
i,60],-i] (before simplification) corresponding to coefficients of f5(q). Of course, these terms with
negative degree do not truly exist in f5(q)when i < 0, but calling for coefficients of the form
coeff[Mod[j,60],j] (when we do not know a priori that j is negative) may still give some nonzero value.
However, it turns out that the first 14 of these values from coeff are indeed 0 (see the verification of this in
the next cell). That is, coeff[Mod[60-i,60],-i]= 0 for all iwhere -14 ≤ i < 0. Since these coefficients
of 0 agree with the (non-existent) negative degree terms from f5(q), it follows that the truncation of
numerator at degree n yields correct coefficients of G*(q) for all degrees k where n- 14≤ k<N.

Table[coeff[-i, -i], {i, 1, 14}]

Based on the discussion from the previous paragraph, the following truncation of numerator (multiplied by
f5(q)) will yield the correct coefficients of G*(q) for all degrees kwhere 2 b- 3≤ k≤ 3 b+ 3.

(Note: we assume b ≥ 8, or else we conflate the terms -q11+2 b + q4+3 b from numerator).

truncatedNumerator =

1 - q - q2+b + q7+b - q2+2 b + q3+2 b + q5+2 b + q6+2 b + q7+2 b - q8+2 b - q10+2 b - q11+2 b;

The next cell finds the actual coefficients of G*(q), correct for all degrees kwhere 2 b- 3≤ k≤ 3 b+ 3.
Note that the sum in the following code is precisely the definition of multiplication of two series.

lister = {};
Dynamic[prog2]
Do
prog2 = bb;
Do
AppendTo lister, Simplify@

Sum Coefficient[truncatedNumerator[[i]], q, Exponent[truncatedNumerator[[i]],
q]] * coeff kk - Exponent[truncatedNumerator[[i]], q] /. b → bb ,

k - Exponent[truncatedNumerator[[i]], q] ,
{i, 1, Length[truncatedNumerator]} , {kk, 1, 60} , {bb, 1, 60}

valuesModB[i_] := lister Mod[i - 1, 60] * 60 + 1 ;; 60 * 1 + Mod[i - 1, 60] ;
coefficient[bb_, kk_] := valuesModB[bb][[1 + Mod[kk - 1, 60]]] /. k → kk /. b → bb;

The cell below gives numeric illustration that the coefficients of G*(q) found above actually are correct
for the coefficients of qk from 2 b- 3≤ k≤ 3 b+ 3 (any value of b ≥ 8 can be tested).

b = RandomInteger[{100, 200}]
CoefficientList[gfStar[b], q][[2 b - 2 ;; 3 b + 4]] ==

Table[coefficient[b, k], {k, 2 b - 3, 3 b + 3}]
Clear[
b]

We now split the coefficients of G*(q) found above into the categories for even and odd values of b and
eliminate duplicates:
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evens = Catenate@Table[valuesModB[2 i], {i, 1, 30}];
odds = Catenate@Table[valuesModB[2 i - 1], {i, 1, 30}];
uniqueEvens = DeleteDuplicates[evens];
uniqueOdds = DeleteDuplicates[odds];
Length[uniqueEvens];
Length[uniqueOdds];

The following two cells check symbolically that the coefficients of G*(q) found above are nonnegative
for 5 b-2

2 ≤ k ≤ 5 b+5
2 and nonpositive for 5 b+7

2 ≤ k ≤ 3 b + 3, for b ≥ 33, thus finishing the
proof. (Note that this handles the only interval we need to check: between degrees 5 b

2 and

3 b + 1).

(*Next two lines shows that all coefficients of G*(q) are
positive between degrees 5b-2

2
and 5b+5

2
= 5b+4

2
for b even *)

And @@ Table Assuming b ≥ 12 &&
5 b - 2

2
≤ k ≤

5 b + 4

2
, FullSimplify[coeff ≥ 0] ,

{coeff, uniqueEvens}

(*Next line shows that all coefficients of G*(q) are
negative between degrees 5b+7

2
= 5b+6

2
and 3b+3 for b even *)

And @@ Table Assuming b ≥ 8 &&
5 b + 6

2
≤ k ≤ 3 b + 3, Simplify[coeff ≤ 0] ,

{coeff, uniqueEvens}

(*Next line shows that all coefficients of G*(q) are
positive between degrees 5b-2

2
and 5b+5

2
= 5b+5

2
for b odd *)

And @@ Table Assuming b ≥ 33 &&
5 b - 3

2
≤ k ≤

5 b + 5

2
, FullSimplify[coeff ≥ 0] ,

{coeff, uniqueOdds}

(*Next line shows that all coefficients of G*(q) are
negative between degrees 5b+7

2
= 5b+7

2
and 3b+3 for b odd *)

And @@ Table Assuming b ≥ 8 &&
5 b + 7

2
≤ k ≤ 3 b + 3, Simplify[coeff ≤ 0] ,

{coeff, uniqueOdds}

The following cell shows the partitions are unimodal for b ≤ 32.

And @@ Table[IsUnimodal@CoefficientList[gf[b], q], {b, 1, 32}]

The next cell verifies that the peak is always at 5 b+5
2 for b ≥ 22

And @@ Table Peaks[gf[b]][[-1]] ⩵ Floor
5 b + 5

2
, {b, 22, 32}
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Assumptions:
$Assumptions =

(*Coordinates of points and their weight, i.e., w in k-1
st diagonal are nonnegative integers could be zero if k=2 :*)

(x1 xm x1p xmp w ) ∈ NonNegativeIntegers &&

(*Coordinates of points
and their weight, i.e., W in kth diagonal are positive integers:*)

X1 Xn X1p Xnp A B Ap Bp W ∈ PositiveIntegers && W ≤ A + B &&

(*Definitions of d and e:*)
d e ∈ Integers && e ⩵ X1 - W - Xn && d ⩵ x1 - (w - xm) &&

(*Following conditions must hold
to maintain connectivity of successive diagonals:*)

x1 < X1 && xm < Xn && x1p < X1p && xmp < Xnp && w - x1 < W - X1 &&
w - xm < W - Xn && w - x1p < W - X1p && w - xmp < W - Xnp;

(*These are assumptions that must hold in general,
but they are somehow not needed for proving the result:

Nonnegativity of y-values
w-x1≥0&&w-xm≥0&&w-x1p≥0&&w-xmp≥0&&

Points in the diaganals are orientated this way with respect to each other
x1≥xm&&x1p≥xmp&&X1≥Xn&&X1p≥Xnp&&

A+B⩵Ap+Bp&&W≥w+2&&

*)

C.2 Code for Proof of Lemma 4.3.7
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Defining the cases and generating all possible
combinations:

X1Cases = {W - A > w - x1 && X1 ⩵ A, W - A ≤ w - x1 && X1 ⩵ W - (w - x1 + 1)};
XnCases = {B < W - xm && Xn ⩵ W - B, B ≥ W - xm && Xn ⩵ xm + 1};
X1pCases = {W - Ap > w - x1p && X1p ⩵ Ap, W - Ap ≤ w - x1p && X1p == W - (w - x1p + 1)};
XnpCases = {Bp < W - xmp && Xnp ⩵ W - Bp, Bp ≥ W - xmp && Xnp ⩵ xmp + 1};
ApBpCases = {A < B - 1 && Ap ⩵ A + 1 && Bp ⩵ B - 1,

B - 1 ≤ A ≤ B + 1 && Ap ⩵ A && Bp ⩵ B, A > B + 1 && Ap ⩵ A - 1 && Bp ⩵ B + 1};
dCases = {d < -1 && xmp ≤ xm + 1 && x1p ≥ x1 + 1, -1 ≤ d ≤ 1 && xmp ≤ xm && x1p ≥ x1,

d > 1 && xmp ≤ xm - 1 && x1p ≥ x1 - 1};
eCases = {e < -1, -1 ≤ e ≤ 1, e > 1};
result :=

Which[
Simplify[eCases[[1]]],
Xnp ≤ Xn + 1 && X1p ≥ X1 + 1,
Simplify[eCases[[2]]],
Xnp ≤ Xn && X1p ≥ X1,
Simplify[eCases[[3]]],
Xnp ≤ Xn - 1 && X1p ≥ X1 - 1

];

allCases = {};
Do[
Do[
Do[
Do[
Do[
Do[
Do[
AppendTo[allCases, {i, j, k, l, m, n, o}],
{o, 1, 3}],

{n, 1, 3}],
{m, 1, 3}],

{l, 1, 2}],
{k, 1, 2}],

{j, 1, 2}],
{i, 1, 2}]
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Eliminating Self-contradictory statements:
tempAllCases = allCases;
allCases = {};
prog = 0;
Dynamic[prog]
Do[

prog++;
aCase = tempAllCases[[i]];
If[Simplify[X1Cases[[aCase[[1]]]] && XnCases[[aCase[[2]]]] &&

X1pCases[[aCase[[3]]]] && XnpCases[[aCase[[4]]]] &&
ApBpCases[[aCase[[5]]]] && dCases[[aCase[[6]]]] && eCases[[aCase[[7]]]]],

Print["Well that's surprising"], Null, AppendTo[allCases, aCase]],
{i, 1, Length[tempAllCases]}];

Print[StringForm["Original number of cases: ``", Length[tempAllCases]]]
Print[StringForm["Number of cases with non self-contradictory assumptions: ``",

Length[allCases]]]

Completion of the Proof:
ticker = 0;
Dynamic[ticker]
Do[
ticker++;
aCase = allCases[[i]];
theCase = X1Cases[[aCase[[1]]]] && XnCases[[aCase[[2]]]] &&

X1pCases[[aCase[[3]]]] && XnpCases[[aCase[[4]]]] &&
ApBpCases[[aCase[[5]]]] && dCases[[aCase[[6]]]] && eCases[[aCase[[7]]]];

If[Assuming[theCase, Simplify[result]] ≠ True, Print["Counterexample"],
Null, Print["Can't decide with those assumptions"]],

{i, 1, Length[allCases]}]
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Introduction
This code completes the proof of Lemma 4.3.18. The cells should be evaluated in order (full runtime is
likely to be anywhere from 15minutes to 1 hour, depending on the computer).

The main purpose of the code is to compare two 3-tuples: BMV={ρ,η,ζ} and MVTilde={α,β,γ} (these
uniquely determine twomatrices). This comparison is performed by the function Compare (defined in
Section 1a).

The values of BMV and MVTilde are determined by 9 parameters: m, n, σ, τ, s, t, a, b, c, d,

e . The known assumptions that we canmake about these parameters (e.g., that m and n are positive
integers) are defined as fixedAssumptions in Section 1a.

There are a host of cases that must be considered for determining the exact form of BMV and MVTilde
(based on bounds of, and relations among these parameters). The value for BMV (as given in Section 2a)
can be determined directly from explicitly knowing which case holds for the 9 parameters. To deter-
mine MVTilde, we first must consider some other parameters (σ̃, τ̃, s̃ , t

˜
, ã, and c̃). These “tilde” vari-

ables (denoted in the code as sigmaTilde, tauTilde, etc.,) are completely determined by the other 9
“non-tilde” parameters (as given in Section 2b). Once the values of these “tilde” parameters are
decided, we can then determine MVTilde (although this determination sometimes requires consider-
ing further cases, which will be implicitly considered by Simplify in Section 3).

To shorten runtime, we explicitly tell the computer the various cases to assume for the bounds on, and
relations among the parameters. These individual cases are represented as lists of mutually exclusive
(in)equalities. For example, for the parameter dwe want to consider separately the following cases:
either d<-1 or else -1≤d≤1 or else d>1. So we set dCases={d<-1,-1≤d≤1,d>1}. To operate under the
assumption d<-1, for example, we would add dCases[[1]] to $Assumptions. There are a total of 11
such lists of individual cases, as given in Section 1a. Certain of these cases should only be considered if
a certain other case holds (or does not hold), as commented in the corresponding code. Section 1b
creates all possible combinations of these cases. This is done by representing each combination of
cases as a “case vector” (an integer-valued list). For example, {3,1,2,...} is interpreted as meaning
that the 3rd expression in the first case list (dCases) is true, the 1st expression in the second case list
(eCases)is true, the 2nd expression in the third case list (vCases) is true, etc. The cases are encoded in
this way rather than created outright as logic statements (i.e., as
dCases[[3]]&&eCases[[1]]&&vCases[[2]]&&... ) in order to speed up runtime andmore easily
deal with the fact that some cases should only be considered if a certain other case holds (or does not
hold).

Section 1c converts the completed “case vectors” created in Section 1b to the corresponding logic

C.3 Code for Proof of Lemma 4.3.18
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statements involving the 9 parameters (for example, {3,1,2,...} is converted to
dCases[[3]]&&eCases[[1]]&&vCases[[2]]&&... ). Some of these statements yield self-contradic-
tory assumptions, which are also eliminated in Section 1c (this is in fact the most time-consuming code
in the notebook).

Section 3 contains the actual verification of the lemma. For all the possible (non-self-contradictory)
cases, the values of BMV and MVTilde are compared by Compare. Using TrueQ demands that a value of
True explicitly be returned by Compare in order to verify the lemma for any particular case. (Thus
Compare can never return that an expression is undecidable or Falsewithout us noticing it.) Running
the code shows that the desired comparison always holds, thus the proof of the lemma is complete.

Section 1: Setting the Assumptions and
Creating all Cases

1a: Assignment of fixedAssumptions, definition of
Compare, definition of the 11 lists of cases

(*These are the general assumptions
that we may make about the various parameters*)

fixedAssumptions = m n σ τ s t a b c d e ∈ Integers &&
m ≥ 1 && n ≥ 1 && e + n + τ ⩵ d + m + σ && s ≥ Max[n - m + 1, 1] && s ⩵ Min[σ, n] &&
t ≥ Max[m - n + 1, 1] && t == Min[τ, m] && a ≥ 0 && b > 0 && c ≥ 0 && a + b + c ⩵ n;

$Assumptions = fixedAssumptions;

(*This function compares 3-tuples that represent 0-
1 matrices and returns True if {α_,β_,γ_}-{ρ_,η_,ζ_}≥0 and False otherwise.*)

Compare[{ρ_, η_, ζ_}, {α_, β_, γ_}] :=
Which[
Simplify[ρ > α],
Return[False],
Simplify[ρ ⩵ α],
If[Simplify[η ≥ β && ζ ≤ γ], Return[True], Return[False]],
Simplify[ρ < α],
If[Simplify[β - η ≤ α - ρ && ζ - γ ≤ α - ρ], Return[True], Return[False]]

];
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(*These are the cases that should be considered:*)
dCases = {d < -1, -1 ≤ d ≤ 1, d > 1};
eCases = {e < -1, -1 ≤ e ≤ 1, e > 1};
vCases = {a - c < e - 1, e - 1 ≤ a - c ≤ e + 1, a - c > e + 1};
sigmaCases = {σ < n - 1, σ ⩵ n - 1, σ ⩵ n, σ ⩵ n + 1, σ > n + 1};
tauCases = {τ < m - 1, τ ⩵ m - 1, τ ⩵ m, τ ⩵ m + 1, τ > m + 1};

cases123 = {c ≥ n - s, a < s && c < n - s, a ≥ s};
(*[[2]] and [[3]] are only possible if σ<n sigmaCases[[1 or 2]] *)

casesABC = {a ≥ m - t, a < m - t && c < n - m + t, c ≥ n - m + t};
(*[[2]] and [[3]] are only possible if τ<m tauCases[[1 or 2]] *)

casesiAndii = {s + t ≤ b, s + t > b, True};
(*These cases do not need to be considered in
Case 1. cases123[[1]] or Case A. casesABC[[1]] .*)

colBalanceCases1 = {-(m - t - a) < d - 1, d - 1 ≤ -(m - t - a) ≤ d + 1, -(m - t - a) > d + 1, True};
(*These cases should only be considered in Case 1. cases123[[1]] *)

colBalanceCases2 = {n - s - c < d - 1, d - 1 ≤ n - s - c ≤ d + 1, n - s - c > d + 1, True};
(*These cases should only be considered in Case A. casesABC[[1]] *)

colBalanceCases3 = {a - c - e + d ⩵ 0, a - c - e + d ≤ -1, a - c - e + d ≥ 1, True};
(*These cases do not need to be considered in
Case 1. cases123[[1]] or Case A. casesABC[[1]] .*)

1b: All potential combinations of the cases
(*The following nested loops create all possible combinations of dCases,
eCases, vCases, sigmaCases, and tauCases *)

allCaseVectors = {};
Do[

Do[
Do[
Do[
Do[
AppendTo[allCaseVectors, {h, i, j, k, l}],
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{l, 1, 5}],
{k, 1, 5}],

{j, 1, 3}],
{i, 1, 3}],

{h, 1, 3}];

(*Some of the lists created in the preceeding loop may give rise to self-
contradictory statements. This next loop
eliminates those at least some of them . *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

aCase = tempAllCaseVectors[[i]];
If[Simplify[dCases[[aCase[[1]]]] && eCases[[aCase[[2]]]] &&

vCases[[aCase[[3]]]] && sigmaCases[[aCase[[4]]]] && tauCases[[aCase[[5]]]]],
Print["This should not happen. If it does, it means that

<aCase> is trivially true, or that $Assumptions
implies <aCase> (which should never be the case)"],

Null, (*<aCase> gives self-contradictory assumptions,
and will not be added to allCasesVectors*)
AppendTo[allCaseVectors, aCase]
(*<aCase> appears to not be self-contradictory*)

],
{i, 1, Length[tempAllCaseVectors]}];

(*This next loop adds in all possibilities of cases123 6th list *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

If[tempAllCaseVectors[[i]][[4]] ≤ 2, (*check that σ<n*)
Do[AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], j]], {j, 1, 3}],
AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], 1]]],

{i, 1, Length[tempAllCaseVectors]}];

(*This next loop adds in all possibilities of casesABC 7th list *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

If[tempAllCaseVectors[[i]][[5]] ≤ 2, (*check that τ<m*)
Do[AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], j]], {j, 1, 3}],
AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], 1]]],
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{i, 1, Length[tempAllCaseVectors]}];

(*This next loop adds in all possibilities of casesiAndii 8th list *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

If[tempAllCaseVectors[[i]][[6]] > 1 && tempAllCaseVectors[[i]][[7]] > 1,
Do[AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], j]], {j, 1, 2}],
AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], 3]]],

{i, 1, Length[tempAllCaseVectors]}];

(*This next loop adds in all possibilities of colBalanceCases1 9th list *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

If[tempAllCaseVectors[[i]][[6]] == 1,
Do[AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], j]], {j, 1, 3}],
AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], 4]]],

{i, 1, Length[tempAllCaseVectors]}];

(*This next loop adds in all possibilities of colBalanceCases2 10th list *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

If[tempAllCaseVectors[[i]][[7]] == 1,
Do[AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], j]], {j, 1, 3}],
AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], 4]]],

{i, 1, Length[tempAllCaseVectors]}];

(*This next loop adds in all possibilities of colBalanceCases3 11th list *)

tempAllCaseVectors = allCaseVectors;
allCaseVectors = {};
Do[

If[tempAllCaseVectors[[i]][[6]] > 1 && tempAllCaseVectors[[i]][[7]] > 1,
Do[AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], j]], {j, 1, 3}],
AppendTo[allCaseVectors, Append[tempAllCaseVectors[[i]], 4]]],

{i, 1, Length[tempAllCaseVectors]}];
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1c: Conversion to logic statements and elimination of self-
contradictory statements

(*This converts the cases encoded by the lists in <allCaseVectors>
to a list of actual logic statements involving the various parameters*)

allCases = Table[
dCases[[allCaseVectors[[i]][[1]]]] &&
eCases[[allCaseVectors[[i]][[2]]]] &&
vCases[[allCaseVectors[[i]][[3]]]] &&
sigmaCases[[allCaseVectors[[i]][[4]]]] &&
tauCases[[allCaseVectors[[i]][[5]]]] &&
cases123[[allCaseVectors[[i]][[6]]]] &&
casesABC[[allCaseVectors[[i]][[7]]]] &&
casesiAndii[[allCaseVectors[[i]][[8]]]] &&
colBalanceCases1[[allCaseVectors[[i]][[9]]]] &&
colBalanceCases2[[allCaseVectors[[i]][[10]]]] &&
colBalanceCases3[[allCaseVectors[[i]][[11]]]],

{i, 1, Length[allCaseVectors]}];

(*This next loop eliminates some self-contradictory statements in <allCases>*)
tempAllCases = allCases;
allCases = {};
prog1 = 0;
Dynamic[{prog1, Length[tempAllCases]}]
(*This simply keeps track of the progress of the loop*)
Do[

prog1 = i;
If[Simplify[tempAllCases[[i]]],
Print["This should not happen. If it does, it means that

<tempAllCases[[i]]> is trivially true, or that $Assumptions
implies <tempAllCases[[i]]> (which should never be the case)"];

Break[],
Null, (*<tempAllCases[[i]]> is self-contradictory,
and will not be added to allCases*)
AppendTo[allCases, tempAllCases[[i]]]
(*<tempAllCases[[i]]> appears to not be self-contradictory*)

],
{i, 1, Length[tempAllCases]}] // AbsoluteTiming
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(*This next loop is exactly the same as the one in the previous cell,
except that it uses FullSimplify[] to eliminate any self-
contradictory statements that Simplify[] missed in the previous cell.*)

tempAllCases = allCases;
allCases = {};
prog2 = 0;
Dynamic[{prog2, Length[tempAllCases]}]
(*This simply keeps track of the progress of the loop*)
Do[

prog2 = i;
If[FullSimplify[tempAllCases[[i]]],
Print["This should not happen. If it does, it means that

<tempAllCases[[i]]> is trivially true, or that $Assumptions
implies <tempAllCases[[i]]> (which should never be the case)"];

Break[],
Null, (*<tempAllCases[[i]]> is self-contradictory,
and will not be added to allCases*)
AppendTo[allCases, tempAllCases[[i]]]
(*<tempAllCases[[i]]> appears to not be self-contradictory*)

],
{i, 1, Length[tempAllCases]}] // AbsoluteTiming

Section 2: Determinations of BMV and
MVTilde

2a: Determination of BMV
(*The code below gives the value of BMV i.e., B(MV) *)

BMV :=
Simplify@Which

cases123[[1]] && casesABC[[1]],
{b, 1, m},
cases123[[1]] && casesABC[[2]] || casesABC[[3]] ,
Which[
dCases[[1]],
Which[
colBalanceCases1[[1]],
{b, 3, t + a + 2},
colBalanceCases1[[2]],
{b, 2, t + a + 1},
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colBalanceCases1[[3]],
{b, 1, t + a}

],
dCases[[2]],
Which[
colBalanceCases1[[1]],
{b, 2, t + a + 1},
colBalanceCases1[[2]] || colBalanceCases1[[3]],
{b, 1, t + a}

],
dCases[[3]],
{b, 1, t + a}

],
casesABC[[1]] && cases123[[2]] || cases123[[3]] ,
Which[
dCases[[1]],
{b, n - s - c + 1, m},
dCases[[2]],
Which[
colBalanceCases2[[1]] || colBalanceCases2[[2]],
{b, n - s - c + 1, m},
colBalanceCases2[[3]],
{b, n - s - c, m - 1}

],
dCases[[3]],
Which[
colBalanceCases2[[1]],
{b, n - s - c + 1, m},
colBalanceCases2[[2]],
{b, n - s - c, m - 1},
colBalanceCases2[[3]],
{b, n - s - c - 1, m - 2}

]

],
casesABC[[2]] || casesABC[[3]] && cases123[[2]] || cases123[[3]] ,

Which[
casesiAndii[[1]],
Which[
colBalanceCases3[[1]],
{s + t - 1, t + a, n - s - c + 1},
colBalanceCases3[[2]],
Which[
dCases[[1]],
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Which[
vCases[[1]],
{s + t - 1, t + a + 2, n - s - c + 3},
vCases[[2]],
{s + t - 1, t + a + 1, n - s - c + 2},
vCases[[3]],
{s + t - 1, t + a, n - s - c + 1}

],
dCases[[2]],
Which[
vCases[[1]],
{s + t - 1, t + a + 1, n - s - c + 2},
vCases[[2]] || vCases[[3]],
{s + t - 1, t + a, n - s - c + 1}

],
dCases[[3]],
{s + t - 1, t + a, n - s - c + 1}

],
colBalanceCases3[[3]],
Which[
dCases[[1]],
{s + t - 1, t + a, n - s - c + 1},
dCases[[2]],
Which[
vCases[[1]] || vCases[[2]],
{s + t - 1, t + a, n - s - c + 1},
vCases[[3]],
{s + t - 1, t + a - 1, n - s - c}

],
dCases[[3]],
Which[
vCases[[1]],
{s + t - 1, t + a, n - s - c + 1},
vCases[[2]],
{s + t - 1, t + a - 1, n - s - c},
vCases[[3]],
{s + t - 1, t + a - 2, n - s - c - 1}

]

]

],
casesiAndii[[2]],
Which[
colBalanceCases3[[1]],
{b, n - s - c + 1, a + t},
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colBalanceCases3[[2]],
Which[
dCases[[1]],
Which[
vCases[[1]],
{b, n - s - c + 3, a + t + 2},
vCases[[2]],
{b, n - s - c + 2, a + t + 1},
vCases[[3]],
{b, n - s - c + 1, a + t}

],
dCases[[2]],
Which[
vCases[[1]],
{b, n - s - c + 2, a + t + 1},
vCases[[2]] || vCases[[3]],
{b, n - s - c + 1, a + t}

],
dCases[[3]],
{b, n - s - c + 1, a + t}

],
colBalanceCases3[[3]],
Which[
dCases[[1]],
{b, n - s - c + 1, a + t},
dCases[[2]],
Which[
vCases[[1]] || vCases[[2]],
{b, n - s - c + 1, a + t},
vCases[[3]],
{b, n - s - c, a + t - 1}

],
dCases[[3]],
Which[
vCases[[1]],
{b, n - s - c + 1, a + t},
vCases[[2]],
{b, n - s - c, a + t - 1},
vCases[[3]],
{b, n - s - c - 1, a + t - 2}

]

]

]

]
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2b: Determination of σ̃ , τ̃ , s̃ , t̃ , ã and c̃
sigmaTilde := Simplify@

Which[
dCases[[1]],
Which[
eCases[[1]],
σ,
eCases[[2]],
σ - 1,
eCases[[3]],
σ - 2

],
dCases[[2]],
Which[
eCases[[1]],
σ + 1,
eCases[[2]],
σ,
eCases[[3]],
σ - 1

],
dCases[[3]],
Which[
eCases[[1]],
σ + 2,
eCases[[2]],
σ + 1,
eCases[[3]],
σ

]];
tauTilde := Simplify@

Which[
dCases[[1]],
Which[
eCases[[1]],
τ,
eCases[[2]],
τ + 1,
eCases[[3]],
τ + 2

],
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dCases[[2]],
Which[
eCases[[1]],
τ - 1,
eCases[[2]],
τ,
eCases[[3]],
τ + 1

],
dCases[[3]],
Which[
eCases[[1]],
τ - 2,
eCases[[2]],
τ - 1,
eCases[[3]],
τ

]];

sTilde := Simplify@
Which[
sigmaCases[[1]],
Which[
sigmaTilde ⩵ σ - 2,
s - 2,
sigmaTilde ⩵ σ - 1,
s - 1,
sigmaTilde ⩵ σ,
s,
sigmaTilde ⩵ σ + 1,
s + 1,
sigmaTilde ⩵ σ + 2,
s + 2

],
sigmaCases[[2]],
Which[
sigmaTilde ⩵ σ - 2,
n - 3,
sigmaTilde ⩵ σ - 1,
n - 2,
sigmaTilde ⩵ σ,
n - 1,
sigmaTilde ≥ σ + 1,
n

169



],
sigmaCases[[3]],
Which[
sigmaTilde ⩵ σ - 2,
n - 2,
sigmaTilde ⩵ σ - 1,
n - 1,
sigmaTilde ≥ σ,
n

],
sigmaCases[[4]],
Which[
sigmaTilde ⩵ σ - 2,
n - 1,
sigmaTilde ≥ σ - 1,
n

],
sigmaCases[[5]],
n

];

tTilde := Simplify@
Which[
tauCases[[1]],
Which[
tauTilde ⩵ τ - 2,
t - 2,
tauTilde ⩵ τ - 1,
t - 1,
tauTilde ⩵ τ,
t,
tauTilde ⩵ τ + 1,
t + 1,
tauTilde ⩵ τ + 2,
t + 2

],
tauCases[[2]],
Which[
tauTilde ⩵ τ - 2,
m - 3,
tauTilde ⩵ τ - 1,
m - 2,
tauTilde ⩵ τ,
m - 1,
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tauTilde ≥ τ + 1,
m

],
tauCases[[3]],
Which[
tauTilde ⩵ τ - 2,
m - 2,
tauTilde ⩵ τ - 1,
m - 1,
tauTilde ≥ τ,
m

],
tauCases[[4]],
Which[
tauTilde ⩵ τ - 2,
m - 1,
tauTilde ≥ τ - 1,
m

],
tauCases[[5]],
m

];

aTilde := Simplify@
Which[
eCases[[1]],
Which[
vCases[[1]],
a + 2,
vCases[[2]],
a + 1,
vCases[[3]],
a

],
eCases[[2]],
Which[
vCases[[1]],
a + 1,
vCases[[2]],
a,
vCases[[3]],
a - 1

],
eCases[[3]],
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Which[
vCases[[1]],
a,
vCases[[2]],
a - 1,
vCases[[3]],
a - 2

]

];
cTilde := Simplify@

Which[
eCases[[1]],
Which[
vCases[[1]],
c - 2,
vCases[[2]],
c - 1,
vCases[[3]],
c

],
eCases[[2]],
Which[
vCases[[1]],
c - 1,
vCases[[2]],
c,
vCases[[3]],
c + 1

],
eCases[[3]],
Which[
vCases[[1]],
c,
vCases[[2]],
c + 1,
vCases[[3]],
c + 2

]

];

2c: Determination of MVTilde
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cases123Tilde =

{cTilde ≥ n - sTilde, aTilde < sTilde && cTilde < n - sTilde, aTilde ≥ sTilde};

casesABCTilde = {aTilde ≥ m - tTilde,
aTilde < m - tTilde && cTilde < n - m + tTilde, cTilde ≥ n - m + tTilde};

casesiAndiiTilde = {sTilde + tTilde ≤ b, sTilde + tTilde > b};

(*The code below gives the value of

MVTilde i.e., MV for specific cases of s, t, a, c*)

MVTilde :=
Simplify@Which[

Simplify[cases123Tilde[[1]] && casesABCTilde[[1]]],
{b, 1, m},
Simplify[cases123Tilde[[1]] && casesABCTilde[[2]] ||

cases123Tilde[[1]] && casesABCTilde[[3]]],
{b, 1, tTilde + aTilde},
Simplify[cases123Tilde[[2]] && casesABCTilde[[1]] ||

cases123Tilde[[3]] && casesABCTilde[[1]]],
{b, n - sTilde - cTilde + 1, m},
Simplify[cases123Tilde[[2]] && casesABCTilde[[2]] ||

cases123Tilde[[2]] && casesABCTilde[[3]] || cases123Tilde[[3]] &&
casesABCTilde[[2]] || cases123Tilde[[3]] && casesABCTilde[[3]]],

Which[
Simplify[casesiAndiiTilde[[1]]],
{sTilde + tTilde - 1, tTilde + aTilde, n - sTilde - cTilde + 1},
Simplify[casesiAndiiTilde[[2]]],
{b, n - sTilde - cTilde + 1, tTilde + aTilde}

]

]
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Section 3: Verification of the lemma using
Compare

prog3 = 0;
Dynamic[prog3]
Do[

prog3 = i;
$Assumptions = True;
$Assumptions = fixedAssumptions && allCases[[i]];
If[! TrueQ[Simplify[Compare[BMV, MVTilde]]], Print["The verification failed"];
Break[]],

{i, 1, Length[allCases]}] // AbsoluteTiming
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Appendix D

Letter from Pouzet to Stanton

The following letter was reproduced with written permission from D. Stan-

ton.
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