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Anton Deti, Ranjan Mukhopadhyay
Department of Physics, Clark University, Worcester, MA

Signaling pathways and the propagation of information in cells 

Introduction
Signaling pathways are essential to cells in adjusting to their environment. An extracellular 
signal, for example a ligand concentration, when in contact with a cell and its receptor 
proteins can initiate a signaling cascade. In turn, several membrane bound proteins respond 
by activating and using the input of the extracellular signal as a catalyst to inevitably bind 
to a target protein and activate an output layer that will obtain an element of response from 
the cell.
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This obtains a direct relationship between the activated output concentration and the input 
concentration for this simplified version of a signal pathway. The activated output 
concentration eventually saturates under this system that contains no feedback and no 
randomness. This deterministic model can be generalized to a signaling cascade with 
multiple steps (i.e., receptors that transmit activated concentrations to varying proteins 
through a multi step process). It would imply additional kinetic equations regarding the 
specific intermediate step coupled with the initial equation. Figures 2 and 3 give visuals of 
the concentration of a two-step signaling cascade under these conditions. 

Objective
There are many forms of signaling systems, however the purpose of the following is to 
quantitatively model these activated and deactivated concentrations throughout their course 
of transmission. Studying the information transmission through the signal transduction of 
cells. 
Methodology and Analysis
Through the usage of chemical kinetics as well as Langevin equations, it’s possible to 
formulate an approximate model of the behavior in steady state.
For an initial understanding, one can reduce the cascade of signal transmission to a one step 
process, in which an assumption of total concentration of active and inactive output 
proteins as constant is made. In such case,

Fig.(2) The concentration of activated receptor given input concentration Fig.(3) The concentration of activated output given input concentration 
through activation of intermediate receptor.

Inherent in the activation of proteins is an aspect of randomness. Every time a protein is 
activated or deactivated the total number of proteins activated is either increasing by one 
or decreasing, respectively. These individual protein activations are stochastic. The 
deterministic equation investigated prior simply can be considered as an average value of 
activation. Shannon’s model of communication identifies a factor of noise within the 
channel between the transmitter of a signal and the receiver of a signal. This noise term 
will be a standard deviation in the dynamical equation of activated concentration.

Fig(4). The random walks or “jumps” in positive or negative 
direction depicted here are analogous to the independent activation Fig.(5) A diagram of Shannon-Weaver model of communication
or deactivation of proteins and their stochastic aspect

The exact time interval between these stochastic activations is unknown while the average 
time is known. Considered as a Poisson process, its variance is equivalent to the average 
number of activations. Because the formulation gathered is that of concentrations, the 
variance generally equates as the deterministic kinetic equation divided by a concentration 
volume – the average. With such an application as a Langevin Equation can be made to 
such that it better approximates the dynamic behavior of a mixture in steady state. 

Fig.(1) A model of a cascade of proteins from signal receptor to target protein.
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For the case of the one step signaling pathway using the results of the stable fixed point 
calculated earlier the variance will be,

Continuing the use of the one step process as reference, all relevant parts of the equation 
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must think of input concentration not as a constant but as a distribution. In any case, it is an 
input that is brought upon the system and so not derived from it. If the gaussian distribution of
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Con By then integrating the joint probability over the range of input concentrations a marginal probability distribution is then acquired  
With this, all the necessary components arise such that the mutual information can finally be calculated for this one step signal, (ref
to mutual information equation).
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Conclusion
The mutual information between an input concentration and its activation of an output 
concentration is obtainable and for the simple one step process shown. The mutual 
information can be considered as a quantitative measure of information understood about one 
random variable given another. It is the crossroads of Information theory and chemical 
kinetics that presents a way to grasp aspects of signal transduction such as noise. This allows 
for a better understanding of how rate constants of the chemical reactions surrounding the 
cell can be used to understand the fashion at which signals propagate to the cell and its 
reaction to those environmental stimuli.
Further exploration which is currently being conducted is the application of this to a two-step 
signal pathway. An intermediate activation of a receptor protein will be coupled with the 
output concentration, making the system more complex however more approximate to a 
cascading system.
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A linearization of both components of the Langevin equation about the calculated fixed 
point and changing to discrete time intervals can provide the foundation for obtaining the 
variance of this conditional probability distribution between activated output and input.

Linearized deterministic Linearized noise

Although the input concentration is a probabilistic function, if it were to be taken as a 
constant one could visualize the distribution that the probability density of an activated 
output, shown in figure 6.
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These coupled equations signify a two-step process, further study can apply the notion of 
feedback, which is the term added the dynamic equations that signifies an effect of the 
output on the input loop which can be negative or positive. Example shown is that of 
negative feedback. With the incorporation of the feedback element of communication, how 
do the results differ when compared to the process of no output feedback? What does the 
mutual information for positive feedback scenario and negative feedback scenario look like 
in comparison to no feedback. Can something be learned  about the nature of these differing 
signal cascading systems by their mutual information ?
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