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Abstract

SARS-CoV-2, the virus that causes COVID-19, has caused significant human morbidity
and mortality since its emergence in late 2019. Not only have over three million people
died, but humans have been forced to change their behavior in a variety of ways, includ-
ing limiting their contacts, social distancing, and wearing masks. Early infectious disease
models, like the classical SIR model by Kermack and McKendrick, do not account for dif-
fering contact structures and behavior. More recent work has demonstrated that contact
structures and behavior can considerably impact disease dynamics. We construct a coupled
disease-behavior dynamical model for SARS-CoV-2 by incorporating heterogeneous contact
structures and decisions about masking. We use a contact network with household, work,
and friend interactions to capture the variation in contact patterns. We allow decisions
about masking to occur at a different time scale from disease spread which dramatically
changes the masking dynamics. Drawing from the field of game theory, we construct an
individual decision-making process that relies on perceived risk of infection, social influence,
and individual resistance to masking. Through simulation, we find that social influence pre-
vents masking, while perceived risk largely drives individuals to mask. Underlying contact
structure also affects the number of people who mask. This model serves as a starting point
for future work which could explore the relative importance of social influence and perceived
risk in human decision-making.
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Chapter 1

Introduction

1.1 Background

As of May 20, 2021, coronavirus disease-2019 (COVID-19) has taken the lives of over 3.4

million people worldwide, and nearly 588,000 in the US alone [110, 34]. Moreover, nearly

165 million people have been infected with SARS-CoV-2, the virus that causes COVID-

19, some suffering long term health consequences [32, 34, 5, 98, 22]. COVID-19 is not

the first emerging disease to cause substantial human morbidity and mortality; influenza,

HIV/AIDS, and SARS epidemics have also demonstrated the devastation that can result

from novel pathogens [78]. Not only is it hard to predict where and when a new pathogen

will emerge, but after emergence, it takes time to characterize the pathogen and determine

what measures will prevent its spread.

In January of 2020, when newspapers first reported on a mysterious pneumonia in China

[107], little was understood about SARS-CoV-2. Policy-makers and scientists were consid-

ering whether the novel virus would cause an epidemic [96, 63]. With evidence of human-

to-human transmission and increasing cases in Iran, Italy, and South Korea in March 2020,

it became clear that COVID-19 would cause more than an epidemic but a pandemic [109].

Researchers and policy-makers began deliberating over how to slow the spread of disease:

1
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Which non-pharmaceutical interventions (NPIs) should be implemented and when? Experts

now agree that masks, social distancing, and avoiding gatherings can slow the spread of

COVID-19, but early in the pandemic the route of disease transmission was less certain

[23, 47]. Moreover, research is still being conducted to understand when it is appropriate to

put each measure in place. Trade-offs between loss of life and loss of freedom and/or income

must be weighed in decisions about lockdown or stay-at-home orders [6, 101, 103]. Although

many aspects of SARS-CoV-2 are still not well understood, substantial progress has been

made since January 2020.

Reaching this level of comprehension was not simple [51]. Initial estimates of epidemic size

and intervention effectiveness depended on unreliable information about the contagiousness

of SARS-CoV-2, number of cases, whom it infects, how it is transmitted, contact patterns

of its human hosts, and how human behavior would evolve over time [38]. With so many

factors at work coupled to large amounts of uncertainty, many in the science community

turned to mathematical models to predict the extent of viral spread and to assess potential

interventions. These models could indicate general trends resulting from different possible

parameters or preventive measures, ultimately informing key policy decisions.

Mathematical models have long been used to study infectious disease dynamics, starting

in the early 1900s. One of the earliest and simplest infectious disease models is the com-

partmental SIR model introduced by Kermack and McKendrick in 1927 [58]. In this model,

individuals move through three consecutive compartments (S, I, and R) over time. These

compartments represent the course of disease; initially, individuals are Susceptible, then they

become Infectious, and eventually Removed as they recover or die from the disease [58]. The

rate at which individuals move from one compartment to the next is mainly determined by

the transmissibility of the pathogen (governing movement from S to I) and the recovery rate

(governing movement from I to R). Kermack and McKendrick implemented the model using

ordinary differential equations (ODEs). As all models must make assumptions about the bi-

ological system of interest, the classic SIR model assumes that: immunity is long-lasting (i.e.,

2
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there is no return to S from R); that everyone comes into contact with everyone else; that

everyone is equally susceptible; and, that the population size doesn’t change [58]. Over short

time periods and in small communities these assumptions may be reasonable, yet in other

contexts, a model making different assumptions may better capture the underlying process.

As a result, many other disease models have been crafted since Kermack and McKendrick’s

initial publication. Approaches vary depending on the research question being addressed;

some strive to accurately represent realistic contact patterns [73, 97] while others focus on

capturing the possibility of superspreading, when some individuals infect an unusually large

number of people [68].

1.2 Our Contribution

We seek to answer the question: How does the spread of a respiratory virus (we specifically

consider SARS-CoV-2) depend on contact patterns and behavior? To do so, we build a cou-

pled disease-behavior dynamical model that emphasizes the course of infection for COVID-19

cases, heterogeneous contact patterns, and shifting behaviors. Here we will provide a brief

background on previous work in these aspects of disease modeling to situate our contribu-

tion. In Chapter 2, we discuss in more detail the expansion of the compartments of our

model beyond S, I, and R to better reflect the stages of COVID-19 infection. Our ap-

proach to incorporating heterogeneous mixing and rational decision-making using network

influence games is covered in Chapters 3 and 4, respectively. By simulating the spread of

SARS-CoV-2 in different scenarios, we can weigh how different variables, such as resistance

to masking, perceived risk of infection, and social influence, interact and affect patterns of

disease transmission (Chapter 5). The implications of our findings are discussed in Chapter

6.
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1.2.1 Progression of Disease

COVID-19 infection is more accurately described by using additional epidemiological com-

partments beyond S, I, and R. The SIR progression assumes that individuals become

infectious immediately upon infection and that all individuals are equally infectious. For

many diseases, including measles and COVID-19, this simplification obscures key character-

istics of the course of infection [95, 10]. Ergo, modelers may instead use an SEIR model.

Here the E compartment represents individuals who are Exposed to the disease but are not

yet infectious [95]. The Exposed compartment serves as a time delay which can be relevant

when analyzing disease dynamics. Furthermore, individuals infected with COVID-19 can be

infectious before showing symptoms or never show symptoms at all [108]. This asymptomatic

infectious state can be differentiated from symptomatic infectious individuals by using an

SEAIR model where A represents Asymptomatic infectious individuals [100, 101, 12]. We

will use a progression similar to SEAIR in our model to account for these two key features

of COVID-19 infection that aren’t captured by the SIR progression: delay between infection

and infectiousness, and asymptomatic infectious individuals (see Figure 2.2). Further details

about this part of the model can be found in Chapter 2.

1.2.2 Heterogeneous Contact Patterns

Human contact patterns are more variable than the well-mixed SIR model suggests and this

variability affects disease dynamics [104, 9, 75]. For example, humans do not mix equally

with people of all ages; most daily interpersonal contact occurs between people of the same

age group [79, 64]. Modelers can account for this variability in contact patterns in different

ways. One technique in the ODE framework is to create additional compartments within the

epidemiological classes S, I, and R, such that individuals of the same age mix with each other

more than individuals of other age groups [33, 113, 70]. This approach can be generalized

by having different rates of local (within neighborhood) and global (outside neighborhood)
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mixing [8]. Neighborhoods may be broadly defined so that the groupings can be based on a

variety of characteristics, including age and/or spatial location [8].

An alternative approach to describe heterogeneous contact patterns is to use a network

to represent potential disease-spreading interactions [84]. Networks are a collection of nodes

denoting individuals and edges (links between nodes) that denote interactions between in-

dividuals. Depending on the research question, modelers may generate random networks

(more in Chapter 3) or build their own network structure to emphasize a particular social

pattern [77]. Social patterns of emphasis may include household contacts or trips to common

locations, e.g. supermarkets or hospitals [71, 92]. Networks have been used to model many

diseases, including influenza [69, 62], smallpox [71, 88], and Ebola [93], as well as COVID-19

[89]. While networks require more computational power than ODEs and are not always an-

alytically tractable (thus requiring simulation), they can often capture complex and varying

contact patterns. We take advantage of these properties in Chapter 3 when building our

own network for COVID-19 transmission.

1.2.3 Shifting Behaviors

Finally, we would like our model to account for shifting human behaviors, such as masking

and social distancing, which can change individual susceptibility to infection and modify

typical contact patterns. Susceptibility is naturally thought to vary throughout populations

[65, 28], but as individuals alter their behavior to prevent infection during an outbreak,

even greater differences in susceptibility may arise [36]. Some people will take precautions,

reducing their susceptibility, and others will not. Likewise, these differing behavioral choices

will alter the typical contact patterns outlined above as some people refrain from spending

time with each other [60, 37]. Consequently, these behaviors can substantially impact disease

dynamics and are important to account for in disease models.

There are several ways to incorporate behavior dynamics into disease models and we

summarize a few of those approaches here. We call these types of models coupled disease-
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behavior dynamical models because the disease and behavior dynamics depend on and are

influenced by one another [106]. Coupled disease-behavior dynamical models can be ap-

plied to both homogeneously and heterogeneously mixed populations. Because we will be

using a network to model interactions, we will focus here on how disease-behavior dynamics

have previously been studied on networks. Wang and colleagues summarize a variety of

implementations but ultimately sort these models into four categories based on the type of

network: lattice or static networks, multilayer networks, adaptive or time-varying networks,

and empirically-derived networks [106]. We will focus on static and multilayer networks.

An early coupled disease-behavior dynamical model was designed by Funk and colleagues

in 2009 [41]. Using static networks, the authors proposed that disease awareness would spread

much like disease, except the quality of awareness information would decrease as it got farther

from the source (an infected individual) [41]. Individual disease susceptibility was linked

inversely with the quality of awareness information [41]. To assume that awareness spreads

in the same interactions as disease infection is perhaps unrealistic, so Funk and colleagues

went a step further by using two potentially different networks, one for disease transmission

and another for awareness propagation. This combination of networks is typically called

multilayer or multiplex [61, 42, 43]. These networks have multiple layers composed of the

same set of nodes but different sets of edges. One set of edges reflects potential infection-

causing interactions, while another represents potential information-exchanging interactions

[15]. This separated representation of disease and behavior spread allows the two entities

to spread at different rates and incorporates the reality that information can be exchanged

using current technology without engaging in an interaction where transmission is possible.

Funk and colleagues state that awareness may cause individuals to change their behavior

but associate no cost with this shift [41]. In reality, if awareness means taking preventive

measures to avoid infection, these actions would likely incur a cost. This cost may be

social (e.g. pressure from friends to get together rather than stay home), political (e.g.

only Democrats wear masks type sentiment), physical (e.g. masking worsens asthma), or
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economic (e.g. can’t work from home and have only one source of income). The relative cost

of taking precautions compared to the risk of infection if one doesn’t change one’s behavior

is a calculation many individuals have to make.

Often, in well-mixed models, this type of calculation can be described using game theory,

a concept introduced by economists to model rational strategic decision-making [105]. A

game is composed of two or more players with two or more possible actions. Each set of

joint actions has a set of associated payoffs for each player which summarize the cost or

benefit of that joint scenario to each individual. Based on this known set of payoffs, players

will simultaneously decide which action to take to maximize their payoff (benefit). For

example, Reluga uses a game-theoretic construct to model the adoption of social distancing

behavior in a well-mixed population during an epidemic [90]. In this implementation, social

distancing has an associated cost and is adopted if infection risk is sufficiently high [90].

Eliminating the homogeneous-mixing constraint and applying this game-theoretic approach

to a networked population is desirable but also more complicated.

One technique for applying game theory on networks is to use network influence games

[55]. In these influence games, each node (individual) has a threshold level and weighted

connections with other nodes. The node can perform one of two actions based on how it

is influenced by its neighbors and whether the neighbors’ influences are strong enough to

exceed the node’s threshold for changing its action. As far as we know, this approach has

not been used in coupled disease-behavior dynamical models to describe individual behavior

choices and social influence. As we discuss further in Chapter 4, this approach will allow

us to incorporate individual resistances to masking, perceived risks of infection, and social

pressure from neighbors into the decision-making process about behavior change during an

epidemic.

7



Chapter 2

Disease Progression

As we discussed in Chapter 1, infectious disease models can critically inform policy-making

before and during an epidemic. Here, we expand on the implementation of early infectious

disease models and map the disease compartments of our model to those used in previous

work.

2.1 Compartmental Models

Recall from Chapter 1 the classic SIR compartmental model introduced by Kermack and

McKendrick in 1927 [58]. Individuals begin in the susceptible state. Once infected they move

to the infectious state, and finally to the recovered or removed state when they are no longer

infectious (Figure 2.1). Typically, the model is seeded with some number or proportion of

initially infectious people so that there is potential for an outbreak to occur. The system

is closed (it does not account for births or deaths) so S + I + R = N where N is the total

number of individuals in the population. In its original implementation [58], this model was
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parameterized using the following ordinary differential equations:

dS/dt = −βSI

dI/dt = βSI − γI

dR/dt = γI.

Here β is the probability of disease transmission given contact and γ is the rate of recovery,

where 1
γ

is the time it takes to recover.

There are three key assumptions made in the SIR model that we reconsider in our coupled

disease-behavior dynamical model for COVID-19. First, the SIR implementation limits the

possible epidemiological states of disease. In this chapter, we further explore this assumption

and how our model grapples with it. Second, the SIR ODE model assumes homogeneous

mixing among individuals. Homogeneous mixing is captured in the SI product term as

part of both the dS/dt and dI/dt equations where all S and I individuals can come into

contact with each other. We address this assumption using contact networks in Chapter 3.

Finally, the SIR model does not allow for varied susceptibility or behavior changes among

individuals, as all the individuals in S are seen as identical. We tackle this assumption using

influence games in Chapter 4.

Below we present some illustrative and common examples of compartmental disease mod-

els to inform our work on COVID-19 disease progression.

Figure 2.1: Movement of individuals through SIR compartments.
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The differential equations describing the SIR model limit the epidemiological disease

states to three categories, excluding the possibility of reinfection or different clinical mani-

festations of disease. This choice of compartments is suitable for a disease in which there is

long-lasting immunity – longer at least than the time scale over which the model is being

run. For example, mumps and pertussis can both be modeled using the three SIR compart-

ments [17, 94]. Some diseases, however, do not have long-lasting immunity. Influenza is one

example; if you make it through this year’s flu season you will likely be immune until the

following season, at which point you will be susceptible again to the circulating strain. If

one is building an influenza model spanning multiple seasons, it makes sense to use an SIRS

model, where after a recovery period individuals move back into the susceptible state and

the progression can repeat [52]. However, if there is no period of immunity, meaning that

after a period of infectiousness individuals immediately return to the susceptible state, then

an SIS model may be used. Gonorrhea is one disease to which SIS models have been ap-

plied [50]. For some diseases, there is no immunity or return to susceptibility but continuing

infectiousness. HIV/AIDS fits this description and so may be modeled using an SI model

[53].

In addition to the immunity assumption made by the SIR model, there is also the pre-

sumed instantaneous switch from susceptibility to infectiousness. An instantaneous switch

is clearly not realistic; it takes time for a virus or bacterium to replicate sufficiently to get to

levels where it is transmissible to others. The period of time from initial infection to onset of

infectiousness is called the latent period. At times, modelers may assume the latent period is

negligible, especially when it is short relative to the infectious period [4]. For some diseases,

however, it may be critical to include the latent period in a model so that the timing of

individual infectiousness is closer to reality, especially for diseases, like tuberculosis, where

the latent period is long relative to the infectious period [85]. In these cases, an SEIR model

is often used [2]. The E compartment represents Exposed individuals who become infectious

upon reaching the I compartment. Ebola is one disease to which an SEIR model has been
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applied [2]. Furthermore, just like the SIR model, the SEIR model can be extended to

represent the case when individuals return to a susceptible state after a period of recovery,

resulting in an SEIRS model [31].

Slightly different from the latent period is the incubation period of a disease, or the time

from initial infection to symptom onset [24]. If the incubation period is longer than the latent

period, then there is an interval of time when individuals are not showing symptoms but are

infectious. If the individual will never develop symptoms, then they have an asymptomatic

infection. If the individual is not yet showing symptoms but will eventually develop them,

then we consider them to be in a presymptomatic state. Asymptomatic or presymptomatic

periods can also be incorporated into compartmental disease models. For instance, measles

has been modeled using an SEAIR model [1]. In this approach the A compartment stands

for Asymptomatic, but the individuals eventually move into a symptomatic infectious state,

I, so by our definitions above we would consider A to be a presymptomatic compartment.

Sometimes this system is denoted as an SEI1I2R model, where I1 is a presymptomatic state

and I2 a symptomatic state; see [19] for an application to rabies. In the next section, we

discuss one way to separate the trajectories of asymptomatic and symptomatic infectious

individuals. There are many other possible compartmental progressions, and a single disease

may be modeled using multiple different progressions depending on the research question

and context [16].

2.2 Our Disease Model

To capture the progression of COVID-19 infection, we have created a compartmental disease

model inspired by SEI1I2R models and expanded to include truly asymptomatic individuals.

As shown in Figure 2.2, all individuals (except any seed infections) begin in the susceptible

(S) state and progress to an exposed (E) state. The E compartment acts as a time delay

between infection and the onset of infectiousness; data from China suggest that this delay is

relevant to COVID-19 infection and transmission [67]. From the exposed state, individuals
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can take one of two routes depending on whether or not their infection will ultimately be

symptomatic or remain asymptomatic. Based on data from the CDC, as of March 2021 [25],

we estimate that about 70% of infections become symptomatic, while 30% remain asymp-

tomatic. Thus, 70% of individuals move to I1 (presymptomatic) and on to I2 (symptomatic),

where they will exhibit symptoms. The other 30% of individuals progress through the disease

via the A1 and A2 (asymptomatic) compartments. After some time, I2 and A2 individuals

will move to the removed or recovered state where they are no longer infectious.

Figure 2.2: Progression of infection and disease via symptomatic or asymptomatic routes
in our model. The E compartment is important for the time delay between infection and
infectiousness. Distinction between infectiousness states I1, I2, A1 and A2 allows for differ-
entiation of infectiousness in these stages, as indicated by preliminary data [49, 27, 7].

We make this distinction in infectiousness compartments for a couple of reasons. First,

several studies [49, 27, 7] have indicated that individuals may be most infectious just before

showing symptoms or at time of symptom onset. We create I1 to allow for this possibil-

ity and differentiate I1 from A1 should the data indicate that asymptomatic infectiousness

peaks at a different time. Although currently there is a limited understanding of how the

relative infectiousness of asymptomatic individuals compares with that of symptomatic cases

over time, this two-compartment asymptomatic implementation provides flexibility should

further data become available. Second, individuals in I1 may behave more like susceptible
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or asymptomatic individuals if they do not know they are sick, compared to individuals in

I2 who are likely to feel unwell and reduce their contact with others. Thus, differentiating

these compartments will allow us to consider differences in behavior.

Several biological factors control the movement of individuals through these compart-

ments. Before introducing those components of the model, though, it is important to note

that because we will be implementing this disease model on a network, we will be using

discrete time steps. With that in mind, we can begin to consider how individuals move from

one compartment to the next.

Each day, movement from S to E happens upon infection, so this process requires contact

between infectious and susceptible individuals. The parameter β describes the baseline

probability of transmission given contact between two individuals. As mentioned earlier, the

division of infectious states into four compartments allows us to instantiate the model with

different levels of transmissibility depending on stage and symptoms of infection (Figure

2.3). When we discuss our network structure in Chapter 3 and the possibility of taking

prophylactic measures in Chapter 4, we will see how these different factors further modify

the probability of transmission.

Figure 2.3: Varying probabilities of transmission given contact between infectious (orange
and red) and susceptible (blue) individuals depending on symptoms and state of infectious-
ness of infectious individual.

Movement from E to I1 or A1 occurs after 2 time steps (Figure 2.4) [72, 67]. This time
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is independent of whether the individual enters I1 or A1 since we have not seen evidence (to

date) to suggest that the timing would differ between asymptomatic and presymptomatic

individuals.

Individuals usually show symptoms 4 to 5 days after infection (Figure 2.4) [44, 66]. Thus,

movement from I1 to I2 occurs after 3 time steps. Movement from A1 to A2 occurs the same

way because we have not seen data suggesting otherwise.

Finally, movement from I2 to R occurs after 5 time steps (Figure 2.4) [26, 49]. The same

process is used to determine how long individuals are in the A2 compartment, as we haven’t

observed data showing that these two disease states have different infectious period lengths.

Figure 2.4: Number of time steps (days) that individuals spend in the exposed and infectious
compartments.

In total, individuals are infectious for 8 time steps (days). This timing likely aligns

with the period when cases would be most infectious, as the duration of infectiousness for

COVID-19 varies substantially across individuals and infections [20, 49]. Because they are

model parameters, these durations can easily be updated in the future to reflect the most

up-to-date knowledge. Future work may also look to draw these values from probability

distributions that reflect the variability in duration of infectiousness.

With the compartmental disease process in place, in the next section, we turn to the

contact patterns through which individuals become infected.
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Networks and Contact Structures

Human contact patterns are heterogeneous in nature. This variation demonstrably impacts

the spread of infectious diseases [104, 9, 75]. Depending on the aims of a modeling study,

including the population of interest and route of disease transmission, accounting for this

diversity in social contacts in the model can increase model accuracy [9]. In Chapter 1 we gave

a brief overview of the array of approaches modelers take to include contact heterogeneity

and established that we would be using contact networks to do so in our own model. Here,

we introduce network terminology, three standard types of networks, and the network we

build.

3.1 Networks Overview

Networks are defined as a collection of nodes and edges. Nodes represent individuals, or

groups of individuals, and are connected by edges (Figure 3.1). These edges may be directed

(i.e., have a start and endpoint) or undirected. If two nodes are connected by an edge we call

these nodes neighbors. Similarly, a sequence of nodes such that there is an edge between any

two consecutive nodes is called a path. Both nodes and edges can have assigned properties.

One fundamental node property is its degree, defined by its number of edges. If a network is

directed, then each node would have a separate in- and out-degree. An example of an edge
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property is an edge weight, assigned when the network is constructed and often designed to

represent the strength of a connection. We will see other node and edge properties when we

construct our own network disease model later in this chapter.

Figure 3.1: Example of an undirected five node network. The blue and yellow circles are
nodes, and the black lines connecting them are edges. Node 0 has a degree of 4, while nodes
1 and 4 have a degree of 3, and nodes 2 and 3 have a degree of 2.

Networks can be used to represent relationships between individuals or groups. For

instance, nodes might be scientists and edges may connect those who have co-authored a

paper [83]. Additionally, edges could be used as more active paths for information or disease

exchange. Namely, nodes might be cities and edges might be flights between those cities and

the consequent movement of passengers or cargo; Colizza et al. [30] and Hufnagel et al. [54]

both use these types of networks to model infectious diseases. Alternatively, in the context

of HIV/AIDS, nodes might represent individuals and edges might connect those that have

had sexual contact [46].

Real-world networks of human contact patterns have a few key properties. First, real-

world networks are typically highly clustered [102]. Clustering can be thought of as the

chance that two nodes who have a mutual friend are also friends. For instance, if nodes A and

B are connected by an edge and nodes A and C are connected by an edge, what is the chance

that nodes B and C are connected (Figure 3.2)? If this chance is high, then the network would

be considered highly clustered, and if this chance is low, then the network has low clustering.
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Second, real-world networks typically exhibit the small-world property [102]. This property

Figure 3.2: In highly clustered networks, nodes with mutual friends (e.g., B and C) are also
likely to be connected. In networks with less clustering, nodes with mutual friends are less
likely to also be friends.

states that any node can be reached from any other node by traversing relatively few edges

(i.e., via a relatively short path). There is no strict definition of “relatively few edges,” but

the number six, as in “six degrees of separation,” has appeared in popular culture [45] as well

as sociology experiments [76]. A third, more controversial property of real-world networks

is a power law (or scale-free) degree distribution (see Figure 5.30 in Chapter 5) [18]. This

degree distribution is characterized by most nodes having a low degree, with a small number

having a very high degree. Let P(k) denote the probability of a node having degree k. Then

the power law degree distribution is defined by P(k) ∼ k−γ, where k denotes degree, γ > 1,

and a proportionality factor is required to normalize the distribution [11]. Efforts to generate

synthetic real-world networks will typically try to include these properties.

There are several standard network construction approaches that vary in how well they

represent real-world interactions; we review three relevant approaches here. One of the

simplest networks to construct is an Erdos-Renyi random graph. In this type of network,

each node is connected to every other node with some probability p between 0 and 1. The

resulting degree distribution follows a Poisson distribution: P(k) = (Np)ke−Np

k!
where k denotes

degree and N is the total number of nodes. Erdos-Renyi networks have very little clustering
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but exhibit the small-world property. They do not accurately represent large-scale daily

human contact patterns, but they are easy to construct.

A second type of network is generated by the Watts-Strogatz model. This model begins

with nodes arranged in a circle and connected to their k (an even integer) closest neighbors

(k
2

neighbors each on the right and left). Human connections are not solely spatial, though,

so Watts and Strogatz take an additional step to create a more realistic network. They use

a rewiring process, whereby for each of its k edges, with a given probability β, a node can

“choose” to remove that edge and form a new edge with another node. The initial connection

only to a node’s neighbors leads to high clustering, while the random rewiring allows these

types of networks to satisfy the small-world property. Where the Watts-Strogatz model

falls short of constructing a real-world network is its degree distribution; if the rewiring

probability β = 1, then the degree distribution follows a Poisson distribution because the

graph is identical to an Erdos-Renyi random graph. If, instead, 0 < β < 1, then the degree

distribution is approximately Poisson but has a sharp peak at degree k. This distribution

does not have the heavy tail of high-degree nodes characteristic of real-world networks.

A final network construction method of relevance is the Barabasi-Albert preferential

attachment model. This model adds nodes and edges in sequence – one node is added at

each time step. When a new node is added to the network it forms m edges, where m

is the sole model parameter. A newly added node forms an edge with an existing node i

with a probability proportional to i’s degree at that time. This probability is higher for

nodes with more edges than nodes with fewer edges. Thus, these higher degree nodes will

be more likely to grow their degree even further – hence the term preferential attachment.

The degree distribution of Barabasi-Albert networks follows a power law distribution of the

form P(k) = 2m2

k3
.

In addition to these generic networks, scientists often construct their own networks spe-

cific to the population or system that they are studying. There are numerous ways to do

this, as we touched on in Chapter 1. One common technique for disease models is to use
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multilayer networks (see Figure 3.3) where each layer represents a different type or level of

contact; e.g., household, school, work, social, and community [80, 77]. Depending on the

implementation, the same nodes may exist in each layer but have a different set of contacts

based on the context considered in that layer. For example, in [80], there are no adults in

the school layer and there are no children in the adult layer, but all individuals are present

in the household, social, and community layers. Layers may also vary in their degree dis-

tributions, levels of clustering, and small-world property adherence. Additionally, edges in

each layer can be weighted differently to reflect the higher or lower chances of transmission

in that context. While this type of network adds complexity, it allows for a more accurate

representation of the variety of contacts individuals have daily.

3.2 Our Network

We create a realistic set of contact patterns using a multilayered network. The network

consists of three layers: household, work/school, and friends. We make the simplifying

assumption that workplace interactions are analogous to those in school. As a result, we do

not incorporate age into the model. All three layers consist of the same nodes but have a

different edge generation process and different edge weights, signifying the frequency of that

type of contact (Figure 3.3). We make this distinction in edge weights because interactions

in these three arenas carry different probabilities of disease transmission. Later, in Chapter

4, we will add another set of edge weights related to social influence, but our discussion, for

now, is limited to the edge weights that, because they denote the frequency and duration of

contact, directly affect the probability of disease transmission.

At the household level, we form many separate but completely connected groups of

individuals. The complete connectedness of these groups is meant to represent that all

individuals within the same household are likely to have close contact with one another.

These group sizes are drawn from a discrete probability distribution generated from US

American Community Survey Census data from 2018 (Figure 3.4) [99]. Households can
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Figure 3.3: Multilayer network, with three layers: household, workplace, friend group. Each
layer contains the same nodes, but the connections differ between layers and are assigned
different edge weights depending on the layer.

range in size from 1 to 7 individuals, with a median of 3 individuals. Edges formed in the

household layer carry a disease weight of 1 because the chances of disease transmission in

household settings are high [74].

At the work level, we draw workplace sizes from a normal distribution centered at 20

with a standard deviation of 5. We then randomly assign nodes to workplaces. Within each

workplace, we form edges using an Erdos-Renyi process with p = 0.35. These edges carry

a disease weight of 0.7, or roughly 5/7, signifying the 5 out of 7 days a week that these

individuals may come into close enough contact for disease transmission.

At the friend level, we draw friend group sizes from a normal distribution with mean 6

and a standard deviation of 2. We then randomly assign nodes to friend groups. Within

each friend group, we form edges using an Erdos-Renyi process with p = 0.7. These edges

carry a disease weight of 0.5, estimated based on less frequent but likely longer and closer

contact than with work colleagues.

These values and distributions were chosen so that the degree distribution would be

centered around 14, a realistic estimate for daily contacts, based on work by Mossong et al.
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Figure 3.4: Distribution of household sizes based on US ACS Census data from 2018. All
households with seven or more people are considered to have exactly seven people.

[79]. The workplace size distribution was loosely based on data from 2004 [59]. In the absence

of data on friend group sizes, we chose a distribution we thought was reasonable. The means

and standard deviations of these distributions, as well as the probability of edge formation

and disease transmission edge weights, are all model parameters. Thus, the sensitivity of

simulation results to these values can be tested in the future and values can be adjusted

should further data become available. Heavier tailed degree distributions should also be

experimented with in the work and friend group layers as an added element of complexity.

It is important to note that in our implementation, a pair of nodes can only be connected

once; even if two nodes are in the same household and workplace, the household interaction

“overrides” the workplace interaction given the higher edge weight. Similarly, if two nodes

are in the same household and friend group, the household interaction will override the

friend group one. Finally, because the workplace contact edge weight is higher than the

friend group contact edge weight, a workplace interaction overrides a friend group one. This

assumption simplifies the model and allows us to more accurately choose parameters that

align with the transmissibility of SARS-CoV-2.
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Networks are constructed using graph-tool version 2.35 [86].

3.3 Disease Spread on Networks

Given this network, we will simulate the spread of SARS-CoV-2. We seed the outbreak

with a randomly selected node who is symptomatic infectious (I2), up to three of their

neighbors who are presymptomatic infectious (I1), and up to four of their neighbors who

are exposed (E) but will eventually become symptomatic. We seed each outbreak with the

same maximum number of infected people so that we can compare our results. As the virus

spreads, we keep track of the disease state of every node (S,E, I1, I2, A1, A2, or R) and the

length of time that they have been in that disease state so that they can progress to the

next state at the appropriate time step (discussed in Chapter 2). Disease transmission is

possible across edges between infectious (I1, I2, A1, A2) and susceptible (S) individuals. The

daily probability of transmission between a susceptible and infectious individual is given by

β · eij, where eij is the symmetric edge weight between the two nodes. We will modify this

probability in the next chapter when we incorporate masking behavior.
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Chapter 4

Behavior and Influence

4.1 Disease-Behavior Models

Many factors affect population disease dynamics. Contact patterns, as we reviewed in Chap-

ter 3, are one such factor and varying behaviors are another. Behavioral effects may be a

result of individual changes in the number or types (e.g., household, work, or friend) of

contacts, in addition to increased or decreased chances of transmission when encountering

contacts. Consequently, it can be important to incorporate these behavioral aspects and

how they shift over time into a mechanistic disease model. Behavioral changes have been

built into disease models in a variety of ways that depend on whether the model assumes

homogeneous or heterogeneous contact patterns and how much individual preferences are

taken into account [106].

In homogeneous-mixing models, behavioral changes are often implemented using either

rule or economic-based methods [106]. Rule-based models use disease prevalence-based rules

that lead agents to change their behavior under certain conditions. Economic-based models

assume that individuals can calculate and attempt to maximize their personal well-being by

making behavioral changes [106]. Poletti and colleagues built a rule-based homogeneous-

mixing SIR model that has individuals alter their behavior when disease prevalence exceeds
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a certain level where the risk of infection is too high to justify normal behavior [87]. In con-

trast, Chen and colleagues used an economic-based homogeneous-mixing SIS model where

individuals determine how much time to spend outside their home interacting with others

based on the prevalence of a disease and the cost of staying home [29]. Economic-based mod-

els may also employ game-theoretic techniques which we discuss in further detail in section

4.2.

In heterogeneous-mixing models, the implementation of behavior dynamics takes several

forms depending on how the varying contact patterns are captured [106]. In Chapter 1, we

introduced the implementation by Funk and colleagues as an early example of how disease-

behavior dynamics may be modeled on networks [41]. As you will recall, the paper proposed

that awareness spreads outwards from an infected individual with decreasing quality as it gets

farther from the source. With awareness comes decreased disease susceptibility based on the

assumption that aware individuals will take preventive measures [41]. Funk and colleagues

employ multilayer networks, where disease transmission and awareness propagation layers of

the multilayer network contain the same nodes but different connections among the nodes.

Because interactions occur that cannot cause disease transmission but can affect how humans

behave with respect to a disease, distinguishing between these two types of exchange is

important. We pointed out in Chapter 1, however, that Funk and colleagues’ approach

assigns no penalty or cost for taking precautions. In reality, reducing one’s contacts, wearing

a mask, or getting a vaccination, for example, all incur some cost to the individual. While

these costs may be small relative to the benefit – a reduced chance of infection – each

individual must make this determination themselves. In our approach, detailed at the end

of this chapter, we introduce a resistance value for each node which reflects the varying cost

of masking for every individual.

Zhang and colleagues address this cost assumption in their SIR model that allows in-

dividuals to behave in one of three ways: laissez-faire, self-protective, or vaccinated [112].

Both self-protective and vaccination behaviors incur a cost that is less than that of infection.
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To represent consecutive seasonal outbreaks of a pathogen like influenza, Zhang et al. run

multiple rounds of behavior changes and infection spread. Between rounds, individuals can

decide to imitate their neighbors’ behaviors in the following season. While these behavior

updates bring this model seemingly closer to the real-world decision-making process, the up-

dates only occur after the prior season and before the next season begins, rather than while

the disease outbreak is occurring. In consequence, the behavior update process doesn’t in-

corporate disease prevalence. In our model, we will incorporate the disease prevalence into

the decision-making process.

We seek to combine and refine these approaches to create a model which allows behavior

and disease dynamics to influence each other while accounting for the fact that the two

processes may happen at different rates. Furthermore, we build in the concept that changing

one’s behavior to prevent the spread of a disease can be costly and is influenced by an

individual’s neighbors’ actions. To do so, we utilize game theory and a network-specific

game-theoretic model, influence games.

4.2 Game Theory

Game theory provides a mathematical approach to modeling the rational decision-making

of individuals in situations where these decisions are interdependent. Games are composed

of players, each of whom plays an “action” based on what they expect other players to do.

Associated with each vector of joint actions is a payoff for each player. This payoff can

incorporate the costs of different actions. Players will always look to maximize their payoffs

– called playing their best response. When each player plays their best response, the system

has reached a state called Nash equilibrium [81], where no player has any incentive to change

their action. We will revisit this idea of equilibrium in our model in section 4.4.

In the meantime, an illustrative and famous example of a two person game is shown in

Figure 4.1. In this example, called Prisoner’s Dilemma, two suspects must decide whether to

confess to a crime [21]. The best outcome (highest payoff, -1) for both occurs if both do not
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confess. However, if suspect 1 considers that suspect 2 will not confess, then it is in suspect

1’s best interest to confess. Moreover, if suspect 1 considers that suspect 2 will confess,

then it is still in suspect 1’s best interest to confess. Through this set of calculations, under

both scenarios, suspect 1 will decide to confess. The same calculation applies for suspect 2

who will also decide to confess. These best responses lead to a Nash equilibrium of (confess,

confess).

Figure 4.1: Prisoner’s Dilemma two-player game theory example. Suspect 1 and 2 must
each decide whether or not to confess to a crime they committed. The payoffs – the prison
sentences – are given as Suspect 1, Suspect 2. The Nash equilibrium outcome, where both
players simultaneously play their best response and have no incentive to deviate, is shown
in blue.

Game theory has been used frequently in coupled disease-behavior models for vaccination

decision-making [14, 13, 91]. When getting a vaccine, individuals weigh several potential

costs, including the cost of infection, how expensive the vaccine is, how long it takes to get

the vaccine, and potential side effects, among others. Depending on their personal preferences

and the risks associated with the vaccine, they will decide whether or not an investment in

vaccination is advantageous for them. Interestingly, high levels of vaccination can introduce

a “free rider” effect where vaccination risks appear substantially higher than disease risks

due to the nature of herd immunity [13]. This perception may cause many people to refrain

from vaccinating. These free riders may not suffer the cost of becoming infected because
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a sufficient number of other people are vaccinated, protecting them. However, if too many

people try to take advantage of the free rider effect and choose not to vaccinate, then the

disease can continue to spread, undermining their choice of not vaccinating.

It is important to note, however, that vaccination as a behavior is somewhat different

from compliance with the other non-pharmaceutical interventions suggested or mandated to

reduce the spread of COVID-19. Once one gets a vaccine, one can’t “undo” it. Many of the

behavior models we discuss below are applied to diseases like influenza, where vaccination is

needed every year. These models allow for a yearly decision-making process after the course

of an epidemic, as in Zhang et al. [112]. However, decisions to wear masks or social distance

are happening on a different time scale. Individuals can change their decision about masking

multiple times over the course of an outbreak, whereas a vaccination decision can only be

made once during an outbreak. Thus, modeling the types of behaviors that can be changed

more frequently requires a different approach.

A variety of approaches are used to capture the human decision-making process in vacci-

nation models. Two common approaches include imitation dynamics [39] and evolutionary

game theory. We briefly review a couple of models using these methods to demonstrate how

they have been used in the context of vaccination and may be applied to non-pharmaceutical

interventions, such as masking and social distancing.

Ndeffo et al. combine both imitation dynamics and payoff maximization to model vac-

cination decisions [82]. In their model, some fraction of individuals in a network update

their vaccination behaviors by imitating an immediate neighbor, and the remaining fraction

update by maximizing their perceived benefits. In the imitation process, a node i considers

the behavior of one of its randomly selected immediate neighbors j. If i and j share the

same behavior, then they stick with that choice. If their behaviors differ, then i adopts j’s

behavior with a certain probability based on if and how much higher j’s payoff is. In Ndeffo’s

model, individuals can also update behavior to maximize their individual payoff in a process

that weighs the cost of vaccination and infection, as well as the perceived probability of
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infection based on their immediate neighbors’ vaccination decisions. The update process is

continually run until a steady state is reached (i.e., individuals’ decisions no longer change

over time), at which point vaccination occurs.

In the context of our goals with this project, an overall strength of this methodology is

how it allows decisions to fluctuate and eventually converge to an equilibrium. A weakness is

that imitation behavior is considered mutually exclusive to payoff-driven behavior. In other

words, in Ndeffo’s model, an individual does not take into account both the social influence

of their neighbors and what their neighbors’ decisions mean for their chances of infection.

Furthermore, node i considers only the actions of a single neighbor in their decision-making

process, rather than all or most of their neighbors. Imitating only a single random neighbor,

instead of taking into account the behaviors of multiple neighbors, doesn’t realistically repre-

sent the human decision-making process. Fukuda and colleagues [40] adjust this assumption

by modifying the probability that i imitates j. In Fukuda’s model node i still picks a random

neighbor j, but instead of looking at only j’s payoff, i calculates the average payoff of any

individual adopting the same behavior as j. The average payoff is then used to determine

whether to adopt the same behavior as j. This implementation reflects that a node i is likely

basing their behavior decision off of the behavior of more than one other individual.

An alternative process is used by Xia and colleagues [111] to better capture social influ-

ence. Individuals use a combination of game-theoretical cost minimization calculations and

the influence of neighbors to determine their vaccination decision. The cost minimization

calculation is similar to those discussed earlier and involves the weighing of infection and

vaccination costs. The social influence computation includes the strength of a connection,

the behavior of a neighbor, and the number of neighbors accepting and rejecting vaccina-

tion. Individuals are then assigned a probability p that indicates their tendency to adopt the

cost-minimizing behavior. With probability 1−p they instead adopt the behavior suggested

by the social influence calculations. If both calculations point to the same decision, then

this probability is irrelevant. Xia and colleagues’ approach is closest to the one we consider
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in our model of human behavior. Like Xia et al., our decision-making model weighs both

social influence and cost minimization. We use a construct called influence games, discussed

in the next section, to calculate social influence.

4.3 Influence Games

Before we introduce influence games, it will be helpful to understand the linear threshold

model [57]. The linear threshold model is defined as follows. In a network, a node i is

influenced by each neighbor j with a weight wji ≥ 0 such that
∑

j wji ≤ 1. Each node i

also has a threshold, or resistance, qi ∈ [0, 1]. This threshold defines the weighted fraction

of i’s neighbors which must be “active” for i to choose to become “active”. Otherwise, i

will remain “inactive”. Initially, all but a small set of nodes are inactive. Then the diffusion

process begins: the active nodes can influence their neighbors to adopt an active state, who

can influence their neighbors to adopt an active state, and so on. The diffusion proceeds

until either all nodes are active or nodes are no longer changing their behavior. This idea

of activity could be applied in many contexts, e.g. for i to choose to be vaccinated or to

choose to mask. In the linear threshold model, due to non-negative influence weights, if a

node becomes active at any point it remains in that state throughout the duration of the

model. When thinking about vaccination, this continued activation may be acceptable, but

in the context of behaviors like masking which can be “undone”, we would like a model that

allows for more switching of behaviors.

In 2014, Irfan and Ortiz [55] introduced linear influence games as a game-theoretic method

to model the behavior of a finite-networked population. They focus specifically on stable

outcomes. Similar to the linear threshold model [57], this approach begins with a directed

network composed of nodes with varying threshold, or resistance, levels, qi ∈ R. Edges

carry influence weights, wji ∈ R which reflect the amount of influence that a node j exerts

on a neighbor i. These directed edges are not necessarily symmetric: a node i may exert

more influence on a node j than j exerts on i. Each node in the network adopts one of
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two behaviors, denoted by the integers −1 and 1. If there is no influence, a node with a

positive threshold will adopt behavior −1 while a node with a negative threshold will adopt

behavior +1 (see equation 4.1 below). A node i determines their incoming influence from all

neighbors j using the following expression:

∑
j 6=i

xj · wji.

Comparing the value of this expression with their individual threshold qi, a node will decide

whether or not to change their behavior to maximize their payoff:

i′s payoff = xi

(∑
j 6=i

xj · wji − qi
)
. (4.1)

This payoff calculation takes into account the actions of other players.

Equation 4.1 determines how i chooses whether their behavior xi is −1 or 1; this is i’s

best response. If ∑
j 6=i

xjwji − qi < 0, (4.2)

then it is in i’s best interest to perform behavior xi = −1 so that

xi

(∑
j 6=i

xjwji − qi
)
> 0,

maximizing i’s payoff. One scenario in which equation 4.2 holds is when the total influence

on i is 0 and i has a positive threshold. Alternatively, if

∑
j 6=i

xjwji − qi > 0, (4.3)

then i chooses xi = 1 so that i’s payoff is largest. One scenario in which equation 4.3 holds
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is if there is no net influence on i and i has a negative threshold. In the case where

∑
j 6=i

xjwji − qi = 0,

i will choose either action with equal probability. At each time step, each node sums the

incoming influences to determine the action to perform at the next time step to maximize

their payoff. Unlike the linear threshold model, this influence game model allows nodes to

switch their behaviors back and forth. It is with this model in mind that we detail how

individuals decide which preventive behaviors to take in our implementation.

4.4 Our Behavior Model

Given the disease progression and contact structure we established in Chapters 2 and 3, we

can now construct the behavioral model. We focus specifically on masking behavior. Using an

influence game approach, we will consider three components of individuals’ decision process

about masking: resistance, risk, and influence.

Individuals naturally have some level of resistance to masking. The monetary or temporal

cost of finding or buying masks and the physical discomfort or political consequences of

wearing a mask likely contribute to this resistance. An individual’s baseline willingness to

mask is then represented by q̃i ∈ [0, L], where L indicates a strong unwillingness to mask and

0 indicates no resistance to masking. We experiment with the scaling factor L in Chapter

5 to find an appropriate range of resistance relative to the remaining components of the

behavior calculation. At model initialization, each individual, i, will be assigned q̃i drawn

from a uniform distribution U(0, L). One consequence of this resistance structure is that

individuals will choose not to mask in the absence of disease and social influence.

The second component of an individual’s decision calculation is their perceived risk of
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infection. One way to quantify risk is:

risk of an event = cost of that event · probability of that event.

To calculate the perceived risk of infection for node i, ρi, we take the product of the perceived

cost of infection, ci, and the perceived probability of infection. We reason that an individual’s

perceived probability of infection is the proportion of their neighbors who are infectious. This

construction assumes some level of baseline testing so that a node knows how many of their

neighbors are infectious, even if presymptomatic or asymptomatic. Let Ui represent the set

of node i’s neighbors. Then (A1 ∪ A2 ∪ I1 ∪ I2) ∩ Ui gives the set of all infectious neighbors

of i and the perceived risk of infection is given by:

ρi =

√
ci ·
|(A1 ∪ A2 ∪ I1 ∪ I2) ∩ Ui|

|Ui|

where |.| denotes cardinality. Infection costs, ci, are drawn from a uniform distribution U(0, 1)

and assigned to each individual at model initialization. These costs are meant to represent

how important it is to an individual that they do not become infected. For example, older and

immunocompromised individuals may have larger perceived costs of COVID-19 infection, as

may people aware of the possible long-hauler effects of COVID-19 infection [5, 22, 98].

Both terms in this risk calculation fall between 0 and 1, meaning that their product is

sublinear. Social influence, which we discuss next, is constructed linearly. Thus, we take

the square root of the product so that the perceived risk of infection is comparable to social

influence.

Following the linear threshold model of Kempe, Kleinberg, and Tardos [57], as well as

Irfan and Ortiz’s influence game model [55], we define the social influence on each node i to

be: ∑
j∈Ui

xjwji, (4.4)

where, as above, Ui is the neighborhood of node i. The behavior of node j is encoded
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by xj ∈ {−1, 1} where −1 indicates not masking and 1 indicates masking. The weight,

or influence, of node j’s actions on node i is denoted by wji ∈ [0, 1] with larger weights

denoting stronger influence. The incoming weights, wji, to node i are determined as follows.

First, preliminary weights, w′ji, are drawn from U(0, 1). A maximum influence sum, φi,

is also drawn from U(0, 1). The preliminary weights, w′ji, are then normalized so that∑
j∈Ui

wji = φi. This process ensures that the total social influence on node i, given by

equation 4.4, lies in [−φi, φi] ⊂ [−1, 1], and at the same time creates random heterogeneity in

the power of social influence on individual decision-making across the network. In Chapter 5,

we explore the impact of the strength of influence on coupled disease and behavior dynamics

by reducing the domain of the uniform distribution from which φi is drawn.

Bringing these three decision components together, node i will make a decision for the

following time step by evaluating

Di =

√
ci ·
|(A1 ∪ A2 ∪ I1 ∪ I2) ∩ Ui|

|Ui|
+
∑
j∈Ui

xjwji − q̃i. (4.5)

If Di > 0, then i will adopt masking behavior at the next time step. If Di < 0, then i will

not adopt masking behavior at the next time step. If Di = 0, then i chooses either behavior

with equal probability.

Equation 4.5 is the behavioral model without equilibration. However, this implementa-

tion can lead nodes to frequently (and unrealistically) switch their masking behavior back

and forth as a result of incoming influences. To address this issue, we allow the behavior

process to equilibrate at each time step: nodes go through an iterative process of deciding

their masking behavior based on the choices of their neighbors until they no longer want to

change their decision. When the system has reached equilibrium, nodes are playing their

best response, and the chosen behaviors are considered a Nash equilibrium at that time step.

This equilibration process happens between rounds of disease spread on the network. Thus,

behavioral decisions can change more frequently than infection can spread in our model, as

33



Chapter 4 Taube

in real life [56]. In Chapter 5, we explore the impact of this equilibration assumption by

comparing model output with full equilibration, partial equilibration, and no equilibration.

With our complete coupled disease-behavior dynamical model in place, we can now turn

to simulating outbreaks and examining the effect of these different elements of decision-

making on outbreak dynamics.
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Modeling Results

We can now explore the interplay of mechanisms governing the behavior and disease dynamics

of SARS-CoV-2.

5.1 Parameters

We use several parameters in our simulations (Table 5.1). At this stage, in choosing these

parameters, we look to create a reasonably realistic infection process from which to deduce

qualitative insights about the interactions among the disease and behavior mechanisms. If

this model were to be used to predict case counts or other COVID-19 statistics, parameter

choice, sensitivity, and uncertainty quantification would be critically important.

Recall that β represents the probability of transmission given contact between an infec-

tious and a susceptible individual. In our model, this baseline β neither accounts for the

intensity of contact (as represented by household, work, or friend edge weights in our multi-

layer network) nor how masking of either individual may reduce the chances of transmission.

In reality, β is very difficult to estimate. We come up with some plausible values listed in

Table 5.1 based on current data. Researchers estimate the average number of secondary

SARS-CoV-2 infections caused by an infectious individual in a fully susceptible population

to be 2.5 [25]. On average, each infectious node in our network will have a degree around
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13 or 14 and be infectious for 8 days. To infect 2.5 of their susceptible neighbors in this

time period, the probability of transmission given contact must be around 0.024. Given that

asymptomatic individuals are thought to be 75% as infectious as symptomatic individuals

[25], we chose the β values below.

Table 5.1: Parameter list.

Parameter Value

βpre−A (for individuals in A1) 0.02

βpre (for individuals in I1) 0.02

βA (for individuals in A2) 0.02

β (for individuals in I2) 0.033

Probability of developing symptoms 0.7

Time in E 2 time steps

Time in I1 or A1 3 time steps

Time in I2 or A2 5 time steps

Reduced chance of transmission if infectious person masks 0.3

Reduced chance of transmission if susceptible person masks 0.8

Workplace size Normal(20,5)

Workplace edge probability 0.35

Workplace disease edge weight 0.7

Friend group size Normal(6,2)

Friend group edge probability 0.7

Friend disease edge weight 0.5

Resistance scaling factor1, L 0.2

1Model results for different values of L are shown in Figures 5.9, 5.10, 5.11, and 5.12
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5.2 Network Characteristics

We use several different networks in our simulations. First, we use the multilayer network

structure outlined in Chapter 3. This contact structure differentiates between household,

work, and friend interactions when running the infection process. In the following exper-

iments, we use four different one thousand node multilayer networks, with the degree dis-

tribution of each shown in Figure 5.1. As expected given the Erdos-Renyi process used to

connect individuals in the work and friend layers, the degree distribution looks Poisson, cen-

tered around a degree of 13 or 14. Future work could vary these distributions further so that

the degree distribution has a heavier right tail, reflecting the few individuals who have an

unusually high number of contacts. This exploration would also be important if we wanted

to incorporate the possibility of superspreading into our model [68].

Figure 5.1: Degree distributions of four networks of one thousand nodes generated using the
multilayer method outlined in Chapter 3. (A) network 1, (B) network 2, (C) network 3, (D)
network 4.

Second, to compare different contact structures we generate two Erdos-Renyi random

networks and two Barabasi-Albert preferential attachment networks of one thousand nodes

each. You will recall that the degree distribution of Erdos-Renyi random networks approaches

a Poisson distribution as the number of nodes approaches infinity, and we observe a sim-

ilar degree distribution in our networks of 1000 nodes (Figure 5.2). The Barabasi-Albert

preferential attachment networks have a power law degree distribution (Figure 5.3).
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Figure 5.2: Degree distribution of Erdos-Renyi random networks of one thousand nodes
generated with p = 0.014. (A) Erdos-Renyi network 1, (B) Erdos-Renyi network 2.

Figure 5.3: Degree distribution of Barabasi-Albert preferential attachment network of one
thousand nodes generated with m = 7. (A) Barbasi-Albert network 1, (B) Barbasi-Albert
network 2.

While the degree distribution of the Erdos-Renyi networks is not all that different from

our multilayer network, the edge weights are modified. In the multilayer network, the disease

edge weights are based on whether two nodes are in the same household, workplace, or friend
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group. In the Erdos-Renyi network, all disease edge weights are 0.71, a weighted average of

the household, work, and friend edge weights from the multilayer network. This edge weight

is also used in the generated Barbasi-Albert preferential attachment networks.

With these networks in mind, we can now turn to the disease and behavior simulations.

5.3 Model Simulations

To simulate a disease outbreak we initialize the model in the following way. First, we

construct the contact network, as detailed above and in Chapter 3. Then, we seed a single

node at random and this node will serve as the seed for every outbreak simulation on this

network. The seed is symptomatic and infectious (I2). If behavior is part of the model, the

seed is also masking. Three neighbors of the seed are presymptomatic infectious (I1) and

masking, while four different neighbors are exposed (E) and will become symptomatic. These

exposed neighbors are not masking at the start of the simulation. This initialization assumes

that the seed infects at least seven others, which is somewhat high. However, superspreading

events play a role in the transmission dynamics of SARS-CoV-2, so this assumption is not

unrealistic [3].

The chance of infection of an individual is based on the disease state of the infectious

node, whether or not both nodes are masking, and the strength of the interaction between

them:

P(transmission from i −→ j) = βi · eij ·mi ·mj.

Here, βi is the β value associated with the infectious individual’s infectious state (I1, I2, A1, or

A2) and eij is the disease edge weight between individual i and j (based on household, work,

or friend interaction). The mi and mj terms represent the reduced probability of transmission

if the infectious or susceptible individuals mask, respectively. If the infectious node masks,

the probability of transmission is reduced by 70%, meaning mi = 0.3. Otherwise, mi = 1.

If the susceptible node masks the probability of transmission is reduced by 20%, meaning
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mj = 0.8. Otherwise, mj = 1.

All analyses were conducted in R version 4.0.3 and all code will be available on GitHub

at http://github.com/jtaube/taube-bowdoin-honors.

5.3.1 No Masking Behavior

We first simulate disease propagation across our multilayer network without any masking

behavior. These simulations serve as a baseline to which we can compare outcomes of

simulations that allow masking and also verify that our network disease model is functioning

properly. As expected, the number of newly infected individuals rises and falls as the disease

spreads throughout the network (Figure 5.4). Across networks, the total number of infected

individuals ranged from 660 to almost 780 (Figure 5.5A). The peak number of daily new

infections per outbreak generally fluctuated between 20 and 27 new infections (Figure 5.5B),

while the median time at which the outbreak peaked varied between 40 and 55 time steps

(Figure 5.5C). All values were relatively consistent across networks.

5.3.2 Mask Mandate

In contrast, we can look at the results of disease outbreaks in populations 85% compliant

with mask mandates (850 people in our 1000 node networks). In this case, the seeded infected

nodes must also be compliant with the mask mandate. With a mask mandate in place, the

total number of infected people rarely exceeds 30, compared to over 650 infections when

no one masked (Figure 5.6A). In Figure 5.6B, we see that the daily peak number of new

infections is typically only 1 or 2. The timing of these peaks is also much earlier than the

outbreaks without masking (Figure 5.6C), with network medians all less than 10 time steps.

Ultimately, masking reduces infections in our model, shifting the peak outbreak time earlier.

Outbreaks without masking and with mask mandates lie at the two extremes of reality.

We are really interested in the region in between: when people can choose whether to mask,

how many will do so? Based on what factors?
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Figure 5.4: No masking behavior. Number of newly infected nodes per time step for four
one thousand node multilayer networks. Each of 10 simulations is shown in grey. Dark red
line shows average daily number of newly infected nodes, and pink region shows the 95%
confidence interval.

Figure 5.5: No masking behavior. Outbreak statistics for each multilayer network. (A) Total
number of nodes infected. (B) Peak number of daily new infections. (C) Time step of peak
number of daily new infections.
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Figure 5.6: Mask mandate with 85% compliance. Outbreak statistics for each multilayer
network. (A) Total number of nodes infected. (B) Peak number of daily new infections. (C)
Time step of peak number of daily new infections.

5.3.3 Role of Resistance

To address these questions, we begin by looking at our behavior model without resistance

(q̃i = 0 for everyone). In other words, individuals’ decisions about masking are solely based

on their neighborhood risk and social influence. One concern in a model without masking

resistance is that people may continue to mask even when there is no risk of infection. For

example, if everyone is masking and disease risk is eliminated, social influence will continue

to encourage masking. This behavior would not be realistic. We will see later in section

5.3.5 why this doesn’t happen, but this possibility initially motivated our use of resistance

in the model.

In Figure 5.7, we see that in the absence of resistance, the number of people masking

dramatically dominates the number of people infected. Further, the peak of the average

masking curve (in blue) roughly aligns with the peak of the average infection curve (in red).

No more than around 200 people mask on a given day (Figure 5.7) and rarely do more than

330 total different people mask (Figure 5.8A). Fewer total maskers leads to more infections

than in the mask mandate model (Figure 5.8B), though still nearly 100 fewer infections
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Figure 5.7: No resistance to masking; only perceived risk and social influence contribute to
masking decision. Number of newly infected nodes per time step for four one thousand node
multilayer networks. Each of 10 simulations is shown in grey. Dark red line shows average
daily number of newly infected nodes, and pink region shows the 95% confidence interval.
Dark blue line shows average daily number of masking nodes, and light blue region shows
the 95% confidence interval.

than outbreaks without masking. Peak daily cases and time also fall in between the mask

mandate and no masking models, though closer to the no masking simulation runs (Figure

5.8 C, D).

When we include resistance to masking in the model, we must consider its scale – or

importance – relative to social influence and perceived risk. Since we have no data quantifying

resistance to masking, it’s even more important to use the model to explore the potential

interplay between resistance and our other factors impacting behavior. The relative scale

of resistance is represented by the factor L, where larger values of L indicate higher levels

of resistance relative to risk and social influence. If resistance is too high, it can overpower

social influence and perceived risk so that no one masks. To explore an appropriate scale of
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Figure 5.8: No resistance to masking; only perceived risk and social influence contribute
to masking decision. Outbreak statistics for each multilayer network. (A) Total number of
nodes who masked at some point during the outbreak. (B) Total number of nodes infected.
(C) Peak number of daily new infections. (D) Time step of peak number of daily new
infections.

resistance we run the equilibrating behavior model with L values of 0.01, 0.1, 0.2, 0.4, 0.8,

and 1. The results of L values of 0.01, 0.1, and 0.2 are shown in Figures 5.9 and 5.11 and

the results of L values of 0.4, 0.8, and 1 are shown in Figures 5.10 and 5.12.

With increasing resistance, the total and daily number of masking individuals decreases

substantially. Median total maskers is over 300 for all four networks when maximum resis-

tance is 0.01 but below 100 when maximum resistance is 1 (Figures 5.11 A, 5.12 A). Trends

in total number of infected individuals, peak cases, and peak times are less notable across

the resistance levels aside from the increased number of infections when fewer individuals

mask. We feel that any maximum resistance between 0.1 and 0.4 is reasonable, as these L

values don’t completely prevent masking but are large enough to compete with influence and

risk terms. We will be using 0.2 as the maximum resistance in the remaining experiments.

As a baseline, Figure 5.13 shows again the 10 simulations on each multilayer network

with the behavior model using maximum resistance of 0.2. The summary outbreak statistics

are shown in Figure 5.14.
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Figure 5.9: Varying maximum resistance to masking. Number of newly infected nodes per
time step for four one thousand node multilayer networks. Each column is a maximum
resistance level, 0.01, 0.1, and 0.2, from left to right. Each row is a network; network 1, 2,
3, and 4 from top to bottom. Each of 10 simulations is shown in grey. Dark red line shows
average daily number of newly infected nodes, and pink region shows the 95% confidence
interval. Dark blue line shows average daily number of masking nodes, and light blue region
shows the 95% confidence interval.

45



Chapter 5 Taube

Figure 5.10: Varying maximum resistance to masking. Number of newly infected nodes
per time step for four one thousand node multilayer networks. Each column is a maximum
resistance level, 0.4, 0.8, and 1, from left to right. Each row is a network; network 1, 2, 3,
and 4 from top to bottom. Each of 10 simulations is shown in grey. Dark red line shows
average daily number of newly infected nodes, and pink region shows the 95% confidence
interval. Dark blue line shows average daily number of masking nodes, and light blue region
shows the 95% confidence interval.
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Figure 5.11: Varying maximum resistance to masking. Outbreak statistics for each multilayer
network. Each column is a maximum resistance level, 0.01, 0.1, and 0.2, from left to right.
Each row is a statistic. (A) Total number of nodes who masked at some point during the
outbreak. (B) Total number of nodes infected. (C) Peak number of daily new infections.
(D) Time step of peak number of daily new infections.
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Figure 5.12: Varying maximum resistance to masking. Outbreak statistics for each multilayer
network. Each column is a maximum resistance level, 0.4, 0.8, and 1, from left to right. Each
row is a statistic. (A) Total number of nodes who masked at some point during the outbreak.
(B) Total number of nodes infected. (C) Peak number of daily new infections. (D) Time
step of peak number of daily new infections.
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Figure 5.13: Maximum resistance of 0.2. Number of newly infected nodes per time step for
four one thousand node multilayer networks. Each of 10 simulations is shown in grey. Dark
red line shows average daily number of newly infected nodes, and pink region shows the 95%
confidence interval. Dark blue line shows average daily number of masking nodes, and light
blue region shows the 95% confidence interval.

Figure 5.14: Maximum resistance of 0.2. Outbreak statistics for each multilayer network.
(A) Total number of nodes who masked at some point during the outbreak. (B) Total number
of nodes infected. (C) Peak number of daily new infections. (D) Time step of peak number
of daily new infections.
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5.3.4 Role of Perceived Risk

Fear is thought to be a large driver of precautionary behavior, especially in the context

of COVID-19 [36, 48]. We further investigate the role of perceived risk in our model by

eliminating it all together. Will anyone mask if no one perceives any risk of disease and

everyone follows what their neighbors are doing? The way we’ve initialized our model with

only a few maskers in a network of one thousand, early on there is overwhelming social

influence not to mask. Thus, in the absence of perceived risk no one masks and we observe

an epidemic curve as we saw when we modeled disease without behavior (Figures 5.15 and

5.16). The four maskers in Figure 5.16A are those that were initialized as masking in the

model. Evidently, risk is the main driver of masking behavior in our model.

Figure 5.15: No perceived risk of infection; only resistance (up to 0.2) and social influence
contribute to masking decision. Number of newly infected nodes per time step for four one
thousand node multilayer networks. Each of 10 simulations is shown in grey. Dark red
line shows average daily number of newly infected nodes, and pink region shows the 95%
confidence interval. Dark blue line shows average daily number of masking nodes.
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Figure 5.16: No perceived risk of infection; only resistance (up to 0.2) and social influence
contribute to masking decision. Outbreak statistics for each multilayer network. (A) Total
number of nodes who masked at some point during the outbreak. (B) Total number of nodes
infected. (C) Peak number of daily new infections. (D) Time step of peak number of daily
new infections.

In our calculation of perceived risk, we don’t account for how masked neighbors may

reduce a node’s risk of infection. If we include neighbor masking behavior in the risk calcu-

lation, we may see some kind of free rider effect where a node with many masking neighbors

perceives that they are at lower risk of infection and, thus, they are less inclined to mask.

We test this idea by scaling perceived risk by the proportion of masking neighbors. Let the

set Ui contain all of i’s neighbors and the set M contain all masking individuals. If 0.7 is

the reduction in the probability of transmission from the infectious individual masking, then

the new term in our risk product is

1− 0.7
|M ∩ Ui|
|Ui|

(5.1)

where |.| denotes cardinality. We include the 0.7 scalar in this expression to highlight that

masking does not completely eliminate the risk of transmission. When we incorporate ex-

pression 5.1 into our perceived risk formula we have

ρi =

√
ci ·
|(A1 ∪ A2 ∪ I1 ∪ I2) ∩ Ui|

|Ui|
·
(

1− 0.7
|M ∩ Ui|
|Ui|

)
. (5.2)
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In equation 5.2, we can see that fewer masking neighbors lead to larger values of expression

5.1 and, consequently, larger perceived risks of infection, whereas more masking neighbors

reduce perceived risk.

When we implement this model, we see levels of masking similar to that seen in the

original behavior model (Figures 5.17 and 5.18).

Figure 5.17: Perceived risk incorporating proportion of masking neighbors. Number of newly
infected nodes per time step for four one thousand node multilayer networks. Each of 10
simulations is shown in grey. Dark red line shows average daily number of newly infected
nodes, and pink region shows the 95% confidence interval. Dark blue line shows average
daily number of masking nodes, and light blue region shows the 95% confidence interval.

The median total number of maskers ranged from 230 to 255 in the original behavior

model, and with this new risk structure the median total number of maskers vary from

220 to 255, with the lowest occurring in network 4. Likewise, the median total number of

infections appear to be about the same or a bit lower with this new risk structure than

in the original behavior model. Scaling perceived risk by neighbors’ masking decisions did

not produce the free rider effect we had expected, nor did this risk structure change the
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Figure 5.18: Perceived risk incorporating proportion of masking neighbors. Outbreak statis-
tics for each multilayer network. (A) Total number of nodes who masked at some point
during the outbreak. (B) Total number of nodes infected. (C) Peak number of daily new
infections. (D) Time step of peak number of daily new infections.

overall masking and disease dynamics. This result indicates the robustness of our original

risk formulation, though additional testing for the free rider effect when masking is initially

more widespread is necessary.

5.3.5 Role of Social Influence

We also run the equilibrating model without social influence to see how individuals behave

when only considering disease risk and masking resistance. When social influence isn’t

present, the number of total maskers in each outbreak ranges from under 200 to over 800,

compared to between 220 and 270 total maskers in the original behavior model (Figure 5.20D

vs. 5.14D). The large number of maskers drives down the total number of cases, the peak

new cases per day, and often the peak day of the outbreak (Figure 5.20). Number of maskers

per day increases initially as people have a chance to respond to the seed infections in their

neighborhood, and then, on average, declines toward zero as the outbreak wanes (Figure

5.19).

This average seems to be obscuring a lot of the variation across simulations. In Figure

5.21 we look more closely at how the number of people masking each day fluctuates over the
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Figure 5.19: No social influence; only resistance (up to 0.2) and perceived risk contribute to
masking decision. Number of newly infected nodes per time step for four one thousand node
multilayer networks. Each of 10 simulations is shown in grey. Dark red line shows average
daily number of newly infected nodes, and pink region shows the 95% confidence interval.
Dark blue line shows average daily number of masking nodes, and light blue region shows
the 95% confidence interval.

course of the outbreak across ten simulations on multilayer network 1. We observe multiple

waves of increasing maskers per day in the light purple, blue, and green curves. These

trends contrast with what we have seen in our model that includes social influence, where

the number of daily maskers curves typically have a single peak. The rise and fall of masking

observed in the absence of social influence aligns more with what we had expected to see, in

that as infections increase, masking increases, then infections fall, and masking falls, and so

on. These results demonstrate how much social influence is preventing people from masking

and stabilizing masking behavior in our model. The lack of stability without social influence

may be unsurprising given that when we eliminate social influence, there is no longer an

equilibration process. In the original behavior model, the only factor changing during the

54



Chapter 5 Taube

Figure 5.20: No social influence; only resistance (up to 0.2) and perceived risk contribute to
masking decision. Outbreak statistics for each multilayer network. (A) Peak number of daily
new infections. (B) Time step of peak number of daily new infections. (C) Total number of
nodes infected. (D) Total number of nodes who masked at some point during the outbreak.

Figure 5.21: No social influence; only resistance (up to 0.2) and perceived risk contribute
to masking decision. Number of masking nodes per day shown for 10 different simulations
on multilayer network 1 (1000 nodes). Each simulation is a different color. Note that the
light purple, blue, and green curves appear to have multiple waves of increased number of
maskers per day.
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equilibration process was the behavior of one’s neighbors – neither masking resistance nor

perceived risk changed. Thus, removing social influence means no equilibration occurs in

the decision-making process. We will further explore the role of equilibration in the next

section, but first, we look at the relative importance of risk and social influence.

Risk will always push people to mask, while resistance will always prevent people from

masking. Social influence can go both ways but in our model appears to mostly act against

masking behavior. Factors against masking (resistance and perhaps influence) are often

outweighing factors encouraging masking (risk and perhaps influence) in our original model.

We must consider that risk and social influence may not equally contribute to the decision

whether to mask.

To explore this possibility, we experiment with maximum incoming influence values. In

our original behavior model, the sum of incoming influence weights, φ, was uniformly drawn

from [0,1]. Here we test φ values drawn uniformly from [0, 0.1], [0, 0.25], [0, 0.5], and [0,

0.75], in addition to [0, 1]. With incoming influences drawn from [0, 0.1], [0, 0.25], or [0, 0.5],

the masking dynamics appear very similar to the model without social influence: on average,

the number of masking individuals rises quickly at the beginning of the outbreak and then

decreases more slowly back to zero (Figures 5.22 and 5.23). With φ values drawn from [0,

0.75] we begin to see the tension between social influence and perceived risk. The average

peak of the number of maskers per day curve is highest, likely because social influence is

strong enough to synchronize behavior changes and reduce variability but cannot completely

dominate perceived risk which increases the number of maskers. It also appears that, on

average, the number of daily maskers rises for a longer period of time and then decreases

more quickly when φ can range up to 0.75 versus lower maximum φ values. In the future,

we would like to explore the sensitivity of the model to the range of φ and look to quantify

this tension between perceived risk and social influence.
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Figure 5.22: Varying maximum incoming social influence. Each column is a maximum
influence level, 0.1, 0.25, 0.5, 0.75, and 1, from left to right. Each row is a network; network
1, 2, 3, and 4 from top to bottom. Each of 10 simulations is shown in grey. Dark red
line shows average daily number of newly infected nodes, and pink region shows the 95%
confidence interval. Dark blue line shows average daily number of masking nodes, and light
blue region shows the 95% confidence interval.
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Figure 5.23: Varying maximum incoming social influence. Outbreak statistics for each mul-
tilayer network. Each column is a maximum influence level, 0.1, 0.25, 0.5, 0.75, and 1, from
left to right. Each row is a statistic. (A) Total number of nodes who masked at some point
during the outbreak. (B) Total number of nodes infected. (C) Peak number of daily new
infections. (D) Time step of peak number of daily new infections.
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5.3.6 Role of Equilibration

Equilibration plays a key role in the behavior dynamics that we observe, as previewed when

we removed social influence. Without equilibration, the range of total maskers spans from

under 400 to nearly 1000 (the whole network) (Figure 5.25). Due to the greater levels of

masking in the non-equilibrating model, the total number of nodes infected and the peak

daily cases tend to be lower, and the peak time earlier (Figure 5.25). We can also see in Figure

5.24 how the number of maskers on a given day rises and falls quickly. This phenomenon

is likely a result of the switching back and forth that can occur due to social influence on

a node being positive in one step and negative the next. The disease is spreading at the

same rate as masking decisions are being made, so that may also add variability to masking

decisions over time. On the other hand, if we let the behavioral system reach equilibrium

without changing the perceived risk during the decision process, we eliminate the switching.

Individuals are more forward-looking as they speculate on what others may do and determine

the best decision for themselves.

Equilibration often only requires three (or sometimes just two) rounds. What happens

if equilibration is always limited to two rounds? In Figures 5.26 and 5.27 we explore this

question. Immediately, we can see how with only two rounds of equilibration (only one

more than in the no equilibration scenario) we have eliminated the dramatic increases and

decreases in number of daily maskers seen without equilbration. In fact, the dynamics and

summary statistics aren’t all that different from our full equilibration model. These results

suggest that two rounds of equilibration are all that is necessary to limit large oscillations

in masking behavior.

5.3.7 Role of Network Structure

Next, we will explore the role that our multilayer network structure may have had on the

disease-behavior dynamics of our system. Let us first look at the two Erdos-Renyi random
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Figure 5.24: No equilibration in the decision-making process. Number of newly infected
nodes per time step for four one thousand node multilayer networks. Each of 10 simulations
is shown in grey. Dark red line shows average daily number of newly infected nodes, and
pink region shows the 95% confidence interval. Dark blue line shows average daily number
of masking nodes, and light blue region shows the 95% confidence interval.

Figure 5.25: No equilibration in the decision-making process. Outbreak statistics for each
multilayer network. (A) Total number of nodes who masked at some point during the
outbreak. (B) Total number of nodes infected. (C) Peak number of daily new infections.
(D) Time step of peak number of daily new infections.
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Figure 5.26: Two rounds of equilibration in the decision-making process. Number of newly
infected nodes per time step for four one thousand node multilayer networks. Each of 10
simulations is shown in grey. Dark red line shows average daily number of newly infected
nodes, and pink region shows the 95% confidence interval. Dark blue line shows average
daily number of masking nodes, and light blue region shows the 95% confidence interval.

Figure 5.27: Two rounds of equilibration in the decision-making process. Outbreak statistics
for each multilayer network. (A) Total number of nodes who masked at some point during
the outbreak. (B) Total number of nodes infected. (C) Peak number of daily new infections.
(D) Time step of peak number of daily new infections.
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networks on which we ran the equilibrating behavior model with maximum resistance L = 0.2

(Figure 5.28). Recall that these networks are constructed with a constant probability of an

edge between any two nodes, in our case p = 0.014. Comparing the Erdos-Renyi networks

with our multilayer networks, we see slightly shorter peak times, slightly higher totals for

infected individuals and peak cases, and roughly the same total number of maskers (Figure

5.29). The shorter peak times and higher number of people infected may be explained by

Erdos-Renyi’s adherence to the small-world property. Lower clustering of the Erdos-Renyi

network compared to the multilayer network would allow the disease to spread more quickly

and reach more individuals [35].

Figure 5.28: Number of newly infected nodes per time step for two one thousand node
Erdos-Renyi random networks. Each of 10 simulations is shown in grey. Dark red line shows
average daily number of newly infected nodes, and pink region shows the 95% confidence
interval. Dark blue line shows average daily number of masking nodes, and light blue region
shows the 95% confidence interval.

The Barabasi-Albert preferential attachment networks had very different degree distri-

butions than our multilayer network. The power law degree distribution means that a few

nodes have very high degrees (sometimes called hubs), while most nodes have lower degrees.

In this experiment, we use two different Barabasi-Albert networks. Initially, we seed each at

random and then run the outbreak. We then repeat the experiment by instead seeding the

highest degree node in the network (> 100 neighbors in these cases). Finally, we seed one of

the nodes of lower degree (specifically, degree 7). Interestingly, the results aren’t that differ-
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Figure 5.29: Outbreak statistics for two one thousand node Erdos-Renyi random networks.
(A) Total number of nodes who masked at some point during the outbreak. (B) Total number
of nodes infected. (C) Peak number of daily new infections. (D) Time step of peak number
of daily new infections.

ent regardless of which way we seed the outbreak (Figure 5.30). Across all four simulations,

we see a peak of roughly 300 daily maskers that is a few time steps delayed from the daily

new infections peak. Based on Figure 5.31A, it appears that total number of maskers is tied

more to the network structure than how the outbreak is seeded. The total number of infected

individuals and the peak number of daily cases do not vary noticeably across the different

types of seeds (Figure 5.31). The place where seed choice matters most is in the peak out-

break time, where the outbreaks seeded with lower degree nodes took noticeably longer to

reach their peak compared to the outbreaks seeded randomly or with highest degree nodes

(Figure 5.31D). The hub structure of Barabasi-Albert networks facilitates faster spreading

of the disease than seen in our multilayer networks (Figure 5.31D). However, it still takes

some time for the disease to spread from a low degree seed to higher degree nodes that can

propagate the disease more rapidly, hence the delayed peak time when seeding the outbreak

in lower degree nodes. Disease outbreaks on the Barabasi-Albert networks had higher peak

cases, total infections, and total number of maskers than on the multilayer networks (Figure

5.31).

In sum, these different networks demonstrate how important contact structure is to be-

havior and disease dynamics.
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Figure 5.30: Number of newly infected nodes per time step for two one thousand node
Barabasi-Albert preferential attachment networks. Columns are seeded differently; ran-
domly, highest degree node, lower degree node, from left to right. Each row is a different
network. Each of 10 simulations is shown in grey. Dark red line shows average daily num-
ber of newly infected nodes, and pink region shows the 95% confidence interval. Dark blue
line shows average daily number of masking nodes, and light blue region shows the 95%
confidence interval.

Figure 5.31: Outbreak statistics for each Barabasi-Albert preferential attachment network.
Networks are either seeded randomly, with the highest degree node, or with a lower degree
node. (A) Total number of nodes who masked at some point during the outbreak. (B) Total
number of nodes infected. (C) Peak number of daily new infections. (D) Time step of peak
number of daily new infections.
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Conclusions

6.1 Key Findings

We built a coupled disease-behavior dynamical model for SARS-CoV-2 using contact net-

works and drawing from influence games. Individuals are connected within households,

workplaces, and friend groups with different interaction strengths, representing the amount

of physical contact or duration of time spent together. We based decisions about masking

on three factors: individual resistance to masking; perceived risk of infection, based on the

proportion of infectious neighbors and personal cost of infection; and social influence from

immediate neighbors.

We found that social influence largely prevented masking behavior, whereas risk moti-

vated masking behavior. We used the model to estimate a scale for resistance to masking

at which resistance balanced risk in the absence of social influence but played a smaller role

when both risk and influence were part of the decision calculation. Equilibration prevented

extreme swings in behavior, impacting both masking dynamics and total number of maskers.

Moreover, only two rounds of equilibration were necessary to reduce these oscillations. Net-

work structure was also key to masking and disease dynamics: Barabasi-Albert preferential

attachment networks had more total maskers and total infected individuals, in addition to
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higher peak numbers of daily new infections but substantially lower time until outbreak

peak. We can explain these differences by the core-periphery structure of Barabasi-Albert

networks. When giving individuals the choice to mask, we rarely saw more than one-third

of the network masking at one time, in stark contrast to the mask mandate with 85% com-

pliance that we used as a comparison to outbreaks without masking. These results are

summarized in Figure 6.1.

Figure 6.1: Summary of results. Ten simulations conducted on multilayer network 1 with
1000 nodes with varying behavior models. Note that Barabasi-Albert and Erdos-Renyi
simulations were conducted on the respective networks. (A) Total number of nodes who
masked at some point during the outbreak. (B) Total number of nodes infected. (C) Peak
number of daily new infections. (D) Time step of peak number of daily new infections.
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6.2 Future Work

We have just scratched the surface in the construction of this coupled disease-behavior dy-

namical model and there are many possibilities for where we could go next. One option

would be to include other non-pharmaceutical intervention behaviors, such as social dis-

tancing, quarantine, and isolation. We could take advantage of the option to use dynamic

networks to temporarily reduce and restore contacts by removing and creating edges.

Additionally, we could incorporate the perception of global risk of disease into the model.

This could be done based on overall disease prevalence in the network, or by evaluating the

proportion of infected neighbors one edge, two edges, three edges, or more away from an

individual. In an earlier version of our behavioral model we used only symptomatic infectious

individuals in the calculation of perceived risk, instead of all infectious individuals. Revisiting

this implementation in the context of a community without rapid testing would also be a

valuable experiment.

As mentioned earlier, thinking more critically about the scale of influence relative to

perceived risk is another component of the model we could further consider. How important

should social influence be to decision-making relative to perceived risk? A first step would

be to explore the dynamics of more maximum incoming influence values between 0.5 and 1.

Moreover, in linear influence games, individuals’ thresholds can be negative, which allows

individuals to have a predisposition for one behavior over another. Our early experimentation

with this idea led people to mask even when there was no disease which was unrealistic.

However, this idea of predisposition towards masking, as opposed to just resistance, is one

we would like to reflect on further.

Future work may also experiment with different initial configurations of seed nodes or

behaviors. For example, we may look to assign similar masking resistances to clusters of

individuals so that they behave similarly. Alternatively, we could enforce a mask mandate

in some communities of individuals while allowing individuals outside that community to
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choose whether or not to mask. Likewise, we could assign a subset of individuals to always

mask and another subset to always not mask and then give the remaining individuals a

choice on whether or not to mask. These configurations would allow us to further explore

the coupled dynamics of masking and disease with greater control over the system.

As more data about COVID-19 becomes available, we would like to incorporate that into

the model. Specifically, more information about how infectiousness changes over time could

be added by making our β values time-dependent. Times spent in each compartment could

also be drawn from a probability distribution that aligned with current data about how long

individuals are in the latent and infectious periods.

Finally, we would like to incorporate age structure and more contact heterogeneity into

our multilayer network. We could add a school layer that differs from workplace interactions.

We could use heavier-tailed degree distributions in each layer to reflect the few individuals

that have high numbers of contacts, forming an overall degree distribution between Poisson

and power law.

This model serves as a starting point for a variety of future experiments that can help

inform predictive disease models and how scientists think about decision-making in an epi-

demic.
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Jean Duchateau, and Georges Casimir, Differential susceptibility to infectious respira-
tory diseases between males and females linked to sex-specific innate immune inflam-
matory response, Frontiers in Immunology 8 (2017), 1806.

[29] Frederick Chen, Miaohua Jiang, Scott Rabidoux, and Stephen Robinson, Public avoid-
ance and epidemics: insights from an economic model, Journal of Theoretical Biology
278 (2011), no. 1, 107–119.

[30] Vittoria Colizza, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani, The
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