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Chapter 1

Introduction

1.1 Background

In this thesis we consider the accretion onto a non-rotating, endoparasitic1 black hole

residing at the center of a neutron star. We do so in order to extend previous work

discussing the possibility of neutron stars as dark matter detectors (see e.g. Goldman

and Nussinov (1989); de Lavallaz and Fairbairn (2010); Bramante and Linden (2014);

Bramante and Elahi (2015); Capela et al. (2013); Bramante et al. (2018); East and

Lehner (2019); Génolini et al. (2020)). We consider neutron stars to be possible dark

matter detectors by supposing that they capture dark matter in the form of tiny black

holes. Such systems evolve until the neutron star collapses, meaning the endoparasitic

black hole residing at the center will accrete all matter from the neutron star. Currently,

one constraint on black holes as sources of dark matter arises from the existence of

neutron star populations.

The scenario above can be considered in at least two different ways, namely the

neutron star captures a primordial black hole (PBH) or some other dark matter particles.

In the former case, we consider the possibility that PBHs, which formed in the early

universe (see Hawking (1971); Carr and Hawking (1974)) can be captured by neutron

1We define endoparasitic to describe a tiny body residing inside a much larger body
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stars. After capture, the PBH resides at the center of the neutron star and accretes

matter until the star completely collapses (see Hawking (1971); Markovic (1995)). In the

latter case, we consider that dark matter particles captured by a neutron star may under

favorable conditions, collapse to form a small black hole (see Goldman and Nussinov

(1989); de Lavallaz and Fairbairn (2010); Bramante and Linden (2014); Bramante et al.

(2018)).

After the black hole has been either captured by the neutron star or forms inside

the neutron star, the resulting system evolves until the black hole completely consumes

the neutron star. A number of authors including Fuller et al. (2017); Takhistov et al.

(2020); Génolini et al. (2020) have discussed observational signatures of such a process.

Numerical simulations by East and Lehner (2019) consider three different equations of

state for both rotating and non-rotating neutron stars. Their simulations were restricted

to relatively large black hole masses MBH/M ≥ 10−2, where M is the neutron star mass.

Through their simulations, they determined that the accretion rate follows the relation

ṀBH ∝M2
BH as suggested by Bondi (see Bondi (1952); see Shapiro and Teukolsky (2004)

for a textbook treatment). Furthermore, their results concluded that the accretion rate

was largely independent of the neutron star spin, which agrees with results from Kouvaris

and Tinyakov (2014).

1.2 Summary

We extend previous work on the accretion process of tiny black holes residing at the

center of neutron stars in several ways in this thesis. Bondi accretion for an isolated

black hole, i.e. where the gravitational forces are dominated by the black hole, is well

understood. To determine the Bondi accretion rate for our system, we consider a space-

time describing a black hole in the interior of a neutron star. Additionally, we determine

such Bondi accretion for stiff equations of state. In Chapter 2, we give a general treatment
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of Bondi accretion as described by Bondi (1952); Shapiro and Teukolsky (2004). For stiff

equations of state with Γ > 5/3, we find the accretion rate under a relativistic treatment

(see Appendix G in Shapiro and Teukolsky (2004)) and identify an associated minimum

accretion rate. We do so in order to determine the accretion rate for our neutron star

system described by a stiff, polytropic equation of state with adiabatic index Γ = 2.

In Chapter 3, we then adopt our relativistic Bondi accretion model to describe a

non-rotating black hole residing at the center of a neutron star. We crudely integrate

the resulting equations both including and ignoring stellar evolution in order to give

estimates for the lifetime of our neutron star model.

In Chapter 4 we perform numerical simulations in full general relativity, extending

previous results of East and Lehner (2019). We focus on spherical neutron stars with

non-rotating black holes at the center. Our system adopts a stiff, polytropic equation

of state with adiabatic index Γ = 2, which is commonly used to describe neutron stars

in numerical simulations. We implement our code using spherical polar coordinates (see

Baumgarte et al. (2013, 2015)) and a logarithmic radial coordinate in order to resolve the

vastly different length scales between the black hole mass and the neutron star mass. We

extend the work of East and Lehner (2019) by considering black holes with mass ratios

as small as MBH/M ' 10−9. With such small masses, we extend into the mass range of

PBHs and black hole dark matter candidates. Our mass range gives black hole masses

comparable to that of dwarf planets.

We compare our analytical estimates with our numerical results in Chapter 5.

We find excellent agreement between our analytical Bondi flow and the numerical rest-

mass flux. For larger black hole masses, we evolve the system until the neutron star is

completely consumed and compare with our analytical results accounting for and ignoring

stellar evolution. We present both our analytical Bondi accretion rates and our numerical

accretion rates in Table 5.1.

We summarize our findings for a large range of black hole masses in Fig. 1.1 for
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both our analytical estimates and numerical results. In Fig. 1.1, the solid line represents

the analytical accretion rate for our fiducial neutron star model from Eq. (3.42), and the

dashed line represents the corresponding minimum accretion rate given by Eq. (3.43).

We note that such a minimum accretion rate exists only for stiff equations of state with

Γ > 5/3. Our numerical results are presented through two different measurements of the

accretion shown as triangles and open circles. The triangles represent the growth of the

black hole mass with respect to time. As shown in the Figure, we are only able to compute

this accretion for “large” black hole masses because the accretion rate is proportional to

the square of the black hole mass, so the accretion rate becomes exceedingly small and

difficult to determine numerically from the growth of the black hole. We are able to

compute the accretion rate by measuring rest-mass flux across the horizon of the black

hole for all black hole masses as shown by the open circles and find excellent agreement

with our analytical estimates. Furthermore, we confirm that Bondi accretion for a stiff

equation of state accurately describes the accretion onto an endoparasitic black hole at

the center of our neutron star model, and therefore, we are able to use these analytical

expressions to determine the lifetimes of such neutron stars.

Throughout this thesis we use geometrized units with G = 1 = c unless noted

otherwise where G is the gravitational constant and c is the speed of light.

1.3 Contributions

This thesis is based on collaborative work that resulted in the two publications Richards

et al. (2021b) and Richards et al. (2021a). I would like to highlight my primary contri-

butions:

• Derived the Bondi accretion for stiff equations of state in Section 2.1

• Determined data describing our fiducial neutron star model presented in Table 3.2

• Performed all numerical solutions described in Chapter 4
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Figure 1.1: Comparison of analytical and numerical accretion rates Ṁ?
BH for various black

holes with initial mass MBH(0) for our fiducial neutron star model with Γ = 2. We express
the accretion rate in geometrized units on the right-hand side of the plot and we express
it in units of solar masses per year on the left-hand side. The solid blue line represents
the analytical Bondi accretion rate given by Eq. (3.42). The numerical results for the
accretion rate are shown by red triangles and open green circles, representing the growth
of the black hole mass and the rest-mass flux over the black hole horizon respectively. The
dashed orange line represents the minimum accretion rate for a Γ = 2 polytrope as given
by (3.43). (See also Table 5.1 for a detailed listing of these results.) In the inset, we show
the all numerical and anayltical results for one particular black hole MBH/M ' 10−3. we
notice the excellent agreement between the analytical Bondi accretion for stiff equations
of state and numerical rest-mass flux. The numerical accretion given by black hole growth
differs slightly from the analytical estimate as it includes thermal energy in addition to
rest-mass.
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• Determined numerical data for our numerical simulations presented in Table 5.1
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Chapter 2

Bondi accretion

We use Bondi accretion to consider our model of a black hole embedded in a neutron

star. Newtonian Bondi accretion as outlined in Bondi (1952) describes the steady-state,

spherically symmetric flow of gas onto a point mass. We assume the gas to be governed

by a polytropic equation of state P = KρΓ
0 , where K is a constant and Γ is the adiabatic

index. In this chapter, we will a derive a general solution for all adiabatic indices in the

range 1 < Γ < 3. We note that the Newtonian treatment breaks down for Γ > 5/3 so

that we need to employ a relativistic treatment. Furthermore, we will specify our result

for Γ = 2, which is an adequate approximation for the equation of state of a neutron star

and therefore allows us to consider accretion onto a black hole at the center of a neutron

star.

2.1 General treatment

To consider relativistic spherical Bondi flow onto an endoparisitic black hole, we follow

Michel (1972) to ignore the inflow’s self-gravity. Rather than adopting the Schwarzschild

metric in its usual form,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (2.1)
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to describe the geometry of spacetime, we will allow for the general form

ds2 = −
(
e2D − κ

R

)
dt2 +

(
1− e−2Dκ

R

)−1

dR2 +R2dΩ2. (2.2)

In the above, M is the mass of our black hole and D and κ are constants of integration.

As described in Appendix A in Richards et al. (2021a), we adopt the generalized

Schwarzschild metric given by (2.2) to re-derive the Bondi accretion equations for a black

hole at the center of a neutron star. We define a local asymptotic observer to be one

who is far from the black hole, but well within the radius of the neutron star. For

the purposes of this chapter, a local asymptotic observer is identical to an asymptotic

observer at infinity because we are considering an isolated black hole, i.e. without a

neutron star. The local asymptotic observer becomes important, however, in Chapter

3 as we then consider a black hole inside a neutron star. We note that we recover the

Schwarzschild metric (2.1) for D = 0 and κ = 2M .

Now we consider the accretion rate Ṁ at the critical radius rs as described by

hydrodynamic spherical accretion in Eq. (14.3.4) of Shapiro and Teukolsky (2004),

Ṁ = 4πρ0susr
2
s , (2.3)

where ρ0 is the rest mass density and u describes the radial component of the fluid

4-velocity u ≡ −ur. Here, the critical radius rs reduces to the transonic point in a New-

tonian limit. In the relativistic limit, we assume that the flow is subsonic asymptotically

and therefore must past through the critical radius rs (see Appendix G in Shapiro and

Teukolsky (2004)). For the remainder of this thesis, any variable with the subscript s is

evaluated at the critical radius rs. Furthermore, when referencing the asymptotic region

where r → ∞, variables will be marked with a subscript ∞ (for example, a∞ is the

asymptotic sound speed).

8



To avoid singularities in Ṁ , we define the critical flow velocity us as

us =
as
a∞

(
1 + 3a2

s

)−1/2
a∞ (2.4)

and critical radius rs as

rs =
a2
∞
a2
s

1 + 3a2
s

2

M

a2
∞

(2.5)

as shown in Eq. (G.17) of Shapiro and Teukolsky (2004). Here we define the sound speed

a in terms of pressure P and density ρ

a2 =
dP

dρ

∣∣∣∣
s

=
dP

dρ0

∣∣∣∣
s

ρ0

ρ+ P
, (2.6)

where derivatives are taken at constant entropy. We assume a polytropic equation of

state

P = KρΓ
0 , (2.7)

where K is a constant and Γ the adiabatic index. The adiabatic index Γ parameterizes

the stiffness of the equation. For Γ ≥ 5/3, increasing density ρ0 results in an increased

pressure P , so for the purposes of this discussion, we will refer to all Γ ≥ 5/3 as describing

stiff equations of state. The sound speed is related to rest-mass density ρ0 by

a2 =
ΓKρΓ−1

0

1 + ΓKρΓ−1
0 /(Γ− 1)

. (2.8)

We notice that for finite densities ρ0, the sound speed must be smaller than a maximum

value amax,

a2 < a2
max = Γ− 1. (2.9)

We evaluate Eq. (2.8) at the critical radius rs and in the asymptotic region where

r →∞ to find a relationship between the rest-mass density ρ0s and the rest-mass density’s

9



asymptotic value ρ0∞,

ρ0s =

(
as
a∞

)2/(Γ−1)(
Γ− 1− a2

∞
Γ− 1− a2

s

)1/(Γ−1)

ρ0∞. (2.10)

Inserting (2.4), (2.5), and (2.10) into (2.3) we now find

Ṁ = 4πλGR

(
M

a2
∞

)2

ρ0∞a∞, (2.11)

where

λGR ≡
(
as
a∞

)(5−3Γ)/(Γ−1)(
Γ− 1− a2

∞
Γ− 1− a2

s

)1/(Γ−1)
(1 + 3a2

s)
3/2

4
(2.12)

is a dimensionless “accretion rate eigenvalue”.

We note that the relationship between the sound speeds as and a∞ in the second

term of (2.12) dictates the limiting value of GR as a∞ → 0. For soft equations of state,

λGR reaches a non-zero value as a∞ → 0 as shown in Figure (2.1). However, for stiff

equations of state, λGR → 0 as a∞ → 0 in order to maintain a finite accretion rate as

given by (2.11).

While λGR describes the accretion rate eigenvalue in general for all solutions,

we can simplify it by considering it in the Newtonian limit, where as � 1 and a∞ � 1,

meaning the sound speed in both the inner and outer asymptotic regions are significantly

smaller than the speed of light c = 1. Under this treatment, Eq. (2.12) reduces to the

Newtonian accretion eigenvalue λs,

λs =
1

4

(
as
a∞

)(5−3Γ)/(Γ−1)

. (Newtonian) (2.13)

From Shapiro and Teukolsky (2004) (14.3.14), we also have

as
a∞

=

(
2

5− 3Γ

)1/2

(Newtonian) (2.14)

10



0.0 0.2 0.4 0.6 0.8 1.0
a2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
R

= 4/3
= 5/3
= 2
= 2.5
= 2.9
= 1.001

Figure 2.1: Solutions for accretion rate eigenvalue λGR as given by Eq. (2.12) for various
values of Γ, as a function of a2

∞. Although we focus on stiff equations of state, we include
λGR for Γ < 5/3 to show the discontinuity in accretion eigenvalues in the Newtonian limit
a2
∞ � 1. For soft equations of state Γ < 5/3 the accretion eigenvalues λGR approach the

Newtonian values λs shown by the dots (see Eq. (2.15) as a∞ → 0), whereas for Γ ≥ 5/3
λGR approaches zero in that limit. This result for stiff equations of state is necessary
in order to maintain a finite accretion rate Ṁ when considering stiff equations of state
Γ ≥ 5/3 in the limit of low asymptotic sound speed a2

∞ � 1.
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in the Newtonian limit, which we can insert into (2.13) to obtain the Newtonian accretion

eigenvalues

λs =
1

4

(
2

5− 3Γ

)(5−3Γ)/2(Γ−1)

, (Newtonian) (2.15)

which are given by dots in Figure (2.1). We confirm this result for the Newtonian

accretion eigenvalues with Eq. (14.3.17) and Table 14.1 from Shapiro and Teukolsky

(2004). As we can see, the Newtonian treatment breaks down for adiabatic indices

Γ > 5/3. We note that the Newtonian accretion eigenvalues λs depend on only Γ, while

the relativistic accretion eigenvalues λGR also depend on the critical and asymptotic

sound speeds as and a∞ respectively. Therefore, we require a relativistic treatment for

stiff equations of state with Γ > 5/3 which we will describe in the following.

To solve for our accretion rate Ṁ we consider the relationship between the sound

speeds in the inner and outer asymptotic regions

(1 + 3a2
s)

(
1− a2

s

Γ− 1

)2

=

(
1− a2

∞
Γ− 1

)2

(2.16)

as shown in Eq. (G.30) in Shapiro and Teukolsky (2004), which we now write as a cubic

equation for a2
s

a6
s +

a4
s

3
(7− 6Γ) +

a2
s

3
(3Γ2 − 8Γ + 5) +

a2
∞
3

(2Γ− 2− a2
∞) = 0, (2.17)

We write this equation in the form

x3 + Ax2 +Bx+ C = 0 (2.18)

12



for x = a2
s and identify the coefficients

A =
1

3
(7− 6Γ)

B =
1

3
(1− Γ) (5− 3Γ)

C =
a2
∞
3

(2Γ− 2− a2
∞),

(2.19)

noting that all three coefficients A, B, and C are real.

We solve the cubic equation (2.18) in detail in Appendix A and find that while

there are three solutions x1, x2, and x3 given by (A.5), only x3 gives a physically viable

solution.

As an aside, we note that we can also rewrite Eq. (2.16) as a quadratic equation

for a2
∞

a2
∞ = Γ− 1±

{
(Γ− 1)2 + 3

(
a6
s + Aa4

s +Ba2
s

)}1/2
. (2.20)

For most applications, however, we consider a∞ as given and therefore solve the cubic

equations (2.18) for as.

As mentioned above, Eq. (2.9) gives a condition for determining all physical so-

lutions for Γ ≤ 2. However, we must impose causality explicitly for Γ > 2 to find all

physical solutions, and we find that this condition holds only for sufficiently small a∞.

Since for these solutions we find that as > a∞, we plug Γ = 2 into Eq. (2.9) and insert

the result as,max = 1 into Eq. (2.20) to find

a2
∞,max = 3− Γ (2.21)

where we have picked the “-” solution in Eq. (2.20) since the “+” solution, 3Γ− 5, is not

relevant for Γ > 2. This upper limit for the sound speed in the asymptotic region a∞

holds for Γ > 2. However, a∞ must be positive, so we note that physical solutions are

non-existent for Γ ≥ 3.

13
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Figure 2.2: Top panel: Three real roots x1, x2, x3 to the cubic equation Eq. (2.18) for
Γ = 4/3, as a function of a2

∞. We note that the thick green line x3 is the only physical
solution. x1 < 0 gives an unphysical solution (a2

s < 0) and x2 gives a wind, or outgoing,
solution as inserting as into (2.4) would yield u < 0, i.e. ur > 0. Lower panel: The
critical radius associated with the roots in the top panel.
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physical solution x3 for a2
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15



10 4 10 3 10 2 10 1 100

a2

10 5

10 3

10 1

101

103

105

K
1/

(
1)

M
/M

2

= 4/3
= 5/3
= 2
= 2.5
= 2.9
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2.2 Minimum accretion

We reference Begelman (1978) to begin with the limit of low asymptotic sound speeds

a2
∞ � 1. In this limit, the rest-mass density can be approximated from (2.8),

ρ0 =

(
a2

ΓK

)1/(Γ−1) (
1 +O(a2)

)
(a2 � 1) (2.22)

and we may express the accretion rate (2.11) as

Ṁ = 4πλGR
M2

(ΓK)1/(Γ−1)
a(5−3Γ)/(Γ−1)
∞

(
1 +O(a2

∞)
)

(a2
∞ � 1) (2.23)

When considering a∞ = 0, we note that the coefficient C vanishes in Eq. (2.19), so the

solutions to the cubic equation (2.18) are given by

x̄1 = 0

x̄2 = Γ− 7/6 + (12Γ− 11)1/2 /6

x̄3 = Γ− 7/6− (12Γ− 11)1/2 /6.

(a2
∞ = 0) (2.24)

As we demonstrate below, when considering stiff equations of state, each of the solutions

is associated with the respective root from (A.5).1

Now, we rewrite the roots to the cubic equation to leading order in a2
∞,

x1 = a1 a
2
∞

x2 = x̄2 + a2 a
2
∞

x3 = x̄3 + a3 a
2
∞.

(a2
∞ � 1) (2.25)

1We note that this equation can be written in a more general notation with Roman numeral subscripts
as seen in Eq. (33) in Richards et al. (2021b) because Γ determines which of the roots above should
be identified with the three roots from (A.5). For soft equations of state Γ ≤ 5/3, we identify xI with
our solution x3 from (A.5). For our case, however, we only consider stiff equations of state Γ > 5/3
which identifies xIII with our solution x3. Therefore, we feel comfortable adopting this more specified
notation.
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where the coefficients a1, a2, and a3 are given by

a1 =
2

5− 3Γ

a2 = − 2

5− 3Γ

x̄2 + A

x̄2 − x̄3

a3 =
2

5− 3Γ

x̄3 + A

x̄2 − x̄3

.

(2.26)

Looking closely, we observe that B, x̄3, the coefficients (2.26), and the exponent of the

first term in (2.12) all change sign at Γ = 5/3. The coefficients (2.26) diverge for Γ = 5/3,

meaning that the expansion does not converge in this case, and that we have to treat the

cases Γ ≤ 5/3 and Γ > 5/3 separately. Since Γ = 2 gives the solution for our neutron

star model, we will consider the case for stiff equations of state Γ > 5/3. (For a full

treatment, see Richards et al. (2021b)).

For the rest of the chapter, we will be considering stiff equations of state Γ > 5/3.

First, we note that the coefficient a1 < 0, meaning x1 in (2.25) is not a physical solution.

Similarly, x2 > 1 gives an outgoing solution, meaning solutions describing wind rather

than accretion, for all Γ > 5/3. Hence, we identify our solution to be a2
s = x3, i.e.

a2
s = x̄3 + a3 a

2
∞ +O(a4

∞). (2.27)

From Fig. (2.3), we see that a2
s takes a non-zero value as a2

∞ → 0. This result tells us

that for smaller values of as, the solution is local rather than global as it cannot extend

to infinity (see Chaverra et al. (2016)). Furthermore, we note that a2
s ≥ 1 for Γ ≥ 3, so

we restrict our focus to the physical regime 5/3 < Γ < 3.

To find our accretion rate under the low asymptotic sound speed limit, insert

(2.27) into (2.5)

rs =
M

2x̄3

=
M

2Γ− 7/3− (12Γ− 11)1/2/3
, (a2

∞ � 1, Γ > 5/3) (2.28)
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showing it is independent of a2
∞ to leading order. Now we can rewrite the accretion

eigenvalues from Eq. (2.12) by noticing that the first term becomes

a∞
as

= x̄
−1/2
3 a∞ +O(a3

∞), (2.29)

giving the accretion eigenvalues for our solution

λGR = λ̄ a(3Γ−5)/(Γ−1)
∞

(
1 +O(a2

∞)
)

(Γ > 5/3) (2.30)

with

λ̄ = x̄
(5−3Γ)/(2(Γ−1))
3

(
Γ− 1

Γ− 1− x̄3

)1/(Γ−1)
(1 + 3x̄3)3/2

4
. (2.31)

The accretion eigenvalues (2.30) vanish in the limit of a2
∞ → 0. Although we did not give

a treatment for soft equations of state Γ ≤ 5/3, we note that λGR does not vanish in the

limit of a2
∞ → 0 as seen in Fig. (2.1). Now we insert our accretion eigenvalue (2.30) into

the accretion rate (2.11) to obtain

Ṁ = 4πλ̄
M2

(ΓK)1/(Γ−1)
. (a2

∞ � 1, Γ ≥ 5/3) (2.32)

At this point, we take a moment to recognize and appreciate that under the limit

where the sound speed and rest-mass density go to zero, the accretion rate (2.32) takes

a non-zero value. Therefore, we conclude these limiting values give a minimum for stiff

equations of state Γ > 5/3 as demonstrated in Fig. (2.4) where the dots represent the

given minima for each Γ. The minimum accretion rate given by Eq. (2.32) depends on

M , Γ, and K, where the latter two variables are determined by the chosen equation of

state. For our purposes we wish to find our solution for a neutron star with Γ = 2 which

gives

λ̄ ' 1.49 (Γ = 2) (2.33)
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and

Ṁmin ' 9.39
M2

K
. (Γ = 2) (2.34)

To further specify our solution, we identify our value of K which is determined by our

chosen equation of state and physical values for our neutron star model as outlined in

Section 3.4.
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Chapter 3

Analytical Estimates of accretion

rates and accretion times

This chapter presents the analytical results derived for the accretion rate and lifetime of

our black hole. In Section 3.4 of this chapter, we describe our fiducial neutron star model

which captures our black hole. We adopt this fiducial neutron star model for all of our

numerical simulations described in Chapter 4.

3.1 Accretion rates

To begin our analytical estimates, we assume that a non-spinning black hole with mass

MBH is at the center of a spherically symmetric neutron star with M > MBH and radius

R � MBH. Without the presence of the black hole, the neutron star is in hydrostatic

equilibrium. Therefore, matter is at rest far from the black hole where the black hole

resides in a nearly homogeneous core. To begin estimating the rate at which the black

hole accretes matter from the neutron star, we define the capture radius

ra ≡MBH/a
2
c , (3.1)
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which describes the radius at which the internal energy, 1
2
ma2, is equal to the gravitational

energy, mMBH/r, to order of magnitude. Here ac describes the sound speed evaluated at

the center of the unperturbed star. Recall that the sound speed is given by (2.6),

a2 =
dP

dρ

∣∣∣∣
s

=
dP

dρ0

∣∣∣∣
s

ρ0

ρ+ P
, (3.2)

where P is the pressure, ρ is the total mass-energy density, ρ0 is the rest-mass density,

and we take the derivative at constant entropy. In the Newtonian treatment in this

section, we do not need to distinguish between ρ and ρ0, but we introduce them here for

later reference. As mentioned in Chapter 2, we assume a polytropic equation of state

(2.7). We may then approximate the central sound speed

ac '
(

ΓPc
ρc

)1/2

'
(

ΓM

R

)1/2

, (3.3)

where Pc and ρc give the unperturbed neutron star’s pressure and density at the center

with Pc � ρc. Also, we write the last (rough) equality assuming hydrostatic equilibrium.

We approximate the accretion flow onto the black hole under two opposite limiting

regimes by considering whether the neutron star mass m(ra) contained within the capture

radius ra is smaller or greater than the black hole mass MBH. When m(ra) > MBH, we

ignore the self-gravity of the neutron star matter, so that the accretion is described by

Bondi accretion (see Bondi (1952) and Michel (1972); see also Shapiro and Teukolsky

(2004) for a textbook treatment). In the other case m(ra) < MBH, we cannot ignore

the self-gravity of the star, so the evolution produces an accretion process that leads to

catastrophic dynamical collapse.

We define m(r) as the neutron star mass within the radius r, so that M = m(R),

we have

m(r) ' 4π

3
ρcr

3 (3.4)
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n Γ δ δ/Γ3 λs
3.0 4/3 54.2 22.94 0.707
2.5 7/5 23.3 8.45 0.625
2.0 3/2 11.4 3.38 0.500
1.5 5/3 5.99 1.296 0.250
1.0 2.0 3.29 0.411 –
0.5 3.0 1.84 0.068 –

Table 3.1: Values of the central condensation δ and the combination Γ3/δ for Newtonian
polytropes with polytropic index n and adiabatic index Γ = 1 + 1/n. For soft equations
of state with Γ ≤ 5/3 we also include the accretion eigenvalues λs as given by Eq. (2.15).
For stiff equations of state with Γ > 5/3, we find the relativistic accretion eigenvalue λGR

following Chapter 2; see also Section 3.4 below.

for sufficiently small r. We then compute the crucial mass ratio,

m(ra)

MBH

' 4π

3

M2
BHρc
a6
c

' 4π

3

M2
BHρcR

3

Γ3M3
. (3.5)

We now write

ρc = δ ρ̄ = δ
3M

4πR3
, (3.6)

where ρ̄ is the unperturbed star’s mean density, and the factor δ measures its central

concentration, δ = ρc/ρ̄. In Table 3.1, we list values of δ for various Newtonian polytropes

of index n with adiabatic index Γ = 1 + 1/n. Inserting (3.6) into (3.5) we now have

m(ra)

MBH

' δ

Γ3

(
MBH

M

)2

. (3.7)

For large black hole masses MBH ∼ M and soft equations of state Γ ≤ 5/3 for which

δ/Γ3 in Table 3.1 is large, we see that m(ra) ∼ MBH. For black holes that start with

initial mass MBH �M , most of the accretion process is under the regime m(ra)�MBH,

and therefore is described as quasistatic Bondi accretion. Only in the short final epoch

will the black hole accrete dynamically under the regime m(ra) ∼ MBH. We will treat

the two cases separately in the following sections, namely for Bondi accretion in Section

3.1.1 and for dynamical accretion in Section 3.1.2.
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3.1.1 Bondi accretion: m(ra)�MBH

In this case, the gravitational forces are dominated by the black hole which leads us to

ignore the self-gravity of the neutron star fluid within the capture radius ra. In this case,

the accretion process is adiabatic Bondi accretion as outlined in Bondi (1952), and the

rate is given by

Ṁ?
BH = −Ṁ? = 4πλGR

(
MBH

a2
?

)2

ρ?a?. (3.8)

Recall from Chapter 2, λGR is a dimensionless “accretion eigenvalue”. Here, the ? symbol

denotes quantities as measured by a “local asymptotic observer” meaning far from the

black hole but well within the neutron star, i.e. at a radius r with MBH � r � R where

we assume geometrized units with G = c = 1. Furthermore, the dot in the accretion

rate represents a derivative with respect to the time as measured by the local asymptotic

observer. We assume that the density ρ? and sound speed a? approach constants, and

the flow speed u? approaches zero as r � ra. Typically, this region resides in the nearly

homogeneous core of the neutron star. We discuss how this local accretion rate compares

to the mass accretion rate as measured by an observer far outside the neutron star in

Section 4.3.2.

As outlined in Chapter 2, these eigenvalues can be found under a Newtonian

treatment for soft equations of state, but stiff equations of state require a relativistic

treatment. We recall that the relativistic accretion eigenvalue λGR given by (2.12) de-

pends on Γ as well as the critical and asymptotic sound speed as and a∞ respectively.

Assuming that the capture radius ra is sufficiently small, ra � R, we can approx-

imate the fluid variables as observed by the local observer, ρ? and a?, as the values at

the center of the unperturbed neutron star ρc and ac. Now, the accretion rate becomes

Ṁ?
BH = −Ṁ? = 4πλGR

M2
BH

a3
c

ρc, (3.9)
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from which we can estimate the accretion timescale τacc

τacc ≡
MBH

Ṁ?
BH

' a3
c

4πλGRMBHρc
=

Γ3/2

3δλGR

M1/2R3/2

MBH

(3.10)

where we have used (3.3) and (3.6) in the last step. The above equation estimates the

initial time it takes for the black hole to double its mass. This is the longest epoch of

the neutron star consumption because the black hole mass and consequently its accretion

rate (3.9) are the smallest they will be during the process. We divide by the neutron star

mass to obtain a non-dimensional quantity and rewrite our result as

τacc

M
' Γ3/2

3δλGR

(
R

M

)3/2 (
M

MBH

)
. (3.11)

Note that τacc/M → ∞ as MBH/M → 0. Another option is to express the accretion

timescale in terms of the neutron star’s dynamical collapse timescale

τdyn '
γ

(4πρc/3)1/2
=

γ

δ1/2

(
R

M

)3/2

M, (3.12)

where γ is a factor of order unity and where we have used (3.6). Combining (3.10) and

(3.12) we obtain a second non-dimensional quantity

τacc

τdyn

' Γ3/2

δ1/2λGRγ

(
M

MBH

)
. (3.13)

Again we have τacc/τdyn → ∞ as MBH/M → 0. We will calculate τacc more carefully in

Section 3.3 below.

3.1.2 Dynamical accretion: m(ra) ∼MBH

As mentioned before, we cannot ignore the self-gravity of the star in the case of dynamical

accretion. We begin by generalizing the definition of the capture radius (3.1) to include
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the mass inside the critical radius m(rcrit) in addition to the mass of the black hole MBH.

Thus, we define a critical radius

rcrit =
m(rcrit) +MBH

a2
c

. (3.14)

Using (3.4), we can rewrite (3.14) as

4π

3
ρcr

2
crit

(
1 +

MBH

m(rcrit)

)
= a2

c . (3.15)

We can now express the black hole accretion rate as the area of a sphere with the critical

radius, 4πr2
crit, times the mass flux across the sphere, ρcuc. As in typical Bondi flows, we

assume that the fluid speed at the critical radius, uc, is comparable to the sound speed

ac, which gives us

Ṁ?
BH ' 4πr2

critρcac = 3a3
c

(
1 +

MBH

m(rcrit)

)−1

, (3.16)

where we have used (3.15) in the last equality. The corresponding accretion timescale is

then given by

τacc =
MBH

ṀBH

' MBH

3Γ3/2

(
R

M

)3/2(
1 +

MBH

m(rcrit)

)
, (3.17)

or

τacc

τdyn

' δ1/2

3γΓ3/2

MBH

M

(
1 +

MBH

m(rcrit)

)
, (3.18)

where we have approximated the dynamical timescale τdyn as in (3.12).

Now we evaluate Eq. (3.18) in two limits. In the limit MBH ∼ m(rcrit), which

gives us MBH ∼M by (3.7), we notice that the accretion timescale τacc is comparable to

the dynamical timescale τdyn given by (3.12). In the opposite limit, MBH � m(rcrit), the

critical radius rcrit defined in (3.14) reduces to ra defined in (3.1). We now approximate

MBH

m(rcrit)
' 3MBH

4πρcr3
a

=
3a6

c

4πρcM2
BH

=
Γ3

δ

(
M

MBH

)2

, (3.19)
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where we use (3.3) and (3.6) in the last equality. We recover the Bondi accretion timescale

(3.13) up to factors of unity as expected when we insert (3.19) into (3.18).

3.2 Effects of stellar evolution

In the previous section, our simple estimates for the accretion timescales, (3.13) and

(3.18), ignore several effects of stellar evolution. Namely, our estimates ignore the fact

that the accretion rates change as the black hole mass MBH increases, and that the

structure of the neutron star changes as accretion progresses. To approximate the effects

of this secular “stellar evolution”, we assume that, while the star loses mass to the black

hole, it adjusts quasistatically to a new equilibrium configuration while keeping its total

Newtonian energy E constant. We now write this energy as

E = −αMMBH

R
− 3Γ− 4

5Γ− 6

M2

R
. (3.20)

The first term accounts for the interaction between the stellar gas and the black hole,

with α being a constant that depends on Γ, α = α(Γ), and the second term describes the

neutron star’s self-energy (see Eq. 3.3.10 in Shapiro and Teukolsky (2004)).

We evaluate (3.20) at the initial time, as denoted by (0), and have

E = −αM(0)MBH(0)

R(0)
− 3Γ− 4

5Γ− 6

M(0)2

R(0)
. (3.21)

By our assumptions, our expressions for energy (3.20) and (3.21) must be identical, so

we can equate them and solve for R to find

R =
M

M(0)

αMBH + (3Γ− 4)M/(5Γ− 6)

αMBH(0) + (3Γ− 4)M(0)/(5Γ− 6)
R(0). (3.22)
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We now approximate our black hole mass MBH �M , so (3.22) reduces to

R '
(

M

M(0)

)2

R(0). (3.23)

Using (3.23) in (3.3) then yields

ac '
(

ΓM(0)

R(0)

)1/2 (
M(0)

M

)1/2

, (3.24)

while (3.6) gives

ρc ' δ
3M(0)

4πR(0)2

(
M(0)

M

)5

. (3.25)

We insert (3.24) and (3.25) into the Bondi accretion rate (3.8) which yields

Ṁ = −3λGR δ

Γ3/2

(MBH(0) +M(0)−M)2

M(0)1/2R(0)3/2

(
M

M(0)

)−7/2

(3.26)

where we have expressed the black-hole mass MBH in terms of the evolving neutron star

mass M as

MBH = MBH(0) +M(0)−M. (3.27)

Our estimate for Bondi accretion (3.26) to leading order does not depend on the param-

eter α for MBH � M meaning the accretion rate does not depend on the interaction

between the stellar gas and black hole. We note that the last factor in (3.26) accounts

for stellar evolution.

3.3 Accretion times

Using our approximations accounting for stellar evolution, we can compute the neutron

star lifetime, i.e. accretion time, by integrating Eq. (3.26). To make our integration
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easier, we introduce the useful dimensionless quantities,

y0 ≡
MBH(0) +M(0)

M(0)
, y ≡ M

M(0)
, (3.28)

and

T ≡ 3λGR δ

Γ3/2

(
M(0)

R(0)3

)1/2

t. (3.29)

Then we may rewrite (3.26) as

dy

dT
= −(y0 − y)2 y−7/2. (3.30)

As in (3.26), the last factor accounts for stellar evolution. Now we consider two cases for

the timescale: without stellar evolution and with stellar evolution.

3.3.1 Without stellar evolution

Ignoring stellar evolution, our expression (3.30) reduces to

dy

dT
= −(y0 − y)2, (3.31)

which we can integrate to find

[T ]fi =

[
1

y − y0

]f
i

. (3.32)

We use square brackets here as a reminder to insert the limits of integration. We choose

Ti = 0 to be our initial time and we have yi = 1. Then using (3.27) we have

Tf =
1

yf − y0

− 1

1− y0

=
M(0)

MBH(0)
− M(0)

MBH

(3.33)
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where MBH is the black hole mass at time Tf . Now to find the total accretion time, we set

the final neutron star mass to zero, i.e. we choose yf = 0. Assuming that MBH(0)�M(0)

and recalling (3.29), we find

τacc

M(0)
=

Γ3/2

3δλGR

(
R(0)

M(0)

)3/2(
M(0)

MBH(0)

)
, (3.34)

which is identical to the estimate of the timescale without an integration (3.11), as

expected.

3.3.2 With stellar evolution

We now determine the accretion timescale with stellar evolution by repeating the above

exercise and including the last factor in (3.30). In this case, the integral can be carried

out as outlined in Appendix B. Again we choose yi = 1 at Ti = 0, as well as yf = 0 in

order to find the accretion time Tf = Tacc, we obtain

Tacc =
5

2
+

4

3
y0 + 6y2

0 +
y3

0

y0 − 1
− 7y

5/2
0 ln

(
y

1/2
0 + 1

y
1/2
0 − 1

)
. (3.35)

We may alternatively introduce

yh0 = y0 − 1 =
MBH(0)

M(0)
(3.36)

and rewrite (3.35) as

Tacc = 7y2
h0 +

49

3
yh0 +

161

15
+

1

yh0

− 7

2
(yh0 + 1)5/2 ln

√
1 + yh0 + 1√
1 + yh0 − 1

. (3.37)

Under the limit that yh0 → 0, we note that the 1/yh0 term dominates Tacc which leads

us to recover the same accretion time tacc as in Eq. (3.34). Since most of the accretion

time is spent during early times, when the neutron star mass and radius does not change
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appreciably, stellar evolution is not important, and hence this result is not very surprising.

However, at late times, the accretion process and the corresponding adjustments in the

stellar structure will effect the accretion time, as shown in (3.37).

We consider a concrete example with M = 1M�. In geometrized units, 1M� '

1.4 km ' 5 µs which gives us

τacc ∼
(
R(0)

M(0)

)3/2(
M(0)

MBH(0)

)
10−5 s, (3.38)

ignoring factors of order unity. We see that the accretion time for a main sequence star

with R ' 105M� if MBH(0) . 10−15M� will exceed the Hubble time 1/H0 ∼ 4.5× 1017 s

where H0 is the Hubble constant. For our purposes, we consider a neutron star R ' 10M�

which gives a significantly smaller accretion timescale. Therefore, we observe that black

holes as small as MBH(0) & 10−21M� result in an accretion time well within the Hubble

time.

3.4 Fiducial neutron star model

To compare with our numerical results presented in Chapter 4, we consider a fiducial

neutron star model in stable equilibrium with a central rest-mass density of ρ0c = 0.2K−n.

The star is governed by a polytopic equation of state (2.7) with Γ = 2, i.e. n = 1, and the

equilibrium model was found through solving the Tolman-Oppenheimer-Volkoff (TOV)

equations as given by Tolman (1939) and Oppenheimer and Volkoff (1939). We list

detailed properties for our fiducial neutron star model in Table 3.2.

We observe that Kn/2 has units of length in geometrized units. Therefore, we are

able to rescale any physical quantities with the appropriate power of K and introduce
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Rwrt1K Rwrt M Rwrt Mmax model Physical units
ρ0c

2 ρ̃0c = 0.2 M2ρ0c = 0.00495 ρ0c/ρ
max
0c = 0.629 3.41× 1015 g/cm3

ρc
3 ρ̃c = 0.24 M2ρ0c = 0.0059 ρc/ρ

max
c = 0.572 4.09× 1015 g/cm3

R 4 R̃ = 0.865 R/M = 5.50 R/Rmax = 1.13 10.8 km
riso

5 r̃iso = 0.699 riso/M = 4.45 riso/r
max
iso = 1.19 8.73 km

M 6 M̃ = 0.157 M/M = 1 M/Mmax = 0.959 2.80× 1033 g

M0
7 M̃0 = 0.176 M0/M = 1.12 M0/M

max
0 = 0.954 3.14× 1033 g

ψc
8 ψc = 1.27 ψc = 1.27 ψc/ψ

max
c = 0.933 1.27

αc
9 αc = 0.570 αc = 0.570 αc/α

max
c = 1.23 0.570

1 Rescaled with respect to
2 Central rest-mass density
3 Central mass-energy density
4 Areal radius
5 Isotropic radius
6 Gravitational mass
7 Rest mass
8 Central conformal factor
9 Central lapse function

Table 3.2: Parameters for our fiducial Γ = 2, n = 1 polytropic neutron star model
without a black hole. Here, the lapse function α is the value obtained from integrating
the TOV equations, and is different from the 1+log lapse adopted in our numerical
evolution calculations given by Eq. (4.11).

non-dimensional quantities, eg.

ρ̃ ≡ Knρ, R̃ ≡ K−n/2R,

ρ̃0 ≡ Knρ0, M̃ ≡ K−n/2M,
(3.39)

and similar for other quantities. The “tilde” variables are those scaled with respect to K

and are listed in the second column of Table 3.2. In the third column, we list variables

scaled with respect to the neutron star’s gravitational mass M , and similarly, the fourth

column lists variables scaled with respect to maximum mass configuration. We note in

particular for our fiducial neutron star model that M/Mmax = 0.959 where Mmax is the

maximum gravitational mass of a spherical star with our adopted equation of state. In

the final column, we list physical values of our variables where we assume M = 1.4M�,

in which case K takes the value K = (1.4M�/M̃)2 ' 156 km2.

As mentioned at the end of Chapter 2, we wish to find the accretion rate and asso-
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ciated quantities for our fiducial neutron star model, and we do so using the parameters

given in Table 3.2. First we compute the central sound speed to be

ac = 0.534. (3.40)

Then, we identify the neutron star’s central density and sound speed to be the same

as the asymptotic values for the Bondi accretion onto the black hole as we have done

previously. Following Chapter 2 and using (2.12), we compute the accretion eigenvalue

λGR = 1.29. (3.41)

We then insert the above values into the Bondi accretion rate (3.8) and obtain

Ṁ?
BH = 21.24 M̃2

BH. (3.42)

We notice that our result is not significantly larger than the minimum steady state

accretion rate for Γ = 2 given by (2.34) in terms of our rescaled mass,

Ṁ?
BH,min = 9.29 M̃2

BH. (3.43)

Adopting the above value of K, and recalling that, in geometrized units, M� ' 5×10−6 s,

we can evaluate (3.43) to yield

Ṁ?
BH,min = 7.33× 10−9 M�

yr

(
MBH

10−10M�

)2

. (3.44)
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Chapter 4

Numerical Simulations

This chapter outlines the process to numerically determine the accretion rate and accre-

tion time of a nonspinning black hole evolving at the center of a nonrotating, spherical

neutron star in hydrostatic equilibrium. We extend the work of East and Lehner (2019)

by expanding on their relatively limited range of large masses MBH/M ≥ 10−2 where M

is the neutron star mass. The numerical evolutions are performed by the code outlined in

Baumgarte et al. (2013), (2015) using the Runge-Kutta method to solve Einstein’s equa-

tions under the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation. In particu-

lar, we adopt spherical polar coordinates with a logarithmic radial coordinate in order

to allow mass ratios as small as MBH/M ' 10−9.

4.1 Initial data profile

To begin our evolutions, we construct an initial data profile describing a black hole at

the center of a neutron star. We do so by generalizing the puncture method as outlined

in Brandt and Brügmann (1997) to allow for the presence of matter. To do so, we solve

the Hamiltonian constraint under the assumption that the initial slice is conformally flat,

i.e. we assume that γij = ψ4 ηij where γij is the spatial metric and ψ is the conformal

factor. We also assume a moment of time symmetry, so that the extrinsic curvature
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Figure 4.1: The rest-mass density profiles as a function of isotropic radius r for our
fiducial neutron star model with an embedded black hole with puncture mass M̃ = 10−3,
so M̃BH(0) = 1.267 × 10−3, and MBH(0)/M(0) = 8.03 × 10−3 for various values of m
from Eq. (4.2). Inset: Initial rest-mass density profiles. We clearly see that these profiles
depend on the choice of conformal exponent m as they all give different initial profiles.
Outset: Evolved rest-mass density profiles. Once they reach a quasi-equilibrium, they
all evolve to the same density profile. In this figure and several others, we have removed
a few of the innermost grid points as they were a result of numerical noise from the
puncture singularity.
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vanishes Kij = 0. The Hamiltonian constraint then becomes

D̄2ψ = −2πψ5ρ. (4.1)

Here, D̄2 is the flat Laplace operator, and ρ = nanbT
ab is the energy density as observed

by an observer whose four-velocity is the normal vector na. We also rescale the density

according to

ρ = ψmρ̄, (4.2)

where ρ̄ is a conformally rescaled density, and m is a yet-to-be-determined exponent. We

notice that m = −6 is an appealing option because the proper integral over the density

is invariant if ρ̄ is fixed, ∫
ψ6ρ d3x =

∫
ρ̄ d3x. (4.3)

As shown in the inset of Fig. 4.1, different conformal exponents m lead to different initial

data profiles, but they all evolve to the same data profile. Therefore, we are free to choose

the convenient m = −6 as our conformal exponent for all of our simulations.

Assuming we have constructed solutions to the TOV equations in isotropic coordi-

nates (see Oppenheimer and Volkoff (1939) and Tolman (1939)), we obtain radial profiles

of the conformal factor ψNS and mass-energy density ρNS for the equilibrium neutron star

by itself. These functions ψNS and ρNS satisfy the Hamiltonian constraint (4.1) with

D̄2ψNS = −2πψ5
NSρNS. (4.4)

We then identify the conformally rescaled density as

ρ̄ = ψ−mNS ρNS. (4.5)

Now we modify our solution to account for the presence of a black hole at the center of
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our neutron star. To do so, we rewrite the conformal factor as a sum of the contributions

from the neutron star and black hole with a correction u,

ψ = ψNS + ψBH + u. (4.6)

Since our solution is non-linear, we are no longer able to use the superposition principle

to construct our solution and therefore require the addition of the correction u. We

then recast the Hamiltonian constraint as an equation for u and expect the solution u is

regular everywhere. In (4.6) we introduce a black hole’s contribution to the conformal

factor

ψBH =
M
2r

(4.7)

in isotropic coordinates. We note that the “puncture mass” M acts as a mass param-

eter and carries no physical significance. Later, we will give expressions for the black

hole’s horizon, or irreducible, mass. Now we insert the conformal factor (4.6) into the

Hamiltonian constraint (4.1), noticing that D̄2ψBH = 0, and are left with

D̄2ψNS + D̄2u = −2π (ψNS + ψBH + u)5+m ρ̄, (4.8)

or, inserting (4.4),

D̄2u = −2π
{

(ψNS + ψBH + u)5+m − ψ5+m
NS

}
ρ̄. (4.9)

Noticing that ψBH → ∞ as r → 0, we note that our previous choice m = −6 keeps

the right-hand side of (4.9) regular (See Appendix C in Richards et al. (2021b) for an

approximate, analytical solution to Eq. (4.9)).

Now we are left to find regular solutions to Eq. (4.9) under the boundary condition

u ∝ 1/r for large r in order to consider the addition of the first-order monopole to the

gravitational potential. In order to solve the non-linear equation, we adopt an iterative
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Figure 4.2: Profiles of initial rest-mass density ρ0 as a function of isotropic radius r for
our fiducial neutron star model with an embedded black hole for various puncture masses
M. Here, and unless stated otherwise, we choose m = −6 in Eq. (4.2). Due to the use
of a logarithmic scale, we are able to resolve the vastly different length scales between
the neutron star and black hole, even the smallest black holes.

approach. From this solution of u, we are able to compute the new, physical energy

density from

ρ = ψmρ̄ =

(
ψNS + ψBH + u

ψNS

)m
ρNS. (4.10)

We recognize that for m < 0 we will have ρ→ 0 as r → 0 initially.

For our simulations using the code described in Baumgarte et al. (2013), (2015),

we implement the above approach to solve Einstein’s equations in spherical polar coor-

dinates. We use a logarithmic radial coordinate so that we are able to resolve both the

black hole and neutron star without wasting numerical resources, even whenM�M . In
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Figure (4.2), we show density profiles for black holes with varyingM inside our neutron

star model which demonstrates our ability to resolve vastly different length scales, even

for tiny black hole masses.

4.2 Numerical evolution

We evolve our initial data with a code that solves the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formulation of Einstein’s equations (Nakamura et al. (1987); Shibata

and Nakamura (1995); Baumgarte and Shapiro (1999)). We adopt an implementation

in spherical polar coordinates (see Baumgarte et al. (2013, 2015) for details and tests;

see also Miller and Baumgarte (2017) for tests with Bondi accretion as well as Ruchlin

et al. (2018); Mewes et al. (2018, 2020) for other implementations of this approach), us-

ing reference-metric formulation to handle coordinate singularities (see, e.g., Bonazzola

et al. (2004); Shibata et al. (2004); Brown (2009); Gourgoulhon (2012)). The latest ver-

sion of our code uses fourth-order finite differencing for all spatial derivatives in Einstein’s

equations, together with a fourth-order Runge-Kutta time integrator.

We impose coordinates using the “1+log” slicing condition

(∂t − βi∂i)α = −2αK (4.11)

(see Bona et al. (1995)) for the lapse function α, and a “Gamma-driver” condition for

the shift vector βi (see Alcubierre et al. (2003); Thierfelder et al. (2011)). On our initial

slice we choose a “pre-collapsed” lapse with α = ψ−2 and zero shift.

For all simulations in this thesis, we use a numerical grid with Nr = 512 radial

grid points with the outer boundary at r̃out = 4 which is approximately 5.7 times the

isotropic radius our of neutron star model. Our grid is logarithmic asymptotically as we

use a sinh function to distribute radial grid points. We find this implementation useful

because it allows us to resolve vastly different length scales associated with the black hole
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and neutron star masses. Adjusting the parameters of this sinh function, we resolve each

black hole by approximately 50 grid points, and the smallest grid spacing at the center

of the black hole is approximately 1% of the black hole’s isotropic radius or less.

Similar to above, we follow Montero et al. (2014) to adopt a reference-metric for-

mulation in order to implement the equations of relativistic hydrodynamics in spherical

polar coordinates. The resulting equations are solved using an HLLE approximate Rie-

mann solver (Harten et al. (1983); Einfeldt (1988)) with a simple monotonized central-

difference limiter reconstruction scheme (van Leer (1977)). We solve these equation

adopting an ideal gas law

P = (Γ− 1)ρ0ε, (4.12)

where ε is the specific internal energy density, in terms of which the total mass energy

density is given by ρ = ρ0(1 + ε). For our simulations, we focus on Γ = 2 and refer to

East and Lehner (2019) for an analysis of different equations of state.

We give examples of our evolution calculations in Fig. (4.1) showing the density

profile evolve for a black hole with puncture mass M̃ = 10−3 at the center of our fiducial

neutron star model. From Eq. (4.2), we notice that our initial data depend on our choice

of m. However, we observe that, while the initial density profile in the inset of Fig. (4.1)

differ, they all evolve to to the same quasi-equilibrium density profile, meaning that the

evolution calculations are largely independent of m. Therefore, we feel comfortable in

our choice of specifying m = −6 for all of our simulations.
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4.3 Diagnostics

4.3.1 Black hole mass

A black hole’s isolated horizon, or irreducible, mass is given by

MBH =

( A
16π

)1/2

, (4.13)

where A is the proper area of the black hole’s event horizon at a given instant of time.

In our evolution simulations, we locate the apparent horizon. We choose to locate

the apparent horizon rather than the event horizon because the former requires data

only at one instant of time, whereas the latter it is difficult to locate numerically since

it requires data for all times. For a textbook analysis of the respective horizons, see

Baumgarte and Shapiro (2010). Then, we compute the black hole’s proper area and

insert it into (4.13), which gives an excellent approximation for the black hole mass, in

particular for stationary spacetimes or nearly stationary spacetimes.

We also approximate the initial black hole mass as follows. Our initial data are

conformally flat and describe a moment of time symmetry with zero shift, so we write

the initial spacetime metric as

ds2 = −α2dt2 + ψ4(dr2 + r2dΩ2). (4.14)

Then, following Eq. (7.22) from Baumgarte and Shapiro (2010) with A2 = B2 = ψ4,

the expansion of a bundle of outgoing null geodesics orthogonal to a spherical surface of

radius r is given by

Θ =

√
2

rψ2

d

dr

(
rψ2
)
. (4.15)

Now we assume that u in (4.6) is small (see Appendix C in Richards et al. (2021a)) com-

pared to the neutron star and black hole contributions, so we approximate the conformal
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factor as

ψ ' ψNS + ψBH = ψNS +
M
2r
. (4.16)

We note that we may approximate ψNS as constant for r much smaller than the neutron

star radius.

Now, to find the black hole’s apparent horizon, we set the expansion (4.15) to

zero,

d

dr

(
r

(
ψNS +

M
2r

)2
)
' ψ2

NS −
M2

4r2
= 0 (4.17)

or

rAH '
M

2ψNS

. (4.18)

Evaluating (4.16) at the apparent horizon we then have

ψAH ≡ ψ(rAH) ' 2ψNS. (4.19)

Using (4.18) and (4.19), we can now compute the proper area of the apparent horizon

from

A = 4πψ4
AHr

2
AH = 16πψ2

NSM2. (4.20)

Inserting (4.20) into (4.13) we obtain our result

MBH ' ψNSM, (4.21)

where we estimate ψNS to be the central value of the unperturbed neutron star’s conformal

factor. We will see that, for M � M , Eq. (4.21) gives an excellent approximation for

the initial black hole masses (see Table 5.1).
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4.3.2 Growth of black hole

In our simulations, we measure black hole accretion of neutron star matter in two different

ways, as shown in Fig. (1.1) and Table 5.1.

One method to determine accretion is to directly measure the black hole mass

MBH from (4.13) as a function of coordinate time. We will then determine the accretion

rate from the slope of this function as shown, for example, in Fig. 4.3. We show the

evolution of a black hole embedded in a neutron star, shown as the orange line, along

with a black hole with the same mass MBH(0) evolved in vacuum, i.e. without a neutron

star, shown as the red dashed line. The black hole evolved in vacuum gives a nearly

horizontal slope, demonstrating that our black hole embedded in a neutron star accretes

matter from the neutron star, and therefore, its slope is not a product of numerical

noise. As we decrease the black hole mass, the corresponding accretion rate becomes

increasingly slow (see Eq. (3.8)). Therefore, we can only use this direct measurement of

black hole growth for black holes with initial mass M̃BH(0) & 10−4 (see red triangles in

Fig. 1.1, and Table 5.1).

The slope of curves MBH(t) yields the accretion rate ṀBH where the derivative

is taken with respect to the coordinate time t. At large distances from the neutron

star, r � R, the coordinate time agrees with the proper time of a static observer at

infinity. Therefore, we use this measure of the accretion rate as the accretion measured

by any static observer at infinity. Earlier in Section 3.1, we introduced the accretion

rate Ṁ?
BH observed by a “local asymptotic” observer far from the black hole, but well

within the star, MBH � r � R. We therefore take the derivative with respect to the

local observer’s proper time τ? for the accretion rate Ṁ?
BH (for a detailed discussion of the

effect of considering a local asymptotic observer, see Appendix A from Richards et al.

(2021a)). Now, we can relate the two rates ṀBH and Ṁ?
BH by recognizing that the proper

time of the static, local observer advances at a rate dτ? = α?dt, where α? is the lapse
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Figure 4.3: Growth of black hole’s irreducible mass with respect to coordinate time t given
by (4.13) for a black hole embedded in our fiducial neutron star model (orange line) with
M̃BH(0) = 1.267 × 10−3. The green dot-dashed line gives a linear fit to our numerical
data, and we identify its slope as the accretion rate ṀBH. As a way to calibrate numerical
error, we include the evolution of a black hole in vacuum, i.e. without a neutron star,
with the same mass (red dashed line) and observe a nearly horizontal slope representing
zero accretion rate.
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function of this local observer. We then have

ṀBH =
dMBH

dt
= α?

dMBH

dτ?
= α?Ṁ

?
BH. (4.22)

To interpret this relation, we state that the accretion rate observed by a distant observer

ṀBH is red-shifted by the lapse function α? with respect to the rate as observed by a

local observer Ṁ?
BH.

See Table 5.1 for accretion rates determined numerically from the growth of the

black hole mass.

4.3.3 Rest-mass flux

Another way to compute the accretion rate of the black hole at the center of our fiducial

neutron star model is to measure the rate of fluid flow across the black hole horizon.

Under the assumption that the accretion is sufficiently slow, we approximate the black

hole to be nearly static. We may then follow the treatment in Appendix A from Farris

et al. (2010), and compute the flux F of rest-mass accretion through a sphere H with

radius r from

F(r) = −
∫
H

√−gρ0u
rdθdφ, (4.23)

where g is the determinant of the spacetime metric. We solve the integral under spherical

symmetry to obtain

F(r) = −4πα
√
γρ0u

rr2, (4.24)

with
√−g = α

√
γ, and where γ is the determinant of the spatial metric. We identify

this expression as the flux of rest-mass accretion through a sphere of any radius r. When

evaluated for a black hole, we compute the flux at the apparent horizon such that

ṀBH = F(rhor). (4.25)
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Figure 4.4: Flux profiles (4.24) as a function of isotropic radius r at various instances
of time for black hole with initial mass M̃BH(0) = 1.267× 10−10 embedded at the center
of our fiducial neutron star model. We compute the flux by measuring the flow across
the radius r. In the outer parts of the star, we note that the non-zero flux is due to
a numerical adjustment of the star because the initial data and numerical grid are not
perfectly in equilibrium. In the inner parts of the star, we reach equilibrium accretion
onto the black hole as the flux approaches a value independent of both space and time.
For comparison, we include the evolution of a neutron star without a black hole (faint
lines) which shows the same behavior in the outer parts of the star but very different
behavior close to the black hole. We note that we rescale both profiles for a neutron star
with and a neutron star without a black hole using MBH from the simulation of a neutron
with a black hole.
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We expect the flux F to be independent of the radius for stationary flow. We demonstrate

this in Fig. (4.4) where we show profiles of F at various instances of time for a black hole

with initial mass MBH(0)/M = 7.12× 10−10 inside of our fiducial neutron star model. In

particular, we notice that the fluid settles into steady-state accretion onto the black hole

in an inner region that grows with time as the flux takes a nearly constant value.

We also include profiles of our fiducial neutron star model without a black hole

in Fig. (4.4). Although they have a similar profile in the outer part of the star, where

numerical adjustments of the grid dominate the flux F , we notice that the profiles are very

different close to the black hole. The difference between the profile in the inner region of

the star gives us confidence that the plateau in flux for the neutron star evolving with a

black hole represents the steady-state accretion onto the black hole, and not a numerical

artifact.

We record our numerical results for these accretion rates in Table 5.1. We note

that, like the accretion rate computed in Section 4.3.2, our rate (4.25) represents a rate

as measured by an observed far from the neutron star, i.e. at r � R. In order to compare

this rate with the rate observed by a “local aymptotic” observer at MBH � r � R as

computed in Section 3.1, we again require the local observer’s lapse function α? (see

Appendix A from Richards et al. (2021a) for further details).

In Section 4.3.2 we computed the accretion rate from the growth of the black

hole’s gravitational mass, whereas here we measure the accretion of the rest mass to

compute the flux (4.25). We observe in our numerical simulations that the black hole’s

gravitational mass grows at a rate slightly larger than the rate of rest-mass accretion,

presumably because the former includes accretion of other forms of energy as well as

rest-mass energy.
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Chapter 5

Accretion Results

In this chapter, we will compare our analytical estimates from Chapters 2 and 3 with our

numerical results from Chapter 4 for our fiducial neutron star model with black holes of

various masses at its center.

5.1 Comparison with Bondi flow

To begin our comparisons, we will look at fluid flow profiles. For our numerical simula-

tions, we focus on data near the black hole at late times so that the fluid has settled into

steady state accretion. We compare our numerical results with our estimates from Chap-

ter 2 giving a direct integration of the “relativistic Bondi-equations” (see also Appendix

G of Shapiro and Teukolsky (2004)). We recall that these equations describe spherically

symmetric, steady-state, adiabatic fluid flow in a Schwarzschild spacetime.

The coordinates in our code are different from the Schwarzschild coordinates used

in constructing solutions to steady-state Bondi accretion. Therefore we can only com-

pare scalar quantities, for example rest-mass density, directly. To resolve this issue of

comparison, we introduce the “Killing observer”, i.e. a static observer with four-velocity

aligned with a timelike Killing-vector ξa = ∂/∂t. We then compute the “gamma-factor”
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Wξ between an observer moving with the fluid and the “Killing observer”,

Wξ = − ξaua
(−ξaξa)1/2

= − ut
(−gtt)1/2

, (5.1)

to give a comparison of an invariant measure of the fluid four-velocity ua. In Schwarzschild

coordinates, we can express this as

Wξ = αSu
tS =

(
1− 2MBH

rS

)1/2

utS

=

{
1 +

(
1− 2MBH

rS

)−1

(urS)2

}1/2

,

(5.2)

while, in our code, we evaluate

Wξ =
W (α− βrvr)
(α2 − βrβr)1/2

(5.3)

with W = αut and

vr ≡ 1

W
γrau

a =
ur

W
+
βr

α
, (5.4)

where vi is the spatial projection of the four-velocity ua, divided by W . We note here

that static observers must be outside the black hole, and therefore, we can evaluate Wξ

only for r & 2MBH.

Now, we can finally compare the flux (4.24) found in our code with the accretion

rate (3.8) given by the Bondi solution. We give a comparison for a black hole with mass

M̃ = 10−6 at coordinate time t = 1.59 × 103MBH in Fig. 5.1. In the upper two panels

showing rest-mass density and the gamma-factor Wξ respectively, the curves agree very

well and are difficult to differentiate. The bottom panel comparing the accretion rates

appears to differ more because the analytical estimate is given by a (nearly) constant

value. In reality, the accretion rates agree within a fraction of a percent in the vicinity of

the black hole, demonstrating that relativistic Bondi accretion excellently describes the
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Figure 5.1: Comparison of our numerical fluid flow profiles (dashed red lines) with ana-
lytical Bondi accretion (solid blue lines) for our fiducial neutron star model with a black
hole with initial mass M̃BH(0) = 1.267×10−6 at time t = 1.59×103MBH. The black hole
horizon at r = 2MBH, where r is the areal radius, is marked by the open black circles.
We also mark the critical radius with the solid green dots, giving the location at which
the fluid flow becomes supersonic in the Newtonian limit.
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accretion rate for an endoparastic black hole at the center of a neutron star.

5.2 Complete consumption

For black holes with small initial masses, the accretion process is too long to simulate

numerically. Therefore, we perform simulations of complete consumption of the neutron

star only for black holes with initial mass sufficiently large. We give an example of a

neutron star completely consumed by a black hole with initial mass M̃BH(0) = 0.0126 in

Fig. 5.2. The initial data have a total gravitational Arnowitt-Deser-Misner (ADM) mass

of M̃ADM = 0.1655, so that MBH(0)/MADM = 0.0761. We observe that the black hole

grows steadily at early times, similar to analytical accretion rate given in Section 3.1.1.

Then, the accretion becomes dynamical as described in Section 3.1.2 around t ' 25MADM.

Finally, the black hole completely consumes the neutron star and its mass settles to a

value within less than 0.1% of the ADM mass, confirming the accuracy of our simulations.

We also provide analytical estimates from Section 3.3.1 and 3.3.2 for the accretion

without stellar evolution (dotted line) and with stellar evolution (dashed line) respectively

in Figure 5.2. The comparisons between these accretion rates should be considered

qualitative for several reasons (see Section IVB in Richards et al. (2021a) for full details).

We recall that all analytical estimates in Chapter 3 were made based on rates observed

by a static, “local asymptotic observer”, and in order to compare the “local” and “global

rates”, we require the lapse function of a local observer α?. We are able to determine such

a function well for MBH �M , but for the case MBH .M it becomes difficult to identify a

local lapse function unambiguously. Furthermore, during the late stages of the accretion

process, we can no longer define a local, static observer with MBH � r � R. If we were

able to follow a black hole with initial mass MBH � M to complete consumption, we

would observe better agreement in Fig. 5.2 between the results as we increase the number

of decades in both time and increasing mass ratio.
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Figure 5.2: Black hole mass MBH as a function of coordinate time t for a simulation
leading to complete collapse. We show the numerical results for a black hole with initial
mass M̃BH(0) = 0.0126 represented by the solid line. The dashed line represents the an-
alytical estimate accounting for stellar evolution (B.16), while the dotted line represents
the analytical estimate ignoring stellar evolution (3.33). After the black hole has con-
sumed the entire neutron star at late times, we observe that the black hole mass agrees
to high accuracy with the initial total gravitational mass MADM. In this comparison we
have adopted the value α? ' 0.623.
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M̃1 M̃BH(0)2 α?
3 ṀBH/α?

4 F(rAH)/α?
5 Ṁ?

BH
6

10−3 1.267× 10−3 0.616 4.58× 10−5 3.44× 10−5 3.41× 10−5

10−4 1.267× 10−4 0.619 4.67× 10−7 3.42× 10−7 3.41× 10−7

10−5 1.267× 10−5 0.622 – 3.41× 10−9 3.41× 10−9

10−6 1.267× 10−6 0.623 – 3.40× 10−11 3.41× 10−11

10−7 1.267× 10−7 0.623 – 3.42× 10−13 3.41× 10−13

10−8 1.267× 10−8 0.623 – 3.43× 10−15 3.41× 10−15

10−9 1.267× 10−9 0.623 – 3.43× 10−17 3.41× 10−17

10−10 1.267× 10−10 0.623 – 3.43× 10−19 3.41× 10−19

1 Black hole puncture mass M̃ = K−1/2M in our initial data; see Section 4.1.
2 Initial irreducible mass M̃BH(0) = K−1/2MBH(0) of the black hole; see Section 4.3.1.
3 Lapse of a “local asymptotic” static observer.
4 Mass-energy accretion rate from measurements of MBH; see Section 4.3.2.
5 Rest-mass accretion rate from flux across horizon; see Section 4.3.3
6 Rest-mass accretion rate from Bondi expressions; see Eq. (3.42).

Table 5.1: Accretion rates for different black hole masses embedded in our fiducial neutron
star model (see Table 3.2). For all cases, the ratio between MBH(0) and the neutron star
rest mass M0 is MBH(0)/M0 = 7.12 × M̃. The accretion rates ṀBH and F(rAH) are
measured by a static observer at infinity. In order to compare these results with our
rates as measured by a “local asymptotic” static observer in the neutron star core, Ṁ?

BH,
we divide the ṀBH by the lapse α? of the local observer. In the last two columns,
we observe that the numerically measured rest-mass flux F(rAH)/α? (see Section 4.3.3)
agrees very well with the analytical value Ṁ?

BH given by Bondi accretion (see Eq. 3.42).
We also present these results in Fig. 1.1.

Although we must be careful in considering the comparison between the numerical

results and analytical estimates, Fig. 5.2 shows reasonable agreement between them.

Namely, we observe that the analytical estimate with stellar evolution improves the

agreement with the numerical results. We convert our local analytical estimates to our

global numerical results in our comparison using the value α? = 0.623. However, we

identified this value for smaller black hole masses embedded in our fiducial neutron star

model, but as mentioned above, we are unable to determine this value at late times.

5.3 Accretion rates

We present our accretion results in Table 5.1 for our simulations of a large range of

initial black hole masses, spanning seven orders of magnitude in MBH/M . We compute

53



the accretion rates for each black hole. For sufficiently large black holes as explained in

Section 4.3.3, we compute the growth of the black hole ṀBH, and for all black holes we

compute the fluid flux ṀBH = F(rAH) as discussed in Section 4.3.2. To compute the

rates measured by a local observer, we divide the “global” rates above by the lapse of a

“local asymptotic observer” α? far inside the neutron star. We can also estimate these

rates measured by a local observer from the Bondi expression for our fiducial neutron

star model (3.42), and we list these results in the final column of Table 5.1. The entries

in this Table are also shown in Fig. 1.1.

As mentioned above, we do not track the evolution to completion for the small

black holes listed in Table 5.1 because it is not computationally feasible. Rather, our sys-

tem evolves for a coordinate time of approximately 103MBH. By this time, the accretion

rate has settled into equilibrium, so we can accurately measure the accretion rate.

Most importantly, our accretion rates agree excellently with each other as shown

in Fig. 1.1. Namely, the flux of rest-mass across the horizon computed numerically agrees

very well with the analytical accretion rates computed from relativistic Bondi accretion.

We notice that the accretion rate computed from measuring the growth of the black hole

horizon yields a slightly larger value. This may be due to the fact that this measure

includes thermal energy in addition to rest-mass energy. This observation only holds for

early times when the accretion process is described by Bondi accretion. Lastly, we note

that our analytical estimate (4.21) with ψc = 1.27 for the initial black hole mass as given

in Table 3.2 agrees excellently with our initial black hole mass M̃BH(0).
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Chapter 6

Conclusion

In this thesis, we study in detail the accretion onto an endoparasitic black hole residing

at the center of a neutron star until the black hole completely consumes the neutron star.

Various aspects of this problem have been studied previously (see, for example, Capela

et al. (2013); East and Lehner (2019); Génolini et al. (2020)), and we expand on these

treatments in multiple ways.

We determine the analytical Bondi accretion rate for stiff equations of state with

Γ > 5/3 (see also Richards et al. (2021b); Baumgarte and Shapiro (2021)), allowing us

to determine the constant of proportionality in the relation ṀBH ∝ M2
BH. From these

results, we construct an approximate analytical model to track the evolution of an initially

small black hole at the center of a neutron star until it completely consumes the neutron

star.

We extend previous simulations from East and Lehner (2019) to significantly

smaller mass ratios MBH/M and perform numerical simulations of this accretion process

for sufficiently long times so that the system reaches quasistationary accretion. We adopt

spherical polar coordinates in our numerical code and use a logarithmic radial coordinate

which allows us to resolve the drastically different length scales between the black hole

mass MBH and neutron star mass M .
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In Fig. 1.1 we show that our numerical results and our analytical estimates agree

remarkably well with each other over many orders of magnitude in MBH/M . Therefore,

this allows us to determine the lifetime of a neutron star using these Bondi accretion

rates for stiff equations of state. In particular, this lifetime is close to a nearly universal

maximum lifetime that is roughly independent of the properties of the neutron star and

its EOS, and depends on the initial black hole mass MBH only, as reported in Baumgarte

and Shapiro (2021).

Our results support arguments that use the existence of neutron star populations

to constrain primordial black holes or dark matter particles that may form black holes at

the center of neutron stars after they have been captured as possible sources of dark mat-

ter (see, e.g., Goldman and Nussinov (1989); de Lavallaz and Fairbairn (2010); Bramante

and Linden (2014); Bramante and Elahi (2015); Capela et al. (2013); Bramante et al.

(2018); East and Lehner (2019); Génolini et al. (2020)). We consider these constraints

under the assumption that given certain cosmological densities and masses of these dark

matter constituents, neutron star would capture these possible sources of dark matter

and then be consumed by the black hole at times older than the ages of old neutron

star populations. Primordial black holes in the mass range 10−15M� . MBH . 10−9M�

(see, e.g., Capela et al. (2013); Kühnel and Freese (2017)) have been used in particular

to constrain this argument.
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Appendix A

Cubic equation solution for a2s

We follow Section 5.6 in Press et al. (2007) to compute the general solution of the cubic
equation (2.18). We start by defining

Q ≡ A2 − 3B

9
=

(3Γ− 2)2

81
(A.1)

and

R ≡ 2A3 − 9AB + 27C

54

=
1

1458

(
54 Γ3 − 351 Γ2 + 558 Γ + 486 a2

∞(Γ− 1)− 243 a2
∞ − 259

) (A.2)

and distinguish two different cases depending on whether the quantity

R2 −Q3 =
(1 + a2

∞ − Γ)2

8748

(
243

(
a4
∞ − 2 a2

∞(Γ− 1)
)

− (5− 3Γ)2(12Γ− 11)
) (A.3)

is positive or negative. Solving for a root of (A.3) we see that we have R2 − Q3 < 0
whenever

a2
∞ < Γ− 1 +

2
√

3

27
(3Γ− 2)3/2 . (A.4)

Evidently, this condition holds for all a2
∞ ≤ Γ − 1, so that R2 − Q3 is negative for all

physically viable solutions. The cubic equation (2.18) then has three roots that are given
by,

x1 = −2
√
Q cos

(
θ

3

)
− A

3

x2 = −2
√
Q cos

(
θ + 2π

3

)
− A

3

x3 = −2
√
Q cos

(
θ − 2π

3

)
− A

3
,

(A.5)
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where

θ = arccos

(
R

Q3/2

)
. (A.6)

We note that the coefficients A, B, and C in Eq. (2.18) are all real and consequently R
and Q are real as well, leading to three real roots. While there are three real solutions,
only x3 gives a physical solution as we are limited by Eq. (2.9) as shown in Figure (2.2).
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Appendix B

Integration of Eq. (3.30)

In this appendix we outline how the differential equation (3.30) can be solved analytically.
We first separate variables to obtain

dT = − y7/2dy

(y0 − y)2
(B.1)

and then integrate to find
T = −I, (B.2)

where we have assumed that the initial time is chosen to vanish, Ti = 0, and where I is
given by

I =

∫
y7/2dy

(y0 − y)2
. (B.3)

This integral can now be integrated as follows.
Using partial fractions, we rewrite (B.3) as

I =

∫
y7/2dy

(y0 − y)2

=

∫
y3/2y

2 + (y0 − y)2 − (y0 − y)2

(y0 − y)2
dy

=

∫
y3/2 (y0 − y)2 + 2yy0 − y2

0

(y0 − y)2
dy

=

∫
y3/2dy + 2y0

∫
y3/2 y − y0/2

(y0 − y)2
dy. (B.4)

Repeating the process twice more, we obtain

I =

∫
y3/2dy + 2y0

∫
y1/2dy + 3y2

0

∫
y−1/2dy

+4y3
0

∫
y−1/2y − 3y0/4

(y0 − y)2
dy. (B.5)
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We now split the last integral into two terms,

y3
0

∫
y−1/2 4y − 3y0

(y0 − y)2
dy (B.6)

= 4y3
0

∫
y1/2

(y0 − y)2
dy − 3y4

0

∫
y−1/2

(y0 − y)2
dy

and use a hyperbolic trig substitution

y = y0 tanh2 x (B.7)

in both integrals, resulting in

4y3
0

∫
y1/2

(y0 − y)2
dy = 8y

5/2
0

∫
sinh2 x dx (B.8)

and

3y4
0

∫
y−1/2

(y0 − y)2
dy = 6y

5/2
0

∫
cosh2 x dx. (B.9)

Since ∫
sinh2 x dx =

1

2
sinhx coshx− x

2
(B.10)

and ∫
cosh2 x dx =

1

2
sinhx coshx+

x

2
, (B.11)

as can be seen using integration by parts, we can combine results to find

y3
0

∫
y−1/2 4y − 3y0

(y0 − y)2
dy = y

5/2
0 (sinhx coshx− 7x) . (B.12)

We now rewrite sinh x coshx in terms of tanhx and insert the substitution (B.7) to obtain

y3
0

∫
y−1/2 4y − 3y0

(y0 − y)2
dy (B.13)

= y3
0

y1/2

y0 − y
− 7y

5/2
0 tanh−1(y/u0)1/2.

Finally we insert this expression into (B.5), and carry out the remaining integrations to
find

I =
2

5
y5/2 +

4

3
y0y

3/2 + 6y2
0y

1/2 (B.14)

+y3
0

y1/2

y0 − y
− 7y

5/2
0 tanh−1(y/y0)1/2.
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Combining the first four terms and using

tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
(B.15)

we can also write this result as

I = y1/2 6y3 + 14y0y
2 + 70y2

0y − 105y3
0

15(y − y0)

−7

2
y

5/2
0 ln

(
y

1/2
0 + y1/2

y
1/2
0 − y1/2

)
. (B.16)

Recall that 1− y = (MBH−MBH(0))/M(0) measures the fractional increase in the black
hole mass (see Eqs. 3.27 and 3.28), and that T = −I is proportional to the time as
measured by a local asymptotic static observer (see Eq. 3.29).

61



Acknowledgments

I would like to acknowledge all of the support, help, and “reminders” from my hon-
ors advisor Professor Baumgarte. I would also like to acknowledge Professor Stuart L.
Shapiro from the University of Illinois at Urbana-Champaign for his numerous contribu-
tions to this project. Lastly, I would like to thank Maria Perez Mendoza for many helpful
conversations and support. This work was supported in parts by National Science Foun-
dation (NSF) grants PHY-2010394 to Bowdoin College, and NSF grants PHY-1662211
and PHY-2006066 and National Aeronautics and Space Administration (NASA) grant
80NSSC17K0070 to the University of Illinois at Urbana-Champaign.

62



Bibliography
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