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The zinc-binding domain of mammalian
prolyl-tRNA synthetase is indispensable
for catalytic activity and organism viability

Kommireddy Vasu,1 Iyappan Ramachandiran,1 Fulvia Terenzi,1 Debjit Khan,1 Arnab China,1 Krishnendu Khan,1

Aayushi Chechi,1 Camelia Baleanu-Gogonea,2 Valentin Gogonea,1,2 and Paul L. Fox1,*

SUMMARY

Aminoacyl-tRNA synthetases (AARS) participate in decoding the genome by
catalyzing conjugation of amino acids to their cognate tRNAs. During evolution,
biochemical and environmental conditions markedly influenced the sequence
and structure of the 20 AARSs, revealing adaptations dictating canonical and
orthogonal activities. Here, we investigate the function of the appended
Zn2+-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA syn-
thetase (GluProRS). We developed GluProRS mutant mice by CRISPR-Cas9 with
a deletion of 29 C-terminal amino acids, including two of four Zn2+-coordinating
cysteines. Homozygous ZBD mutant mice die before embryonic day 12.5, but
heterozygous mice are healthy. ZBD disruption profoundly reduces GluProRS
canonical function by dual mechanisms: it induces rapid proteasomal degrada-
tion of the protein and inhibits ProRS aminoacylation activity, likely by sub-
optimal positioning of ATP in the spatially adjacent catalytic domain. Collec-
tively, our studies reveal the ZBD as a critical determinant of ProRS activity
and GluProRS stability in vitro and in vivo.

INTRODUCTION

Aminoacyl tRNA synthetases (AARS) are essential enzymes that decode genetic information by recognizing

specific tRNAs harboring appropriate anti-codon triplets and catalyzing ATP-dependent ligation to the

cognate amino acid. Twenty AARSs, one for each proteinaceous amino acid, are found in the three king-

doms of life with limited exceptions in certain bacteria and archaea. Each AARS contains an anticodon-

binding domain for tRNA recognition and binding, and a core catalytic domain for amino acid activation

and transfer. In addition to the principal aminoacylation activity, eukaryotic AARS have acquired appended

domains during evolution, generally at the N or C terminus, that display additional non-canonical functions

beyond translation of the genetic code (Guo et al., 2010). The non-canonical activities are diverse in scope

and contribute to development as well as pathology, e.g., tumorigenesis, obesity, angiogenesis, and

inflammation (Guo and Schimmel, 2013; Kwon et al., 2019; Lee et al., 2018; Yao and Fox, 2013).

Of the 20 AARSs, the genes encoding GluRS and ProRS, i.e., EARS and PARS, are fused in metazoans to

express the bifunctional GluProRS. The synthetase domains are joined by a non-catalytic linker contain-

ing a variable number of WHEP repeated domains: three in humans and mice (Ray and Fox, 2014). The

fusion might be an evolutionary strategy to overcome adverse metabolic and environmental conditions

(Eswarappa et al., 2018). Human GluProRS resides in a large, cytoplasmic multi-tRNA synthetase complex

(MSC) containing seven other AARSs and three non-catalytic proteins. GluProRS is present as an obligate

dimer (Khan et al., 2020; Quevillon et al., 1999). Several mutations in human EPRS1 (the nuclear gene en-

coding GluProRS) cause severe, debilitating pathologies. For example, compound heterozygous

(p.Pro1160Ser and p.Thr1223LeufsX3) and homozygous (p.Pro1115Arg and p.Met1126Thr) mutations in

EPRS1 cause juvenile-onset hypomyelinating leukodystrophy (Mendes et al., 2018). A recent study links

a missense EPRS1 mutation to a Parkinson disease (Yemni et al., 2019). In mice, a mutation in the Glu-

ProRS linker that abrogates phosphorylation leads to low body weight and increased lifespan (Arif

et al., 2017). Eprs1-haploid mice exhibit enhanced viremia, inflammation, and delayed viral clearance

(Lee et al., 2016). Cardiac-specific, Eprs1 conditional knockout mice show reduced cardiac fibrosis under

stress, suggesting that mild reduction of GluProRS expression is cardioprotective (Wu et al., 2020). At the
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cellular level, GluProRS exhibits several non-canonical activities. In interferon-g-activated myeloid cells,

GluProRS forms a heterotetrameric, interferon-g-activated inhibitor of translation (GAIT) complex that

binds and silences the translation of multiple mRNAs encoding inflammation-related proteins (Mukho-

padhyay et al., 2009; Sampath et al., 2004). In adipocytes, insulin induces binding of GluProRS to fatty

acid transport protein 1 and consequent transport to the plasma membrane for enhanced long-chain

fatty acid uptake (Arif et al., 2017). With respect to therapeutic approaches, halofuginone, a plant alka-

loid isolated from Dichroa febrifuga inhibits ProRS catalytic activity, and exhibits potent anti-fibrotic ac-

tivity (Keller et al., 2012).

Mammalian bifunctional GluProRS has three appended domains lacking catalytic or substrate-binding

activities: an N-terminal GST-like domain, three repeated WHEP domains in the linker joining the cata-

lytic GluRS and ProRS domains, and the C-terminal ZBD (Figure 1A). A major function of the GST-like

domain is to maintain structural integrity of the MSC by binary interactions with GST-like domains in

other MSC constituents (Cho et al., 2015, 2019; Khan et al., 2020). In addition, following viral infection,

the GST-like domain interacts with PCBP2, a negative regulator of MAVS, thereby enhancing antiviral ac-

tivity (Lee et al., 2016). Several non-canonical functions of GluProRS are attributed to the WHEP domain-

containing linker, including binding GAIT RNA elements and fatty acid transport protein 1 (Arif et al.,

2017; Jia et al., 2008). In the C-terminal ZBD, Zn2+ is coordinated by four highly conserved Cys residues

(Figures 1B and S1A). However, the functional significance of the mammalian ZBD remains unclear (Son

et al., 2013; Yaremchuk et al., 2000; Zhou et al., 2013). Here, we have used CRISPR-Cas9 technology to

generate a targeted mutation in the GluProRS ZBD causing a domain truncation that eliminates the ter-

minal 29 amino acids and two of the four conserved Zn2+-binding cysteine residues (Figures 1A and 1B).

Homozygous mice carrying the mutant allele are embryonic-lethal, revealing the essentiality of the ZBD.

Structural and biochemical analysis reveal that the ZBD is a critical determinant of ProRS catalytic activity

and GluProRS stability.

A

B

C

D E

Figure 1. Generation of Eprs1 ZBD-defective mutant mice

(A) Domain organization of human GluProRS; deletion start site (arrow).

(B) Sequence and secondary structure of human GluProRS ZBD. Horizontal arrows, b-sheets; ‘‘squiggly’’ lines, a-helices; *,

Zn2+-coordinating Cys residues; D, identified SNPs; vertical arrow and dashed line indicate deletion.

(C) Design strategy for substitution in mouse Eprs1 exon 32; red line indicates mutation site.

(D) Detailed schematic of region targeted by sgRNA 483.

(E) Sanger sequencing of genomic DNA from wild-type and Eprs1+/DZ mice (arrow, insertion site).
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RESULTS

Generation of Eprs1 mutant mice with a partial Zn2+-binding domain deletion

The physiological significance of the GluProRS/ProRS ZBD has not been investigated in any model organ-

ism. The mouse and human ZBD amino acid sequences are homologous, with 88% identity and 95% sim-

ilarity (Figure S1A). We generated an Eprs1CRISPRmutant with a frameshift mutation leading to premature

termination of translation of the Eprs1 gene. In mice, the ZBD occupies exons 31 and 32 at the terminus of

the unspliced mRNA (Figure 1C). Targeting the 30 end of the Eprs1 gene was accomplished by screening

guide RNAs directed against the sequence. To prevent nonsense-mediated decay, exon 32 was selected

for guide RNA screening. sgRNA 483 efficiently targeted the GluProRS C-terminal domain and was

selected (Figures S2A and 1D). Interestingly, multiple non-synonymous SNPs were reported in human

exon 32 that could potentially disrupt the ZBD (Figure 1B). Nuclear injection of CRISPR gRNA and Cas9

generated multiple allelic variants at the cut site with variable efficiency. Miseq analysis of the region sur-

rounding the Eprs1 target site c.4449 was performed in 23 founder chimeric mice to comprehensively pro-

file mosaicism (Figure S2B). Non-homologous end joining repair resulted in insertion of a single adenine

nucleotide at c.4449 that introduces a frameshift and an in-frame stop codon 11 nucleotides downstream

(Figure 1E). The mutation caused deletion of the terminal 29 amino acids and loss of two of the four

conserved Cys residues essential for binding one Zn2+ ion per monomer (Figure 1B). This truncated protein

(DZ) harbors the entire catalytic and anti-codon binding domains. Two founder mice with high mutagenesis

efficiency, and without other secondary mutations, were selected for breeding and experiments.

To detect the desired allele in F1 mice, we designed a novel locked nucleic acid (LNA)-containing fluores-

cent probe set to distinguish between the wild-type (WT) and mutant alleles that differ by a single nucle-

otide. Two primers that spanned the mutation site in Eprs1 exon 32 resulted in amplification of a 103-bp

segment (Figure S3A). One probe was conjugated with 50 HEX fluorophore and 30 IBFQ (Iowa Black fluores-

cent quencher) to detect the WT allele and another with 50 6-FAM and 30 IBFQ to detect the mutant allele

(Figure S3B). qPCR permitted definitive identification of all three mouse genotypes from tail DNA (Fig-

ure S3C). This qPCR design of LNA-based fluorescent probes can be generalized by others for distinguish-

ing between alleles differing by a single nucleotide for routine screening of CRISPR-targeted mice.

Homozygous partial deletion of Eprs1 ZBD is embryonically lethal

Heterozygous Eprs1+/DZ breeding pairs produced only Eprs1+/+ and Eprs1+/DZ offspring indicating that ho-

mozygous Eprs1 deletion is embryonic-lethal (Figure 2A). To investigate the stage of lethality, timed mat-

ing of heterozygous breeding pairs was initiated, and the pregnancy was terminated at embryonic day 12.5.

Embryos genotyped as Eprs1+/+ and Eprs1+/DZ appeared virtually identical and healthy; however, severely

degenerate embryos were observed in utero and genotyped as homozygous Eprs1DZ/DZ mutants (Fig-

ure 2B). Embryonic lethality was observed in two independently derived mouse lines, providing evidence

that the result was not due to an off-target effect of CRISPR-Cas9 gene editing. The number of embryos of

each genotype revealed a near-Mendelian distribution, indicating a normal fertilization rate in the null

mutant (Figure 2C). Owing to the profoundly abnormal condition of homozygous embryos, heterozygous

mutant mice were selected for molecular analysis.

Partial ZBD deletion reduces GluProRS expression

To investigate themechanism underlying embryonic lethality accompanying ZBD disruption, GluProRS was

determined in 3-week-old mouse brain lysates by immunoblot using an antibody targeting the linker re-

gion. GluProRS expression in Eprs1+/DZ mice was about 50% of that in WT littermates, indicating that

themutant allele does not generate protein, or generates a rapidly degraded truncated protein (Figure 2D).

To determine the potential role of defective transcription, Eprs1 mRNA levels in brain tissue from WT and

Eprs1+/DZ mice were compared by qPCR. Essentially identical mRNA levels were observed in both geno-

types indicating comparable transcription, and that the mutant transcript is not subject to nonsense-medi-

ated decay (Figure 2E). Likewise, 30 RACE (rapid amplification of cDNA ends) analysis of Eprs1mRNA from

WT and Eprs1+/DZ mutant littermates, spanning exon 31 to the poly(A) tail, which includes the c.4449 inser-

tionmutation in exon 32, showed identical splicing (Figure 2F). To assess a possible defect in nuclear export

of mutant mRNA, we determined the intracellular distribution of the transcripts by fractionation of lysates

followed by qPCR; fractionation efficacy was shown by immunoblot with antibodies against a-tubulin and

P80, markers of cytoplasm and nucleus, respectively (Figure 2G, right). The cytoplasmic-to-nuclear Eprs1
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mRNA ratios were similar, indicating that nuclear export of mutant mRNA is not defective (Figure 2G, left)

and that altered expression must be post-transcriptional.

To assess the role of translation, polysome-profiling was done with HEK293F cells stably transfected with

FLAG-tagged human EPRS1, or a mutant encoding a 29-amino acid C-terminal deletion. Expression of

mutant EPRS1 mRNA did not affect global translation as shown by similar polysome loading (Figure 3A,

A B C

D E

F

G

Figure 2. Reduced GluProRS expression and embryonic lethality of Eprs1DZ/DZ mice

(A) Live births from matings of Eprs1+/DZ mice.

(B and C) Embryo visualization (B) and genotype number (C) at E12.5 dpc following timed matings of Eprs1+/DZ mice.

(D) GluProRS protein in wild-type and Eprs1+/DZ mice from brain lysates was determined by immunoblot (above) and

quantitated by densitometry (below; mean G SEM, n = 8).

(E) qPCR analysis of Eprs1 mRNA levels in brain lysates from wild-type and Eprs1+/DZ mice (ns = not significant; mean G

SEM, n = 3).

(F) 30 RACE analysis to determine splicing of Eprs1mRNA in brain fromwild-type and Eprs1+/DZ mice: schematic of reverse

transcription and amplification (left); visualization of splice product by agarose gel electrophoresis (right).

(G) Intracellular distribution of EPRS1 mRNA (left) was determined by fractionation of lysates from HEK293 expressing

wild-type or DZ mutant, followed by RT-qPCR (mean G SEM, n = 3); lysates were subjected to immunoblot analysis for

cytoplasmic and nuclear markers, a-tubulin, and P80, respectively (right).
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left). FLAG-EPRS1 mRNA in polysomal and non-polysomal fractions was quantitated by RT-qPCR using

primers specific for chimeric FLAG-EPRS1. Comparable ribosome loading was observed, indicating that

translation of mutant EPRS1 mRNA was not defective (Figure 3A, right). GluProRS half-life was measured

in the presence of cycloheximide to inhibit protein synthesis. In HEK293F cells stably expressing WT

FLAG-tagged GluProRS, the protein was stable for at least 16 h; in contrast, mutant GluProRS exhibited

rapid turnover, with a half-life of about 5.6 h (Figure 3B). The proteasome inhibitor MG132 completely

A

B

C D

Figure 3. Mutation in ZBD reduces GluProRS stability

(A) Polysome profiling of HEK293 cells expressing wild-type (left) or DZ mutant (center) EPRS1 mRNA. Distribution of

EPRS1 mRNA in polysome and non-polysome fractions determined by RT-qPCR (right, ns = non-significant).

(B) To determine protein degradation rate, HEK293 cells expressing wild-type or DZ mutant FLAG-GluProRS were treated

with cycloheximide (CHX) in the presence or absence of MG132 for up to 16 h and lysates subjected to immunoblot

analysis (left) and densitometric quantitation (right) (mean G SD, n = 3).

(C) Poly-ubiquitination of total protein in HEK293 cells expressing wild-type or DZ mutant EPRS1 was detected with anti-

ubiquitin antibody (left) and quantitated by densitometry (right, mean G SEM, n = 3).

(D) Poly-ubiquitination of wild-type FLAG-GluProRS and DZ mutant was determined in HEK293 cells treated with MG132

for 18 h. Lysates were subjected to immunoprecipitation (IP) with anti-FLAG antibody, followed by immunoblot with anti-

ubiquitin, anti-FLAG, and anti-a-tubulin antibodies (left), and densitometric quantification (right; meanG SEM, n = 3; *p <

0.05).
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blocked degradation of the mutant. To further explore the mechanism underlying degradation of the DZ

mutant, ubiquitination was determined. Total cell accumulation of poly-ubiquitinated protein was similar in

HEK293F cells transfected with either GluProRS forms (Figure 3C). However, in the presence of MG132 to

block proteasomal degradation, the ZBDmutant exhibited ~3.5-fold more ubiquitination compared toWT

(Figure 3D), suggestive of a newly exposed site or an altered conformation in the truncated protein. Inter-

estingly, despite the deleted domain, and the very low amount of ZBDmutant in cells, a co-immunoprecip-

itation experiment revealed normal interaction of the remnant with multiple other MSC constituents,

indicating similar MSC incorporation of WT and ZBD-defective GluProRS (Figure S4).

Proximity of the ProRS ZBD to the ATP-binding domain influences aminoacylation activity

The B-factor of a protein structure describes the degree of electron density spread for each atom, and is a

measure of conformational flexibility (Ringe and Petsko, 1985); however, static disorder due to relative po-

sitional differences of atoms within a crystal can also contribute to high local B-factor. According to the

crystal structure of human ProRS (PDB: 4HVC) the ZBD exhibits the relatively highest B-factor, indicative

of conformational flexibility or flexible linkage to the body of the protein (Figure 4A). To visualize the

altered structure of the mutant protein, theoretical solvent-accessible surface area (SASA) was determined

for ProRS WT and DZ structures in polar solvent. The SASA ‘‘rolling ball’’ algorithm rolls a theoretical

sphere, with 1.4 Å radius, approximating a water molecule, to probe a macromolecule surface (Shrake

and Rupley, 1973). ZBD deletion markedly increases solvent accessibility in the ATP-binding region of

the catalytic domain, and to a lesser extent, a narrow region joining the anticodon-binding domain and

ZBD (Figure 4B). These results are consistent with the position of the ZBD adjacent to the catalytic domain,

despite its direct link in primary sequence to the anticodon-binding domain (Figure 4C). The human ZBD

consists primarily of four b strands and two a helices connected by unstructured loops (Figures 1B and 4D).

The carboxylate group of Tyr1512 is part of a network of charged interactions that includes Arg1163, Arg1278,

and the g-phosphate of the ATP analog (Figure 4E). Deletion of 29 C-terminal amino acids results in loss of

the C-terminal-most b sheet and two of the four conserved Cys residues essential for tetrahedral coordina-

tion of Zn2+ (Figures 1B and S5A).

Zn2+ content of recombinant human wild-type and DZ mutant ProRS was determined by Zn2+ release by

methyl methanethiosulfonate and spectroscopic detection with 4-(2-pyridylazo)resorcinol (Chongdar

et al., 2015; Hunt et al., 1985). Unlike substantial Zn2+ content of wild-type enzyme (Figure 4F, left), Zn2+

in the DZ mutant was virtually undetectable, consistent with the absence of two coordinating cysteine

ligands (Figure 4F, right). AARSs catalyze tRNA aminoacylation in two steps. The amino acid is initially acti-

vated by ATP, generating a high-energy aminoacyl-adenylate intermediate. Subsequently, the aminoacyl-

adenylate attacks the 30 OH tRNA terminus to form charged aminoacyl-tRNA. To determine the role of the

ProRS ZBD in tRNA charging, we measured in vitro prolyl adenylation activity of recombinant proteins as

transfer of L-[14C]proline to yeast tRNA. TheDZmutant exhibited about a 90% loss of aminoacylation activity

compared with wild-type ProRS (Figure 4G, top). We considered the possibility that the zinc ion was essen-

tial for ZBD conformation and aminoacylation activity. Chelation of Zn2+ with 1,10-phenanthroline resulted

in an ~80% loss of aminoacylation activity (Figure 4G, center). Based on proximity of the C terminus to the

ATP-binding site (Figure 4D), we hypothesized that the ZBD was essential for positioning and orientation of

the extreme C terminus in juxtaposition to ATP in the catalytic domain. Recombinant ProRS lacking the

conserved Arg-Ser-Tyr from the C terminus (DRSY) exhibited an ~80% reduction in aminoacylation activity

comparedwith wild-type ProRS, nearly the same activity loss due to zinc depletion or due to the larger dele-

tion in theDZmutant (Figure 4E, bottom). These results suggest that the primary role of Zn2+ and the ZBD in

catalysis is to direct orientation of the C terminus adjacent to the ATP-binding site of the catalytic domain.

DISCUSSION

Domains appended to AARSs during evolution generate functional complexity, particularly in eukaryotes

where they exhibit multiple non-canonical activities unrelated to their primary function in the interpretation

of the genetic code (Guo et al., 2010). However, these apparently non-catalytic appendages can also

modulate the canonical activity, for example, by regulating transferase activity or by facilitating amino

acid editing activity (Bullwinkle and Ibba, 2014; Chang et al., 2016; Guo et al., 2009; He et al., 2009; Raben

et al., 1994). Our experiments show the GluProRS ZBD is an appended domain essential for optimal trans-

ferase activity. In addition, the domain protects the protein from rapid degradation. In primary sequence

space, the ProRS ZBD is an extension of the anticodon-binding domain, flexibly linked via a long a helix

(Figure 4C, left). Structurally, however, the primary interaction of the ZBD is with the ProRS catalytic domain.
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Phylogenetic analysis showed segregation of C-terminal-bearing ZBD from ProRS (and GluProRS in species

bearing the fused protein (Berthonneau andMirande, 2000; Ray and Fox, 2014; Ray et al., 2011) into distinct

classes. ZBD-bearing species form three major clusters bearing C-terminal-type ZBDs, comprising nearly

all archaeal and eukaryal species and a subset of bacteria, likely sharing a common origin (Figure S1B).

A E

B F

C D

G

Figure 4. Zn2+ and the ZBD are critical for ProRS aminoacylation activity

(A) B-factor analysis of human ProRS dimer (PDB: 4HVC).

(B) SASA measurements were made using human ProRS dimer coordinates with and without the C-terminal 29-amino

acids and probed with sphere of radius 1.4 Å. Difference in accessible surface area (mutant minus wild-type) at each

residue is shown. Regions forming the ATP-binding pocket are indicated (red bars).

(C) Crystal structure of human ProRS monomer (PDB: 4HVC) highlighting ZBD (magenta), anticodon binding domain

(ABD, blue), and catalytic domain (CD, green).

(D) Crystal structure of the ZBD showing Zn2+ coordinated by four Cys residues and the C-terminal Tyr1512 aligned with

ATP analog (ATPa) and Pro substrates.

(E) Expanded view of human ProRS region surrounding C-terminal Tyr1512 and ATPa. Charge interactions between Tyr1512

carboxylate, Arg1278, Arg1163, and ATPa terminal phosphate are highlighted (dashed lines, distances in Å).

(F) Zn2+ in wild-type (left) and DZ mutant (right) recombinant human ProRS was determined by Zn2+ release with methyl

methanethiosulfonate (MMTS) and spectroscopic detection with 4-(2-pyridylazo)resorcinol (PAR).

(G) Aminoacylation activity of wild-type and DZ mutant ProRS was determined by incorporation of 14C-labeled Pro into

yeast tRNA (top), following treatment of wild-type ProRS with the Zn2+ chelator, 1,10 phenanthroline (center), and in a

mutant with deletion of the three terminal amino acids Arg-Ser-Tyr (bottom, DRSY) (mean G SD, n = 3; **p < 0.001).
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The vast majority of bacteria lack the ProRS C-terminal ZBD including gram-negative bacteria, e.g., Escher-

ichia, and nonproteobacteria, e.g., Chlamydiae. In archaea, the ProRS ZBDs are clustered in the four major

phyla, namely, DPANN, TACK, Euryarchaeota, and Asgard. In eukaryotes, the ZBD is present in both free-

standing ProRS and in the fused GluProRS. Eukaryotic mitochondrial ProRS does not contain a ZBD, consis-

tent with the endosymbiont theory of evolution.

Among the mammalian AARSs, GluProRS is likely to have the most complex evolutionary history. The

earliest appended domain in ProRS appears to be the C-terminal ZBD, likely appearing before the diver-

gence of the three kingdoms (Figure S1B). GluRS gained an N-terminus GST-like domain in the fungal

eukaryote, S. cerevisiae (Havrylenko and Mirande, 2015). This domain directs interactions with other pro-

teins bearing GST-like domain and facilitates the formation of a 3-protein multi-tRNA synthetase complex

in S. cerevisiae, and the 11-protein MSC in animals. The most recent addition is the WHEP domain, a helix-

turn-helix structure appended to the GluRS C terminus in Sphaeroforma arctica, an early unicellular

eukaryote closely related to animals (Ray and Fox, 2014). Remarkably, a fusion event between GluRS and

ProRS occurred in an as-yet unidentified unicellular eukaryote, forming the heterobifunctional GluProRS,

presumably bearing a single WHEP domain joining the AARSs. Nearly all animal species contain a fused

GluProRS bearing zero to six WHEP domains formed by discrete duplication and loss events; humans

and mice have three WHEP repeats (Ray et al., 2011).

Our results show that the ZBD is both essential for ProRS catalytic activity and contributes to stability. Its

presence in all four major archaeal sub-clusters and certain bacterial phyla is potentially instructive with

respect to environmental or other forces driving its origin. Hyperthermic conditions and lateral gene trans-

fer might have driven adaptations that enhanced stability (Groussin and Gouy, 2011; Reed et al., 2013). The

tetrahedral interaction of Zn2+ with four cysteines renders the cation nearly inert chemically, and commonly,

Zn2+-cysteine complexes perform structural functions within proteins (Pace and Weerapana, 2014). Both

Mg2+ and Zn2+ are frequently observed in AARS crystal structures. Mg2+ generally functions to stabilize

the transition state of ATP during hydrolysis, whereas the role of Zn2+ in AARS function is variable. In AARSs

that ligate Ile, Leu, Val, Glu, Gln, Trp, and Met, Zn2+ contributes to efficient catalysis. TrpRS contains a

consensus ZBD, and is activated by Zn2+; however, Zn2+ has not been observed inmultiple crystal structures

suggesting weak interaction with the ZBD (Doublie et al., 1995; Xu et al., 2018; Yang et al., 2007). Zn2+ can

contribute to AARS discrimination between cognate and non-cognate amino acids. For example, when

bound to E. coli ThrRS, the hydroxyl side chain of Thr switches Zn2+ geometry from tetrahedral to the active

pentacoordinate intermediate (Sankaranarayanan et al., 2000). The methyl group side chain of non-

cognate Val cannot co-ordinate with Zn2+ and is rejected. Similar amino acid selectivity is exhibited by

E. coli CysRS where Cys forms a Zn2+-thiolate bond that directs a 20,000-fold discrimination against Ser

(Zhang et al., 2003). SerRS of methanogenic bacteria exhibits a similar discrimination mechanism: Zn2+ co-

ordination with Ser facilitates activation, but the longer side chain of Thr induces a steric clash that prevents

activation (Bilokapic et al., 2006).

Our experiments with the recombinant ProRS region of human GluProRS show that a 29-amino acid dele-

tion at the C terminus, that removes two of the four Zn2+-coordinating ligands, inhibits Zn2+-binding and

ProRS aminoacylation activity. We also show that Zn2+ depletion with a chelator or deletion of three C-ter-

minal amino acids, Arg-Ser-Tyr, inhibits aminoacylation activity. Together, these results reveal a key role of

Zn2+ and the ZBD in catalysis. Importantly, the terminal three amino acids are highly conserved, and a

consensus sequence of Arg/Lys-Ser/Thr/Ala-Tyr are present at the C terminus of ProRS enzymes containing

a ZBD from bacteria to humans (Yaremchuk et al., 2000) (Figure S1A).

The ProRS ZBDs of mammals and Thermus thermophilus exhibit considerable sequence similarity, including a

conserved terminal Tyr residue (Figure S1A). Likewise, overlay of the crystal structure ofT. thermophilus (Crepin

et al., 2006; Yaremchuk et al., 2000, 2001) and human ProRS reveals nearly identical structures in the active site

region surrounding the terminal Tyr and ATP (Figure S5B). In T. thermophilus, based on the proximity of the

terminal Tyr477 to Arg264, Arg152, and the g-phosphate of ATP, a network of attractive electrostatic interactions

was proposed tomaintain abent conformationofATP for optimal reactionwith the adjacent Pro substrate (Yar-

emchuket al., 2001) (Figure S5B). The functionof the terminal Tyrwas clarifiedby finding thatmutation to Pheor

Ala in T. thermophilus only slightly reduced aminoacylation activity, suggesting the carboxylate group, rather

than the amino acid side chain, is effective (Yaremchuk et al., 2000). A similar charge network in human ProRS

consists of theC-terminal Tyr1512, Arg1163, Arg1278, andATP (Figure 4E). The carboxylategroupof Tyr1512 is 4.5 Å
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from the g-phosphate group of ATP and forms a linear axis with the Pro substrate (Figures 4D and 4E).We pro-

pose that, in addition to theattractive interactionsof Tyr carboxylatewith theArgamines, anelectrostatic repul-

sion with the g-phosphate drives ATP toward Pro for more efficient reaction to form the prolyl-adenylate

intermediate. A second ZBD function is GluProRS stabilization, possibly by masking an ubiquitination site.

These structure-activity relationships raise the possibility that the ZBDmight contribute to physiological regu-

lation of the catalytic activity of the ProRS domain, or pathological dysregulation of protein synthesis due to

deficient aminoacylation activity or high enzyme turnover.

Limitations of the study

We have investigated the role of the ZBD in the canonical function of human ProRS, i.e., charging to the

tRNA synthetase. We have not considered non-canonical functions potentially exhibited by the ZBD, a pos-

sibility given the structural similarity studies of the T. thermophilus ZBD with the C-terminal domain of

translation initiation factor 3 from Bacillus stearothermophilus. Likewise, our study focuses on the effect

of ZBD on prolyl-tRNA synthetase function, and does not consider potential long-range interactions that

extend to the GluRS region of the bifunctional enzyme. We show that ZBD-deleted GluProRS is incorpo-

rated into the MSC; however, its influence on the structure of the MSC has not been investigated.

CRISPR-mediated mutation induced a frameshift that appended four amino acids not present in mouse

ProRS, i.e., Lys-Pro-Ser-Val, before a stop codon terminated translation. The present study proposes a re-

action mechanism based on X-ray crystallography and limited mutagenesis studies by us and others. A

more detailed study involving molecular dynamics simulation and guided mutagenesis would give more

insights into the role of the C-terminal ZBD in the reaction mechanism.
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Figure S1. The ProRS ZBD in the three kingdoms of life. Related to Figure 1.
(A) Multiple sequence alignment of ProRS ZBD in Thermus thermophilus (Tt), Homo sapiens (Hs), and
Mus musculus (Ms). Sequence identity (*), strong homology (:), and weak homology (.) are indicated
below, and Zn2+-binding Cys residues above (•)
(B) The ProRS C-terminal ZBD is present in some (red) but not other (black) bacteria, archaea (magenta),
and in eukarya with separate ProRS (blue) or fused GluProRS (green).
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Figure S2. Strategy for generating mice with incomplete Eprs1 ZBD. Related to Figure 1.
(A) Selection of guide RNAs targeting exon 32.
(B) Mutagenesis efficiency determined by Miseq sequencing of Eprs1 locus from chimeric founder mice.
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Figure S3. Novel locked nucleic acid-based detection of mutant allele. Related to Figure 2.
 (A) Locked nucleic acid probe design for detection of wild-type and mutant mouse tail DNA using FAM and
HEX fluorophores and IBFQ. Locked nucleic acid bases are underlined (blue).
(B) Allele discrimination plot showing segregation of DNA from homozygous wild-type and Eprs1+/ΔZ mice.
(C) qPCR curves showing amplification and selective detection using wild-type (left) and mutant (right) probe
sets.
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Figure S4. Incorporation of wild-type and ΔZ mutant GluProRS in the MSC. Related to Figure 3.
HEK293F cells expressing FLAG-tagged wild-type or ΔZ mutant EPRS1 were subjected to immunoprecipitation
(IP) with anti-FLAG antibody, followed by immunoblot with antibodies against MSC constituents. To take into
consideration the low steady-state level of the ΔZ mutant, 3.5-times more eluate from the mutant cells was
loaded onto the gel.
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Figure S5. X-ray crystal structures of zinc-binding and catalytic domains of human ProRS.
Related to Figure 4.
(A) Depiction of ZBD structure in which the terminal 29 amino acids are removed; deleted segment is
lightened.
(B) Overlay of region surrounding terminal Tyr and ATP from human (green) and Thermus thermophilus
(cyan) ProRS.
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Transparent Methods 

Cell culture, reagents, and antibodies 

HEK293F cells were cultured in high-glucose DMEM supplemented with 10% fetal 

bovine serum and 4 mM L-glutamine. Cycloheximide and 1,10 phenanthroline were 

obtained from Sigma-Aldrich (St. Louis, MO), and MG132 from Cell Signaling (Beverly, 

MA). Antibodies against FLAG peptide and P80 were from Genscript (Piscataway, NJ). 

Antibodies against MetRS, AspRS, GlnRS, AIMP1, AIMP2, AIMP3, ubiquitin, GAPDH, 

α-tubulin, and β-actin were purchased from Proteintech (Rosemont, IL). Rabbit anti-

human GluProRS-linker antibody was generated as described (Jia et al., 2008)  

cDNA cloning and constructs 

For bacterial expression, human PARS cDNA was cloned with N-terminal His tag in 

pTrcHisB (ThermoFisher) by PCR using human EPRS1 cDNA (Halawani et al., 2018). 

For mammalian expression, human EPRS1 cDNA was cloned with N-terminal 3X-FLAG 

tag in pLenti under an EF-1α promoter, and stably expressed following lentiviral 

transduction with in HEK293F cells. For mutagenesis experiments, Q5® Site-Directed 

Mutagenesis Kit (New England Biolabs, Ipswich, MA) was used according to the 

manufacturer’s instructions. Primer sequences and annealing temperatures were 

generated with NEBaseChanger™. The ΔZ mutant was generated by deleting 29 amino 

acids from the C-terminus of ProRS by mutagenesis of wild-type constructs. All PARS 

and EPRS1 cDNA constructs were verified by sequencing.  

Generation of knock-in mice by Crispr/Cas9 

CRISPR guide RNAs were designed by CRISPOR (http://crispor.tefor.net/), in vitro-

synthesized, and screened using Guide-it™ Complete sgRNA Screening System 

(Takara Bio, Mountain View, CA). ZBD knock-in mice were generated using Crispr/Cas9 

technology by the Case Western Reserve University (CWRU) Transgenic Core. In vitro 

screened gRNA (sgRNA 483) and Cas9 nuclease were injected into fertilized C57BL/6J 
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oocytes. For Miseq analysis of mosaic F0 founder mice, tail clip genomic DNA was 

subjected to deep sequencing. A 250-bp region spanning the target site was PCR-

amplified using tagged primers (forward: TCCCTACACGACGCTCTTCCGATCT; 

reverse AGTTCAGACGTGTGCTCTTCCGATCT). Bar-coded amplicons were 

sequenced in parallel by MiSeq at CWRU Genomics Core. The strategy targeted 

mutation of a single nt at c.4449 near the 3' end of EPRS1 mRNA; however, non-

homologous end joining repair resulted in serendipitous insertion of a single adenine at 

the site. The insertion induced a frame-shift that appended 4 extraneous amino acids, 

Lys-Pro-Ser-Val, before a stop codon terminated translation. All mouse husbandry and 

experiments were performed in compliance with procedures approved by the Cleveland 

Clinic Lerner Research Institute Institutional Animal Care and Use Committee. 

Locked nucleic acid-based detection of mutant allele 

Amplification primers and LNA target probes were designed to detect editing events at 

the Cas9 cleavage site. The target site was amplified using forward and reverse 

primers, AACCTGGTGCTCCATCC and GATTCTTGCCACAGACACAC, respectively. 

Using OligoAnalyzer, allele-specific LNA probes were designed to exhibit a ΔTm > 15 °C 

by addition of up to 6 modified nucleotides surrounding the altered nucleotide, and were 

synthesized by Integrated DNA Technologies (IDT; Coralville, IA). The wild-type allele 

probe was labeled with 5' Hex (absorbance at 555 nm) and 3' Iowa Black Fluorophore 

Quencher (IBFQ). Mutant allele probe was labeled with 5' FAM (absorbance at 520 nm) 

and 3' IBFQ. The qPCR assays were performed on a StepOnePlus thermocycler 

(ThermoFisher Scientific) using PrimeTime® Gene Expression Master Mix (IDT). 

Phylogenetic analysis 

Amino acid sequences for phylogenetic analysis were collected from the non-redundant 

protein sequence database at NCBI. Human ProRS orthologs were identified by 

BLASTP using pairwise alignment view, E-value threshold of 10, and BLOSUM62 
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scoring matrix. Proteins in each genus were selected for maximal E-value and 

conserved ZBD, and sequences not annotated as ProRS removed. ZBD sequence 

conservation was determined using CLUSTAL Omega. Phylogenetic reconstructions 

were built using the function "build" of ETE3 v3.1.1 (Huerta-Cepas et al., 2016) as 

implemented on GenomeNet (https://www.genome.jp/tools/ete/). The tree was 

constructed using FastTree v2.1.8 with default parameters. 

Solvent-accessible surface area measurement 

Solvent-accessible surface area was determined in wild-type and ΔZ mutant human 

ProRS (PDB ID: 4HVC) using GETAREA (Sealy Center for Structural Biology, University 

of Texas Medical Branch, Galveston). A sphere of radius 1.4 Å, approximating a water 

molecule was used as probe. The difference in solvent-accessible surface area was 

calculated by subtracting the ratio of side-chain surface area to random coil value for 

each residue of wild-type structure from the mutant structure lacking the ZBD.  

RT-PCR analysis 

Total mouse RNA was isolated with Trizol, and subjected to reverse transcription and 

real-time PCR using AgPath-ID One-Step RT-PCR reagent (Ambion). TaqMan probes 

specific for EPRS1, β-actin and GAPDH (Applied Biosystems) were used. For qPCR 

analysis of polysome fractions, total RNA was isolated from the combined fractions by 

extraction with Trizol LS reagent and purified by RNeasy minikit (Qiagen, Valencia, CA). 

The RNA was quantitated and used for real-time PCR analysis. 

Immunoblot Analysis 

Tissue or cell lysates were denatured and resolved on 4–20% gradient SDS-PAGE. 

After transfer, the blots were probed with specific primary antibody followed by HRP-

conjugated secondary antibody, and developed using ECL or ECL plus reagent (GE 

Healthcare). 
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Isolation of nuclear and cytoplasmic RNA fractions 

Nuclear and cytoplasmic RNA fractions were isolated using phenol-free, small-scale 

Protein and RNA Isolation System (PARIS™, ThermoFisher). Total, cytoplasmic, and 

nuclear fractions were isolated from 106 HEK293F cells and RNA was isolated, treated 

with RNAse-free DNAse and used for qPCR analysis. 

3' RACE analysis 

3' RACE was done as described (Scotto-Lavino et al., 2006). Briefly, total RNA was 

isolated from mouse brain using Trizol, and cDNA was generated by reverse 

transcription followed by PCR using SuperScript III One-Step RT-PCR System 

(Invitrogen). The 52-nt (Q0–QI–T) CCAGTGAGCAGAGTGACGAGGACTCGAG-

CTCAAGCTTTTTTTTTTTTTTTTT primer was used to reverse transcribe cellular 

mRNAs. Primers Q0–CCAGTGAGCAGAGTGACG, QI–GAGGACTCGAGCTCAAGC and 

gene-specific primers GSP1-GATGCTGGAAAGGTTGCACAGATTC and GSP2-

CATTTTGTGGGGAAATTGACT were used in sequential amplifications to generate 

sequence-specific product. 

Polysome profiling 

Isolation of ribosome-rich, translationally-active and ribosome-poor, inactive mRNA 

pools was done by sucrose gradient fractionation. Cycloheximide (100 µg/mL) was 

added to 106 HEK293F cells for 20 min, and cells collected by low-speed centrifugation 

and washed twice with cycloheximide-containing, ice-cold PBS. Cell pellets were 

suspended in 350 µL of lysis buffer (10 mM Tris pH 7.4, 5 mM MgCl2, 100 mM KCl, 1% 

Triton X-100, 0.5% deoxycholate, 2 mM DTT, 100 µg/mL cycloheximide, and RNAse 

inhibitor) and incubated for 5 min on ice. The lysates were centrifuged at 15,000 g for 10 

min and supernatants collected. RNase inhibitor (5 µL, 40 U/µL) and cycloheximide (100 

µg/mL) were added to 50 ml each of freshly prepared 10% and 50% sucrose gradient 

solutions (20 mM HEPES pH 7.4, 100 mM KCl, 5 mM MgCl2, and 2 mM DTT) just 
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before use. Lysates were loaded onto the sucrose gradient and centrifuged at 29,000 

rpm for 4 h, and 8 fractions of about 1 mL were collected and combined. Fractions 

containing light ribonucleoproteins, 40S, 60S, and 80S ribosomes formed the 

translationally-inactive pool, and heavy polysome fractions formed the translationally-

active pool.  

Measurement of protein degradation 

HEK293F cells stably expressing wild-type or mutant EPRS1 cDNA with N-terminal 3X 

FLAG tag were used. Cells (1 x 106 cells) were incubated with cycloheximide (50 

µg/mL) in 4 mL of DMEM for up to 16 h, harvested, and lysed. Lysates were probed by 

immunoblot with anti-FLAG antibody. For proteasome inhibition, cells were incubated 

with 10 µM MG132. 

Determination of ProRS-bound Zn2+ 

Zn2+ content of recombinant, wild-type human ProRS and ZBD mutant were measured 

spectrophotometrically (Chongdar et al., 2015; Hunt et al., 1985). Cysteines were 

modified with MMTS (100 µM) to release protein-bound Zn2+, and released Zn2+ 

detected with 50 µM PAR in 50 mM Tris-HCl (pH 7.2) buffer containing 250 mM NaCl. 

PAR exhibits an εmax at 500 nm in the Zn2+-bound state. Background-corrected spectra 

were recorded at 25 °C. 

tRNA aminoacylation activity assay 

Prolyl-tRNA aminoacylation was measured in a reaction mixture containing 150 μM l-

[14C]proline and 1 mg of total yeast tRNA in 20 μL of assay buffer (20 mm HEPES, pH 

8.0, 100 mm NaCl, 5 mm MgCl2, 3 mm ATP, and 1 mm DTT). Reaction mixtures were 

pre-equilibrated at 37 °C, and initiated by addition of purified protein (2.5 μg) or lysate 

(2.5 μg), and incubated at 37 °C for 15 min. Aliquots (15 μL) were collected and spotted 

on glass filters (Whatman GF/CTM) presoaked with 5% trichloroacetic acid. Filters were 
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washed 3 × with 1 mL 5% trichloroacetic acid, followed by 2 × 1-mL washes with 100% 

ethanol. Filters were dried in a hybridization oven at 60 °C for 10 min and radioactivity 

quantified by liquid scintillation counting (TRI-CARB 1900TR, PerkinElmer Life 

Sciences). 
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