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Abstract
Chimeric antigen receptors (CARs) combine the antigen specificity of an antibody with the
biologic properties of T lymphocytes. While the concept has been developed more than 20 years
ago, only in recent years the clinical application of this approach has produced remarkable
objective clinical responses. In this brief review, we outline some specific aspects that have led to
antitumor responses in cancer patients.

Introduction
Gene transfer of αβT-cell-receptor (TCRs) and chimeric antigen receptors (CARs) can
reproducibly and efficiently redirect the antigen specificity of polyclonal T lymphocytes,
thus overcoming the tedious process and frequent failures of strategies based on the ex vivo
reactivation and expansion of T-cell precursors with native antitumor activity.

CARs are composed of a specific antigen binding moiety, obtained from the variable regions
of a monoclonal antibody, linked together to form a single chain antibody (scFv), and of
signaling components derived from the ζ chain of the TCR/CD3 complex and from
costimulatory molecules1;2 T lymphocytes expressing a CAR bind to the specific antigen
expressed on target cells through the scFv segment and then activate their lytic and
costimulatory pathways promoting cytotoxic activity and cell expansion (Fig. 1). The
immediate obvious advantage of this technology is the MHC unrestriction of the cytotoxic
activity mediated through the CAR component as the antigen recognition is antibody
mediated1. This approach licenses T cells to recognize a great variety of tumor cell types as
reviewed elsewhere3;4 Here we will briefly summarize some results obtained so far from
clinical trials and indicate some future directions.

Methodologies to express CARs and to expand T cells ex vivo
Gamma retrovirus and lentiviruses are frequently used to insert CARs in T lymphocytes for
clinical applications5-10. Such vectors have the benefit of efficiently infect T lymphocytes,
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integrate into the host genome and produce robust expression of the gene in human T cells
and their progeny. These gene delivery systems allow rapid manufacturing (2 - 3 weeks) of
CAR-modified T cells for clinical use5;7-10. Although these vectors have shown a very good
safety profile when applied to T lymphocytes, concerns remains related to the potential
insertional mutagenesis they have produced in hematopoietic stem cells (HSC)11-13. Other
reservations of these vectors may reside in their limited cargo capacity and high
manufacturing costs. Alternatives to viral vectors build on the delivery of plasmid
DNA14;15. While the electroporation of expression plasmids has been essentially abandoned
by the great majority of investigators due to its inefficiency, an emerging method takes
advantage of combining transposone/transposes (Sleeping Beauty14 and Piggybac15), with
the convenience of considerably reducing the manufacturing costs and increasing the cargo
capacity of the vector, favoring the inclusion of multiple genes. Still, ex vivo cultures
required to manufacture CAR-modified T cells with this technology remain considerably
long (4 - 5 weeks) because of the need to enrich the small percentage of CAR-modified T
cells. Conversely, increasing evidences suggest that the duration of ex vivo cultures, required
to produce sufficient number of CAR-modified cells for adoptive transfer, is particularly
relevant. Preclinical models16 and data from patients infused with ex vivo expanded tumor
infiltrating T lymphocytes show a direct correlation between short culture conditions and
increased in vivo proliferation/survival of these cells after adoptive transfer17. Hence it is
critical to develop methodologies that enable the generation of large numbers of CAR-
modified T cells in a relatively short period of time. Finally, the cytokines employed ex vivo
for T-cell expansion appear to affect the in vivo outcome of manufactured CAR-T cells. For
instance, the use of gamma-chain cytokines such as IL-7 and IL-15 as opposed to the
conventional IL-2 may aid in preserving subsets of T cells with central-memory
characteristics, thereby favoring their long-term persistence18.

CAR-modified T cells and the role of the costimulation
T-cell activation requires TCR engagement and co-stimulation provided by professional
antigen presenting cells19. A multiplicity of sequential T-cell costimulatory receptor-ligands
occurs in secondary lymphoid organs. In contrast, tumor cells and the tumor
microenvironment are deficient in costimulatory signals but abundant in inhibitory factors,
and ultimately induce T-cell anergy, exhaustion or death20.

To supply costimulation within the tumor microenvironment, costimulatory signaling
domains derived from molecules like CD2821;22, 4-1BB23 or OX4024 have been
incorporated in tandem into CARs (Fig. 1). This modification is undeniably a key element
for the current clinical success of CAR-T-cell therapies in lymphoid malignancies. Side-by-
side comparison of CARs with or lacking these endodomains clearly outlined the specific
role of costimulation in promoting the persistence of CAR-T cells in vivo after adoptive
transfer5. The costimulation provided by 4-1BB seems particularly effective7;10, although
additional and larger studies are needed to establish its potential superiority as compared to
the CD28-mediated costimulation and its provision of robust persistence and antitumor
effects also in the context of solid tumors, which are particularly abundant in inhibitory
mechanisms.

CAR-engraftment in specific T-cell subsets
The expression of CARs in polyclonal activated T cells remains the most practical procedure
used to rapidly generate large number of these antigen-specific T cells. Recently, interests
have been focused on expressing CARs in specific T-cell subsets to either take advantage of
the specific biologic properties or tissue tropism of each subset, or to reduce potential side
effects associated with the insertion of CARs in otherwise quiescent T-cell subtypes. In this
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regard, CARs have been inserted in γδT lymphocytes25, natural killer cells (NKs)26, central-
memory T cells27;28 and virus-specific cytotoxic T lymphocytes (CTLs)6;29;30 and natural
killer T cells (NKTs)31. γδT lymphocytes may be particularly suitable for applications in
patients with epithelial tumors due to their intrinsic tropism to these tissues, while NKs and
NKTs may be particularly effective in the context of the allogeneic HSC transplant as they
do not induce graft versus host disease. At our institution, we extensively investigated the
use of virus-specific CTLs as a platform for CAR engraftment. In particular, we
demonstrated in patients with relapsed refractory neuroblastoma that Epstein Barr Virus
(EBV)-specific CTLs engrafted with a CAR can persist long term, as they receive
physiologic costimulations though their native αβTCRs engaging EBV-epitopes presented
by professional antigen presenting cells, while promoting objective tumor regression
through the CAR component6. Since these cells also lack alloreactivity, we recently
extended ths apporch in the allogeneic setting by infusing donor-derived virus-specific CTLs
engrafted with a CD19-specific CAR in patients with B-cell derived malignancies relapsed
after allogeneic HSC transplant32;33.

Toxicities of CAR-modified T cells
Recent clinical trials have indicated that CAR-T cell-based therapies can be associated with
important side effects. An obvious toxicity is related to the lack of discrimination between
tumor cells and normal tissues when the selected antigen targeted by CAR-T cells is
deliberately a lineage restricted antigen. An obvious example of this type of toxicity is the
depletion of the B-cell lineage by CAR-T cells redirected against the CD19 antigen. In fact,
in parallel to promoting remarkable antileukemia effects, T cells directed against this antigen
cause profound and durable depletion of normal B cells8-10. This expected side effect can be
compensated by the infusion of human gamma globulins and may represent an acceptable
toxicity in patients with otherwise incurable leukemia.

However, now that the clinical efficacy of these therapies has been proved, the selection of
more restricted antigens sounds like a realistic alternative to control the tumor growth while
preserving at least part of the normal B-cell compartment22;34;35.

Life threatening toxicities due to the concomitant cytotoxic activity of CAR-T cells on
normal tissues have been reported in clinical trials targeting the carboxyl-anhydrase-IX
(CAIX)36 or HER237. CAR-T cells specific for CAIX, an antigen frequently overexpressed
in clear cell renal carcinoma, have induced liver toxicity as the same antigen is also
expressed by bile duct epithelial cells36. Similarly, CAR-T cells specific for HER2 may
have target the low level of HER2 expressed in the pulmonary parenchyma or vasculature in
an infused patient with lung cancer, causing fatal pulmonary dysfunction37. In addition to
these toxicities strictly related to the tissue distribution of the antigen, a systemic
inflammatory response syndrome (SIRS) or cytokine storm has been reported in patients
infused with CAR-T cells7;10. This effect is likely attributable to a general perturbation of
the immune system and associated with the release of high levels of proinflammatory
cytokines, such as TNF-α and IL-6. Although potentially reversible by the prompt
administration of blocking antibodies this syndrome remains a major concern for the large
scale application of these therapies to non specialized centers.

As we increase the potency and persistence of CAR-T cells it is likely that the inclusion of
switch off gene systems will become desirable to rapidly eliminate CAR-T cells in case of
severe or life threatening toxicity, or on demand to terminate their effects like to confine the
B-cell aplasia associated with CD19-CAR-specific T cells. The inducible caspase9 suicide
gene that we developed in our group is quite attractive for this function38;39. Indeed, this
system induces indeed rapid apoptosis of T cells, has reduced immunogenicity as the
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sequences are all of human origin and, is selectively activated by an otherwise bioinert small
molecule known as chemical inducer of dimerization (CID)39;40.

Conclusion and Future Perspectives
The objective clinical responses reported in small clinical studies in patients with lymphoid
malignancies treated with CAR-modified T cells have been embraced by a general
enthusiasm involving not only the scientific community but also biotech companies
interested in help moving these treatments from the academic environment to a broader
clinical application. Several steps remain to be refined especially in the simplification of the
manufacturing process to extend the application of these technologies, but their
effectiveness has been finally incontrovertibly demonstrated.
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Fig. 1. Chimeric Antigen Receptors (CARs)
CARs are most commonly created by joining the heavy- and light-chain variable regions of
a monoclonal antibody (Panel A) that binds to a specific antigen to the intracellular portion
of a T-cell signaling molecule, such as components of the TCR-associated CD3 complex (ζ-
chain) (Panel B). Endodomains of costimulatory molecules such as CD28, 4-1BB and OX40
(Panel C) are then included in tandem to generate second and third generation CARs (Panel
D).
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