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Abstract

Monoclonal antibodies (mAbs) and their directly derived cell-based application known as 

chimeric antigen receptors (CARs) ensue from the need to develop novel therapeutic strategies 

that retain high anti-tumor activity, but carry reduced toxicity compared to conventional chemo- 

and radio-therapies. In this concise review article we will summarize the application of antibodies 

designed to target antigens expressed by tumor cells, and the transition from these antibodies to 

the generation of CARs.

Development of monoclonal antibodies for cancer treatment

The use of mAbs in cancer patients was pioneered in 1980 by Nadler et al in a patient with 

relapsed lymphoma(1). Twelve years later the US Food and Drug Administration (FDA) 

approved the first therapeutic monoclonal antibody (mAb) (Orthoclone OKT3®) for the 

treatment of patients with acute transplant rejection(2). In the last 30 years more than a 

dozen of mAbs specific for different antigens of interest for human malignancies have been 

developed, received regulatory approval and marketed. Although Rituximab (anti-CD20 

mAb) is the most extensively used, over 2900 clinical trials based on the administration of 

mAbs have been reported and many others are currently ongoing in cancer patients 

(ClinicalTrials.gov). In addition, the development of mAbs experienced a significant 

technical evolution, from the first production of murine, rabbit and chimeric mAbs to the 

new generation of humanized mAbs that lead to lower immunogenicity and therefore longer 

half-life in vivo(3).

These therapeutic mAbs are designed to recognize a tumor antigen and cause cell death 

through various mechanisms. Briefly, mAbs can directly induce apoptosis of tumor cells or 
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indirectly eliminate them by recruiting various immune cells with cytotoxic properties 

(monocytes, macrophages and natural killer cells) (phenomenon know as antibody-

dependent cell mediated cytotoxicity, ADCC) or by activating the complement cascade 

(complement dependent cytotoxicity, CDC)(4;5). In addition, mAbs have been modified to 

carry tumoricidal substances, such as chemotherapeutic agents, radioisotopes, toxins or 

small molecule(6;7). Some of these antibodies such as Brentuximab vedotin (SGN-35) have 

been approved by the FDA and are in use for the treatment of CD30+ Hodgkin’s 

lymphoma(8). Finally, a new group of mAbs called bispecific T-cell enhancing (BITE) 

antibodies have been developed to simultaneously target two antigens, one on tumor cells 

and the other one on effector T cells to recruit and co-localize immunological active cells to 

the tumor(9;10). The best example of this specific application is Blinatumomab (MT103) 

(CD19- and CD3-specific Ab) that has promoted numerous clinical responses in patients 

with non-Hodgkin’s lymphoma(11;12) and acute lymphoblastic leukemia (13;14).

From mAbs to the generation of antibody-based effector T cells

The concept of directly coupling the antigen-specificity of a mAb with the effector function 

of T lymphocytes has been pioneered by Eshhar et al. in 1989(15). This approach 

completely transformed the dogma of T-cell specificity from MHC-peptide-restricted 

recognition to “MHC-independent-antigen” recognition. This new class of antibody-based 

molecules used to engineer T lymphocytes has been labeled T-bodies or more recently 

chimeric antigen receptor (CARs). Table 1 summarizes the antigens that have been targeted 

with mAbs and are now targeted with CARs, and those directly targeted via CAR-mediated 

approaches in clinical trials.

CARs are generated by fusing an extracellular antigen-recognition moiety with intracellular 

signaling endo-domains, and are anchored to the cell membrane through a trans-membrane 

domain. The antigen recognition moiety is derived from a mAb in the form of a single-chain 

Ab fragment (scFv) that includes the variable heavy (VH) and light (VL) chains. The 

signaling endo-domain is derived from the CD3ζ chain or the chain of the high-affinity IgE 

Fc receptor (FcεRI). When expressed by T lymphocytes, the scFv determines the CAR 

antigen specificity and allows T cells to engage the antigen expressed by tumor cells in a 

MHC-independent manner. After binding to the target, cross-linked CAR molecules activate 

the endo-domain signaling, thus inducing the lysis of the engaged target cells through 

granzyme-B and perforin-pathways (15).

A more advanced generation of these molecules aims at further engineering these molecules 

to recapitulate the costimulatory events that must occur upon TCR triggering to fully 

activate T lymphocytes. Signaling domains derived from T-cell-costimulatory receptors are 

thus directly incorporated in tandem with the CD3 chain. Intracytoplasmic signaling 

domains of CD28, CD134 (OX40), CD137 (4-1BB), inducible costimulatory (ICOS), CD27, 

DAP10 or CD244 (2B4) in various combinations have been used to construct 2nd and 3rd 

generation CARs (16-22) (Figure 1).

Caruana et al. Page 2

Semin Oncol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



MAbs and CAR-T cells: advantages and disadvantages

The development of new technologies for the construction of mAbs and in particular the 

generation of chimeric and humanized mAbs has enormously improved safety and efficacy 

of these agents, and justifies their current large use in clinical trials in cancer patients. 

Humanized mAbs are characterized indeed by drastically reduced immunogenicity 

compared to mouse-originated mAbs, reducing the incidence of anaphylactic reactions and 

prolonging the half life of these molecules after infusion into the patients(3).

Objective drawbacks exit that limit the efficacy of mAbs and render the combination of the 

antigen specificity of a mAb with the biological properties of T lymphocytes as achieved 

with CARs of high relevance. For instance, tumor cells can escape the toxic effects of mAbs 

if the targeted antigen has dim or heterogeneous expression, or if the mAb binds to the 

antigen in a suboptimal fashion thus failing to recruit the effector cells that ultimately 

promote the elimination of tumor cells(23;24). Finally, since mAbs are generally 

administered via intravenous infusion, physical barriers in vivo, such as endothelial cells and 

extracellular matrix, can drastically reduce the effective biodistribution of mAbs to the 

tumor cells(24). In contrast, CAR-engineered T cells, while preserving the same antigen 

specificity of mAbs, have the multiple advantages of triggering the elimination of tumor 

cells with low antigen expression, the tissue biodistribution property of cellular vehicles and 

the self amplification property of the immune cells.

Targets with low antigen expression

Monoclonal Abs and CAR-T cells, even when they share the same antigen specificity, use 

different mechanisms to eliminate the target cells. Specifically, CAR-T cells directly lyse 

the tumor cells upon engaging the antigen using the physiologic cytotoxic machinery of 

killer cells. High functional T-cell-receptor can recognize few peptide/HLA-complexes(25). 

Similarly, CARs ectopically expressed at certain density by T lymphocytes trigger 

cytotoxicity against target antigens expressed at relatively low levels by tumor cells(18;26). 

For this specific property, CAR-T cells appear superior to mAbs as target cells with low 

antigen expression can escape recognition by mAbs, as high numbers of antigen molecules 

are required for mAbs to efficiently activate either the ADCC or the complement cascade 

(27;28). This desirable characteristic of CAR-T cells has however its own caveats. CAR-

mediated recognition of cells with low antigen expression raises the concern of “on target” 

but “off tumor” toxicity if the antigen is shared at certain levels by the normal compartment 

from which the tumor originates or by other normal tissues(29;30).

Biodistribution and tumor environment

Biodistribution of mAbs within the tumor environment, particularly in solid tumors, has 

been one of the major challenges. Monoclonal Abs are particularly effective in lymphoid 

malignancies. In early clinical studies with Rituximab, objective regressions were reported 

not only in patients with residual disease, but also in patients presenting with large lymph 

adenopathies(31). In the case of solid tumors, mAbs almost invariably fail in patients with 

large tumor burden(32). Studies specifically designed to measure the biodistribution of 

mAbs in solid tumors showed that a very small fraction of the mAb infused intravenously 
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(<0.1% per gram of tissue) can be detected within the tumor(33). This limited 

biodistribution is attributed to a series of physical hurdles that mAbs infused intravenously 

must overcome to reach the tumor cells. The endothelial barrier, with its thigh endothelial 

junctions, hinders the passage of macromolecules such as mAbs (34). After extravasion, 

mAbs subsequently encounter interstitial and epithelial barriers that reduce their 

perfusion(35). In contrast to mAbs, T lymphocytes have the physiologic capacity to 

extravasate(36), and travel within tissues as they can actively use chemokine gradients(37) 

and release proteolytic enzymes to degrade components of the extracellular matrix(38). 

Thus, CAR-T cells are anticipated to use the same properties which are instead lacking in 

the procedure of passive administration of mAbs. Up to now the clinical experience with 

CAR-T cells in lymphoid malignancies targeting the CD19 antigen mirrors the clinical 

experience with Rituximab since robust clinical responses have been reported(39-42). 

Although the clinical experience with CAR-T cells in solid tumors remains very limited, 

initial objective clinical responses have been reported in neuroblastoma(43;44). However, as 

several preclinical models using CAR-T cells anticipated, additional engineering of T cells, 

such as manipulations of chemokine receptors expressed by the T cells(45-47), may be 

required to optimize the trafficking of CAR-T cells within the tumor environment.

Self amplification and persistence

Due to their still relatively short half life, mAbs requires multiple administrations to be 

effective in cancer patients. The enormous advantage of adoptively transferred T cells is 

their capacity to expand in vivo upon transfer and persist long term if a memory pool is 

established. Previous clinical trials in which ex vivo expanded virus-specific cytotoxic T 

lymphocytes were infused in patients with Epstein-Barr-virus-related post transplant 

lymphomas clearly demonstrated that this outcome definitely occurs as these cells can be 

detected for more than 12 years after adoptive transfer (48). Engineered CAR-T cells seem 

to maintain the same promise. Although the observation is still limited, the incorporation of 

the 4-1BB costimulatory endodomain supports a robust and functional long term 

engraftment of CD19-specific CAR-T cells as documented by the prolonged B-cell aplasia 

(more than 18 months) occurring in patients with detectable CAR signal after a single 

administration of gene modified T cells(39). CD28 costimulation, although functional in 

term of expansion and antitumor activity, appears however a bit more transient and not 

followed by a comparable extended T-cell survival(40-42;49). However, additional studies 

and higher numbers of patients enrolled in clinical studies are needed to draw definitive 

conclusions. Furthermore, the effect of these CAR-T cell costimulations in the context of 

solid tumors remains to be elucidated.

Conclusions and future directions

After some initial negative clinical experiences, CAR-T cell therapies represent now a very 

solid approach and a real hope for the future of cancer immunotherapies. Because CAR-

based therapies are strictly linked from mAb-based therapies, at least in term of antigen 

specificity, we need to seek whether CAR-T cells offer sufficient advantages to justify the 

need for a personalized medicine, since CAR-T cells need to be manufactured for each 

single patient while mAbs are off-the shelf reagents. Preliminary evidences are, at least in 
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part, in favor of suggesting the superior role of CAR-T cells to mAbs, since the former can 

promote self amplification and sustained effects, and can recognize tumor cells with antigen 

expression at levels that can elude mAb’s recognition. However, whether adoptively 

transferred CAR-T cells are superior to mAbs in term of biodistribution to the tumor still 

requires a robust demonstration although essential to develop effective strategies especially 

for solid tumors. The proposed engineering of CAR-T cells to optimize their trafficking to 

the tumor environment represents a potential way to achieve this desired effect. Finally, 

greater efficacy frequently comes with toxicities, and in the specific case of CAR-T cells, 

these toxicities cannot be necessarily anticipated from the previous and safe use of a mAb 

specific for the same target due to the intrinsic functional activity of T cells to which the 

CAR molecule are engaged. Thus a very careful selection of the target antigen must be used 

in case of CAR-T-cell based therapies.
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Figure 1. 
Schematic representation of a Chimeric Antigen Receptor. Panel A describes the generation 

of the scFv moiety from a mAb and its fusion with the -chain of the T-cell receptor. Panel B 
illustrates the native form of co-stimulatory endodomains. Panel C illustrates the schematic 

representation of 1st, 2nd, and 3rd generation CARs including the intracytoplasmic domains 

of either CD28 or 4-1BB or the combination of CD28-OX40 or CD28-4-1BB.
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Table 1

Clinical Trials

Antibodies CAR

Name N Vector N

CD19

MEDI-551 8 ScFv.CD19.CD3ζ 7

SGN-CD19A 2 EBV-CTLs ScFv.CD19.CD3ζ 1

SAR3419 5 Multi-virus CTLs ScFv.CD19.CD3ζ 1

— --- Centra-memory ScFv.CD28.CD3ζ+EGFR 1

— --- T cells and EBV-CTLs
ScFv.CD19.CD28.CD3ζ

1

--- --- ScFv.CD19.CD28.CD3ζ 5

— — ScFv.CD19.41BB.CD3ζ 7

— — ScFv.CD19.41 BB.CD28.CD3ζ 1

Kappa light
chain of Igs --- --- ScFv.Kappa.CD28ζ 1

CD20

Ibritumomab tiuxetan 87 ScFv.CD20.41BBζ 1

Obinutuzumab 21 ScFv.CD20.CD28.41BBζ 1

Ofatumumab 95 --- ---

Rituximab 1231 --- ---

Tositumomab 85 --- ---

Veltuzumab 8 — —

AME 133 2 — —

CD30
Brentuximab vedotin 60 ScFv.CD30ζ 1

— — ScFv.CD30.CD28ζ 1

CD33
Gemtuzumab ozogamicin * 57 ScFv.CD33.41BBζ 1

SGN-CD33A 1 --- ---

CD340 (Her2) -
EGFR2

Pertuzumab 58 ScFv.HER2ζ 1

Trastuzumab 599 ScFv.HER2.CD28ζ 1

Trastuzumab emtansine 37 ScFv.HER2.CD28ζ+TGFβ resist in EBV-
CTLs

1

ScFv.HER2.41BBζ 1

ScFv.HER2.CD28ζ in CMV-CTLs 1

EGFR- Her1

Nimotuzumab 35 ScFv.EGFRvIN.CD28.41BBζ 1

Panitumumab 151 ScFv.EGFRζ 1

Cetuximab 584 ScFv.EGFR.41BBζ 1

PSMA Capromab 2 ScFv.antiPSMA.CD28ζ 1

CEA
Besilesomab (Europe) ? ScFv.antiCEA.MFEζ 1

--- --- ScFv.antiCEA.CD28ζ 1

GD2

3F8 30 ScFv.GD2.CD28.OX40ζ.iCasp9 1

Ch14.18 12 ScFv.GD2.CD28.OX40ζ.iCasp9 in VZV-
CTLs

1
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Clinical Trials

Antibodies CAR

Name N Vector N

T4 — — ScFv.T4.CD28ζ 1

LewisY --- --- ScFv.antiY.CD28ζ 1

In bold are shown mAbs that are FDA approved;

*
Withdrawal from Market in 2010.
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