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Abstract: Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens
and promotion of plant growth, which makes them potential candidates for most agricultural
and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular
metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp.
improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides
being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation,
phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting
strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide
range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential
biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains
unclear which individual or combined traits could be used as predictors in the selection of the best
strains for crop productivity improvement. Due to numerous factors that influence the successful
application of Bacillus spp., it is necessary to understand how different strains function in biological
control and plant growth promotion, and distinctly define the factors that contribute to their more
efficient use in the field.

Keywords: Bacillus; biocontrol agents; antibiotics; lytic enzymes; siderophores; induced systemic
resistance; plant growth-promoting rhizobacteria

1. Introduction

Plant diseases, caused by various microorganisms, including fungi, bacteria, viruses, nematodes
and protozoa, affect agricultural production and result in major yield losses [1]. Approximately 20–40%
of losses in crop yield are caused by pathogenic infections [2]. Different strategies have been used to
reduce the occurrence of plant diseases including pesticides, less susceptible cultivars, crop rotation,
and other control measures, but their efficacy is usually insufficient due to the survival and resistance
of soil-borne pathogens [3]. Moreover, the excessive use of synthetic pesticides has adverse effects
on the environment and living organisms, and also disturbs ecosystem functioning and decreases
agricultural sustainability [4].

Nowadays, research is directed to environmentally friendly alternatives for controlling plant
pathogens and improving crop production, which are recommended within an integrated crop
management system (ICMS) [5]. As an important component of an ICMS, biological control is defined
as the use of beneficial organisms to reduce the negative effects of plant pathogens and promote
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positive responses by the plant [6]. The most common approach to biological control is the selection of
antagonistic microorganisms, studies on their mechanisms of action and development of a biocontrol
preparation [7].

Bacillus species are among the most investigated biocontrol agents i.e., biopesticides which
contribute to suppression of plant pathogens by antagonism and/or competition [8]. Inhibition of
pathogen growth by Bacillus spp. entails the involvement of mechanisms such as competition for
nutrients and space, production of antibiotics, hydrolytic enzymes, siderophores, and/or inducing
systemic resistance [9]. Bacillus spp. also can act as biofertilizers or biostimulators, either by facilitating
the uptake of certain nutrients from the environment (nitrogen fixation, phosphate solubilization), or
by providing the plant with a compound (biosynthesis of plant hormones) [10].

Hence, Bacillus spp. represent an alternative to plant growth enhancement agrochemicals, i.e.,
synthetic pesticides and fertilizers. The beneficial effects of Bacillus spp. on plant growth and yield have
been demonstrated in several agricultural crops including wheat, maize, soybean, sunflower, common
bean, tomato, pepper, potato, cucumber, and many others [11]. Application of Bacillus spp. to increase
the productivity of field and vegetable crops is limited by variability among the results obtained in the
laboratory, greenhouse and field [12]. In fact, when reintroduced by plant/soil inoculation, only 1 to 2%
of rhizobacteria exert a beneficial effect on plant growth [13]. Due to numerous factors that affect the
effectiveness of Bacillus spp., it is necessary to understand how different strains deploy biocontrol and
growth-promoting actions in plants, and clearly determine the traits and manner for selecting the best
acting strains [12].

This review summarizes the different mechanisms utilized by Bacillus spp. in plant disease control
and plant growth promotion, and focuses on the new approaches to the improvement of beneficial
plant–Bacillus interactions and Bacillus spp. efficiency in the field.

2. Genus Bacillus

The genus Bacillus was established in 1872 by Cohn and encompasses over 200 described species
and subspecies belonging to the Firmicutes phylum. Based on the morphological characteristics,
bacteria of this genus are described as rod-shaped, Gram-positive, aerobic or facultatively anaerobic,
and catalase-positive [14]. Due to their broad physiological ability and capability to form endospores,
Bacillus spp. are resistant to adverse environmental conditions and omnipresent in a wide range of
habitats, including soil. Bacillus spp. represent the predominant soil and rhizosphere bacteria, where
they comprise up to 95% of the Gram-positive bacterial populations [15]. Furthermore, they are among
the most widespread endophytic bacteria [16].

Bacillus is a large and diverse group of non-pathogenic and pathogenic bacteria. Most species of
Bacillus, as well as their products, are considered safe for intended use in the environment [17]. These
bacteria are preferred for commercialization for their ability to secrete several bioactive metabolites,
produce extremely tolerant endospores, and grow rapidly in different media [18]. Consequently, they
maintain viability and can be easily formulated and stored [19]. Populations of Bacillus spp. can
successfully persist in the soil and plant rhizosphere without any perdurable effects on other bacterial
populations [20]. Commercial Bacillus-based preparations are developed and distributed worldwide
and contain beneficial strains of Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus pumilus, Bacillus
licheniformis, Bacillus megaterium, Bacillus velezensis, Bacillus cereus, Bacillus thuringiensis, etc., [21].

3. Mechanisms of Biological Control

3.1. Antibiotics

The antagonistic activities of Bacillus spp. are frequently related to the production of secondary
metabolites with antibiotic properties. These compounds mainly involve peptides with low molecular
weight that are generated ribosomally (bacteriocins) or non-ribosomally (lipopeptides, peptides,
polyketides).
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Bacteriocins are ribosomally synthesized peptides produced by numerous bacteria which might
be useful against pathogenic and antibiotic-resistant bacteria [22]. Bacteriocins act against target cells
by interfering with the synthesis of the cell wall or by forming pores in the cell membrane [23]. The
antimicrobial mechanisms of bacteriocins are usually directed against the species which are the same or
closely related to the producers, with a narrow spectrum of action. Nevertheless, due to the production
of bacteriocins, Bacillus spp. exhibit a broad-spectrum of antibacterial activity [24]. Some reports
identify bacteriocins and bacteriocin-like substances (BLSs) (amylolysin, amysin, subtilin, subtilosin A,
subtilosin B, thuricin) isolated from various Bacillus spp., including B. amyloliquefaciens, B. subtilis, B.
thuringiensis, B. cereus, and B. coagulans [25]. Isolation and characterization of bacteriocins and BLSs
may have an important use in the biological control of the pathogenic bacteria. However, Bacillus
spp., which produce non-ribosomally synthesized lipopeptides and peptides, exhibit much stronger
antimicrobial activity [26].

Cyclic lipopeptides (LPs), well known for their antagonistic action against a wide range of
plant pathogens, are the most thoroughly studied antibiotic compounds in Bacillus spp. [27]. These
peptides are synthesized by large non-ribosomal peptide synthetases (NRPSs) [28]. The primary
mechanisms of LPs’ actions usually involve an interaction with the cell membrane of the target
pathogens, causing changes in its structure and permeability through disruption, solubilization or
formation of ion-conducting pores [26]. It has also been demonstrated that LPs interact with intracellular
structures, such as DNA [29]. Recent investigations have shown that LPs influence colonization and
persistence of Bacillus in the rhizosphere, and stimulate plant defense mechanisms [30].

The most important cyclic LPs from Bacillus spp. are represented by surfactin, iturin and fengycin
families [27]. These antibiotics consist of amino acids, amino- or hydroxyl-fatty acids with different
lengths of hydrocarbon chains. The surfactin family (surfactin, lichenysin, pumilacidin, halobacilin,
bamilocyn) are heptapeptides, identified in B. subtilis, B. amyloliquefaciens, B. licheniformis, B. pumilus and
Bacillus coagulans. Surfactins act as both antifungal and antibacterial agents. The iturin family (iturin,
mycosubtilin, bacillomycin, bacillopeptins, mixirins, mojavensin, subtulene) consists of heptapeptides
produced by B. subtilis, B. amyloliquefaciens, Bacillus circulans, B. pumilus, and Bacillus vallismortis. Iturins
display inhibitory effects on a wide range of fungi, but are less active against bacteria. The fengycin
family (fengycin, plipastatin, maltacin) are decapeptides of which production was detected in B. subtilis
and B. amyloliquefaciens. Fengycins are useful in protecting plants against fungal pathogens [26–28].

Other non-ribosomally synthesized LPs include kurstakins, bacitracins, polymyxins, gramicidins,
and tyrocidines. The kurstakins are cyclic or linear heptapeptides that are specific to the B. cereus and
B. thuringiensis, with the ability to destabilize biological membranes of both bacteria and fungi [31].
Bacitracins are cyclic decapeptides produced by B. licheniformis, B. subtilis, and B. sonorensis, of which
activity is primarily directed against Gram-positive bacteria [32]. Polymyxins are cyclic decapeptides
produced by Paenibacillus polymyxa (Bacillus polymyxa), which inhibit Gram-negative bacterial cells.
Gramicidins and tyrocidines are cyclic decapeptides produced by Bacillus brevis, active against a broad
range of Gram-negative and Gram-positive bacteria [33].

Several Bacillus spp. are known to produce other non-ribosomally synthesized antibiotics, such
as peptides (bacilysin, rhizocticin, amicoumacin, mycobacillin, diketopiperazines) and polyketides
(bacillaene, dihydrobacillaene, difficidin, macrolactin), with diverse antifungal and antibacterial
activities [34].

The most commonly used biocontrol agents, B. subtilis and B. amyloliquefaciens, dedicate 4–5%
and 8.5% of total genetic capacity to synthesis of secondary metabolites, with the potential to produce
more than two dozen structurally diverse antimicrobial compounds [27,35]. Nowadays, gene clusters
encoding for bacteriocins, as well as peptides and polyketides, can be readily identified in genomic
sequences by genome mining. In total, 583 putative bacteriocin gene clusters were identified from 328
strains of 57 Bacillales species, while 1231 putative non-ribosomal antimicrobial gene clusters were
detected and sub-grouped into 23 types of peptide and five types of polyketide compounds distributed
over 49 species of Bacillales [36].



Microorganisms 2020, 8, 1037 4 of 19

Numerous studies revealed a broad antimicrobial effect by Bacillus spp. due to production
of antibiotics (Table 1). Bacillus spp. mostly produce LPs from one family, while a few strains
were identified as co-producers of different LPs [37]. Furthermore, antimicrobial activity of Bacillus
spp. relies on the proportion and diversity in the production of antibiotics [38]. Fusarium clove
rot of garlic, as well as head blight of wheat, were successfully suppressed by B. subtilis and/or B.
amyloliquefaciens, due to LPs production [39,40]. In another study, B. amyloliquefaciens was defined
as a producer of bacteriocins, surfactin, and fengycin, and was proven as a very potent biocontrol
agent against numerous Gram-positive and Gram-negative bacteria, as well as Fusarium oxysporum,
Fusarium avenaceum, and Mucor sp. [24]. Ongena et al. [41] found that iturin and fengycin produced
by B. subtilis, which contributed to antifungal activity against Pythium ultimum. Han et al. [30]
showed that iturin-producing B. amyloliquefaciens was effective in the biocontrol of Verticillium dahliae.
Similarly, lipopeptides from Bacillus sp. and B. amyloliquefaciens such as surfactin, iturin, and fengycin,
were responsible for antifungal activity against Sclerotinia sclerotiorum [42]. When tested for its
biocontrol potential, B. amyloliquefaciens and B. pumilus LPs producing strains were very effective in
the reduction in Pseudomonas syringae pv. aptata infection of sugar beet [43]. Additionally, Yang et
al. [44] established that B. subtilis was able to suppress Gaeumannomyces graminis var. tritici infection of
wheat through the production of LPs, namely iturin, surfactin, plipastatin, bacillomycin, and difficidin.
Antifungal lipopeptide produced by B. licheniformis, determined as surfactin, was very successful
against Magnaporthe grisea, a causative agent of rice blast [45]. Antifungal activity against Rhizoctonia
solani, Pythium aphanidermatum, and Sclerotium rolfsii was attributed to B. pumilus because of the
production of lipopeptide pumilacidin from the surfactin family [46].

Table 1. Biocontrol mechanisms exhibited by Bacillus species.

Bacillus Species Mechanism (s) Target Pathogen (s) Plant Disease Reference

Bacillus amyloliquefaciens Bacteriocins, surfactin,
fengycin

Various pathogenic bacteria,
Fusarium oxysporum, Fusarium

avenaceum, Mucor sp.

Several diseases of
field and vegetable

crops
[24]

Bacillus amyloliquefaciens Iturin Verticillium dahliae Wilt of cotton [30]

Bacillus
amyloliquefaciens/Bacillus

subtilis

Iturin, surfactin/surfactin,
fengycin Fusarium graminearum Head blight of wheat [39]

Bacillus subtilis Surfactin, Lytic enzymes Fusarium spp. Clove rot of garlic [40]

Bacillus subtilis Iturin, fengycin Pythium ultimum Damping-off of bean [41]

Bacillus sp., Bacillus
amyloliquefaciens

Surfactin, iturin, fengycin,
siderophore Sclerotinia sclerotiorum White mold of

common bean [42]

Bacillus pumilus, Bacillus
amyloliquefaciens Lipopeptides Pseudomonas syringae pv. aptata Leaf spot disease of

sugar beet [43]

Bacillus subtilis Iturin, surfactin, plipastatin,
bacillomycin, difficidin

Gaeumannomyces graminis var.
tritici Take-all of wheat [44]

Bacillus licheniformis Surfactin Magnaporthe grisea Blast disease of rice [45]

Bacillus subtilis Chitinase Rhizoctonia solani Stem canker and black
scurf of potato [47]

Bacillus amyloliquefaciens Protease Fusarium oxysporum f. sp.
lycopersici Wilt disease of tomato [48]

Bacillus amyloliquefaciens Siderophores, cellulase,
lipase, protease, chitinase Clavibacter michiganensis Bacterial canker of

tomato [49]

Bacillus sp. Protease, glucanase,
chitinase, siderophores Fusarium verticillioides Stalk and ear rot of

maize [50]

Bacillus velezensis Protease, Chitinase,
Cellulase, Glucanase Botrytis cinerea Gray mold disease of

pepper [51]

Bacillus subtilis Siderophores Fusarium oxysporum f.sp.
capsici Wilt of pepper [52]

Bacillus subtilis Siderophores, lytic enzymes Bipolaris sorokiniana Spot blotch of wheat [53]
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3.2. Lytic Enzymes

Antimicrobial activity of Bacillus spp. could also be due to the production of hydrolytic enzymes
such as chitinases, chitosanases, glucanases, cellulases, lipases, and proteases, which efficiently
hydrolyze the major components of the fungal and bacterial cell walls.

Chitinases (EC 3.2.1.14) are glycoside hydrolases (GHs) which degrade the β-1,4-glycosidic bonds
in chitin, the second most abundant naturally available polysaccharide after cellulose, and the main
component of the fungal cell wall [54]. Bacteria primarily produce chitinases in order to degrade chitin
for its utilization as an energy source, whereas some bacterial chitinases are prospective biological
control agents against a variety of plant diseases caused by phytopathogenic fungi [47,55]. Chitosanases
(E.C. 3.2.1.132) are GHs which catalyze the hydrolytic degradation of the β-1,4-glycosidic bonds in
the chitin derivative-chitosan [56]. Chitosanases are important for the extensive carbon and nitrogen
recycle [57]. Since chitosan is also found in fungal cell walls, chitosanase-producing Bacillus spp.
may be used as biocontrol agents to prevent plant infection caused by pathogens [58]. Glucanases
are GHs which hydrolyze glycosidic bonds present in α-glucans and β-glucans. α-1,3-glucan is not
indispensable cell wall component, but plays an important role in some fungi during cell separation
and vegetative growth [59], while β-1,3-glucan is the second major component of the fungal cell wall
after chitin [60]. The primary role of cell wall glucans in fungi is structural, but they may also be
degraded and used as nutritional sources. Bacillus spp. are a rich source of α-1,3-glucanase (EC 3.2.1.84)
and β-1,3-glucanase (EC 3.2.1.39). The enzymes have previously been isolated from Bacillus brevis,
B. licheniformis, B. subtilis, B. circulans, and Bacillus halodurans [61]. Besides chitin and glucan, the
skeleton of fungal cell walls contains cellulose, lipids and proteins. Bacterial cellulases, lipases and
proteases may, therefore, play a significant role in the cell wall lysis that occurs during pathogen–Bacillus
interactions [48].

Successful cell wall degradation depends on the activity of more than one enzyme. Chitinase
activity is preceded by, or coincides with, the hydrolytic activity of other enzymes, especially glucanases.
Mixtures of hydrolytic enzymes with complementary modes of action may be required for maximum
efficacy, while correct combinations of enzymes may increase antifungal activity [62].

Recently, several reports have documented the production of lytic enzymes from Bacillus
spp. biocontrol agents (Table 1). Chitinase-producing B. subtilis was effective against Rhizoctonia
solani [47]. Crude and purified protease of B. amyloliquefaciens showed efficacy in biocontrol of
Fusarium oxysporum [48]. The potential of B. amyloliquefaciens for biocontrol of Clavibacter michiganensis
ssp. michiganensis was attributed to the production of lytic enzymes (cellulase, lipase, protease,
chitinase) [49]. Hydrolytic enzymes (protease, glucanase, chitinase) produced by Bacillus sp. were
responsible for a strong inhibitory activity against Fusarium verticillioides causing stalk and ear rot of
maize [50]. The strength of hydrolase activity (protease, chitinase, cellulase, glucanase) was the key
factor of B. velezensis in control of pepper gray mold caused by Botrytis cinerea [51]. Generally, it has
been found that strains of Bacillus spp. which have the ability to produce cell wall hydrolases are more
effective in the suppression of plant pathogens [63]. In search of efficient biocontrol agents, isolation
and characterization of enzyme-producing Bacillus spp. should be done in order to achieve maximum
survival of bacteria under detrimental environmental conditions and intrusion of pathogens [40,64].

3.3. Siderophores

Siderophores are metal-chelating, non-ribosomal peptides with low molecular weight produced
by some microorganisms and plants, especially under iron starvation conditions [65]. Iron (Fe) is
an essential element for different biological processes such as oxygen metabolism, DNA and RNA
syntheses, electron transfer, and enzymatic processes. The primary role of siderophores is to chelate Fe,
allowing its solubilization and extraction from minerals and organic compounds. The significance
of siderophores in biological control is based on competition for Fe in order to reduce its availability
for pathogens [9]. Furthermore, microbial siderophores can be reduced to donate Fe to the transport
system of a plant or chelate Fe from soils, and then, do a ligand exchange with phytosiderophores,
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thus, providing plants with this essential element so as to enhance their growth [66]. In addition to Fe,
siderophores also have the ability to bind a variety of metals in the environment, thereby acting as
bioremediation agents [67].

Siderophores are grouped into three main families, depending on the functional group, including
hydroxamates, catecholates, and carboxylates [9]. Most of the bacterial siderophores are catecholates,
such as bacillibactin produced by several Bacillus spp. including B. subtilis, B. amyloliquefaciens, B. cereus,
B. thuringiensis, etc., [68]. Besides bacillibactin, Bacillus spp. produce a wide variety of siderophores
such as pyoverdine, pyochelin, schizokinen, petrobactin, etc., [69]. Bacillus spp. were better producers
of siderophores than other bacterial isolates from the maize rhizosphere [70]. Siderophores produced
by Bacillus spp. have been involved in suppression of several plant diseases (Table 1). For instance,
siderophore-producing B. subtilis reduced the incidence of Fusarium wilt, and enhanced the growth and
yield of pepper [52]. Several studies indicated synergistic antimicrobial effects of siderophores along
with lipopeptides and/or lytic enzymes [42,49,50]. Similarly, B. subtilis is a promising biological control
agent against Bipolaris sorokiniana due to production of siderophores, chitinase, and cellulase [53].

4. Systemically Induced Disease Resistance

Plants adapt to constant pathogen exposure through defense mechanisms. Resistance to pathogens,
developed after proper stimulation, represents an improvement in the defense capacity of the plant.
Infected plants increased their levels of signaling molecules which coordinate the activation genes
for appropriate syntheses, followed by preventive structural and histological changes, preventative
chemical substances (phenols and other products of secondary metabolism), and in other ways [71,72].

Plant defense mechanisms, such as induced systemic resistance (ISR), can be initiated by external
agents before infection or triggered by a localized infection, resulting in systemic acquired resistance
(SAR) [73]. Both biotic and abiotic factors have been used for inducing ISR in plants against different
plant pathogens. ISR is promoted by non-pathogenic rhizobacteria, and is mostly dependent on the
jasmonate (JA) and/or ethylene (ET) signaling pathways [74], while SAR is mediated via a salicylic
acid (SA)-dependent process. SAR also activates specific sets of defense-related genes associated with
the production of pathogenesis-related proteins (PR), while ISR is not accompanied by the activation
of these genes [75]. The defense mediated by ISR is significantly weaker than that obtained by SAR.
However, ISR and SAR together provide better protection, indicating that they can act additively in
inducing resistance to pathogens [72].

Rhizobacteria promote ISR in plants through the production of various metabolites such as
antibiotics, siderophores, volatile organic compounds (VOCs), and others [76]. Bacillus spp. are
among the most studied rhizobacteria that trigger ISR in plants (Table 2), while being capable of
inducing resistance against several pathogens in the same plant [77]. B. amyloliquefaciens induced
salicylic acid-dependent resistance in tomato plants, reduced the incidence of Tomato spotted wilt
virus, and delayed systemic accumulation of Potato virus Y [78]. Application of B. cereus significantly
reduced disease incidence caused by Botrytis cinerea through activation of ISR [79]. Chandler et al. [80]
showed that B. subtilis triggered ISR in rice against Rhizoctonia solani via jasmonic acid (JA) and
ethylene (ET), as well as abscisic acid (ABA) and auxin signaling. The same authors reported an
indispensable role of B. subtilis LPs, namely fengycin and surfactin, in the induced defense state.
ISR promoting B. amyloliquefaciens produced VOCs and significantly reduced spot disease caused by
Xanthomonas axonopodis pv. vesicatoria in pepper [81]. The ability of B. megaterium to reduce Septoria
tritici blotch severity, caused by Mycosphaerella graminicola, was the result of a combination of different
mechanisms, including ISR [82]. Bacillus endophytes of maize may protect host plants by producing
antifungal lipopeptides that inhibit Fusarium moniliforme as well as by inducing the systemic acquired
resistance [83].
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Table 2. Induced systemic resistance elicited by Bacillus species.

Bacillus Species Target Pathogen (s) Plant Disease Reference

Bacillus amyloliquefaciens Tomato spotted wilt virus,
Potato virus Y Wilt disease of tomato [78]

Bacillus cereus Botrytis cinerea Gray mold disease of field and
vegetable crops [79]

Bacillus subtilis Rhizoctonia solani Sheath blight of rice [80]

Bacillus amyloliquefaciens Xanthomonas axonopodis
pv. vesicatoria Leaf spot disease of pepper [81]

Bacillus megaterium Mycosphaerella
graminicola Septoria tritici blotch of wheat [82]

Bacillus subtilis, Bacillus amyloliquefaciens Fusarium moniliforme Ear, stalk, and root rots of maize [83]

Bacillus subtilis Alternaria solani,
Phytophthora infestans Early and late blight of tomato [84]

Bacillus spp. Pyricularia oryzae Blast disease of rice [85]

Bacillus sp. Colletotrichum capsica Anthracnose of chili [86]

Bacillus sp. Rhizoctonia solani,
Fusarium oxysporum Root rot and wilt of soybean [87]

Bacillus subtilis Fusarium oxysporum f. sp.
cucumerinum Root rot of cucumber [88]

Bacillus sp. Plasmopara halstedii Downy mildew of sunflower [89]

Bacillus spp. can elicit ISR by inducing the synthesis of antioxidant defense enzymes. Host
enzymes induced by B. subtilis include peroxidase (POX), polyphenol oxidase (PPO), phenylalanine
ammonia-lyase (PAL), and superoxide dismutase (SOD). Increased synthesis of antioxidant defense
enzymes results in ISR against early and late blight in tomato seedlings [84]. Similarly, Rais et
al. [85] showed that Bacillus spp. enhanced the SOD, POX, PPO, and PAL activities in infected
rice, thus, alleviating Pyricularia oryzae-induced oxidative damage and suppressing blast disease
incidence. The antagonistic Bacillus sp. suppressed anthracnose disease of chili by the activation of
defense-related enzymes and the accumulation of phenolic compounds [86]. Similarly, Bacillus sp.
enhanced growth promotion and protection against Rhizoctonia solani and Fusarium oxysporum by the
eliciting of defense-related enzymes (PAL, POX, PPO) in soybean [87], while B. subtilis was capable
of impairing disease incidence, promoting seedling growth and increasing activities of antioxidant
enzymes (POD, PPO, PAL) in cucumber plants [88]. The induction of resistance to Plasmopara halstedii
by Bacillus sp. strain was accompanied by the accumulation of defense-related enzymes (PAL, POX,
PPO) in sunflower [89].

5. Mechanisms of Plant Growth Promotion

5.1. Nutrient Availability

Bacillus spp. produce numerous metabolites which can increase nutrient availability to plants,
and thus, directly promote plant growth and yield. Most of the plant essential nutrients are supplied
through mineral fertilization, a practice which causes major economic losses, as well as posing
significant problems to the environment. The use of biofertilizers which contain N2-fixing and/or
P-solubilizing Bacillus spp. is a reasonable approach to reducing the negative impacts of synthetic
fertilizers without compromising food safety [5,17]. N2-fixing and P-solubilizing Bacillus spp. are
directly related to nutrient uptake and the subsequent growth promotion in different plants (Table 3).

Nitrogen (N) is essential for plant growth, albeit largely unavailable in its atmospheric form (more
than 80%) [90]. Biological nitrogen fixation (BNF) is carried out by several groups of microorganisms
that are able to absorb elemental nitrogen from the atmosphere and form compounds, which serve as
plant nutrients [91]. The microorganisms produce the enzyme nitrogenase in order to catalyze the
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conversion of molecular dinitrogen (N2) to ammonia (NH3), which is subsequently taken by plant
roots and assimilated in amino acids. BNF provides Earth’s ecosystems with about 200 million tons N
per year [92]. The nitrogen-fixing microorganisms are either free-living or symbiotic. Several PGPR,
including Bacillus spp. can decrease chemical fertilizer-N use and increase plant growth and yield
through asymbiotic nitrogen fixation. BNF by rhizobacteria has been reported to contribute up to
12–70% of total N uptake in agricultural crops. The study of Kuan et al. [93] provided evidence that
B. pumilus can fix atmospheric N2 and significantly increase the total N content and dry biomass
of maize. Ding et al. [94] suggested that the nifH gene could be detected in both the Bacillus and
Paenibacillus genera. Similarly, the study of Xie [95] reported nitrogenase activities of several Bacillus
spp. including B. megaterium, B. cereus, B. pumilus, B. circulans, B. licheniformis, B. subtilis, B. brevis,
and B. firmus. Szilagyi-Zecchin et al. [96] reported that endophytic Bacillus spp. were positive for the
nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH
gene. Increased relative abundance of Bacillus spp. in rice plants under the conditions of low nitrogen
suggest the potential contribution of their BNF [97].

Table 3. Plant growth-promoting mechanisms exhibited by Bacillus species.

Bacillus Species Mechanism (s) Treated Plant (s) Effect Reference

Bacillus pumilus N2-fixation Maize Increase the total N content and
dry biomass [93]

Bacillus sp. N2-fixation Maize Increased seed germination and
root volume [96]

B. megaterium, B.
subtilis, B. simplex P-solubilization Eggplant, pepper,

tomato
Promoted seed germination and

vegetative growth [98]

Bacillus subtilis P-solubilization Cucumber Increased plant growth, total
accumulation of P and P uptake [99]

Bacillus subtilis IAA, GA Tomato
Enhanced shoot and root

growth, seedling vigor and leaf
area, higher levels of hormones

[84]

Bacillus
methylotrophicus GAs Lettuce

Increased shoot length, shoot
fresh weight, leaf width,

proteins, amino acids, macro
and micro minerals, carotenoids

and chlorophyll a

[100]

Bacillus subtilis CKs Lettuce Increased plant shoot and root
weight, higher CKs levels [101]

Bacillus megaterium CKs Common bean Promoted growth of seedlings [102]

Bacillus spp. IAA, CKs, GAs,
ABA Soybean Better growth and higher

proline contents [103]

Bacillus subtilis IAA, ACC
deaminase Tomato

Increased shoot and root
biomass and chlorophyll (a and

b) contents
[104]

Bacillus aryabhattai ABA, IAA, CKs,
GAs Soybean

Longer roots and shoots, higher
hormone levels, better stress

tolerance
[105]

Bacillus
amyloliquefaciens ABA Rice Increased growth and stress

tolerance [106]

In addition to nitrogen, the plant growth directly depends on phosphorus (P). However, a high
amount of P (more than 80%) is fixed in soil and is unavailable for plant uptake due to adsorption,
precipitation or conversion [107]. Microorganisms that dissolve organic and inorganic phosphates
belong to the group designated as Phosphate Solubilization Microorganisms (PSM) [108]. These
microorganisms solubilize insoluble inorganic P and mineralize insoluble organic P [109]. Mechanisms
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of inorganic phosphate solubilization by microorganisms involve the production of organic and
inorganic acids, siderophores, protons, hydroxyl ions, and CO2, which chelate cations or reduce pH in
order to release P [110]. Mineralization of organic phosphate occurs due to the synthesis of extracellular
enzymes such as phosphatases, phytases, and phospholipases [111].

Plant/soil inoculation with PSM is a promising strategy for the enhancement of plant absorption
of P, while Bacillus spp. are among the most powerful PSM. Saeid et al. [112] showed that solubilizing
exudates produced by Bacillus (B. subtilis, B. megaterium, B. cereus) are composed of gluconic, lactic, acetic,
and succinic acids, confirming strong correlation between the total concentrations of organic acids and
the amounts of released phosphorus. Isolates of B. megaterium, B. subtilis, and B. simplex, exhibited
P-solubilizing ability by producing acetic, propionic, isobutyric, isocaproic, caproic, and heptanoic
acids, and had positive effects on the seed germination and vegetative growth parameters of eggplant,
pepper, and tomato [98]. Tao et al. [113] suggested that P-solubilization and P-mineralization could
coexist in the same Bacillus strain. Similarly, inoculation with B. subtilis increased plant growth,
and total accumulation of P and P uptake by cucumber plants [99].

5.2. Phytohormone Production

Bacillus spp. may directly increase plant yield through mechanisms that impart the production of
phytohormones or plant growth regulators (PGRs), such as auxins, cytokinins, gibberellins, ethylene,
and abscisic acid. Plant hormones are organic substances that influence the physiology and development
of plants at very low concentrations. Plant hormone biosynthesis by Bacillus spp. has been directly
related to subsequent growth promotion in different plants (Table 3).

Auxins are a group of plant hormones that stimulate plant growth, mainly through the regulation
of cell division, cell elongation, and tissue differentiation. The main naturally occurring auxin is
indole-3-acetic acid (IAA) [114]. Different bacteria, including Bacillus spp., have the ability to produce
IAA and use this phytohormone to interact with plants as part of their colonization strategy, including
phytostimulation and circumvention of basal plant defense mechanisms [80]. Production of IAA is
widespread among soil bacteria, and approximately 80% of rhizobacteria have been estimated to
produce IAA [115]. The in vitro application of IAA-producing Bacillus strains on plant roots resulted in
increases in root length as well as the number of lateral roots [116]. B. subtilis was reported to enhance
shoot and root growth, seedling vigor and leaf area of tomato, while higher levels of gibberellins and
IAA were detected in treated plants [84]. Recent studies demonstrated that Bacillus spp. play a major
role in controlling endogenous IAA levels in plant roots by regulating the auxin-responsive genes,
thereby causing changes in root architecture [117].

Gibberellins (GAs) are a group of plant hormones that affect many developmental processes in
higher plants, including seed germination, stem elongation, flowering, and fruiting. Gutierrez-Manero
et al. [118] documented the production of gibberellins by B. pumilus and B. licheniformis. The beneficial
effect of Bacillus methylotrophicus on plants due to the secretion of an array of gibberellins was confirmed
by increasing the percentage of seed germination of lettuce, muskmelon, soybean, and vegetable
mustard [100]. The same authors established that GA-producing bacterial strain increased shoot length,
shoot fresh weight, leaf width, proteins, amino acids, macro and micro minerals, carotenoids and
chlorophyll in lettuce.

Cytokinins (CKs) are a group of plant hormones that play a key role in promoting cell division,
or cytokinesis, in plant roots and shoots. They are important regulators of other physiological and
developmental plant processes such as seed germination, apical dominance, nutrient mobilization,
and leaf senescence. Plants and microorganisms produce about 30 compounds from the group of CKs.
It has been found that 90% of phosphate-dissolving rhizobacteria have the ability to produce CKs
in vitro [119]. Arkhipova et al. [101] reported the ability of B. subtilis to produce CKs, while inoculation
of lettuce plants increased the cytokinin content of both shoots and roots, as well as plant shoot and
root weight. Ortíz-Castro et al. [102] reported that B. megaterium promoted the growth of Arabidopsis
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thaliana and Phaseolus vulgaris seedlings through CKs production. Naz et al. [103] also perceived that
cytokinin-producing species, such as Bacillus and others, stimulated the growth of soybean plants.

Ethylene is a gaseous plant hormone that mainly regulates maturation and senescence processes,
as well as response to biotic and abiotic stresses. In addition to plants, ethylene production
was established in bacteria and fungi, but little has been reported on how ethylene-producing
microorganisms affect plant growth. Several PGPR, including Bacillus spp., synthesize the enzyme
1-aminocyclopropane-1-carboxylate (ACC) deaminase that modulates ethylene levels in plants which
might otherwise become growth inhibitory [120]. The enzyme ACC deaminase (3.5.99.7) cleaves
ACC (direct precursor of ethylene biosynthesis in plants) into ammonia and α-ketobutyrate. Bacteria
characterized by ACC deaminase activity can help maintain plant growth and development under
stress conditions (drought, salt, flooding and anoxia, the presence of pathogens or contaminants) [121].
The interaction of plants with ACC deaminase-producing bacteria may be expected to promote plant
growth during plant processes associated with local increase in ethylene concentration, like flower
wilting or symbiosis establishment [122]. Although ACC deaminase activity has been described
in many Bacillus strains [104,123], ACC deaminase genes (structural gene acdS and the regulatory
gene acdR) could not be identified in 271 completely sequenced strains belonging to the Bacilli class,
including many soil and plant-associated Bacillus and Paenibacillus species [124].

Abscisic acid (ABA) is a plant hormone with an important role in many plant physiological
processes, including seed germination and stress tolerance. Park et al. [105] showed that Bacillus
aryabhattai produced significant amounts of ABA, IAA, CKs, and GAs in culture, while inoculated
soybean plants had high levels of phytohormones, longer roots and shoots, and better tolerance to
heat, oxidative, and nitrosative stress. The bacterial endophyte B. amyloliquefaciens has been found to
produce ABA and increase plant growth and resistance to salinity stress [106].

6. Efficient Use and New Approaches

6.1. Isolation and Identification

Prior to characterization and selection in laboratory and in greenhouse/field conditions, the
search for effective strains requires isolation and identification of preferred Bacillus species from
different sources. Bacillus spp. are the predominant soil, rhizosphere and endophytic bacteria [15,16].
Considering a very small proportion of beneficial microorganisms in the rhizosphere, their isolation,
multiplication, and inoculation into the plant/soil trigger microbiological processes and intensify overall
microbial activity [70]. Thus, only a few Bacillus spp. of about 200 within the genus exhibit multiple
plant growth-promoting traits and might be useful in formulating inoculants [21]. Identification of
isolated Bacillus spp. is of great importance because their beneficial traits are characteristic of certain
species. Accordingly, it is necessary to use methods that can quickly and reliably test a large number of
Bacillus spp. as the potential plant growth promoters and biological control agents.

Determination of morphological, physiological and biochemical traits is a long and often unreliable
process. The most accurate method for examining the diversity of Bacillus spp. is their identification and
characterization at the molecular level. The NCBI (National Center for Biotechnology Information) and
RDP (Ribosomal Database Project) databases contain 2611 individual 16S rDNA sequences originating
from 175 different species of Bacillus, of which only 1586 have been identified to the species level [125].
In addition to standard molecular methods such as 16S rRNA analysis, RFLP (Restriction Fragment
Length Polymorphism), RAPD (Random Amplified Polymorphic DNA), rep-PCR (Repetitive element
sequence-based Polymerase Chain Reaction), MLSA (Multilocus Sequence Analysis), etc., different
PCR methods with species-specific primers are increasingly used for reliable differentiation of Bacillus
spp. [126].
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6.2. Characterization and Selection

The characterization of bacteria includes determination of numerous traits in laboratory, while
selection of potential biofertilizers and biopesticides involves testing their effectiveness on the plant–soil
system in greenhouse and/or field. The tests require a lot of time, which makes it impossible to examine
a large number of strains. Given that no individual or combined traits can reliably predict the
effectiveness in biocontrol and plant growth promotion, Akinrinlola et al. [90] suggested greenhouse
pot tests as the first criterion for bacterial strain selection, instead of screening bacteria for multiple
traits. According to reports, the effectiveness of Bacillus spp. frequently varies depending on specific
plant and soil conditions, which can constrain their ability to colonize the rhizosphere and express
beneficial traits [12].

The efficiency of inoculation is usually higher when bacteria are isolated from the rhizosphere
of plant species, and/or soil that will be inoculated, suggesting that the growth-promoting ability of
the strains is highly related to certain plant species and soil types [12]. Furthermore, the efficiency
of Bacillus spp. from the rhizosphere is higher compared to those from the bulk soil, while both the
rhizosphere and endophytic bacteria possess various beneficial traits regarding the number and the
production amount of these characteristics [127]. Knowledge of biocontrol and plant growth promotion
mechanisms of Bacillus spp. is very important for their intended use, for instance, the use of LPs and
hydrolase-producing strains in the suppression of pathogen infection, or P-solubilizing and N2-fixing
strains in P and N-deficient soils. Their efficiency as individual and combined plant/soil inoculants in
different environments needs to be established through continuous selection of effective isolates in
greenhouse and field trials.

6.3. Plant–Bacillus Interactions

Successful application of Bacillus spp. in the field also depends on plant–Bacillus interactions and
it can be limited by poor colonization of the rhizosphere [128]. Bacillus spp. require 24 h to form a
biofilm, which contributes to root colonization of Bacillus spp. and extends their beneficial effects in
the soil [129]. Transcriptomic analysis of the B. amyloliquefaciens genome revealed numerous genes
included in rhizosphere habituation and plant-beneficial traits, such as plant polysaccharide utilization,
cell motility and chemotaxis, secondary antibiotics synthesis, and plant growth promotion-relevant
clusters [130]. Gao et al. [128] demonstrated that both chemotaxis and swarming motility are important
in tomato root colonization by B. subtilis, while the part of swarming is greater than that of chemotaxis.

However, root colonization is more effectual in indigenous strains of Bacillus than in laboratory
or commercial strains. Emerging strategies such as microbiome engineering and breeding of
microbe-optimized crops can directly or indirectly detect, modulate and enhance the traits and
ways for better performance of Bacillus strains [3,18]. The genes involved in root colonization and
plant–Bacillus interactions, are induced by the presence of root and seed exudates [129–131]. New
research in plant–bacteria interactions uncovers plant capability to shape their rhizosphere and
endorhiza microbiome [127]. Recent studies of the rhizobiome and the utilization of next-generation
sequencing (NGS) techniques, combined with proteomics, metagenomics, metabolomics, etc., will
assist to elaborate on these interactions, including how this relationship affects plant health and
growth [132].

6.4. Bacillus-Based Preparations

In recent years, the distribution of commercial Bacillus-based preparations has significantly
increased worldwide (Table 4). In addition to their beneficial influence on plants, effective strains
of Bacillus spp. should be able to persist in the environment and be stable and viable for extended
storage and purposeful use in the field. Resistance and stability are among the major limitations of
Bacillus-based preparations. These bacteria are suitable for commercialization due to their ability
to secrete various metabolites, produce endospores, and grow rapidly in different media [17–20].
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Endospores of Bacillus spp. can not only endure adverse environmental conditions but survive all
processing phases during production. In order to enhance sporulation and synthesis of preferable
metabolites, production of Bacillus-based preparations should be optimized at each stage, which
implies selection of appropriate strains or consortium of strains, as well as cultivation and formulation
process [133].

Table 4. Examples of commercial Bacillus-based preparations.

Bacillus Species Preparation Plant (s) Company

Bacillus subtilis Serenade® Vegetables, fruits AgraQuest Inc., USA

Bacillus subtilis Companion®
Legumes, vegetables, maize,

and others Growth Products Ltd., USA

Bacillus subtilis Kodiak® Legumes, cotton, and others Gustafson Inc., USA

Bacillus subtilis Cease® Several crops BioWorks Inc., USA

Bacillus subtilis Subtilex®
Vegetables, legumes, cotton,

and others
Becker Underwood, Inc.,

USA

Bacillus subtilis Pro-Mix® Soybean, ornamentals, and others Premier Horticulture Inc.,
Canada

Bacillus subtilis FZB24® Several crops ABiTEP GmbH, Germany

Bacillus subtilis Bio Safe® Legumes, vegetables, cotton Lab. Biocontrole
Farroupilha, Brazil

Bacillus subtilis Ecoshot®
Vegetables, legumes, fruits,

and others
Kumiai Chemical Industry,

Japan

Bacillus subtilis Biosubtilin®
Cereals, vegetables, legumes,
oilseeds, cotton, and others

Biotech International Ltd.,
India

Bacillus
amyloliquefaciens BioYield® Legumes, vegetables, tobacco Gustafson Inc., USA

Bacillus
amyloliquefaciens Rhizocell GC® Cereals, sugar beet Lallemand Plant Care,

France

Bacillus
amyloliquefaciens

RhizoVital®42,
RhizoVital®42TB

Vegetables, cereals, ornamentals ABiTEP GmbH, Germany

Bacillus pumilus Ballad® Plus
Cereals, oilseeds, sugar beet,

sweet corn AgraQuest Inc., USA

Bacillus pumilus Yield Shield®
Legumes, cereals, vegetables,

sugar beet, cotton Bayer CropScience, USA

Bacillus pumilus Sonata® Vegetables, fruits AgraQuest Inc., USA

Bacilluslicheniformis EcoGuard® Several crops
Novozymes A/S Denmark,

Novozymes Biologicals,
USA

Bacillus velezensis Botrybel® Vegetables, fruits Agricaldes, Spain

Bacillus megaterium Symbion-P®
Cereals, legumes, oilseeds,

vegetables T. Stanes & Co. Ltd., India

Bacillus sp. Sublic® Several crops ELEP Biotechnologies, Italy

Bacillus spp. Bacillus SPP® Several crops Bio Insumos Nativa, Chile

Selection of appropriate Bacillus strains must be performed so as to avoid competition, especially
if a preparation contains more than one species. For instance, interspecies competition between
biofilms of the soil-residing bacteria B. subtilis and related Bacillus species could negatively affect their
formulation and efficient use [134]. Nutrient sources such as carbon, nitrogen, inorganic salts and
additional substances, as well as environmental factors such as temperature, pH value and O2 supply,
influence growth in addition to the production of spores and metabolites in Bacillus species [135].
Bacillus spp. are suitable for preparation as either solid or liquid formulations, with the addition of
different carriers, stabilizers, protectants and other supplements [133]. Further research should find
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the best possible production technology for each bacterial strain or bacterial combination, while taking
into account the cost-effectiveness of Bacillus-based products.

7. Conclusions

Bacillus spp. represent an environmentally friendly strategy for crop production improvement
through different mechanisms of biological control, biofertilization and biostimulation. Although
possibilities to use Bacillus spp. for disease incidence reduction and crop production improvement are
well known, their application is not a widespread practice, mostly because of inconsistent efficiency
under different conditions. The ability of Bacillus spp. to exhibit beneficial traits depends on the
interaction of bacteria with plant and/or pathogen, and the environment. Given the great economic and
ecological importance of Bacillus spp., it is necessary to increase the number of practically important
species and find advanced methods for their rapid and comprehensive research and efficient application.
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