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Summary: Wheat leaf rust race specific resistance controlling genes (Lr) caused 0.01-0.03 decrease 
of SAGR = divided first two internodes with stem length. In addition, nitrogen transport in upper 
parts by those genes was 3-19% higher in comparison to near isogenic lines with nonspecific Lr 
22a and Lr 22b genes. RAR (divided root nitrogen content with sum of up ground and root ones) 
values of Lr16, Lr29 and Lr37 between Lr1, Lr15 or Lr19 and nonspecific genes were explained 
by hydrolytic stability of endo-proteases responsible for cleaving of glutens disulphide bridges. 
According to RAR, Lr 34 seemed to be specific Lr gene but increased SAGR as was by nonspecific 
Lr genes focused SUTs as adequate for its conformity. Two different drought and heat stress 
respond systems were linked to Lr genes; one based on gluten degradation consequential through 
photosynthesis decrease and another on accelerated transfer of starch products and water in stem. 
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Introduction

Leaf rust causer Puccinia triticina is not the most 
destructive of wheat parasites. Stable appearance 
and large wheat growing areas have explained the 
responsibility for the major accumulated yield  
losses from single parasite in history (Chester 
1946, Rijsdijk & Zadoks 1976). Considered by 
Khan et al. (1997), total yield could be reduced 
for about 1% for each 1% of infection, when 
higher temperatures begin earlier in the spring. 
In semiarid regions, grain yield was decreased by 
approximately 3.5% for each 10% of two last leaves 
average infection ( Jerkovic 2008). Until nowadays, 
63 genes were proposed as Puccinia triticina 
reducing ones (Kolmer et al. 2010) and segregated 
as horizontal or vertical influential on parasites 
population reduction (Van  der  Plank 1963), 
to parasite races specific or nonspecific (Nelson 

1978) and adult or seedling stage effective (Dyck 
1991, Martinez et al. 2001, Saini et al. 2002). 
Highest reaction type (RT) was basis for partial 
resistance definition (Parlevliet & Van Ommeren 
1975). Suspicion about huge number of different 
specific parasite host interactions predicted by 
gene-to-gene theory (Flour 1955, 1971) was 
articulated by Parlevliet (1988). Parlevliet (1986) 
recognized pleiotropic association between 
latency period (LP) and infection efficiency as 
well as LP was linked to specific resistance as 
its last character before overcome by changes in 
parasitic population ( Jerkovic et al. 1993, Jerkovic 
& Putnik-Delic 2004). Background influence on 
Lr genes expression was reduced by backcrossing 
with variety Thatcher (Lr NILs). Negative effects 
of genes for resistance on wheat genotype fitness 
(Van der Plank 1976) were described as lower yield 
of eight lines with genes introduced from relatives 
(The et al. 1988). Their activity was related 
to fungal elicitor (De Witt et al. 1993) while 
previously single glycoprotein in cytoplasm of 
susceptible variety, same as in the parasite cell wall 
as cause of lignifications was discovered (Koegel 
et al. 1988). The nature of nonspecific resistance 
characterized by decrease of infection efficiency 
was attempted to be explained across stomata 
number and function, leaf wax differences (Anker 
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& Nis 2000) or by analyses of early abortion (Niks 
1981, Jacobs 1990, Niks & Dekens 1991, Jacobs 
& Kiriswa 1993). The inheritance of the trait was 
simple to polygenic (Parlevliet 1978, Lee & Shaner 
1985, Dyck 1991, Das et al. 1992, Kolmer & Liu 
2001). Across enhancements of the resistance, 
complementary Lr genes were recognized 
(Samborski & Dyck 1982, Jerkovic 1992, German 
& Kolmer 1992). The environmental influence 
on resistance genes expressions was involved in 
concept of interorganismal genetics (Loegering 
1978) as well as of Lr ones summarised by Browder 
(1985). 

The differences in growth were found to be 
related with leaf rust severity and regional grain 
yield potential and linked with nonspecific or 
adult stage resistance ( Jerkovic & Prijic 2009). 
From another side, it was discovered that Lr 16 and 
Lr 29, which were confirmed as race specific genes 
in interactions with parasite, had influence on 
carbohydrate fungicides accelerated degradation 
( Jerkovic et al. 2012). It was known that the fungi 
cell wall was structured mostly from glycoproteins 
(Harder & Chong 1984) laminated by bridges 
same in one of basic elements (sulfur) within 
seed stored proteins (Shewry & Halford, 2002) 
or mentioned fungicides. Protein transport from 
seed began in units of molecular weight under 64 
Kd continued in 24 Kd and finished below 10 Kd 
(Masson et al. 1986), so there was a room for their 
accelerated degradation. The presence of gluten in 
leaves was also noticed (Cumming et al. 2004), but 
their enzymatic degradation was not described.

According to previous states, the hypothesis was 
that specific Lr genes should cleave the disulphide 
bridges of seed stored proteins during germination 
visible through their distribution in organs of wheat 
seedlings, as well as that it will be of influence on 
growth.

Materials and Methods 

Eighteen Lr near isogenic lines were sown in 
field nursery (susceptible border Novosadska 
rana 2) in semiarid region (around 600 mm2 of 
the annual rainfall). Presented parasite severity 
on last two leaves was estimated in percents from 
the second ten-day period of May. Results from 
2004 and 2011 were presented because of no or 
low antagonistic facultative parasites appearance. 
Two last internode and stem lengths estimated 
at the third last ten-day period of June 2010 and 
2011 were divided and represented as stem growth 
ratio (SAGR). The second leaf length of seedlings 
was compared with the first one (LGR) ten days 
after emerging of 60 seeds sown in 2 dl pots with 

compost and grown in greenhouse on constant 
air temperature of 20oC and 11 hours of day light 
regime, daily watered. Genotypes with near equal 
lengths of leaves were pronounced medium (M), 
those with higher second one for more than 1 
cm were H2 as opposite were L. Puccinia triticina 
severity on the last two leaves was presented in 
percents of the affected area. Lines for the tests 
divergent by nonspecific and specific resistance 
control were chosen across the specific resistance 
character, prolonged latency period in field and low 
reaction type (RT) according to scale by Stakman 
et al. (1962) to the races 2 and 77 ( Johnston & 
Browder, 1966) at seedling stage. Seed of Lr lines 
from same locality in 2010 were sown in 2 dl pots 
or 3 l cylinder filled by compost or pure sand and 
grown at the same regime as for LGR analysis. Two 
or three week old seedlings after emerging were 
cleared in water, completely dried and fine milled. 
Nitrogen content in root and up ground part was 
estimated in two replications by method previous 
used for seed protein evaluation (ICC method 
105-2, 1994). Root (RC) or app ground (AC) 
values multiplied by 5.7 were adequate to protein 
based structures amount presented in percent 
(RPC or APC). RC divided by AC and RC sum 
was RAR. 

       
Results and Discussion 

Differences according to SAGR were in the 
interval from 0.53 of Lr 1 in 2010 to 0.71 of Lr 12 
in 2011. Values of tested genotypes were increased 
for 0.022 in average when specific genes were 
present in comparison to adequate nonspecific 
Lr gene containing NIL. The SAGR of Lr 12 line 
was higher for 0.01 than of Lr 22b, which could 
be explained by complementary effect with genes 
as were Lr 2c, Lr34, Lr 13 etc. SAGR of basic 
variety Thatcher was closest to Lr 2c line indicating 
different Lr genes accumulations in NILs. The 
average severity of Puccinia triticina was higher for 
16% unexpected in more continuously dry year. 
Decreased severity of obligate parasite was related 
more to antagonism with Pyrenophora tritici 
repentis than to Septoria tritici ( Jerkovic 2008). 
The 5 Lr lines were of the same maximal rust 
severities 50 or 70 (SAGR 0.53-0.60) as another 
5 were such but with values 40 or 50 (SAGR 0.67-
0.71), also indicating the different nonspecific 
resistance genes effects in near isogenic lines beside 
race specific ones. Less maximally rusted than 
expected by SAGR where those with prolonged 
LP, visible through lower parasite development on 
last two leafs in period from the end of May (Table 
1) and pronounced as race specific resistance genes 
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carried like Lr 1, Lr 2a, Lr 16, Lr 19,Lr 21, Lr 29 
and Lr 37.  Decreasing of maximal severity of the 
parasitic attack was strong negative correlated 
to SAGR (r= -0.75 to -0.80). Without specific 
resistant genotypes recognized by lower initial 
infection severities, r-values were -0.81 to -0.86. 
Maximal severities of parasite attacks in two years 
was absolute correlated (r=0.98). Lower maximal 
intensity than on Thatcher was achieved by genes 
different positioned on chromosomes (McIntosh et 
al. 1995; Purnhauser et al. 2000). For confirmation 
of the above, recent dividing of Lr genes in two 
groups, the Lr 1 (5D) and Lr 2a (2D) genes were 
regional express able through lower RT at seedling 
stage to the particular races of pathogen (Boskovic 
& Browder 1976, Prijic & Jerkovic 2010), while 
generally most effective by RT decrease were Lr 
19 (7D) and Lr 24 (3D) ( Jerkovic 1992); even 
chromosomes from D genome were described as 
suppressor genes containing (Dyck 1987, Nelson 
et al. 1997). Lr 1 and Lr 19 were recently proved as 
such according to lower RT (Tables 2 and 3). The 

nature of Lr 15 gene was not possible to discover 
according to analyses of regional host parasite 
interactions. Adequate race 162(A) proving its 
specific character was isolated in India (Gupta et 
al. 2008).

Genes like Lr 2, Lr 2b, Lr 3 or Lr 3b were SAGR 
increase able in comparison to basic Thatcher and 
much larger distanced from Lr 22b by the character 
than was achieved by specific resistance genes 
simultaneous presence with at last mentioned 
gene. Such, they were defined as adult plant or 
nonspecific resistance controlled genes with lower 
effect as were  Lr 13 or Lr 48 and Lr 49 (Saini et al. 
2002). Presence of such genes was followed by leaf 
tip necrosis (Schnurbrush et al. 2004, Mishra et al. 
2005).  However, near isogenic lines were multiple 
based when 2D chromosome was focused, where 
discovered genes were responsible for day light 
insensitivity (Worland & Law 1986) likely to be 
responsible for SAGR increase. For the difference 
Lr 34 was defined as non-hypersensitive (Rubiales 
& Niks 1995) but it was LP prolongable as well 

Leaf  rust severities

Genotype  
                         2004

    
2011

           SAGR

21.05 3. 06 9.06 16. 06 2010 2011

Lr 1 T 10 40 70 50 0.53 0.56

Lr 2a       T 10 30 60 50 0.54 0.56

Lr 2c       5 25 70 80 60 0.57 0.60

Thatcher  5 20 60 80 60 0.55 0.58

Lr 2b        5 20 60 70 50 0.59 0.63

Lr 3         5 15 60 70 50 0.60 0.63

Lr 3b       5 20 60 70 50 0.60 0.63

Lr 34 5 20 60 70 50 0.59 0.62

Lr 13  10 30 50 60 50 0.62 0.64

Lr 12        5 10 30 40 30 0.71 0.72

Lr 15        5 15 40 60 50 0.66 0.67

Lr 16      0 T 25 30 40 0.67 0.69

Lr 21      5 10 40 50 40 0.66 0.67

Lr 22a    5 30 40 50 40 0.68 0.70

Lr 22b    5 40 50 50 40 0.70 0.71

Lr 29    T T 10 50 60 0.55 0.57

Lr 19 0 15 40 50 40 0.66 0.68

Lr 37 T 15 40 50 40 0.68 0.68

Lr 38 5 15 40 40 40 0.69 0.69

Table 1. Leaf  rust severities and SAGR of  Lr NILs and background variety
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as adequate NIL was with higher SAGR, than was 
of Thatcher. Carbon flux discovered by Bolton et 
al. (2008) and lower RAR value in comparison 
to nonspecific resistance controlling genes were 
supplement to define unusual gene type. According 
to recent results Lr 34 was responsible for the 
realest of the seed content described by Aoki et al. 
(2006) and most likely to be sucrose transporter 
(SUT). Sugar, arabinose, xylose and mannose were 
adequate for haustorium mother cell formation in 
vitro, whereas only one hour of water lack during the 
initial infection was enough for its rejecting (Heat 
1990). Enzymes for starch or soluble carbohydrates 
cleaving were weighted 45-59 Kd (Carneiro et al. 
2004) and had to be transported last during heat 
and drought stress explaining different colours 
of leaf tips (K and Ca). Their optimum at higher 
temperatures in acid environment (Halverson & 
Barry 2003) was adequate to the state. 

RAR values of Lr 1, Lr 15, Lr 19 were equal and 
distanced from Lr 22b line more than Lr 16, Lr 37 
and Lr 29. The active sites of adequate enzymes 
could not be the same also confirmed by different 
RTs when mono pustule isolate of parasite was 
applied (Boskovic & Browder 1976, Jerkovic 1992, 
Mesterhazy et al. 2000, Bulos et al. 2006, Winzeler 

et al. 2000, Prijic & Jerkovic 2010). Simulated 
results when RAR values sum was equalized with 
seven defined those genes as responsible for 3 
to 19% of root proteins lack. Results confirmed 
enough energetic level of all tested enzymes to 
cleave disulphide linkage of gluten (Tables 2 and 
3). Prolamins were of remarkable diversity in size, 
gliadin, glutenin ratio, frame shift mutations and 
sulfur content (Nagy et al. 2005). Total of 35-40% 
of wheat gluten was gliadin characterized by intra 
chains cross links so called bounds, branches or 
bridges, as well as such amounted were intra and 
extra bounded glutenin (Wall 1971). Gliadin first 
reached their proportion in seed (Wrigley et al. 
1980) and indicated the external bounds as the 
primary target of hydrolysis or enzymes. The protein 
disulfide isomerases (PDI) were responsible for 
cysteine join in covalently different polypeptides 
or stabilization of protein via bounds (Ciaffi et 
al. 1999). Primarily the gliadin monomers were 
transported to vesicles via Golgi apparatus (GA) 
according to Rubin et al. (1992). Bound producing 
effect of PDI enzymes was linked to maturating 
conditions characterized by higher temperatures 
and drought. Fructose-1, 6-diphosphatase from 
spinach leaf chloroplasts weighted 92-115 Kd, while 

Table 2. Reaction to Puccinia triticina races, LGR and nitrogen distribution of  three-week-old seedlings

Table 3. Reaction to Puccinia triticina races, LGR and nitrogen distribution of  two-week-old seedlings

Genotype RT LGR RC AC RAR RC+AC  RC/AC RPC APC

Lr 1 0;-4      L 1.8     5.4 0.25   7.2   0.33  10.3  30.8
Lr 15                  4 H2 1.7     5.2   0.25   6.9    0.33  8.0  29.7
LR 34                4 M 1.9     4.7   0.29   6.6    0.40  10.8 26.8
THATCHER 4 M 2.0     5.0   0.29   7.0    0.40  11.4 28.5
LR 22B 4 H2 2.0     4.5   0.31   6.5    0.44   11.4 25.7   
LR 38 4 H2 2.1    4.8   0.31   6.9    0.44   13.1 27.4  

Genotype RT
race
2  77

LGR RC AC RAR RC+AC  RC/AC RPC APC

Lr 1 0;-4  M 2.2      5.2    0.30   7.4 0.42 12.5 29.6
Lr 15                  4 H2 1.7      3.9    0.30   5.6 0.44 8.0 22.2
Lr  19               0;-4  H2 1.8      4.2    0.30   6.0 0.43 10.3 23.9
LR 16                  4 H2 2.0      4.2    0.32   6.2 0.42 11.4 23.9
LR 37                  4 H2 2.2     4.4    0.33   6.6 0.51 12.5 25.1
Lr  29                   4 H2 2.1      4.0    0.34   6.1 0.52 12.0 22.8
LR 38                 4 H2 2.2     4.2    0.35   6.4 0.54 12.5 24.0
Lr 22A                4 H2 2.2     4.1    0.35   6.3 0.54 12.5 23.4
Lr 22B                4 H2 2.8      5.2    0.35   8.0 0.56 16.0 29.6
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on pH 8.8 were splitting in native monomers of 54 
and 60 Kd. According to Lr 21 cloning by Huang 
et al. (2003) calculated gene product weight was 
over 100 Kd. Such, enzymes of Lr genes could not 
pass through wheat cell wall (Lazaro et al. 1975) 
and were defined as endo-proteases. Logically, 
production of lighter units of proteins happened 
only in wheat germ. Different RAR values were 
related with hydrolytic stability of enzymes. 

Nitrogen and other nutritives from compost 
were not absorbed in above described growth 
phases according to Vuurde & Tonneyck (1978). 
Identified genes in hard red spring wheat (Oelke 
& Kolmer 2004, 2005, Martinez et al. 2007) as in 
soft spring ones (Kolmer 2003, Wanishe & Millus 
2004) were in agreement with achieved protein 
contents in seed, as well as state that genes for gluten 
synthesis were not linked with Lr 19 (Slikova et al. 
2003). In addition, there was no relation between 
protein content and RAR values according to its 
same result as was of Lr 1 line. 

For the digression, hypersensitive reaction was 
related to same mechanism with different source of 
sulphur from fungi cell wall or membrane instead 
of gluten. Sulphur dioxide, which was expected to 
be consequence of enzymes produced by specific Lr 
genes, was transferred in acid forms when reached 
chloroplast while fall of PH below 6.5 caused 
chlorophyll degradation ( Jolivet et al. 1992). 

Conclusions

According to recently presented results, 
genes controlling race specific resistance to 
Puccinia triticina were particular endoprotease 
also responsible for gluten disulphide bridges 
degradation consequential through increased 
transfer of proteins in plant up ground parts 
from seed, decreased SAGR and increased LGR 
in comparison to Lr 22b line. Enzymes were 
with different hydrolytic stability according to 
different effects to the gluten. Other type of Lr 
genes cause of increased SAGR were most likely 
related to starch and its products degrading and 
had no influence on RAR. For the difference of 
both above-mentioned gene groups, according to 
slightly decreased RAR and SAGR, increase of Lr 
34 was adequate to transporters enzymatic family. 
However, two different drought and heat stress 
respond mechanisms were discovered. When race 
nonspecific Lr genes were present, plant growth 
was because of below parts followed by their 
rejection. Vice versed, specific Lr genes reduced 
photosynthesis and across locally more viable 
water prevented starch and gluten formation 
allowing further growth of recently present organs 

consequential through prolonged total leaf area 
duration and equilibrated growth. 

 Recently proposed method could be used for 
discovering of Lr genes without interactions with 
parasite, but did not signal the opportunity for 
their precise identification.
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Funkcije Lr gena osim redukcije Puccinia triticina

Zoran Jerković • Željana Prijić • Veselinka Đurić • Mirjana Lalošević

Sažetak: Gеni zа spеcifičnu оtpornоst prеmа prоuzrоkоvаču lisnе rđе pšеnicе (Lr) smаnjivаli su rаst slеdеćih dеlоvа 
stаblа (SАGR) zа 0,01-0,03 u pоrеđеnju sа оsnоvnоm sоrtоm Tаčеr ili Lr 22b liniјоm. RАR, odnosno pоdеljеn 
sаdržај аzоtа u kоrеnu sа zbirоm nаvеdеnе vrеdnоsti i оnе u nаdzеmnоm dеlu u stаdiјumu sејаnаcа, biо je umаnjеn u 
оdnоsu nа pоslеdnjе pоmеnutе gеnоtipоvе. Ubrzаnjе trаnspоrtа prоtеinа u nаdzеmnе dеlоvе prеkо gеnа zа spеcifičnu 
оtpоrnоst је bilo 3-19%. Еnzimi zа spеcifičnu оtpоrnоst su svrstаni u glutеnаzе, оdnоsnо еndоprоtеаzе, оdgоvоrnе 
zа оslоbаđаnjе sumpоrа iz disulfidnih mоstоvа pri prоlаsku proteina krоz klicu. Rаzlikе pо RАR-u izmеđu Lr 1, Lr 
15, Lr 19 sa istim vrеdnоstimа i nеštо rаzličitih Lr 16, Lr 29 i Lr 37 оd Lr 22b i Lr 38 liniја nоsilаcа nеspеcifičnih Lr 
gеnа bilо је оbјаšnjеnо rаzličitоm hidrоlitičkоm stаbilnоšću. Lr 34 је po RАR-u biо sličаn grupi spеcifičnih gеnа, аli 
pоvišеn SАGR u оdnоsu nа Tаčеr i prоdužеn LP ukаzivаli su nа enzimatsku familiju trаnspоrtеra šеćеrа prе nеgо 
АBC trаnspоrtеrе. Dva različita sistema za tolerantnost prema suši odnosno stresu usled visokih temperatura vazduha 
povezana su sa genima za otpornost prema Puccinia triticina. Rasno specifični geni su umanjivali fotosintezu preko 
produkata degradacije glutena u listu, ujedno povišujući LGR i snižavajući SAGR, dok su nespecifični delovali obrnuto 
i stoga povezani sa degradacijom skroba. Kod linija sa poslednje pomenutim genima primećeno je ranije gubljenje foto-
sintetičke aktivnosti postojećih organa i brži rast sledećih na uštrb prethodno formiranih.  
Ključnе rеči: enzimi pšenice, gluten, lisna rđa pšenice, LR geni, Puccinia triticina, SAGR


