Assessment of antibiotics sensitivity of the most frequent potential pathogen bacteria isolated in the microbiology laboratory of the Faculty of Veterinary Medicine Iaşi, during 2017-2018

Cristina RÎMBU¹, Cristina HORHOGEA¹, Carmen CREȚU¹, Mariana GRECU¹, Raluca RUSU¹, Andreea COZMA¹, Cătălin CARP-CĂRARE¹

1 Faculty of Veterinary Medicine, USAMV Ion Ionescu de la Brad Iași 8, Mihail Sadoveanu Alley, 700489 rebegeacristina@yahoo.com

Abstract

In the veterinary practice, establishing the etiological diagnosis represents the quintessence of the antiinfectious therapy. The final diagnosis based on the correctness of the laboratory results and the microbiological examination, together with the hematological, immunological, histopathological, etc., has a major role in getting the right therapeutic protocol. In the current context, characterized by a wide etiological variety of infections, it is necessary to identify and test the sensitivity to antibiotics of pathogens isolated from different biological samples. The present study of the Microbiology Laboratory of the Faculty of Veterinary Medicine Iași presents the results obtained on various strains isolated from dogs and cats with different diseases during 2017-2018. The tests performed on of 83 microbiological samples (otic, pharyngeal, cutaneous and conjunctival secretions, urine, feces, etc.) identified 107 aerobic and anaerobic bacterial strains, classified into 20 bacterial genera. The most commonly isolated aerobic bacterial species were: Staphylococcus pseudointermedius (27.10%), Streptococcus sp.gr.G (8.41), Enterococcus faecalis (4.67%), Streptococcus sp. gr.C (3.73%), Pseudomonas aeruginosa (5.60%), Klebsiella pneumoniae (2.80%). The most commonly isolated anaerobic bacterial species were: Clostridium perfringens (9.35%). Campylobacter sp. (1.87%). The results of the antibiograms revealed a wide variability of sensitivity and resistance of the isolated strains to the antibiotics, most of them being multiple drug resistance. Key words: bacteria, antibiograma, drug resistence

Introduction

In the medical-veterinary practice, establishing the etiological diagnosis represents the quintessence of the anti-infectious therapy. Establishing the existence of pathogenic or saprophytic microorganisms in the pathological products, isolation, identification and testing of antibiotics, are only performed in microbiology laboratories (Solcan Ghe et al., 2005; Carp-Cărare C. et al., 2015)

The Microbiology Laboratory of the Faculty of Veterinary Medicine of Iasi, receives and processes biological samples taken from pets and livestock from Iasi County and neighboring counties. The numerical distribution of these samples differs from one year to another and from one season to another depending on the pathological entities that evolve at one point.

In the current context, the increased resistance of bacteria to antimicrobial substances used in therapy, the mirobiological examination was increasingly requested by the veterinary clinicians (Carp-Cărare C. et al., 2015). The bacteriologist correlates the significance of an isolate with respect to patient anamnetic data and suggests to the current doctors the most suggestive ways of microbiological investigation to ensures optimal final diagnosis. The final diagnosis based on the correctness of the laboratory results and the microbiological examination, together with the hematological, immunological, histopathological, etc., has a major role in getting the right therapeutic protocol (Solcan Ghe et al., 2005, Predoi et al., 2011). The benefits of targeted therapy have also been observed by animal owners so that in recent years, the number of applications for the microbiological examination and the antibiogram has increased.

In the current context, characterized by a wide etiological variety of infections, it is necessary to identify and test the sensitivity to antibiotics of pathogens isolated from different biological samples. The present study of the Microbiology Laboratory of the Faculty of Veterinary Medicine Iaşi presents the results obtained on various strains isolated from dogs and cats with different diseases during 2017-2018.

Material and method

During the study, 83 samples represented by otic, pharyngeal, cutaneous, conjunctival exudates, urine samples, feces samples, were microbiologically tested. The animals were part of the case of the Faculty of Veterinary Medicine of Iasi and of the veterinary clinics from Iasi county. Sampling was performed under aseptic conditions and was different, depending on the location of

the infection and the properties of the suspected etiological agent (Whitley R. D.,2000., Solcan Ghe et al., 2005; Carp-Cărare C. et al., 2015; Grecu M et al., 2016; Rîmbu C. et al., 2018). The pathological materials were subjected to the microbiological examination in the Microbiology Laboratory of the Faculty of Veterinary Medicine Iasi.

In clinical microbiology, bacterial cultivation aims to isolate the bacterial strains from the pathological samples, followed by identification and testing the sensitivity to various antimicrobial substances (by diffusimetric method), in order to initiate and monitor anti-infectious therapy (Whitley R. D., 2000; Carp-Cărare C. et al., 2015) Isolated strains were tested with different antibiotics used in therapy (1,2,3) or demanded by the clinicians: amoxicillin-acid clavulanic (AMC-30 μ g), amoxicillin(AX-25 μ g), enrofloxacin(ENR-10 μ g), marbofloxacin(MAR-5 μ g), ciprofloxacin (CIP-30 µg), norfloxacin(NOR-30 µg), eritromicin (E-15 µg), kanamicin (K-30 µg), streptomycin(S-30 µg), clindamicin(DA-10 µg), doxiciclin (DOX-30 µg), gentamicin (GN-10 μg), ampicilina(AM-25 μg), oxitetraciclin(OT-25 μg), spectinomicin(SPT-10 μg), lincomicinspectinomicina (LCS-109 µg), cloramphenicol (C-30 µg), neomycin (NE-30 μg), fosfomicina(FOS-200 µg), trimetoprim sulphametoxazol (STX-30 µg), vancomicin(VA-30 µg), cefalexin (CL-30 μg), cefadroxil (CFR-30 μg), cefoxitin(FOX-30 μg), cephalotin (KF-30 μg), cefaclor (CEC-10 µg), fusidic acid (FD-10 µg), colistin (Co-10 µg). The pathological materials have undergone the stages of work according to the general conduct of the bacteriological diagnosis (Carp-Cărare C. and al, 2015).

Results and discussion

The tests performed on of 83 microbiological samples (otic, pharyngeal, cutaneous and conjunctival secretions, urine, feces, etc.) identified 107 aerobic and anaerobic bacterial strains, classified into 20 bacterial genera (table 1).

Of the bacterial species Gram positive, *Staphylococcus pseudointermedius* (27.10%), *Streptococcus* sp.gr.G (8.41%), *Enterococcus fecium* (4.67%), *Streptococcus* sp. Gr.C (3.73%) were most frequently isolated, and of the Gram-negative bacteria, the species *Pseudomonas aeruginosa* (5.60%), *Klebsiella pneumoniae* (2.80%) and other species of *Klebsiella* (2.80%) were most commonly identified.

No.	Specia	Gen	Age	Breeds	Samples	Bacterial species
1	canine	F	13	Brac	urine	Enterococcus faecalis
2	canine	М	4	Pincher	skin scraping	Streptococcus sp.gr.F, Staphylococcus saprophiticus
3	canine	М	1	Labrador	otic secretions	Staphylococcus pseudointermedius, Malassezia
4	feline	F	12	European Cat	feces	negativ
5	canine	F	2	Sharpei	otic secretions	Malassezia
5	canine	М	8	Caniche	otic secretions	Staphylococcus pseudointermedius, Malassezia sp.
6	canine	М	6	Metis	vomisment	<i>Candida</i> sp.
7	feline	F	3	Siamese Himalyan	laringopharynge al secretions	Listeria monocytogenes, Streptococcus sp. gr.C
8	canine	М	7	Metis	conjunctival secretions	Staphylococcus pseudointermedius
9	canine	М	0,4	Husky	feces	Campylobacter sp.
10	feline	F	10	Russian Blue Cat	feces	Campylobacter sp.
11	canine	М	13	German Shepherd	pharyngeal secretions	Klebsiella sp.
12	canine	F	12	Beagle	pharyngeal secretions	Streptococcus sp. gr.C
13	canine	М	1	Mops	otic secretions	Stapylococcus pseudointermedius, Pseudomonas aeruginosa
14	canine	М	10	Bichon	pharyngeal secretions	negativ
16	canine	М	9	Mops	feces	Clostridium perfringens
17	canine	М	4	Buldog	pharyngeal secretions	Staphylococcus aureus, Streptococcussp. gr.G
18	canine	F	5	Mops	cistita	Enterococcus faecalis, Escherichia coli
19	feline	F	15	Scottish fold	wound	Staphylococcus pseudointermedius
20	canine	М	2	Bulldog francese	otic secretions	Staphylococcus intermedius, Corynebacterium sp.
21	canine	М	1	Sharpei	skin scraping	Staphylococcus pseudointermedius
22	canine	М	10	Carpathian Shepherd	feces	Clostridium perfringens, Clostridium tetani
23	canine	М	4	Labrador	skin scraping	Staphylococcus pseudointermedius
24	canine	М	4	Labrador	otic secretions	Pseudomonas aeruginosa, Malassezia sp.
25	canine	F	3	Boxer	wound	Staphylococcus pseudointermedius, Klebsiella sp.
26	canine	F	2	Metis	feces	Clostridium septicum
27	canine	М	0,6	Great Dane	feces	Clostridium perfringens
28	canine	F	12	Spaniel	pharyngeal secretions	Micrococcus luteus, Streptococcus sp.gr.G,
29	canine	F	2,5	Boxer	feces	Clostridium perfringens
	canine	М	4	Pincher	feces	Clostridium perfringens

Table 1 Dialacias	مالالم مسطله	magnite of the	main and interior	1 arramination
Table 1. Biological	i samples and the	results of the	micropiologic	ai examination
Tuole I. Biological	build build the the	restants or the	mercorogie	

32canineM7Terrier yorkshiregastrofecesClostridium perfringens33canineM4,5Terrier yorkshirepustuleStaphylococcus intermedius34canineM1MopsbalanitaStreptococcus sp.gr.B. Enterococcus sp.gr.B.36canineM1MopsbalanitaStreptococcus sp.gr.B. Enterococcus facealis37canineM3Birman CatfecesClostridium perfringens38felineM3Birman CatfecesClostridium perfringens39felineF1,5MetisstomatilisMoraxella catharalis., Actinobacillus lignieress41canineF3Bichonskin scrapingStaphylococcus pseudointermedius43canineF0,6Akita inskin scrapingStaphylococcus pseudointermedius, Pseudomon aereginosa44canineF0,6Akita inskin scrapingStaphylococcus pseudointermedius, Pseudomon aereginosa45canineF11Bichonskin scrapingStaphylococcus pseudointermedius46felineF0,9Russian scerctionsStaphylococcus pseudointermedius47canineM5Bichonskin scraping48felineF1,2Metisotic secretions50canineM5Bichonsceretions51canineM5Bichonsceretions<							
33canineM4.5Terrier yorkshirepustuleStaphylococcus intermedius34canineM1Labradorotic secretionsPseudomonas aeruginosa35felineM3Europeanotic secretionsStaphylococcus pseudointermedius36canineM1MopsbalanitaStreptococcus gr. P. B. Enterococcus faecalis37canineM3Birman CatfecesClostridium perfringens38felineM11EuropeanbisterStaphyl. pseudointermedius40felineF1,5MetisstomatitisMoraxella cattharalis., Actinobacillus lignieresi41canineM5BichonpharyngealBordetella bronhiseptica, Enterococcus faecalis42canineF0,6Akita inuskin scrapingStaphylococcus pseudointermedius43canineF0,0Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF0,0Akita inuskin scrapingStaphylococcus pseudointermedius45canineF1,2Metispharyngeal secretionsStaphylococcus pseudointermedius46felineF1,2Metisotic secretionsStaphylococcus pseudointermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius48felineF1,2Metisotic secretions	31	canine	М	4	Metis		Streptococcus gr.G, Staphylococcus intermedius
yorkshire34canineMLabradorotic secretionsPseudomonas aeruginosa36canineM3Europeanotic secretionsStaphylococcus pseudointermedius36canineM1MopsbalanitaStreptococcus sp.gr. B, Enterococcus facealis37canineM3Birman CatfecesClostridium perfringens38felineM11EuropeanblisterStaphylococcus pseudointermedius40felineF1,5MetisstomatitisMoraxella catharalis., Actinobacillus lignieresi41canineM5Bichonskin scrapingStaphylococcus pseudointermedius42canineF4Bichonskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa43canineF0.6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF0.7RussianSkin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa45canineF1.1Bichonconjunctival secretionsStaphylococcus pseudointermedius, Bacillus secretions48felineF1.2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus secretions49canineM1BichonfecesClostridium perfringens50canineM1BichonfecesClostridium perfringens51c	32	canine	М	7	Terrier	gastrofeces	Clostridium perfringens
35felineM3Europeanotic secretionsStaphylococcus pseudointermedius36canineM1MopsbalanitaStreptococcus sp.gr.B, Enterococcus faecalis37canineMBulldogfecesClostridium perfringens38felineM3Birman CatfecesClostridium perfringens39felineM11EuropeanblisterStaphylococcus pseudointermedius40felineF1.5MetisstomatitisMoraxella cattharalis., Actinobacillus lignieres41canineM5Bichonpharyngeal secretionsBordetella bronhiseptica, Enterococcus faecalis42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF3Metispharyngeal secretionsStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF11Bichonconjunctival secretionsStaphylococcus pseudointermedius45canineF11Bichonconjunctival secretionsStaphylococcus pseudointermedius46felineF1.2Metisotic secretionsStaphylococcus pseudointermedius48felineF1.2Metisotic secretionsStaphylococcus pseudointermedius, Malassezia50canineM1BichonfecesClostridium perfringens51canineM1BichonfecesClostridium p	33		М	4,5	yorkshire	-	Staphylococcus intermedius
36canineM1MorsbalanitaStreptococcus sp.gr.B. Enterococcus Jaccalis37canineMBulldogfecesClostridium perfringens38felineM3Birma CatfecesClostridium perfringens39felineM11EuropeanblisterStaphy. pseudointermedius40felineF1.5MetisstomatitisMoraxella cattharalis., Actinobacillus lignieres41canineM5Bichonskin scrapingStaphylococcus pseudointermedius42canineF4Bichonskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa43canineF0.6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF11Bichonconjunctival sceretionsStaphylococcus intermedius, Mesiella pneumoniae, Actinobacillus sp.45canineF1.2Metisotic sceretionsStaphylococcus pseudointermedius47canineM5Bichonpharyngeal sceretionsStaphylococcus pseudointermedius, Malasseila sceretions48felineF1.2Metisotic sceretionsStaphylococcus pseudointermedius, Malasseila sp.49canineF3.5Metisotic sceretionsStaphylococcus pseudointermedius, Malasseila sp.51canineF1.5NerveginStaphylococcus pseudointermedius, Kokuria sp. Staphylococcus	34	canine	М		Labrador	otic secretions	Pseudomonas aeruginosa
AndBulldogfecesClostridum perfringens37canineM3Birman CatfecesClostridum perfringens38felineM31EuropeanblisterStaphy, pseudointermedius40felineF1,5MetisstomatitisMoraxella cattharalis., Actinobacillus lignieresi41canineF4Bichonskin scrapingStaphylococcus pseudointermedius42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF0,6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF11BichonscoretionsStaphylococcus intermedius, Pseudomon aeruginosa45canineF11Bichonconjunctival scoretionsStaphylococcus intermedius46felineF0,9Russian whiteskin scraping scoretionsStaphylococcus pseudointermedius47canineM5Bichonpharyngeal scoretionsStaphylococcus pseudointermedius48felineF1,2Metisotic sceretionsStaphylococcus pseudointermedius, Malassezia50canineF3,5Metisotic sceretionsStaphylococcus pseudointermedius, Malassezia51canineF1,5NervegianscoretionsStaphylococcus pseudointermedius, Malassezia53canineF1,5NervegianscoretionsS	35	feline	М	3	European	otic secretions	Staphylococcus pseudointermedius
AllCloseCloseCloseClose39felineM11EuropeanblisterStaphy. pseudointermedius40felineF1,5MetisstomatitisMoraxella cattharalis., Actinobacillus lignieresi41canineM5Bichonpharyngeal secretionsBordetella bronhiseptica, Enterococcus faecalis42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF0,6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF3Metispharyngeal secretionsStaphylococcus pseudointermedius, Resudomon aeruginosa45canineF11Bichonconjunctival secretionsStaphylococcus intermedius, Relessiella preunoniae, Actinobacillus sp.46felineF0,9Russian whiteskin scrapingStaphylococcus pseudointermedius secretions47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius, Bacillus c cereus49canineF1,2Metisotic secretionsPseudointermedius, Malassezia sp.50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF1,5Norwegian siamesesecretionsStaphylococcus pseudointer	36	canine		1	-	balanita	Enterococcus faecalis
40felineM11EuropeanblisterStaphy. pseudointermedius40felineF1,5MetisstomatitisMoraxella cattharalis., Actinobacillus lignieresi41canineM5Bichonpharyngeal secretionsBordetella bronhiseptica, Enterococcus faecalis42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF0.6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF3Metispharyngeal secretionsStaphylococcus pseudointermedius, Pseudomon aeruginosa45canineF11Bichonconjunctival secretionsStaphylococcus intermedius, Resultan preunomiae, Actinobacillus sp.46felineF0.9Russian whiteskin scrapingStaphylococcus intermedius secretions47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius, Bacillus cereus48felineF1,2Metisotic secretionsPseudointermedius, Bacillus cereus50canineM1BichonfecesClostridium perfringens51canineM1,3Norwegian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF1,5Norwegian roreststarbylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canine <t< th=""><th>37</th><th>canine</th><th>М</th><th></th><th>Bulldog</th><th>feces</th><th>Clostridium perfringens</th></t<>	37	canine	М		Bulldog	feces	Clostridium perfringens
40FellFellTotalMetricMoraxella catharalis., Actinobacillus lignieresi41canineM5BichonsecretionsBordetella bronhiseptica, Enterococcus facalis42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF0.6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF3Metispharyngeal secretionsHaemophillus sp., Streptococcus sp.gr.G, secretions45canineF11Bichonconjunctival secretionsStaphylococcus intermedius, Klebsiella pneumoniae, Actinobacillus sp.46felineF0.9Russian whiteskin scraping secretionsStaphylococcus pseudointermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius48felineF1.2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus cereus49canineF3.5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.50canineM1BichonfecesClostridium perfringens51canineF1.5Norwegian siamese siamesescretionsStaphylococcus pseudointermedius, Kokuria sp. sternati marcescens52felineF1.5Norwegian siamesescretionsStaphylococcus pseudointermedius, Kokuria sp. sternati marcescens<	38	feline	М	3	Birman Cat	feces	Clostridium perfringens
41canineM5Bichonpharyngeal secretionsBordetella bronhiseptica, Enterococcus faecalis42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF0.6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF3Metispharyngeal secretionsHaemophillus sp., Streptococcus sp.gr.G, secretions45canineF11Bichonconjunctival secretionsStaphylococcus intermedius, Klebsiella pneumoniae, Actinobacillus sp.46felineF0.9Russian whiteskin scrapingStaphylococcus intermedius47canineM5Bichon pharyngeal secretionsStaphylococcus pseudointermedius48felineF1.2Metisotic secretions49canineF3.5Metisotic secretions50canineM1Bichonfeces51canineF3.5Metisotic secretions52felineF1.5Norwegian siamesescaretions53canineM12Cockerotic secretions54felineF1.5Norwegian siamesescaretions55canineM12Cockerotic secretions56felineF1.5Norwegian siameseStreptococcus speudointermedius, Kokuria sp. Streptolococus sp.gr.D, Enterobact	39	feline	М	11	European	blister	Staphy. pseudointermedius
42canineF4Bichonskin scrapingStaphylococcus pseudointermedius43canineF0.6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF3Metispharyngeal secretionsHaemophillus sp., Streptococcus sp.gr.G, secretions45canineF11Bichonconjunctival secretionsStaphylococcus intermedius, Klebsiella pneumoniae, Actinobacillus sp.46felineF0.9Russian whiteskin scrapingStaphylococcus pseudointermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius48felineF1,2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF1,5Norwegian siamesesecretionsStaphylococcus pseudointermedius, Kokuria sp.53canineM12Cockerotic secretionsStaphylococcus pseudointermedius, Kokuria sp.53canineM12Cockerotic secretionsStaphylococcus pseudointermedius, Kokuria sp.54felineF1,5Norwegian rorestgastofecesClostridium perfringens55canineM2,5Bichonotic secre	40	feline	F	1,5	Metis	stomatitis	Moraxella cattharalis., Actinobacillus lignieresi
43canineF0,6Akita inuskin scrapingStaphylococcus pseudointermedius, Pseudomon aeruginosa44canineF3Metispharyngeal secretionsHaemophillus sp., Streptococcus sp.gr.G,45canineF11Bichonconjunctival secretionsStaphylococcus intermedius, Klebsiella pneumoniae, Actinobacillus sp.46felineF0,9Russian whiteskin scrapingStaphylococcus intermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius48felineF1,2Metisotic secretionsStaphylococcus pseudointermedius49canineM1BichonfecesClostridium perfringens50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF1,5Norwegian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp.53canineM12Cockerotic secretionsStaphylococcus pseudointermedius, Kokuria sp.54felineF1,5Norwegian samesegastrofecesClostridium perfringens55canineM12Cockerotic secretionsStaphylococcus ps.gr.D, Enterobacter aerogens, Malassezia sp.55canineF1,5MetisfecesClost	41	canine	М	5	Bichon		Bordetella bronhiseptica, Enterococcus faecalis
44canineF3Metispharyngeal secretionsHaemophillus sp., Streptococcus sp.gr.G,45canineF11Bichonconjunctival secretionsStaphy. psedointermedius, Klebsiella pneumoniae, Actinobacillus sp.46felineF0.9Russian skin scrapingStaphylococcus intermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius, Bacillus cereus48felineF1.2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus cereus49canineF4Cockerotic secretionsPseudomonas aeruginosa, Staphy. pseudointermedius, Malassezia sp.50canineM1BichonfecesClostridium perfringens51canineF3.5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8.8siamesesecretionsPseudomonas aeruginosa53canineM12Cockerotic secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canineF1,5MetisfecesClostridium perfringens54felineF1,5MetisfecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF1,5MetisfecesClostridium perfringens57canineM <th>42</th> <th>canine</th> <th>F</th> <th>4</th> <th>Bichon</th> <th>skin scraping</th> <th>Staphylococcus pseudointermedius</th>	42	canine	F	4	Bichon	skin scraping	Staphylococcus pseudointermedius
45canineF11Bichonconjunctival secretionsStaphy: psedointermedius, Klebsiella pneumoniae, Actinobacillus sp.46felineF0,9Russian whiteskin scrapingStaphylococcus intermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius48felineF1,2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus cereus49canineF4Cockerotic secretionsStaphylococcus pseudointermedius, Bacillus cereus50canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Kokuria sp.51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Kokuria sp.52felineF1,5Norwegian ForestgastrofecesClostridium perfringens53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5MetisfecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Bichonotic secretionsStaphylococcus sp.gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsStaphylococcus sp.gr.A<	43						0
46felineF0,9Russian Russian whiteskin scraping skin scrapingStaphylococcus intermedius47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius, Bacillus cereus48felineF1,2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus cereus49canineF4Cockerotic secretionsPseudomonas aeruginosa, Staphy, pseudointermedius50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canineM12Cockerotic secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF1,5MetisfecesClostridium perfringens57canineM2,5Bichonotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsStaphylococcus pseudointermedius58canineM2,5Bichon <th></th> <th></th> <th></th> <th></th> <th></th> <th>secretions</th> <th></th>						secretions	
47canineM5Bichonpharyngeal secretionsStaphylococcus pseudointermedius48felineF1,2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus cereus49canineF4Cockerotic secretionsPseudomonas aeruginosa, Staphy. pseudointermedius50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp.53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Persian Siameseotic secretionsStreptococcus sp. gr.D, Enterobaccus sp. gr.D, Enterobaccus app.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus ps.gr.A60felineF1MetisstomatilisStreptococcus sp.Gr.A61canineM4,5Bichonoti						secretions	pneumoniae, Actinobacillus sp.
48felineF1,2Metisotic secretionsStaphylococcus pseudointermedius, Bacillus cereus49canineF4Cockerotic secretionsPseudoinonas aeruginosa, Staphy. pseudointermedius50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp.53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF1,5MetisfecesClostridium perfringens57canineM2,5Bichonotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus pseudointermedius60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptoco				-	white		
49canineF4Cockerotic secretionsPseudomonas aeruginosa, Staphy. pseudointermedius50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF1,5MetisfecesClostridium perfringens57canineM2,5Bichonotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStreptococcus sp.gr.A60felineM4,5Bichonotic secretionsStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.gr.A62felineM1,8SiberianurineEnterococcus faecalis,<						secretions	
50canineM1BichonfecesClostridium perfringens51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Persian siameseotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus sp.gr.A60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.Gr.A62felineM1,8SiberianurineEnterococcus faecalis,				-			cereus
51canineF3,5Metisotic secretionsStaphylococcus pseudointermedius, Malassezia sp.52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Persian siameseotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF1MetisstomatitisStreptococcus sp.gr.A60felineF1MetisstomatitisStreptococcus sp.C62felineM1,8SiberianurineEnterococcus sp.C	49	canine	F	4	Cocker	otic secretions	
52felineF8Persian siamesepharyngeal secretionsStaphylococcus pseudointermedius, Kokuria sp. Serratia marcescens53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Persian siameseotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF1MetisstomatitisStreptococcus sp.gr.A60felineF1MetisstomatitisStreptococcus sp.Gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	50	canine	М	1	Bichon	feces	Clostridium perfringens
siamesesecretionsSerratia marcescens53canineM12Cockerotic secretionsPseudomonas aeruginosa54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Persian siameseotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF1MetisstomatitisStreptococcus sp.gr.A60felineF1MetisstomatitisStreptococcus sp.Gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	51		F	3,5	Metis		sp.
54felineF1,5Norwegian ForestgastrofecesClostridium perfringens55canineF1,5MetisfecesClostridium perfringens56felineF2Persian siameseotic secretions otic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus sp.gr.A60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.gr.A62felineM1,8SiberianurineEnterococcus facealis,	52	feline	F	8			Staphylococcus pseudointermedius, Kokuria sp. Serratia marcescens
55canineF1,5MetisfecesClostridium perfringens56felineF2Persian siameseotic secretions otic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, 	53	canine	М	12	Cocker	otic secretions	Pseudomonas aeruginosa
56felineF2Persian siameseotic secretionsStreptococcus sp. gr.D, Enterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus pseudointermedius60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	54			-	Forest	0	
siameseEnterobacter aerogenes, Malassezia sp.57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus pseudointermedius60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	55		F	1,5			Clostridium perfringens
57canineM2,5Bichonotic secretionsMalassezia sp.58canineM9WestiefistulaStaphylococcus pseudointermedius59felineF10Birman Catotic secretionsStaphylococcus pseudointermedius60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	56	feline	F	2		otic secretions	Enterobacter aerogenes,
59felineF10Birman Catotic secretionsStaphylococcus pseudointermedius60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	57	canine	М	2,5	Bichon	otic secretions	
60felineF1MetisstomatitisStreptococcus sp.gr.A61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	58	canine	М	9	Westie	fistula	Staphylococcus pseudointermedius
61canineM4,5Bichonotic secretionsStreptococcus sp.C62felineM1,8SiberianurineEnterococcus faecalis,	59	feline	F	10	Birman Cat	otic secretions	Staphylococcus pseudointermedius
62 feline M 1,8 Siberian urine Enterococcus faecalis,	60	feline	F	1	Metis	stomatitis	Streptococcus sp.gr.A
62 feline M 1,8 Siberian urine Enterococcus faecalis,	61	canine	М	4,5	Bichon	otic secretions	Streptococcus sp.C
		feline	М		Siberian	urine	Enterococcus faecalis,
	63		F	-	Metis	skin scraping	Staphylococcus pseudointermedius

64	canine	F	3	Teckel	skin scraping	Staphylococcus pseudointermedius
65	canine	F	8	Bichon	skin scraping	Staphylococcus pseudointermedius
66	canine	F	2	Metis	otic secretions	Staphylococcus pseudointermedius, Klebsiella sp.
67	canine	Μ	5	German Shepherd	skin scraping	Staph. pseudointermedius
68	feline	М	1	Birmaneza	nasal/pharyngea l secretions	Klebsiella pneumoniae
69	canine	М	2	Husky	skin scraping	Staphylococcus saprophyticus, Candida sp.
70	feline	М	4	European	skin scraping	Staphylococcus intermedius, Streptococcus gr.G
71	canine	М	0,5	Metis	folliculitis	Staphylococcus pseudointermedius
72	feline	F	3	European	nasal secretions	Pasteurella <u>multocida, Streptococcus sp. gr.C</u> Staphylococcus saprophyticus
73	canine	М	3,5	Belgian Malinois	skin scraping	Staphylococcus pseudointermedius,
74	canine	М	2,5	Cane Corso	vaginita	Corynebacterium sp., Streptococcus sp. grup.G
75	canine	М	5	Samoyed	conjunctival secretions	Streptococcus sp.gr,G
76	canine	М	1,5	Metis	urine	Enterobacter cloaceae, Escherichia coli
77	canine	М	8	Bulldog francese	skin scraping	Staphylococcus pseudointermedius
78	feline	F	18	European	nasal secretions	Corynebacterium sp.
79	feline	F	1,3	British	urine	Escherichia coli
80	canine	F	4	Pekinez	skin scraping	Staphylococcus aureus
81	canine	F	2,5	Akita Inu	pharyngeal secretions	Klebsiella pneumoniae, Streptococcus sp. gr.C
82	canine	М	3	Metis	fistula	Staphylococcus aureus
83	feline	F	10	Birman Cat	skin scraping	Staphylococcus pseudointermedius

Anaerobic strains have been isolated much less frequently and the most important isolated bacterial species have been *Clostridium perfringens* (9,35%) and *Campylobacter sp.* (1,87%) (fig.1).

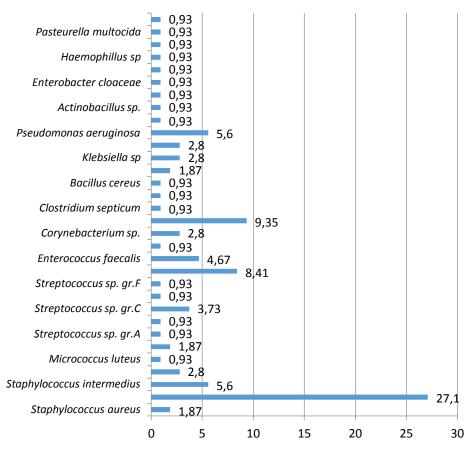


Fig.1. Ghraphical representation of the frequency of bacterial strains isolated from various diseases in dog and cats

Summarizing the data obtained, it is observed that there are no significant differences in terms of the etiology of a condition that has evolved in both dogs and cats (Table 2).

SPECIA	AFECTIUNEA	TULPINI	NR	%
canina	Conjunctivitis	Staphylococcus psedointermedius,	2	33,3
		Klebsiella pneumoniae	1	16,6
		Actinobacillus lignieresi	1	16,6
		Streptococcus sp.gr,G	2	33,3
felina	Conjunctivitis	Staphylococcus pseudointermedius,	1	33,3
		Kokuria kristinae	1	33,3
		Serratia marcescens	1	33,3
canina	Dermatitis	Streptococcus gr.F,	1	5,88
		Streptococcus gr.G	2	11,7
		Staph. pseudointermedius	10	58,82
		Pseudomonas aeruginosa	1	5,88
		Staph. saprophyticus	2	11,7
		Staph. aureus	1	5,88

Table 2. The frequency of bacterial species isolated from different diseases

felina	Dermatitis	Ciana La interna dina	2	40,0
ienna	Dermatitus	Staph. intermedius	1	20,0
		Streptococcus gr.G	-	· · · · · · · · · · · · · · · · · · ·
		Streptococcus gr.A	1	20,0 20,0
• • • •	Otitia	Staph pseudointermedius	-	20,0 40
canina	Otitis	Staphylococcus pseudointermedius,	6	
		Staphylococcus intermedius,	1	6,66
		Corynebacterium sp.	1	6,66
		Streptococcus sp.C	1	6,66
		Klebsiella sp.	1 5	6,66
faliana	Otitis	Pseudomonas aeruginosa	3	33,3 50
felina	Outus	Stapylococcus pseudointermedius Bacillus cereus	1	16,6
			1	16,6
		Streptococcus sp. gr.D,	1	
	Lesions/fistules	Enterobacter aerogenes,	2	16,6 33,3
canina	Lesions/ instures	Staphylococcus intermedius,	2	33,3
		Staphylococcus pseudointermedius,	1	33,5 16,6
		Klebsiella sp. Streptogogy gr C	1	16,6
felina	Lesions/fistules	Streptococcus gr.G, Staphylococcus pseudointermedius	2	10,0
tenna canina	Cistitis	Staphylococcus pseudointermedius Enterococcus faecalis	2	50
camna	Cistus	Escherichia coli	1	25
		Escherichia con Enterobacter cloacae	1	25
felina	Cistitis	Enterococcus faecalis,	1	50
теппа	Cistitis	Escherichia coli	1	50
canina	Enteritis	Campylobacter sp.	2	18,2
Camna	Literitis	Clostridium perfringens,	7	63,6
		Clostridium septicum	1	9,1
		Clostridium tetani	1	9,1
felina	Enteritis	Campylobacter sp.	2	33,3
		Clostridium perfringens	4	66,6
canina	Laryngitis/pharyngitis	Staphylococcus pseudointermedius	2	18,2
		Streptococcus sp. gr.C	2	18,2
		Streptococcus sp.gr.G,	2	18,2
		Micrococcus luteus	1	9,1
		Enterococcus faecalis	1	9,1
		Bordetella bronhiseptica	1	9,1
		Klebsiella pneumoniae	1	9,1
		Haemophillus sp.,	1	9,1
felina	Laryngitis/pharyngitis	Streptococcus sp. gr.C	2	28,6
		Staphylococcus saprophyticus	1	14,3
		Corynebacterium sp.	1	14,3
		Listeria monocytogenes	1	14,3
		Klebsiella pneumoniae	1	14,3
		Pasteurella multocida	1	14,3
canina	Vaginitis	Corynebacterium sp.,	1	50
		Streptococcus sp. grup.G	1	50
canina	Balanitis	Streptococcus sp.gr.B,	1	50
		Enterococcus faecalis	1	50
felina	Stomatitis	Moraxella cattharalis.,	1	50
		Actinobacillus lignieresi	1	50

Thus, in dermatitis in dogs the most closely involved bacteria species was *Staphylococcus pseudointermedius* (58,82%) and in cats, *Staphylococcus intermedius* (40%).

From purulent lesions and fistulas, taken from injuries and wounds, bacterial species were isolated, known for their more frequent involvement in dog dermatitis. From the samples collected

from dogs, the species *Staphylococcus pseudointermedius* (33.3%) and *Staphylococcus intermedius* (33.3%) were isolated, *Klebsiella sp.* (16.6%) and *Streptococcus sp.* g. G (16.6%). From the samples taken from cats, the species *Staphylococcus pseudointermedius* (100%) was isolated.

External otitis is an inflammation of the skin from the level of the ear canal and from the proximal portion of the ear flag. Therefore, their etiology is polymicrobial and similar to that of dermatitis. The bacterial species most commonly isolated from otitis was *Staphylococcus pseudointermedius* in both dogs (40%) and cats (50%). Other bacterial species were isolated from the otic exudates from dogs: *Pseudomonas aeruginosa* (33.3%), *Staphylococcus intermedius* (6.66%), *Corynebacterium sp.* (6.66%), *Streptococcus sp.*C (6.66%), *Klebsiella* sp. (6.66%) and from cats, the bacterial species were isolated: *Bacillus cereus* (16.6%), *Streptococcus sp.* gr.D (16.6%), *Enterobacter aerogenes* (16.6%).

From the conjunctival secretions from dogs were isolated: *Staphylococcus psedointermedius* (33.3%), *Streptococcus* sp.gr. G (33.3%), *Klebsiella pneumoniae* (16.6%), *Actinobacillus lignieresi* (16.6%), and from the samples from cats were isolated with a similar frequency, species: *Staphylococcus pseudointermedius* (33.3%), *Kokuria kristinae* (33.3%), *Serratia marcescens* (33.3%).

The etiology of cystitis has been dominated by Gram-negative bacteria in both dogs and cats. The results of uroculture in dogs show the etiological role of *Enterococcus faecalis* (50%), *Escherichia coli* (25%) and *Enterobacter cloacae* (25%). Uropathogenic bacterial species in cats, isolated in pure or mixed cultures, were: *Enterococcus faecalis* (50%) and *Escherichia coli* (50%). Feces samples from dogs showed the role of anaerobic bacterial species: *Clostridium perfringens*

(63.6%), Campylobacter sp. (18.2%), Clostridium septicum (9.1%) and Clostridium tetani

(9.1%). In cats, the results were similar to those of dogs, with a different frequency with the species *Clostridium perfringens* (66.6%) and *Campylobacter sp.* (33.3%).

From the pharyngeal exudates taken from dogs and cats, a polymicrobial microflora was isolated. In dogs, the most commonly isolated bacterial species were: *Staphylococcus pseudointermedius* (18,2%), *Streptococcus sp.* gr. C (18,2%), *Streptococcus sp*, gr.G (18,2%) in association with *Micrococcus luteus* (9,1%), *Enterococcus faecalis*(9,1%),*Bordetella bronhiseptica* (9,1%), *Klebsiella pneumoniae* (9,1%), *Haemophillus sp.*, (9,1%). From the pharyngeal exudates from cats were isolated: *Streptococcus sp.* gr.C (28,6%), *Staphylococcus saprophyticus* (14,3%), *Corynebacterium sp.* (14,3%), *Listeria monocytogenes* (14,3%), *Klebsiella pneumoniae* (14,3%).

From purulent secretions taken from dogs with balanitis, only Gram-positive bacterial strains were isolated: *Corynebacterium sp.* (50%), *Streptococcus sp.* gr.G (50%) and from the females with vaginitis it was isolated: *Streptococcus sp.* gr.B (50%) and *Enterococcus faecalis* (50%).

After performing all the antibiograms, the results showed that the most effective antibiotics against bacterial strains isolated from dermal scrapers from dogs: were: gentamicin, enrofloxacin, marbofloxacin, neomycin, amoxicillin-clavulanic acid, cefovecin and fusidic acid.

As a result of frequent use of antibiotics, bacterial strains have been resistant to a wide range of antibiotics used in dermatitis therapy. Therefore, 6 (42.85%) of the 14 strains tested were resistant to enrofloxacin and marbofloxacin, to 6 (54.54%) of 11 strains resistant to cephalexin, to 4 (26.66%) of 15 strains resistant to amoxicillin. and clavulanic acid, in 4 (44.44%) of 9 clindamycin-resistant strains, 5 (71.42%) of 7 trimethoprim-sulfamethoxazole-resistant strains, 2 (66.66%) of 3 ampicillin-resistant strains. (fig.2).

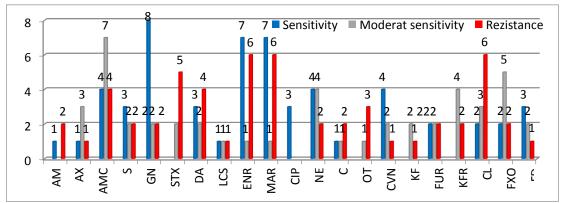


Fig.2. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from skin scraping, to dogs

In cats, the most efficient antibiotics against strains isolated from dermatitis have been: enrofloxacin, marbofloxacin and chloramphenicol, however, showed resistance to amoxicillin + clavulanic acid 2 (40%) from 5 tested strains, to neomycin 2 (50%) from 4 tested strains, to marbofloxacin 1 (33.33%) from 3 tested strains , to lincospectin 1 (50%) of 2 strains tested, to trimetoprim-sulfamethoxazole 1 (33.33%) of 3 strains tested, to ampicillin, amoxicillin and cephalexin, all strains tested were resistant (fig.3).

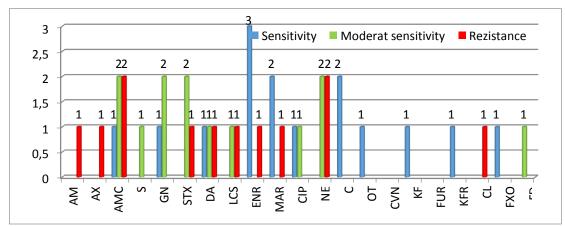


Fig.3. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from skin scraping, to cats

Synthesizing the results obtained from antibiograms performed on strains isolated from otic exudates, it was found that in dogs, the most active antimicrobial substances were: ciprofloxacin, marbofloxacin, gentamicin, chloramphenicol (florfenicol), enrofloxacin and streptomycin. About antibiotic resistance, 5 (41.66%) of 12 bacterial strains were resistant to chloramphenicol, 3 (33.33%) of 9 strains were resistant to amoxicillin-clavulanic acid, 4 (66.66%) of 6 strains were resistant to clindamycin, 2 (50%) of 4 to lincospecin, 3 (75%) of 4 to kanamycin and neomycin, 2 (50%) to 4 to cephalexin, 2 (18.18%) to 11 to marbofloxacin, 2 (75%) of 3 to cefoxitin and all strains tested against oxytetracycline, doxycycline and trimethoprim-sulfamethoxazole (fig.4).

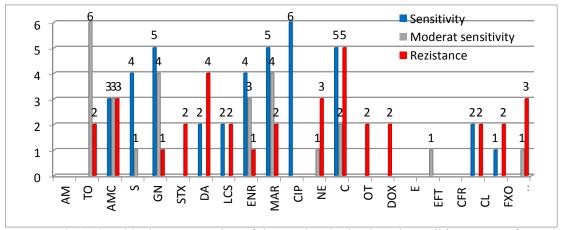


Fig.4. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from otic secretions, to dogs

In cats, strains isolated from ear exudates were sensitive to marbofloxacin, ciprofloxacin, chloramphenicol, clindamycin, oxytetracycline, streptomycin, gentamicin, enrofloxacin, trimethoprim + sulfamethoxazole and 1 (25%) of 1 gentamicin was identified (25%). 50%) of 2 strains resistant to ampicillin, 1 (33.33%) of 3 strains resistant to clindamycin, and all strains tested against cephalexin, cefadroxil, cefoxitin and kanamycin have been resistant. (fig.5).

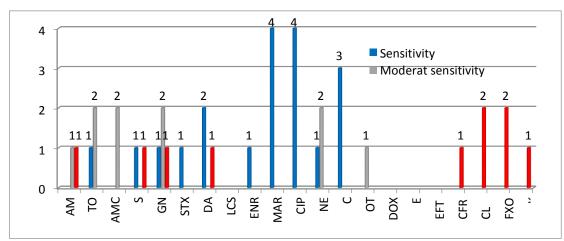


Fig.5. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from otic secretions, to cats

From the serohemorrhagic and purulent exudates taken from lesions and fistulas that evolved in dogs, bacterial strains were isolated that showed sensitivity to a small number of antibiotics: rifampicin and gentamicin but a multiple resistance was observed against a large number of antibiotics. Thus, 2 (66.66%) of the 3 bacterial strains tested were gentamicin and cephalexin resistant, 1 (33.33%) of 3 to amoxicillin-clavulanic acid, 1 (50%) of 2 to lincospectin, and all strains. tested for streptomycin, clindamycin, ampicillin, enrofloxacin, marbofloxacin, ciprofloxacin, neomycin, oxytetracycline, ceftiofur, cefadroxil, have been resistant (fig.6).

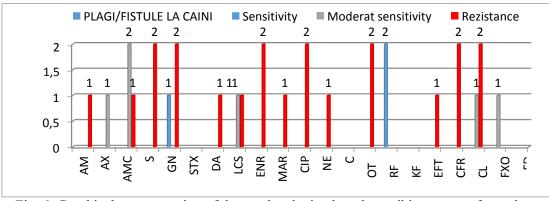


Fig. 6. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from lesions/fistules, to dogs

In cats, bacterial strains isolated from fistulas and lesions were sensitive to ampicillin and rifampicin and all strains tested for resistance to amoxicillin-clavulanic acid, clindamycin, oxytetracycline, ceftiofur and cefadroxil were resistant (fig.7).

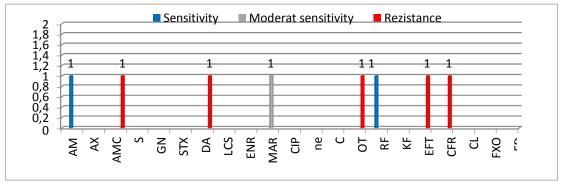
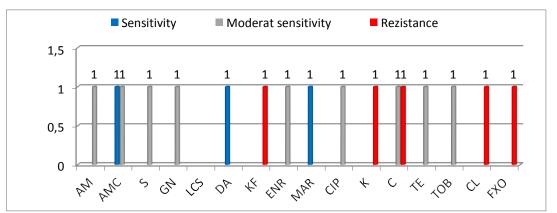
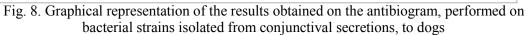




Fig. 7. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from lesions/fistules, to cats

Bacterial strains isolated from conjunctival secretions from dogs, were sensitive to amoxicillin-clavulanic acid, gentamicin, marbofloxacin, kanamycin, chloramphenicol and tobramycin and (50%) of 2 strains were resistant to kanamycin, 1 (33.33%) out of 3 to chloramphenicol and all strains tested against cephalexin, cephalothin and cefoxitin were resistant (fig.8).

Bacterial strains isolated from conjunctival secretions of cats with conjunctivitis, were sensitive to amoxicillin-clavulanic acid, gentamicin, clindamycin, marbofloxacin, kanamycin, chloramphenicol and tobramycin and 1 (33.33%) of 3 strains were resistant to chloram and all strains that were tested against cephalothin, cephaloxin and cefoxitin were resistant (fig.9).

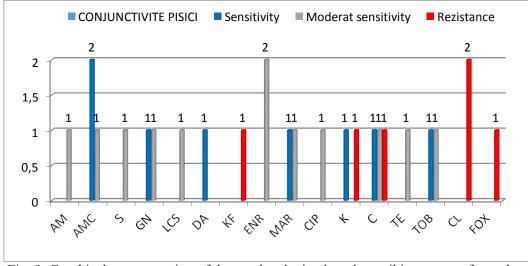


Fig. 9. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from conjunctival secretions, to cats

From the pharyngeal exudates taken from dogs, bacterial strains were isolated which, in a small number, were sensitive to amoxicillin-clavulanic acid, gentamicin, enrofloxacin, chloramphenicol, cephalexin, ciprofloxacin, marbofloxacin, streptomycin, trimethoprimol + trimethoprimol. Of the same samples, 7 (77.77%) of 9 strains isolated and tested were resistant to lincospectin, 4 (66.66%) of 6 to marbofloxacin, 3 (42.85%) to 7 to enrofloxacin, 1 (50%) from 2 to doxycycline, 2 (40%) from 5 to gentamicin, 2 (33.33%) from 6 to amoxicillin-clavulanic acid, 2 (66.66%) from 3 to amoxicillin, 2 (66.66%) from 3 to trimethoprim-sufametoxazole, 1 (50%) from 2 to neomycin, 1 (33.33%) from 3 to chloramphenicol, 3 (75%) from 4 to cephalexin, 4 (80%)

to 5 to kanamycin, 1 (66.66%) of 3 to streptomycin and all strains tested against ampicillin, erythromycin, clindamycin, were resistant (fig.10).

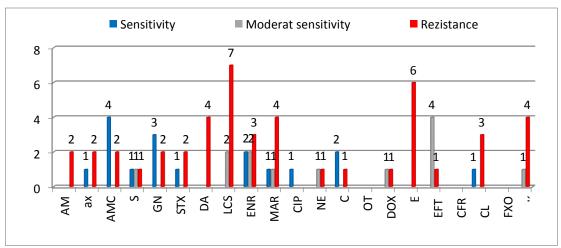


Fig. 10. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from pharyngeal exudates, to dogs

Bacterial strains isolated from pharyngeal exudates, collected from cats, had a good sensitivity to chloramphenicol, marbofloxacin, ciprofloxacin, enrofloxacin, amoxicillin-clavulanic acid, cephalexin, gentamicin. Also, 2 (66.66%) of the 3 bacterial strains tested were resistant to amoxicillin-clavulanic acid, 3 (60%) out of 5 to clindamycin, 2 (66.66%) out of 3 to cephalexin, 1 (50%) from 2 to kanamycin, cefoxitin, lincospectin and ampicillin and all strains tested against cefadroxil, erythromycin, streptomycin, were resistant (fig.11).

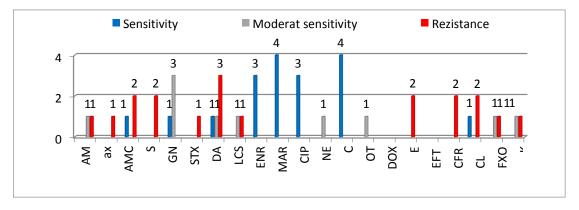


Fig. 11. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from pharyngeal exudates, to cats

From feces samples in dogs, have been isolated pathogenic bacterial strains with multiple sensitivity to lincospectin, amoxicillin-clavulanic acid, enrofloxacin, marbofloxacin, vancomycin, ampicillin, ampicillin-acloxacillin, streptomycin, clidamycin,doxycycline, chloramphenicol,

gentamicin, cefaclor, cephalexin and cefadroxil. Antimicrobial resistance was reported in 2 (66.66%) of 3 oxytetracycline resistant strains, 3 (75%) of 4 gentamicin resistant strains, 1 (20%) of 5 streptomycin resistant strains, 1 (33.33 %) of 3 strains resistant to chloramphenicol, 1 (50%) from 2 to cephalexin, 1 (11.11%) from 9 to lincospectin and one strain resistant to colistin and norfloxacin. (fig.12)

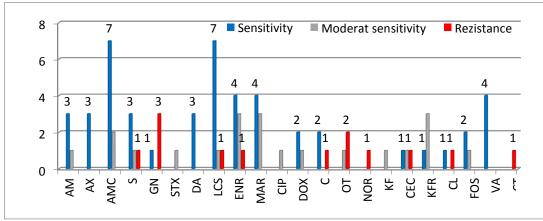


Fig. 12. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from feces samples, to dogs

Comparing the results of antibiograms performed to dogs, with those performed to cats, it was found that the bacterial strains isolated from the feces samples, had a good sensitivity to most of the antibiotics tested: amoxicillin-clavulanic acid, clindamycin, vancomycin, colistin, amoxicillin, streptomycin, gentamicin, lincospectin, marbofloxacin and ciprofloxacin. Antimicrobial resistance was reported in 1 (50%) of 2 strains compared to lincospectin and an ampicillin-resistant strain (fig.13).

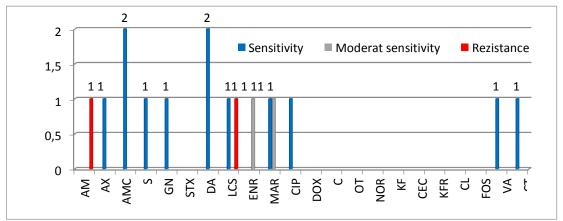


Fig. 13. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from feces samples, to cats

The urinalysis performed on samples taken from dogs, showed bacterial strains that are resistant to antibiotics. Thus, 1 (33.33%) of 3 strains resistant to amoxicillin-clavulanic acid and cephalexin were identified and all strains tested against ampicillin, trimethoprim

+sulfamethoxazole, enrofloxacin, marbofloxacin, norfloxacin, cefadroxil have been resistant. The sensitivity of the isolated bacterial strains was sporadic, the most active antibiotics were amoxicillin-clavulanic acid, spectinomycin, gentamicin and chloramphenicol (fig.14).

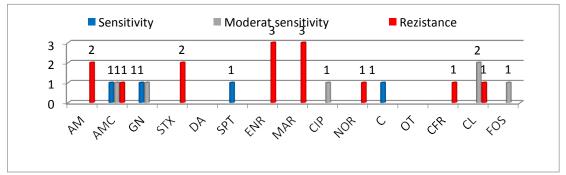


Fig. 14. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from urine samples, to dogs

The results obtained in antibiograms performed on bacterial strains isolated from urinalysis from cats, were different from those obtained in dogs. Most of the antibiotics tested (gentamicin, ampicillin, clindamycin, enrofloxacin, marbofloxacin, ciprofloxacin, norfloxacin, chlorfenicol, oxytetracycline, cefadroxil) had very good antimicrobial action. A single bacterial strain was resistant to trimethoprim + sulfamethoxazole (fig.15).

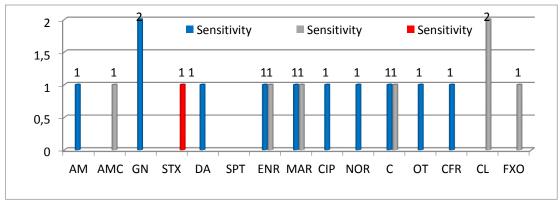


Fig. 15. Graphical representation of the results obtained on the antibiogram, performed on bacterial strains isolated from urine samples, to cats

Analyzing the data obtained from performing the antibiograms, we found a very varied sensitivity and resistance to antibiotics, which advocates the need to establish the therapeutic treatment based on the antibiogram. The results of the microbiological examinations revealed the same spectrum of bacterial species, pathogenic or conditioned pathogens, which are more frequently involved in the pathology of pets. The wide variety of potential bacterial infections that

pets can contract leads to a wide variety of symptoms. Their clinical presentation reflects the interaction between the host organism and the opportunistic microorganisms, the symptomatology being influenced by the immune status and the microbial virulence factors. In general, bacterial infections can be treated by the administration of antibiotics but these must be prescribed on the basis of antibiotics in order to achieve real therapeutic success. In current practice, veterinarians apply first-line therapies with broad-spectrum antibiotics.

However, the results obtained in the testing of bacterial strains against these antibiotics show that the microbial resistance has obviously been installed in the antimicrobial substances most used in the therapies.

Conclusions

The results of the antibiograms revealed a wide variability of sensitivity and resistance of the isolated strains to the antibiotics.

Bacterial strains isolated from dermatitis, had high resistance to: enrofloxacin, marbofloxacin, cefalexin (dogs), amoxicilina+ac.clavulanic and neomicine (cats).

Bacterial strains isolated from otitis, had high resistance to: clindamicin and cloramphenicol (dogs), cefalexin and cefoxitin(cats).

Bacterial strains isolated from lesions/fistulas, had high resistance to: gentamicin, streptomycin, enrofloxacin, ciprofloxacin, oxitetracicline, cefadroxil and cefalexin (dogs), amoxicilin+ac.clavulanic, doxicicline, oxitetracicline, ceftiofur, cefadroxil (cats).

Bacterial strains isolated from conjunctivitis, had high resistance to: cefalexin (dogs and cats).

Bacterial strains isolated from cystitits, had high resistance to: lincospectin, eritromicine (dogs), clindamicine (cats).

References

- 1. Whitley R. D.,2000- Canine and feline primary bacterial infection; Vet. Cli. Nor. Am. 2000. Vol. 5. 1151–1167.
- Rîmbu Cristina, Guguianu Eleonora, Horhogea Cristina, Carp-Cărare C., Mariana Grecu, Raluca Rusu, Carmen Creţu, 2018 - *Clostridium perfringens Enterotoxigen involved in hemorrhagic diarrhea at dogs*, Lucrari ştiintifice Medicină Veterinară Iaşi, vol. 61 (4) on -line ISSN 2393 – 4603, ISSN–L 1454 – 7406
- 3. Carp Cărare C., Guguianu Eleonora, Rîmbu Cristina, 2015 *Special bacteriology- practical Guide,* Ed. USAMV Iasi,
- Grecu Mariana, Anton Alina, Rîmbu Cristina, Ciocan Oana, Mares M., Năstasa V.2016 Evaluation of the antimicrobial effect of the two substances used in otitis extern in dog. Lucrări Științifice USAMV lasi, seria Medicina Veterinara, vol.59 (nr.4)
- 5. Solcan Gh., Boghian V., Rollin F., 2005–Internal Medicine Pathology and Clinic, Ed. "Ion Ionescu de la Brad", lasi
- Predoi, Gh., Dărăbuş, V. Cozma, Gh Solcan, L. Mitrea, V. Igna, T. Leau, 2011- Managementul calității actului terapeutic medical veterinar, Ed Dobrogea, Constanța, 190 pag., ISBN 978-606-565-032-9