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ABSTRACT

Slender structures like plates and shells – for which at least one dimension is much smaller

than the others – are lightweight, flexible, and offer considerable strength with little ma-

terial. As such, these structures are abundant in nature (e.g. flower petals, eggshells,

and blood vessels) and design (e.g. bridge decks, fuel tanks, and soda cans). However,

with slenderness comes suceptibility to large and often sudden deformations, which can

be wildly nonlinear, as bending is energetically preferable to stretching. Though once

considered categorically undesirable, these instabilities are often coveted nowadays in the

engineering community. They provide mechanical explanations for observations in nature

like the wrinkled structure of the brain or the snapping mechanism of the Venus fly trap, and

when precisely controlled, enable the design of functional devices like artificial muscles or

self-propelling microswimmers. As a prerequisite, these achievements require a thorough

understanding of how thin structures “shape-shift" in response to stimuli and confinement.

Advancing this fundamental knowledge is the goal of this thesis.

In the first two chapters, we consider the shape-selection of shells and plates that are

confined by their environment. The shells are made by residual swelling of silicone elas-
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tomers, a process that mimics differential growth, and causes initially flat structures to

irreversibly morph into curved shapes. Flattening the central region forces further recon-

figuration, and the confined shells display multi-lobed buckling patterns. These experi-

ments, finite element (FE) simulations, and a scaling argument reveal that a single geo-

metric confinement parameter predicts the general features of this shape-selection. Next,

in experiments and molecular dynamics (MD) simulations, we constrain intrinsically flat

sheets in the same manner, so that their center remains flat when we quasi-statically force

them through a ring. In the absence of planar confinement, these sheets form a well-studied

conical shape (the developable cone or d-cone). Our annular d-cone buckles circumferen-

tially into patterns that are qualitatively similar to the confined shells, despite the distinct

curvatures and loading methods. This is explained by the dominant role of confinement

geometry in directing deformation, which we uncover via a scaling argument based on the

elastic energy. There are also marked differences between the way plates and shells change

shape, which we highlight when we investigate the rich dynamics of reconfiguration.

In the final two chapters, we demonstrate how mechanics, geometry, and materials can

inform the design of structures that use instabilities to function. We observe in experiments

that dynamic loading causes a spherical elastomer shell to buckle at ostensibly subcritical

pressures, following a substantial time delay. To explain this, we show that viscoelastic

creep deformation lowers the critical load in the same predictable, quantifiable way that a

growing defect would in an elastic shell. This work offers a pathway to introduce tunable,

time-controlled actuation to existing mechanical actuators, e.g. pneumatic grippers. The

final chapter aims at reducing the energy input required for bistable actuators, wherein

snap-through instability is typically induced by a stimulus applied to the entire shell. To

do so, we combine theory with 1D finite element simulations of spherical caps with a non-

homogeneous distribution of stimuli–responsive material. We demonstrate that restricting

the active area to the shell boundary allows for a large reduction in its size, while preserving
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snap-through behavior. These results are stimulus-agnostic, which we demonstrate with

two sets of experiments, using residual swelling of bilayer silicone elastomers as well as

a magneto-active elastomer. Our findings elucidate the underlying mechanics, offering an

intuitive route to optimal design for efficient snap-through.
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1

Chapter 1

Introduction and background

When an elastic body must deform, it will seek to do so in a way that minimizes the total

potential energy, which is the elastic strain energy plus the potential from external loads.

For slender structures like rods, plates, and shells, wherein at least one dimension is much

smaller than the others, the strain energy U may be quantified as the sum of two terms:

one that penalizes stretching, Us, and one that accounts for the cost of bending, Ub. The

stretching energy depends linearly on the the thickness, h, whereas the bending term scales

with its cube, h3 [106]. Thus, if the thickness of a structure is small, the cost of bending is

much less that of stretching, i.e. Ub�Us. As a result, slender structures readily “shape-

shift", undergoing large, nonlinear, bending-dominated deformations. Such contortions are

cheaper than even small amounts of stretching or compression.

In many cases, the route [188] to an energy-minimizing configuration relies on an elas-

tic instability, i.e. a sudden, large change in the deformation, which is disproportionate

to the change in the applied force or stimulus. Examples include lateral railway buck-

ling [100], which can occur as heat causes tracks to expand, or the snap-through collapse

of masonry arches [19]. The catastrophic potential of these failures has driven engineers for

many decades to seek accurate predictions for when an instability will occur. These prob-

lems are inherently nonlinear, but linearized approximations often suffice for capturing the

critical load or displacement that will cause a structure to lose stability [11].

It is generally more difficult, however, to understand what happens following the on-

set of instability. In more recent decades, this has become a major goal of the mechanics
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community for two primary reasons. First, technological advancements, e.g. in medical

imaging, have inspired research aimed at providing mechanical explanations for morpholo-

gies in biology and nature. Buckling due to differential growth [60] explains the wrinkled

structure of the brain [61] and the rippled edge of a leaf [168, 116, 167] alike. In some

pathological cases, understanding the mechanical root of an instability can inform solu-

tions. Circumferential buckling, or “mucosal folding", can constrict multi-layered, tubu-

lar biological structures like blood vessels and airways, and has been linked directly to

the increased thickness of an inflamed inner wall [193, 201]. Surface tension can even

drive pulmonary airways to collapse completely [72] (pulmonary surfactant can prevent

this buckling [68]). In other cases, instabilities are advantageous. Snap-through instability

is a crucial step of morphogenesis for the optic cup [114] and the Volvox embryo [77]. To

capture food, the Venus fly trap [50] and the hummingbird [173] both rely on snapping

as well. Helical buckling helps to propel climbing plants against gravity [126], and some

bacteria gain motility from flagellar buckling [174].

The increased understanding of these adaptive deformations in nature is largely to thank

for inspiring a major paradigm shift among engineers: In recent years, controllable in-

stabilities are often sought out, rather than avoided, in design [78]. This new collective

“buckliphilic" [153] mindset has been bolstered by advances in materials science, such

as the prevalence of robust, easy-to-prepare [111] soft elastomers, and a flourishing land-

scape of smart, stimulus-responsive [31] materials [154]. These materials are conducive

to reversible deformations, and can often tolerate high strains in doing so, thus enabling

the design of devices across scales that rely on instabilities for functionality. Among

the many examples are soft robotic actuators [63, 139] and artificial muscles [200], re-

programmable Braille [32], switching optical devices [79], mechanical swimmers [41],

self-assembling colloids [158], snapping micro-electromechanical systems (MEMS)-based

accelerometers [69], adaptive architectural façades [175], flow– [82, 59] and drag– [179]
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control devices, 4D printing [16, 180], wherein a pre-determined 3D structure forms upon

activation from a stimulus, and mechanical metamaterials [13, 49], which exhibit tunable

properties beyond those of their constituent materials.

These two complementary goals – to describe and prescribe instabilties – continue to

motivate a more complete understanding of their nature. The seemingly limitless design

space advances along with our essential understanding of these large, nonlinear deforma-

tions, and despite the enormous progress made in recent decades, many questions remain.

The primary aim of this thesis is to address some of these unsolved, fundamental problems.

In the following two Chapters, we examine how slender structures respond to exter-

nal confinement. Because seemingly slight changes to boundary conditions dramatically

change the nature of instabilities, this area of research is vast. Particularly for naturally

curved shells, very little is understood about the response to external confinement (though

the indentation response of positively curved shells is somewhat of an exception [134]).

Accordingly, we ask broad questions in Chapter 2: How do shells of diverse intrinsic and

extrinsic curvatures respond when their central region is forced to flatten? What happens

when some of this in-plane confinement is released? We address these questions primarily

with experiments, but also with finite element (FE) simulations. In experiments, we com-

bine planar confinement with residual swelling of silicone elastomers, wherein diffusion of

free polymer chains leads a structure to morph in response to an evolving natural curvature.

Across four types of shells that differ in their extrinsic and intrinsic curvatures, we observe

that the general features of shape-selection are surprisingly alike. Each shell buckles peri-

odically, and the number of waves increases with increasing confinement. We explain this

robust response with a scaling argument based on the elastic energy, which reveals that the

wavenumber is set by a single geometric parameter that compares the overall size of the

shell to the length scale of confinement.

Compared to shells, much more is known about how intrinsically flat sheets respond
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to external confinement. In particular, extensive theoretical [24, 22] and numerical [117]

studies have addressed the geometry [163] and mechanics of the canonical problem in this

realm, the developable cone, or d-cone [3]. The d-cone emerges when a sheet is pushed

into an open cup or cylinder via indentation at its center with a sharp point. The structure is

so-named because it remains developable (or isometric to the flat sheet; see Appendix A)

everywhere except for a small sacrificial region at the tip of the indentor. This an example

of stress-focusing [194]. The d-cone forms the basis for crumpling, which is relevant to e.g.

DNA packing [151] and insect wing folding [65]. Experimental works [27, 26] in this area

have been scarce, despite that even in the limited geometric range studied, differences from

the idealized theoretical structure are evident. Further, beyond this model conical packing

problem, less-ideal scenarios emerge [162] that are not as well-understood. In Chapter 3,

we simultaneously address the needs for studies of “perturbed" d-cone configurations, and

for thorough experiments in this area. To do so, we constrain sheets to remain centrally flat

(as we did for the shells in Chapter 2), thus creating an annular d-cone, which exhibits an

extreme sensitivity to the added confinement. Our experiment-driven approach is enhanced

by molecular dynamics (MD) simulations. Like for the confined shells, the annular d-cone

buckles periodically, and we find that the confinement geometry plays a dominant role

in dictating shape selection. We also report rich dynamics observed in our quasi-static

experiments and simulations, e.g. sequential wave formation and unexpected wrinkling,

which separate our confined packing problem both from confined shells and the traditional

d-cone.

The next two chapters are aimed at providing a physical basis for mechanics-driven de-

sign. In Chapter 4, we study dynamically-loaded, defect-seeded spherical elastomer shells.

We observe in experiments that the shells buckle at pressures below the experimentally-

determined elastic critical load, often following a significant time delay. Silicone elas-

tomers are popular in mechanics research precisely because they behave elastically in most
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settings. However, these materials are inherently viscoelastic, meaning that they exhibit a

fluid-like time-dependence under certain loading conditions. Viscoelastic creep deforma-

tion explains our findings, and we show that the reduced critical load follows directly from

the material properties. We then introduce an analogy, wherein we claim that creep defor-

mation lowers the critical load in the same way a growing defect would in an elastic shell.

This leads to intuitive and predictive explanations for both the critical time and deformation

at which buckling occurs. Our model relies on easily measurable quantities, and thus offers

an accessible path to tunable time-dependence for existing elastomer actuators, e.g. pneu-

matic grippers. This work simultaneously serves the creep buckling [70, 71] community,

to which our experiments using full spheres and soft materials are novel.

The aim of the work in Chapter 5 is to reduce the energy input needed for bistable snap-

ping devices. In such devices, e.g. dielectric elastomer (DE) actuators [165], snap-through

instability is typically induced by a stimulus applied to an entire shell surface. In this work,

we demonstrate that restricting the active area to the shell boundary allows for a large re-

duction in its size, while preserving snap-through behavior. We do so by combining theory

with 1D finite element simulations of spherical caps with a non-homogeneous distribution

of stimuli-responsive material. Our findings are stimulus-agnostic, which we demonstrate

with two sets of experiments, using residual swelling of bilayer silicone elastomers as well

as a magneto-active elastomer. These results elucidate a mechanics-informed route to op-

timal design for efficient snap-through.

Each of Chapters 2 through 5 of this thesis is a self-contained, slightly modified ver-

sion of either a peer-reviewed journal publication, or a manuscript intended for publication.

Chapter 6 contains concluding remarks, including a brief discussion of possible future di-

rections related to the work herein. Before proceeding, the remainder of this Introduction

will provide basic knowledge of the mathematics behind elastic instabilities, and introduce

some concepts and theories that we rely on throughout this thesis.
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1.1 Elastic instabilities

The principle of minimum potential energy informs the arguments we rely on throughout

this thesis, and energy methods [11] can be used to determine elastic stability. In what

follows, we present some basic concepts and examples using this approach.

The total potential energy of a system consists of the elastic or internal strain energy and

the potential from external loads, i.e. V = Ue +P. This energy functional (a function of

functions) graphed as an energy landscape may be comprised of various peaks and valleys.

A ball traveling on such a surface can rest at the top or bottom of a hill, or on a flat surface,

i.e. anywhere there is zero slope. Similar to seeking a stationary first derivative in calculus,

we consult the first variation of the potential energy to locate these critical points. If a

structure is in equilibrium, the first variation of the total potential energy, evaluated with

respect to its degrees of freedom, will equal zero, i.e. δV = 0.

Often, we want to know how a system in equilibrium would respond to a perturbation.

The first variation gives no information, after all, about which of the three zero-slope land-

forms the ball rests upon. Such a stability analysis requires that we consider the second

variation (analogous to the second derivative, which reveals the concavity of a function).

A positive-definite second variation, i.e. δ2V > 0, indicates a stable equilibrium. This

corresponds to the ball resting in a valley – after a perturbation, the ball will return to the

same position. If δ2V = 0, we say that a structure is in neutral equilibrium. In this case,

a ball rests on a flat surface, and the energy does not change in response to a perturbation.

An unstable equilibrium state corresponds to a negative second variation, δ2V < 0. Here,

the ball rests on top of a hill – a small nudge causes it to roll off and not return. Instead, it

lands in a new configuration.

In elastic structures under conservative loading, instabilities fall into two categories:

bifurcation (“buckling", pertinent to Chapters 2, 3, and 4) and limit point (“snapping",

Chapter 5). To illustrate their differences, we will briefly study simple, introductory exam-
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ples.

1.1.1 Bifurcation (buckling)

The canonical discrete buckling problem is a rigid column of length L with a rotational

spring of stiffness k at its base, axially loaded at its free end by a constant force P. Suppose

the beam is perfectly straight initially, i.e. its angle of inclination θ is 0 (see Fig. 1·1a).

Then the total potential energy is

V =
1
2

kθ
2−LP(1− cos(θ)). (1.1)

The first variation is taken with respect to θ, the only degree of freedom:

δV = kθ−LPsin(θ). (1.2)

Setting (1.2) equal to zero and solving for P gives an equilibrium condition

P(θ) =
k
L

θ

sin(θ)
, (1.3)

which is plotted in Fig. 1·1b. One solution is θ= 0, (i.e. the column stays perfectly straight)

which intersects with the second solution branch, on which θ can be nonzero. Next, we can

investigate the stability of the nontrivial solution. The second variation of (1.1) is

δ
2V = k−LPcos(θ). (1.4)

Inserting (1.3) into (1.4), we arrive at the expression δ2V = k− kθcotθ for the equi-

librium path, which is positive for all θ 6= 0. Thus, the equilibrium path is stable for all

non-zero θ.

We also can find the critical buckling force by setting (1.4) equal to zero:

Pc =
k

Lcosθ
. (1.5)
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a.

−π/2 0 π/2
0

1
Pc

θ

P
L
/k

b.

Figure 1·1: a. Schematic of the stable, symmetric bifurcation of an axially
loaded rigid beam. The initial state is indicated by the dashed gray line.
b. The equilibrium curves corresponding to a. The load increases but the
angle of inclination θ remains zero up to the critical point Pc (equation (1.5),
with θ = 0). Here, the beam buckles and stability is transferred to the green
bifurcation curve (equation (1.3)).

The interpretation is this: for P < Pc, the column will remain vertical. When P≥ Pc, the bar

breaks symmetry, buckling either right or left. This corresponds to an exchange of stability

at the intersection between the two equilibrium paths. After the bifurcation, the load still

can increase, and the column will be stable in the buckled state. Because the bifurcation in

this example is stable and is symmetric about the critical point, it is categorized as a stable-

symmetric bifurcation. Two other types of elementary bifurcation instabilities exist [11].

If instead the bifurcation path in Fig. 1·1b decreases symmetrically with displacement, i.e.

the bifurcation itself is unstable, the bifurcation is termed unstable symmetric. Unlike the

stable symmetric bifurcation, this type is very sensitive to imperfection. In addition, frames

and shells often exhibit asymmetric bifurcations, where, for example, imperfections lead

to very different reactions depending on the direction of loading. These are, of course,

imperfection-sensitive.

Wrinkling is also a type of buckling instability which appears when a thin, stiff structure

is compressed atop the support of a soft substrate traditionally modeled as an elastic (i.e.

Winkler) foundation, the latter of which resists deformation [40]. A linear stability analysis

leads to the critical buckling stress and the resulting wavelength, each of which are set by

the balance between moduli of the plate and the foundation (see Section 2.2). Wrinkles can
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also develop as a free elastic sheet is pulled in tension. An analogy between the stretching

energy and the energy in an elastic foundation reveals an effective foundation stiffness,

allowing for a traditional wrinkling analysis to be performed even for free sheets [23].

1.1.2 Limit point (snapping)

A fourth type of elementary instability, which differs notably from bifurcations, is the limit

point, or snap-through instability. The von Mises two-bar truss, shown in Fig.1·2a, is the

simplest snapping structure. Let each bar have axial stiffness EA/(L/cosα), where α is

the initial inclination angle of the bars and L/cosα the initial length of each bar. A force

P applied to the apex and directed inward will change the inclination angle to θ, and the

axial strain of the bars will be ε = (Lcosα/cosθ−L)/L, so we can write the total potential

energy as:

V (θ) =
EAL
cosθ

(
cosα

cosθ
−1
)2

−PL(tanα− tanθ). (1.6)

Setting the first variation, taken with respect to θ, equal to zero and solving for P gives the

equilibrium condition:

P = 2EA(sinθ− cosα tanθ), (1.7)

which is plotted in Fig 1·2b.

We can evaluate the stability of the equilibrium states by substituting (1.7) into the

second variation:

δ
2V =

2EAL
cos4 θ

(cosθ− cos3
α). (1.8)

From the plot in Fig. 1·2c, we see that for −θo ≤ θ ≤ θo the truss is unstable, where

cosθo = (cosα)1/3.

Unsurprisingly, continuous and more complex structures than the examples presented in

this section can present nonlinear equations with more degrees of freedom (see Section 1.2),

and approximations are often needed. Variational methods are common, as are various

numerical techniques, i.e. the Rayleigh-Ritz method [11]. Linearizing (i.e. discarding
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θ α

a.

−θo 0 θo
θ

P
/E
A

b.

−θo 0 θo

0

θ

δ2
V

c.

0 α 2α

0

i.

iv.

ii.

iii.

α− θ

P
/E
A

d.

Figure 1·2: a. Schematic of a von Mises truss loaded at its center. The
initial state is indicated by the dashed gray outline. b. Normalized equi-
librium curve from (1.7). c. The second variation of the total energy from
(1.8). The equilibrium path b. is unstable when δ2V is negative (dashed
portion of curve, with cosθo = (cosα)1/3). d. Normalized force versus ro-
tation. When P increases from 0 to the limit point i., the truss snaps to the
nearest stable point on the equilibrium path, ii. Stability is lost again upon
unloading to iii., when the structure snaps to iv.

higher-order terms) is also a useful tool, but this raises an important distinction between

bifurcations (Fig. 1·1b) and limit point instabilities. From Fig. 1·2b, we observe that only

one equilibrium path exists for systems that undergo limit point instabilities. When stability

is lost (Fig. 1·2d,i&iii), the nearest equilibrium point that can sustain the same load is far

away (Fig. 1·2d,ii.&iv.). Thus, the force increases up to a critical point, then the structure

snaps abruptly to the next state. For buckling, we saw that when stability is lost, the closest,

stable equilibrium state is infinitesimally close the state just before the instability. Because

of this difference, bifurcations permit a linear stability analysis, but limit point instabilities

do not.

1.2 Shell & plate theories

In thin structures, relatively small provocation can lead to large deformations and instabili-

ties. To simplify the highly nonlinear problems that result, reduced order models have been

developed, approximating three-dimensional elastic shells and plates as two-dimensional.

This dimensional reduction relies on several key assumptions: That motion follows the



11

mid-plane, that straight lines normal to the midplane remain straight and normal to the

midplane, and that the thickness h remains constant. The latter two are known as the

Kirchhoff-Love assumptions.

Under these assumptions, reduced-order shell theories take on a common form: the

elastic strain energy is additively split into a stretching term, Us, which accounts for exten-

sion or compression of the midsurface and scales with h, and a bending term, Ub, which

accounts for changes in curvature, and depends on h3. In the chapters that follow, we will

often refer to Koiter’s widely accepted shell theory, which we will now introduce.

1.2.1 Koiter shell theory

Assuming elastic, homogenous, and isotropic materials (i.e. the material model is Kirchhoff-

St. Venant), the strain energy in a shell is [106]:

UK =
Y
2

∫ [
(1−ν)γαβ

γαβ +ν(γα
α)

2]dω

︸ ︷︷ ︸
stretching

+
B
2

∫ [
(1−ν)ραβ

ραβ +ν(ρα
α)

2]dω

︸ ︷︷ ︸
bending

. (1.9)

Here, Y is the stretching rigidity and B is the bending rigidity. For homogenous shells,

these are given by Y = Eh
1−ν2 and B = Eh3

12(1−ν2)
, respectively, with Young’s modulus E and

Poisson’s ratio ν. The midsurface strain tensor is γαβ = 1
2(aαβ− åαβ), and the curvature

strains are quantified by the tensor ραβ = bαβ− b̊αβ. The over circle refers to the initial

configuration, whereas no subscript denotes the current (deformed) state. This formulation

relies on concepts from differential geometry [138, 135], which are discussed in Appendix

A. Briefly, a is the first fundamental form or 2D metric tensor, which quantifies changes

in length, whereas b is the second fundamental form or curvature tensor, which accounts

for curvature changes. The indices α, β ∈ {1,2}. Lowered and raised indices, repsectively,

refer to the covariant and contravariant quantities, and Einstein’s summation convention

is employed, i.e. we sum over repeated indices. Since the shell is approximated as two-

dimensional, each term in (1.9) contains the square of two principal scalar invariants, albeit
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perhaps in a somewhat veiled form. Koiter’s model is suitable for large displacements and

rotation (i.e. geometrically nonlinear problems) but small strains (elastically linear).

To make these equations more tractable, additional assumptions are often used. For

example, in many instances, it is reasonable to neglect the stretching energy, since isome-

tries are so heavily preferred for thin structures. For example, this concept applies to the

residual swelling bilayers [146] we use in Chapter 2, or the d-cone [3], which is relevant

to Chapter 3. Better yet, symmetries can enable further dimensional reduction, e.g. to the

1D elastica, or an Euler column [24, 5]. In Chapters 2 & 3, we rely on Koiter’s equations

in a scaling sense, meaning that we make significant approximations in order to discern

the key mechanisms driving deformation. Another simplification of Eq. (5.13) leads to the

commonly used Föppl-von Kármán plate theory, discussed below.

1.2.2 The Föppl-von Kármán approximation for plates

For thin plates, the in-plane strain component of the elastic energy, γαβ, can be simplified

by neglecting higher-order terms correspdoing to in-plane stretching (while retaining those

that capture transverse deflection). With this small-stretching assumption, a variational ap-

proach (see e.g. Refs. [109, 5]) leads to the coupled, nonlinear partial differential equations

known as the Föppl-von Kármán (FvK) equations, which minimize the elastic energy when

satisfied:

B∇
4w−hσαβw,αβ= 0 (1.10a)

σαβ,β= 0, (1.10b)

where ∇4 is the biharmonic operator, w is the out-of-plane deflection, σαβ is the Cauchy

stress tensor, and the comma denotes partial differentiation, i.e. f ,1 is the partial derivative

of the function f with respect to the coordinate x1.

If the in-plane components of an external distributed force are assumed to be zero, the

stress tensor can be replaced by a single scalar function using the Airy potential χ, defined



13

such that

σαα = χ,ββ , σαβ =−χ,αβ , σββ = χ,αα , (1.11)

which gives an alternate form of the FvK equations (Eq. (1.10)):

B∇
4w−h[w,χ] = 0 (1.12a)

∇
4
χ+

E
2
[w,w] = 0, (1.12b)

where the differential operator [...] is defined as [u,v] ≡ u,αα v,ββ+v,αα u,ββ−2u,αβ v,αβ.

Eqs. (1.12) are nonlinear partial differential equations for two unknown functions, the de-

flection w(x1,x2) and the Airy potential χ(x1,x2). This form highlights the Gaussian curva-

ture, K = [w,w]/2 in the second equation. In the first equation, the non-linear term couples

the curvature with in-plane stress.

An extension of the FvK equations to allow for initial curvatue are the Donnell-Mushtari-

Vlasov (DMV) equations, which are useful for shallow shells [160]. For simpler, linear

plate deformations, Kirchoff-Love plate theory, which extends Euler-Bernoulli beam the-

ory, can suffice [120]. In this thesis, we primarily consider deformations that are too large

to be handled by the FvK of DMV equations. In Chapter 5, we discuss Non-Euclidean

Plate (NEP) theory [46], which is an alternative theoretical framework suitable for arbi-

trarily large deformations. NEP theory is an extension of Koiter shell theory, wherein the

strains are calculated with respect to a fictitious target configuration instead of the initial

configuration.



14

Chapter 2

Buckling of geometrically confined shells

In this chapter, we study the periodic buckling patterns that emerge when elastic shells are

subjected to geometric confinement. Residual swelling provides access to range of shapes

(saddles, rolled sheets, cylinders, and spherical sections) which vary in their extrinsic and

intrinsic curvatures. Our experimental and numerical data show that when these moder-

ately thick structures are radially confined, a single geometric parameter – the ratio of the

total shell radius to the amount of unconstrained material – predicts the number of lobes

formed. We present a model that interprets this scaling as the competition between radial

and circumferential bending. Next, we show that reducing the transverse confinement of

saddles causes the lobe number to decrease with a similar scaling analysis. Hence, one

geometric parameter captures the wave number through a wide range of radial and trans-

verse confinement, connecting the shell shape to the shape of the boundary that confines it.

We expect these results to be relevant for an expanse of shell shapes, and thus apply to the

design of shape–shifting materials and the swelling and growth of soft structures.

2.1 Introduction

Shells are notorious for their nonlinear response to mechanical loading, and subtle changes

to how they are held, or constrained, can have profound affects on how they deform. Con-

finement of soft shells can induce dramatic deformations as illustrated in Fig. 2·1, where

radial confinement is increased from left to right. These mechanics are relevant to soft

biological tissues, as their morphology often depends on a combination of mechanical
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forces imparted along their boundaries, and non–mechanical forces that drive growth or

swelling. Confinement of soft tissues can result in the wrinkling and scar formation of

surgical wounds [20], and these changes in shape or morphology are not purely cosmetic.

For example, during the embryogenesis of the ciliary body of an avian eye, differential

growth induces wrinkles that radiate outward from the retina [7], a stiff region that resists

deformation. Capillary blood vessels form in the valleys of these wrinkles, while molecules

that promote neural cell adhesion fail to express in the regions where these epithelial tis-

sues wrinkle [8, 9]. These effects are entirely mechanical, as evidenced by experiments

that induced wrinkles in the chick eyes by swelling them in ethanol [7, 9]. Similar studies

on the differential swelling and growth of artificial tumors [35, 36] and biofilms[12, 37]

described the role of confinement and the mechanics of these circumferential wrinkles in

much greater detail. Radial confinement occurring within airways and arteries [60], as

seen in buckling and folding of mucous membranes, can cause the collapse or closure of

the oesophagus [201], blood vessels [115], and gastrointestinal tract [122].

Beyond these biological systems, the ability to prescribe and control the shape of ob-

jects has ushered in an age of designer materials [154]. By dictating the volumetric strain

in specific regions of soft elastomers, researchers have been able to morph 2D sheets into

3D shells [102, 81, 101], with features spanning multiple length scales [34, 140]. Differen-

tial swelling, sometimes accomplished by using the residual polymer chains left in portions

of cured elastomers, has been used to fabricate helical ribbons [195], rolled sheets [146],

saddles [145], pinched spheres [148], and wavy strips and discs [131, 43, 10]. Even for

free, unconstrained plates and shells the shape selection process is non–trivial. The shapes

that result from differential swelling can be determined by examining how swelling alters

the metric tensor of the middle surface of the plate, an approach described by the so–called

theory of unconstrained non–Euclidean plates [46]. When swelling only imparts a local

curvature change along the middle surface, as is the case for the residual swelling of bi-
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Figure 2·1: As the extent of confinement increases from left to right, the
a. saddle, b. rolled sheet, c. cylinder and d. spherical segment exhibit more
lobes. In a. and b., shells are clamped between acrylic plates of increasing
diameter. The cylinder and sphere cut to varied c. heights and d. latitudes,
and fixed with an acrylic ring at the base. Shells are made of polyvinylsilox-
ane (PVS). Scale bars represent 30 mm.

layer plates and shells, the non–mechanical swelling process can be cast as a mechanical

stimulus which alters the natural curvature of the shell [148], and the stability of these

structures can be evaluated using techniques common to applied mechanics. The inverse

problem – knowing a desired shape and searching for the correct initial conditions nec-

essary to achieve it – is a problem that has received far less attention, but will likely be

more desirable. Work by Dias et al. demonstrated how to find the metric for a variety of

axisymmetric shapes [39], while more recent work has shown how to find the metric for a
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wide range of shapes, including a human face, when a curvature can be prescribed at any

point [185].

Figure 2·2: a. Schematics showing pre-residual swelling configurations and
relevant geometric parameters for the i. saddle, ii. rolled sheet, iii. cylinder,
and iv. spherical segment. Pink areas will "shrink" while green ones will
"grow" upon residual swelling, and grey represents areas constrained by
acrylic plates. b. Table displays initial (accented "o") and post-swelling
(subscripted "avg") Gaussian K and mean H curvatures for each shape.

In the effort to understand and control shape change in soft and thin structures, the in-

terplay between intrinsic geometry and geometric constraints is still not well understood.

Confining a simple 1D object, i.e. an elastica, within a rectangular box is a nontrivial prob-

lem, in part due to the unknown and evolving location of the point of contact between the

elastica and the walls [42, 83, 155, 156, 149]. Similar problems emerge in the packing

of thin sheets, for instance pushing a plate through a ring causes it to form a developable

cone, or d–cone [3, 22, 27, 21, 26, 24], and in the confinement of a thin plate between

two hemispheres [86] or onto a droplet of water [144]. Confinement of intrinsically curved

shells has received less attention, with an exception being the behavior of shells under

indentation [187], including a hybrid experimental-numerical study of the response of pos-
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itively curved shells to indenters of varied geometries [134]. In this work, we present a

primarily experimental study on how geometric confinement facilitates pattern formation

in structures with intrinsic curvature. We consider shells with various mean and Gaussian

curvatures under a range of radial confinement, and we examine the combined role of radial

and transverse confinement on negatively curved shells, or saddles. We focus our study on

four categories of shapes, shown in Fig. 2·1 and schematically in Fig. 2·2a: saddles, rolled

sheets, cylinders, and spherical segments. Each is initially axisymmetric and exhibits pe-

riodic postbuckling patterns when subjected to geometric constraints. These geometries

were chosen to access a range of average Gaussian and mean curvatures in their reference

(K̊avg, H̊avg) and deformed (Kavg, Havg) configurations.

The range of structures studied is outlined in Fig. 2·2b. Of the four shapes we study,

two start out as flat plates – one of these changes its average mean curvature, and the other

changes its average Gaussian curvature after fabrication. Our study omits spherical caps,

which have been well-characterized, e.g. in Ref. [134]. These shells are relatively thick as

compared to recent work on thin film confinement [144, 189, 143], and we will show that

the characteristic pattern of deformation can be described by a single geometric parameter

that appears to be independent of shell thickness in this regime.

2.2 Radial Confinement

Each of the unconstrained, residually stressed shapes are shown in the leftmost column

of Fig. 2·1. We begin by constraining the rolled sheets and saddles in the radial direction

by clamping the shells between two rigid acrylic sheets of radius Rc. In Fig. 2·1a&b, we

increase Rc from left to right while keeping the shell radius R and thickness h constant,

and we see that the number of lobes N, or wavenumber, increases. Three-dimensional

simulations were implemented in COMSOL Multiphysics to validate these experiments

for the three bilayer geometries (rolled sheets, cylinders, and spheres). Residual swelling is
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represented by an inelastic distortion field, and Dirichlet boundary conditions around a ring

of radius Rc act as the external constraint (see Sects. 5.7.1 & 5.2.1 for details on fabrication

and simulations).

The wavenumber appears to be insensitive to changes in thickness in the range of h/R

we considered (Fig. 2·3a), h/R ∈ [0.008,0.13] – thicker shells behave more like 3D bodies,

while thinner shells made from these materials deform significantly under gravity. Instead,

it appears that the wavenumber is inversely proportional to the length of material that is

unconstrained, i.e. r ≡ R−Rc.

The bending energy of the shell, which we assume to be decoupled from the stretching

energy, is known to scale as Ub ∼ B
2
∫

ρ2dω. The quantity ρ = (κ− κo) represents the

curvature strains – the difference between the deformed curvature κ and the curvature in

the reference (unconstrained) state κo – and dω is the area element.

The bending energy penalizes high curvatures, so in the circumferential direction, long

wavelengths are preferable. We assume that the θ-direction wrinkle curvature will scale

with the amplitude and wavelength as κ(θ) ∼ A/λ2, so ρ(θ) ∼ A/λ2−Ao/λ2
o. When the two

initial lobes, each of amplitude Ao, are split into N lobes, the amplitude becomes A= 2Ao/N

– the total length does not change. Thus, Ao ∼ NA. Similarly, λ = 2πR/N =⇒ N ∼ R/λ,

and λo ∼ R, so that ρ(θ) ∼ A/λ2−A/(λR). Again by inextensibility, λ∼ A, so we can also

say ρ(θ) ∼ 1/λ−1/R. Together, this gives

U(θ)
b ∼

B
2

(
1
λ
− 1

R

)2

dω. (2.1)

The question in regard to these constrained shells is: what opposes the circumferential

bending energy to produce shorter wavelengths? Typically in (unconstrained) shell prob-

lems, competition between bending and stretching drives deformation. However, stress

distributions of similarly confined structures obtained experimentally [131] and numeri-

cally [119] suggest that stretching in the radial direction is concentrated in a small region
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Figure 2·3: a. In the thickness range we study, the wavenumber is insen-
sitive to changes in thickness, h. Instead, the amount of unconstrained ma-
terial, quantified by `, sets the wavenumber: for `p in a fixed range, but
h/R varied, N (shown for rolled sheets) is unaffected. b.&c. The number of
lobes N may be reduced to one geometric parameter, `= R/r, which quanti-
fies the relative amount of constraint. The evolution of N is a linear function
of `. Triangles are experimental data points and circles are from simula-
tions. Solid lines of best fit, and their slopes, are shown in each plot. Free
of constraints, each shape has two lobes (dotted line). Solid horizontal axes
are drawn according to the minimum value for `. b. For saddles (purple) and
rolled sheets (green), `p =R/(R−Rc), and min(`p) = 1. Inset: Results from
simulations for rolled sheets for (bottom to top) `p = {2.2,3.2,4.5,5.8}. c.
For cylindrical shells (red) with height r, `s = R/r. For spherical segments
(orange), `s = sinφ f /(φc−φ f ). The minimum of `s is 0.

near the inner boundary. Further, since in this thickness regime the shell thickness does not

appear to play a dominant role in setting the wavelength, or wavenumber (Fig. 2·3a), of

these constrained shells, we expect that any energy comparison should be independent of
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thickness to leading order. Thus, we hypothesize that bending in the radial direction is the

other relevant contribution to the energy: 1 along the length r, the radial bending energy

prefers short wavelengths (smaller amplitudes).

In the radial direction, the curvature κ(r) ∼ A/r2, so we can say ρ(r) ∼ κ(r)− κ
(r)
o ∼

A/r2−Ao/R2. With the same arguments as before applied to the numerator, the bending

energy in the radial direction is given by

U(r)
b ∼

B
2

(
λ

r2 −
1
R

)2

dω. (2.2)

Balancing the two energies in (3.3) and (3.5) gives λ ∼ r. With λ = 2πR/N ∼ R/N,

and defining `≡ R/r, we arrive at a scaling of the wavenumber as a function of the uncon-

strained, or free length of the shell:

N ∼ `. (2.3)

In Fig. 2·3b, we plot experimentally and numerically obtained wavenumbers N as a

function `p, which is ` for the shells that initially started as flat plates. When the constraint

Rc→ 0 the dimensionless length `p→ 1, and experiments on unconstrained shells confirm

that N → 2 (Fig. 2·1), suggesting that for rolled sheets and saddles equation (2.3) should

be modified to N ∼ `p +1. This scaling is plotted as a solid line on Fig. 2·3b, with a slope

of 1.72 found via linear regression. We would expect the slope to be of O(1) if the scaling

is valid, and these results suggest that our approximations were reasonable.

We now turn our attention to shells with initially nonzero mean and Gaussian curva-

tures. Physically, the scaling from equation (2.3) suggests that the wavenumber will in-

crease linearly as the free, unconstrained length of the shell decreases. For the cylinders

and spherical segments constrained at their base, the free length that decreases from left

1Inherently, these assumptions are contradictory – bending in both directions throughout the free area
implies stretching, which we have chosen to neglect. We anticipate that a more thorough analysis is needed
to relieve this contradiction. Here, we assume these stretching effects are small compared to bending. We are
grateful to James Hanna who provided helpful insight to clarify this scaling.
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to right on Fig. 2·1c&d is the arclength r of material from the clamped base to the shell

opening, and similar to the rolled sheets and saddles, as this free length is decreased the

wavenumber increases. Therefore, we anticipate that equation 2.3 will also capture the

wavenumber of these constrained shells, provided the appropriate limits on N and `s are

met, where `s is ` for shells that have are initially curved. Here, the unconstrained shell

corresponds to r → ∞, or `s → 0, which is analogous to the two lobe deformation (i.e.

N→ 2) observed with a “pinch in a pipe” [124]. This suggests that for cylinders and spher-

ical segments, we expect that equation 2.3 should be modified to N ∼ `s +2. In Fig. 2·3c,

we plot experimentally and numerically obtained wavenumbers N as a function `s for cylin-

ders and spherical segments. The scaling N ∼ `s + 2 is plotted on Fig. 2·3c, with a slope

of 1.50 found via linear regression. These results seem to be in good agreement with this

reduced order model, suggesting that the wavenumber of a wide range of constrained shells

can be characterized with a dimensionless parameter corresponding to the free length of the

shell.

2.3 Transverse confinement

We will now relax the radial confinement to investigate shell behavior under varying amounts

of transverse confinement. We focus primarily on an experimental analysis of saddles, be-

cause to our knowledge there are only limited examples of the transverse confinement of

saddles in the literature, and the experiments on saddles are the most practically feasible out

of the structures discussed in section 2.2. We constrain the shells in the transverse direction

with quasi-static, displacement-controlled tests in which a saddle is compressed between

pairs of acrylic plates of radius Rc. Initially, the distance d between the top and bottom

plates equals the saddle’s thickness, i.e. δ = d− h = 0 (Fig.2·4a&b,i.), which represents

the limit discussed in Section 2.2.

As we separate the distance between the two plates by an amount δ, there is a non-
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Figure 2·4: a. As δ increases from left to right, the number of lobes (N)
decreases. The recessed images are mirrored views showing the back side
of saddles. b. Force-displacement curves of three displacement-controlled
tests on a single shell. Pink diamonds correspond to lobe transition points
with Roman numerals indicating the transition from five (i.), to four (ii.), to
three (iii.) to two (iv.) lobes. c. Wavenumber N vs. δ for the same sample.
Solid points correspond to symmetric lobes, and open circles correspond to
transitions between lobes. We expect the solid theoretical curve to capture
the points marked by pink diamonds. This curve is equation (2.5) with
m = 3.5. d. The same equation captures experimental lobe switches (points,
as in c) with different geometric parameters. Black curves fix m = 4, and
grey curves correspond to best fit m values: from top, m = 3.68, m = 4.38,
m = 8.00.

monotonic decrease in the applied compressive load, and the number of lobes decreases,

as shown in Fig. 2·4a, (a more detailed experimental protocol is discussed in Sect. 2.5.2).
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The decrease in the compressive load is nearly linear for δ/A << 1, and then reaches a

minimum when one point of contact between the acrylic plate and the saddle is lost, thus

beginning the mode shape transition from N = Nmax to N − 1 lobes. The load immedi-

ately increases, and once the saddle has reaches N−1 (asymmetric) lobes (Fig.2·4a&b,ii.)

the load once again decreases. When a new symmetric shape is reached at N− 1 lobes,

the slope of the force-displacement curve decreases but remains positive, and the process

repeats until δ ' A, F ' 0, and there are N = 2 lobes (Fig.2·4a&b,iv.). The slope of the

force-displacement curves through these transitions appears to gradually decrease, point-

ing to a diminishing effective stiffness as δ increases. Fig. 2·4b shows these trends in a

force-displacement curve for a representative sample that achieves a maximum of 5 lobes

at δ = 0.

We now aim to provide some mechanistic insight as to the lobe transitions from Nmax

to N = 2 for saddles as the transverse constraint is reduced. Here, we know the two limits:

(1.) as δ→ ∞ we expect that N→ 2, and (2.) as δ→ 0 we expect that N→ Nmax as given

by equation 2.3. The first limit can be simplified, because the sheet will be unconstrained

once δ is larger than the amplitude of the shell’s lobes, i.e. N → 2 when δ ≥ A. In these

experiments, while in principle `p is fixed, in effect the free length of the shell may be

approximated as being a function of δ, i.e. rδ(δ), with rδ(0) = r from section 2.2. As an

ansatz for rδ that meets these two limits, we chose a logistic function in the form

rδ(δ) =
R

1+ Rc
r e−m δ

A

, (2.4)

where m is an unknown constant that describes how quickly the unconstrained length will

transition between r and R. Substituting this ansatz into equations Ub and Uk for r, we can

solve for N(δ). Following some algebra, we find

N(δ)∼ `p +1− Rc

r

(
1− e−m δ

A
)
. (2.5)
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which reduces to equation 2.3 for plates when δ = 0. In Fig. 2·4c, we plot the experimen-

tally observed wavenumber as a function of δ. The transition process is highly nonlinear,

and so we note the transition between two wavenumbers with open symbols, while high-

lighting the transition points from the local minima in the force-displacement curve as filled

diamonds. Equation 2.5 is plotted as a solid black curve, with m = 3.5 chosen as a best

fit parameter to the transition points. Although m is effectively a fitting parameter, we an-

ticipate that it will depend on the bending rigidity of the saddle. We have not taken into

account how the magnitude of the saddle’s Gaussian curvature, which will be related to

the amplitude of the lobes, nor the shell thickness affect the transition points, however we

expect that m will be a function of these parameters. Further testing, in particular numer-

ics, will help explain the contribution of K and h to the transition between mode numbers.

Still, we note that for the samples we tests, using m = 4 captures the transition points for

shells with Nmax = 5, Nmax = 4, and Nmax = 3 (Fig. 2·4d). Choosing the best fit values of m

for each sample (m = 3.7, m = 4.4, and m = 8.0) changes the critical δ for observing lobe

transitions, but qualitatively provides similar values. In general, the form of (2.5) clarifies

the relative contributions of transverse (δ) and radial (Rc) confinement. At low δ values,

radial effects dominate. As the wave number depends on δ exponentially, however, the

effects of reduced transverse confinement quickly take over with increasing δ.

2.4 Conclusions

In this work, we explored geometry’s fundamental role in the periodic buckling patterns

that emerge in confined shells. We studied shells covering a range of Gaussian and mean

curvatures, accessible via residual swelling. We first saw that one simple geometric param-

eter, `, which relates the overall shell radius to the amount of unconfined material, predicts

the number of wrinkles (N) a radially confined shell will adopt. Then for negatively curved

saddles, we reduced the radial constraint by varying transverse confinement and measured
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the transition points between wavenumbers.

We observed that decreasing the amount of confinement, whether in-the-plane or ver-

tically, makes bending in the circumferential direction costly – lower buckling modes are

energetically preferable in a low-confinement regime. This interpretation allowed us to

generalize ` to include our range of transverse confinement. Thus, the model given by

relation (2.5) captures a wide range of bidirectional confinement.

There is much to be done in terms of more rigorously understanding why thickness and

stretching appear to be unimportant, and to put our scaling assumptions on firmer ground.

A nice analog to our transverse confinement of saddles is the transverse confinement of

an elastica [155, 156]. In these works, solutions for the confined elastica [83, 42] are ex-

tended to thin plates constrained progressively in the vertical direction. Our problem has

subtle differences, notably that our shells are naturally curved, and our confining plates are

smaller than the shell size. However, the transitions between buckling modes in our exper-

iments are reminiscent of these studies, including qualitative features like planar contact,

free-standing folds, and rolling [149]. These parallels suggest a way to pursue a more for-

mal connection between the two problems. The shells studied in this work are residually

stressed, and the magnitude of residual stress did not enter our mechanical model. It was

recently shown that the magnitude of residual stress in shells will alter the critical point

at which an instability occurs, i.e. the load required to buckle the structures, but that the

instability remains qualitatively similar [94]. Also, as others [134] have observed, con-

tact plays an important role in transverse confinement. Further numerical analysis of these

constrained shells would be beneficial, in particular, such an analyses could also offer a

more geometric freedom, with regards to both shells and their confining boundaries, be-

yond what is readily accessible experimentally. In general, we anticipate these results will

aid in the design of shape–shifting structures, and we believe there are many open ques-

tions regarding the role of confinement when designing structures that change shape on
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command.

2.5 Supplemental Information

2.5.1 Structure Fabrication

To fabricate the shapes shown in Fig. 2·1, we use a technique known as residual swelling [145,

146]. We use two polyvinylsiloxane (PVS) elastomers, which we will refer to as green

(Zhermack Elite Double 32, E=0.96 MPa) and pink (Zhermack Elite Double 8, E=0.23

MPa). The materials are cast in as fluids and allowed to thermally crosslink, or cure, at

room temperature for 20 minutes. After curing, the pink elastomer has residual polymer

chains within the material, and these residual free chains flow into the green elastomer

when the two materials are in contact with each other. The local loss of mass causes the

pink material to decrease in volume, or shrink, while the green material correspondingly

swells, thus inducing a differential swelling in the structure which preserves its total mass.

Differential swelling in shells can lead to residually stressed structures that emerge be-

cause the shell must deform to accommodate a geometric incompatibility [102]. When the

differential swelling occurs through the shell’s thickness, it deforms in a nearly isometric

manner in the bulk of the shell, away from shell’s edges [148], and when the differential

swelling occurs in-the-plane of the shell the deformation is dominated by stretching [145].

These opposing deformations explain why the initially flat shapes can be morphed into ei-

ther rolled sheets or saddles. As residual swelling is a diffusive process, the time to deform

scales with the square of the dimension across which swelling occurs. This characteristic

dimension for swelling is either the thickness h ≈ 1mm, or in the case of saddles, where

residual swelling occurs in-the-plane, the radius, R = 30mm [145].

To make homogeneous rolled sheets, we use a spin coater (Laurel Technologies, WS-

650-23) to deposit a pink layer of PVS atop a laser-cut (Epilog Laser Helix, 75W) circular

acrylic plate, R ∈ [25mm,35mm]. After it cures, we add a green layer in the same man-
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Figure 2·5: a. Fabrication process for a bilayer cylinder: (i.-ii.) The first
pink layer of PVS is poured to uniformly coat the steel cylinder. (iii.) After
20 minutes, the first layer has cured. The cylinder is flipped upside-down,
and the excess material is removed. (iv.-v.) A second layer of pink PVS is
poured in order to achieve a uniform thickness in the vertical direction. (vi.-
vii.) After another 20 minutes, both pink layers have cured. A green layer
is added in the same manner. (viii.) After 20 minutes, the excess material
is removed and the cylinder is flipped upside-down again. (ix.-x.) The final
green layer is added. (xi.-xii.) After the final layer has cured (20 minutes),
the bilayer cylinder is cut from the mold using a straightedge. (xiii.) The
bilayer cylinder once peeled from the mold. Residual swelling causes the
cylinder to buckle into a “pinched pipe”. b. Thickness versus (right) axial
and (left) azimuthal (y = 0) position, corresponding to parameters shown in
the images in c. Thickness is relatively uniform in both directions, albeit
more so in the radial direction. Measurements were taken using ImageJ. c.
Top view (left) and cut view (right) show parameters relevant to the above
plots. Right: to obtain thickness measurements in the axial direction, the
cylinder is cut, then glued between glass plates to prevent rolling.
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ner. The residual swelling first bends the sheet into a shallow spherical cap, and then

ultimately buckles it into a rolled sheet – a cylinder–like shape that is open along its direc-

trix. The rolled sheet is nearly isometric away from its edges (i.e. Kavg = 0) and its non–

zero mean curvature is linearly proportional to the natural curvature imposed by residual

swelling [146, 147, 148]. In the range of thicknesses we study, the unconstrained mean

curvature H seems to have no effect on the wavenumber. Qualitatively, we observe that

higher H does, however, increase the amplitude of wrinkles in constrained shells.

Saddles are made by laser-cutting a negative circular mold (R = 30mm) from clear

cast acrylic sheets of thickness h: 0.794mm±0.119mm (Inventables), 1.589mm (tolerance

−0.584mm to +0.254mm), 2.381mm (−0.034mm to +0.025mm), or 3.175mm (−0.635mm

to +0.381 mm) (McMaster-Carr). This circular mold is glued atop a base acrylic plate, and

a smaller circle, radius Rc ∈ {12.5mm,28.25mm}, is centered and fixed to the base plate.

We then pour green PVS to form a ring, filling the mold up to the acrylic sheet thickness.

After the ring cures, the smaller circle is removed and the remainder is filled with pink

PVS. After residual swelling, a saddle shape forms: Havg ≈ 0 and K̊avg < 0 – the value of

the latter depends on the ratio of pink to green polymer[146]. In-plane swelling is quite

a bit slower than through-thickness swelling, since the characteristic length scale changes

from the thickness to the radius [145]. The dynamics can be increased by extracting the

free polymer chains in a solvent bath, e.g. ethyl acetate.

Cylinders and spherical segments are poured as bilayers over corresponding 3D molds.

Spherical segments are formed by coating a metal ball-bearing with viscous PVS so that

each layer has approximately uniform thickness [112, 148]. These spherical shells have

positive average mean and Gaussian curvatures both before and after the swelling process.

Cylinders are fabricated similarly [125] (see Fig.2·5), and like spheres, the initial mean

curvature H̊ > 0, though K̊ = 0. After deformation, a "pinched pipe" forms [124], with

Havg > 0 and Kavg ≈ 0.
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For the experiments described in Section 2.2, rolled sheets and saddles are clamped

in the center between two laser-cut acrylic plates of equal size, Rc ∈ {12.7mm,30.5mm}.
Cylinders and spherical segments, on the other hand, are constrained by acrylic plates glued

to the base with a very thin layer of green VPS. Cylinders are then cut to varied heights, and

spheres are cut at different latitudes: the angle φ f is subtended by the arclength from the ori-

gin (the north pole) to the top cut (the free surface). The base, where the shell is constrained,

is defined by the angle φc. Schematics of the pre-swelling configurations, including con-

straints, are given in Fig. 2·2. Thickness is measured at h = {0.25,0.45,0.75,1.5,4}mm

±0.15mm for Section 2.2, and h ∈ [2.381mm ±0.1mm, 3.175mm ±0.1mm] for the saddles

discussed in Section 2.3.

The wavenumber in rolled sheets, cylinders, and spheres is indifferent to whether the

constraint is applied before or after residual swelling occurs, and the experimental data in

Fig.2.2b&c represents a mix of both scenarios.

For saddles, where the swelling gradient lies in-the-plane, the confining plates are added

after the swelling process. Our aim in this paper was to examine how, given a saddle,

constraints affect its shape. Therefore, residual swelling is a tool to make these saddles.

Applying the constraint beforehand leads to a different question: how does confinement

affect saddle formation in residual swelling?

If the radius of the pink PVS region Rp < Rc, the clamp forces the pink region to stretch

to conform to Rc. The inner perimeter of the green region is fixed, but the outer perimeter

decreases as free chains are lost from the green polymer. Then, instead of buckling into a

negatively curved saddle, the shape develops positive Gaussian curvature. This is analogous

to Ref. [145], in which structures comprised of geometrically mismatched disks and annuli

buckle into saddles if the perimeters require that the annulus stretches, and domes if the

annulus must compress.
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2.5.2 Mechanical force testing

The saddles used in Section 2.3 were fabricated with a centered 2.25mm radius hole through

which we guide a 2mm radius rod as transverse confinement is varied. We determined this

hole to be necessary for maintaining the saddle’s position but negligible for our purposes

– it has no effect on lobe number. Care was taken to align shells as close to centered as

possible, as shells are sensitive to initial conditions.

We investigate transverse confinement with a setup designed for the INSTRON 5943.

We attach a drill-type grip (Instron 0.375in Keyless Drill-Type Chuck Assembly) to the load

cell to secure an aluminum rod (2mm radius), which is screwed to an internally threaded

acrylic plate of radius Rc. A second partially threaded rod is attached to the underside of

this top plate, pointing downward. The rod is guided through the saddle’s center hole and

then through a hole also of radius 2.25mm in the center of the acrylic base plate, which

itself has radius Rc. The base plate is affixed to a thick tube of outer radius < Rc, inner

radius 3.5mm and height 44.45mm. This tube is comprised of stacked acrylic rings each of

thickness 6.35mm, glued together and closed at the base. The base of the tube is screwed

to a tapped optical table.

Displacement-controlled tension tests are performed at a rate of 4 mm/min and force

is measured with a 500N load cell (resolution 0.0025N). Videos were taken with a Nikon

D610 DSLR Camera and were used for post-processing in conjunction with Instron data.

2.5.3 Numerics

For the three bilayer geometries where residual swelling occurs through-the-thickness, we

sought to validate the experiments from Section 2.2 with simulations developed in COM-

SOL Multiphysics. We created a 3D model within the context of elasticity with large dis-

tortions using a Neo-Hookean incompressible material model [123]. The residual swelling

stimulus is represented by a spherical distortion field Fo = α(η3)I where η3 is the gen-
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eral coordinate normal to the midsurface (i.e. across the thickness). Shells are composed

of two layers: in the swelling (green) layer, α(η3) = λo, and in the other (pink) layer,

α(η3) = 2−λo, where λo represents an inelastic stretching factor (see Fig.2·6). This en-

sures that the conformal stretching factor Λo ' 1, as was found experimentally for residual

swelling bilayers [147]. The constraints were modeled with Dirichlet boundary conditions

imposed around a ring of radius Rc in each case, reflecting the experimental setup. Solving

for the deformed shape while varying geometric parameters, we confirmed our experiments

from section 2.2 for rolled sheets, cylinders, and spheres.

Figure 2·6: Top: Schematics depicting the distortion field and boundary
conditions applied in COMSOL to the bilayer geometry, and the resulting
deformation. Bottom: Top-down images from simulations showing the ge-
ometry, mesh, and deformation.

2.5.4 Buckling dynamics
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Figure 2·7: The critical buckling curvature for rolled sheets increases with
the extent of constraint, quantified by `p. κ̄ is the ratio of the critical buck-
ling curvature to that of the unconstrained case, from (2.6).

We know from Ref. [147] that for the unconstrained rolled sheet (`p = 1), the critical

buckling curvature (normalized by the thickness) is
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Figure 2·8: Timelapse images of constrained swelling spherical segments.
Time between photos is about 40 minutes. a. As curvature develops, a spher-
ical segment (`≈ 2) develops five increasingly curved lobes. b. A different
sample (` ≈ 1) is unstable through the residual swelling process: at lower
curvatures (earlier in the residual swelling process), four lobes emerge. As
curvature continues to increase, the spherical segment settles on three lobes
as its energy-minimizing configuration.

We examine the effect of constraint on this value – our numerics allow us to extract the

critical curvature required for buckling for various values of `p. This is shown in Fig. 2·7 by

κ̄, which represents the ratio of the buckling curvature of the constrained structure over an

unconstrained but otherwise geometrically identical sheet (according to (2.6)). We observe

that the buckling curvature increases with `p or, in other words, that more constrained

structures require more curvature to buckle. Curvature continues to develop past the critical

buckling point, and we generally observe that lobes become increasingly pronounced, as

in Fig. 2·8a. However, when ` corresponds to an intermediate N value, the lobe-selection

process can be unstable (Fig. 2·8b.) A similar bistability between two mode numbers is

seen in some shells after residual swelling is complete.
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Chapter 3

Circumferential Buckling of the Annular D-cone

The last chapter showed us that shells are highly sensitive to external confinement, and

highlighted the close connection between mechanics and geometry. Now, we examine the

effect of geometric confinement on intrinsically flat structures. When a thin sheet is packed

into a ring, it sacrifices a small central region to stretching, preserving its developability

elsewhere. Known as the developable cone or d-cone, this structure appears across scales

and materials. When external confinement forces the center region to remain flat, the free

annulus circumferentially buckles. The dynamics are rich: early wrinkles coalesce, se-

quentially snapping to form truncated d-cones. With precison experiments and molecular

dynamics (MD) simulations, we examine the shape-selection of this annular d-cone. A

scaling argument based on the elastic energy reveals how the size of a buckled section de-

pends on the geometric parameters. We also show that critical force at which the first cone

forms relates closely to Euler buckling of a compressed beam.

3.1 Introduction

Slender structures are exceptionally sensitive to stimuli and external forces, at times adopt-

ing wildly nonlinear configurations to minimize stretching. Often, as for a biofilm adhered

to a substrate [48], the inflamed inner layer of an asthmatic airway [201], a stamped metal

sheet as it is embossed [177, 86], or a lotus leaf held by its stem [197], the cause for such

deformation is external confinement. In general, the first line of defense for thin, confined

elastic structures is stress-focusing, wherein a plate or shell concedes a small region to high
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stress so that the bulk deformation is approximately isometric, or stretch-free [194]. The

canonical example of stress-focusing is the developable cone or d-cone [3]. The structure

may be observed in a simple table-top experiment (see Fig. 3·1a,i): Rest a sheet of paper

atop a drinking glass, then push the sheet into the open ring by indenting its center with

the tip of a pencil, urging it to form a cone. To accomodate the extra material, a section

buckles, losing contact with the ring and forming a convex conic section itself. By stitching

together these two conics, the sheet retains unbent radial directors almost everywhere. The

exception is a small, sacrificial region at the tip of the intentor, where the sheet curves and

stretches severely.

Crumpled paper is peppered with d-cones [14, 194], which also spontaneously form, for

example, as a Kleenex emerges from its box and when insect wings fold and unfold [65].

Thanks to this ubiquity, the d-cone has inspired an impressive body of primarily theoretical

work, both from mechanics [24, 22, 3] and purely geometric [47, 163, 164] perspectives.

The prevailing theoretical work is that of Cerda and Mahadevan [24]. Assuming a purely

isometric deformation away from the tip of the cone, only the bending energy needs to be

considered. The authors show that the shape of the sheet that minimizes the curvature strain

satisfies the equation for the classic planar elastica. That is, by assuming unbent director

lines, the three-dimensional deformations can be captured with a one-dimensional equi-

librium equation. Numerical simulations have shown generally good agreement with the

theory, while also revealing unexpected features, such as a small amount of radial curvature

where the sheet meets the ring [117, 194, 132]. Experimental contributions are limited in

quantity and geometric range [27]. Despite general agreement with theory, they also report

distinguishing features that arise in real plates with finite thickness. For example, Chaïeb

and Melo observed that the dislocation has a smaller angular size than predicted, and is

offset from the center of the sheet [28]. It has also been reported recently that cone forma-

tion can occur as a sudden snapping event, rather than the expected smooth transition [64].
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Our results support these findings. These disrepancies highlight the need for additional,

thorough experimental investigations of confined sheets, which the present work seeks to

address.

Rc Rr

Rp

d

Rr −Rc

2θc

ε

ustretch
β0

a. b. c. d.

e.

i. ii.

i.

ii.

ε = d
Rr−Rc

Instron load cell

Drill-type grip
Stage with ring cutout

Clamped sheet

Aluminum frame

Upward-facing camera

Light sources

Figure 3·1: a. Table-top realizations of i. the d-cone [3] and ii. the annular
d-cone, in which the addition of acrylic clamps forces the center region to
remain flat. b. Schematic of relevant geometric parameters. Rc is the radius
of the clamp, Rr the radius of the ring, and Rp that of the plate. c. Schematic
of experiments. The clamped plate is quasi-statically pulled upward through
the ring. The distance pulled is d, and the dimensionless packing parameter
ε = d/(Rr − Rc). d. Experimental setup. e. i. Images from a typical
experiment with Rp = 47.5 mm, Rr = 30 mm, and Rc = 15 mm, and ii.
from a simulation. Color shows the stretching energy density ustretch, which
ranges from 0 (purple) to 6 · 10−8 J·m−3 (yellow). The contact angle θc
is indicated in i, and the opening angle β0 is shown in ii. All scale bars
represent 15mm.

In the present work, we study a scenario in which additional confinement dictates that

the central region must remain flat, preventing formation of the preferred vertex. We refer

to this system as the annular d-cone: a thin, circular sheet which is clamped in its central

region and packed into a ring. In its highly confined state, the annular d-cone consists of

truncated conical buckles which are distributed around the circumference (see Fig. 3·1a,ii).

At a glance, this periodic buckling pattern is reminiscient of wrinkles generated by com-
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pressive hoop stress in swelling annular gels [131], suspended nanocrystalline films [93],

or a draped tablecloth [25] or disk [15] under gravity. Yet, in this work we show that the

annular d-cone is distinct from traditional wrinkling problems–subtly in its geometry, and

strikingly in its dynamics.

We probe the geometry and mechanics of the annular d-cone primarily with experi-

ments. Molecular dynamics (MD) simulations, which handle contact well compared to

other simulation methods such as finite element (FE), support our experiments. Our ex-

perimental and numerical methods are described in Sect. 3.2. In Sect. 3.3, we describe the

rich dynamics of shape-selection. We then present a scaling for the elastic energy in our

system in Sect. 3.4, which reveals how the geometric parameters set the angular size of

a dislocation. Next, in Sect. 3.5 we show via a scaling argument that the critical force at

which the first section buckles closely relates to Euler buckling of a compressed cantilever

beam. In Sect. 3.6, we offer concluding remarks.

3.2 Materials and methods

In experiments and MD simulations, we systematically varied three geometric parameters

(see Fig.3·1b): Rp, the radius of the plate (i.e. the circular sheet), Rr, the radius of the

ring through which we force the sheet, and Rc, the radius of the clamped region. The

distance the center of the clamped sheet is pulled through the ring is given by d, where

d = 0 when the plate just contacts the ring (see Fig.3·1c). Following e.g. Ref. [24], we

define a dimensionless packing parameter ε = d/(Rr−Rc). Details about the experiments

and simulations follow.

3.2.1 Experiments

We performed several sets of experiments to analyze different aspects of the annular d-cone.

In the main experiments, we laser-cut (Epilog Laser Helix, 75 W) circular plates of radius
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Rp ∈ [28,60] mm from flattened polyethylene terephthalate (PET) sheets (Dupont Teijin

Film, McMaster-Carr) with Young’s modulus E = 3.5 GPa, Poisson’s ratio ν = 0.38, and

thickness h = 0.127 mm. Pairs of circular clamps with radius Rc ∈ [1,35.35] mm were cut

from acrylic (thickness 6.35 mm). All plates and clamps were cut with a 3.8 mm diameter

hole at the center so that a 3.6 mm diameter partially threaded aluminum rod could be

fed through the plate, which was sandwiched between two clamps. A hex nut secured the

rod-clamp-plate assembly, which was then attached to the load cell of the Instron 5943 via

a drill-type grip (Instron 0.375 in Keyless Drill-Type Chuck Assembly). A custom-built

frame made from T-slotted aluminum rails (McMaster-Carr) was mounted to the base of

the Instron (see Fig. 3·1d). A CNC-milled polyvinyl chloride (PVC) plate (thickness 9.525

mm) with a stepped circular cutout (diameter 55 mm) and three evenly-spaced through-

holes was fixed to the top of the frame. Interchangeable PVC rings were screwed into the

opening, closing the inner diameter some amount to result in a ring radius Rr ∈ [12.6,52.4]

mm. A small number of additional tabletop experiments were performed to measure the

maximum number of conical dislocations, Nmax, for larger clamp-ring-plate combinations

up to Rc = 77.5 mm, Rr = 75 mm, and Rp = 84 mm. Overall, Rc/Rp ∈ [0.017,0.917],

Rc/Rr ∈ [0.026,0.972], and Rr/Rp ∈ [0.21,0.95].

The plates are very sensitive to initial conditions, so care was taken before each exper-

iment to ensure that the ring and clamped plate (Rp > Rr) were level and centered with

respect to one another, and that the clamped plate was just in contact with the underside

of the ring. Then, quasi-static displacement-controlled tensile tests were administered us-

ing the software Bluehill 3. The clamped plate was pulled upward through the ring (see

Fig. 3·1c) at a rate of 0.1− 0.5 mm/min. An upward-facing camera (Nikon D610 DSLR)

was mounted parallel to the clamped sheet and the ring, recording deformation as the im-

posed upward displacement, d, increased.

Videos were used for post-processing alongside Instron force-displacement data, and
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we could glean global characteristics like Nmax. However, this view was limiting for a

number of reasons, so we also performed complementary experiments. For several sam-

ples, we took 3D scans (Einscan Pro) of the sheet while the Instron was paused at regular

intervals of d. This allowed us to make out-of-plane measurements, e.g. of the maximum

opening angle of the cone β0. Additionally, the projected view left large uncertainty about

the contact angle θc, i.e. the half-angle between the two endpoints of a buckled region that

contact the ring. For another subset of experiments, the Instron was stopped and points

where the sheet contacts the ring were marked manually, then θc was measured once the

sheet was released from the Instron. Further, the small-amplitude wrinkles we observe

could not reliably be seen in the projected view. To image the wrinkles, we replaced the

opaque PET sheets with reflective colored photo filter film (h = 0.1 mm, Pro Gel, B&H

Photo), and stacked two circular LED ring lights (4 inch diameter, B-Qtech, Amazon and

6 inch diameter, MACTREM, Amazon) concentrically, separated by about 6 inches.

3.2.2 Molecular dynamics simulations

To obtain information that is inaccessible in experiments, e.g. the strain energy distribution,

we also performed MD simulations using the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS). Compared to e.g. finite element (FE) simulations, MD

handles contact well, which is essential for our system. To simulate a plate, we use a

triangular lattice of particles, with the potential

U2d =

√
3

4
Eh∑

i j
(qi j−q0)

2 +
Eh3

8
√

3 ∑
i jk
(1+ cosθi jk). (3.1)

Here, q0 is the lattice spacing, which is ten times the thickness. The first term takes all

nearest-neighbor particles and adds a harmonic stretching potential, and the second term

takes all sets of three adjacent collinear particles and adds a bending potential. In the limit

of small strains compared to unity, and large radii of curvature compared to the lattice



40

spacing, this model is equivalent to an elastic sheet of thickness h, Young’s modulus E,

bending rigidity B = Eh3/[12(1−ν2)], and Poisson’s ratio ν = 1/3. We simulate the ring

using a granular pair potential with no friction, and we clamp particles by manually enforc-

ing their displacements. No gravity is present in simulations. The thickness and modulus

were set to match the main experiments. The geometric parameters were varied so that

Rc/Rp ∈ [0.04,0.87], Rc/Rr ∈ [0.06,0.95], and Rr/Rp ∈ [0.4,0.93].

3.3 Dynamics of packing

When one begins to push a circular sheet some normalized distance ε� 1 of radius Rp

into a ring whose size Rr < Rp, the “extra" length creates a compressive circumferential

stress. To accommodate this excess, the un-clamped (Rc ≈ 0) sheet transitions from an

axisymmetric state to a d-cone at very small ε by buckling in a section whose angular

size 2θc is set by energy minimization [24]. Upon continued packing, more arclength will

feed the sole 1 buckled section. The dynamics we see in our experiments and simulations

are richer: transient wrinkles preceed sequential, pronounced snapping into a multi-cone

structure. In this section, we report our qualitative observations of how these shape-shifting

structures emerge.

In experiments and simulations, deformation is axisymmetric inside the ring, i.e. from

r = Rc to r = Rr, where r is the radial coordinate from the center. However, from Rr to

Rp, axisymmetry breaks at small values of ε (i.e. ε / 0.05) as the outer region wrinkles.

Wrinkles are evenly distributed circumferentially, and we find that the number of wrinkles

n is generally greater than the number of cones Nmax in the final state (see Fig. 3·4). We

observe in experiments that if Rp/Rr ' 1.3 and Rc/Rr ' 0.5, wrinkles are pronounced,

propagating to the edge of the sheet with an amplitude large enough to be observed from

a side view with the naked eye (Fig. 3·2b). However, simulations and experiments using

1The energy to form two dislocations is only slightly greater than that for a single fold, so in relatively
rare cases, perturbation can lead to two-fold structures even with Rc ≈ 0 [24].
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Figure 3·2: At small ε, circumferentially distributed wrinkles develop in the
portion of the sheet which is outside of the ring. Deformation is axisymmet-
ric inside the ring. a. For Rp = 30mm, Rr = 15mm, and Rc = 6.35mm, wrin-
kles have a small amplitude. In iv., n = 5 wrinkles have formed, and two co-
alesce to form a cone in v.-vi. when ε≈ 0.03. b. More pronounced wrinkles
emerge (n = 6 in iv.&v.) for Rp = 30mm, Rr = 12mm, and Rc = 8.82mm.
Two wrinkles snap into a cone in vi. when ε≈ 0.08.

reflective sheets (Fig. 3·2a) reveal that wrinkling occurs across the geometries we studied,

even in the d-cone limit.

This behavior is surprising in the context of the d-cone: the small-deflection state is not

developable for r > Rr, and evidently a discontinuity exists at the ring such that the sheet

is only in compression for r < Rr. We believe the scenario to be comparable to the curtain-

like wrinkling in Ref. [186]. Supporting this conjecture is the fact that if Rp � Rr and

Rc / Rr, we observe hierarchical wrinkles, wherein the wavelength is small near the ring

and larger at the edge of the plate. Curtain-linke wrinkling is analogous to the wrinkling of

a film is compressed atop an elastic foundation. The linear restoring force is proportional

to the tension, which is higher at the compressed edge than the free edge. We expect that

a similar gradient appears in our setting, such that the annular geometry acts as an elastic

foundation against the bending stiffness, thus setting the wrinkle wavelength [23].

As packing increases, wrinkles grow in amplitude before two suddenly coalesce to form

a single truncated cone (Fig 3·2,vi) of angular size 2θc. Its angular height β0 is greater than
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Figure 3·3: a. & b. Selected 3D scans from quasistatic experiment for
Rp = 35 mm, Rr = 25 mm, and Rc = 15 mm. Roman numerals correspond to
i. when the first cone has formed, ii. the second, and so on. c. The reaction
force sharply drops when each new cone forms. d. The opening angle β0
vs. ε for each cone, measured from 3D scans, and e. The contact angle θc
for each cone. In d&e, only the last data point before each cone forms is
included, for visibility. Note that a,b,d&e are from the same experiment,
but c is from a separate sample with the same geometry.

that of the wrinkles. A sharp drop in the force-displacement curve (see Fig. 3·3c) and often

an audible pop marks this instability. We observe that more pronounced wrinkles can delay

this wrinkle-to-cone transition.

After the first cone has formed, its amplitude increases as packing progresses (Fig. 3·3d)

with little, if any, change to θc (Figs. 3·3e & 3·6b). Then, one-by-one, more conical dislo-

cations snap to meet the others, sharply dropping the force some amount and immediately

matching the angular height β0 of the existing cones. In most cases, additional cones also

form with the same aperture angle θc as in Fig. 3·3, however for some geometries we

observe “frustrated" structures where a smaller cone forms at high ε. Cones are not nec-

essarily distributed symmetrically at intermediate ε, but in general the final structure will

be symmetric. In the case that a smaller cone enters as a late addition, it also breaks this

symmetry.

Cone formation saturates eventually, and for any further increase of ε, there will be
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Rc

10mm

Figure 3·4: Images from experiments at large ε, after the number of cones
has reached Nmax. Rp and Rr are fixed at 35 mm and 25.23 mm, respectively,
and Rc ∈ {3.8,5.9,13.8,17.8,19.7} mm, increasing from left to right. As
the free length Rc increases, so does Nmax, from 1 to 5 in these images. In
the leftmost image, the clamp is smaller than the hex nut and thus is not
visible.

N = Nmax cones of equal and increasing angular height β0. Whereas the small-deflection

wrinkles are smoothly distributed along the circumference (i.e. the wavelength of a wrinkle

at radial coordinate r, where Rr < r ≤ Rp, is 2πr/n), this is not necessarily the case for

cones. Especially for small Rp−Rc, small dislocations can be separated by relatively large

regions that retain contact with the ring (see Fig. 3·7b.)

The sequential and symmetric nature of the deformations we observe suggests that the

essential behavior of the system is contained in the formation of the first cone. In particular,

the first cone sets the angle θc that any additional cones will adopt (Fig. 3·3e). With this in

mind, in the sections that follow, we seek to understand the mechanics at play during the

first buckling event.

3.4 Contact angle

The contact angle is perhaps the most robust feature of the d-cone. In theory, the size

of the buckled section that minimizes the bending energy is independent of materials and

geometry (for Rc→ 0) [24]. Theoretical solutions in the literature predict θc≈ 1.21 rad [24,

22] or θc ≈ 1.05 rad [27]. In several experiments with a fixed ratio Rr/Rp = 0.95, θc was

measured as 0.96± 0.04 rad [28, 22]. In our setting, θc clearly depends on geometry. To
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understand how so, we consider the elastic energy in the system immediately following the

onset of the first buckling event.

0.00 0.02 0.04 0.06 0.08
0.0

2.5

5.0

7.5

·10−4

First cone forms

ε

U

Ubend Ustretch Utotal

ubend

a. b. c.
i.

ii.

2θc
≈

R∗ Rr −Rc

Figure 3·5: a. Comparison of energy contributions from a simulation
(Rc = 20.3 mm, Rr = 42.3 mm, Rp = 63.5 mm). The stretching energy
(blue) is the largest contribution before cone formation, but bending (green)
dominates once the first cone forms. b. Contour plot of the bending energy
density at cone formation, showing that the highest energy is located pre-
dominately in the dislocated region. The main contributions are distributed
circumferential bending, and concentrated radial bending (yellow) near the
clamp. Color bar range is from 0 (purple) to 1.5e− 10 Jm−3 (yellow). c.
i. Concentrated radial bending shown in an experiment. ii. Schematic of
radial bending approximation. Concentrated bending in a region of length
R∗ is approximated as distributed bending over the length Rr−Rc.

In simulations, we confirm that after the first cone forms, the dominant contribution to

the strain energy is from bending (see Fig. 3·5a). (Note that this is not the case before buck-

ling; the stretching energy is higher initially.) A main contribution to the bending energy

is bending in the circumferential direction, which is distributed over the entire annulus in

the region 0 ≤ θ ≤ 2θc (see Fig. 3·5b). We approximate the θ-direction curvature in the

dislocated region as the cone amplitude over the square of the bent length, i.e.:

κ
(θ) ≈ r sinβ0

(θcr)2 . (3.2)

Assuming β0 is not too large, which is valid for ε� 1, then sinβ0 ≈ β0, and further β0 ≈ ε.
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Then the circumferential-direction bending energy in the dislocated region scales as:

U(θ)
b ∼

B
2

θc∫
0

Rp∫
Rc

(
ε

θ2
cr

)2

r dr dθ =
B
2

log
(

Rp

Rc

)
ε

2
θ
−3
c . (3.3)

Eq. (3.3) shows that since the bending energy penalizes high curvatures, large θc is pre-

ferred from the perspective of the θ-direction bending energy. However, the conical dislo-

cation also carries sharp bending in the radial direction, in a small region located near the

clamp (see Fig. 3·5b&c,i). A smaller opening angle reduces this contribution to the elastic

energy.

The concentrated radial-direction bending is confined to a small region Rc < r ≤ R∗.

The size of R∗ (the stretching core) is unknown, and is not agreed upon in the context of

the d-cone [194, 132]. Thus, we approximate this concentrated deformation as distributed

bending over the length r = Rc to Rr (see Fig. 3·5c,ii). Each radial director in the dislocated

region bends to an amplitude set by the elastica-like curve in the θ-direction, and thus

depends on θ. We approximate the θ-dependence as linear for small ε, and note that the

amplitude also scales with the dislocated arclength at the ring, which itself scales with Rr.

Then the curvature in the radial direction is approximately:

κ
(r) ≈ (θc−θ)Rr

(Rr−Rc)2 . (3.4)

Thus, the radial-direction contribution to the bending energy scales as:

U(r)
b ∼

B
2

θc∫
0

Rr∫
Rc

(
(θc−θ)Rr

(Rr−Rc)2

)2

r dr dθ =
B
2

R2
r (R

2
r −R2

c)

(Rr−Rc)4 θ
3
c . (3.5)

We note that bending in the radial direction near the clamp for all θc also contributes

to the energy, but is unaffected by θc. Thus, we expect that θc is set by the competition

between the circumferential and radial bending contributions in the conical dislocation

region. Accordingly, we minimize the sum of Eqs. (3.3) & (3.5) with respect to θc (i.e.
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∂U(θ)
b /∂θc +∂U(r)

b /∂θc = 0) to find:

θc ∼ ε
1/3
[

log
(

Rp

Rc

)
(Rr−Rc)

4

R2
r (R2

r −R2
c)

]1/6

, ε� 1. (3.6)

Eq. (3.6) is valid for small ε, and captures our limited data in this regime well. This is

shown in Fig. 3·6a, where we plot this scaling vs. the measured values of θc/θdcone
c , with

θdcone
c = 1.05 rad.
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Figure 3·6: a. For limited experimental data when ε� 1, the ε-dependent
scaling for θc given by Eq. (3.6) captures our data well. b. Plot of θc vs. ε

once the first cone has formed, for fixed Rp = 63.5 mm and Rr = 42.3 mm,
and increasing Rc (color bar, purple to yellow). Away from the single cone
limit (Rc→ 0), θc becomes independent of ε as additional cones take up the
excess length. This motivates Eq. (3.7), which is plotted in c. c. Eq. (3.6)
is only valid for ε� 1, but the same scaling with ε→ 1 (Eq. (3.7)) applies
more generally. In a&c, we take θd−cone

c to be 1.05 rad [22, 163].

Besides in the single cone limit (Rc→ 0) however, θc becomes more or less constant

beyond small ε, as excess length feeds new cones as they form (see Figs. 3·6b & 3·3e.)

Thus, we expect that:

θc ∼
[

log
(

Rp

Rc

)
(Rr−Rc)

4

R2
r (R2

r −R2
c)

]1/6

(3.7)

in general. We plot this ε-independent form of Eq. (3.6) in Fig. 3·6c, where we see that it
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reflects our measurements of θc over a broader range of ε.

The contact angle predicted by Eq. (3.7) depends purely on geometric properties, and

describes the energy minimizing shape in the vicinity of one cone. Thus, it is expected that

each of the additional cones that form will also follow Eq. (3.7). As we have seen, this

is the case in general. A logical progression is that as packing continues, the sheet will

simply pack in as many cones as it can fit, as dictated by geometry. That is, we hypothesize

that Nmax = π/θc. In Fig. 3·7a, we plot Nmax = π/θc + 1 using the scaling for θc from

Eq. (3.7). We add 1 because the scaling otherwise predicts N = 0 in the d-cone limit (since

Rc→ 0 =⇒ log(Rp/Rc)−1/6 = 0).

The parameter Nmax is accessible in all experiments we performed, so the data in

Fig. 3·7a covers a wide geometric range and includes two sheet thicknesses. We expect

some degree of scatter, simply due to the quantizing effect of a discrete parameter. Overall,

we indeed see the hypothesized linear trend. However, it overpredicts Nmax. One source

for this is the relatively large space between small cones when Rp−Rc is small (i.e. a

“bottle cap-like" distribution of cones; See Fig. 3·7b). In other, more rare cases, symmetry

is broken by smaller cones that form at high ε. Thus, behavior at large ε requires a more

nuanced investigation, which we do not pursue herein.

3.5 Critical force

In our displacement-controlled experiments and simulations, we measure the total reaction

force in the system. While previous studies [28, 24] of the d-cone report smooth force-

displacement curves2, we observe that cone formation occurs as a sudden instability event.

We identify the critical force Fc at which this instability occurs from the earliest drop in the

force-displacement curve (Figs. 3·3c & 3·8a).

We observe that Fc increases for small Rr−Rc (see Fig. 3·8a), which we note corre-

2Recently, others have reported [64] a snapping event observed experimentally for d-cone formation.
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Figure 3·7: a. If the annular d-cone simply packs in the maximum number
of cones of angular size θc, we expect Nmax = π/θc + 1, where θc depends
on the geometry according to Eq. (3.7) (black line). This captures the gen-
eral trend of our > 650 data points, but the overprediction suggests that the
packing is more nuanced. Inset: zoomed-in view. b. The bottle cap-like
distribution of cones seen here, especially for small Rp−Rc, is a source of
the spread in a.

sponds to the size of the region in compression. Empirically, we determine Fc ∼ (Rr −
Rc)
−2. This dependence can be explained via an analogy to Euler column buckling. Con-

sidering a radial slice of the sheet as a cantilevered beam, which feels a compressive force

f from the ring (see Fig. 3·8b), then the critical buckling force of the column is:

fc =
π2EI

4(Rr−Rc)2 . (3.8)

Here, I = ` f h3 is the second moment of area, where ` f is a characteristic length. Since

the measured force, F , is distributed over the entire sheet, ` f = Rp. The total critical force

Fc =
∫ 2π

0 fc dθ, so we expect that Fc, in dimensionless form, scales as:

Fc(1−ν2)

Eh2 ∼ Rph
(Rr−Rc)2 . (3.9)

As shown in Fig. 3·8c, Eq. (3.9) agrees well with our data. This agreement elucidates the
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Figure 3·8: a. Force vs. ε curves for fixed Rp = 45 mm, Rr = 25 mm, and
increasing Rc ∈ 10,17,23mm, i.e. decreasing Rr−Rc, from light to dark.
The open symbols mark when the first cone forms, i.e. Fc. b. Schematic
of compressed Euler column, i.e. the darker gray section (length Rr−Rc).
The dashed line shows the reference state,. The ring exerts a compressive
force f . c. The scaling for the critical force Fc at which the first cone forms
agrees well with Eq. (3.9). The black line is a least-squares fit to the data,
which has a slope of 1.05.

nature of the axisymmetric, compressive force inside the ring, and shows how the critical

force depends on the geometric parameters.

3.6 Conclusion

In summary, we performed experiments and MD simulations to investigate the mechanics

of the annular d-cone, i.e. a thin, flexible plate clamped in its central region and forced

through a ring. These experiments and numerics revealed complex dynamics. Wrinkles

emerge at small ε, which distribute evenly in the circumferential direction, but do not span

the entire sheet in the radial direction. Rather, the part of the sheet that lies outside of the

ring wrinkles, while the material compressed inside the ring remains axisymmetric. This

non-axisymmetric, non-developable deformation is surprising in the context of the d-cone

literature [24, 28]. Through a sudden, audible instability, two wrinkles merge to form a

truncated developable cone. As packing continues, more cones sequentially snap to meet
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the first, immediately matching its shape. Besides near the single d-cone limit (Rc → 0),

the contact angle θc of the first dislocation in the annular d-cone is constant beyond small

ε, and only its amplitude increases. The number of cones eventually reaches a maximum,

and significant bending and plastic deformation ensue.

It was evident from our experiments that the forces and deformations associated with

packing the annular d-cone are highly sensitive to changing geometry. Since in general, the

size of the first dislocation is the same as that of all subsequent cones, we focused on the

geometry and mechanics of the initial cone formation. By considering the elastic energy

in the dislocated region immediately following the onset of instability, which consists of

distributed circumferential and concentrated radial bending, we determined a scaling for

the the angular size of the dislocation. This scailng is valid for small ε and depends on the

geometric parameters, and ε1/3. However, because θc is more or less constant beyond low

ε for the annular d-cone, we showed that the scaling is valid for all of our data without the

ε dependence. We also showed that the critical force corresponding to this loss of stability

depends on geometry in a manner relatable to Euler buckling of a compressed column.

We found that the maximum number of cones is roughly proportional to θ−1
c over a

wide range of data. However, some of our observations (e.g. nonuniform “bottle cap"-

like spacing, and frustrated, asymmetrical structures) contradict the simple hypothesis that

cones maximally distribute around the circumference. Further study of the mechanics at

intermediate and high ε is needed to address this, as well as other phenomena we did not

focus on herein, e.g. when new cones form. Additionally, we have widely varied the ge-

ometric confinement parameters, but not the sheet properties (i.e. the thickness, modulus,

and Poisson’s ratio). To verify the validity of our scalings for the critical force and the

contact angle, the effect of these parameters should studied in simulations or experiments.

Future work will include a closer study of the small ε wrinkling. The intricate, shifting dy-

namics we have observed, as well as the non-intuitive features like non-developability and
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discontinuous radial deformation, highlight the extreme sensitivity of thin sheets to chang-

ing boundary conditions. We hope that these experiments and numerics inspire further

investigations of confined sheets.
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Chapter 4

Delayed buckling of spherical shells due to
viscoelastic knockdown of the critical load

In the last two chapters, we studied instabilities induced by external confinement. These

were fundamental investigations of phenomena that are not well understood. In the re-

maineder of this thesis, we begin to think about how instabilities could be used for the

design of devices that reversibly buckle or snap. In this chapter, we study delayed buckling

of elastomer shells. With an understanding of the mechanics underlying the phenomenon,

we can offer clear design guidelines.

We performed dynamic pressure buckling experiments on defect-seeded spherical shells

made of a common silicone elastomer. Unlike in quasi-static experiments, shells buckled

at ostensibly subcritical pressures (i.e. below the experimentally-determined load at which

buckling occurs elastically), often following a significant time delay. While emphasizing

the close connections to elastic shell buckling, we rely on viscoelasticity – which is often

overlooked in silicone elastomers, as the rate dependence is dormant in most settings – to

explain our observations.

In particular, we demonstrate that the lower critical load may be determined from the ma-

terial properties, which is rationalized by a simple analogy to elastic spherical shell buck-

ling. We then introduce a model centered on empirical quantities to show that viscoelastic

creep deformation lowers the critical load in the same predictable, quantifiable way that a

growing defect would in an elastic shell. This allows us to capture how both the critical de-

flection and the delay time depend on the applied pressure, material properties, and defect
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geometry. These quantities are straightforward to measure in experiments. Thus, our work

not only provides intuition for viscoelastic behavior from an elastic shell buckling perspec-

tive, but also offers an accessible pathway to introduce tunable, time-controlled actuation

to existing mechanical actuators, e.g. pneumatic grippers.

4.1 Introduction

Shell structures are lightweight and flexible. Largely owing to their curvature, they offer

considerable strength with little material. As a result, shells are abundant in nature (e.g.

eggshells and blood vessels) and design (e.g. fuel tanks and soda cans). However, slen-

derness also brings susceptibility to abrupt and often catastrophic deformations. Clearly,

understanding how a thin, curved structure will lose stability – and in particular at what

load value this will occur – is crucial.

We restrict our attention to spherical shells in the present work. The first-known quan-

titative prediction for the critical load Pc in a perfect, spherical, elastic shell subjected to

uniform pressure was produced by Zoelly in 1915 via linear eigenvalue analysis, and is

given as:

Pc =
2E√

3(1−ν2)
η
−2 (4.1)

for a shell with Young’s modulus E, Poisson’s ratio ν, and radius (R) to thickness (h) ratio

η≡ R/h.

Although this result is still widely accepted today, it severely overpredicts the buckling

load observed in experiments. Recognizing this disrepancy, which is due to the extreme

sensitivity to imperfections inherent to thin shells, scientists at the space agency NASA and

collaborators introduced the knockdown factor (kd) in 1930. The quantity is defined as the

ratio of the observed critical load Pe
c , to that predicted by the theory, i.e. kd ≡ Pe

c/Pc. Based

on surveyed experimental results [112, 190], engineers at NASA settled for the extremely
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conservative design code of kd ≈ 0.2 for spherical shell structures [133].

Over the decades that followed, extensive work was dedicated to correcting the per-

sistent overprediction of the critical pressure. This involved studies of the post-buckling

behavior [98, 182], and the imperfection sensitivity [104, 105, 87, 18, 107, 103] of thin

spherical shells. Yet, marked success arrived only recently, after Lee et al. developed a new

fabrication technique for polymeric spherical caps [111]. The authors used this method

to create dominant dimple-like defects (larger than those naturally occurring in the shell)

with systematic size variations [112]. These experiments, validated with finite element

modeling (FEM) and numerical analysis, quantitatively showed for the first time how the

imperfection depth lowers the critical load.

Other contributions followed, including studies on spheres with similar dimple de-

fects and sinusoidal equatorial undulations [88], large-amplitude dimples [95], through-

thickness defects [199] (a notable predecessor is Ref. [142]), dent defects [55], and prob-

ing force imperfections [56], which collectively clarify the effect of the type of defect on

the knockdown factor for spherical shells. More broadly, this long-awaited breakthrough

provoked a new surge of progress in spherical shell theory (see e.g. Refs. [88, 90, 6, 89]).

These developments afford engineers the opportunity to design sturdy structures with more

specific – and permissive [190] – lower bounds on the load carrying capacity. This was the

initial goal. In more recent years, though, a community of researchers has adopted, in a

sense, the opposite goal: to design structures that buckle and snap on command [78, 154]

for functions like colloidal self-assembly [158], encapsulation [170], inflatable snapping

actuation [99, 62], and artificial muscle actuation [200].

The new understanding of defect sensitivity in a different light demonstrates the tun-

ability of spherical shell buckling, and thus serves this “buckliphilic" [153] community

equally. In particular, the geometry and placement of a dominant defect prescribe, respec-

tively, the buckling strength and the spot where an instability localizes. Recent extensions
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of this concept couple geometric defects with differentially swelling [113] or magneto-

responsive [198] materials to modify the knockdown factor over time. Relatedly, a more

general study showed how a homogenous natural curvature – which can be a proxy for

nonmechanical stimuli like thermal expansion, changes in pH, or differential growth – acts

to raise or lower the knockdown factor in spherical shells [80].

Besides control over when instability occurs – which depends on geometry, loading,

and mechanics – mechanical actuators generally rely on reversibility. Repeatable actuation

calls for robust, elastic materials, and silicone rubbers like polydimethylsiloxane (PDMS)

and vinyl polysiloxane (VPS) have answered this call in mechanics research [154]. In

addition to their elastic behavior, these elastomers are readily accessible and allow for fast,

easy fabrication [111].

Recently, Djellouli, et al. combined these ingredients to produce a mechanical swim-

mer [41]. Quasi-static pressure cycles drove the device, a defect-seeded spherical shell

made of the elastomer Dragon SkinTM 30, to propel forward through a viscous fluid by

buckling and unbuckling controllably. The authors propose that maintaining dimensionless

quantities constant would allow for miniturization, with implications for drug delivery. A

natural extension of this work, and the motivation for the present study, is to seek control

over the speed of swimming by adjusting the frequency and/or amplitude of pressure cy-

cles. Largely because shell and fluid motion are highly coupled in swimming, and because

of possible resonance with postbucking oscillations [130], we expect this phase space to be

complex. Thus, we set out to first isolate the shell buckling response, independent of fluid

motion, to dynamic loading at pressures in the vicinity of the critical load.

We fabricated imperfect spherical shells like those in Ref. [41], and fixed them in place

surrounded by air. A small nozzle allows for internal pressure control, through which

we step-load the shells – that is, we abruptly apply, and then maintain, a pressure load.

Explicitly, we reduce the pressure inside the shell cavity, creating a negative inside-outside
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differential pressure. For simplicity, we will refer to this pressure difference in terms of

its magnitude. These straightforward experiments produced surprisingly rich results. Even

for loads below the experimentally measured elastic critical pressure (which we loosely call

“subcritical" herein), we consistently observe buckling. Further, this buckling at subcritical

loads occurs abruptly, often after an extended period of very slow deformation perhaps

mistakeable for stability. We observe singular thresholds and a delay time which increases

monotonically as pressure decreases – this contrasts the findings of a recent numerical study

on dynamic step loading of spherical shells which are much thinner than our own [171].

As discussed, geometric imperfections can lead to buckling at lower-than-expected

loads. In this case, though, the shell defects are already accounted for. Devoid of any

plausible geometric explanation for this strange buckling behavior, our results require a

closer examination of the materials. Although silicone elastomers are selected precisely

because they behave elastically in most settings, they are in fact prone to time-dependent

molecular rearrangement, and hence are viscoelastic [118, 202, 184]. Thus, they behave

differently depending on how fast they are loaded, and exhibit both stress-relaxation (soft-

ening when subjected to a constant strain) and creep (deformation over time under constant

stress).

In the present work, we rely on this viscoelasticity to account for our observations,

while emphasizing the close connections to elastic spherical shell buckling. The structure is

as follows: First, we introduce key aspects of our experiments in Sect. 4.2. Specifically, we

report the viscoelastic material properties, describe the geometry of our imperfect spherical

shells, and briefly introduce our experimental setup. In Sect. 4.3, we present an overview

of our findings. We address the critical pressure conundrum in Sect. 4.4 by defining two

pressure thresholds: the elastic critical pressure, and the lower viscoelastic critical pressure,

which can be related through the limiting material properties. These thresholds separate

three regimes: immediate buckling, delayed buckling, and no buckling (stable). In Sect.
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4.5, we introduce an analogy wherein viscoelastic creep deformation lowers the critical

load in the same way that a growing dimple-like defect would in an elastic shell. This

provides insight about the pre-buckling deformation (Sect. 4.5.1), and reveals how the delay

time preceding buckling depends on the imposed pressure, shell geometry and material

properties (Sect. 4.5.2). Finally, we offer concluding remarks in Sect. 4.6.

4.2 Materials, geometry and methods

We have performed dynamic, step-loaded pressure buckling experiments on soft, viscoelas-

tic spherical shells. Here, we briefly summarize the material properties, shell fabrication

and geometry, and dynamic loading methods.

4.2.1 Material characterization

The shells used in our experiments are made of the elastomer Dragon SkinTM 30 (man-

ufactured by Smooth-On; Poisson’s ratio ν = 0.5 [41]). We assume that our viscoelastic

material can be described by the Standard Linear Solid (SLS) model, the simplest linear

model that captures both stress-relaxation (the decreasing stress response over time for a

structure subjected to a constant strain) and creep (deformation under a prolonged constant

stress) [203]. The SLS model describes limited creep behavior, i.e. creep deformation does

not progress indefinitely, nor does the modulus eventually go to zero.

According to the SLS model, the modulus relaxes over time according to:

E(t)≡ σ(t)
ε

= E∞ +E1e−t/τσ (4.2)

where σ(t) is the time-varying stress, ε the constant strain, and τσ the relaxation time. The

parameter E1≡E0−E∞ quantifies the total stiffness lost as the elastic modulus E0 decreases

to the long-term (equilibrium) modulus E∞, where E0 ≥ E∞. The function (4.2) is known

as the relaxation modulus. It is related by Laplace transform to the creep compliance
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function, which describes the temporally increasing strain ε(t) of the SLS element under

imposed constant stress σ [108]:

J(t)≡ ε(t)
σ

= J0 + J1
(
1− e−t/τε

)
(4.3)

where J0 = E−1
0 , J1 ≡ J∞− J0 with J∞ = E−1

∞ ≥ J0, and τε is the retardation time.

We performed uniaxial tension and stress-relaxation tests using the tensile testing ma-

chine Instron 5943 to identify the parameters in Eq. (4.2) (details are provided in Appendix

4.7.1.) We found the relaxation time to be τσ = 0.78±0.49 s. As for the moduli, we deter-

mined E0 = 0.59±0.04 MPa and E∞ = 0.54±0.08 MPa. Reported errors throughout the

text correspond to one standard deviation unless otherwise noted1. The resulting ratio of

the mean long-term modulus to the mean instantaneous one is Ē ≡ E∞/E0 = 0.91, which

is central to the analysis beginning in Sect. 4.4.

Since our materials have a relatively low relaxation strength, defined as ∆=E1/E∞ [108],

Eq. (4.2) and the inverse of Eq. (4.3) differ negligibly, i.e. J−1(t) ≈ E(t) (see Ap-

pendix 4.7.1, Fig. 4·7). While creep is the relevant process in our experiments, our primary

aim is to draw connections to elastic shell theory, which relies on the modulus E. Thus, we

will use this convenient fact to interchange the representation of these two mechanisms in

our analysis.

4.2.2 Shell geometry

Spherical shells were fabricated following the bi-molding method from Ref. [41], which is

detailed in Appendix 5.7.1. The shells, made of two hemispheres seamed with a thin layer

of diluted polymer, all have an outer radius of Ro = R+h/2 = 25 mm. The thickness h∈ [1
mm, 5 mm], such that η ∈ {24.5,12.0,6.6,4.5}.

To control the location and direction of buckling, each shell is seeded with an im-

1For quantities with few measurements, the approximate standard deviation is reported as one-fourth of
the error range.
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β0

h
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Patm

Figure 4·1: Schematic of the clamped shell with an inlet for pressure con-
trol. The flexible tube connects at its other end to a vacuum tank so that
when the line is open, Pin < Patm (or P ≡ |Pin−Patm| > 0). The relevant
parameters are labeled: the nominal thickness h and midline radius R, im-
perfection depth δ, and half-angular width of the imperfection β0.

perfection, where the thickness is reduced by an amount δ ∈ [0.40,0.81] mm, such that

δ̄ ≡ δ/h ∈ [0.08,0.76] in a circular region spanning a half-angle of β0 ≈ π/24 radians.

The shell parameters are shown schematically in Fig. 4·1, and the effect of this defect is

discussed further in Appendix 4.7.3.

Following e.g. Ref. [112], we also introduce the parameter λ, defined as

λ =
(
12(1−ν

2)
)1/4

η
1/2

β0, (4.4)

which describes the defect geometry in the context of spherical caps [97, 178]. For our

shells in order of increasing thickness, λ ∈ {1.038,0.716,0.612,0.492}.

4.2.3 Step loading

A flexible tube was connected on one end to the inside of the shell, and on the other to a

vacuum tank. An electrovalve interrupting this channel allowed us to abruptly remove air

from the inner volume of the shell, creating a pressure difference of magnitude P ∈ [0.3

kPa, 46.5 kPa] (see Fig. 4·1), which we monitor with a pressure sensor. The pressure load

is maintained for either the time it takes the shell to buckle, or thold ∈ [5s,360s]. For details

on the experimental setup, see Appendix 4.7.4.
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4.3 Three regimes

For each of our shells, the immediate response to any non-negligible pressure load was

qualitatively the same: The shell compresses as soon as the pressure is felt, and deforma-

tion quickly localizes at the unclamped pole (in the vicinity of the imperfection), forming a

dimple-like depression with a deflection depth w (see Fig. 4·2 a.) Beyond this early behav-

ior, which occurs in approximately the first 0.05 seconds, three regimes were evident from

our experiments.

20mm

t = 0 s 0.05 s 0.07 s 0.075 s 0.085 s 0.095 s 0.25 s

t = 0 s 0.05 s 1.255 s 1.26 s 1.265 s 1.275 s 1.50 s

t = 0s 0.05s 2s 4s 10s 15s 20s
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a. b.i.

ii.

iii.
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P̄

w = wc

P̄ = 1.02

P̄ = 0.93

P̄ = 0.90

Figure 4·2: (a.) Selected high-speed camera images and (b.) corresponding
plots of the pole deflection normalized by the shell thickness, i.e. w̄ = w/h,
show the typical response of a shell (η = 6.6) to step loading at relatively i.
high (supercritical), ii. moderate (subcritical), and iii. low pressures. The
pole deflection w is measured from the initial state, marked in a,i. by the
upper dashed gray line. At or above the elastic buckling pressure (e.g. P̄≡
P/Pe

c = 1.02), the shell quickly buckles (tc ≈ 0.07 s). The corresponding
critical pole deflection wc is indicated in a,i. Even at subcritical pressures,
e.g. P̄ = 0.93, the shell eventually buckles (tc ≈ 1.26 s). This collapse
follows a deceleration in the pole deformation at t ≈ 0.05 s, and a subsequent
period of slow, constant-rate deformation. For pressures below a second
threshold, e.g. P̄ = 0.90, the shell does not buckle.

If the imposed pressure is high, the initial fast rate of pole deformation is maintained,

and the shell quickly buckles – that is, the pole inverts, driving global collapse (Fig. 4·2,

i). In postbuckling, which we do not study in detail here, the pole region is completely
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inverted and oscillations occur before stability is reached again when w≈ 2R. We refer to

this regime, wherein the shell behaves elastically throughout deformation, as the immediate

buckling regime. The lowest pressure at which we observe this buckling behavior defines

the experimental elastic critical load Pe
c . Due to the seeded defects and the non-negligible

thickness of our shells, the experimentally-determined value Pe
c differs from the theoretical

critical pressure Pc (Eq. (4.1)) for thin, perfect elastic shells. For details, see Appendix

4.7.3.

At slightly lower pressures, the deformation rate slows considerably following the fast

response to loading, at a transition time (t ≈ 0.05 s). The dimple slowly deepens (i.e. w

increases; See Fig. 4·2, ii), before an abrupt acceleration after some time tc ∈ [0.09 s, 17.09

s] signifies buckling. We define this intermediate regime as the delayed buckling regime. At

still-lower pressures, slow pole motion eventually stops, and the shell settles into indefinite

stability for as long as the load is maintained. We call this third regime the stable regime

(Fig. 4·2, iii).

The value of the pressure which separates the delayed buckling and stable regimes, and

hence marks the boundary of whether collapse will occur, is clearly of interest. This lower

pressure threshold was more or less constant for all of our shells when normalized by the

elastic load. In other words, the reduced critical pressure is independent of geometry. With

this nudge toward the materials, we proceed to rationalize these findings.

4.4 Pressure thresholds via modulus ratio

Since we know our materials are viscoelastic, we can presume that the slow pole deforma-

tion under constant pressure is an exhibition of creep. This would situate our observations

in the terrain of creep buckling. Creep buckling was introduced in the literature in 1951

[157]. The bulk of the work in this field was developed in the thirty or so years that fol-

lowed, and was aimed at understanding creep collapse that occured on timescales of hours
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or even days in metallic, mono-resin materials, and reinforced concrete. However, general

theories emerged, which are illuminating when applied to our elastomer shells. In particu-

lar, Hayman [70, 71] and others [75, 127] proposed that a viscoelastic structure that buckles

due to creep may be treated as an equivalent elastic structure with a lower critical load. The

main result is that the lower threshold – which we will henceforth refer to as the viscoelas-

tic critical pressure Pv
c – is directly related to the long-term modulus. For spherical shells,

the lower critical pressure Pv
c may be found by simply replacing Young’s elastic modulus

E with E∞ in calculating the elastic critical load (Eq. (4.1)). Denoting normalization by

the experimentally measured elastic critical pressure Pe
c with an overbar, i.e. P̄≡ P/Pe

c and

P̄v
c ≡ Pv

c/Pe
c , that is:

P̄v
c = Ē. (4.5)

In Fig. 4·3, we show that (4.5) agrees with our experimental data very well, solidifying

the notion that viscoelasticity is indeed the cause for the subcritical buckling we observe.

The dashed line marks the theoretical lower limit where creep bucking may be observed,

P̄v
c = Ē, which for our materials (see Sect. 4.2.1 & Appendix 4.7.1) is 0.91.

Explicitly, Eq. (4.5) ignores the actual mechanism that leads to instability, creep de-

formation, in favor of a straightforward way to determine the minimum buckling pressure

for creep-limited materials, which is perhaps the most crucial information for any design

goal. Given the elastic (viscoelastic) critical pressure and the experimentally-determined

instantaneous and long-term moduli, the ratio in Eq. (4.5) readily predicts the viscoelastic

(elastic) critical pressure.

This view is effective and completely general with respect to geometry and material

properties. However, it provides no information about deformation or the time delay that

preceeds buckling. Besides that these features are of fundamental interest, understanding

this delay mechanism will offer a route to including controllable delays in elastomer device
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Figure 4·3: Phase plot depicting the three regimes, separated by two pres-
sure thresholds. The elastic critical pressure (thin dotted line, P̄ = 1) was
experimentally determined as the minimum pressure at which a slowdown
of dynamics does not preceed buckling. We expect “immediate" (elastic)
buckling for an imposed pressure P̄ ≥ 1, which corresponds to the green
region. The theoretical viscoelastic critical pressure P̄v

c = Ē (thick dashed
line) is determined from (4.5) using the material parameters measured in-
dependently in stress-relaxation tests (see Sect. 4.2.1). Between P̄ = 1 and
P̄v

c (yellow region), viscoelastic creep can explain delayed instability at sub-
critical pressures. Below P̄ = Ē (red region), limited creep for our material
is insufficient to cause buckling, so we expect indefinite stability. Green tri-
angles, yellow circles, and blue squares represent, respectively, experiments
which buckled elastically, buckled after a time delay, and did not buckle.
Error bars represent one standard deviation.

design. We address these open questions in the following section.

4.5 Creep deformation as an evolving defect

As we have seen, the efficient, modulus-based approach in Sect. 4.4 connects the limit-

ing critical pressure of a viscoelastic shell to that of the equivalent elastic shell. It leaves

questions, however, about the time it takes a subcritically-loaded shell to buckle, and the

underlying pre-buckling deformation. Traditional analytical approaches to capture the crit-

ical time and/or deflection for creep buckling involve incorporating calculated quantities
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for stress and strain into the constitutive model (in our case Eq. 4.3). Instability may be

identified by solving the eigenvalue problem of the governing differential equations, or by

the quasi-static "critical strain approach" [54] wherein the critical strain must be known

or assumed a priori, and the corresponding time is directly solved for [128]. These meth-

ods require precise representations of the stresses and strains throughout deformation, and

have met moderate success in capturing experimental behavior for simple structures like

columns [73, 74], trusses and arches [85], plates and even cylinders [54]. (See Ref. [128]

for a review of the relatively recent work on creep buckling of shell structures, or Ref. [75]

for an earlier review on creep buckling of plates and shells.)

A clear problem with these approaches is that it is generally assumed that a shell under-

going creep will lose stability at the same strain as its elastic counterpart [53, 76]. However,

it has been noted that this assumption often leads to underprediction of the critical displace-

ment and time [136]. Indeed, although the immediate and delayed buckling regimes appear

qualitatively very similar in terms of deformation in our experiments (see Fig. 4·2, i. & ii.),

we observe that shells which creep for longer sustain more deformation before buckling.

Complex geometries like imperfect spherical shells and their nonlinear deformations

introduce significant analytical difficulties of their own. Creep buckling in spherical caps

and complete spherical shells has primarily been studied with numerical analyses [84, 169,

96, 129, 196], which do not produce closed-form solutions for when instability occurs.

Few experiments exist for comparison to these results, and attempts to replicate limited

experimental creep buckling behavior for spherical shells have largely been unsuccess-

ful [169, 110].

A more enlightening approach relies on the observation that the pre-buckling deforma-

tion approximately amplifies the initial defect (see Fig. 4·4a). This suggests that we may be

able to draw an analogy between creep deformation and a growing imperfection in an elas-

tic shell. This concept was proposed by Hayman in 1981, but the author conjectured that
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while his "locus of critical points" approach offered intuition, it lacked predictive power for

all but simple, statically determinate structures [71]. To our knowledge, the approach has

not been implemented besides in the original work, when it was validated against a small

number of experiments on concrete three-pin arches.

One key challenge was that the effect of the defect must be quantifiable. Indeed, as

discussed in Sect. 5.1, the imperfection sensitivity of shell structures has only recently

become experimentally tractable. In what follows, we rely on the work of Lee and collab-

orators [112], and center our analysis upon quantities that are readily determined through

experiments, to derive a practical and predictive model for creep buckling in our shells.

Knowing that an imperfection “knocks down" the critical load in an elastic structure,

in this view quasi-static creep deformation has the same effect. In other words, creep

deformation behaves like an evolving imperfection by progressively knocking down the

critical load. It follows that creep collapse occurs when the critical load associated with

the “imperfect" creep-deformed structure falls to the value of the applied load. Conversely,

the imperfection size associated with a given applied load should correspond to the critical

deformation at which creep buckling occurs. It is important to note that this was buried but

implied in the approach of Sect. 4.4; the two arguments are complementary.

To make this analogy quantitative, we turn to the recent literature on geometric imper-

fections in elastic spherical shells. The true defects in our shells are characterized by a local

reduction in thickness as in Ref. [199] (see Appendix 4.7.3). The pole deflection generated

during creep, however, is qualitatively more similar to a dimple-like imperfection where the

thickness does not change, but the curvature of the shell midline does. Because the midline

curvature of our shells is unaffected by the thickness reduction except at the discontinuity

at either edge of the defect profile, we consider our shells initially “perfect" in the dimple

sense. For the present analysis, we rely on the findings of Lee et al. [112], which are in

agreement with Refs. [87, 88, 95].
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Figure 4·4: Pre-buckling pole deformation (w≤ wc) is qualitatively similar
to a geometric defect of increasing depth δ. (a.) i. Schematic of dimple-like
defect in an elastic spherical shell, after e.g. Ref. [112]. ii. Edge con-
tours from high-speed images at t = 0,0.07,0.14,0.21,0.28 s and tc = 0.35
s (darkening blue corresponds to increasing time) for η = 4.5 and P̄≈ 0.97.
After initial compression, deformation localizes to the pole and progresses.
(b.) Our fitting parameter a≈ f (λ) = 1.08−0.44λ.

The key finding of their work, for our purposes, is that the knockdown factor for a

given shell kd = Pe
c/Pc is a function of δ̄ = δ/h which initially decreases for increasing δ̄,

then reaches a plateau. The authors present an empirically-determined function describing

the lower bounding envelope over the range of λ they study, which takes the form kd =

a+b/(c+ δ̄). We find that this functional form describes their individual curves sufficiently

well.

Primarily because λ for our thick shells is below the range studied in Ref. [112], we

cannot directly extract the results relevant to our work. Instead, we expect that these general

trends will hold. We assume that we can simply replace the imperfection depth δ with

the pole deflection w. Because we only consider the additional knockdown due to creep

deformation, and not that due to the inital defect, we take the reference pressure as the

experimental critical pressure Pe
c that corresponds to the initially imperfect shell. Then we

define a general viscoelastic knockdown function

kv
d(w) = P̄c(w̄) = a+

b
c+ w̄

, (4.6)

where w̄ = w/h, and a, b, and c are yet unknown.
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Since w increases according to the creep strain rate, an alternative form of Eq. (4.6)

specifies the time dependence. Approximating the magnitude of the circumferential strain

to first order as ε ≈ w/R, we can say w̄ ≈ ηε(t). From Eq. (4.3) this means w̄ ≈ ησJ(t),

which is approximately ησ/E(t) since the creep compliance function J(t) and the inverse

of the relaxation modulus 1/E(t) are nearly indistinguishable for our material. At early

times the shell behaves elastically, so we assume Hooke’s Law applies, i.e. σ≈ E0ε(tt) at a

transition time tt between the elastic and creep stages of deformation. Further, we assume

ε(tt) ≈ εe
c, where εe

c ≈ we
c/R is the critical strain corresponding to P̄ = 1, when the shell

buckles immediately following elastic deformation. Then by Eq. (4.2), the normalized pole

deflection increases with time following the relation

w̄(t)≈ E0 w̄e
c

E∞ +E1e−t/τσ

. (4.7)

Note that due to our simplified representations of stresses and strains in Eq. (4.7), all rela-

tions that follow are approximations, despite that we present them as equalities for simplic-

ity. Substituting Eq. (4.7) in Eq. (4.6), gives a time-dependent version of the generalized

viscoelastic knockdown function:

kv
d(t) = P̄c(t) = a+

b

c+ E0 w̄e
c

E∞+E1e−t/τσ

. (4.8)

It remains to determine the three unknown quantities, which should explain how sensi-

tive the critical pressure is to deformation (Eq. (4.6)) and how quickly the critical pressure

decreases (Eq. (4.8)) for each shell. To do so, we constrain the functions, enforcing what we

know about the limiting behavior. The critical deflection required for buckling at the elastic

limit where P̄ = 1 is an experimentally-determined value, we
c, which differs for each shell

based on geometry. Since for buckling to occur, Pc(w) = P, from Eq. (4.6) this condition

is stated as:

1 = a+
b

c+ w̄e
c
. (4.9)
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We also know from Eq. (4.5) that buckling will not occur below kd = P̄v
c = Ē. Taking

the limit of the right hand side of Eq. (4.8) as t approaches infinity gives a second constraint:

Ē = a+
b

c+ w̄e
c

Ē

. (4.10)

Solving Eqs. (4.9) & (4.10) simultaneously gives

b =
(a−1)(a− Ē)w̄e

c

Ē
(4.11)

and

c =
−aw̄e

c

Ē
, (4.12)

which we insert into Eq. (4.6) to arrive at:

P̄c(w) = a+
(1−a)(Ē−a)w̄e

c

Ēw̄−aw̄e
c

(4.13)

which describes the critical pressure for a given degree of pole deflection. If w̄ is large

enough that P̄c is lowered to the imposed dimensionless pressure P̄, in theory buckling will

occur.

Similarly, inserting the expressions for b and c in Eq. (4.8) gives

P̄c(t) = a+(a−1)(a− Ē)
(

E0Ē

E∞ +E1e−
t

τσ

−a
)−1

(4.14)

which specifies the time-dependence, according to the SLS model, of the knockdown to

the critical pressure that occurs as the pole deflection progresses. Again, if t is such that

P̄c = P̄, we expect collapse to occur.

Note that from Eq. (4.14), it is clear that any explicit dependence on geometry is con-

tained in a. When a is left as a fitting parameter for the curves defined by Eq. (4.16)

(see Fig. 4·6a), we find that it is a decreasing function of the geometric defect parame-
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ter λ, which is in general agreement2 with Ref. [112]. In particular, we determine a ≈
1.08−0.44λ (Fig. 4·4b) for our shells. We refer to this linear function henceforth as f (λ),

and substitute it accordingly for a to emphasize the deduced connection between our fitting

parameter and the defect geometry.

The deflection (Eq. (4.13)) and time (Eq. (4.14)) forms of the viscoelastic knockdown

relations lead to expectations for how the critical displacement and critical time should

depend on the material properties, geometry and the imposed pressure. We assess both in

the following subsections.

4.5.1 Critical deflection

Evaluating Eq. (4.13) at P = Pc(w̄c), replacing a with f (λ), and solving for w̄c/w̄e
c gives

the following expression for the dimensionless critical deflection:

wc

we
c
=

f (λ)(1+ Ē− P̄)− Ē
Ē( f (λ)− P̄)

(4.15)

which is valid when creep occurs (P̄v
c = Ē < P̄ < 1, where the first equality refers to Eq.

(4.5)) and tells us the pole deflection we should expect at (or, that is required for) buckling.

Eq. (4.15) is plotted against our data in Fig. 4·5, showing good agreement until P̄ ≈ P̄v
c .

Near this asymptote, marked by the loosely dotted line, the critical deflection observed in

experiments exceeds the predicted value. We discuss this deviation further in Sect. 4.5.2.

The results in Fig. 4·5 are consistent with the trend observed in the creep buckling

literature, where it is suggested that a shell undergoing creep prior to buckling sustains more

deformation before collapse than its counterpart that buckles elastically. The explanation is

that as the imposed pressure decreases, more deformation is required to sufficiently “knock

down" the critical pressure for buckling to occur.

Creep does not occur before buckling when P̄≥ 1 (the green region in Fig. 4·5), where

2We fit a function of the form kd = a+ b/(c+ δ̄) to the numerical data over λ ∈ [1,5] in Fig. 6b of
Ref. [112], and found a≈ 0.5−0.14λ.



70

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Immediate
Stable

Delayed

Open symbols:
max(w)/wec

f(λ)(1+Ē−P̄ )−Ē
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Figure 4·5: The critical pole deflection wc depends on P, the material
properties, and the geometry through a = f (λ) and Pe

c : when creep oc-
curs (delayed buckling, yellow region, to the left of the dotted line at 1 on
the horizontal axis which marks P̄ = 1), the shell must deform more than
we

c = wc(Pe
c ) to “knock down" the critical pressure until it coincides with

the imposed pressure P, and stability is lost. This is represented by the diag-
onal line (Eq. (4.15)), which matches our data well until the lower pressure
limit for buckling is approached. This asymptote is marked by the loosely
dotted line with abscissa 1/Ē, which corresponds to P̄ = Ē = Pv

c/Pe
c (Eq.

(4.5)). Open symbols in the red (stable) region represent the maximum
(equilibrium) w/we

c for experiments that did not buckle. As expected, these
points fall below the theoretical line, which projects the deflection necessary
for buckling. Our model does not extend to the immediate buckling regime
(green region). Error bars are approximately one standard deviation.

the shell behaves elastically. In this region, where Eq. (4.15) does not apply, we do not

observe a clear trend in the critical deflection. Further, for experimental points that do not

buckle, the deformation was insufficient to reduce the critical pressure to the value of the

relatively low applied load. Accordingly, the maximum pole deflection (open symbols in

Fig. 4·5) falls below theoretical curves when P̄ < P̄v
c (red region in Fig. 4·5). Taking

the limit as t approaches infinity in either Eq. (4.3) or Eq. (4.2) gives εmax = σ/E∞, so

wmax ≈ Rσ/E∞. Meanwhile, Hooke’s law provides an estimate for the critical deflection if

P̄ = 1 is imposed: we
c = Rσe/E0. Then in theory, if P̄ < P̄v

c , wmax/we
c ≈ σ/(Ēσe) ∼ P̄/Ē.
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We do not attempt to verify this scaling with our sparse data in this region, besides noting

that as P̄ approaches P̄v
c , we would expect wmax/we

c to approach 1 (from below). Our data

appears to support this conjecture.

4.5.2 Critical time

We have seen that the pole deflection is analogous to a dimple-like defect. Incorporating

the viscoelastic material model, in turn, tells us how the critical pressure is expected to de-

crease over time. This offers a means to explain the critical buckling time, which increases

monotonically for decreasing pressure. To do so, we evaluate Eq. (4.14) at P̄ = P̄c(tc) and

solve for the dimensionless critical time tc/τσ:

tc
τσ

= ln
(
(Ē−1)( f (λ)(Ē− P̄+1)− Ē)

Ē( f (λ)−1)(Ē− P̄)

)
. (4.16)

Eq. (4.16) is plotted against our data in Fig. 4·6. Like for the critical deflection (Fig. 4·5),

the knockdown theory captures the critical time well in the intermediate range. At or

above the elastic limit P̄ = 1, Eq. (4.16) predicts nonphysical critical times of tc ≤ 0.

This is because the SLS model assumes that both loading and initial elastic deformation

happens instantaneously, so creep begins at t = 0 s. Of course, in reality elastic insta-

bility occurs on a timescale associated with the elastic wavespeed. Accordingly, the in-

ertial timescale t∗ begins to dominate the viscoelastic one as P̄ approaches 1. Following

e.g. Refs. [141, 58, 171], we expect that the elastic timescale t∗ ∼ (2R)2/(ch), where

c =
√

E0/ρ = 23.37 m/s is the speed of sound within the material and ρ = 1080 kg/m3

is the material density according to the manufacturer. For our shells in order of increas-

ing thickness, this gives t∗ ∼ {0.1027,0.0493,0.0264,0.0173} s. We have indicated the

elastic snap-through time for an arch tsnap = 2
√

3t∗ [141], with horizontal dashed lines in

Fig. 4·6a.

When the imposed pressure nears the lower limit P̄v
c , the asymptotic behavior is cap-
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Figure 4·6: As the dimensionless applied pressure increases from P̄v
c = 0.91

to the elastic critical pressure P̄ = 1, the buckling time decreases mono-
tonically according to Eq. (4.16), which specifies how long it takes for
the pole to deform enough to decrease the critical pressure to the applied
one. (a.) Experimental data (markers) and color-corresponding curves
from Eq. (4.16), which were fit to obtain f (λ) = 0.62,0.76,0.81,0.85,
which is plotted in Fig. 4·4b. for η = 4.5,6.6,12.0,24.5, respectively.
The densely dotted vertical line marks P̄ = 1. Near this limit, the iner-
tial (elastic) timescale, indicated by horizontal dashed lines, sets tc for each
shell. The loosely dotted vertical line marks the asymptotic pressure set by
Ē = 0.91 = P̄v

c by Eq. (4.5). (b.) Eq. (4.16) collapses the same experimental
data plotted in (a.), and captures the critical time for intermediate pressure
values. When P̄ decreases to about 0.94, the theory underpredicts the crit-
ical time. Error bars correspond to one standard deviaton in P̄. Horizontal
dashed lines in a. & b. indicate the elastic snap-through time tsnap, which
sets the minimum tc.

tured qualitatively (see Fig. 4·6a). However, the theory underestimates the critical time

in this region. This divergence occurs around P̄ ≈ 0.94, which corresponds to when the

predicted buckling time surpasses τσ. Thus, deformation has slowed considerably prior to

buckling for these experiments and the inertia that was present at early times is no longer

available. We have identified elastic buckling in our experiments as when the deformation

rate exceeds that at very early times (when the shell also behaves elastically). However, it

is possible that buckling initiated sooner in reality, but that the shell needs further perturba-



73

tion – that is, to deform more, which requires more time – before we detect collapse. This

is reminiscient of critical slowing down phenomena, wherein dynamics slow considerably

near instability [58, 57]. Other possible explanations for the deviation from our model are

the simplified representations of stresses and strains, or the inability of the SLS model to

capture the material behavior exactly. Nonetheless, we conclude that despite the notable

simplicity of our assumptions, the knockdown theory explains our observations quite well,

and does so while emphasizing the close connections between elastic and viscoelastic shell

buckling.

4.6 Conclusion

In summary, we subjected thick, spherical, defect-seeded viscoelastic shells to step pres-

sure loading. We observed three regimes: When the pressure load was at or above the

experimentally determined elastic critical load, we observed predictible elastic behavior,

i.e. prompt buckling. At intermediate loads – below the elastic critical pressure – the shell

buckled, albeit after a time delay during which deformation slowly progressed. At still-

lower pressures, the shell deformed but collapse never occured. Our aim in this work was

to rationalize our findings in a way that maintains close ties to elastic shell buckling, and is

readily useable for experiment or design goals. To this end, we demonstrated that the load

thresholds, critical deflection, and critical time may all be captured by a framework that

treats creep deformation like an evolving defect in an elastic shell.

In particular, the ratio of the long-term modulus to the short-term (elastic) one is the

same as as the ratio of the two critical pressures. This result is rooted in elastic shell theory,

but practically, the material properties alone can explain the two pressure thresholds. This

finding was suggested in various theoretical works on creep buckling [70, 71, 75] and is

independent of geometry, and hence is completely general.

We used this fact and existing work [112] on defects in spherical shells to discern an
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expression for how deformation due to creep acts to "knock down" the critical pressure. In

this view, the shell loses stability when creep deformation, which localizes at pole and am-

plifies the initial imperfection, progresses enough to reduce the critical pressure to the value

of the imposed one. This allowed us to capture the dependence of the critical deflection on

the imposed pressure (normalized by the experimentally-determined elastic critical pres-

sure), the modulus ratio, and the defect geometry (Eq. (4.15)). This offers an explanation

rooted in elastic shell behavior for a decidedly viscoelastic phenomenon: in the delayed

buckling regime, higher deflection is required for instability as the pressure decreases.

Because deformation occurs on a timescale sufficiently well-described by our chosen

viscoelastic material model (SLS), a time-dependent form of the viscoelastic knockdown

function immediately follows. From this we devise an expression for how the pre-buckling

delay time depends on the same quantities: the modulus ratio, the dimensionless pressure,

and the defect geometry (Eq. (4.16)). The buckling time increases monotonically but non-

linearly as the pressure decreases, which is generally captured by our model. While the

modulus ratio Ē was fixed in our experiments, we expect that our model is valid for any

material with relatively low relaxation strength (i.e. the relaxation modulus and creep com-

pliance functions do not differ significantly). Further, we note that the success of our model

does not depend on the approximation J−1(t)≈ E(t) that we have employed. Rather, if one

were to obtain the creep compliance function in experiments, using this directly in place of

the relaxation modulus would likely improve the accuracy of predictions.

While viscoelastic shells behave elastically during buckling, viscous effects re-enter in

later stages of postbuckling, as discussed in Ref. [33]. Unbuckling was studied in detail in

Ref. [41], as the non-reciprocal nature of the buckling-unbuckling cycle is the source of

motility. We did not examine unbuckling in the present work. However, we could reason-

ably expect that another viscoelastic delay phenomenon, termed “pseudo-bistability" [17]

(first introduced in Ref. [161] as “temporary bistability"), could be seen in our shells.
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Pseudo-bistability refers to the delayed “snap-back" instability that occurs in the un-

loaded state, following a loading-unloading sequence that induces both stress-relaxation

and creep [57]. Early works modeled viscoelasticity via an evolving stiffness, acheiving

qualitative agreement with experiments [161, 17]. A recently-proposed metric framework

introduces viscoelasticity as a temporally evolving (fictitious) reference length instead, and

among its merits is the ability to predict delayed snap-back instability [184, 183]. De-

layed snap-back instability occurs in the unloaded state, and in our setting would require

maintaining the pressure load for a sufficiently long time while the shell is fully buckled

before unloading. As such, creep instability and pseudo-bistable snap-back can in theory

be induced in the same thick structure, with one or the other surpressed at will.

Our findings highlight the importance of the load rate, and the sensitivity of the shell

to pressure variations in the vicinity of the elastic critical load (when approached from

below). These are important considerations for structural designs using silicone rubber

where either stability or elastic behavior is desired. For instance, knowledge of the critical

load thresholds is clearly important when designing an efficient spherical swimmer, or

indeed any viscoelastic structure that should undergo oscillatory instability. If the goal is

fast motility, it would likely be desirable to minimize the time delay before buckling by

avoiding the delayed buckling (intermediate pressure) regime altogether.

In other settings, viscoelastic behavior can enhance the functionality of reversibly ac-

tuatable structures. This has been demonstrated recently in designs that rely on pseudo-

bistable snap-back, e.g. 3D-printed viscoelastic metastructures whose time-dependent prop-

erties are tunable based on temperature [29], with even more flexibility afforded by using

multiple viscoelastic materials [30]. Another study examines the interplay between viscous

dissipation and geometric hysteresis, as a function of the strain rate, for the design of opti-

mal energy dissipating metamaterials [44]. Introducing tunable delays via creep buckling

has not yet been explored, but the potential is vast: A switch or capsule could be loaded
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subcritically, so that the shell has time to move to a desired location before buckling occurs.

Over time as deformation reduces the critical load and thus the energy barrier [91], a much

smaller probing force or other perturbation could trigger buckling. This could be useful for

pneumatic gripping. A mechanical signal of fixed input frequency (and varying amplitude)

could produce a varied output frequency, which has implications for mechanical comput-

ing. Because our analysis relies only on quantities that are straightforward to determine in

experiments, our findings are especially amenable to accessing such tunability. As we have

shown, these possibilities are achievable with the nearly-elastic materials that are already

common and cherished in mechanics research.

In 1956, Gerard wrote about creep buckling that “there are almost more theories than

reliable test points which can be used to check the theories" [53]. While a limited number

of experimental contributions have come about since, to our knowledge our experiments

on full spheres are novel to the existing creep buckling literature. Further, we have demon-

strated that some concepts central to general creep buckling theories, which previously

were mostly tested on metallic, mono-resin materials, and reinforced concrete [128], are

indeed applicable to soft, rubbery materials. We expect that the concepts we have studied

can be extended to other geometries, other loading methods, and similar polymers.

4.7 Supplemental Information

4.7.1 SLS parameters

To determine the material properties of Dragon Skin 30TM, we fabricated 7 dogbone spec-

imens (ASTM D412 Type C). The molds, cut using the Epilog Helix laser machine, were

designed to give each sample a protruding defect – two thin horizontal lines 500 microns

thick and separated by 500 microns – at the middle of the gauge section. These lines were

tracked with a zoom lens attached to a Nikon D610, allowing for accurate strain measure-

ments taken later in ImageJ. Samples were then tested after 16, 18, 24, 44, 65, and 94
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hours at room temperature post-fabrication, as well as 1 hour after 25 minutes of curing at

an elevated temperature of 65◦C. The manufacturer lists the cure time as 16 hours.
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Figure 4·7: Averaged values for (a.) the elastic and long-term moduli of
Dragon Skin 30TM and (b.) the ratio of their mean values, as determined
from tensile stress-relaxation tests. The x-axes indicate the time elapsed
since fabrication; The cure time is listed by the manufacturer as 16 hours
post-fabrication. (c.) Plot of the relaxation time from stress-relaxation tests.
The dashed lines in (b.) & (c.) show the averaged values used in our anal-
ysis, Ē = E∞/E0 = 0.91 and τσ = 0.78 s, which were determined from the
samples whose ages were relevant to our experiments (24-48 hours cured at
room temperature, and 0.4 hours cured at elevated temperature). (d.) SLS
relaxation modulus (E(t)) and inverse creep compliance (J−1(t)) functions
constructed from our averaged quantitites. Because the material is nearly
elastic, the E(t) ≈ J−1(t)∀ t > 0. All error bars represent one standard de-
viation.

The long-term (equilibrium) modulus was determined from tensile stress-relaxation

tests using the tensile testing machine Instron 5943. Displacements, which resulted in

strains ε0 ∈ [2%,20%], were imposed at rates of 150-500 mm/min, then maintained for 120
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seconds while the force, which decreases over a timescale t ∼ τσ before plateauing, was

measured. The plateau force was used to calculate σ∞ where we took E∞ ≡ σ∞/ε0. The

values for E∞ plotted in Fig. 4·7a are calculated as the average of 12 total measurements

from 4 tests at varied strain levels and strain rates.

This relatively fast loading resulted in measurement uncertainty at early times, so we

did not fit a curve to the entire range of stress-relaxation data, nor did we extract the elas-

tic modulus from stress-relaxation tests. Instead, tensile tests on the same samples were

conducted at rates of 10 and 20 mm/min up to εmax ∈ [8%,26%]. This resulted in linear

stress-strain curves, and the slopes were used to calculate E0. Each data point in Fig. 4·7a

represents the average of 6 measurements from 2 tests for each sample.

Between 16 and 24 hours post-fabrication at room temperature (approximately 20◦ C),

we observe an increase in the long-term modulus from 0.20±0.05 MPa to 0.55±0.09 MPa.

By 24 hours, the long-term modulus reaches a plateau. The elastic modulus follows a sim-

ilar trend: the material stiffens from E0 = 0.48±0.06 MPa at 16 hours post-fabrication to

0.60±0.02 MPa at 24 hours, by which time the elastic modulus has plateaued. The plateau

value we measure is in agreement with the 100% modulus value listed by the manufac-

turer, Smooth-On, of 0.59 MPa. More or less the same plateau values result from curing

the sample in the oven at 65◦ C for 25 minutes (E∞ = 0.53±0.08 MPa, E0 = 0.58±0.05

MPa).

The ratio Ē = E∞/E0 is central to our analysis, and is plotted in Fig. 4·7b. For the shell-

buckling experiments discussed in the body of this paper, the relevant times are 24 and 44

hours, and the 25 minute oven-cured sample (see Appendix 5.7.1). Averaging this data

gives the value we use throughout our analysis (and the dashed line in Fig. 4·7b), Ē = 0.91.

Instead including all of the samples whose moduli appear to have saturated (i.e. all except

the 16 and 18 hour samples) does not change this averaged value (it only slightly increases

the standard deviation, to 0.3 MPa.)
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With the functional form of the relaxation modulus in mind, we identified the relaxation

time τσ as the time when the modulus has reduced to E∞+E1e−1. The averaged values are

shown in Fig. 4·7c. The overall average was τσ = 0.78± 0.49 s. This corresponds to a

retardation time τε ≈ 0.86 s [108]. The relatively large error range on the characteristic

timescale results from initial uncertainty in stress-relaxation curves.

In Sects. 4.4 & 4.5, we blur the lines between the creep compliance and the relaxation

modulus: While the active process is creep, we use not the creep compliance, but the

relaxation modulus – which describes stress-relaxation – in our analysis. This is for two

reasons: First, our primary aim is to describe creep buckling in the language of elastic

buckling – which refers to Young’s Modulus E – rather than to provide an exact description

of creep in this material. Second, we found that stress-relaxation (displacement-controlled)

tests provided much more reliable data than creep (force-controlled) tests using Instron

5943.

The relaxation modulus (Eq. (4.2) in the main text) is related by Laplace transform to

the creep compliance (Eq. (4.3)). Thus, the limiting values E0 = σ(t = 0)/ε and J0 = ε(t =

0)/σ; E∞ = σ(t = ∞)/ε and J∞ = ε(t = ∞)/σ are exact inverses.

The relaxation time τσ is less than the retardation time τε. The two are related through

the relaxation strength, defined as ∆= E1/E∞, according to τε = τσ(1+∆), and thus E(t) 6=
J−1(t)∀t [108]. However, the difference between the two functions is very small, as shown

in Fig. 4·7d. Due to this negligible difference, we conclude that our approximation in Sect.

4.5 is also reasonable.

4.7.2 Shell fabrication

The process for fabricating polymeric spherical shells, which was developed in [41], is

as follows: Custom aluminum molds consist of female and male components along with

alignment sleeves. The female mold is a cylinder of equal radius and height (30 mm)

with a hemispherical cavity, which sets the outer radius of the shells to Ro = 25 mm. The
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Figure 4·8: Shell fabrication process. i. Mixed and degassed DragonSkin
30 is poured into two hemispherical aluminum cavities of Ro = 25 mm.
Only one is shown in i.-iv., and several layers of tape have been cut into
a circle and adhered to the center of one of the hollow spheres. ii. After
degassing again, the filled cavity is fitted with an alignment sleeve. iii. A
half-sphere of Ri < Ro is inserted. iv. After curing for 25 minutes in the
oven, a spherical hemisphere has formed. v. Heptane-diluted polymer is
deposited with a syringe to glue two cured hemispheres. vi.-vii. The edges
of the two hemispheres are joined and aligned by the alignment sleeve. viii.
After curing at room temperature for at least 16 hours, a sealed sphere is
removed from the mold.

male component consists of a shouldered half-sphere whose size determines the inner shell

radius, Ri = {24,23,21.5,20} mm. The shoulder (chamfered to 5◦) is 10 mm tall, and its

maximum diameter matches that of the female mold as well as the inside of the guiding

sleeve. The latter is a 40 mm tall cylindrical tube, internally chamfered up to a depth of

10mm to accommodate the male mold.

To control the location of the onset of buckling, shells are seeded with a circular imper-

fection. This is achieved by affixing 1-4 layers of adhesive tape cut to Rδ≈ 6 mm (resulting

in imperfection depth of δ = {0.76,0.81,0.84,0.40} mm, in order for the thinnest to thick-

est shell) to the center of one of the two female molds used to make each shell.

To make shells, the polymer is prepared according to package instructions, degassed in

a vacuum, and poured into the female molds. After degassing again, each polymer-filled

cavity is fitted inside an alignment sleeve, and the male mold is inserted. The assembly is
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tightly clamped between the two plates of a simple mechanical press and cured at 65◦ C

for 25 minutes.

After curing, the alignment sleeve and the male component are removed, revealing two

hemispherical shells resting in the female molds. To join the two halves, a glue is prepared.

The viscosity of the liquid polymer is reduced via dilution with heptane at a 2:1 ratio.

This allows for the application of a sufficiently thin layer of glue, deposited with a syringe

around the equator of each hemisphere. Again a sleeve is used to align the two halves,

whose contact is ensured by the mechanical press, and the shell is left to cure at room

temperature for 16 hours.

A drill press is used to create a 1 mm diameter hole, into which a small nozzle connected

to a tube allows for internal pressure control. Lastly, a suction cup (2− 3 cm diameter) is

glued to the shell surface opposite the buckling spot with cyanoacrylate (Loctite). During

experiments, the shell is fixed in place via a screw attached to the back of the suction cup.

4.7.3 Knockdown of elastic critical pressure due to through-thickness defects

Unsurprisingly, the classical prediction for the buckling pressure of a perfect elastic spheri-

cal shell (Eq. (4.1)) does not capture the behavior of our imperfect shells. Recently, predic-

tions for the knockdown factor as a function of the size of an axisymmetric imperfection

have been presented for dimple-like [112, 95] and through-thickness [199] defects.

The reduced-thickness defects in our experiments (see Fig. 4·1) are like those in the

work of Yan et al. [199]. The authors present data from experiments and FEM simulations

on the knockdown factor for varied depth, angular width, and transition width of the im-

perfection. We use this data3 to calculate the “knocked-down" theoretical elastic critical

pressure for each of our shells. This theoretical value is plotted against our experimental

data in Fig. 4·9. We have taken Pe
c to be the minimum pressure at which a plot of volu-

3Knockdown values were extracted from Figure 11b of Ref. [199], and found to be kd = {0.2719±
0.007,0.7423±0.000,0.8664±0.008,0.93+0.070} for η = {24.5,12.0,6.4,4.5}, respectively.
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Figure 4·9: Comparison of the theoretical elastic buckling pressure Pe
c

for thin, shells with through-thickness imperfections with our experimental
value. The experimental value is taken as the minimum pressure at which
no slowdown of deformation occurs before buckling. The theoretical value
kdPc is calculated using kd extracted from Fig. 11b in Ref.[199], and Pc from
Eq (4.1). Error bars correspond to approximately one standard deviation,
and are smaller than the markers in most cases.

metric or pole deformation versus time shows no slope change until buckling (the rate of

deformation is much slower when creep occurs.)

Up to relatively thick shells, the theoretical knockdown predicts our experimentally

measured critical pressure relatively well (η = 24.5,12.0,6.6) – perhaps surprsingly so,

given that the data in Ref. [199] was collected in quasi-static experiments on shells of fixed

η = 100. However, as η decreases even further from the thin shell limit, the thick shell

withstands higher pressures than predicted. This inapplicability of thin shell knockdown

theories is significant for the thickest shell we tested (η = 4.5). For consistency, then, in all

arguments throughout the main text we rely on an experimentally determined value for the

elastic buckling pressure. Thus, we take the experimental value for Pe
c to be the minimum

pressure difference where elastic buckling occurs.
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4.7.4 Methods for dynamic pressure loading experiments

Before each experiment, a vacuum pump (Becker U 4.40) is used to reduce the pressure

inside a 50 liter tank. A flexible tube (3 mm inner diameter, 12 cm length) connects the

tank to a differential pressure sensor (Freescale Semiconductor MPX5100DP, sensitivity

45mV/kPa). Pressure readings were recorded using a microcontroller (Arduino UNO) ev-

ery 0.02 s with a resolution of 0.1 kPa.

As this pressure resolution is slightly coarse for the thinner shells, which buckle at pres-

sures on the order of 1 kPa, we account for rounding (and small pressure fluctuations) by

reporting the mean and standard deviation of the pressure values reported at intermediate4

times (after initial elastic deformation and before buckling, should it occur).

Via a T-junction, a second tube (6 cm long) connects the tank to the inside of the shell,

by way of an electrovalve (Matrix Pneumatics Solenoid Valve, MX891.901C224). The

response time of the valve is < 1 ms. Based on a back-of-the-envelope calculation of the

amount of gas that needs to travel from the shell to the tank for pressure equilibrium and the

corresponding mass flow rate, we expect that shell-vacuum tank system equilibriates within

approximately 4 ms for pressures imposed on the thickest shell (where higher pressure

gradients drive faster air flow), to about 40 ms for the thinnest.

Arduino IDE software enables synchronization of the sudden opening of the valve with

the digital recording of the pressure difference (at a rate of 500 Hz), as well as with the

triggering of the high-speed camera (Phantom Miro 310). Depending on the empirically

determined delay time before buckling, images were captured at a rate of 2000-9000 frames

per second. Image processing of TIFF stacks was completed using ImageJ and custom

Python scripts.

4For shells subjected to large P which buckle elastically, we simply report the (non-fluctuating) imposed
pressure, recorded before the shell begins to deform, with a default maximum error of ±0.05 kPa.
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4.7.5 Time-dependent equilibrium paths

In Sect. 4.4, we rationalize buckling at apparently subcritical pressures by introducing a

lower pressure threshold, which is associated with the long-term modulus E∞. Here we

elaborate on the underlying theoretical framework, which we have adopted from Hayman

and others [70, 71, 75], as it applies to our spherical shells.

Following, e.g. Ref. [70], the viscoelastic pressure threshold can be understood through

the existence of a long-term equilibrium path in addition to the elastic one, which is avail-

able only at early times. The shape of such a path is like that of the equivalent elastic shell,

but is governed5 by the long-term modulus E∞ rather than the instantaneous modulus E0.

These two deformation paths are shown schematically in Fig. 4·10b&c.

The loading response at different pressures, which is qualitatively depicted in Fig. 4·10,

can be understood as follows: When an instantaneous pressure load is delivered to a shell,

in short times it follows the instantaneous path (dashed green line in Fig. 4·10a-c). If P

is at or above the elastic critical pressure Pe
c (marked by the solid, horizontal green line in

Fig. 4·10a-c), the black arrowed path in Fig. 4·10a is followed, and immediate (elastic)

buckling occurs (green “x" in Fig. 4·10a).

On the other hand, if an instantaneous sustained load P is below Pe
c , the initial elastic

response is followed by time-dependent creep (horizontal arrows in Fig. 4·10b&c): the

shell continues to deform at a constant pressure. For P < Pv
c (Fig. 4·10c), the (quasi-

unstable) creep path (horizontal arrows in Fig. Fig. 4·10c) will eventually meet the stable

long-term path (Fig. 4·10a, thick blue line). At a fixed pressure, the shell composed of a

limited-creep material will rest in this configuration indefinitely.

Delayed buckling occurs between these two thresholds (see Fig. 4·10b): If the imposed

5For elastic shells, P is linearly related to the volume change ∆V up to buckling, with a proportionality
constant of Pc/∆Vc. The critical volume according to elastic shell theory is ∆Vc =

4π(1−ν)√
3(1−ν2)

R2h, so Pc
∆Vc

=

2E
4π(1−ν)

h
R4 [152]. Thus, the ratio of the slope of the instantaneous (elastic) equilibrium pressure-volume path

to that of the long-term path is ( 2E0
4π(1−ν)

h
R4 )/(

2E∞

4π(1−ν)
h

R4 ) =
E0
E∞

= 1/Ē.
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Figure 4·10: Theoretical plots of pressure versus volume change up to
buckling for a spherical elastic shell with E = E0 (dashed green line) or
E = E∞ (solid, thick blue line in (b.)&(c.)), where we use our measured
value of Ē = 0.91. The black arrowed lines represent the response to
step pressure loading, following Refs. [70, 71]. The instantaneous (dashed
green) path is available at short times. (a.) If the imposed pressure P≥ Pe

c ,
this path leads directly to buckling. (b.) If P < Pe

c , the shell does not reach
buckling before the elastic path ceases to exist. A “creep line" is followed
(horizontal arrows), where the shell slowly deforms. If P ≥ Pv

c , no stable
path is available at later times and the shell eventually buckles. (c.) If
P < Pv

c , the creep path (arrows) intersects the stable long-term path (solid
red). The limited-creep shell rests in this deformed but unbuckled state in-
definitely.

pressure difference P ∈ [Pv
c ,P

e
c ), the long-term equilibrium path is unavailable. As such,

deformation follows the creep line (horizontal arrows in Fig. 4·10b) to instability (yellow

“x" in Fig. 4·10b), where creep collapse occurs after some time. This delay time varies

significantly within this pressure range. As noted, in the main text, this theory provides

a useful, straightforward way to determine the pressure threshold, but provides no infor-

mation about deformation, and thus the critical time is not directly accessible. The defect

analogy solves this problem.
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Chapter 5

Efficient snap-through of spherical caps by
applying a localized curvature stimulus

In the last chapter, our model offered a route to induce controllable buckling delays in

elastomer shells. Next, we study the closely connected roles of mechanics and geometry

in the snap-through instability of stimulus-responsive spherical caps. We focus on guiding

the design of efficient snapping devices.

In bistable actuators and other engineered devices, a homogeneous stimulus (e.g. me-

chanical, chemical, thermal, or magnetic) is often applied to an entire shell to initiate a

snap-through instability. In this work, we demonstrate that restricting the active area to

the shell boundary allows for a large reduction in its size, thereby decreasing the energy

input required actuate the shell. To do so, we combine theory with 1D finite element

simulations of spherical caps with a non-homogeneous distribution of stimuli–responsive

material. We rely on the effective curvature stimulus, i.e. the natural curvature induced

by the non-mechanical stimulus, which ensures that our results entirely stimulus-agnostic.

To validate our numerics and demonstrate this generality, we also perform two sets of ex-

periments, wherein we use residual swelling of bilayer silicone elastomers – a process that

mimics differential growth – as well as a magneto-elastomer to induce curvatures that cause

snap-through. Our results elucidate the underlying mechanics, offering an intuitive route

to optimal design for efficient snap-through.
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5.1 Introduction

The spherical green alga Volvox globator swims thanks to thousands of synchronously

flapping flagella. This motility is surprisingly hard-earned: after cell division, the flagella

direct inward, toward the center of the sphere. Thus, the Volvox embryo must entirely

invert itself during morphogenesis. To do so, cells in a “bend region" adopt a wedge-

shape, which creates a localized curvature that leads to an eventual instability reminiscient

of snap-through [66, 67]. Depending on the species, the bend region either propagates

from the open phialopore (located at the pole), where four lips peel back to drive type-

A inversion, or begins at the equator, where invagination leads to type-B inversion [77].

Arrested inversion of mutant Volvox has been linked to insufficient size of the bend region

or intrinsic curvature therein [67].

Like the Volvox embryo – and indeed many other living organisms including, famously,

the Venus fly trap [50] – engineers use snap-through instability of shell structures for func-

tionality. Snapping releases stored elastic energy and does not require a continuously ap-

plied stimulus to maintain an inverted shape in bistable structures. Thus, snap-through

instability is a particularly attractive mehanism for e.g. robotic actuators or mechanical

muscles [165, 62], optical devices [79], and dynamic building façades [175]. Each relies

on a combination of geometry-endowed bistability [178] and a snap-inducing stimulus to

acheive its purpose. The stimulus can be mechanical – e.g. an indentation force [191],

pressure [62], or torque from a child’s hands inverting a jumping popper toy [141] – or

non-mechanical, e.g. temperature [92], voltage [165], a magnetic field [163], or differential

growth [60, 114] or swelling [148]. An important connection between these wide-ranging

stimuli is that each destabilizes a shell by generating a change in the shell’s curvature rela-

tive to its original, stress–free curvature.

In particular, non-mechanical stimuli alter the stress-free reference state, producing

spontaneous or natural curvature. A classic example is the bimetallic beam of Timoshenko,
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which curves as its two layers experience different expansive responses to an increasing

thermal stimulus [181]. The natural curvature may be observed as the shape that a beam

adopts when free of external constraints and exposed to a stimulus that causes this beam

to bend. In plates or shells, however, the natural curvature is generally not achievable at

all points in the slender structure. In such non-Euclidean [46] plates and shells, geometric

incompatibility leads to residual stresses and often complex reconfiguration [102, 166].

Still, the relationship between a stimulus and the corresponding natural curvature it induces

in a residually-stressed structures can be discerned via simple experimental methods based

on the bending deformation of an equivalent beam. Calibration can be performed as an

independent experiment, or in a manner similar to the opening angle method, wherein an

axial slice exposes stresses induced by differential growth in tubular biological structures

like arteries [2]. Thus, natural curvature serves as useful “effective" stimulus, allowing for

generalization of these many non-mechanical, curvature-inducing stimuli. This concept

was recently formalized within a non-Euclidean theoretical framework based on Koiter

shell theory, revealing that the curvature stimulus behaves like a mechanical potential [148,

80].

Advanced functional devices actuated by curvature-inducing stimuli often require sig-

nificant energy input, or have high material costs. Common commerically available dielec-

tric elastomer (DE) films require up to 150 Vµm−1, resulting in driving voltages in the kV

range for most applications [137, 121]. Using less of these smart materials can decrease

both cost and the likelihood of device failure. This need has inspired custom production of

ultrathin electroactive films via methods like pad-printing [150] or electrospraying [192].

Clearly, it is desirable to reduce power requirements and material needs for DEs and other

stimulus-responsive devices without requiring such efforts. As the localized bend region of

the developing Volvox suggests, snap-through behavior may be preserved in spherical caps

while the size of the active region – that is, the portion of the shell subjected to an arbitrary
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curvature-inducing stimulus – is significantly reduced.

In the present work, we show that when the active portion is strategically placed, the

magnitude of the stimulus need not increase, thus allowing for significantly reduced energy

and material needs overall. We demonstrate this with 1D numerical simulations performed

in COMSOL Multiphysics, wherein a curvature stimulus acts on a section of an otherwise

passive shell. We validate our numerics with experiments, in which shells respond to dif-

ferent curvature-inducing stimuli – this also serves to demonstrate the generality of our

findings. In one series of experiments, we rely on localized differential swelling of silicone

elastomers, and in the second we use a magneto-active elastomer. Our numerical and ex-

perimental methods are described in Sect. 5.2. In Sect. 5.3 we present our results to answer

the question: Is the active region more effective when placed in the bulk of the shell, or at

the edge? Next, we ask: What is the the ideal size of the active region? In other words,

what is the smallest active region that preserves snap-through behavior, without requiring

the magnitude of the stimulus to increase? In Sect. 5.4 we present a scaling solution for the

ideal size of the active region via energy minimization. These findings, which our data sup-

port, offer a mechanics-informed route to optimization. The underlying physics revealed

prompt an additional examination of how the critical curvature scales with the active area

in each configuration (Sect. 5.5), which adds rigor to the comparison presented earlier (in

Sect. 5.3).

5.2 Methods

In this work, we study spherical caps in two configurations: “active bulk" (Fig. 5·1a), and

“active boundary" (Fig. 5·1b). We refer to the angular depth of the shell measured from

the pole as θ. The angular extent of the active region is denoted by θa, and is measured

either from the pole or from the end of the passive region for the active pole and edge

configurations, respectively. The shell thickness is given by h and the radius of curvature
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by R. Below, we describe our numerical and experimental methods.

a. b.

c.
i. ii. iii.

active bulk
passive

θθa

R h

θ θa
Uel − Pκ

Uel
passive
active edge

1/κ̄c

5 mm

Figure 5·1: Schematics of the a. active bulk and b. active edge configura-
tions of the partially active spherical cap, with corresponding profile curves
used in FEM simulations. Relevant parameters are labeled: the angular
shell depth θ measured from the pole, the angular size of the active (red)
region θa, and the radius of curvature R and thickness h. As depicted in b.,
the COMSOL model minimizes the elastic energy Uel over the whole body,
with an additional contribution from the curvature potential Pκ in the active
region. c. Images from a typical experiment in the active edge configu-
ration. In i., the PVS beam (above), cut from the same cast as the partial
bilayer shell (below) have just cured. The beam is free to adopt the curva-
ture κ̄ = 1/R+κ, revealing the evolving natural curvature κ in active region
of the shell. ii. In the bilayer region at the edge, the outer pink layer con-
tracts while the green layer beneath it expands due to residual swelling. The
resulting curvature (seen in the beam) creates a torque-like effect, causing
the boundary of the shell to curl upward. The curvature evolves to a critical
value κ̄c when snap-through occurs, as shown in iii.

5.2.1 1D numerics

We performed finite element simulations in COMSOL Multiphysics 5.2. Following Refs. [148,

80], and because our experiments (Sect. 5.2.2) confirm that the shells we study retain ro-

tational symmetry at least up to the point of snapping, the energy is minimized in the 1D

profile curve of the shell. A circular segment with radius of curvature R ∈ [9.65,45.25]

mm represents the midline of a spherical cap with an angular depth θ ∈ [0.52,1.14] radi-

ans measured from the pole. This corresponds to θ/
√

h/R ∈ [2.2,9.6], which covers most

the range where curvature-induced snap-through occurs for fully active shells [148]. As
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we discuss in Sect. 5.4, this parameter compares the depth of the shell to the characteris-

tic size of its bending-dominated boundary layer, which becomes central to our analysis.

The ratio θa/θ is between 0.3 and 1 for data presented herein, because we did not ob-

serve snapping for shells with θa/θ < 0.3. The shell thickness h ∈ [0.5,1.3] mm (so that

to h/R ∈ [0.015,0.135]) enters in the energy. The material is linear, elastic, isotropic, and

has Poisson’s ratio ν ∈ [0.25,0.5]. The Young’s Moduli Ea and Ep of the active and passive

regions were set to either Ea = Ep ∈ [0.1,20] MPa, or Ea/Ep ∈ [0.005,200]. Despite that

we assume a homogenous modulus (see Sect. 5.4, we observe no significant impact of the

modulus on our results. A Dirichlet boundary condition is applied to the endpoint at the

pole, while the edge end remains free.

Our model relies on the theoretical framework recently introduced by Pezzulla, et

al. [148] and detailed further by Holmes et al. [80], which offers significant advantages

for numerical energy minimization in the presence of non-mechanical stimuli. The authors

demonstrate that in the absence of in-plane stretching of the middle surface, the curvature-

inducing stimulus may be decoupled from Koiter’s elastic energy and applied as a potential

of the natural curvature κ. Thus, it is straightforward to selectively apply a curvature stim-

ulus. The elastic energy (Uel in the schematic in Fig. 5·1b) must be minimized over the

entire body, while the curvature potential Pκ ∼ κ contributes to the total energy only in the

active region. To capture the sudden, nonlinear snap-through instability, we use a custom

arc-length method to vary the curvature stimulus κ [148]. A complete derivation of the

equations used in COMSOL is provided in Ref. [80], and in Sect. 5.7.3.

5.2.2 Experiments

To validate our numerical results, we performed experiments in which shells are made, in

part, of stimulus-responsive elastomers. To emphasize the generality of the curvature stim-

ulus, we did this in two ways. In one set of experiments we used residual swelling of bilayer

silicone elastomers [145, 146, 148, 176], wherein diffusion of free polymer chains causes
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a geometric incompatibility resolved by curving. Deformation from residual swelling is

growth-like and permanent. In additional experiments, we used magneto-active elastomers,

which reversibly bend in response to a magnetic field. Below, we describe the methods used

for each type of experiment.

5.2.3 Residual swelling experiments

It was previously demonstrated that residual swelling creates a curvature sufficient to drive

inversion of full bilayer spherical caps [148]. In the present work, only a portion of the shell

is subjected to residual swelling. Within this active region, we layer two polyvinylsilox-

ane (PVS) elastomers (ν = 0.5), which we refer to as green (Zhermack Elite Double 32,

E=0.96 MPa) and pink (Zhermack Elite Double 8, E=0.23 MPa). In a procedure detailed

in Appendix 5.7.1, we cast the materials one-by-one in their fluid state over a metal ball

bearing to form a nominally green cap with either a bilayer ring at the edge, or a bilayer cap

at the pole. In the active region, the outer layer is pink (see Fig. 5·1c). After crosslinking

(which occurs in about 20 minutes at room temperature), the pink elastomer is left with

residual, uncrosslinked polymer chains. Thus, in the bilayer region where the pink and

green material are in contact, there is a concentration gradient of free, polymer chains. To

resolve this, chains flow from the pink to the green elastomer. As such, the pink region

loses mass, or shrinks, while the green region grows. When this differential swelling oc-

curs in an initially flat beam, the structure curves to accommodate the geometric mismatch,

adopting the (evolving) natural curvature. In our spherical caps, the bilayer region around

the boundary curls upward, forming a lip like that which appears when a jumping popper

toy is inverted [141, 178]. Geometric constraints prevent the swelling bilayer cap from

achieving its natural curvature, and the structure develops residual stresses as a result.

It is necessary that we measure the natural curvature in order to discern the magnitude

of the curvature stimulus at a given time, which is central to our analysis. To do so, for

the active edge experiments, we slice a small, vertical (initially curved) beam from the
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material on the ball-bearing just below where the cut is made at the base of the spheri-

cal cap. The free, unconfined beam adopts a curvature κ̄, which is the sum of the ini-

tial curvature −1/R and the natural curvature κ. Thus, the (natural) curvature stimulus

is κ = κ̄+ 1/R [145, 146, 148]. We mount the shell and beam side-by-side and use a

Nikon D610 DSLR Camera to take time-lapse images at a rate of one photo per minute.

As residual swelling is a diffusive process, the time to deform scales with the square of

the dimension across which swelling occurs [145]. In our experiments, that is the thick-

ness h, and the shells in our experiments reach maximum deformation by about two hours

post-cure. The critical curvature κc is identified in ImageJ by fitting a circle to the beam in

the image when snap-through occurs (see Fig. 5·1c,iii.) – the radius of curvature is 1/κ̄c.

For the active bulk configuration, the beam is cut from the center of the shell immediately

after snapping. Thus, unlike in the active boundary configuration where we track the nat-

ural curvature throughout deformation, only the critical curvature κc is obtained for these

experiments. Residual swelling experiments produce curvatures up to κ < 1
4h [145, 146].

Deep shells require higher curvatures for snap-through [148], so the geometric range ac-

cessed in experiments is limited compared to simulations. We performed experiments with

h/R ∈ [0.02,0.07], θ ∈ [0.58,0.98] rad, and θa/θ ∈ [0.38,1].

5.2.4 Magneto-elastomer experiments

The magneto-active shells are fabricated using a similar bilayer casting approach to the

residual swelling shells. In this case, the ferromagnetic active layer consists of iron oxide

(Fe3O4) nanoparticles (Sigma-Aldrich 637106) mixed with green PVS at a weight ratio of

20%. A passive PVS cap is made first, followed by a ferromagnetic edge ring. Then, an

additional PVS layer is added to join the two, resulting in a shell with relatively uniform

thickness with a passive bulk and active edge. We did not study the active bulk config-

uration with magneto-elastomer shells. A 25.4mm cubic NdFeB magnet (N52 grade by

SuperMagnetMan) is used to generate the magnetic gradient. The strength is measured by
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the magnetic flux density B , using a magnetometer (PCE Instruments Inc). The relative

permeability and remanence of the NdFeB magnet are 1.04 and 1.45, respectively, giving

B = 0.562 T at the surface center of the magnets.

We tested five magnetic shells with with h/R ∈ [0.02,0.04], θ = 0.86 rad, and an ac-

tive boundary region such that θa/θ ∈ [0.07,1]. The center of the magneto-active shell is

mounted on a PVS column (diameter = 4.5 mm) to support the shell when magnetic field

is applied. The NdFeB magnet is mounted vertically on Instron 5943 with a 5N load cell,

then quasi-statically approaches the shell at a rate of 0.1 mm/s using the software Bluehill3.

When the magnet reaches a critical distance from the shell, the magnetic body force acting

on the ferromagnetic edge triggers snapping. The critical displacement is retrieved from

the force-displacement curve. In order to find the corresponding critical B , we simulate the

magnetic field using the AC/DC module in COMSOL 5.6. This allows us to visualize the

magnetic field and obtain B at given spatial points. To relate B to the curvature stimulus

κ, we perform an additional set of experiments in which we measure the curvature in a

ferromagnetic beam, oriented in the same direction as the edge of the shell, as the magnet

approaches. For details on the magnetic field visualization and the magnetic flux-curvature

calibration, see Appendix 5.7.2.

5.3 Comparison of active bulk and boundary

In Fig. 5·2, we compare the critical curvature κc to that for a fully active shell, κ
f ull
c ≡

κc(θa = θ), for varied proportions of the angular active area to the total angular depth of

the shell, θa/θ. In the active bulk configuration, a reduction of only about 5 percent in

θa/θ causes the critical curvature κc to increase significantly above κ
f ull
c . Meanwhile, we

observe that when the boundary is active and the passive region lies in the bulk, the active

portion can be reduced to as low as 40 percent in some cases without requiring κc/κ
f ull
c > 1

for snap through.
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Figure 5·2: Comparison of the critical curvature κc compared to that for
a fully active shell, κ

f ull
c = κc(θa = θ), for varied sizes of the active re-

gion in the active bulk (blue triangles) and active boundary (green circles)
configurations. Our results show a clear preference for the active boundary
configuration: θa/θ can be reduced to as low as about 0.4 without requiring
a higher curvature stimulus for snap-through, whereas if the bulk is active
(and the boundary is passive), κc/κ

f ull
c > 1 for any θa/θ< 1. Error bars cor-

respond to one standard devation, and are smaller than markers in all cases
except the magneto-active experiments.

As discussed in Sect. 5.2.1, it has been shown that a stimulus which induces intrinsic

curvature may be treated as a curvature potential, which is decoupled from Koiter’s elastic

energy [148]. Pezzulla et al. demonstrate that this curvature potential may be further

decomposed into two work-like terms, i.e. Pκ = −Wbulk−Wedge, which behave like an

applied pressure in the bulk and a torque on the boundary. The pressure-like term scales as:

Wbulk ∼ h4
κ

2(1− cosθ), (5.1)

and the torque-like term as:

Wedge ∼ h4
κ

2
(

R
h

)3/2

sinθ. (5.2)

Comparing the two contributions gives

∣∣∣∣
Wedge

Wbulk

∣∣∣∣∼
(R/h)3/2

tan(θ/2)
>> 1, (5.3)
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showing that the edge work dominates in thin shells [148].

The implication explains our findings in general: removing a portion of active area

from the edge weakens the effect of the curvature stimulus more than if the same amount

of area were removed from the bulk. Conversely, the inequity suggests that the active edge

configuration is the more efficient choice for the design of structures that will snap with

minimal energy needs. To clearly distinguish between these regimes, henceforth we will

refer to the critical curvature in the active boundary configuration as κ
edge
c , and that in the

active bulk configuration as κbulk
c . Despite this clear preference for an active boundary,

the optimal size of the active region is not clear from the scattered data in Fig. 5·2. We

investigate this in the following section.

5.4 Optimal size of active boundary via energy minimization

To discern the most efficient size of the active region at the shell boundary, we minimize

the total potential energy in the system U, which consists of the internal elastic energy,

and the non-mechanical loading due to curvature [148, 80, 114]. In the latter, the torque-

like contribution at the boundary dominates over the pressure-like effect in the bulk. This

effect is amplified in the active edge configuration, as some or all of the bulk is passive.

Accordingly, we observe very small bulk deformation compared to boundary rotation (see

Fig. 5·5b.) As such, we neglect the pressure-like contribution in the bulk, but include

the additional torque that arises at the boundary between the active and passive regions

(Fig. 5·3a). This gives:

U = UK−
∮

out

B(1+ν)κ(∆βout)ds̊−
∮
in

B(1+ν)κ(−∆βin)ds̊ (5.4)

where UK is the Koiter shell energy [106], B is the bending rigidity, ∆βout and ∆βin are

the angle change at the boundary and the active-passive interface, respectively, and ds̊ is

the line element. The second and third terms quantify the torque-like contribution of the
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non-mechanical loading induced by the natural curvature at either end of the active edge

region. Note that a positive angle change corresponds to a counter-clockwise rotation.

Because we expect axisymmetric deformation up to snap-through, these non-mechanical

loading terms can be collected into the free boundary line integral as

U = UK−
∮

out

B(1+ν)κ∆β
eq
out ds̊ (5.5)

where ∆β
eq
out =∆βout−∆βin

(
1− θa

θ

)
. Physically, this corresponds to transforming the shell

into an equivalent one that experiences only the angle change ∆β
eq
out at the boundary, and is

fully active, i.e. the natural curvature κ acts on the whole body (see Fig. 5·3b). Then, from

Ref. [148], we can postulate that the snapping occurs when the colatitude-direction tangent

vector at the boundary of the equivalent shell approximately becomes horizontal, i.e. at

∆β
eq
out ∼ θ. Note that this does not imply that ∆βout ∼ θ, which as we discuss in Sect. 5.5,

is not necessarily the case.

For thin surfaces where the non-mechanical stimulus acts through-the-thickness, the

contribution of the mid-surface stretch induced by the stimulus can be neglected [148, 80].

Then, assuming the colatitude-direction bending strain is much larger than the azimuthal

one, the shell energy U scales as

U ∼ B
2
(
b1

1
)2

p Ap +
B
2
(
b1

1
)2

a Aa−B(1+ν)κ

[
∆βout−∆βin

(
1− θa

θ

)]
(2πRθ) (5.6)

where b1
1 is the characteristic curvature in the colatitude-direction and the subscripts p and

a denote the passive bulk and active edge regions. The curvature b1
1 can be estimated as

the angle change along an arc over its length, so that (b1
1)p ∼ −(θ−θa−∆βin)

R(θ−θa)
, and (b1

1)a ∼
−(θa+∆βin−∆βout)

Rθa
. The active area Aa ∼ 2πR2θθa, and the passive area Ap ∼ πR2θ2−Aa.

Inserting these scalings and minimizing Eq. (5.6) with respect to ∆βin and ∆βout –

that is, setting ∂U/∂∆βout = ∂U/∂∆βin = 0 – gives the solutions for these angle changes

in the deformed configuration. Evaluating the result at the presumed point of instability,
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Figure 5·3: a. Schematic of the energy minimization scheme.i. shows the
partially active shell, where κ delivers a torque-like effect (pink arrows)
along the free boundary and at the active-passive interface, which drives the
tangent to the edge (black line) to rotate an amount ∆βout (to the gray line)
and that at the interface a smaller amount ∆βin. The characteristic angular
size of the natural boundary layer,

√
h/R is labeled. ii. The equivalent fully

active shell, which feels a torque from the curvature stimulus only about the
free edge. Fully active shells snap-through when the tangent to the edge
becomes approximately horizontal [148]. b. The normalized critical curva-
ture for the active edge configuration vs. the active area θa compared to its
theoretical optimal size θ∗a, according to: (inset) the scaling result Eq.(5.9),
and (main plot) the empirically-corrected expression given in Eq.(??). The
minimum of κ

edge
c /κ

f ull
c occurs at θa = θ∗a, supporting the conclusion that

the optimal size for the active boundary region coincides with the character-
istic length of the natural boundary layer, up to a factor of 2(1+ν)1/2. Error
bars mark one standard devation, and are smaller than markers in residual
swelling experiments and simulations.

∆β
eq
out ∼ θ, gives the critical natural curvature of the partially active shell at snapping as:

κ
edge
c ∼ θ

θa(1+ν)R
. (5.7)
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Assuming the minimum critical curvature occurs at κc = κ
f ull
c , where from Ref. [148]:

κ
f ull
c ∼ θ

(1+ν)
√

Rh
, (5.8)

we find that the optimal size of θa should scale as:

θ
∗
a ∼

√
h/R. (5.9)

This result is shown in the Fig. 5·3c. We see a promising collapse of our data, and a

minimum emerges at about 2.5 on the horizontal axis, indicating that the true optimal

θ∗a ≈ 2.5
√

h/R for our shells, which vary in geometry, E, and ν. We note that for moder-

ately deep shells, we observe critical curvatures even below the predicted κ
f ull
c (as low as

κc = 0.95κ
f ull
c , for a shell depth θ/

√
h/R = 5.3 when θa/θ = 0.5). We suspect that this

results from additional destabilizing effects delivered by the torque at the active-passive

interface, which tends to help flatten the bulk of the shell. We note that magneto-elastomer

shells carry more error than the residual swelling experiments and simulations. This is

largely due to the non-uniform magnetic gradient generated from the NdFeB magnet. Ad-

ditionally, the shells are highly sensitive to fabrication errors, which can result in a nonuni-

form ferromagnetic boundary, when θa is small.

The result of our energy minimization scheme given in Eq. (5.9) coincides with the

angular length scale of the bending-dominated boundary layer [51, 135] for a spherical

cap,
√

h/R. In open shells, the characteristic length of the boundary layer is that which is

close enough to the edge that the thickness “feels" relatively large in comparison [45]. In

this region the energy balance shifts (thin shells are nominally stretching energy-dominated,

preferring isometry), and so does the preferred deformation mode. The boundary layer is

readily observed as the lip that curls upward when a spherical cap of finite thickness, e.g. a

tennis ball sliced in half, is everted [178, 78]. In this region, the shell “tries" to return to its

initial state, resolving some of the stress that arises due to stretching above the midline and
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compression below it. Only if the boundary layer is large compared to the shell depth is

the everted shell unstable, snapping back to its undeformed configuration. If the boundary

layer is relatively small, the shell is bistable and can rest in its everted state indefinitely.

This scenario appears to be analogous to the non-everted, partially active shells we

study: if the bending region is large, snap-through occurs easily, whereas a shell with a

small active region is stable even against a higher stimulus. This points to an intuitive

interpretation of our results: generally speaking, in the active edge configuration, if the

active area meets or exceeds the boundary layer, the region predisposed to bending may do

so. As a result, snapping is unaffected compared to a fully active cap. For θa < θbl , we

interfere with the boundary layer – this can be seen as reducing the size of the effective

boundary layer – and higher curvatures are required to drive snap-through. The efficacy of

the geometric design, in sum, depends on how the effective boundary layer set by θa, where

we impose bending, relates to the natural boundary layer that scales as
√

h/R, where the

shell prefers bending. In the active bulk configuration, any θa < θ disturbs the boundary

layer, forcing the critical curvature upward. Thus, this interpretation also clarifies what we

saw in Sect. 5.3. This prompts us to briefly revisit our comparison of the active bulk and

boundary configurations.

5.5 Scalings for the critical curvature based on fully active shells

In light of the importance of the boundary layer discussed in Sect. 5.4, we may add rigor

to our claim that the active boundary configuration is more efficient than the active bulk

(Sect. 5.3). To do so, we rely on the established result [148] (from which we determined

Eq. (5.8)) that the critical curvature for fully active shells scales as:

κ
f ull
c R∼ θ

(1+ν)
√

h/R
. (5.10)
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This finding leans on the assumption that the pressure-like effect of curvature in the bulk

may be negelected due to the dominant effect of curvature on the boundary, which we have

similarly employed in Sect. 5.4. Additionally, it assumes based on empirical observations

that the tangent vector to the boundary becomes approximately horizontal at the point of

snap-through [148, 114].

In the active bulk configuration, we reduce size of the effective boundary layer. Accord-

ingly, we observe that the tangent to the edge of the effective boundary layer – that is, the

active-passive interface, and not the edge of the shell – becomes approximately horizontal

at the point of snap-through. Assuming the effective angular width of the boundary layer

scales as (θa/θ)
√

h/R, it follows from Eq. (5.10) that:

κ
bulk
c R∼ θ2

θa(1+ν)
√

h/R
, θp < θbl (5.11a)

κbulk
c

κ
f ull
c
∼ θ

θa
, θp < θbl (5.11b)

where θp = θ− θa represents the passive portion of the shell. Eqs. (5.12a) and (5.12b)

are shown in Fig. 5·4a&b, respectively. where indeed we see that the critical curvature

increases linearly with θ/θa until the passive region reaches the approximate size of the

boundary layer. At this point, where the entire boundary layer is inactive, the assumption

that the edge work outweighs the bulk work breaks down and the critical curvature diverges.

For completeness, we also study the implications of Eq. (5.10) on shells with active

boundaries. In Sect. 5.4 we used the horizontal tangent assumption (∆β
eq
out ≈ θ) for the

equivalent fully active shell. We observe that for shells in the active edge configuration,

this assumption breaks down, i.e. ∆βout > θ, if θa approaches the size of the boundary

layer (see Fig. 5·5). With this in mind, we expect as long as the coincident conditions

that boundary layer is intact and the boundary tangent is approximately horizontal at snap-

through (θa >>
√

h/R), due to the dominance of the edge work we expect no change to
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Figure 5·4: a. When the active portion of the shell is in the bulk, the size
of the effective boundary layer is reduced. As a result, the critical curva-
ture increases according to Eq. (5.11b), and any reduction in θa (greater
than 1 on the x-axis) increases the the curvature stimulus κbulk

c required for
snap-through, as shown in b. As Eq. (5.11a) predicts, the stimulus increase
scales linearly with θ/θa when the passive edge region is smaller than the
boundary layer size (darker blue points, θp/

√
h/R / 0.5; fit corresponds to

this range.) c. If instead the boundary of the shell experiences the curvature
stimulus, as long as θa exceeds the boundary layer, the behavior follows that
of the fully active shell, i.e. Eq. (5.12a) [148]. d. As such, θa can be reduced
to as much as 0.35θ before the critical curvature increases above that for a
fully active shell, κ

f ull
c , in agreement with Eq. (5.12b).

the critical curvature from κ
f ull
c . That is,

κ
edge
c R∼ θ

(1+ν)
√

h/R
, θa > θbl (5.12a)

κ
edge
c

κ
f ull
c

= 1, θa > θbl (5.12b)

Note that Eq. (5.12b) is complementary to the result Eq. (5.7). Eqs. (5.12a) and (5.12b) are

shown in Fig. 5·4c&d, respectively. Comparing Eqs. (5.11b) and (5.12b) confirms that for

any small to moderate reduction of the active area, the active bulk configuration requires a

higher curvature stimulus than the active boundary.
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Figure 5·5: a. When the active area is larger than the boundary layer, the
edge tangent requires a rotation ∆βout ∼ theta to snap through, which results
in an approximately horizontal tangent. For θa / 2

√
h/R in this case, the

tangent undergoes additional rotation to trigger instability. Data is from
simulations of a fixed shell geometry with changing active area. Roman
numerals correspond to b., which shows the the initial (dashed) and pre-
snap (solid) profile curves for θa/θ= 0.95,0.85, ...,0.45. The angle changes
∆βout and ∆βin are shown in v. The angle change ∆βout increases from 0.35
rad in i. to 0.82 rad in vi.

5.6 Conclusion

The aim of the present work was to guide the design of efficient snapping structures, which

simultaneously minimize the active area and the magnitude of stimulus needed. We stud-

ied partially active spherical caps in two configurations – active bulk and active boundary

– with a combination of theory, 1D finite element simulations, and experiments. Shells

respond to a non-mechanical, curvature-inducing stimulus in the designated active region,

but are passive elsewhere.

Our mechanics-informed approach uncovered an analogy to the bending-dominated

boundary layer in inverted spherical caps. This offered an intuitive interpretation of our

work: selectively applying curvature amounts to setting the size of an effective boundary

layer. Like for inverted, passive spherical caps, the size of the (effective) boundary layer is

closely tied to stability [178]. Further, the location and size of the imposed bending region

determines whether it competes or cooperates with the geometric boundary layer, wherein

the shell inherently “wants" to bend. With this view, the design principles that follow are
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straightforward. In the active cap configuration, some or all of the boundary layer is made

passive, making snap-through harder to acheive. As a result, the active edge configuration

is preferred for efficient snapping. The size of the optimal active region reaches scales with

that of the natural boundary layer (Eq. (??)), with an empirical prefactor of about 2.5 for

our shells.

We demonstrated the efficacy and generality of our findings using residually swelling

and magneto-active shells. As we have shown, the curvature stimulus [148] may be easily

mapped to any non-mechanical load, so we expect that these principles will apply widely to

bistable actuators made of e.g. electro-active, thermally activated, or pneumatic materials.

In our energy minimization scheme (Sect. 5.4), we assumed that the minimimum curva-

ture stimulus was that for the fully active shell. This allowed us to identify the minimizing

active area. However, we observed critical curvatures even below this value. We speculate

that depending on the geometry, the torque at the active-passive interface can help to desta-

bilize the shell – despite that it ostensibly acts in opposition to the edge torque. We leave

investigation of this effect, which may open the door to further reduction of the critical

curvature, for future work.

5.7 Supplemental Information

5.7.1 Fabrication of non-homogenous residual swelling shells

The shell fabrication procedure for the active edge configuration is shown in Fig.5·6. The

process is as follows: To begin, we coat a metal ball-bearing (Rsphere ∈ [12,75] mm)

with viscous polydimethylsiloxane (PDMS), ensuring a relatively uniform thickness [112].

Once the PDMS has cured, we use a laser-cut (Epilog Laser Helix, 75W) ring (inner radius

Rp ∈ [2,65] mm) as a stencil to guide a cut around the sphere’s perimeter, resulting in a cap

of opening angle θp = θ−θa = sin−1(Rp/Rsphere).

Next, we coat a ball bearing of the same size with green polyvinylsiloxane (PVS)
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vi. vii. viii. ix. x.

Figure 5·6: a. The fabrication process for a nonhomogeneous spherical
cap with active edge: i. A layer of viscous green PVS is deposited over
spherical metal ball-bearing. ii. After curing, a ring of radius Rp is centered
at the top of the sphere and used as a stencil to mark θp. iii. A cut is made
and iv. excess material is removed, leaving a green layer of angular width
0 ≤ θ ≤ θp. iv. A second green layer is added. v. Once the green layer is
cured, a PDMS cap (cut from a sphere of the same size, in the same manner
as i.-iv.) of radius Rp is centered at the top of the sphere. vii. A pink layer of
VPS is added. viii. After curing, a shallow cut allows for the removal ix. of
the pink layer and the PDMS in the region 0≤ θ≤ θp. x. A cut is made at θ

(following a line which was stenciled by a ring as in ii) through all material
to free the shell from the ball bearing. A small beam is cut vertically from
just below the shell.

(Fig. 5·6a,i) and again make a cap with opening angle θp. This time, the cap remains

in place and the excess material is removed (Fig. 5·6a,iv). Since the active section is nec-

essarily bilayer, this additional passive layer ensures a relatively homogeneous thickness

throughout the shell.

With the green cap in place, a second layer of green PVS is added in the same manner

(Fig. 5·6a,v) and cut to the edge angle, θ ≥ θp. It fuses completely to the first layer, so in

the bulk (the eventual passive region, up to θp) the material is thicker than at the edge at

this stage of fabrication.

After the second green PVS layer has cured, the PDMS cap is centered at the north pole

(Fig. 5·6a,vi) – it adheres to but does not fuse with the PVS. Next, we deposit a layer of

pink PVS (Fig. 5·6a,vii). As soon as the pink is cured, a shallow cut is made around the



106

edge of the PDMS cap (at θp) (Fig. 5·6a,viii). Since the PDMS prevents crosslinking in the

region it covers, we can peel the pink layer and the PDMS from this section (Fig. 5·6a,ix).

Another laser cut ring (R ∈ [6,75] mm, R > Rp) is used to guide a deeper cut through

both layers, forming the bottom boundary (Fig. 5·6a,x) – this sets the total opening angle

of the shell to be θ = sin−1(R/Rsphere). We are left with a spherical cap composed of only

green PVS (two layers thick) from opening angle 0 to θp, and a bilayer ring of angular

width θa = θ− θp at the edge. In order to quantify the evolving curvature stimulus, we

slice a small vertical beam from the material that remains on the ball-bearing just below

the cut.

A shell with an active cap region is made in much the same way, except that the pro-

tective PDMS layer is a ring around the edge of the cap. This method prevents excision of

a reliable bilayer beam from the region beneath the cut, so the curvature was not measured

throughout the swelling process. Instead, a beam was cut from the cap region immediately

following snapping. Because the curvature develops at a much slower rate than that of

snap-through, the difference between the curvature immediately before and after snapping

is negligible.

5.7.2 Magnetic flux density as a curvature stimulus

In order to visualize the magnetic field and obtain the magnetic flux density B at given

spatial points, we simulate the magnetic field using the AC/DC module in COMSOL 5.6

(see Fig. 5·7). The finite element model is calibrated with experimental measurements and

material properties provided by the manufacturer. The critical B = Bc at the edge of the

shell at the point of snapping was calculated by inputting the critical displacement (meaured

from the Instron experiments) to the FE simulation.

To obtain the relationship between the applied magnetic flux density and corresponding

natural curvature of the shell, we fabricated a beam of length 6.1 mm, width 0.88 mm, and

thickness h = 0.42 mm. The beam is cut from the same spherical ball bearing as the shells,
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Figure 5·7: a. Finite element simulation showing the axially symmetric
magnetic field generated from the NdFeB magnet. b. Calibration curve for
magnetic flux density B vs. the curvature stimulus κ, based on measure-
ments taken from the beam in d. c. Magneto-active shell in the magnetic
field. d. Magneto-active beam the magnetic field, which is oriented to match
the edge of the shell and used to calibrate the κ–B relationship. In our range
the relationship is approximately linear, and for our shells we used the em-
pirical fit indicated by the dashed line.

so the initial curvatures are equivalent (1/R = 0.0787 mm−1). The arch is oriented at

0.639 rad with respect to the vertical center line to match the position of the corresponding

ferromagnetic layer in the magnetic field (see Fig. 5·7c&d.) The magnetic field is generated

using the same cubic NdFeB magnet as is used for the shell. Digital image processing is

used to measure the change of curvature as we vary the distance between the magnet and

the bottom edge of the beam. The distance is then converted to magnetic flux density B

using the COMSOL FE simulation. The response curvature as a function of the applied

magnetic flux density over the range relevant to our experiments is shown in Fig. 5·7b. In

our range, a first order polynomial fits the data. We note that the intercept of our empirical

fit, which has a slope of 0.097, is not zero, indicating that a linear fit would not be sufficient

over a larger range.
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5.7.3 The curvature potential & derivation of COMSOL model

Recall from Chapter 1 that Koiter’s elastic energy may be written as:

UK =
Y
2

∫ [
(1−ν)γαβ

γαβ +ν(γα
α)

2]dω

︸ ︷︷ ︸
stretching

+
B
2

∫ [
(1−ν)ραβ

ραβ +ν(ρα
α)

2]dω

︸ ︷︷ ︸
bending

(5.13)

where for a homogenous shell the stretching and bending rigidities are Y = Eh
1−ν2 and B =

Eh3

12(1−ν2)
, respectively, with Young’s modulus E and Poisson’s ratio ν. The midsurface strain

tensor is γαβ = 1
2(aαβ− åαβ), and the curvature strains are quantified by the tensor ραβ =

bαβ− b̊αβ. The superscript “o" refers to the initial configuration, whereas no subscript

denotes the current (deformed) state. The first fundamental form a quantifies distances

between points, and the second fundamental form b accounts for curvatures.

As discussed in the main text, the potential from a curvature-inducing stimulus can be

decoupled from Koiter’s energy, so that the elastic energy takes the following form [148]:

U = UK−
Y
2

∫ 1+ν

6
κh2

ρ
α
αdω (5.14)

where UK is (5.13), and the last term represents the curvature potential, where κ is the

evolving natural curvature.

To describe the undeformed (pre-swelling) shell, we first adopt the usual parameteriza-

tion for a spherical surface of radius R:

r̊(φ,ψ) = (Rcosψsinφ,Rsinψsinφ,Rcosφ). (5.15)

Here, φ is the polar angle (0≤ φ≤ π) and ψ the azimuth (0≤ψ < 2π). (For background on

the concepts from differential geometry that follow, see Appendix A.) The metric tensor

(first fundamental form) is then given by:

å =

(
R2 0
0 R2 sin2

φ

)
, (5.16)



109

and the curvature tensor, or second fundamental form, is

b̊ =

(−R 0
0 −Rsin2

φ

)
. (5.17)

We observe that up to the point of snapping (and, for shallower shells, after snapping), the

deformed shapes maintain the sphere’s rotational symmetry, and vary in shape only with

respect to the polar angle [148]. The deformed shell can thus be parameterized (as a surface

of revolution) in terms of functions f and g of φ:

r(φ,ψ) = ( f (φ)cosψ, f (φ)sinψ,g(φ)). (5.18)

Then the metric for deformed spherical shells is

a =

(
f 2
,φ +g2

,φ 0
0 f 2

)
. (5.19)

The curvature tensor is

b =
1√

f 2
,φ +g2

,φ

(
g,φφ f,φ− f,φφg,φ 0

0 f g,φ

)
. (5.20)

The forms of (5.19) and (5.20) with (5.14) result in a second-order energy functional.

To reduce the functional to first-order, we use the substitution g′(φ) = f ′(φ)ζ(φ) [46, 148]

so that (5.19) and (5.20) become:

a =

(
f 2
,φ(1+ζ2) 0

0 f 2

)

b =
1√

f 2
,φ(1+ζ2)

(
ζ,φ f 2

,φ 0
0 ζ f f,φ

)
.

(5.21)

We impose the weak form of Koiter’s energy (comprised of bending and stretching with no

inelastic stimuli) upon the entire domain, with the additive curvature potential term only
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acting in the active region. For the active edge configuration, with wKoiter as the strain

energy density, the equations (weak forms) to enforce are:

0 =

θ∫
0

∂

∂ f
(wKoiter) · f̃ +

∂

∂ f ′
(wKoiter) · f̃ ′ dθ

0 =

θ∫
0

∂

∂ζ
(wKoiter) · ζ̃+

∂

∂ζ′
(wKoiter) · ζ̃′ dθ

0 =

θ∫
θ−θa

∂

∂ f
(pPk) · f̃ +

∂

∂ f ′
(pPk) · f̃ ′ dθ

0 =

θ∫
θ−θa

∂

∂ζ
(pPk) · ζ̃+

∂

∂ζ′
(pPk) · ζ̃′ dθ.

(5.22)

Here, tildes denote test functions of the two unknowns, and pPk is the potential energy

density of the natural curvature, given explicitly as the integrands of (5.13) and (5.14). The

strains are calculated from the differences between (5.21) and (5.16)-(5.17). In the active

bulk configuration, integration of the curvature potential equations (the last two lines of

Eq. (5.22)) is from 0 to θa.
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Chapter 6

Conclusion

The goal of this thesis was to advance our fundamental knowledge of how slender structures

respond to confinement and stimuli, which can inform the design of shape-shifting devices.

This was approached through four projects.

In Chapter 2, we used experiments, FE simulations, and a simple scaling model to study

the global response of shells of varied Gaussian and mean curvatures to planar confinement.

We found that the shells all buckle circumferentially, adopting a wavenumber that can be

captured by a single geometric parameter which relates the overall size of the shell to the

length scale associated with confinement.

In Chapter 3, we constrained intrinsically flat sheets to remain planar in their central

region as they are forced through a ring. The sheets would form a single d-cone in the

absence of added planar confinement. We saw in experiments and MD simulations that

the additonal constraint forces the sheet to buckle periodically, which is acheived through

striking sequential dynamics. We provided a scaling for the critical force at which the

first wave forms, which was rationalized in the context of pressure buckling of an encased

ring. From this, we determined a scaling based on energy minimization that shows how the

buckling wavelength of this annular d-cone depends on the geometric parameters of the

system. Together, Chapters 2 & 3 underscore the sensitivity of slender structures to small

changes in confinement geometry.

Next, in Chapter 4, we studied the delayed buckling of step-loaded, defect-seeded elas-

tomer spherical shells, which occurs in experiments at ostensibly sub-critical loads. We
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show that the reduced pressure threshold can be determined directly from the viscoelastic

material properties. Then, we introduced an analogy between viscoelastic creep deforma-

tion and an evolving defect in an equivalent elastic shell. This allowed us to capture the

critical pole deflection and the critical time associated with buckling. This work was pri-

marily addressed to the elastic buckling community: Our model for creep buckling main-

tains close ties to the concepts of elastic shell buckling, and relies on quantities which are

readily determined in experiments, thus offering a route to incorporate tunable time delays

in the design of elastomer devices.

Finally, in Chapter 5, we demonstrated with theory, 1D FE simulations, and two sets

of experiments, that for efficient snapping actuation, a non-mechanical stimulus need only

be applied near the boundary of a spherical cap. We showed that the optimal size of the

active region coincides with the bending-dominated boundary layer inherent to the shell.

This result offers an intuitive route to the design of bistable actuators with reduced energy

input. Thus, Chapters 4 & 5 both demonstrate how mechanics can instruct the design of

shape-shifting devices.

6.1 Future directions

Each of the studies presented in the last four Chapters raise new questions, which point to

possible directions for future research. Some of these ideas are discussed below.

6.1.1 Geometrically confined shells

In Chapter 2, we focused on capturing the general behavior of confined shells. We high-

lighted the commonalities in the response to planar confinement for four types of shells:

saddles, rolled sheets, cylinders, and spherical segments. We studied the confined sad-

dles in the most depth, and others have studied how piece-wise isometries can allow for

higher mode numbers in hyperbolic surfaces [1]. We note also that a recent study [172]
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of radially curved ribbons concurs, at least qualitatively, with our experiments and simu-

lations of confined rolled sheets in the limit of relatively small free length. Still, a more

detailed investigation could be performed for each of these confined shells. Does the re-

lationship between the free length and the size of the bending-dominated boundary layer

affect shape-selection for confined cylinders and spherical segments, e.g. by setting the

persistence length of circumferential bending?

In all cases, an important question we left unanswered is: How does the shell thickness

affect the response to confinement? In the geometric range we studied, the wavenum-

ber was unaffected by the thickness, but there almost certainly exist limits at which the

evidently higher-order thickness dependence becomes relevant. Answering this question

likely amounts to understanding the role of stretching, which could be studied in simula-

tions 1, or possibly using experimental techniques like Digital Image Correlation (DIC).

Understanding the stretching distribution could also resolve the contradiction we present

in our scaling argument, i.e. that stretching is concentrated in a region near the clamp, but

that we can approximate radial bending as being distributed over the free length. Other

quantities that should be studied more closely are the mean and Gaussian curvature [52],

and the elastic modulus.

Finally, we only studied the dynamic response to varied transverse confinement in ex-

periments, and with negatively curved saddles. MD simulations, which handle contact well,

could complement these experiments by providing information about stresses, strains, and

the elastic energy distribution as the shell reconfigures. Due to unwanted contact, a similar

study would likely be experimentally difficult for any of the other shells, besides perhaps

rolled sheets with relatively low mean curvature. However, all confined geometries ex-

hibit interesting shape-selection behaviors as the natural curvature increased due to residual

swelling. We did not focus on these dynamics, and a closer look could make for an interest-
1Note that we performed FEM simulations for the three bilayer geometries for which residual swelling

occurs through-the-thickness. This excludes the saddles that we built our scaling around, for which residual
swelling occurs in-the-plane.
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ing study related to confined differential growth. Further, as we saw in Chapter 5, a different

curvature-inducing stimulus (e.g. a magnetic field applied to confined, magneto-responsive

elastomer shells) could replace residual swelling to induce reversible reconfiguration. This

could be relevant to, e.g., sea slug-like robotic locomotion [1].

6.1.2 Confined sheets

The work on the annular d-cone is ongoing, and we hope to improve upon the theoretical

aspects of the work in Chapter 3. In particular, we believe we can: (1.) capture the small

deflection state, including radial curvature which is not predicted in theoretical studies of

the d-cone, (2.) perform a linear stability analysis about the small deflection state to predict

the onset of wrinkling, and (3.) offer a complementary (and perhaps more straightforward)

prediction for the opening angle based on the elastica. We also hope to understand (4.)

when subsequent cones form, and (5.) how these dislocations are spatially distributed.

Whereas confined saddles in Sect. 2 distribute waves evenly about the circumference, the

annular d-cone can display small conical dislocations with opening angle 2θc separated by

angular distances greater than 2θc. This is particularly evident when the free length, and

thus θc, is small. We leave systematic variation of the thickness and modulus in experiments

to future work, and rely on simulations for this understanding.

Discrete, pre-folded analogs to the d-cone have emerged [164, 4, 163], which are in-

formative from a geometric perspective. Related works, primarily aimed at studying the

local mechanics of kirigami, add radial cuts to circular sheets [159]. These modifications

free the packed sheet to either remain completely planar besides along folding ridges, or

to accomodate excess length by simply overlapping. Similar approaches could be taken to

study a discrete version of the annular d-cone. In particular, such annular d-cone origami

or kirigami structures could offer intuition about the excess length during packing, perhaps

helping to elucidate why subsequent cones form when they do.
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6.1.3 Delayed buckling

We propose that our model in Chapter 4 can be extended to different loading methods and

similar materials. However, we only verify our model for a single material and type of

loading, and we study only relatively thick shells. Verifying the validity of our model over

an extended parameter range would likely be worthwhile. The central concept, that creep

deformation behaves like an evolving defect, applies in theory to shells of arbitrary geom-

etry [71, 70]. Yet, the success of our model relies on (1.) Defect-like localization of creep

deformation, which we ensured with our seeded geometric defect and (2.) An experiment-

friendly understanding of how the knockdown factor depends on defect geometry [112].

Thus, slightly modified versions of our model could be tested on other geometries for

which similar tools exist, e.g. an axially loaded cylindrical shell with a dimple defect [56].

Since the critical pressure decreases with time-dependent creep deformation, the energy

barrier [91] to buckling lowers as well, and an increasingly small perturbation or probing

force [56] can cause buckling. A future study could quantify this critical probing force,

which likely depends on where it is applied, as creep progresses. This input force could

be related to the energy released during buckling, with implications for tunable actuation.

Various possible design routes for elastomer devices with tunable delays were discussed in

the concluding remarks of Chapter 4.

6.1.4 Curvature-inducing stimuli

We demonstrated our key finding, that the optimal size of the active region for snapping

spherical caps relates directly to the size of the boundary layer, using shells that respond

to two different curvature-inducing stimuli. This affirmed that the non-mechanical stimu-

lus is arbitrary, and that our results could be used to design actuators that respond to e.g.

thermal, electrical, or chemical stimuli. As a general statement, the concept and the math-

ematical formulation of the curvature-inducing stimulus [147] is powerful, particularly for
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simulations, and ought to be used more widely.



Appendix A

Differential geometry basics

The metric description of Koiter’s elastic energy introduced in Chapter 1 offers a useful

means to describe large deformations of arbitrary surfaces. Here, we introduce some of

the basic concepts from differential geometry, primarly with illustrative examples. Einstein

summation notation is assumed, i.e. we sum over indices that are repeated within a term,

and the comma dentoes differentiation. As is relevant to shell and plate theories used and

referenced within this thesis, we consider only 2D surfaces. Throughout this Appendix we

follow Refs. [135] & [38].

A.1 First and second fundamental forms

Let xi = f i(u1,u2) be a set of parametric equations (i.e. f i are scalar functions) that define a

coordinate transformation between Cartesian coordinates xi, and a general (not necessarily

Cartesian) 3D coordinate system ui where u3 is constant. The first fundamental form a

contains all information about distances between points. It is defined as:

aαβ = f i
,α f i

,β (A.1)

The second fundamental form, b, carries information about the curvatures, and is defined

as:

bαβ = Ni f i
,αβ

(A.2)
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where Ni is the normal unit vector, i.e. Ni ≡ a−
1
2 εi jk f j

,1 f k
,2 and a≡ det(aαβ). Next, we pro-

vide a examples to illustrate how these quantities are computed for a flat sheet, a cylinder,

and a sphere.

A.1.1 Flat plate

For a plane in Cartesian coordinates, xi = f i(u1,u2) = f i(x1,x2), and x3 is constant. Thus,

(aαβ) =

(
f i
,1 f i

,1 f i
,1 f i

,2
f i
,2 f i

,1 f i
,2 f i

,2

)
=

(
1 0
0 1

)
, (A.3)

i.e the first fundamental form is the identity matrix for flat surfaces. The determinant a =

1 =⇒ a−
1
2 = 1, so

Ni =




0
0
1


 , (A.4)

thus

(bαβ) =

(
Ni f i

,11 Ni f i
,12

Ni f i
,21 Ni f i

,22

)
=

(
0 0
0 0

)
, (A.5)

which confirms that the curvatures are identically zero.

Consider also an alternative coordinate transformation applied to a flat plate, to cylindri-

cal coordinates. Let initial coordinates u1 = r and u2 = θ (zε constant). Then the Cartesian

components xi= f i(r,θ) are:

( f i) =




r cosθ

r sinθ

z


 (A.6)

so the metric tensor for the flat plate in cylindrical coordinates is:

(aαβ) =

(
1 0
0 r2

)
, (A.7)

and the normal vector is:

(Ni) =




0
0
1


 , (A.8)
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from which we find that the second fundamental form is, again,

(bαβ) =

(
0 0
0 0

)
. (A.9)

A.1.2 Cylinder

We can represent a cylindrical shell by xi = f i(θ,z) where r is constant:

( f i) =




r cosθ

r sinθ

z


 . (A.10)

It follows that

(aαβ) =

(
1 0
0 r2

)
, (A.11)

thus a = r2 =⇒ a−
1
2 = 1

r , so

(Ni) =




cosθ

sinθ

0


 , (A.12)

and therefore

(bαβ) =

(
0 0
0 r

)
. (A.13)

Notice that the first fundamental forms of a flat sheet (Eq.(A.7)) and a cylinder (Eq. (A.7))

are identical. By definition, then, these two surfaces are isometric to one another. No

stretching is required to roll a sheet into a cylinder, and vice-versa. Recalling the high en-

ergetic cost of stretching compared to bending explains why this is a preferred deformation

for thin sheets.
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A.1.3 Sphere

Let us parameterize a spherical shell according to xi = f i(φ,θ) (ρ ε constant):

( f i) =




ρcosφ

ρsinφsinθ

ρsinφcosθ


 . (A.14)

The first fundamental form is

(aαβ) =

(
ρ2 0
0 ρ2 sin2

φ

)
. (A.15)

Then a = ρ4 sin2
φ =⇒ a−

1
2 = 1

ρ2 sinφ
, and

(Ni) =



−cosφ

−sinφsinθ

−sinφcosθ.


 (A.16)

The second fundamental form is:

(bαβ) =

(
ρ 0
0 ρsin2

φ

)
. (A.17)

A.2 Principal curvatures & invariants

The normal, or surface, curvature is defined as the ratio between the second and first fun-

damental forms. It is useful to know the extremal values and directions of this surface

curvature. It can be shown that finding the extremal or principal curvatures, κn (n∈ {1,2})
amounts to solving the following eigenvalue problem:

det(bβ

α−κnδ
β

α) = 0, (A.18)

where δ
β

α is the Kroneker delta, and the raised index results from contraction with the

contravariant form of the metric tensor, i.e. bβ

α = aαβbαβ. Roughly and practically speaking,

aαβ is the matrix inverse of a, so Eq. (A.18) can be thought of as a−1b− κnI where I is
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the identity matrix. The quantity bβ

α is sometimes called the shape operator. Thus, the

eigenvectors of the shape operator give the directions in which the normal curvature is

extremal, and the corresponding eigenvalues are the principal curvatures, κ1 and κ2.

The principal curvatures allow us to define the mean curvature, H:

H =
κ1 +κ2

2
=

1
2

bα
α, (A.19)

and the Gaussian curvature, K:

K = κ1κ2 = |bβ

α|= |bαγaγβ|= |bαγ||aγβ|= b
a

(A.20)

where b is the determinant of the second fundamental form, and a is that of the first fun-

damental form. That is, the Gaussian curvature is the determinant of the shape operator, or

equivalently, the product of the principal curvatures. The mean curvature is the trace of the

shape operator, or their average. As H and K are functions of only invariants, they, too, are

invariant under coordinate transformation.

We saw in Sect A.1 via direct comparison of the first fundamental forms that the cylin-

der is isometric to the plane. Notably, the principal curvature does change under deforma-

tion from a sheet to a cylinder. The fact that a slender structure can bend without stretching

– which, as we have seen, is energetically preferable – is explained by Gauss’s Theorema

Egregium. The theorem, which is a main result of differential geometry, states that the

Gaussian curvature of a surface is unchanged under isometry. Thus, the initially flat sheet

avoids paying high stretching costs by bending in one principal direction while preserving

zero curvature in the other, as the product of the two principal curvatures remains K = 0.

Indeed, slender, bendy structures everywhere will agree with Gauss that this result is a

“remarkable" and powerful one.
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