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Abstract
Neural oscillations, including rhythms in the beta1 band (12–20 Hz), are important in
various cognitive functions. Often neural networks receive rhythmic input at
frequencies different from their natural frequency, but very little is known about how
such input affects the network’s behavior. We use a simplified, yet biophysical, model
of a beta1 rhythm that occurs in the parietal cortex, in order to study its response to
oscillatory inputs. We demonstrate that a cell has the ability to respond at the same
time to two periodic stimuli of unrelated frequencies, firing in phase with one, but
with a mean firing rate equal to that of the other. We show that this is a very general
phenomenon, independent of the model used. We next show numerically that the
behavior of a different cell, which is modeled as a high-dimensional dynamical
system, can be described in a surprisingly simple way, owing to a reset that occurs in
the state space when the cell fires. The interaction of the two cells leads to novel
combinations of properties for neural dynamics, such as mode-locking to an input
without phase-locking to it.

Keywords: Neural oscillations; Phase-locking; Phase-response curve; State reset;
Time-division multiplexing

1 Introduction
Neural oscillations are ubiquitous in the brain and are thought to play important roles in
cognition [1–4]. Different brain networks often communicate with one another via neu-
ral oscillations [5–7]: periodic firing of the neurons of one network can serve as input to
another network. Thus, studying how an oscillatory network responds to periodic input
is important for understanding information processing in the brain.

The simplest form of response to a periodic input is simple entrainment, where the net-
work picks up the rhythm of the input [8]. Different types of responses can be described
using the phase-response curve (PRC) method [9]. In its simplest version, the PRC de-
scribes the time that an oscillating cell fires as a function of the phase when it receives a
stimulus. A different approach is to calculate the spike-triggered average [10], that is, the
average input in a window of time before a spike occurs. These and similar methods have
been widely applied to characterize the response of both model and real neurons.

However, the response of an entire network to an input can be more complex than the
responses of its individual cells. Individual cell properties interact with the network topol-
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ogy and even the characteristics of the synapses. Here we take a different approach: we
start with a network that produces a surprising response to an oscillatory input and, us-
ing a variety of methods and simplifications, we dissect the network to find the essential
properties that give rise to the observed behavior.

There is a large variety of brain rhythms and mechanisms that produce them [1]. Here
we focus on a rhythm of frequency about 15 Hz (beta1 band) that appears in the parietal
cortex [11, 12], because of its unusual and functionally important dynamics, as well as
the fact that there exists a biophysical computational model for it. An important property
of this rhythm is that the beta1 period arises from a concatenation of two shorter cycles
of physiologically relevant lengths: a beta2 (∼ 40 ms) and a gamma (∼ 25 ms) timescale.
Moreover, in the absence of any input, the existence of the beta1 rhythm depends on the
interactions among all cell types considered in the model. Thus, one would expect that
driving a subset of the network at a frequency other than beta1, in particular at one of those
faster timescales (gamma or beta2), would destroy the beta1 rhythm in the whole network.
Surprisingly, in [13] we observed that in some cases the beta1 rhythm can persist, despite
a subset of the network being driven by a 40 Hz oscillatory input. The input oscillation
and the natural beta1 rhythm interact in a non-trivial way, with the principal cells that
sustain the beta1 rhythm firing always out of phase with the incoming pulses.

In the current work we aimed to characterize the interaction of the two rhythms (gamma
and beta1) and explain the mechanism that supports this interaction. Although certain
aspects of the behavior did depend on physiological details of the individual cells, there
were other aspects that were consequences of a combination of very simple properties of
the cells, synapses, and the network topology. Thus, parts of the mechanism are much
more general than this particular network and reproducible by simpler neuron models,
even by abstract models that make no mention of neurons. The next paragraphs give an
overview of our results.

At the crux of the interaction of the input gamma with the natural beta1 rhythm lies a
certain cell (SI cell, for Slow Inhibitory), which in the network happens to be stimulated by
two roughly periodic sources, and is able to fire in phase with the first, but at a rate equal
to the second. After applying successive simplifications to the model and showing that the
reduced versions still reproduce the surprising aspects of the SI cell’s behavior, we arrive
at an explanation of this behavior based on a few very simple properties. In particular, we
show that the combination of a fast pulsatile excitatory input and an independent slower
inhibitory input can make a cell fire in phase with the faster input, but at a rate equal to
the slower input. Moreover, the cell fires only in a window of phase of the slower input.
These properties are robust to deviations of the inputs from being purely periodic. The
only required properties of the cell are that it fires only immediately after the excitatory
input’s pulses, that it cannot fire on two consecutive pulses, and that it cannot fire for some
time when it is inhibited. That these properties are enough is confirmed by construction
of a mathematical model with such properties that can reproduce the cell’s behavior. The
mechanism is novel in the sense that it combines aspects of both simple entrainment of a
cell to an (excitatory) input [8] and of inhibition-based rhythms [14], but differs from both
in fundamental ways (see Discussion).

We next show mathematically that the above hold true for certain ranges of frequencies
for the two inputs. These ranges are only relative to each other and to other model pa-
rameters, meaning that there are no absolute bounds on the frequencies. We confirm that
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the mathematics accurately describe the behavior of the cell in the network by showing
simulation results with varying parameters.

Next we illustrate that another cell (IB cell, for Intrinsically Bursting), which is modeled
as a high-dimensional dynamical system, can be approximately described by a PRC-like
map [15]. A basic assumption of the PRC method is that the cell is on or sufficiently close
to its limit cycle when the stimulus arrives. The IB cell involves several state variables with
time constants longer than the interval between successive stimuli it receives, so there is in
principle no reason why it should return to its limit cycle in the time between stimuli.a Still,
the time that the cell fires is approximately determined by the timing of the last stimulus
only, making a PRC-like description possible. Based on numerical results, we show that the
reason for this is a reset of its state that occurs when the cell fires, causing it to effectively
forget much of its history. Unlike in some simpler models [16], this reset is not hard-coded
in our model, but a consequence of the dynamics that occur during an action potential.

In certain parameter regimes, an additional interesting phenomenon takes place: while
the cell fires consistently p times in every q cycles of a periodic input for some integers p, q
(a property called mode-locking [17]), the phases at which it fires vary significantly (that is,
no phase-locking), even in the absence of any noise. Our analysis suggests that the reason
for this is that the number of spikes in a burst of the IB cell is highly sensitive to the cell’s
state at the time it receives a stimulus. A similar sensitivity has been observed in studies
of the Hindmarsh–Rose neuronal model [18, 19] and explained through the PRC. In our
case PRC theory fails to explain the phenomenon.

Finally, the dynamics of the SI and IB cells together can help explain another property
of our network: the two cells consistently fire alternately (for certain parameter ranges),
and when the network is excited by a periodic input, their common firing rate is often
a rational multiple of the input’s frequency, even in cases when the IB cell is not firing
periodically (see previous paragraph).

Regarding the implications of our results for brain function, in [13] we have argued that
the ability of this system to process a new rhythm while retaining an established one, com-
bined with other properties, makes it a good candidate for a physiological substrate of a
working-memory buffer [20]. The details of the mechanism studied in the current paper
suggest time-division multiplexing as another possible function. Multiplexing is a term
in telecommunications that refers to the use of the same channel for transmitting signals
from multiple sources. In time-division multiplexing, time is divided into intervals during
each of which a single source makes exclusive use of the channel. In the application we
describe, a single neuron transmits information from different sources at different times.
Such a function can be relevant for the parietal cortex, which is known to combine inputs
from multiple sources [21].

The structure of the paper is as follows: in Sect. 2 we describe the computational model.
In Sect. 3 we show simulation results that highlight the SI cell behavior and demonstrate
that this behavior can be reproduced by simpler models. In Sect. 4 we give mathematical
results that explain the SI cell behavior and explore some of their predictions. In Sect. 5,
using a combination of analytical and numerical methods, we study the dynamics of the IB
cell and show how these dynamics, combined with our understanding of the SI cell from
before, can explain the interaction of the two cells with each other and with the periodic
input. The application to time-division multiplexing is described in the Discussion.
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Figure 1 The network model. Large circles denote neurons and lines
denote synapses. Filled circles (for inhibitory synapses) or inverted arrows
(for excitatory synapses) specify the postsynaptic (target) cell. In the IB cell
we distinguish four compartments: the soma (circle in the middle), the
axon (a), the apical dendrite (da), and the basal dendrite (db)

2 The model
2.1 Overview and network topology
We use an adapted version of a model for the parietal beta1 rhythm [12]. It consists of a
network of Hodgkin–Huxley type neurons, of four different types. Although in the original
model there were multiple cells of each type, the results were reproducible when a single
cell of each type was considered. Here, to simplify the analysis, we consider the simpler
version with a single cell of each type. The connectivity is as shown in (Fig. 1).

The four cells in our model are the following: regular spiking (RS), fast-spiking (FS),
slow inhibitory (SI), and intrinsically bursting (IB) neurons. The connectivity is shown
in Fig. 1. As in [12], the cells have no geometry, except that the IB cell consists of four
compartments: a soma, an axon, an apical dendrite, and a basal dendrite. Each compart-
ment follows Hodgkin–Huxley dynamics and different compartments are connected via
electrical coupling. All other cells are single compartments.

We now give a brief description of the cells (see Sect. 2.2 for details). The RS and IB
cells are excitatory, while the FS and SI cells are inhibitory. The FS cell is the simplest one,
containing no currents except for the standard Hodgkin–Huxley currents (leak current,
transient sodium current, and delayed rectifier potassium current). It is fast to spike when
excited and its (outgoing) synapses have relatively fast rise and decay times. The SI cell
in turn is slower to spike when excited, and its synapses have slower decay times. Apart
from the standard currents, it also contains an h-current, which is a depolarizing current
that slowly builds up when the cell is not firing (and builds up faster if the cell is hyperpo-
larized), but quickly returns to small values when the cell fires. This results in the SI cell
being less excitable than normal for tens of milliseconds after it fires. The RS is a regular
excitatory cell with the addition of an h-current as well. The various IB compartments
contain several non-standard currents (see Sect. 2.2), the combination of which gives the
IB cell rich dynamics, including making it a bursting cell.

Below we give the equations that describe the dynamics of each cell/compartment, the
synapses, and the inputs. We note, however, that much of the behavior of the network does
not depend on these details, as is evident in Sects. 3 and 4. Details of the cell dynamics, in
particular those of the IB cell, will become relevant in Sect. 5. The model and parameters
are taken from [12] (with minimal modifications, see Appendix D.1). The reason that we
start with this model, instead of a simpler one that can reproduce much of the behavior,
is to show that it can exhibit this simple behavior despite its complexity.
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2.2 Equations
We start with the general form of the equations for each cell/compartment. The mem-
brane potential V follows the equation (we use boldface characters for state variables)

C · dV
dt

= –J – Isyn – Iel – Iext

– gL · (V – VL)

– gNa · m3
0(V) · h · (V – VNa)

– gK · m4 · (V – VK )

– gAR · mAR · (V – VAR)

– gKM · mKM · (V – VKM)

– gCaH · m2
CaH · (V – VCaH ). (1)

Here C, J , gx, and Vx, where x = L, Na, K , AR, KM, CaH , are all constants, and m0(V) is
a function of V. The term J models background excitation, Isyn and Iel depend on the
membrane potentials of other cells/compartments and are described below (Eqs. (3) and
(4)), while Iext is an externally controlled input.

Each line after the first line models one ionic current. The first three are the standard
currents of a Hodgkin–Huxley model: L - leak current, Na - transient sodium current,
K - delayed rectifier potassium current. The rest of the currents, present only in certain
cells, are as follows: AR is for anomalous rectifier current, also called h-current, KM for
M-current, CaH for high-threshold calcium current. Not all non-standard currents are
present in all of the cells/compartments. The h-current is present in the RS and SI cells,
and the IB dendritic compartments; the M-current is present in the IB axon and dendritic
compartments; and the high-threshold calcium current is present only in the IB dendrites.

The gating variables follow first order dynamics, but with their equilibria and time con-
stants depending on V. More precisely, we have

dx
dt

=
1

τx(V)
· (x∞(V) – x

)
, where x = m, h, mAR, mKM, mCaH , (2)

and τx(V) and x∞(V) are functions of the membrane potential V.
The term Iel in Eq. (1) models direct electrical coupling between different compartments

and is a sum of terms of the form (one for each compartment that the compartment in
question is coupled to)

g · (V – V′), (3)

where g is a constant and V′ is the membrane potential of the other compartment involved
in this electrical coupling.

The term Isyn in Eq. (1) models chemical coupling (chemical synapses) between
cells/compartments and is a sum of terms of the form

s · g · (V – V0), (4)
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one for each incoming synapse, where g and V0 are constants and s is the synaptic state
variable associated with this synapse. The synaptic state variables follow first order dy-
namics that depend on the presynaptic membrane potential. More specifically,

ds
dt

= –
s
τd

+
1 – s
τr

(
1 + tanh

Vpre

10

)
, (5)

where τd and τr are constants, Vpre is the membrane potential of the presynaptic cell (mea-
sured in mV), and tanh(·) denotes the hyperbolic tangent function.

The term Iext in Eq. (1) models an externally applied current. Similarly to Isyn, Iext will
also be a sum of currents of the form of Eq. (4), but the dynamics of the state variable s will
depend on an external potential Vext, instead of the membrane potential of a presynaptic
cell. That is,

ds
dt

= –
s
τd

+
1 – s
τr

(
1 + tanh

Vext

10

)
. (6)

In all cases Vext will be pulsatile and approximately periodic. More precisely, its dynam-
ics are described by

dVext

dt
= –70 – Vext + (25 – Vext) ·

∑

i

δ(t – ti), (7)

where ti are the times of the pulses, δ(·) denotes the Dirac delta function, Vext is measured
in mV and time in ms. The interpulse intervals ti+1 – ti are normally distributed, inde-
pendently for different i’s, with mean 1

f and standard deviation σ
f , where f is the nominal

frequency and σ ≥ 0 some constant (σ = 0 corresponding to an exactly periodic input).
The values for all constants and the functions m0(V), τx(V), x∞(V), αx(V), and βx(V) are

given in Appendix D.1.

3 Simulation results and reducing the model
3.1 Beta1 oscillation
Figure 2 shows the membrane potentials of the cells for a simulation of the network with-
out any input. A clear periodicity can be seen, with the RS, SI, and IB cells firing at 15 Hz,
but with the IB cell out of phase from the other two, and the FS cell firing at double the
rate, in phase with both the IB cell and the RS-SI pair. Also note that when the IB cell fires,
its axon bursts, i.e. it fires several spikes in a row.

A version of this network with multiple cells of each type is studied in [12] and it is
shown that the pattern of activity is as follows: 1) the RS cell fires and excites the FS and
SI cells, 2) the SI cell inhibits the IB cell, which later fires by rebound from inhibition, 3)
the IB excites the FS cell, 4) the FS cell inhibits the RS cell which later fires by rebound
from inhibition. It follows that the beta1 rhythm, in the absence of any input, relies on the
interaction and the phase relations between all types of cells involved in the model.

3.2 Response to oscillatory input
Since the beta1 rhythm relies on the interactions among all cells, we might expect that if
one of the cells was driven by an external input at a frequency other than beta1, that would
destroy the beta1 rhythm from the whole network. However, as shown in Fig. 3(b), this is
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Figure 2 Simulation of the network shown in Fig. 1. Each of the seven blue traces shows the membrane
potential of one cell/compartment. All cells fire periodically, with the RS, SI, and IB cells having a frequency of
about 15 Hz, and the SI and RS cells being in phase with each other. Parameter values used for all simulations
are given in Appendix D.1

Figure 3 (a) A pulsatile 40 Hz input is given to the RS cell. (b) Same as Fig. 2, but with the RS cell driven by the
input (red trace). The SI cell still fires in phase with the RS cell, but its firing rate remains in the beta1 range
(∼ 17 Hz). (c) Histogram of input phase (time from last pulse) when IB cell fires. For each bin, the height of the
bar is the number of IB bursts in the simulation having the property that the time elapsed from the last input
pulse to the first spike of the burst falls in that bin. The IB cell tends to fire more in certain phases of the
external input, showing that the latter is having an effect on the former. Here and in all statistical analysis
below, transients are ignored (see Appendix D.2)

not the case. Here, we give an excitatory input of frequency 40 Hz (a gamma input) to the
RS cell. While the RS cell fires in synchrony with the gamma input that is driving it, the
SI and IB cells continue to fire at a rate of about 15 Hz. This is similar to what was seen in
the larger network of [13].
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Figure 4 The reduced, 3-cell network. (a) Compared to the network of Fig. 3(a), we have removed the RS cell
and applied the 40 Hz input directly to the FS and SI cells, via synapses with the same dynamics as the RS→FS
and RS→SI synapses, respectively (see Sect. 2.2, Table 5). (b) Membrane potential of the three cells (for the IB
cell, the membrane potential of the axonal compartment is shown). The behavior is qualitatively the same as
in Fig. 3(b). (c) Histogram of input phase when the IB cell fires. The results are similar to Fig. 3(c)

Can it be the case that the input does not “reach” the SI and IB cells, so that in the
presence of the input they continue what they were doing without it? A closer look at
Fig. 3(b) shows that, at least for the SI cell, this is not the case, since it always fires in phase
with the input and in fact it fires three times per seven input cycles. The IB cell, on the
other hand, fires always out of phase, but its bursts are widely distributed with respect to
the input phase (Fig. 3(c)). Moreover, the number of input pulses between successive IB
bursts is not constant (Fig. 3(b)), although the cell avoids firing near those pulses. Finally,
note that the IB and SI cells fire alternately, which means that the IB cell also fires at 3/7
of the input frequency. All these observations suggest that there is a complex interaction
between the SI and IB cells and the input. Our goal is to understand this interaction. It will
turn out that both the SI and IB cell have surprising dynamical features.

3.3 The FS-SI-IB network
To simplify the analysis of our model, we get rid of some complexity that does not con-
tribute to the dynamics. For example, as seen in Fig. 3(b), the RS cell is acting as a relay
of the gamma input, with the RS cell firing immediately after receiving a gamma input
pulse. Thus, we may remove the cell and connect the gamma input directly to the RS cell’s
targets. This is illustrated in Fig. 4(a). Figures 4(b) and (c) show that the dynamics of this
simplified network are the same as the initial network; in particular both the SI and IB
cells fire three times per seven input cycles, they fire alternately, with the SI firing in phase
with the input, while the IB cell fires out of phase but in a wide range of phases.

We will return to this network in Sect. 5, but we first consider a further simplification.
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Figure 5 The reduced, 2-cell network. (a) Compared to the network in Fig. 4(a), we have replaced the IB cell
by an external oscillatory input of frequency 16.357 Hz (frequency chosen so that the ratio of the two input
frequencies is not a rational number with a small denominator). This input consists of a single short pulse at
the beginning of the period (see Sect. 2.2 and Appendix D.1); we do not model the bursting behavior of the IB
cell. The effect of the input onto the FS and SI cells is mediated through excitatory synapses with the same
dynamics as the IB→FS and IB→SI synapses before (see Sect. 2.2 and Appendix D.1). (b) Membrane
potentials of the cells for a simulation of the network shown in (a)

3.4 Further simplifications
3.4.1 The FS-SI network with two inputs
Recall from Fig. 3(b) (also evident in Fig. 4(b)) that, although the SI cell fires in phase
with the gamma input and the IB cell does not, they have the same firing rate and in fact
always fire alternately. It is then natural to ask whether this is a coincidence or if there is a
mechanism that makes the two cells have equal firing rates.

To answer this question, we would like to control one of the cells externally and look at
the response of the other. The IB cell exhibits the simpler behavior, despite the fact that
it is described by a more complicated model (four compartments instead of one). Indeed,
the IB cell fires approximately periodically, at a beta1 rate (Fig. 4(b)). Therefore, as a first
approximation, we substitute this cell by an oscillatory input of the same frequency. We
then vary the frequency of this input, to explore its effect on the other cells, in particular
on the SI cell.

Figure 5(a) shows the new reduced network, with the IB cell removed, together with
any connections to and from this cell; in its place we have added a beta1 oscillator, which
provides input to the other two cells. Note that now we have two sources of periodic input,
both given to both the FS and SI cells. The first (input-1) has a gamma frequency and is the
same as the one in Fig. 4, while the second (input-2) has a beta1 frequency and plays the
role of the IB cell of the network in Fig. 4. Figure 5(b) shows a simulation of this reduced
network. Notice that, similarly to Fig. 4, the SI cell fires in phase with input-1 and at a rate
equal to that of input-2.

Recall that we have substituted the IB cell by input-2, in order to be able to control
its frequency externally and check whether the equality between this frequency and the
frequency of the SI will continue to hold. Figure 6 shows that this is the case for a range
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Figure 6 Firing rate of the SI cell as a function of the input-2
frequency, for the network of Fig. 5. For a range of frequencies,
the firing rate of the SI cell is equal to the input-2 frequency.
Dashed line: diagonal

Figure 7 Input phases at which the cells of the network of Fig. 5 fire. (a) Probability of firing for FS and SI cells
immediately after an input-1 pulse, as a function of when in the input-2 period the input-1 pulse arrives. The
horizontal axis measures the time from the last input-2 pulse. The FS cell always fires immediately after an
input-1 pulse, unless this pulse occurs within about 5 ms after an input-2 pulse. The SI cell fires immediately
after an input-1 pulse, if and only if the last input-2 pulse was between approximately 16–41 ms. (b) Same as
(a), but with the roles of input-1 and input-2 reversed. The FS cell fires at every input-2 pulse, unless it arrives
within 5 ms after an input-1 pulse. In contrast, the SI cell never fires immediately after an input-2 pulse

of input-2 frequencies. This is very surprising, because the SI cell, when it fires, it fires in
response to input-1 spikes (Fig. 5(b), see also Fig. 7), and the two inputs are completely
independent. (The reason that the SI cell does not fire in response to input-2 spikes will
be explained shortly.)

In order to get some insight into the mechanism behind this phenomenon, we look at the
probability of the cells firing right after an input pulse, as a function of the other input’s
phase (Fig. 7). For the FS cell, the results are what we expect: it always fires when it is
excited by either input, except if the phase of the other input is small, implying that the
FS cell has very recently fired in response to that input (and hence is still inhibited by its
autapse—see Sect. 3). For the SI cell, there are a few interesting observations to make: first,
the cell never fires in response to input-2; second, there is a considerable amount of time
at the beginning of the input-2 cycle during which the SI cell does not fire in response to
input-1, despite the fact that it has not fired at the beginning of the cycle (in response to
input-2); and third, the SI cell also never fires in response to input-1 for large phases of
input-2, meaning in the later part of the input-2 cycle. Finally, the SI cell fires on every
input-1 pulse that falls inside the interval of input-2 phases that it is allowed to fire (which
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can be surprising at first sight, since it cannot fire on consecutive input-1 cycles and the
two inputs are unrelated).

The first two of these observations can be easily explained as follows: due to the differ-
ent dynamics of the two cells, as well as the larger rise time constant of the input-2→SI
synapse compared to the input-2→FS synapse (IB→SI and IB→FS synapses in the initial
network—see Tables 3, 5), when an input-2 pulse arrives, the FS cell fires first and inhibits
the SI cell, preventing it from firing. This inhibition effectively lasts about 16 ms and it
accounts for the lack of SI spikes both in response to input-2 (Fig. 7(b)) and near the be-
ginning of the input-2 cycle, in response to input-1 (Fig. 7(a)). The reason why there are no
SI spikes near the end of the input-2 cycle (Fig. 7(a)) is more complex and will be answered
in Sect. 4.

3.4.2 Robustness to input timing variation
So far we have been considering inputs that are exactly periodic, meaning that every input
pulse is separated from the previous one by exactly the same amount of time. But oscilla-
tions in the brain are rarely that regular [22]. It is therefore important to check that these
results are robust to noise in the input timing.

Another reason why we may consider deviations of the input from a purely periodic
signal is because information might be encoded in the timing of the pulses [23–25]. Since
the SI cell in our network fires in phase with input-1, it can relay information encoded in
the timing of this input (see Discussion for an application to signal processing and time-
division multiplexing). But again, for this we would need to make sure that the SI cell fires
in phase with input-1 even when the latter is not exactly periodic. Figure 8 shows that our
results continue to hold even if the input periods deviate from the nominal value by about
5%. The amount of robustness naturally depends on the parameters of the model. The
analysis of Sect. 4, in particular Theorem 4.1, gives a bound on the variability of input-2
that is a sufficient condition for the results to hold, if input-1 is exactly periodic.

3.4.3 SI cell with two inputs
Recall from the discussion in Sect. 3.4.1 that the FS cell fires in response to input-2 and
it inhibits the SI cell, thus preventing the latter from firing in response to the excitation it
gets at the same time from input-2, as well as in response to any input-1 pulses for about
16 ms. But it does not prevent the SI cell from firing in response to input-1 otherwise. In
other words, from the point of view of the SI cell, the role of the FS cell is only to effec-
tively convert the excitatory input-2 into an inhibitory input for the SI cell. This suggests
a further simplification in our network, if we want to focus on the SI cell: removing the
FS cell and making input-2 an inhibitory input, as shown in Fig. 9(a). Since the inhibition
was previously mediated by the FS→SI synapse, in this network we have also changed the
dynamics of the input-2→SI synapse to mimic the dynamics of the FS→SI synapse in the
initial network (see Appendix D.1). Note that this means that we are ignoring completely
the excitatory effect of the input-2→SI synapse that was present in the network of Fig. 5.

Figure 9(b) shows a simulation of the single-cell network of Fig. 9(a). Figure 9(c) and
(d) are analogous to Figs. 7(a) and 6, respectively. All the essential features of the SI cell
behavior are the same as before, in particular the fact that it fires only inside an interval
of input-2 phases and for a range of input-2 frequencies the SI firing rate is equal to this
frequency. Thus, the mechanism that allows this behavior is still present in this simpler
network.
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Figure 8 The relations between the SI cell and the inputs continue to hold even if the inputs are not exactly
periodic. Compared to Figs. 5(b), 6 and 7, the interpulse intervals for each input are now random,
independent of one another. Their distribution is chosen to be normal with mean equal to the nominal
period (here 40 Hz for input-1 and 16.357 Hz for input-2), and standard deviation equal to 5% of the mean. (a)
The SI cell still fires in phase with input-1, at a firing rate equal to that of input-2. (b) As we vary the input-2
frequency, the SI firing rate follows closely. Dashed line: diagonal. (c), (d) The FS cell fires in response to either
input, while the SI cell fires only in response to input-1 pulses, and as long as these pulses arrive inside an
interval of time after an input-2 pulse (see also caption of Fig. 7)

3.5 Abstract model
Let us review what observations in the behavior of the SI cell we have and what we have
not been able to explain so far. Based on the network topology and the dynamics of the
system, we have been able to explain the following properties of the SI cell:

1. When it fires, it fires in phase with input-1.
2. It does not fire at two consecutive input-1 pulses.
3. It does not fire near the beginning of the input-2 period.

The properties that do not immediately follow are the following:
4. It does not fire near the end of the input-2 period.
5. It fires on every input-1 pulse that falls in the “allowed” interval of input-2 phases.
6. It fires exactly once per input-2 period.

Is it possible that properties 4–6 are consequences of properties 1–3 (perhaps together
with some quantitative restrictions on the parameters)? If that were the case, then we
should be able to reproduce observations 4–6 in an idealized model that is built to ex-
plicitly satisfy properties 1–3 and nothing more. Note, however, that properties 2 and 3
do not specify exactly on which input-1 pulses the cell fires; they merely give conditions
under which the cell is prevented from firing. We will thus make the following stronger
assumption:

7. The SI cell fires on every input-1 pulse that does not fall in the cases of properties 2
and 3.

The abstract model will thus be as follows: Input-1 pulses occur at integer multiples of
T1 and input-2 pulses occur at integer multiples of T2 (where T1 and T2 correspond to
the periods of the two inputs). For each input-1 pulse (multiple of T1), we say that “the
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Figure 9 A simpler model can exhibit similar behavior to that of the FS-SI network. (a) Network schematic.
The SI cell and input-1 are identical to the ones in Fig. 5(a). Input-2 is now inhibitory: the synapse from input-2
onto SI has the dynamics of the FS→SI synapse of the network in Fig. 5(a). (b) A simulation of the network in
(a). Input frequencies are the same as in Fig. 5(b). The SI cell behaves as in Fig. 5(b), firing in phase with input-1,
alternately with input-2. (c) Probability of the SI cell firing immediately after an input-1 pulse, as a function of
the input-2 phase (time from last input-2 pulse). As in Fig. 7(a), the SI cell fires immediately after an input-1
pulse, if and only if the time since the last input-2 pulse lies in an interval of length 25 ms. (d) Firing rate of the
SI cell as a function of the input-2 frequency. As in Fig. 6, the cell’s frequency follows that of input-2, for a
range of frequencies. Small quantitative differences with the FS-SI network are due to differences in the spike
form of input-2 compared to the FS cell, and to the lack of the excitatory synapse from input-2. Dashed line in
(d): diagonal

cell fires” if it did not fire in the previous input-1 pulse and the time elapsed from the last
input-2 pulse is at least equal to some constant c, which corresponds to the effective time
of inhibition from input-2 (see property 3).

Figure 10 confirms what was suggested in the previous paragraph: for the chosen values
of f1 = 1/T1 and c and for an interval of values for f2, this abstract model also satisfies
properties 4–6. We thus suggest that there is no extra property in the dynamics of the cell,
the synapses, or the inputs that is required for properties 4–6; as long as properties 1–3,
assumption 7, and perhaps certain restrictions on f1, f2 and c are satisfied, then properties
4–6 should also be satisfied. In the next section we show that this is the case. We also note
that conditions 1–3 and 7 can be easily satisfied by a leaky integrate-and-fire (IF) neuron
with an inhibitory autapse and two inputs. Therefore, we should be able to reproduce
the observed behavior with an IF neuron in place of the SI cell. This is demonstrated in
Appendix C.

4 Mathematical results on SI firing pattern mechanism
In this section we give mathematical results regarding the behavior of the SI cell. In par-
ticular we shall demonstrate what was suggested near the end of the last section: that
properties 4–6 in Fig. 10 follow from properties 1–3 and 7, given certain restrictions on
the system and input parameters.
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Figure 10 An abstract mathematical model that reproduces the behavior of the SI cell. (a) The red lines mark
multiples of T1 = 25 ms (frequency 40 Hz), while green lines mark multiples of T2 = 61.14 ms (16.357 Hz). At
each red line we say that the hypothetical cell fires (and draw a blue line) if it did not fire on the previous red
line and the time elapsed from the last green line is at least c = 17 ms. Such a system by construction satisfies
conditions 1–3 and 7 of Sect. 3.5. It turns out that it also satisfies properties 4–6, as shown here and in (b). (b)
Probability of the cell firing immediately after an input-1 pulse, as a function of the input-2 phase (time from
last input-2 pulse). As in Figs. 7(a) and 9(c), the cell fires immediately after an input-1 pulse, if and only if the
time since the last input-2 pulse lies in an interval of length 25 ms. (c) Firing rate of the cell as a function of the
input-2 frequency. As in Figs. 6 and 9(d), the cell’s frequency follows that of input-2, for a range of frequencies.
Dashed line in (c): diagonal

4.1 Main results on SI firing pattern
Let us begin with a semi-rigorous argument of why the SI cell fires only in an interval
of input-2 phases. The restrictions we need on T1, T2 and c are that T2 > 2T1 and c ∈
[T2 – 2T1, T2 – T1). For example, if T2 = 65 ms and T1 = 25 ms, then c ∈ [15, 40). Note that
this condition is satisfied in the simulations of Sects. 3.4 and 3.5.

The mechanism can be easily explained in terms of the phase of input-2 at successive
SI cell spikes. For convenience, let us measure input-2 phase in time units, from 0 to T2.
Suppose that an SI spike occurs at input-2 phase between c and c+T1 (see Fig. 11). When is
the next possible time for the SI cell to fire? Certainly not in the same input-2 period, since
T2 < c + 2T1 and the SI spikes have to be separated by at least 2T1. Neither is it possible
for it to fire between 0 and c of the next input-2 period. The first possible time for the SI
cell to fire again is at the first input-1 pulse after c, i.e. the unique input-1 pulse that falls
between c and c + T1 in the next input-2 period. It will fire as long as at least two input-1
cycles have passed from the previous spike, which is guaranteed by the fact that T2 > 2T1.
In other words, if the SI cell fires at input-2 phase between c and c + T1, then it will fire
again at the unique input-1 pulse that falls between phase c and c + T1 in the next input-2
period.

Notice that the above conclusion (proven in a more general setting as Theorem 4.1) and
a simple inductive argument easily explains properties 4–6 of the SI cell from Sect. 3.5, as
long as there is at least one SI spike at an input-2 phase between [c, c + T1). It turns out
(see Theorem 4.1) that this occurs after at most K = �T2–(c+T1)

T2–2T1
	 + 1 input-2 cycles after
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Figure 11 Illustration of the reason for the SI firing pattern. The figure shows two periods of input-2, with
pulses coming in at O and O′ . The SI cell is inhibited and cannot fire in the interval OC (and O′C′), of length c.
Point A lies a distance T1 to the right of C , while points C′ and A′ are the images of C and A in the second
period. Suppose the SI cell fires at a phase inside the interval CA. Since at least 2T1 time must pass until it can
fire again, and by assumption CO′ is less than 2T1, the SI cell cannot fire again in the same period. It also
cannot fire in the interval O′C′ , so it will fire again at the first input-1 pulse after C′ . Since successive input-1
pulses are separated by T1, the next SI spike will necessarily fall in the interval C′A′ . This demonstrates that if
the SI cell fires at a phase between C and A in one period, it will also do so in all subsequent periods

both inputs are active, where �·	 denotes the ceiling function. For the values of T1, T2, and
c in the simulations of Sect. 3.4 (25, 61.13, and 16 ms, respectively), we get K = 3. This
implies that the transient interval is short, which is also evident in all of the simulations
above. In Theorem 4.1 it is also shown that the SI cell fires exactly once per input-2 period
(regardless of input-2 phase) as soon as both inputs have been activated. This can also be
seen to be true in our simulations (Figs. 5(b), 8 and 9(b)).

The version of the problem considered in Theorem 4.1 is more general in two ways: first,
instead of assuming that at least two input-1 cycles have to pass between successive spikes
of the SI cell, we generalize this and say that there is some m ∈ {2, 3, . . .}, such that at least
m input-1 cycles have to pass between successive SI spikes; second, we do not assume that
input-2 is strictly periodic, but we allow the interpulse interval to vary from cycle to cycle.
Note that the last point is an important generalization, because in the initial network the
IB cell was not exactly periodic.

Let us denote by sn, tn, and un the time of the nth input-1 pulse, nth input-2 pulse, and nth
SI spike, respectively. We do not assume anything about when the two inputs begin relative
to each other, but our results refer to intervals of time after both inputs have started. We
choose an arbitrary SI spike (occurring at some input-1 pulse and after input-2 has started)
to give the index 1 (u1). We index the input-1 pulses so that s1 = u1 and the input-2 pulses
so that u1 ∈ [t1, t2). Note that, since SI spikes do not occur in [t1, t1 + c), we automatically
get u1 ∈ [t1 + c, t2). Without loss of generality, we set t1 = 0.

Since we do not assume the intervals between input-2 pulses to be constant, there is no
such thing as T2, but an interpulse interval tn+1 – tn for each n. Thus the assumption T2 >
2T1 is modified to tn+1 – tn > m ·T1 for each n ∈N (recall that m is the minimum number of
input-1 cycles between successive SI spikes). Also, the assumption c ∈ [T2 – 2T1, T2 – T1)
now becomes

sup
n∈N

{tn+1 – tn} – m · T1 ≤ c < inf
n∈N

{tn+1 – tn} – T1. (8)

Note that for such a c to exist, we must have

sup
n∈N

{tn+1 – tn} – inf
n∈N

{tn+1 – tn} < (m – 1) · T1, (9)

which poses a bound for the variability of the input-2 period.
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For input-1, since we are assuming that it is periodic with period T1, we have sn = s1 +
(n – 1) · T1 (with s1 as defined above). To describe the times of the SI spikes un, it will be
useful to introduce some notation for the “time since the last input-2 spike”. For x ≥ 0 we
define

x = x – max
n∈N

{tn : tn ≤ x}. (10)

Then, for n ≥ 2, un is equal to the smallest sl that is larger than or equal to un–1 + m · T1

and such that sl ≥ c. We now state the theorem.

Theorem 4.1 Let m ∈N with m ≥ 2, T1, c > 0, and {tn} a sequence with t1 = 0 and satisfy-
ing

inf
n∈N

{tn+1 – tn} > max{m · T1, c + T1} and

sup
n∈N

{tn+1 – tn} ≤ m · T1 + c.
(11)

Let u1 = s1 ∈ [c, t2) and for n ≥ 2 define sn = s1 + (n – 1) · T1 and

un = min
l∈N

{sl : sl ≥ un–1 + m · T1 and sl ≥ c}. (12)

Also define

K =
⌈

supn∈N{tn+1 – tn} – (c + T1)
infn∈N{tn+1 – tn} – m · T1

⌉
+ 1. (13)

We have the following:
(a) For any n ∈N, un ∈ [tn + c, tn+1).
(b) For any n ≥ K , un ∈ [c, c + T1).
(c) For any l ∈N such that sl ≥ tK , sl is equal to some un if and only if sl ∈ [c, c + T1).

Remark 4.2 Using Eq. (9), we get

K ≤
⌈

infn∈N{tn+1 – tn} – c + (m – 2) · T1

infn∈N{tn+1 – tn} – m · T1

⌉
+ 1

=
⌈

2 · infn∈N{tn+1 – tn} – c – 2 · T1

infn∈N{tn+1 – tn} – m · T1

⌉

≤
⌈

2
1 – m·T1

infn∈N{tn+1–tn}

⌉
. (14)

Hence, intuitively, K is not too large as long as infn∈N{tn+1 – tn} is not too close to m · T1.

In terms of our network, part (a) of Theorem 4.1 says that there is one SI spike per input-
2 period. Part (b) says that after some initial input-2 periods, all SI spikes fall at input-2
phase between c and c + T1. Part (c) says that (after a few initial input-2 periods) the SI
cell fires in response to an input-1 pulse if and only if this pulse falls at an input-2 phase
between c and c + T1. These results correspond 1–1 to properties 4–6 of Fig. 10.
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We prove Theorem 4.1 in Appendix A. In Appendix B we give an application to a
number-theoretic result related to Weyl’s equidistribution theorem [26, pp. 105–113].

4.2 Allowed range for f1 and f2

As noted in the previous section, allowing the input-2 interpulse intervals to have a vary-
ing size is important for applying the results of the previous section to the initial network,
where the IB cell was not exactly periodic (see Sect. 5.1). But the version of the network
with two inputs into one cell has some interest on its own as well. Among other things,
it shows how a cell can be made to fire in phase with one input, but with its firing rate
controlled by another, independent input. Here we take a closer look at the range of fre-
quencies of the two inputs for which the conditions of Theorem 4.1 hold. To do this, we
will assume that input-2 is periodic, just like input-1, meaning that tn+1 – tn is constant,
equal to some T2 > 0. In this case, Theorem 4.1 gives sufficient conditions, in terms of m,
c, T1, and T2, for the SI cell to fire once per input-2 cycle (Eq. (11)), and in particular to
have a frequency (average firing rate) equal to f2 = 1

T2
. We can recast Eq. (11) in terms of

the frequencies of the two inputs to get

f1

f1 · c + m
≤ f2 < min

{
f1

m
,

f1

f1 · c + 1

}
. (15)

We note that neither m nor c appear explicitly as parameters in our model, nor can they
be analytically calculated; however, they can be determined from the simulation results.
For example, for the parameters used in Fig. 5(b), we clearly see that the SI cell spikes are
sometimes separated by two input-1 cycles, but never by less than two cycles, so m (the
minimum number of input-1 cycles that must separate any two SI spikes) is equal to 2.
Also, from Fig. 7(a) we see that the SI cell does not fire in the first 16 ms of the input-2
cycle, so c ≈ 0.016 (in seconds). For these values of m and c, and with f1 = 40 Hz, Eq. (15)
becomes

15.15 ≈ 20
20 · 0.016 + 2

≤ f2 < 20. (16)

Figure 12(a) demonstrates numerically that the conclusion of Theorem 4.1 indeed holds
when f2 lies in the predicted range for the above and other sets of parameter values. Note
that no statement is made for values of f2 outside the above range.

Similarly, we could solve Eq. (11) for f1 to get

max

{
m · f2,

f2

1 – c · f2

}
< f1 ≤ m · f2

1 – c · f2
(17)

However, note that m will naturally depend on f1, because changing the frequency of
input-1 will affect the number of input-1 cycles that the SI cell has to skip between its
successive spikes. Specifically, we expect m to increase as f1 increases, so that the actual
set of frequencies f1 for which Eq. (17) holds can be very different from the range suggested
for any particular value of m. Figure 12(b) shows fSI as a function of f1 for various choices
of other parameters.

Finally, we note that none of the above conditions involves absolute bounds on the al-
lowed frequencies. For instance, multiplying all of the parameters f1, f2, m, and c by the
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Figure 12 Numerical results for the range of validity of fSI = f2. (a) As in Fig. 6, we plot the firing rate of the SI
cell as a function of the input-2 frequency f2, but for a variety of other parameter values. The range of f2 for
which Theorem 4.1 guarantees that fSI = f2 is given by Eq. (15). For all three conditions shown in the figure
(input-1 frequency 40 Hz, 45 Hz, and 40 Hz with a weaker FS→SI synapse—see Appendix D.1) we havem = 2.
Under the first two conditions we have c ≈ 0.016 (estimated from simulations, see text), and in the third
condition c ≈ 0.01325, thus the range that Eq. (15) predicts fSI = f2 should hold is f2 ∈ [15.15, 20) for the first
condition, f2 ∈ [16.54, 22.5) for the second, and f2 ∈ [15.81, 20) for the third condition shown. The simulation
results show that in each case fSI = f2 indeed holds at least in the corresponding range, verifying the
theoretical predictions. Dashed gray line: diagonal. (b) The SI firing rate as a function of input-1 frequency f1.
The range of f1 for which fSI = f2 is predicted to hold is given by Eq. (17), but the parameterm in general
depends on f1. In all three conditions shown here (input-2 frequency 16.357 Hz, 18.357 Hz, and 16.357 Hz
with a weaker FS→SI synapse—see Appendix D.1) the equality fSI = f2 holds for a large range of input-1
frequencies

same scalar has no effect on the validity of these conditions. In other words, these results
are applicable to inputs of very different frequencies, as long as there are matching mech-
anisms that set m and c, i.e. how often the SI cell can fire and for how much time after an
input-2 pulse it cannot fire. This is important, since brain rhythms can range in frequency
from less than 1 Hz to more than 100 Hz [1].

4.3 Allowing SI to fire on every cycle
One of the assumptions of Theorem 4.1 is that m ≥ 2, meaning that the number of input-1
cycles that have to elapse between successive SI spikes is at least two. But it says nothing
about the case m = 1, that is, if the SI cell could fire on every input-1 cycle. Of course, in
this case the condition c + T1 < tn+1 – tn ≤ c + m · T1 cannot be satisfied. If we ignore this
condition and set m = 1, then the dynamics are qualitatively different. We show this in the
case that tn+1 – tn is constant, equal to T2 > 0. Note that in this case Theorem 4.1 implies
that the SI firing rate is equal to f2 = 1/T2, since the SI cell fires once per input-2 period.
In contrast, here we show that for m = 1, the SI firing rate is f1 · (1 – c · f2). Regarding the
notation introduced in Eq. (10), note that here, since tn = (n – 1) · T2 for any n ∈ N, we see
that, for any x ≥ 0, x = x mod T2.

Theorem 4.3 Let T2 > T1 > 0, c ∈ [0, T2), and u1 = s1 ∈ [c, T2). For n ≥ 2, define sn = (n –
1) · T1 and

un = min
l∈N

{sl : sl > un–1 and sl ≥ c}. (18)

Then we have the following two cases:
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Figure 13 Numerical verification of the result of Theorem 4.3.
Compared to the parameters used in Fig. 12(b), we have doubled the
input-1 strength, so that the SI cell can now fire on every input-1
cycle. The SI firing rate is now approximately a linear function of the
input-1 frequency. Dashed line: diagonal

• If T1
T2

/∈ Q, then limn→∞ n
un

= 1
T1

· (1 – c
T2

).
• If T1

T2
= p

q with p, q relatively prime positive integers, then
| limn→∞ n

un
– 1

T1
· (1 – c

T2
)| < 1

q·T1
.

The proof is given in Appendix A. Theorem 4.3 says that, if f2 is kept constant, then
fSI := limn→∞ n

un
will vary approximately linearly with f1 (Fig. 13). This is in sharp contrast

with Theorem 4.1 where, for a range of values for f2, fSI did not depend on f1 and was equal
to f2 (see also Fig. 12(b)). We therefore see that the fact that the SI cell could not fire as
fast as the input-1 pulses was essential in Theorem 4.1.

5 The FS-SI-IB network
5.1 Transfer of results to the FS-SI-IB network
Our initial motivation for studying the FS-SI network of Sect. 3.4.1, which led us to the
analysis of the abstract model of Sects. 3.5 and 4.1, was a question about the FS-SI-IB
network of Fig. 4, namely what mechanism makes the IB and SI cells fire alternately. In the
previous section, and in particular in Theorem 4.1, we answered this same question for
input-2 and the SI cell in the FS-SI network. Recall that input-2 was introduced in order to
mimic the effect of the IB cell in the FS-SI-IB network, so it is natural to ask whether the
same mechanism as the one suggested by Theorem 4.1 is at work between the IB and SI
cells in the FS-SI-IB network. In other words, is the abstract model of Sect. 3.5, 4.1 a good
model of the interactions between cells in the FS-SI-IB network, if we substitute input-2
with the IB cell?

What Theorem 4.1 shows is essentially that, in a system in which properties 1–3 and
7 of Sect. 3.5 hold, as well as some quantitative assumptions on the parameters given by
Eq. (11), properties 4–6 will also hold. From Figs. 4 and 14(a) it is clear that, at least for
the set of parameters used, analogues of properties 1–3 and 7 do hold: the SI cell, when
it fires, it fires in phase with the input (within 1–2 ms); it does not fire at two consecutive
input cycles; it does not fire shortly after an IB burst; and it fires at all input pulses that do
not fall in the last two cases.

To check the quantitative assumptions of Eq. (11), we need first to determine the pa-
rameters m and c for the FS-SI-IB network. Similarly to what we did in Sect. 4.2, we may
estimate these parameters by looking at Figs. 4(b) and 14(a). Here we get m = 2 (minimum
number of input cycles between successive SI spikes) and c = 11 ms (time after an IB burst
that the SI cell cannot fire). Given also that T1 = 25 ms, Eq. (11) becomes

50 ms ≤ tn+1 – tn ≤ 61 ms. (19)
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Figure 14 Statistics for the simulation of Fig. 4(b). (a) Histogram of the time elapsed from the last IB cell burst
at the time when the SI cell fires. The mean IB frequency was 17.15 Hz and between any two successive IB
bursts there was always a unique SI spike. The SI cell fires exclusively inside an interval of phases of the IB cell.
It also fires on every input pulse (after about 1 ms) that falls in this interval (result not shown). This is similar to
Fig. 7(a), with the IB cell in place of input-2. (b) Histogram of IB interburst interval length

Figure 14(b) shows that the size of the interburst interval of the IB cell is between 55 and
64 ms. Although this range is not entirely inside the bounds of Eq. (19), it is reasonably
close (note that Eq. (19) is a sufficient condition, not a necessary one), so we have good
reason to believe that the mechanism suggested by Theorem 4.1 is what makes the SI cell
fire alternately with the IB cell.

5.2 Non-independence of IB cell
A qualitative difference between input-2 in the FS-SI network and the IB cell in the FS-SI-
IB network is that input-2 is controlled externally, while the IB cell is part of the network.
The success of the FS-SI network to reproduce the behavior of the SI cell relative to the
IB cell, with the IB cell substituted by an externally controlled input, might lead some to
believe that even in the FS-SI-IB network the interaction is mainly one-way, namely from
the IB to the SI cell, while the IB cell is unaffected by the rest of the network (note that
the only synaptic input the IB cell receives is from the SI cell). But this is not quite true;
we have already seen that the IB cell has preferred input-1 phases for firing (Fig. 4(c)).
Figure 15 shows that even the firing rate of the IB cell depends on the input frequency,
with the former often mode-lockingb to the latter. Since in the FS-SI-IB network input-1
is the only input, in the figures and text below we refer to it simply as ‘input’.

Figure 15 raises a question: If the spike times of the SI cell are completely determined
by the bursting times of the IB cell (given some fixed input), and the only possible effect
of the input on the IB cell is through the SI cell, how can the IB cell mode-lock to the
input? Clearly, the analysis of the FS-SI network, where the IB cell was substituted by an
externally controlled input, fails to explain this. The next two sections will answer this
question.

5.3 Response of IB cell to SI spikes explains mode-locking
Since the input effect on the IB cell is mediated by the SI cell, we can gain some insight
on how the input affects the IB cell by looking at how the timing of the SI cell affects the
interburst interval of the IB cell. This is shown in Fig. 16. In some cases (Fig. 16(b)), the
timing of the last SI spike almost completely determines the interburst interval length of
the IB cell. In other cases (Fig. 16(c)), the size of the interburst interval can take multiple
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Figure 15 The IB firing rate depends on the input frequency. (a) Ratio of input frequency and IB cell firing
(bursting) rate, as a function of input frequency. The IB firing rate often locks to a rational multiple of the input
frequency (mode-locking). (b) Membrane potential of the various cells as a function of time, but time is taken
modulo five input periods (here input frequency is 42.5 Hz). On each line, 34 traces are superimposed,
excluding the transients. All traces fall on top of each other, showing that all cells, including the IB cell, fire
periodically, with period equal to five times the input period. In both (a) and (b), the input is exactly periodic
(no variation in the interpulse interval—see Sect. 2.2)

Figure 16 The IB burst timing depends on the SI spike timing. (a) Definition of variables plotted in (b), (c).
IB-SI denotes the time elapsed from the beginning of an IB burst until the next SI spike. IB-IB denotes the time
from the beginning of one IB burst until the beginning of the next one. (b) Interburst interval of the IB cell as a
function of the timing of the (unique) SI spike that falls inside the interval, for a simulation of the FS-SI-IB
network with 51 Hz input. The timing of the IB cell (“IB-IB”) seems to be approximately determined by the
timing of the SI spike (“IB-SI”). In this simulation the SI cell fires only between approximately 16 and 30 ms. (c)
Same as (b), for 62 Hz input (and slightly faster h-current kinetics—see Appendix D.1). Almost all data points
fall approximately on one of three lines, suggesting that the timing of the IB cell depends on the SI timing and
some other variable that takes finitely many values

values for the same SI spike timing relative to the last IB burst. We postpone the question
of why we get such responses to Sect. 5.4. Here we consider the consequences of such a
response, in particular how it can lead to the mode-locking seen in Fig. 15.

For convenience, in what follows we will call “IB phase” the time elapsed from the be-
ginning of the last IB burst. Let us consider Fig. 16(b). The essential feature in this graph is
that, given the IB phase when the SI cell spikes, we know the size of the interburst interval
of the IB cell. Also, an increase in phase results in an increase in the interburst interval, but
to a smaller extent.c In the argument below we thus assume that there is some function
TIB(φ), defined in a suitable interval, that gives the size of the interburst interval of the
IB cell when the SI cell spikes at IB phase φ. Moreover, this function is differentiable and
satisfies 0 < dTIB

dφ
< 1.

We first claim that knowing the TIB(φ) for a given φ, together with the input period T1,
also determines the size of the SI interspike interval. Recall that the size of the SI interspike
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interval is always an integer multiple of the input period T1, so

TSI = k · T1, (20)

where k is determined by T1 and by when the IB cell fires relative to the SI cell. Note also
that, if we know φ (i.e. when the SI cell fires relative to the IB cell) and consequently TIB(φ)
(the IB interburst interval length), then we know when the IB cell fires next, relative to the
SI cell. Thus, k becomes a function of T1 and φ, which allows us to write k = k(T1,φ) and,
by Eq. (20), TSI = TSI(T1,φ) = T1 ·k(T1,φ). Note also that by the analysis in Sects. 4 and 5.1,
small differences in either the IB timing or the input timing do not result in differences in
k, so k(T1,φ) is a step function, constant for intervals of values of its two arguments.

Suppose now that for some T1, there is some φ∗ such that the periods of the IB and SI
cells become equal, that is,

TIB
(
φ∗) = TSI

(
T1,φ∗) = T1 · k

(
T1,φ∗). (21)

For example, given the graph of Fig. 16(b), this can happen if for T1 = 30 ms and φ ≈ 25 ms,
k = 2. We claim that Eq. (21) implies that stable 1 : k mode-locked solutions exist for an
interval of input periods T1.

First notice that Eq. (21) implies that there is a periodic orbit where both cells fire once
per k = k(T1,φ∗) input cycles and the SI cell fires time φ∗ after the IB cell. Moreover, since
k(T1,φ) is constant for small changes in both arguments (in particular continuous) and
dTIB
dφ


= 0, by the inverse function theorem we see that the above equation has a solution
φ∗(T1) for an interval of values of T1, with the same k. Therefore, for an interval of values
of T1, we get a periodic pattern where both cells fire once per k input cycles.

But is this periodic pattern stable? For a given T1, suppose that the SI cell fires at a phase
φ 
= φ∗ = φ∗(T1). At the next cycle it will fire at

φ′ = φ + TSI(T1,φ) – TIB(φ). (22)

As explained above, small differences in phase do not lead to different k, so we have
TSI(T1,φ) = TSI(T1,φ∗) = TIB(φ∗). Therefore,

φ′ = φ + TIB
(
φ∗) – TIB(φ) ≈ φ –

dTIB

dφ

∣
∣∣∣
φ∗

· (φ – φ∗). (23)

Since 0 < dTIB
dφ

|φ∗ < 1, we see that the phase will be pushed towards equilibrium with rate
dTIB
dφ

|φ∗ , which shows linear stability of the solution.
To summarize, we have shown that if we have a pair T1,φ such that Eq. (21) holds and

0 < dTIB
dφ

< 1, then we get a range of input periods T1 for which stable 1 : k mode-locked
solutions exist. This justifies the existence of flat parts in the graph of Fig. 15(a) at integer
values of the vertical axis. A similar but more involved argument can be made for p : q
mode-locking with p > 1.

5.3.1 IB cell may mode-lock without phase-locking to the input
Notice that in the above argument, we did not merely show mode-locking (firing once
per k cycles), but also phase-locking (firing at a fixed input phase) of both cells. But these
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Figure 17 The IB cell may mode-lock without phase-locking to the input. (a) Membrane potential of the
various cells, as a function of time modulo seven input periods (see also Fig. 15(b)). Here input frequency is
62.1 Hz. The SI cell fires periodically, twice in every seven input periods. The FS and IB cells fire only
approximately periodically. There is always a single IB burst per SI interspike interval. In particular, the IB cell
always bursts twice in every seven input cycles. (b) Histogram of IB interburst interval length. (c) Input phase
(time from last input pulse) when the IB cell fires

two phenomena do not necessarily have to occur together; Fig. 17 shows an example of
mode-locking without phase-locking: both the IB and SI cells fire consistently 2 times per
7 input cycles, but without the IB cell firing at fixed phases of the input.

This can be initially surprising, since the stability argument made above (Eq. (23)) can
be adapted to show that if the SI cell has a periodic firing pattern (as it does in Fig. 17(a))
and the size of the interburst interval of the IB cell is given by a map as in Fig. 16(b), then
the IB cell should also converge to a periodic firing pattern with the same period. Indeed,
suppose first that TSI is constant (i.e. we know that the SI cell interspike interval is always
the same). Then from Eq. (22) and the fact that there is one SI spike per IB interburst
interval it follows that

φn+1 = f (φn), (24)

where f : [0, a] → [0, a] is defined by

f (x) = x – TSI – TIB(x), (25)

and a is a bound on the IB interburst interval length. Since we are assuming that 0 < dTIB
dx <

1, we get –1 < f ′(x) < 0, hence f has a unique, stable fixed point x0 that is globally attracting,
and limn→∞ φn → x0.
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The above argument can be generalized to the case where TSI is periodic with period p,
by considering the map φn �→ φn+p. Therefore, in the absence of noise, we would expect
the IB phase relative to the input to converge to a finite set of values (of cardinality p),
contrary to what is illustrated in Fig. 17.

The difference in Fig. 17 is that the relation between the SI spike timing and the length of
the IB interburst interval is not of the type shown in Fig. 16(b), but like in Fig. 16(c). This
means that for the same SI timing, the size of the IB interburst interval can take values that
differ from each other by up to 10 ms, and which seem to align approximately with three
distinct curves. As we will see in Sect. 5.4.3, small deviations from the periodic trajectory
can result in ‘jumping’ to a different curve, thus the stability argument fails. This means
that not only are we less likely to get a mode-locked solution, but even if we do get one, it
does not have to be phase-locked.

5.4 State reset explains response of IB cell to SI spikes
In Sect. 5.3 we saw that the fact that the size of the interburst interval of the IB cell is
approximately determined by the timing of the SI spike, together with the behavior of the
SI cell that we studied in detail in Sect. 4, can help to explain the fact that the two cells
fire alternately and often they mode-lock to a rational multiple of the input frequency. But
what is it that gives rise to the IB cell’s response in Fig. 16? In particular, why does the
timing of the SI spike in a given period alone determine (perhaps up to a finite number of
possibilities) the size of the IB interburst interval? This section deals with this question.

5.4.1 IB cell dynamics and interburst interval
Let X be the state space of the IB cell. Note that if we include the synaptic variables of the
SI→IB and the a → db (IB axon to basal dendrite) synapses in the state of the IB cell, then
the system evolves autonomously, except when the SI cell fires, in which case the SI cell
has a very brief effect on the state variable of the SI→IB synapse. We will assume that this
effect is instantaneous, so that the state of the cell may change discontinuously at the time
of the SI spike, but evolves autonomously afterwards. That is, the dynamics of the IB cell
between SI spikes are described by a one-parameter semi-group φt : X → X, and the effect
of an SI spike is described by a map h : X → X which is applied at the time of the spike.

Let xt ∈ X denote the state of the IB cell, at time t after a given burst (with respect to
burst initiation). If we denote by t′ and t′′ the times of the first and second SI spikes after
that IB burst, respectively, then

xt = φt–s(xs), for any s, t, such that 0 ≤ s ≤ t < t′, (26)

xt = φt–t′
(
h
(
φt′–s(xs)

))
, for any s, t, such that 0 ≤ s < t′ ≤ t < t′′. (27)

The cell will burst again when its state enters some subset A ⊂ X of the state space. In
symbols, the length τ of the interburst interval is

τ = inf{t ≥ t0 : xt ∈ A}, (28)

where t0 > 0 can be chosen to be the maximum possible duration of an IB burst, assuming
that such duration is bounded. Given that the SI cell fires exactly once per interburst inter-
val, the next IB burst occurs between the next and the second next SI spike, i.e. t′ < τ < t′′.
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Figure 18 Time constants of the gating variables for the various currents of the IB cell, as functions of the
membrane potential V (see Sect. 2.2 and Appendix D.1). For membrane potentials between –75 mV and
–40 mV (between spikes), the M- and h-currents are at least 10 times slower than the rest of the currents. The
mKM variable for the axon compartment has slightly smaller time constant than what is shown here (see
Appendix D.1)

Let us assume that t′ is always larger than t0 (recall that the SI cell does not fire for an inter-
val after an IB burst, which in our simulations is much longer than the IB burst duration).
Then we may substitute xt in Eq. (28) using Eq. (27) with s = t0 to get

τ = inf
{

t ≥ t′ : φt–t′
(
h
(
φt′–t0 (xt0 )

)) ∈ A
}

. (29)

Note that the above expression implies that τ depends only on t′ and xt0 , i.e. the IB inter-
burst interval depends on the cell’s state at time t0

d after the last burst and on the time of
the next SI spike. The dependence of τ on t′ is clear in Fig. 16 (note that t′ is the variable on
the horizontal axis and τ the variable on the vertical axis). But the dependence on xt0 is not
obvious, at least in Fig. 16(b), since knowledge of the time t′ seems to almost completely
determine τ . In what follows we argue that the reason for this surprising observation is the
fact that for every IB interburst interval, xt0 always takes approximately either the same
(Fig. 16(b)) or one of a small number of values (Fig. 16(c)).

5.4.2 State reset after a burst
In what follows it will be useful to distinguish between slow and fast state variables. In
total, the four compartments of the IB cell, together with the a → db (axon to basal den-
drite) and SI→ IB synapses, involve 21 state variables (see Sects. 2.1, 2.2, Appendix D.1).
The time constants of the membrane potential variables (V) are in the order of 1 ms. All
other state variables have time constants that depend on the membrane potential of the
corresponding compartment (Fig. 18). Despite this dependence on the membrane poten-
tials, the variables can be clearly separated into “fast” (time constants of about 1 ms or less)
and “slow” (time constants of > 10 ms), at least for subthreshold values of the membrane
potentials (< –40 mV), that is, when the cell is not firing. According to this separation, the
membrane potential variables can be considered fast, while the synaptic state variables are
slow, at least when the cell is not firing (time constants of 20 ms and 100 ms for the SI→IB
and a → db synapses, respectively (Table 3)).

Since we are interested here in studying the size of the interburst interval of the cell,
which is in the order of 60 ms, we may assume that the fast variables are at their (slow
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Figure 19 Reset of slow state variables of IB cell at bursting. (a) Apical dendrite h-current gating variable.
Each trace corresponds to a burst and is centered so that 0 on the time axis corresponds to the initiation of
the burst. The h-current gating variable (vertical axis) drops to approximately 0 at the initiation of each burst
(0 on the horizontal axis). (b) Same as (a), for basal dendrite. This variable also resets to approximately 0 at
each burst. (c), (d) Same as (a), (b), but for the M-current gating variables. These variable also reset to
approximately fixed numbers when the cell begins to burst, around 0.045 in both cases. (e) Same as (c), (d),
but for the axon compartment. The traces are color-coded according to the number of spikes in the burst
(blue: 2 spikes, red: 3 spikes, black: 4 spikes). The M-current gating variable resets to one of three values
(approximately 0.05, 0.07, or 0.09) after a burst, depending on the number of spikes in the burst. (f) Same as
(e), but for the state variable of the IB a → db (axon to basal dendrite) synapse. This variable resets to
approximately 1 after each burst, but the time it retains this value is variable, depending on the number of
spikes in the burst. The resulting differences in the value at a given time after the burst are small. (g) Same as
(a)–(e), but for the SI→IB synaptic state variable. This variable does not reset when the IB cell bursts, but its
value is always between 0.1 and 0.2 at the beginning of a burst. Simulation parameters are as in Fig. 16(c)

variable-dependent) equilibria and study the dynamics on the slow manifold [27, 28].
There are seven slow variables in total (see Sect. 2.2, Appendix D.1): the two synaptic
state variables, two h-current gating variables (one for each dendritic compartment), and
three M-current gating variables (one for each dendrite and one for the axon).e

Recall that we are interested in the trajectory of the IB cell state during an interburst
interval. Figure 19 shows the trajectories of the slow variables, centered at the time of ini-
tiation of bursts. We see that the state variables associated with the h-current reset their
value to near 0 at the beginning of a burst (Figs. 19(a) and (b)). This happens because,
when the cell is spiking (membrane potential > –40 mV), the time constants of these vari-
ables become very small, as shown in Fig. 18, and at the same time their equilibrium is very
close to 0 (see Sect. 2.2, Appendix D.1). As a result, after every spike the state variables
associated with the h-current reset to approximately 0. We note that these properties of
the dynamics of the h-current, also present in previous models [12, 29], agree with exper-
imental data [30].

We also see that the state variables associated with the dendritic M-currents before the
burst initiation have values around 0.01 and after each burst they increase by an approxi-
mately fixed amount, reaching a value around 0.05 (Figs. 19(c) and (d)). Although the time
constants of these variables do not get smaller during a spike, their equilibrium increases
towards 1 as the membrane potential increases, which results in a fast increase in their
values, relative to the typical values of these variables. Moreover, the fact that spikes have
a stereotypical form means that the increase in the values of these variables will be ap-
proximately the same for every spike. Combined with the fact that before the dendritic
spike (at the burst initiation) the values of these variables vary little in absolute terms (in
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the range 0.01-0.015), they reach approximately fixed values immediately after any spike
(approximately 0.05).

Recall that when the IB cell bursts, it is the axonal compartment that fires multiple ac-
tion potentials, while the other compartments fire single action potentials (Fig. 3(b)). As
a result, the gating variables of the dendritic M-currents increase by a single step, always
to approximately the same value (Figs. 19(c) and (d)), while that of the axonal M-current
increases in several steps at every burst (Fig. 19(e)), one step per spike in that burst. This
means that at the end of the burst the state variable that corresponds to the axonal M-
current may be at one of several values, depending on the number of spikes in that burst.
A similar pattern, but less pronounced, is evident for the synaptic state variable of the
a → db synapse (Fig. 19(f )). Although the value of this variable always increases to 1 when
the cell bursts, it might stay there longer, depending on the number of spikes in the burst,
and this leads to small differences in the value of this variable at a fixed amount of time
after the burst initiation. Finally, the SI→IB synaptic state variable, although it does not
reset when the IB cell bursts, its value at burst initiation is always between 0.1 and 0.2
(Fig. 19(g)). This small variation in value does not seem to affect the dynamics of the cell,
since all other state variables follow approximately the same trajectory after each burst, at
least until the SI→IB is activated again and its value reset to approximately 0.75.

To summarize, at a fixed amount of time t0 after burst initiation (large enough so that the
burst is guaranteed to have terminated, but before the next SI spike), the values of most
slow state variables are forced to take approximately a given value, while the axonal M-
current and the a → db synaptic state variable may take approximately one of a few values,
depending on the number of spikes in the burst. Since the fast state variables quickly reach
their new equilibria after a burst, we conclude that the full state xt0 of the IB cell at time t0

after a burst may take (approximately) one of a few possible values, one for each possible
number of spikes in a burst.

If for some parameter values it happens that the IB cell always exhibits the same number
of spikes per burst, then xt0 will take approximately the same value in every interburst
interval, and by Eq. (29), for s = t0, we see that the length τ of the interburst interval is
a function of t′ only, which explains Fig. 16(b). If, on the other hand, the IB cell fires a
different number of spikes in different bursts, then xt0 will take one of a few different values
and, again by Eq. (29), the dependence of τ on t′ will take one of a few different forms, as
is the case in Fig. 16(c). In Fig. 20 it is verified that the three different responses seen
in Fig. 16(c) are associated with a different number of spikes in the last IB burst. We thus
conclude that if we can predict the number of spikes in an IB burst, and we know the timing
of the synaptic input it receives, we can predict the rest of the cell behavior. However, as
shown in the next section, predicting the number of spikes in a burst is not possible at this
level of analysis.

5.4.3 Unpredictability of number of spikes in a burst
Figure 20 shows how the number of spikes in a burst of the IB cell and the timing of the
subsequent SI spike determines when the IB cell will burst again. But does it also determine
the number of spikes in that next burst?

To answer this, we look at Fig. 21, which is again a plot of the length of the IB interburst
interval against the SI spike timing, but this time color-coded for the number of spikes in
the next burst. Here we see that the timing of the SI spike is not enough to predict the
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Figure 20 Scatterplot of IB interburst interval vs timing of SI
cell, as in Fig. 16(c), but color-coded according to the
number of spikes in the last IB burst (blue is for 2 spikes, red
for 3 spikes, black for 4 spikes). The timing of the SI spike
(“IB-SI”) combined with the number of spikes in a burst
determine the length of the interburst interval (“IB-IB”)

Figure 21 Scatterplot of IB interburst interval vs timing of SI
cell, as in Fig. 20, but with the data points color-coded
according to the number of spikes in the next burst. The
number of spikes is sensitive to the timing of the SI cell. But
even exact knowledge of the SI timing (“IB-SI”) and the
number of spikes in the last burst (curve where the data
point lies—see Fig. 20) is not always enough to determine
the number of spikes in the next burst (color)

number of spikes in the next IB burst, even if we take into account the number of spikes in
the previous burst. This suggests that the number of spikes in a burst can be very sensitive
to the exact state at burst initiation (recall that the reset of the IB state variables to fixed
values after a burst was only approximate—Fig. 19).

Note that differences in number of spikes in the burst in turn lead to differences in the
length of the next interburst interval (Fig. 20), in the order of 5 ms, which can then lead to
further differences in the number of spikes in the following burst and so on. This results
in the unpredictability of the IB burst timing in the long term and explains the variability
in the phase of the IB cell relative to the input in Fig. 17(c), despite the fact that its firing
rate is consistently a fixed fraction of the input frequency.

5.5 Summary of IB cell behavior
We now summarize the results of this section regarding the IB cell. The IB cell is a high-
dimensional dynamical system, consisting of four Hodgkin–Huxley compartments, each
with a set of state variables that describe the currents that enter or exit the cell. However,
as Sect. 5.4 showed, the full state of the system is approximately reset when this cell fires,
because all slow variables reset, with the notable exception of the axonal M-current gating
variable, which can take one of several values immediately after the burst, depending on
the number of spikes in that burst.

If the number of spikes per burst is always the same, then all state variables are reset after
the burst. Consequently the cell, as a dynamical system, always follows the same trajectory
after its burst ends. This trajectory is only perturbed by the unique stimulus it receives
(before the next burst), that is, the synaptic input from the SI cell. Since this stimulus is
always of the same form, by knowing the time that it arrives relative to the last IB burst, we
know the full IB trajectory during that interburst interval, and in particular when the IB cell
will burst again. We can thus create a map that describes the length of the IB interburst
interval as a function of the SI stimulus timing (Fig. 16(b)). The properties of this map,
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combined with the fact that the SI interspike interval lengths are integer multiples of the
input period, lead to stable mode-locking of the IB cell to the input (Sect. 5.3).

In the more general case, the number of spikes in an IB burst varies, and this leads to
different possible states for the reset, hence different possible trajectories after the burst as
well. In this case we may still observe mode-locking, which can occur even in the absence
of phase-locking (Sect. 5.3.1). In contrast, when the IB cell fired the same number of spikes
per burst, mode-locking always implied phase-locking (but see Discussion).

Finally, it is impossible to predict the number of spikes in the next IB burst based on the
number of spikes in the previous burst and the timing of the last SI synaptic input (Fig. 21).

6 Discussion
We studied the synchronization properties of a certain Hodgkin–Huxley type neuronal
network, which is excited by periodic, pulsatile input. This study was motivated by the
potential importance of this network for brain function and its ability to respond to an
input while at the same time retaining its natural rhythm. An initial simplification of the
model led us to a three-neuron network (the FS-SI-IB network), while further observations
led us to consider a subset of it on its own (the FS-SI network), but with two oscillatory
inputs of unrelated frequencies. The rhythms in this paper were in the beta and gamma
range but, as we showed, similar results hold for other ranges of frequencies.

In the FS-SI network, we observed that the SI cell can respond to both input rhythms
at the same time, but in different ways: it always fired in phase with input-1 (the faster,
excitatory input), but its firing rate was equal to that of input-2 (the slower, effectively
inhibitory input—Figs. 5(b) and 6). The fact that the cell fires in phase with an excitatory
input is reminiscent of simple entrainment to an input [31, Ch. 3]. However, unlike the case
of simple entrainment, the cell firing rate did not depend on the input-1 frequency, for a
range of frequencies (Fig. 12(b)). At the same time, the fact that the SI firing rate was con-
trolled by an inhibitory input, which prevented the cell from firing for some time after each
pulse, is reminiscent of inhibition-based rhythms, in particular the well-known interneu-
ronal gamma (ING) and pyramidal-interneuronal gamma (PING) rhythms [14]. Unlike
those rhythms, however, the SI cell’s frequency was unaffected by moderate changes in
the inhibition’s strength, at least in some parameter regimes (Fig. 12(b)), and was instead
controlled by the input-2 frequency. Also unlike the classical inhibition-based rhythms,
in our case, even when the inhibition was periodic, the phase at which the cell fired was
not fixed, but uniformly distributed in an interval (Fig. 7(b)). This is an instance of mode-
locking without phase-locking (unrelated to the same phenomenon seen in Sect. 5.3.1).

By making simplifying approximations, we were able to understand in detail the core
mechanism that underlay the SI cell’s behavior and produce an abstract model that can
reproduce all the essential features of this behavior. The fact that the necessary assump-
tions can be stated without reference to the actual neuronal model means that such be-
havior can be exhibited by other types of networks, with different types of cells, and even
by non-neuronal systems. Here we demonstrated that a single-cell network (Fig. 9), even
a leaky integrate-and-fire neuron (Appendix C), can reproduce the results.

The mathematical statement of the result also allowed us to see how the behavior de-
pends on the various parameters/assumptions. For example, the fact that the SI cell was
not able to fire as fast as at every input-1 cycle was essential (compare Theorems 4.1 and
4.3), while the number of cycles that it had to skip between spikes did not matter (see as-
sumptions of Theorem 4.1). We also found the allowed ranges of input frequencies for our
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results to hold, as functions of other parameters (Eqs. (15) and (17)). Importantly, there
are no absolute bounds in the input frequencies, except in their ratio; the same mechanism
can in principle work with pairs of much higher or lower frequencies, thus it can apply to
different brain rhythms, as long as other parameters are also modified appropriately, so
that the stated bounds continue to hold. Also, the theoretical bounds found agreed with
simulation results, verifying that the simplified mathematical description captures the es-
sential features of the actual model (Fig. 12). As a side note, notice that, from Fig. 12(a)
(and to a lesser extent from Fig. 12(b)), it seems that when the input-2 frequency is larger
than half the input-1 frequency, the SI firing rate is equal to their difference (fSI = f1 – f2).
However, finding the exact conditions under which this equality holds is beyond the scope
of the current work. We also showed numerically that the results continued to hold even
if the input was not exactly periodic, but the intervals between pulses varied randomly
(Fig. 8). This is important because in a real biological neural network various sources of
noise might cause an oscillatory input to deviate from its mean frequency, while in other
cases information might be encoded in the timing of the input pulses [23–25].

When information is encoded in the timing of the pulses, the properties of the SI cell
also suggest a mechanism for time-division multiplexing [32, p. 123], as follows: The fact
that the SI cell in our network fires in phase with input-1 means that it can relay infor-
mation encoded in the timing of that input’s pulses. Moreover, since the SI cell does not
fire in response to every pulse, the information that it relays will be a processed version
of input-1; it will only relay certain pieces of information. In the signal-processing liter-
ature this function is called downsampling or decimation [33, pp. 167–172]. The down-
sampled signal that is encoded by the SI cell will include only those spikes that arrive at
a certain phase of input-2 (Fig. 7(a)). In other words, input-2 is defining a window dur-
ing which spikes from input-1 can be echoed and thus pass on the information encoded
in their precise timing. One can then imagine that this system can form part of a time-
division multiplexing mechanism; a number of sources of information of high frequency,
like input-1, can be allowed to pass on information at different phases of a slower oscilla-
tion like input-2, perhaps by receiving different versions of input-2, shifted in phase from
each other (Fig. 22). This information can be separated again later, if needed, either by a de-
coder that has access to input-2, or by having encoded the identity of the sources together
with the informational content. We demonstrate the encoding mechanism by replicating
the network of Fig. 9(a) three times and adding an outgoing synapse from each SI cell to a
single new RS cell (Figs. 23(a) and 24). Note that in our example these outgoing synapses
have to be excitatory, unlike the equations in the paper in which the SI cell is inhibitory. A
more complex but possibly functionally equivalent setup with inhibition is illustrated in
Fig. 23(b). This example is offered as a proof of concept that closely related networks can
perform multiplexing.

In the last part of our paper we looked at the FS-SI-IB network. Compared to the FS-
SI network with two inputs, the IB cell replaced the input-2, so that from the point of
view of the FS-SI sub-network not much had changed, except that now it was receiving
synaptic input from the IB cell, rather than the external input-2. After arguing that the
results about the FS-SI network explain the corresponding part of the FS-SI-IB network
behavior, we focused our attention on the dynamics of the IB cell and the way it responds
to the only synaptic input that it receives, that is, from the SI cell. We showed numerically
that the timing of the SI cell relative to the IB cell’s last burst, combined with the number
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Figure 22 Time-division multiplexing model. Three cells each receive an information-containing input
(leftmost colored bars) and a timing input (boxed traces on the left). The timing inputs given to the three cells
are a shifted version of each other. They determine windows of phase (darker segments) during which the
corresponding cell may echo the information-containing input; the output of the cell (colored bars in the
middle) is a copy of only those spikes (of the information-containing input) that fall inside the allowed phases.
All three cells send their output to a new cell that responds to all of them, echoing their spikes. As a result, its
output is divided into phases, during each of which it simply repeats the information-containing input from
one of the sources. Assuming that information is contained in the precise timing of the spikes, the output cell
transmits information from different sources at different intervals of time

of spikes in the last IB burst, could approximately determine the timing of the next burst
of the IB cell (Fig. 20).

The plot in Fig. 20 is very similar to a phase-response curve (PRC), a widely used tool in
characterizing responses of neurons to inputs [15]. A PRC gives the phase advance or delay
caused by a stimulus to a periodically firing cell, as a function of the timing of that stimulus,
relative to the time of the last spike of the cell. The method can also be applied to bursting
cells [18]. The underlying assumption of the PRC method is that the phase advance or
delay triggered by a stimulus depends only on the time elapsed from the last spike of the
cell. In some cases this can be shown to be the case, for example if the successive stimuli are
well-separated, so that the cell returns to its natural limit-cycle before the next stimulus
arrives, or if the stimuli are sufficiently weak, so that the trajectory never deviates far from
the limit cycle [34, ch. 8]. But in general, we should expect the “phase advance” (or delay)
to depend on the full state of the cell when it receives the stimulus, rather than merely on
the time since it last fired.f Therefore, in a plot like Figs. 16(b) and 16(c), we would expect
to see a wide distribution of data points, rather than them forming a “curve”.

The input used in Fig. 16 (SI cell synaptic input) satisfied neither of the two conditions
mentioned above (weak or well-separated stimuli) that can justify a single-valued response
for a given stimulus timing (Fig. 16(b)), or even a multi-valued one as in Fig. 16(c). How-
ever, a reset of the state of the IB cell every time this cell burst, effectively reduced the
dependence of the cell’s state on its history (Fig. 19). This resulted in the cell being ap-
proximately at the same or at one of several possible states at a given time after its last
burst, which could help explain the fact that its response was approximately a function of
the stimulus timing only.
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Figure 23 (a) An implementation of the network topology of Fig. 22 with three copies of the network of
Fig. 9(a) and an RS cell. The three “input-1” (see also Fig. 9(a)) are independent, while the “input-2” that each SI
cell is receiving is a delayed version of each other. The SI→RS synapses in this model are excitatory, contrary
to the fact that the SI cells are considered inhibitory. (b) A more biologically realistic version of a
subcomponent of the network in (a). To avoid having a cell with both an excitatory outgoing synapse and an
inhibitory autapse (like the SI cells in (a)), we may consider a pair of cells, an excitatory (E) and an inhibitory (I)
one. The E cell receives the inputs and provides the output, while at the same time projecting onto the I cell,
and the I cell projects back to the E cell. Assuming that the I cell fires always immediately after the E cell, the
pair of reciprocal connections (E→I and I→E) function effectively as self-inhibition for the E cell, playing the
same role as an inhibitory autapse would. For simplicity, in the simulation of Fig. 24 we use the version of the
network shown in (a)

Figure 24 A simulation of the network in Fig. 23(a). Input-2 is 22 Hz and input-1 has average frequency 70 Hz
with 10% variability in the interpulse intervals (see Appendix D.1). Above the membrane potential of each of
the SI cells, the two inputs that it receives are shown (red for input-1, green for input-2). Each of the SI cells
behaves as in the network of Fig. 9. The RS cell fires in response to each of the three SI cells and only to them
(with the exception of the transient period). The network as a whole implements the time-division
multiplexing mechanism described in Fig. 22

We thus see another case where a PRC-type approach can be useful, namely if the cell’s
state is always the same immediately after a spike/burst, and it receives a single input (of
the same form always) in every interspike/interburst interval. For the state to be always
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the same immediately after a spike/burst, it is enough to check that the slow variables
(variables whose time constants are comparable to the length of the interspike/interburst
interval or longer) take fixed values after the cell spikes/bursts. This can happen for one
of three reasons: the variable resets to a fixed value at the time of the spike/burst (like
the h-current state variables in the IB cell); it has a fixed value immediately before the
spike/burst and remains unchanged during the spike/burst (the IB autapse state variable);
or it has a fixed value immediately before spikes/bursts and changes in a predictable way
during them (the M-current in the IB cell).

However, given that these resets for a high-dimensional system are usually only approx-
imate, the description of the response through a phase-response map has its limitations.
In our case, the method failed to predict the number of spikes in the IB cell’s next burst
(Fig. 21). Previous studies have shown high sensitivity of the number of spikes in a burst to
input timing for the Hindmarsh–Rose neuronal model [18, 19]. We emphasize, however,
that in our case, even exact knowledge of the input timing is not enough to determine the
number of spikes in the next burst. This suggests that the number of spikes in the next
burst is highly sensitive to the cell’s state in a way that cannot be captured by a PRC and
which is reminiscent of deterministic chaotic systems.

An extension of the PRC theory that allows dependence of the cell’s firing on more than
the last stimulus is used in [35], and involves taking into account the second order PRC,
which describes the effect that a stimulus has on the length of the next interburst interval,
as opposed to the current one. However, the method still requires that the cell’s trajectory
return to the limit cycle before the next stimulus comes in, as with the usual (first order)
PRC. For the IB cell in our network, a second order PRC is unlikely to provide any ad-
ditional explanatory power for the interburst interval length or the number of spikes in a
burst, exactly because of the reset of the state when the cell bursts, which makes the events
of the previous cycle irrelevant to the current cycle. An alternative way of characterizing
the response of a neuron to non-weak, non-well-separated stimuli, is through a functional
PRC (fPRC) [36]. However, this approach can only be applied when the pattern of stimulus
timing is known a priori, unlike the synaptic stimulation of the IB cell in our model.

The dependence of the size of the IB interburst interval on the timing of the SI stimu-
lus, together with the converse dependence of the SI spike timing on the synaptic input
from the IB cell, was the reason for the 1–1 firing relation, and consequently the equal
firing rates, of the two cells. Moreover, this firing rate was often a rational multiple of
the input frequency (Fig. 15(a)), with the cells firing exactly p times in every q input cy-
cles, a property called p : q mode-locking [17]. But this mode-locking did not necessarily
imply phase-locking (Fig. 17), contrary to what is often the case with neuronal models
[17, 37, 38]. In our system, mode-locking without phase-locking could occur only when
there were multiple possible reset states, which was the case when the number of spikes
per IB burst was variable. The reason that this was impossible with a fixed number of
spikes per IB burst was that, due to the dynamics of the IB cell and the SI→IB synapse,
the length of the IB interburst interval increased as a function of the SI spike timing, but
at a rate less than 1 (Fig. 16(b)). This translated to a map, describing the evolution of the
SI spike timing relative to the IB burst, with a globally attracting fixed point (Sect. 5.3.1).
But, in principle, in a different system, it is possible to have such a map where the quan-
tity of interest remains bounded without converging to a periodic solution, as is the case
with the logistic map in some parameter regimes [39, Ch. 1]. Thus, mode-locking without
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phase-locking should be possible even with a cell that always resets to the same state and
receives a single, invariant (up to timing) stimulus per interspike/interburst interval.

To the best of the authors’ knowledge, the two phenomena of mode-locking in the ab-
sence of phase-locking that we described (IB cell in FS-SI-IB network and SI cell in the
FS-SI network) are the first examples of such behavior in the neuronal dynamics litera-
ture. This is especially important, because a very common method of studying functional
relations between different brain regions is to look at phase relations between oscillations
exhibited at those regions [40, 41]. Synchronization in terms of phase-locking has even
been suggested to modulate the ability of networks to communicate with each other [7].
Here we see that a network can drive another network in the absence of any fixed phase
relations.

Appendix A: Proofs of theorems
Here we give the proofs of Theorems 4.1 and 4.3. For the proof of Theorem 4.1 we need
the following lemma.

Lemma A.1 Under the assumptions of Theorem 4.1, the following hold:
(a) For each n ∈ N, un ∈ [tn + c, tn+1).
(b) For each n ∈N, at least one of the following is true:

• un+1 – tn+1 < c + T1 or
• un+1 = un + m · T1.

(c) For each n ∈ N, if un – tn < c + T1, then un+1 – tn+1 < c + T1.
(d) Let K be defined as in Eq. (13). Then

uK – tK < c + T1. (30)

Proof
(a) We shall use induction on n, the base case being true by assumption. Suppose that

tn + c ≤ un ≤ tn+1. Since tn+1 ≤ tn + c + m · T1 (by assumption), we get

un+1 ≥ un + m · T1

≥ un + m · T1 – (tn + c + m · T1 – tn+1)

= un – tn – c + tn+1 ≥ tn+1. (31)

For the other direction, note first that

un + m · T1 < un + m · T1 + (tn+2 – tn+1 – m · T1)

= un + tn+2 – tn+1 < tn+2. (32)

Since the interval [tn+1 + c, tn+2) has length greater than T1 (because
tn+2 > tn+1 + c + T1), Eq. (32) implies that the set
{k : k ≥ m and un + k · T1 ∈ [tn+1 + c, tn+2)} is non-empty. Therefore, there exists
some sl = un + k · T1 with the properties that sl – un ≥ m · T1, sl ∈ [c, c + T1) and
sl < tn+2. Since un+1 is by definition the smallest of the sl that satisfies the first two of
these properties, we get un+1 < tn+2.
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(b) Since by assumption tn+1 ≤ tn + c + m · T1 and by part (a) un ≥ tn + c and un+1 < tn+2,
we get

tn+1 ≤ un + m · T1 ≤ un+1 < tn+2. (33)

Therefore, if un + m · T1 ≥ tn+1 + c, then sl′ = un + m · T1 is the smallest sl with the
property sl ≥ un + m · T1 and sl ≥ c, hence un+1 = sl′ = un + m · T1. Otherwise (if
un + m · T1 < tn+1 + c) un+1 equals the smallest number of the form un + k · T1 that is
no less than tn+1 + c, i.e. the unique such number in [tn+1 + c, tn+1 + c + T1).

(c) By part (b), we may assume that un+1 = un + m · T1, since in the other case there is
nothing to show. We have

un+1 – tn+1 = un + m · T1 – tn+1 ≤ un – tn < c + T1 (34)

(using the assumption that tn + m · T1 ≤ tn+1).
(d) If un – tn < c + T1 for some n < K , then the result follows from part (c). Suppose on

the contrary that un – tn ≥ c + T1 for all n < K . By part (b) we have un+1 = un + m · T1,
n < K , and in particular uK = u1 + (K – 1) · m · T1, therefore

uK – tK = u1 + (K – 1) · m · T1 – t1 –
K–1∑

n=1

(tn+1 – tn)

≤ u1 + (K – 1) · m · T1 – t1 – (K – 1) · min
n∈N

{tn+1 – tn}

= u1 – t1 – (K – 1) ·
(

min
n∈N

{tn+1 – tn} – m · T1

)

≤ u1 – t1 – max
n∈N

{[tn+1 – tn} – (c + T1)
]

< t2 – t1 – max
n∈N

{[tn+1 – tn} – (c + T1)
]

= c + T1 + t2 – t1 – max
n∈N

{
[tn+1 – tn]

}

≤ c + T1. (35)
�

Proof of Theorem 4.1 Part (a) is just part (a) of the previous lemma, while part (b) is a
combination of parts (a), (c), and (d) of the lemma. For part (c) of the theorem, note that
each un is equal to some member of the sequence {sl} and by part (b), for any n ≥ K ,
un ∈ [tn + c, tn + c + T1). The result follows once we observe that there is a unique member
of the sequence {sl} in each of these intervals. �

Proof of Theorem 4.3 Note that un is equal to the nth member of the sequence sl = (l – 1) ·
T1 + s1 = l · T1 + (s1 – T1) that satisfies

sl ≥ c. (36)
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Thus, if we denote by dn the nth positive integer l for which Eq. (36) is satisfied, then
un = dn ·T1 + (s1 – T1). Equation (36) can also be written as sl

T2
mod 1 ≥ c

T2
, or equivalently

l · T1

T2
+

s1 – T1

T2
mod 1 ≥ c

T2
. (37)

Thus, by definition of dn we get

n = card

{
l ≤ dn : l · T1

T2
+

s1 – T1

T2
mod 1 ≥ c

T2

}
. (38)

If T1
T2

/∈Q, by Weyl’s equidistribution theorem [26, pp. 105–113] we have

lim
n→∞

n
dn

= 1 –
c

T2
. (39)

Therefore,

lim
n→∞

n
un

= lim
n→∞

dn

un
· lim

n→∞
n
dn

=
1

T1
·
(

1 –
c

T2

)
. (40)

If on the other hand T1
T2

= p
q , where p, q are relatively prime positive integers, then the left

hand side of Eq. (37) is periodic with period q, taking q equally spaced values (at distances
1
q from each other). Let z be the number of these values that lie in the interval [ c

T2
, 1). Then

we have limn→∞ n
dn

= z
q ≈ 1 – c

T2
. More precisely, we have (1 – c

T2
) > z–1

q and (1 – c
T2

) < z+1
q .

From these two inequalities we get

∣
∣∣
∣

z
q

–
(

1 –
c

T2

)∣
∣∣
∣ <

1
q

. (41)

The proof is complete once we note that limn→∞ n
un

= 1
T1

· limn→∞ n
dn

= 1
T1

· z
q . �

Appendix B: Number-theoretic application of Theorem 4.1
Here we apply Theorem 4.1 to get a number-theoretic result. The importance of the result
lies in the way it contrasts with Weyl’s equidistribution theorem, so we begin by stating
the latter (for a proof see [26, pp. 105–113]).

Theorem B.1 Let α /∈Q, c ∈ [0, 1], and define

an =

⎧
⎨

⎩
1 if (n · α mod 1) ≥ c,

0 otherwise.
(42)

Then

lim
n→∞

∑n
i=1 ai

n
= 1 – c. (43)
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Theorem B.2 Let m ∈ N with m ≥ 2, α ∈ ( 1
m+1 , 1

m ), and c ∈ [1 – mα, 1 – α), and let the
sequence an be defined by

an =

⎧
⎨

⎩
1 if an–1 = · · · = an–m+1 = 0 and (n · α mod 1) ≥ c,

0 otherwise,
(44)

for n ≥ 1, and a0 = a–1 = · · · = a–m+2 = 0. Then

lim
n→∞

∑n
i=1 ai

n
= α. (45)

Proof Let us consider the sequence bn = an+k–1, where k is the smallest integer such that
k ·α ≥ c, so that b1 = 1. Note that since 1 – c > α, there is at least one multiple of α in [c, 1),
therefore, k · α < 1. Let s1 = k · α. Then sn = (n + k – 1) · α. Note that bn = 1 if and only if
bn–1 = · · · = bn–m+1 = 0 and sn mod 1 ≥ c.

We apply Theorem 4.1 with T1 = α, tn = n – 1, and m, c and s1 as above. Note that the
condition s1 ∈ [c, t2) = [c, 1) is satisfied, as shown above. The conclusion of Theorem 4.1
that we shall need is the fact that

lim
n→∞

tn

un
= 1, (46)

where we recall that u1 = s1 and

un = min
l∈N

{
sl : sl ≥ un–1 + m · T1 and (sl mod 1) ≥ c

}
. (47)

Let dn be the index of the nth non-zero term of the sequence {bl}. We claim that un = sdn

for all n ∈N. We shall show this by induction on n. For the base case, note that d1 = 1 and
u1 = s1. Suppose now that un = sdn holds for some n. Then

un+1 = min
l∈N

{sl : sl ≥ sdn + m · T1 and sl mod 1 ≥ c}

= min
l∈N

{sl : sl ≥ sdn+m and sl mod 1 ≥ c}

= min
l∈N

{sl : l ≥ dn + m and sl mod 1 ≥ c}. (48)

Therefore un+1 = sl′ , where l′ is the smallest integer l ≥ dn + m such that sl mod 1 ≥ c.
By definition of bn, dn+1 is also the smallest integer l ≥ dn + m, such that sl mod 1 ≥ c.
Therefore, l′ = dn+1 and this completes the inductive proof.

We may therefore substitute un = sdn = (dn + k – 1) · α, as well as tn = n – 1, in Eq. (46) to
get limn→∞ n–1

(dn+k–1)·α = 1, thus limn→∞ n
dn

= α. Therefore,

lim
n→∞

∑n
i=1 ai

n
= lim

n→∞

∑n
i=1 bi

n
= lim

n→∞

∑dn
i=1 bi

dn
= lim

n→∞
n
dn

= α, (49)

where the second equality follows from the fact that dn is an unbounded increasing se-
quence and the third equality follows from the definition of dn. �
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Figure 25 The surprising behavior of the SI cell can be reproduced by a leaky integrate-and-fire (IF) neuron.
(a) Network schematic. The IF cell has taken the place of the SI cell in Fig. 9(a). (b) A simulation of the network
in (a). Input frequencies are f1 = 40 Hz and f2 = 16.357 Hz. In the figure the membrane potential when the cell
fires has been accentuated to 50 mV for illustrative reasons, although any time it passes the firing threshold
(–40 mV) it is immediately reset to Vreset (–100 mV). The SI cell behaves as in Fig. 9(b), firing in phase with
input-1, alternately with input-2 (after a short transient). (c) Probability of the cell firing immediately after an
input-1 pulse, as a function of the input-2 phase (time from last input-2 pulse). As in Fig. 9(c), the cell fires
immediately after an input-1 pulse, if and only if the time since the last input-2 pulse lies in an interval of
length 25 ms. (d) Firing rate of the cell as a function of the input-2 frequency. As in Fig. 9(d), the cell’s
frequency follows that of input-2, for a range of frequencies. Dashed line in (d): diagonal

Appendix C: Modeling with a leaky integrate-and-fire neuron
In this section we show that the results of Sect. 3.4.3 can be reproduced with a leaky
integrate-and-fire neuron in place of the Hodgkin–Huxley based SI cell.

Figure 25(a) shows a schematic of this cell with an inhibitory autapse and the two inputs,
similar to the setting of Fig. 9(a). The cell is described by a single dynamic variable V ,
whose evolution is given by the equation

dV
dt

= –
1
τ

(V – Vrest) + I, (50)

with the extra rule that when V is greater than some value Vthresh, we say that the neuron
fires and V is reset to Vreset.

The current I is a sum of two input currents, I1 and I2, and a synaptic current Ia. Ia is set
to –10 (mV/ms) when the cell fires and decays exponentially afterwards with time constant
40 ms. I1 is a train of Dirac’s delta pulses of frequency f1 = 40 Hz and amplitude 35, with
a random initial phase. I2 is set to –10 at multiples of T2 = 1

f2
, and decays exponentially

thereafter with time constant 10 ms. We also set Vrest = –70 mV, Vthresh = –40 mV, Vreset =
–100 mV, and τ = 10 ms. These values are chosen so that the model satisfies conditions
1–3 and 7 of Sect. 3.5 and the interval of time that the cell does not fire after it has been
inhibited is approximately the same as in the model of Fig. 9. As can be seen in Fig. 25(b)
to Fig. 25(d), the behavior of this model is the same as the one in Fig. 9.
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Table 1 Details for cell dynamics

Variable τx x∞
(a)

m (excitatory cell) 0.25 + 4.35 · e– |V+10|
10 (1 + e

–V–29.5
10 )–1

h (excitatory cell) 0.15 + 1.15

1+e
V+33.5
15

(1 + e
V+59.4
10.7 )–1

m (inhibitory cell) 0.25 + 4.35 · e– |V+10|
10 (1 + e

–V–27
11.5 )–1

h (inhibitory cell) 0.225 + 1.125

1+e
V+37
15

(1 + e
V+58.3
6.7 )–1

mAR (e–14.6–0.086V + e–1.87+0.07V)–1 (1 + e
V–V0
5.5 )–1

Variable αx βx

(b)

mKM
0.02

1+e
–V–20

5
0.01e

–V–43
18

mCaH
4.8

1+e–0.072(V–5)
0.06(V+8.9)

e
V+8.9
5 –1

Function Expression

(c)

m0(V) (exc. cell) (1 + e
–V–34.5

10 )–1

m0(V) (inh. cell) (1 + e
–V–38
10 )–1

Expressions for functions involved in the dynamics of the membrane potential and the ionic current gating variables
(Eqs. (1), (2)), taken from [12]. The expressions for τKM , τCaH , mKM,∞ , and mCaH,∞ are given indirectly by the expressions in
table (b) (see text). V is measured in mV. V0 = –87.5 for RS cells, and V0 = –75 for other types of cells/compartments.

Appendix D: Model parameters and simulations details
D.1 Model parameters
Here we give the details of the parameters for the model described in Sects. 2.1 and 2.2 and
for the various conditions. We begin with the functions appearing in Eqs. (1), (2) (Table 1—
recall that the RS and IB cells are excitatory, while the FS and SI cells are inhibitory). We
note that an equivalent way of describing the time constant τx and steady-state value x∞
of a first order differential equation is through the forward and backward rates αx and βx.
The relation between the (τx, x∞) and the (αx,βx) descriptions is given by

τx =
1

αx + βx
, x∞ =

αx

αx + βx
, αx =

x∞
τx

, βx =
1 – x∞

τx
. (51)

As in [12], we make the following adjustments for particular cells/compartments, rela-
tive to the values in Table 1: for the IB axon, we multiply the forward rate αKM of mKM by
1.5 and its backward rate βKM by 1.25. For the RS cell, we multiply the forward rate of mAR

by 1.75 and the backward rate by 0.5. For the IB apical and basal dendrites, we multiply
the forward rate of mAR by 2.75, and its backward rate by 3, except for the simulations in
Figs. 16(c), 17 and 19 to 21, where we multiply both the forward and backward rates by 3.

We give the parameter values for the various cells/compartments in Table 2, for the
synapses in Table 3, for the electrical coupling in Table 4, for the inputs in Table 5, and the
initial values used for the state variables in Table 6. We note that the time constants for
the synapses that mediate the various inputs to the SI and FS cells are chosen to be equal
to those of the synapses in the initial network that they are substituting. In particular,
the input-1→FS and input-1→SI synapses have the same dynamics as the RS→FS and
RS→SI synapses in the initial network, respectively. Similarly, the input-2→FS and input-
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Table 2 Cell parameters

var RS FS SI IB apical dendrite IB basal dendrite IB soma IB axon

J 11 35 45 25.5 42.5 –4.5 –1.2
gL 1 1 6 2 2 1 0.25
gNa 200 200 200 125 125 50 100
gK 20 20 10 10 10 10 5
gAR 25 – 50 155 115 – –
gKM – – – 0.75 0.75 – 1.5
gCaH – – – – – 6.5 6.5
VL –70 –65 –65 –70 –70 –70 –70
VNa 50 50 50 50 50 50 50
VK –95 –100 –100 –95 –95 –95 –95
VAR –35 – –35 –25 –25 – –
VKM – – – –95 –95 – –95
VCaH – – – 125 125 – –

Values for parameters appearing in Eq. (1), for the various cells/compartments. A dash means that the corresponding term is
absent in that compartment. All values are taken from [12], except for the parameter J (all cells). For all cells/compartments:
C = 0.9.

Table 3 Synapse parameters

synapse g τr τd V0

RS→RS 0.5 0.25 1 0
RS→FS 3 0.25 1 0
RS→SI 5 2.5 1 0
FS→RS 125 0.5 5 –80
FS→FS 20 0.5 5 –75
FS→SI 8∗ 0.5 6 –80
SI→RS∗∗ 2.5 0.5 20 –80
SI→RS∗∗∗ 0.7 0.25 1 0
SI→FS 4 0.5 20 –80
SI→SI 4 0.5 20 –80
SI→IB 4 0.5 20 –80
IB→FS 2 0.25 1 0
IB→SI 0.9 2.5 50 0
IB→IB 0.4 0.5 100 0

Values of parameters appearing in Eqs. (4) and (5) for the various synapses. The values for τr , τd , and Vrev are taken from [12],
whenever applicable. The synapse SI→FS does not appear in [12]; values for τr , τd , and Vrev for this synapse are taken from
[13]. All outgoing synapses from an IB cell are from the axon compartment. The target of the SI→IB synapse is the IB apical
dendrite and that of the IB→IB synapse is the basal dendrite. ∗ In Figs. 12(a) and 12(b), under the conditions with “weak
FS→SI”, g = 5. ∗∗Networks of Figs. 1 and 3(a). ∗∗∗Network of Fig. 23(a).

2→SI synapses have the same dynamics as the IB→FS and IB→SI synapses, except in the
simulations of Fig. 9, where the input-2→SI synapse mimics the FS→SI synapse.

The starting phases of the inputs were random, with the exception of input-2 in Fig. 24,
where for the cell SI 1 it was started at 5 ms and for SI 2 and SI 3 after one third and two
thirds of a period, respectively.

D.2 Simulations and analysis of results
All simulations and analyses were performed in MATLAB [42].

Spike times were defined as the times that the membrane potential crossed the value
0 mV (similarly for timing of input pulses). For the IB axon, a spike was considered to
initiate a new burst if the time from the previous spike was at least 7 ms, otherwise it was
considered part of that burst.

The probability of a cell firing in response to an input-1 pulse, as a function of the time
of arrival of this pulse with respect to the last input-2 pulse (Figs. 7(a), 8(c), 9(c), 10(b) and
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Table 4 Electrical coupling parameters

electr. connection g

s→ da 0.2
s→ db 0.2
s→ a 0.3
da → s 0.4
db → s 0.4
a → s 0.3

Conductance of electrical connections of the various compartments of the IB cell. Although electrical coupling is two-way,
each direction is considered separately in the model, having a source and a target. Each unidirectional electrical connection
is included as a summand in the term Iel of the target compartment. Conductance of connections in the opposite direction
may differ, reflecting differences in the size of the two compartments. All values are taken from [12]. s: soma, da : apical
dendrite, db : basal dendrite, a: axon.

Table 5 Input parameters

Figure/input σ Target g τr τd

Figs. 3(b) and 3(c) 0.025 RS 150 0.2 0.5
Figs. 4, 14(a), 15 to 17 and 19 to 21 0.025∗ FS 2.5 0.25 1

SI 5 2.5 1
Figs. 5 to 9, 12, 13 and 24, Input-1 0∗∗ FS 2.5 0.25 1

SI 5∗∗∗ 2.5 1
Figs. 5 to 8, 12 and 13, Input-2 0∗∗ FS 3 0.25 1

SI 0.9 2.5 50
Figs. 9 and 24, Input-2 0 SI 8 0.5 6

Values of parameters appearing in Eqs. (4) and (6) for the various input-target combinations, as well as the parameter σ for
the various inputs (see text after Eq. (7)). The frequency of input-1 and the frequency of the input in simulations with a
unique input is 40 Hz, and the frequency of input-2 is 16.357 Hz, unless otherwise specified. In all cases V0 = 0, except for
input-2 in Fig. 9, where V0 = –80. ∗ In Figs. 16, 19, 20 and 21, σ = 0.05, in Figs. 15 and 17 σ = 0. ∗∗ In Figs. 8, σ = 0.05 for both inputs.
In Fig. 24, σ = 0.1 for input-1. ∗∗∗ In Fig. 13, g = 10.

Table 6 Initial values for state variables

var RS FS SI IB ap. d. IB bas. d. IB soma IB axon

V –70/ – 60 –110/ – 100 –100/ – 90 –100/ – 90 –100/ – 90 –100/ – 90 –100/ – 90
h 0/0.05 0/0.05 0/0.05 0/0.05 0/0.05 0/0.05 0/0.05
m 0/0.05 0/0.05 0/0.05 0/0.05 0/0.05 0/0.05 0/0.05
mAR 0.035/0.06 – 0.02/0.06 0/0.001 0/0.001 – –
mKM – – – 0/0 0/0 – 0/0
mCaH – – – 0/0.01 0/0.01 – –

For each cell/compartment, the initial value is chosen randomly and independently from inside an interval. The values
shown here are the minimum and maximum values of this interval.

25(c)) was calculated as follows: the “time from last input-2 pulse” was separated into bins
of size 0.5 ms and the input-1 pulses that fell into each bin were identified. For each of
these pulses, a cell (SI or FS) was considered to fire “in response to” the pulse, if it fired
within the next 3 ms. The proportion of input-1 pulses in that bin in response to which
each cell fired was calculated, and this number was defined as the probability of that cell
firing in response to an input-1 pulse, for the corresponding input-2 phase (the center of
the bin). The probability of a cell firing in response to an input-2 pulse, as a function of time
of arrival with respect to last input-1 pulse (Figs. 7(b) and 8(d)) was calculated similarly.

All statistics were based on 20 sec simulations. To exclude any transients from the sta-
tistical analysis, the first 5 spikes/bursts (or input pulses) of the relevant cell were ignored,
except in calculating average frequencies (Fig. 6 and similar graphs). The first five and last



Gelastopoulos and Kopell Journal of Mathematical Neuroscience           (2020) 10:19 Page 42 of 43

three spikes are also not shown in Fig. 19. In Figs. 15(b) and 17(a) the simulation time
shown is between 1–5 sec.
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Endnotes
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Discussion.
b Recall that mode-locking means that the frequencies are rationally related.
c The fact that a later SI spike leads to a longer IB interburst interval is not surprising, since the SI cell is inhibitory. On

the other hand, there are other currents that slowly build up (h-current) or diminish (M-current) during the
interburst interval, and bring the IB cell closer to firing as time progresses. This results in a “regression to the mean”
phenomenon, where a later SI spike delays the IB burst, but by a smaller amount than the delay in the SI spike itself.

d t0 itself is not of particular importance. We have chosen a specific time to measure the state in order to facilitate the
presentation.

e The dendrite M-currents are small in magnitude and might not affect significantly the firing of the cell.
f We should also expect the response to depend on the form of the stimulus, but in our model (and very often in
general) all action potentials of a cell have approximately the same form, thus also approximately the same effect
on the synapses.
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