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ARCHIVUM MATHEMATICUM (BRNO)
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ON THE FINSLER GEOMETRY OF THE HEISENBERG GROUP
H2n+1 AND ITS EXTENSION

Mehri Nasehi

Abstract. We first classify left invariant Douglas (α, β)-metrics on the
Heisenberg group H2n+1 of dimension 2n+ 1 and its extension i.e., oscillator
group. Then we explicitly give the flag curvature formulas and geodesic vectors
for these spaces, when equipped with these metrics. We also explicitly obtain
S-curvature formulas of left invariant Randers metrics of Douglas type on these
spaces and obtain a comparison on geometry of these spaces, when equipped
with left invariant Douglas (α, β)-metrics. More exactly, we show that although
the results concerning bi-invariant Douglas (α, β)-metrics on these spaces are
similar, several results concerning left invariant Douglas (α, β)-metrics on these
spaces are different. For example we prove that the existence of left-invariant
Matsumoto, Kropina and Randers metrics of Berwald type on oscillator groups
can not extend to Heisenberg groups. Also we prove that oscillator groups
have always vanishing S-curvature, whereas this can not occur on Heisenberg
groups. Moreover, we prove that there exist new geodesic vectors on oscillator
groups which can not extend to the Heisenberg groups.

1. Introduction

The search for left-invariant metrics on Lie groups in differential geometry leads
to develop our understanding of which geometrical properties are strictly related
to the metric signature and which ones are more general. This study began with
the classical work of Milnor [19], who investigated the curvature properties of
left-invariant Riemannian metrics on three-dimensional Lie groups. Among these
Lie groups, the only two-step nilpotent Lie group with a 1-dimensional center is a
Heisenberg group.

Heisenberg groups play an important role in various areas, such as physics,
quantum mechanics, signal theory and number theory [4]. The study of left-invariant
metrics on Heisenberg groups has attracted a considerable attention of geometers.
For example, it is proved that up to homothety, there is a unique left-invariant
Riemannian metric on the Heisenberg group H3, whereas there are three metrics in
the Lorentzian case on these spaces [24]. In [25] this study generalized to Riemannian
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and Lorentzian metrics on the Heisenberg group H2n+1 of dimension 2n+ 1 and a
classification of left-invariant Riemannian and Lorentzian metrics on this group is
given.

On the other hand Finsler metrics which are a generalization of Riemannian
metrics on these spaces have been studied in the recent years. For example, recently
left-invariant Randers metrics on three and five dimensional Heisenberg groups have
been investigated in [16, 17]. Also in [20] we investigated left-invariant Randers
metrics of Douglas type on two-step nilpotent Lie groups of dimension five and in
[22] and [12] this study is extended to a (2n + 1)-dimensional Heisenberg group
with a special left-invariant Randers metric.

These findings motivated us to extend this study for left-invariant Douglas
(α, β)-metrics on this Lie group and its extension i.e., oscillator group and obtain a
classification of these metrics on these spaces. We show although there is a unique
left-invariant Douglas (α, β)-metric on the Heisenberg group H2n+1, there are four
left-invariant Douglas (α, β)-metric on its extension. We also obtain several similari-
ties and differences on the results concerning to left-invariant Douglas (α, β)-metrics
on these two Lie groups and show that although there exist some similarities bet-
ween these spaces, there exist several results concerning the left-invariant Douglas
(α, β)-metrics on oscillator groups that cannot exist on Heisenberg groups.

The structure of the paper is as follows. In Section 2 we remind some facts
about Heisenberg groups and oscillator groups. Then we obtain (α, β)-metrics of
Berwald type and explicitly obtain left-invariant Randers, Matsumoto and Kropina
metrics of Berwald type on these spaces. We also give a complete description of
left invariant Randers metrics of Douglas type on these Lie groups and apply them
to obtain a classification of left-invariant Douglas (α, β)-metrics on these spaces.
In Section 3 we first investigate the existence of bi-invariant Douglas (α, β)-metrics
on these spaces and prove that neither Heisenberg groups nor oscillator groups
can admit any bi-invariant Douglas (α, β)-metric. We also explicitly obtain the
flag curvature formulas and geodesic vectors on these spaces when equipped with
left-invariant Douglas (α, β)-metrics and obtain some new geodesic vectors on
oscillator groups equipped with left-invariant Douglas (α, β)-metrics which do
not exist on Heisenberg groups. In Section 4 we explicitly give the S-curvature
formulas on these spaces when these spaces are equipped with left-invariant Randers
metrics of Douglas type. We also prove that oscillator groups have always vanishing
S-curvature, whereas this can not occur on Heisenberg groups. Moreover, we show
that oscillator groups which are equipped with left-invariant Randers metrics of
Douglas type are Ricci quadratic, whereas Heisenberg groups are not Ricci quadratic.
Then we apply this result to prove that Heisenberg groups which are equipped with
left-invariant Randers metrics of Douglas type can be non-Berwardian generalized
Berwald spaces, whereas oscillator groups are generalized Berward spaces which
are Berwardian.
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2. Left-invariant Douglas (α, β)-metrics on the Heisenberg group
H2n+1 and its extension

Heisenberg group: The Heisenberg group H2n+1 is a 2-step nilpotent Lie group.
Moreover, any 2-step nilpotent Lie group of odd dimension with a one-dimensional
center is locally isomorphic to the Heisenberg group H2n+1 [25]. By Theorem 3.1 in
[25] any left-invariant Riemannian metric on H2n+1 is given by gσλ,1 and by [21] with
respect to this metric we get the orthonormal basis {x1, . . . , xn, y1, . . . , yn, t} and
[xi, yi] = t

√
λ

σi
. Then by adapting the convention R(ei, ej) = ∇[ei,ej ]− [∇ei ,∇ej ], up

to symmetry the non-vanishing components of curvature are given by

R(xi, yi)xi = −3λ
4σi2

yi , R(xi, t)xi = λ

4σi2
t , R(yi, t)yi = λ

4σi2
t .

Oscillator group: The oscillator group Gn(λ) = Gn(λ1, . . . , λn) is the connected,
simply connected Lie group with the Lie algebra Gn(λ). This Lie algebra decomposes
as a semi-direct product of the Heisenberg algebra H2n+1 (generated by X1, . . . , Xn,
Y1, . . . , Yn, T ) and the one-dimensional abelian Lie algebra (for more details see
[13]). Thus it can be realized on R× Cm × R with group product given by

(t, z1, . . . , zn, q)(t′, z′1, . . . , z′n, q′)

=
(
t+ t′ + 1

2

n∑
j=1
=(z̄jeiλjqz′j), z1 + eiλ1qz′1, . . . , zn + eiλnqz′n, q + q′

)
,

and is the real (2n+2)-dimensional solvable Lie algebra with non-zero commutators
[Xi, Yi] = T, [Xi, Q] = −λiYi and [Yi, Q] = λiXi, where λi are positive real numbers
[5]. If we consider left-invariant Riemannian metric g on Gn(λ), which is defined
by the inner product

〈xi, xi〉 = δij , 〈yi, yi〉 = δij , 〈q, q〉 = 1 , 〈t, t〉 = 1 ,

where xi = Xi, yi = Yi, t = P and q = Q, then we obtain the orthonormal basis
{x1, . . . , xn, y1, . . . , yn, t, q} and non-zero Lie brackets [xi, yi] = t, [xi, q] = −λiyi,
and [yi, q] = λixi. Thus we obtain the following non-zero Levi-Civita connection
components:

∇xiyi = 1
2 t = −∇yixi ∇yit = 1

2xi = ∇tyi, ∇qxi = λiyi ,

∇txi = −1
2yi = ∇xit, ∇qyi = −λixi ,

where i = 1, . . . , n. Thus up to symmetry the non-zero curvature components are
given by

R(xi, yi)xi = −3
4 yi , R(xi, t)xi = t

4 , R(yi, t)yi = t

4 .

Recall that a (α, β)-metric on a manifold M is a Finsler metric of the form
F = αφ(βα ), where α(x, y) =

√
a(y, y) and φ : (−b0, b0) −→ R+ is a C∞ function
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satisfying

φ(s)− sφ
′
(s) + (b2 − s2)φ

′′
(s) > 0 , ∀ |s| ≤ b < b0 ,

and ‖β‖α < b0 [6]. In the case that M = G is a Lie group, then F is said to be
a left-invariant (α, β)-metric, when for any x ∈ G and y ∈ TxG satisfying the
condition F (x, y) = F (e, dl x−1y) , where e is the unit element of G and lx denotes
the left translation [10]. To obtain all left-invariant (α, β)-metrics of Berwald type
on these spaces we use Theorem 4.1 in [18] which says that a left-invariant (α, β)
metric F on a Lie group G, arising from a left-invariant Riemannian metric g and
a left-invariant vector field X is of Berwald type if and only if for all y, z ∈ G, the
following conditions are valid

(2.1) g([y,X], z) + g([z,X], y) = 0 , g([y, z], X) = 0 .

Using these conditions we obtain the following result.

Theorem 2.1. Oscillator groups admit left-invariant (α, β)-metrics of Berwald
type, whereas this can not occur for Heisenberg groups.

Proof. It is sufficient that for the oscillator group Gn(λ) in the equation (2.1) we
consider X = b2n+2q. �

By Theorem 3.1 in [9] there is not any non-Berwaldian Matsumoto and Kropina
metrics of Douglas type. Recall that left-invariant Randers, Kropina and Matsumoto
metrics on Lie groups are defined as follows:
F (x, y) =

√
g(y, y) + g(X(x), y), F (x, y) = g(y,y)

g(X(x),y) , F (x, y) = g(y,y)√
g(y,y)−g(X(x),y)

,
where the left-invariant vector fieldX onG corresponds to 1-form β i.e. g(X(x), y) =
β(x, y) and Randers and Matsumoto metrics are Finsler metrics if and only if we
have ‖βx‖α =

√
gij(x)bi(x)bj(x) < 1 and ‖βx‖α =

√
gij(x)bi(x)bj(x) < 1

2 . Using
these facts and Theorem 2.1 we obtain the following result.

Corollary 2.2. a) There does not exist left-invariant Randers, Matsumoto and
Kropina metrics of Berwald type on the Heisenberg group H2n+1.
b) Left invariant Randers, Matsumoto and Kropina metrics of Berwald type on the
oscillator group Gn(λ) are respectively given by

F (y) =
√
k2

1 + · · ·+ k2
2n+2 + k2n+2b2n+2 , with | b2n+2 |< 1 ,(2.2)

F (y) =
k2

1 + · · ·+ k2
2n+2√

k2
1 + · · ·+ k2

2n+2 − k2n+2b2n+2

, with | b2n+2 |<
1
2 ,(2.3)

and

F (y) =

√
k2

1 + · · ·+ k2
2n+2

k2n+2b2n+2
,(2.4)

where y =
∑n
i=1(kixi + kn+iyi) + k2n+1t+ k2n+2q and X = b2n+2q.
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Now to give a complete description of left invariant Randers metrics of Douglas
type on these Lie groups, we recall that if F = α+ β is a left invariant Randers
metric on the Lie group G where F is defined by an inner product 〈 , 〉 on G and a
left-invariant vector field V , then F is of Douglas type if and only if V satisfies
the following condition 〈[m,n], V 〉 = 0, for all m, n ∈ G. For more details see
Proposition 7.4 in [8]. Thus we obtain the following result.

Theorem 2.3. a) Any left-invariant Randers metric of Douglas type on H2n+1 is
given by

F (y) =
√
k2

1 + · · ·+ k2
2n+1 +

2n∑
i=1

kidi ,(2.5)

where y =
∑n
i=1(kixi+kn+iyi)+k2n+1t,

√
d2

1 + · · ·+ d2
2n < 1 and V =

∑n
i=1(dixi+

dn+iyi).
b) Any left-invariant Randers metric of Douglas type on Gn(λ) is given by

F (y) =
√
k2

1 + k2
2 + · · ·+ k2

2n+2 + k2n+2d2n+2 ,(2.6)

where y =
∑n
i=1(kixi + kn+iyi) + k2n+1t+ k2n+2q, |d2n+2| < 1 and V = d2n+2q.

In all above cases d1, . . . , d2n+2 are real constants.

It is proved in [18] that a Douglas homogeneous (α, β)-metric must be a Berwal-
dian metric or a Douglas Randers metric. Thus by using Corollary 2.2 and Theorem
2.3, we obtain the following result which gives us a classification of left-invariant
Douglas (α, β)-metrics on Heisenberg groups and oscillator groups.

Theorem 2.4. Any left-invariant Douglas (α, β) metric for H2n+1 is given by
(2.5), while for Gn(λ) is given by one of the cases (2.2), (2.3), (2.4) and (2.6).

Thus we can state the following result.

Corollary 2.5. Left-invariant Douglas (α, β)-metrics for H2n+1 coincide with
left-invariant Randers metrics of Douglas type, while this property does not occur
for Gn(λ).

3. Flag curvatures and geodesic vectors on the Heisenberg group
H2n+1 and its extension

Flag curvature is the most important quantity in Finsler geometry, as it ge-
neralizes sectional curvature in Riemannian geometry. To explicitly obtain the
flag curvature formulas of left-invariant Douglas (α, β)-metrics on Heisenberg and
oscillator groups, we notice that if these metrics are bi-invariant, then we will have
simple computations to obtain these curvatures. Thus we investigate the existence
of these metrics by the following result.

Theorem 3.1. None of the left-invariant Douglas (α, β)-metrics which are given
in Theorem 2.4, on Heisenberg groups and oscillator groups are bi-invariant.
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Proof. Assume that left-invariant metrics given in Theorem 2.4 are also right-invariant.
Then by Theorem 3.2 in [15] for any x, y, z ∈ G, we must have 〈[x, y], z〉+〈[x, z], y〉 =
0. By replacing xi, yi, t for the Heisenberg group H2n+1 we have the contradiction
λ = 0 and for the oscillator group Gn(λ) we have the contradiction 1 = λi = 0. �

Thus we can state the following result.

Corollary 3.2. Neither Heisenberg groups which are equipped with the metric
gσλ,1, nor oscillator groups which are equipped with the metric g, can admit any
bi-invariant Douglas (α, β)-metric.

Theorem 3.1 shows that to explicitly obtain flag curvature formulas on these
spaces we need to do some computations. Thus we first recall that the flag curvature
of left-invariant Randers, Matsumoto and Kropina metrics of Berwald type and the
flag curvature of left invariant Randers metrics of Douglas type are respectively
given by

KF (P, y) = g2Kg(P )
F 2 ,(3.1)

KF (P, y) = (2− F )Kg(P )
F 2(2F 2g2(X, v) + 2− F ) ,(3.2)

KF (P, y) = Kg(P )
F 4g2(X, v) + F 2 ,(3.3)

and

K(P, y) = α2(y)Kg(P )
F 2(y) + (3〈U(y, y), V 〉2 − 4F (y)〈U(y, U(y, y)), V 〉)

4F 4(y) ,(3.4)

where Kg(P ) is the sectional curvature of a left-invariant Riemannian metric g
and is given by Kg(P ) = g(R(y,t)y,t)

g2(y,t)−g(y,y)g(t,t) , when P = span {y, t} and {y, t} is
an orthonormal set with respect to g [11, 9]. Thus to explicitly obtain the flag
curvature on these spaces we first need to obtain the following result.

Theorem 3.3. a) Consider the Heisenberg group H2n+1 with the left-invariant
Riemannian metric gσλ,1. If y =

∑n
i=1(kixi+kn+iyi) +k2n+1t and s =

∑n
i=1(k′ixi+

k′n+iyi) + k′2n+1t are arbitrary vectors in the Lie algebra H2n+1, then the sectional
curvature Kg(P ) is given by

Kgσλ,1(P ) =
∑ −3λ

4σi2
(kik′n+i + k′ikn+i)2 +

∑ λ

4σi2
(kik′2n+1 − k2n+1k

′
i)2

+
∑ λ

4σi2
(k′2n+1kn+i − k2n+1k

′
n+i)2 .

b) Consider the oscillator group Gn(λ) with the left-invariant Riemannian metric
g. If y =

∑n
i=1(kixi + kn+iyi) + k2n+1t+ k2n+2q and s =

∑n
i=1(k′ixi + k′n+iyi) +

k′2n+1t+ k′2n+2q are arbitrary vectors in the Lie algebra Gn(λ), then the sectional
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curvature Kg(P ) is given by

Kg(P ) =
∑ −3

4 (kik′n+i + k′ikn+i)2 +
∑ 1

4(kik′2n+1 − k2n+1k
′
i)2

+
∑ 1

4(k′2n+1kn+i − k2n+1k
′
n+i)2 .

Where P = span{s, y} and {s, y} is an orthonormal basis with respect to the metric
g.

In [20] we obtained the flag curvature and S-curvature formulas on two-step
nilmanifolds of dimension five. Here we extend these formulas for an arbitrary (2n+
1)-dimensional case of these spaces, i.e., Heisenberg groups and their semi-direct
product with a line i.e., oscillator groups as follows.

Theorem 3.4. a) Consider the Heisenberg group H2n+1 with the left-invariant Dou-
glas (α, β)-metric (2.5). If y =

∑n
i=1(kixi + kn+iyi) + k2n+1t and s =

∑n
i=1(k′ixi +

k′n+iyi) + k′2n+1t are arbitrary vectors in the Lie algebra H2n+1 such that {s, t} is
an orthonormal set, then the flag curvature KF (P, y) is given by

KF (P, y) =

4σi
∑2n+1
i=1 k2

iK
g(P )(

√∑2n+1
i=1 k2

i +
∑2n
i=1 diki)2+3

∑√
λk2n+1(kn+idi−kidn+i)

4σi(
√∑2n+1

i=1 k2
i +

∑2n
i=1 diki)4

−
∑
λk2

2n+1(kidi + kn+idn+i)

σ2
i (
√∑2n+1

i=1 k2
i +

∑2n
i=1 diki)3

.

b) Consider the oscillator group Gn(λ) with left-invariant Douglas (α, β) metrics
given in Theorem 2.4. If y =

∑n
i=1(kixi + kn+iyi) + k2n+1t + k2n+2q and s =∑n

i=1(k′ixi + k′n+iyi) + k′2n+1t + k′2n+2q are arbitrary vectors in the Lie algebra
Gn(λ), then the flag curvature KF (P, y) has one of the following forms

(1) KF (P, y) = Kg(P )
∑2n+2

i=1
k2
i

(
√∑2n+2

i=1
k2
i

+b2n+2k2n+2)2
, when F is given in (2.2).

(2) KF (P, y) =
(2
√∑

i
k2
i
−2k2n+2b2n+2−

∑
i
k2
i )(
√∑

i
k2
i
−k2n+2b2n+2)3Kg(P )

(
∑

i
k2
i

)2[2(
∑

i
k2
i

)2b2
2n+2k

′22n+2+(2
√∑

i
k2
i
−2k2n+2b2n+2−

∑
i
k2
i

)(
√∑

i
k2
i
−k2n+2b2n+2)

,

when i = 1, · · · , 2n+ 2 and F is given in (2.3).

(3) KF (P, y) = Kg(P )b2
2n+2k

4
2n+2

(
∑2n+2

i=1
k2
i

)2(k′22n+2+k2
2n+2)

, when F is given in (2.4).

(4) KF (P, y) = Kg(P )(
∑2n+2

i=1
k2
i )

(
√∑

i
k2
i

+d2n+2k2n+2)2
, when F is given in (2.6).

In all above cases Kg(P ) is given in Theorem 3.3.

Proof. ForGn(λ) by Theorem 2.4 we have four left-invariant Douglas (α, β)-metrics.
For the metric (2.2) we use the formula (3.1) and for the metrics (2.3) and
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(2.4) we use formulas (3.2) and (3.3). Thus by some computations we obtain
the cases (1), (2) and (3) of theorem. For the metric (2.6), we assume that
z =

∑n
i=1(k′′i xi + k′′n+iyi) + k′′2n+1t + k′′2n+2q is an arbitrary vector in the Lie

algebra Gn(λ). Then by using the equation 2〈U(y, s), z〉 = 〈[z, s], y〉+ 〈[z, y], s〉, we
obtain

U(y, s) = 1
2
∑

[kn+i(k′2n+1 − λik′2n+2) + k′n+i(k2n+1 − λik2n+2]xi

− 1
2
∑

[ki(k′2n+1 − λik′2n+2) + k′i(k2n+1 − λik2n+2)yi

which implies that 〈U(y, y), V 〉 = 0 and 〈U(y, U(y, y)), V 〉 = 0, where V is given in
(2.3). Then by replacing these equations in the equation (3.4) and using Theorem 3.3
we obtain the result. For H2n+1 we have a similar argument. �

Thus as an immediate consequence we obtain the following result.

Corollary 3.5. The flag curvature and sectional curvature of Gn(λ) equipped with
a left-invariant Randers metric of Douglas type have the same sing, whereas this
may not occur for H2n+1.

Geodesics of left-invariant Riemannian metrics on Lie groups were studied by
Arnold, extending Euler’s theory of rigid-body motion [2] and have important
applications to mechanics. Here to obtain geodesic vectors on Heisenberg and
oscillator groups which are equipped with left-invariant Douglas (α, β)-metrics, we
recall that by [23] the vector X is a geodesic vector of (α, β)-metric if and only if
X is a geodesic vector of a Riemannian metric g. Thus we obtain the following
result which gives us some new geodesic vectors on oscillator groups which do not
exist on Heisenberg groups.

Theorem 3.6. Let G be a Heisenberg group H2n+1 or an oscillator group Gn(λ)
which is equipped with a left-invariant Douglas (α, β) metric given in Theorem 2.4.

(a) If G = H2n+1, then y is a geodesic vector of (H2n+1, F ) if and only if y
has one of the following forms
(1) y ∈ V = span {x1, · · · , xn, y1, . . . , yn};
(2) y ∈ V = span {t}.

(b) If G = Gn(λ), then y is a geodesic vector of (Gn(λ), F ) if and only if y
has one of the following forms
(1) y ∈ V = span {x1, . . . , xn, y1, . . . , yn, t, q} satisfying k2n+1 = λik2n+2;
(2) y ∈ V = span {y1, . . . , yn, t, q} satisfying k2n+1 = λik2n+2;
(3) y ∈ V = span {x1, . . . , xn, t, q} satisfying k2n+1 = λik2n+2;
(4) y ∈ V = span {t, q};

Proof. For Gn(λ) by geodesic lemma in [14] y is a geodesic vector of (G, g) if
and only if 〈[y, z], y〉 = 0 for any z ∈ Gn(λ). Hence y =

∑n
i=1(kixi + kn+iyi) +

k2n+1t+k2n+2q is a geodesic vector of (Gn(λ), F ) if and only if we have 〈
∑n
i=1(kixi+
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kn+iyi)+k2n+1t+k2n+2q, ei],
∑n
i=1(kixi+kn+iyi)+k2n+1t+k2n+2q〉 = 0, when ei =

xi, yi, t, q, with i = 1, . . . , n. Thus we obtain the system of equations kn+ik2n+1 −
λik2n+2kn+i = 0 and kik2n+1−λik2n+2ki = 0. To solve these equations we consider
the following cases:
a) ki 6= 0 6= kn+i: this yields the case (1).
b) ki = 0 6= kn+i: this implies the case (2).
c) ki 6= 0 = kn+i: this gives us the case (3).
d) ki = 0 = kn+i: this yields the case (4).
For H2n+1 we have a similar proof. �

Comparing the results on oscillator groups and Heisenberg groups given in the
above theorem, we obtain the following result.

Corollary 3.7. There exist some new geodesic vectors on oscillator groups which
are equipped with left-invariant Douglas (α, β)-metrics while these geodesics do not
exist on Heisenberg groups.

4. S-curvature on the Heisenberg group H2n+1
and its extension

The concepts of S-curvatures are fundamental quantities in Finsler geometry
which vanish for the Riemannian metrics. Here to explicitly obtain the S-curvature
formulas on Heisenberg groups and their extension i.e., oscillator groups we recall
some facts from [8]. Assume that G is a Lie group with a left-invariant Randers
metric F which is defined by an inner product 〈, 〉 on the Lie algebra G of G and a
left-invariant vector field V . Then the S-curvature is given by

(4.1) S(e, y) = n+ 1
2

{ 〈[V, y], 〈y, V 〉V − y〉
F (y) − 〈[V, y], V 〉

}
.

see [7]. Using these facts and Theorem 2.3, we can obtain the following result.

Theorem 4.1. Let G be the Heisenberg group H2n+1 or the oscillator group Gn(λ)
which is equipped with a left-invariant Randers metric of Douglas type given in
Theorem 2.3. Then the S-curvature on G = H2n+1 is given by

(4.2) S(e, y) = −
√
λ(n+ 1)

{
k2n+1

∑n
i=1(dikn+i−dn+iki

σi
)√∑2n+1

i=1 k2
i +

∑2n
i=1 diki

}

and for G = Gn(λ) is given by S(e, y) = 0. Where y =
∑n
i=1(kixi+kn+iyi)+k2n+1t

is an arbitrary vector in H2n+1 and e is the identity element of G.

Proof. For H2n+1 by Theorem 2.3 we obtain V =
∑n
i=1(dixi + dn+iyi). Then

we get [V, y] =
∑n
i=1

t
√
λ

σi
(dikn+i − dn+iki) which implies that 〈[V, y], 〈y, V 〉V −

y〉 = −k2n+1
∑n
i=1

√
λ
σi

(dikn+i − dn+iki) and 〈[V, y], V 〉 = 0. Thus by replacing
these equations in (4.1), we get the formula (4.2). For Gn(λ) we have [V, y] =∑n
i=1 a2n+1λi(kiyi−kn+ixi) which gives us 〈[V, y], 〈y, V 〉V−y〉 = 0 and 〈[V, y], V 〉 =

0. Thus by replacing these equations in (4.1) we obtain the result. �



110 M. NASEHI

Using the above result we obtain the following corollary.

Corollary 4.2. Oscillator groups equipped with left-invariant Randres metrics of
Douglas type given in Theorem 4.1 have always vanishing S-curvature, whereas
this can not occur on Heisenberg groups.

The spaces with vanishing S-curvature have a close relationship with generalized
Berwald spaces and Ricci-quadratic spaces [3, 8]. Recall that a Finsler metric
is called Ricci-quadratic, if its Ricci curvature Ricc(x, y) is quadratic in y. By
Theorem 7.9 in [8] a homogeneous Randers space is Ricci quadratic if and only if
it is of Berwald type. Thus by Theorem 2.1 we obtain the following result which
gives us a property on oscillator groups which does not exist on Heisenberg groups.

Corollary 4.3. Heisenberg groups equipped with left-invariant Randres metrics of
Douglas type given in Theorem 4.1 are never Ricci-quadratic spaces, while oscillator
groups can be considered as Ricci-quadratic spaces.

Recall that a Finsler manifold (M,F ) is a generalized Berwald manifold if there
exists a covariant derivative ∇ on M such that the parallel translations induced
by ∇ preserve the Finsler function F . By [1] any left invariant Finsler metric on
a Lie group is a generalized Berwald space. Thus by Theorem 2.1 we obtain the
following result which gives us the existence of generalized Berwald spaces which
are non-Berwardian.

Corollary 4.4. Heisenberg groups equipped with left-invariant Randres metrics of
Douglas type given in Theorem 4.1 are non-Berwardian generalized Berwald spaces,
whereas oscillator groups are of Berward type.
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