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Abstract

Expressive temporal reasoning formalisms are essential for
AI. One family of such formalisms consists of disjunctive
extensions of the simple temporal problem (STP). Such ex-
tensions are well studied in the literature and they have many
important applications. It is known that deciding satisfiability
of disjunctive STPs is NP-hard, while the fine-grained com-
plexity of such problems is virtually unexplored. We present
novel algorithms that exploit structural properties of the so-
lution space and prove, assuming the Exponential-Time Hy-
pothesis, that their worst-case time complexity is close to op-
timal. Among other things, we make progress towards resolv-
ing a long-open question concerning whether Allen’s interval
algebra can be solved in single-exponential time, by giving

a 2
O(n log logn) algorithm for the special case of unit-length

intervals.

1 Introduction

Temporal reasoning is a fundamental task in AI. One of the
most influential temporal formalisms is the simple temporal
problem (STP). The STP was first proposed by Dechter et
al. (1991) and it has become the basis for a major part of
research on temporal reasoning. Even though STPs are im-
mensely useful in a wide range of applications, their expres-
sive power is limited. A common way of increasing their:
remove this expressibility is to introduce disjunctions in var-
ious ways (Barber 2000; Dechter, Meiri, and Pearl 1991;
Oddi and Cesta 2000; Stergiou and Koubarakis 2000). Such
disjunctive STPs have proven to be highly relevant in an
AI context (two examples that come to mind are auto-
mated planning (Gerevini, Saetti, and Serina 2006; Venable
and Yorke-Smith 2005) and multi-agent systems (Bhargava
and Williams 2019; Boerkoel and Durfee 2013); a thor-
ough discussion of applications can be found in Stergiou &
Koubarakis (2000, Sec. 7)). STPs also have important ap-
plications in other areas: we merely point out that unit inter-
val problems (with applications in bioinformatics and graph
theory, cf. (Pe’er and Shamir 1997)) and the channel assign-
ment problem (which is a central problem in telecommuni-
cations (Audhya, Sinha, and Ghosh 2011)) can be viewed as
disjunctive STPs.

While the STP is a polynomial-time solvable problem, the
disjunctive versions are typically NP-hard (even though a
number of polynomial-time fragments are known, cf. (Ku-

mar 2005)). We traditionally view a computational prob-
lem as intractable if it is NP-hard. NP-hardness rules out
polynomial-time algorithms (assuming P 6= NP), but it does
not say anything about the time complexity of the best possi-
ble algorithm. Recent advances in complexity theory allow
us to prove conditional lower bounds via restricted reduc-
tions from complexity-theoretic conjectures that are stronger
than the P 6= NP conjecture. The framework of fine-grained
complexity has enabled proving close-to-optimal bounds on
time complexity for a multitude of problems assuming suit-
able conjectures, cf. the textbook by Gaspers (2010). Recent
AI examples can be found in planning (Bäckström and Jon-
sson 2017), constraint satisfaction (Jonsson and Lagerkvist
2017) and in general modelling languages such as integer
linear programming (Knop, Pilipczuk, and Wrochna 2019).

The aim of this paper is to present a fine-grained com-
plexity analysis of disjunctive extensions of STPs. Some
technical machinery is required to describe the results in
detail, so we postpone this description to a later section.
To give the reader a flavour of the results, we consider
the disjunctive extension of STP proposed by Dechter et
al. (1991). Constraints in this problem are of the form
x − y ∈ I1 ∪ · · · ∪ Ik, where variables x and y repre-
sent points in time and I1, . . . , Ik are closed intervals on the
real line. Given a set of such constraints, the basic com-
putational problem is to decide whether the variables can
be assigned real values that satisfy all the constraints. We

show that this problem can be solved in 2O(n logn) time,
where n is the number of variables. Furthermore, we obtain
a tightly matching lower bound by proving that no algorithm

can solve it 2o(n logn) time assuming the Exponential-Time
Hypothesis (ETH). The ETH was introduced by Impagliazzo
et al. (2001) and it is probably the best-known conjecture
in fine-grained complexity. It states that the BOOLEAN 3-

SATISFIABILITY problem cannot be solved in 2o(n) time,
where n is the number of variables.

Our results are also relevant outside AI. Allen’s Algebra
over unit-length intervals is an important formalism with ap-
plications in, for example, bioinformatics. Our algorithm for
a restricted version of a disjunctive STP allows us to solve

the decision problem for this formalism in 2O(n log logn)

time. The best previously known bound, 2O(n logn), can be
obtained by viewing the problem as an instance of the exis-



tential theory of the reals and solving it using an algorithm
due to Renegar (1992).

To a large extent, our results are based on exploiting
structural properties of the solution space. Such properties
include combinatorial properties of solutions (Lemma 3),
compact representations of the solution space (Theorem 5),
and amalgamation-like properties (Lemma 16). We stress
that we need to introduce novel methods for analysing the
fine-grained complexity of CSP problems. The standard
method for analysing the complexity of CSP problems—
the polymorphism-based algebraic approach—is very well
suited for analysing the borderline between tractable and
NP-hard problems, but it is not very useful for studying
fine-grained complexity. We note that there are extended
algebraic approaches (typically based on partial polymor-
phisms (Couceiro, Haddad, and Lagerkvist 2019)) that may
be useful in this context, but such approaches are difficult to
apply since the theory is underdeveloped for infinite-domain
CSPs.

The paper has the following structure. We begin by intro-
ducing CSPs and the temporal problems we will study, fol-
lowed by a summary of our results. Next, we present some
general tools and continue by proving our technical results.
The paper concludes with a short discussion section.

2 CSPs and Temporal Problems

We begin by defining the CSP.

Definition 1. Let Γ denote a set of finitary relations defined
on a set D of values. The constraint satisfaction problem
over Γ (CSP(Γ)) is defined as follows:

INSTANCE. A tuple (V, C), where V is a set of variables and
C is a set of constraints of the form R(v1, . . . , vt), where t
is the arity of R, v1, . . . , vt ∈ V , and R ∈ Γ.

QUESTION. Is there a function f : V → D such that
(f(v1), . . . , f(vt)) ∈ R for every R(v1, . . . , vt) ∈ C?

The set Γ is referred to as a constraint language, while
the function f is a satisfying assignment or simply a solu-
tion. Observe that we do not require Γ or D to be finite.
Given an instance I of CSP(Γ), we write ‖I‖ for the num-
ber of bits required to represent I. We primarily measure
time complexity in terms of n (the number of variables).
Historically, this has been the most common way of measur-
ing time complexity: for instance, the vast majority of work
concerning finite-domain CSPs concentrates on the number
of variables. One reason for this is that an instance may be
much larger than the number of variables — a SAT instance
may contain up to 22n distinct clauses if repeated literals are
disallowed — and measuring in terms of the instance size
may give far too optimistic figures. It is thus more informa-
tive to know that SAT can be solved in O∗(2n) time instead

of knowing that it is solvable in O(2‖I‖) time, where O∗(·)
hides polynomial factors in n.

The simple temporal problem (Dechter, Meiri, and Pearl

1991) can be viewed as CSP(S6), where the constraint lan-

guage S6 consists of relations {(x, y) ∈ R
2 : a⊙1x−y⊙2b}

for any a ∈ Z∪{−∞}, b ∈ Z∪{∞} and⊙1 = ⊙2 =≤. A
more general temporal problem, denoted by CSP(S), allows

for strict inequalities in the relations: ⊙1,⊙2 ∈ {<,≤}.

CSP(S6) and CSP(S) are solvable in polynomial time.
One way of augmenting STPs with disjunctions (Oddi and

Cesta 2000; Stergiou and Koubarakis 2000) yields a general
language Dω with relations

{(x1, . . . , xt) ∈ R
t :

∨m
ℓ=1 xiℓ − xjℓ ∈ Iℓ}

for arbitrary t,m ≥ 1, iℓ, jℓ ∈ {1, . . . , t} and intervals Iℓ
with endpoints I−ℓ ∈ Z ∪ {−∞}, I+ℓ ∈ Z ∪ {∞} for all
1 ≤ ℓ ≤ m. Another way of augmenting STPs with dis-
junctions (Dechter, Meiri, and Pearl 1991) results in a bi-
nary constraint language D2 containing all binary relations
in Dω . In the literature, this problem is known as the Dis-
junctive Temporal Problem.

To simplify the presentation, we sometimes use an alter-
native notation for such constraints. A disjunctive constraint
∨m

ℓ=1 xiℓ − xjℓ ∈ Iℓ can be represented as a set of simple
constraints {xiℓ − xjℓ ∈ Iℓ : ℓ ∈ {1, . . . ,m}}. An assign-
ment satisfies the disjunctive constraint whenever it satisfies
at least one simple constraint in the corresponding set.

We conclude by observing that solutions to the temporal
problems defined above are invariant under translation, i.e.
if ϕ : V → R satisfies an instance (V, C), then so does
ϕ′(v) = v + c for all v ∈ V and an arbitrary c. Thus, we
can pick any variable in V and assume that its value is zero
without loss of generality. We call such a variable a zero
variable. Augmenting an instance of CSP(Dω) with a zero
variable z allows us to express unary constraints, e.g. the
constraint x− z ∈ (0, 2] is equivalent to x ∈ (0, 2].

3 Summary of Results
Given a relation R ∈ Dω , let K(R) denote the set of nu-
merical bounds appearing in R, e.g. for R = {(x, y, z) ∈
R

3 : (−∞ < x − y ≤ 3) ∨ (0 ≤ x − z < 6)} we have
K(R) = {3, 0, 6}. If X is a set of relations, then the defi-
nition of K extends naturally: K(X) =

⋃

R∈X K(R). Let

k(Γ) = max{|a| : a ∈ K(Γ)}, i.e. k(Γ) is the least upper
bound on absolute values of all numerical bounds appearing
in the relations of Γ. For an instance I = (V, C) of a dis-
junctive temporal problem, let n = |V | denote the number
of variables and let the numerical upper bound be k = k(C).

We let Dω,k denote the maximal subset Γ of Dω such that
k(Γ) = k and define D2,k analogously. Note that D2,k is
always a finite language, while Dω,k is always infinite. Sim-

ilarly to the notation used for S6 and S, we use D
6
2 and D6

ω
for the constraint languages that never use strict inequalities,
and D2 and Dω for the full languages.

We prove the following results:

1. CSP(Dω) is solvable in 2O(nk(logn+log k)) time (Corol-
lary 6).

2. CSP(Dω,k) is solvable in 2O(n logn) time for arbitrary k,

and there is a finite constraint language Γ ⊆ D
6
ω,0 ⊆ D

6

ω,k

such that CSP(Γ) cannot be solved in 2o(n logn) time as-
suming the ETH (Theorem 9).

3. CSP(D2) is solvable in 2O(n(logn+log k)) time (Theo-

rem 11), while CSP(D6
2 ) cannot be solved in 2o(n logn)

time assuming the ETH (Theorem 12).



4. CSP(D2,k) is solvable in 2O(n log logn) time for arbitrary
k (Lemmas 19 and 20), while for every c > 1, there is

a finite constraint language Γ ⊆ D
6
2 such that CSP(Γ)

cannot be solved in O(cn) time assuming the ETH (The-
orem 15).

Results 2 and 3 prove that the algorithms for CSP(Dω,k)
and CSP(D2) are close to optimal with respect to worst-case
time complexity. Result 4 indicates that there is no uniform
single-exponential algorithm for CSP(D2,k). The result
does not, however, rule out the possibility that CSP(D2,k)
can be solved in 2ck·n time, where c1, c2, . . . is an increas-
ing sequence.

The problems we consider can be expressed in the exis-
tential theory of the reals and solved by Renegar’s (1992)

algorithm. This leads to a 2O(n3k)-time algorithm for

CSP(Dω) and, consequently, 2O(n3) time for CSP(Dω,k).
For binary constraint languages this method yields much

better results with 2O(n(logn+log k)) time for CSP(D2) and

2O(n logn) time for CSP(D2,k). We note that the running
time for CSP(D2) obtained this way matches our result.
However, we claim that our algorithm represents a very sim-
ple and natural approach to solving this problem.

4 Normal Forms

We introduce two normal forms on CSP(Dω) instances: the
standard and the reduced form. The standard form is based
on constraint languages Tk ⊆ D2, k ≥ 0, that contain the
following relations:

{(x, y) ∈ R
2 : x− y ∈ {i}} for all i ∈ {0, . . . , k},

{(x, y) ∈ R
2 : x− y ∈ (i, i+ 1)} for all i ∈ {0, . . . , k − 1},

{(x, y) ∈ R
2 : x− y ∈ (k,∞)}.

Let I = (V, C) be an instance of CSP(Dω) and let
k = k(C). Any relation used in C can be expressed as a
disjunction of relations in Tk. We illustrate this by an exam-
ple. Given a simple relation x − y ∈ (−∞, b] with b > 0,
first split it around zero: y−x ∈ [0,∞)∨x−y ∈ (0, b]. Then
express y − x ∈ [0,∞) as

∨

R∈Tk
R(y, x). Finally, express

x−y ∈ (0, b] as
∨b

i=1 x−y ∈ (i−1, i)∨
∨b

i=1 x−y ∈ {i}.
Any instance I = (V, C) of CSP(Dω) with k = k(C)

can be converted into an equivalent one where the disjuncts
are members of Tk. We say that the latter instance is in
standard form. The standard form of an arbitrary instance of
CSP(Dω) can be computed in polynomial time.

We continue with the reduced form. Our starting point is
a polynomial-time reduction from CSP(Dω) to CSP(Dω,1).
An important observation here is that the reduction intro-
duces relatively few additional variables.

Lemma 1. For every instance I = (V, C) of CSP(Dω) with
k = k(C) there is an equivalent instance I ′ = (V ′, C′) with
k(C′) = 1 and |V ′| = (k + 1)|V |.

Proof. Assume that I is in standard form. Define the set of
variables V ′ = {v(δ) : v ∈ V and 0 ≤ δ ≤ k}. We start by
defining the set C′s of structural constraints. For all v ∈ V
and δ ∈ {1, . . . , k}, add the constraint v(δ) − v(δ−1) = 1 to

C′s. Observe that these constraints ensure that v(δ)−v(0) = δ
for every δ.

Next, we define a set C′ı of instance-specific constraints
Consider an arbitrary C ∈ C. We will construct an equiv-
alent constraint C ′ over the variables V ′ using the relations
from T1. For each simple constraint τ(v, w) in C over a pair
of variables v, w ∈ V , use the following rules to convert it
into τ ′(v, w):

v − w ∈ {i} ←→ v(0) − w(i) = 0 (R1)

v − w ∈ (i, i+ 1) ←→ v(0) − w(i) ∈ (0, 1) (R2)

v − w ∈ (k,∞) ←→ v(0) − w(k) ∈ (0,∞) (R3)

We add τ ′(v, w) to C ′. After converting all simple con-
straints in C we add C ′ to C′ı. Finally, we set C′ = C′s ∪ C

′
ı.

Observe that rules R1, R2, R3 ensure that ϕ satisfies a
simple constraint τ(v, w) if and only if ϕ′ satisfies τ ′(v, w).
Hence, the instances I and I ′ are equivalent.

We say that the instance I ′ as defined in Lemma 1 is in re-
duced form. To convert from standard form to reduced form,
one can apply rules R1, R2, R3 to each simple constraint,
following the instruction from left to right (we call this pro-
cedure REDUCEDFORM). The reverse conversion is done by
applying these rules in the opposite direction (we call this
procedure INVREDUCEDFORM). Note that both conversion
procedures require polynomial time.

An assignment ϕ′ to an instance I ′ in reduced form is said
to be valid if it satisfies all the structural constraints of the
instance. Note that a valid assignment does not necessarily
satisfy the instance.

5 Enumeration of Certificates

The goal of this section is to present a method for enumer-
ating compact representations of solutions to CSP(Dω) in-
stances. Let I = (V, C) be an instance of CSP(Dω). Define
U(C) =

⋃

C∈C C to be the set of all simple constraints in C.
Let ϕ : V → R be an assignment to I. We identify ϕ with
the subset of constraints F ⊆ U(C) satisfied by ϕ. This al-
lows us to define an equivalence relation on the assignments:
ϕ1 ∼ ϕ2 if and only if F1 = F2. This way, F represents the
entire class of assignments equivalent to ϕ. We say that F
is a certificate of the satisfiability of I. An assignment ϕ
is satisfying if the certificate F contains at least one simple
constraint from every C ∈ C. Note that if ϕ1 ∼ ϕ2 and ϕ1

is a satisfying assignment, then so is ϕ2. While there may
be infinitely many satisfying assignments to I, the number
of certificates is finite: there are at most as many certificates
as there are subsets of U(C).

We begin this section by introducing ordered partitions.
Next, we establish certain connections between certificates
and ordered partitions, which form the basis for our enumer-
ation algorithm presented at the end of the section.

5.1 Ordered Partitions

An ordered partition of a finite set S is a sequence of non-

empty disjoint subsets (S1, . . . , Sℓ) such that
⋃ℓ

i=1 Si = S.
An ordered partition implicitly defines a ranking function



r : S → {1, . . . , ℓ}, where r(x) = i for every x ∈ Si. We
write x⊙ry to denote that r(x)⊙r(y) when⊙ ∈ {<,=, >}.

Any function f : S → X , where X is a totally ordered
set, induces an ordered partition on S with the ranking func-
tion r such that a ⊙r b if and only if f(a) ⊙ f(b) for all
a, b ∈ S and ⊙ ∈ {<,=, >}.

The total number of ordered partitions of an n-element set
is counted by the n’th Fubini number F (n) (also known as
the n’th ordered Bell number). The value of F (n) is closely
approximated by (n!/2)(log2 e)

n+1 (Gross 1962). For our
purposes the rough upper bound F (n) ≤ nn is sufficient.

Generating all (unordered) partitions of a set {1, . . . , n}
takes O(1) amortized time per partition (Ichiro 1984) and
generating all permutations takes O(1) time per permuta-
tion (Sedgewick 1977). Hence, we have the following:

Proposition 2. All ordered partitions of an n-element set
can be enumerated in O(nn) time.

5.2 Valid Assignments

Let I = (V, C) be an instance of CSP(Dω) and let I ′ =
(V ′, C′) be I in reduced form. Consider an ordered partition
Φ on V ′. We say that Φ is valid if there is a valid assign-
ment ϕ′ : V ′ → R that induces this ordered partition. The
following lemma characterizes valid ordered partitions:

Lemma 3. An ordered partition Φ = (Φ1, . . . ,Φℓ) on V ′

with a ranking function r is valid if the following hold:

1. v(δ−1) <r v(δ) for v ∈ V and δ ∈ {1, . . . , k};

2. v(0) ⊙r w(0) ⇐⇒ v(δ) ⊙r w(δ) for v, w ∈ V,
δ ∈ {1, . . . , k} and ⊙ ∈ {<,=, >}.

Proof. An assignment ϕ′ inducing Φ on V ′ should be con-
stant on each subset in Φ, so we write ϕ′(Φi) to denote
the value of ϕ′(x) for any x ∈ Φi. Consider the sequence
d = (d1, . . . , dℓ−1), where di = ϕ′(Φi+1) − ϕ′(Φi). Note
that d defines ϕ′ uniquely up to translation. Thus, to prove
that ϕ′ exists it suffices to construct d with positive en-

tries respecting the following property: if v(δ−1) ∈ Φi and

v(δ) ∈ Φj for any v and δ, then
∑j−1

s=i ds = 1. This ensures
validity of ϕ′:

∑j−1
s=i ds =

∑j−1
s=i ϕ

′(Φs+1)− ϕ′(Φs) =

= ϕ′(Φj)− ϕ′(Φi) =

= ϕ′(v(δ))− ϕ′(v(δ−1)) = 1

Note that i < j by Condition 1 on Φ. Essentially, we have
a system of linear equations over the entries of d and need
to show that it has a positive solution. In matrix form, the
problem is to solve Md = 1 with d > 0.

The matrix M has a very specific structure. First, note
that the entries in M are either 0 or 1. Each row encodes
a linear constraint equivalent to ϕ′(v(δ)) − ϕ′(v(δ−1)) = 1
for some v and δ. Remove duplicate rows and permute the

rest in the increasing order of r(v(δ)). Let si and ei be the
maximal and minimal indices of nonzero entries in row i,
respectively. Note that all entries between si and ei are also
nonzero. For a successive pair of rows i and i + 1 we have
si < si+1 and ei < ei+1 by Condition 2. We say that M is
a staircase matrix (see Figure 1).







1 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 0 1 1







Figure 1: An example of a staircase matrix

We show inductively that Md = 1 has a positive solution
when M is a staircase matrix. Let Ri = {si, . . . , ei} be the
set of indices of nonzero entries in row i. To satisfy the linear
equation for the first row, set dj = 1

|R1|
for all j ∈ R1. For

row i > 1, consider X = Ri−1 \ Ri, Y = Ri−1 ∩ Ri and
Z = Ri \ Ri−1. By the staircase property, neither X nor

Z is empty. Compute SX =
∑

x∈X dx and set dz = SX

|Z|

for all z ∈ Z. By the inductive hypothesis, SX > 0, so
the assigned values are positive. Furthermore,

∑

j∈Ri
dj =

∑

y∈Y dy +
∑

z∈Z dz =
∑

y∈Y dy + SX = 1, so the linear

equation for row i is satisfied.

Now we show that it is possible to recover a certificate of
an assignment given the ordered partition it induces.

Lemma 4. Let ϕ′ be a valid assignment to I ′ = (V ′, C′).
Let F ′ ⊆ U(C′) be the certificate of ϕ′ and suppose ϕ′ in-
duces an ordered partition Φ on V ′. There is a polynomial-
time algorithm that computes F ′ provided I ′ and Φ as input.

Proof. Let r be the ranking function defined by Φ and con-
sider an arbitrary constraint in U(C′). If it is a structural
constraint, then it is included in F ′ since ϕ′ is valid. Oth-
erwise, there are three possible cases. If the constraint

is v(0) − w(i) ∈ {0}, then ϕ′ satisfies it if and only if

v(0) =r w(i). If the constraint is v(0) − w(i) ∈ (0, 1), then

ϕ′ satisfies it if and only if w(i) <r v(0) <r w(i+1). If the

constraint is v(0) − w(k) ∈ (0,∞), then ϕ′ satisfies it if and

only if w(k) <r v(0).
These conditions are exhaustive since Φ is valid. Thus,

the ranking function r allows us to decide for each constraint
in U(C′) whether it is in F ′ or not. Clearly, the overall pro-
cedure can be carried out in polynomial time.

5.3 Enumeration Algorithm

We present an algorithm that enumerates the certificates to
an instance of CSP(Dω). The output contains a certificate
for every equivalence class of satisfying assignments. The
algorithm is summarized in Algorithm 1. We refer to the
procedure from Lemma 4 computing the certificate given an
ordered partition as ORDERTOCONSTR.

Theorem 5. Algorithm 1 outputs the list of certificates to an
instance I = (V, C) of CSP(Dω) in 2O(nk(logn+log k)) time,
where n = |V | and k = k(C).

Proof. To see that the algorithm is correct, observe that ev-
ery satisfying assignment ϕ to I defines an ordered partition
on V ′ via ϕ′. Algorithm 1 enumerates every valid ordered
partition, including those defined by the satisfying assign-
ments to I. The rest follows by Lemma 4.



Algorithm 1

1: procedure LISTCERT(I = (V, C))
2: I ′ = (V ′, C′)← REDUCEDFORM(I)
3: L← ∅

4: for each valid ordered partition Φ of V ′ do
5: F ′ ← ORDERTOCONSTR(I ′,Φ)
6: if F ′ ∩ C ′ 6= ∅ for C ′ ∈ C′ then
7: (V, F )← INVREDUCEDFORM(V ′, F ′)
8: L← L ∪ {F}

9: return L

The running time of the algorithm is dominated by the
enumeration of ordered partitions on V ′. Checking whether
the assignment derived from each ordered partition satis-
fies I requires polynomial time. By Proposition 2, the or-

dered partitions of V ′ can be enumerated in O(|V ′||V
′|)

time. Substituting n(k + 1) for |V ′| yields the running time

2O(n(k+1)(logn+log (k+1))) ∈ 2O(nk(logn+log k)) .

Corollary 6. CSP(Dω) is solvable in 2O(nk(logn+log k))

time.

6 Complexity of CSP(Dω,k)
We will present a lower bound on the time complexity of
CSP(Dω,k) that matches the upper bound implied by the
LISTCERT algorithm. Let E6 ⊆ Dω be the maximal con-
straint language containing relations of arity at most 6 such
that k(E6) = 1. Observe that both the arity of the relations
and the parameter k(E6) are bounded, so the language is fi-
nite. We prove a lower bound on CSP(E6) by a reduction
from the n × n INDEPENDENT SET problem. An instance
of this problem is a graph G with an n×n grid as the vertex
set: V = {1, . . . , n} × {1, . . . , n}. The question is whether
G has an independent set with one vertex from each row.

Theorem 7 (Lokshtanov, Marx, and Saurabh). n ×
n INDEPENDENT SET cannot be solved in 2o(n logn) time
unless the ETH fails.

Lemma 8. CSP(E6) cannot be solved in 2o(n logn) time un-
less the ETH fails.

Proof. We reduce from n × n INDEPENDENT SET. For
brevity, we write x ≥ y or y ≤ x in place of x−y ∈ [0,∞).
Given an instance G of this problem, introduce n column
variables c1, . . . , cn and the constraints ci− ci−1 = 1 for all
i ∈ {2, . . . , n}. Next, introduce n row variables r1, . . . , rn.
To ensure that each ri is equal to one of the column vari-
ables, add the following constraints: c1 ≤ ri, ri ≤ cn and
(ri ≤ cj−1) ∨ (ri ≥ cj) for all j ∈ {2, . . . , n}.

No pair of vertices (i, j) and (k, ℓ) adjacent in G can be
simultaneously included in the independent set. To ensure
this property, we add the following constraint:

(ri ≤ cj−1) ∨ (ri ≥ cj+1) ∨ (rk ≤ cℓ−1) ∨ (rk ≥ cℓ+1)

If G has an independent set I , than setting ri = cj for all
(i, j) ∈ I satisfies all constraints of the instance above, and
vice versa. The reduction requires polynomial time and in-

troduces 2n variables. Thus, if CSP(E6) admits a 2o(n logn)

algorithm, then so does n × n INDEPENDENT SET and this
contradicts the ETH by Theorem 7.

Theorem 9. CSP(Dω,k) can be solved in 2O(n logn) time

while CSP(D6

ω,k) cannot be solved in 2o(n logn) time unless

the ETH fails.

Proof. Algorithm LISTCERT solves CSP(Dω,k) in

2O(nk(logn+log k)) = 2O(n logn) time, since k is constant.

The language E6 is a subset of D
6

ω,k and this gives us the

lower bound.

7 Complexity of CSP(D2)
We begin by examining a restricted version of CSP(D2) (de-
noted by w-CSP(D2)) where solutions can only take values
in the interval [0, w). We show that this problem can be
solved in O∗(wn) time.

Lemma 10. w-CSP(D2) can be solved in O∗(wn) time.

Proof. Let I = (V, C) be an instance of w-CSP(D2) in
standard form and assume ϕ : V → [0, w) is a satisfying
assignment. We split ϕ into integral and fractional parts:
ϕ(x) = ϕi(x) + ϕf (x), where ϕi(x) ∈ {0, . . . , w − 1}
and 0 ≤ ϕf (x) < 1. Suppose we fix ϕi and want to
check whether any ϕf extends ϕi to a satisfying assign-
ment. For every pair of distinct variables x and y we have
ϕi(x) − ϕi(y) = c for some integer c. There are only six
nontrivial constraints that agree with this assignment, each
of them expressible as a linear inequality or disequality:

x− y ∈ (c− 1, c) −→ ϕf (x) < ϕf (y)

x− y ∈ {c} −→ ϕf (x) = ϕf (y)

x− y ∈ (c, c+ 1) −→ ϕf (x) > ϕf (y)

x− y ∈ (c− 1, c] −→ ϕf (x) ≤ ϕf (y),

x− y ∈ [c, c+ 1) −→ ϕf (x) ≥ ϕf (y),

x− y ∈ (c− 1, c) ∪ (c, c+ 1) −→ ϕf (x) 6= ϕf (y).

These constraints together with the domain restriction 0 ≤
ϕf (v) < 1 for each v yield a system of linear inequalities
and disequalities that has a solution if and only if there is
a fractional assignment ϕf that extends ϕi to a satisfying
assignment. Feasibility of a system of linear inequalities
and disequalities can be decided in polynomial time (Jon-
sson and Bäckström 1998; Koubarakis 2001).

There are wn possible functions ϕi : V → {0, . . . , w−1}
and checking whether a ϕi can be extended to a satisfying
assignment requires polynomial time. Hence, the total run-
ning time of this algorithm is O∗(wn).

We are now ready to prove the upper bound on CSP(D2).

Theorem 11. CSP(D2) is solvable in 2O(n(logn+log k))

time.

Proof. First, we prove that a satisfiable instance I = (V, C)
of CSP(D2) has an assignment with width w < n(k + 1),
where n = |V | and k = k(C).

Consider instance I ′ = (V ′, C′) in reduced form equiv-
alent to I. A satisfying assignment to I induces an or-
dered partition Φ = (Φ1, . . . ,Φℓ) on V ′. By Lemma 3, we



can construct a satisfying assignment ϕ′ from Φ such that
ϕ′(Φℓ)−ϕ

′(Φ1) ≤ ℓ−1, since each di = ϕ′(Φi+1)−ϕ
′(Φi)

in the proof of the lemma is assigned a value no greater than
1. There are n(k + 1) variables in I ′, so ℓ ≤ n(k + 1).
Now consider the assignment ϕ to I obtained from ϕ′

by setting ϕ(v) = ϕ′(v(0)) for all v ∈ V . Note that
w = ϕmax − ϕmin, i.e. w is equal to the difference be-
tween the maximal and minimal value assigned by ϕ. Ob-
serve also that ϕ′

min = ϕmin and ϕ′
max = ϕmax + k, thus

w ≤ ϕ′
max − ϕ′

min < n(k + 1).
Finally, observe that the algorithm from Lemma 10

can decide satisfiability of I in width n(k + 1) in

O∗((n(k + 1))n) = 2O(n(logn+log k)) time.

Next, we prove a lower bound on CSP(D6
2 ).

Theorem 12. CSP(D6
2 ) is not solvable in 2o(n logn) time if

the ETH holds.

Proof. The proof is by reduction from n×n INDEPENDENT

SET. Given an instance G of this problem, we introduce
a zero variable z and two variables xr, x

′
r for each row r.

The domain of each xr is set to {1, . . . , n} by adding the
constraint

∨n
i=1 xr − z = i. We want to constrain x′

r in
such a way that x′

r = nxr for all r ∈ {1, . . . , n}. This is
achieved by adding the constraints

∨n
i=1 x

′
r − xr = ni − i

and
∨n

i=1 x
′
r − z = ni. Next, for each pair of vertices

(a, i) and (b, j) that are adjacent in G, we need to ensure
that a solution does not contain both of them. To this end,
we add the constraint x′

a − xb ∈ (−∞, ni − j − 1] ∨
x′
a − xb ∈ [ni − j + 1,∞) which is equivalent to set-

ting x′
a − xb 6= ni − j. Observe that x′

a − xb = ni − j
if and only if xa = i and xb = j, because the mapping
f : {1, . . . , n} × {1, . . . , n} → {0, . . . , n2 − 1} defined as
f(i, j) = ni−j is bijective. Clearly, the resulting instance of

CSP(D6
2 ) has a solution if and only if G has an independent

set with one variable per row. The total number of variables
in the resulting instance is 2n+1 and the absolute values of
the integers appearing in the constraints do not exceed n2.

Thus, an algorithm solving CSP(D6
2 ) in 2o(n(logn+log k))

time can be used for solving n × n INDEPENDENT SET in

2o(n(log (2n+1)+logn2)) = 2o(n logn) time and this contra-
dicts the ETH by Theorem 7.

8 Complexity of CSP(D2,k)
In this section we consider the time complexity of
CSP(D2,k). We prove the lower bound in the this section
and present an algorithm solving CSP(D2,k) in the next.

Our hardness proof relies on a modification of a result
by Traxler (2008). Let d-CSP be the constraint satisfaction
problem with domain D = {1, . . . , d} and binary relations
Ra,b = (x 6= a ∨ y 6= b) for all a, b ∈ D. Consider a mod-
ified version of this problem denoted by d-CSPχ with the
binary relations

Rχ
a,b = (x 6= a ∨ y 6= b) ∧

∧

c∈D(x 6= c ∨ y 6= c)

for all a, b ∈ D. For convenience, we consider the con-
straints that rule out (c, c) tuples (i.e. the right-hand side

constraints in the definition above) separately, and assume
the following rule: if an instance of d-CSPχ includes a con-
straint (x 6= a ∨ y 6= b), then it implicitly includes the re-
quired constraints (x 6= c ∨ y 6= c) for all c ∈ D. Addition-
ally, we allow unary relations x 6= a for all a ∈ D.

Lemma 13. For any r ∈ N and any instance of d-CSPχ

with n variables, there exists an equivalent instance of
dr-CSPχ with ⌈n/r⌉ variables.

Proof. Let I = (V, C) be an instance of d-CSPχ with |V | =
n. Augment V with at most r − 1 extra variables so that
its new size n′ becomes a multiple of r. Partition V into
ℓ = n′/r = ⌈n/r⌉ disjoint subsets V1, . . . , Vℓ of equal size
and index the elements of each subset arbitrarily.

The set of tuples Dr represents all assignments to the vari-
ables in a subset Vi. For convenience, we use the tuples di-
rectly as the domain of dr-CSPχ.

Define an instance I ′ = (V ′, C′) of dr-CSP as follows.
For each subset Vi in the partition introduce a variable zi to
V ′. Note that |V ′| = ℓ.

First, consider a unary constraint x 6= a in C. Assume
x ∈ Vi and ix is the index of x in Vi. Add constraints zi 6= t
to C′ for all t ∈ Dr such that tix = a. Now consider a binary
constraint (x 6= a) ∨ (y 6= b) in C. Assume x ∈ Vi, y ∈ Vj

and ix, jy are the indices of x, y in the respective subsets. If
i 6= j, then add constraints (zi 6= s ∨ zj 6= t) for all tuples
s, t ∈ Dr such that six = a and tjy = b. If i = j (index of y
is iy), add unary constraints zi 6= t for all t such that tix = a
and tiy = b.

Observe that the required constraints (x 6= c ∨ y 6= c) for
all c ∈ D are converted into (zi 6= s ∨ zj 6= t) for every
pair of tuples s, t ∈ Dr that coincide in at least one position.
Clearly, this includes the case when s and t are equal. Hence,
I ′ is an instance of dr-CSPχ. For the proof of equivalence
of I and I ′ refer to Lemma 1 in (Traxler 2008).

Next, we introduce Golomb rulers. A Golomb
ruler (Golomb 1972) (also known as a Sidon set (Sidon
1932)) is a set of integers such that the difference between
any pair of its elements is unique. The order of a Golomb
ruler is the number of elements in it and the length of a ruler
is the difference between its maximal and minimal elements.
For example, {0, 1, 4, 6} is a Golomb ruler of order 4 with
length 6. There is a way to construct Golomb rulers with
length quadratic in their order.

Proposition 14 (Erdős and Turán). Let p ≥ n be an odd
prime. Then Gn = {pa+(a2 mod p) : a ∈ {0, . . . , n−1}}
is a Golomb ruler.

We are now ready to prove the lower bound.

Theorem 15. If we assume that the ETH holds, then for ar-
bitrary m > 0 there is an integer k such that any algorithm
solving CSP(D2,k) requires at least O∗(mn) time.

Proof. We start by proving that the time complexity of
d-CSPχ increases with d assuming the ETH. Let cd =
inf{c : there is a 2cn-time algorithm solving d-CSPχ}. We
show that limd→∞ cd =∞. The 3-COLOURABILITY prob-
lem cannot be solved in subexponential time assuming the
ETH (Impagliazzo, Paturi, and Zane 2001). 3-CSPχ is a



generalization of 3-COLOURABILITY, hence c3 > 0. By
Lemma 13, for any r ∈ N we have c3r ≥ c3 · r. Observe
that limr→∞ c3 · r =∞, so limd→∞ cd =∞.

Next, we show that for any instance of d-CSPχ with n
variables there is an equivalent instance of CSP(D2,k) with

n + 1 variables and k ∈ O(d2). Let I be an instance
of d-CSPχ with n variables. Construct an instance I ′ of
CSP(D2,k) as follows. Choose k so that {−k, . . . , k} con-
tains a Golomb ruler of order d as a subset. By Propo-
sition 14, one can choose such k to be in O(d2). De-
note the Golomb ruler by Gd. Associate each integer in
{1, . . . , d} with a unique element of Gd via the bijection
ρ : {1, . . . , d} → Gd. Introduce zero variable z to express
unary relations. For each variable x in I introduce a new
variable vx. Define Ex = {ρ(c) | (x 6= c) ∈ C}. Re-
strict the domain of vx to Dx = Gd \ Ex by the constraint
∨

i∈Dx
vx−z ∈ {i}. Any constraint (x 6= a∨y 6= b) can be

expressed by disallowing vx − vy to equal δ = ρ(a)− ρ(b):
set vx − vy ∈ (−∞, δ − 1] ∨ vx − vy ∈ [δ + 1,∞). By
the properties of Golomb rulers, this constraint is satisfied if
and only if x 6= ρ(a) or y 6= ρ(b).

The reduction introduces only one extra variable. Thus,
the lower bound on d-CSPχ carries over to CSP(D2,k).

9 Algorithm for CSP(D2,k)
In this section we prove that CSP(D2,k) can be solved in

2O(n log logn) time. Before we begin, we introduce a re-
fined standard form for instances of CSP(D2): for any pair
of variables, the instance contains at most one disjunctive
constraint involving them. This property can be ensured by
intersecting all constraints over the same pair of variables.
We assume that the instances are given in this standard form
throughout this section and write σC(v, w) to denote the con-
straint in C over variables v and w.

The rest of this section is divided into two parts. First, we
study how to decompose the instances of CSP(D2) in order
to solve the smaller parts recursively. The full algorithm is
presented in the second part.

9.1 Instance Decomposition

Our algorithm for CSP(D2,k) is based on the divide-and-
conquer approach: we split the instances into smaller parts
and solve them recursively. A subinstance of an instance
I = (V, C) of CSP(D2) induced by a subset of variables
U ⊆ V is an instance IU = (U, CU ), where CU ⊆ C con-
tains the constraints that only involve the variables in U .

Lemma 16. Let A,B,C be three disjoint sets of variables.
Consider an instance I = (V, C) of CSP(D2,k) with V =
A∪B∪C. Assume ϕ1 and ϕ2 are satisfying assignments to
subinstances IA∪B and IB∪C . If the following conditions
hold, then I is satisfiable:

1. For every pair of variables a ∈ A and c ∈ C, the con-
straint σC(a, c) contains the simple constraint c− a > k.

2. Assignments ϕ1 and ϕ2 satisfy the same set of simple con-
straints over the variables in B.

3. There is T1 ∈ R such that ϕ1(a) < T1 ≤ ϕ1(b) < T1 + k
for all a ∈ A and b ∈ B.

4. There is T2 ∈ R such that T2 ≤ ϕ2(b) < T2 + k ≤ ϕ2(c)
for all b ∈ B and c ∈ C.

Proof. Let I ′ = (V ′, C′) be the instance in reduced form
equivalent to I. Define A′, B′ and C ′ similarly to V ′. Ex-
tended assignments ϕ′

1 and ϕ′
2 induce ordered partitions on

A′ ∪ B′ and B′ ∪ C ′. We merge them into an ordered par-
tition on V ′ = A′ ∪ B′ ∪ C ′, and prove that it is valid by
Lemma 4. Next, we prove that the assignment inducing this
ordered partition satisfies I ′.

Divide V ′ into two subsets: V ′
1 = A′ ∪ {b(δ) : b ∈

B, δ ∈ {0, . . . , k − 1}} and V ′
2 = {b(k) : b ∈ B} ∪ C ′.

Let r1 : V ′
1 → {1, . . . , w1} be the ranking function in-

duced by ϕ′
1, and let r2 : V ′

2 → {1, . . . , w2} be the rank-
ing function induced by ϕ′

2. We define the ranking function
r : V ′ → {1, . . . , w1 + w2} as follows:

r(x) =

{

r1(x) if x ∈ V ′
1 ,

r2(x) + w1 if x ∈ V ′
2 .

Claim 1. The ordered partition induced by r on V ′ is valid.

By Lemma 3, we only need to check two conditions. First,

we need to confirm that x(δ−1) <r x(δ) for all x ∈ V and
δ ∈ {1, . . . , k}. Since the relative ordering of elements in-
side V ′

1 and V ′
2 is unchanged, the only case that needs to

be considered is that x ∈ B and δ = k. By construction,

r(x(k−1)) ≤ w1 < w1 + r2(x
(k)), so r(x(k−1)) < r(x(k)).

Secondly, we need to confirm that x(0) ⊙r y(0) ⇐⇒
x(δ) ⊙r y

(δ) for all x, y ∈ V , δ ∈ {1, . . . , k} and ⊙ ∈ {<
,=, >}. As previously noted, the relative ordering inside V ′

1
and V ′

2 is unchanged, so we only need to consider the cases
when one of the variables is in V ′

1 and the other one is in V ′
2 :

• for all a ∈ A, b ∈ B: by construction, we have a(k) <r

b(k); by Condition 3, we also have a(0) <r b(0);

• for all a ∈ A, c ∈ C: by construction, a(δ) <r c(δ) for all
δ ∈ {0, . . . , k};

• for all b ∈ B, b′ ∈ B: by Condition 2, ranking functions
r1 and r2 agree on the relative ordering of elements in B′,
so the desired property is ensured both by r1 and r2;

• for all b ∈ B, c ∈ C: by construction, b(0) <r c(0); by

Condition 4, b(k) <r c(k).

Let F ′ be the certificate to the assignment inducing r on V ′.

Claim 2. Certificate F ′ satisfies I ′.

As shown above, the relative ordering of variables in A′∪B′

and B′ ∪ C ′ is the same under r as it is under r1 and r2,
respectively. Hence, F ′ satisfies I ′A′∪B′ and I ′B′∪C′ . For

all a ∈ A and c ∈ C we have the constraint c(0) − a(k) ∈
(0,∞) in F ′. Together with Condition 1 this implies that F ′

satisfies I ′A′∪C′ . Therefore, F ′ satisfies I ′.

Combining Claims 1 and 2 completes the proof.

Let ϕ : V → [0, kw) be a satisfying assignment of I. We
can assume that the minimal value assigned by ϕ is zero by
translational invariance. For notational convenience, we let
w ∈ N, so that the upper bound is a multiple of k. Divide the
domain of ϕ into intervals [ki − k, ki) of width k for every
i ∈ {1, . . . , w}. Partition the variables in V into disjoint,



possible empty subsets {Vi : i ∈ {0, . . . , w+1}} defined as
follows:

Vi = {v ∈ V : ϕ(v) ∈ [ki− k, ki)}

for all i ∈ {1, . . . , w}, and V0 = Vw+1 = ∅. Also, define

the sets Li =
⋃i−1

j=0 Vj and Ri =
⋃w+1

j=i+1 Vj for all i.

If Vi has at most n/ log n variables, then we say it is
sparse, otherwise we say that it is dense. The choice of
n/ log n as the threshold value is justified by the following
proposition:

Proposition 17. For any N ≤ n/ log n, the number of or-
dered partitions of an N -element set is less than 2n.

Proof. F (N) ≤ F (n/log n) < nn/logn = 2n.

Combined with Proposition 2, this proposition implies
that Algorithm 1 can generate a list of satisfying assignments
to an instance of CSP(Dω) with at most n/ log n variables
in O∗(2n) time. In particular, this applies to any subinstance
of I induced by a sparse subset of variables.

We proceed with an observation about the sparse subsets.

Lemma 18. If |V | ≥ 8, then one of the following holds:

1. There is an index 0 ≤ i ≤ w + 1 such that Vi is sparse,
|Li| ≥ n/3 and |Ri| ≥ n/3.

2. There are indices 0 ≤ i < j ≤ w + 1 such that Vi and Vj

are sparse, Vs is dense for all i < s < j, |Li| < n/3 and
|Rj | < n/3.

Proof. If Vi is sparse, then |Li| + |Ri| = |V | − |Vi| ≥ n−
n/ log n. Since log n ≥ 3, we have |Li| + |Ri| ≥ 2n/3.
Thus, for every sparse Vi either |Li| ≥ n/3 or |Ri| ≥ n/3.

Let i be the maximal index such that Vi is sparse and
|Ri| ≥ n/3. Similarly, let j be the minimal index such that
Vj is sparse and |Lj | ≥ n/3. Such indices always exist since
V0 and Vw+1 are sparse. If i ≥ j, then both Vi and Vj meet
the conditions of Case 1. Otherwise, all Vs for i < s < j are
dense. If neither Vi nor Vj fulfils the conditions of Case 1,
then |Li| < n/3 and |Rj | < n/3, and we are in Case 2.

9.2 Algorithm for CSP(D2,k)
We refer to the algorithm in Lemma 10 (that solves
w-CSP(D2)) as SOLVEBOUNDED. When enumerating or-
dered partitions we allow subsets to be empty. New in-
stances are defined by only specifying the constraints, as the
corresponding sets of variables can be derived from them.

Lemma 19. Algorithm 2 solves CSP(D2,k).

Proof. Consider an arbitrary instance I = (V, C) of
CSP(D2,k). We prove the claim by induction based on |V |.
If the instance has fewer than 8 variables, the claim follows
by Theorem 5. Otherwise, assume that |V | ≥ 8.

First, we prove that if the algorithm accepts an instance,
then it is satisfiable.

Suppose the procedure THREESPLIT accepts I. We show
that instance I is satisfiable since all four conditions of
Lemma 16 are fulfilled. First, note that subinstances I1 and
I2 in lines 14 and 15 have at most 2n/3 + 1 < n vari-
ables. Hence, they admit satisfying assignments by the in-
ductive hypothesis. Condition 1 is ensured by the check on

Algorithm 2

1: procedure SOLVE(I = (V, C))
2: if ∅ ∈ C then reject

3: if |V | < 8 then
4: accept if LISTCERT(I) 6= ∅, else reject

5: if THREESPLIT(I) then accept

6: if FIVESPLIT(I) then accept

7: reject

8: procedure THREESPLIT(I = (V, C))
9: for each 3-partition (A,B,C) of V do

10: if |A|, |C| ≥ |V |
3 and |B| ≤ |V |

log |V | and

11: c− a > k ∈ σC(a, c) for a ∈ A, c ∈ C then
// introduce a new variable bmin

12: IB′ ← CB ∪ {0 ≤ b− bmin < k}b∈B

13: for FB′ ∈ LISTCERT(IB′) do
14: I1 ← CA∪B ∪ FB′ ∪ {bmin − a > 0}a∈A

15: I2 ← CB∪C ∪ FB′ ∪ {c− bmin > k}c∈C

16: if SOLVE(I1) and SOLVE(I2) then
17: accept

18: reject

19: procedure FIVESPLIT(I = (V, C))
20: for each 5-partition (A,B,C,D,E) of V do
21: X ← C ∪D ∪ E
22: if |A|, |E| < |V |

3 and |B|, |D| ≤ |V |
log |V | and

23: x− a > k ∈ σC(a, x) for a ∈ A, x ∈ X and
24: e− c > k ∈ σC(c, e) for c ∈ C, e ∈ E then

// introduce new variables bmin and dmin

25: IB′ ← CB ∪ {0 ≤ b− bmin < k}b∈B

26: ID′ ← CD ∪ {0 ≤ d− dmin < k}d∈D

27: for FB′ ∈ LISTCERT(IB′) and
28: FD′ ∈ LISTCERT(ID′) do
29: I1 ← CA∪B ∪ FB′ ∪ {bmin − a > 0}a∈A

30: I2 ← CB∪C∪D ∪FB′ ∪{c− bmin > k}c∈C∪
FD′ ∪ {dmin − c > 0}c∈C

31: I3 ← CD∪E ∪ FD′ ∪ {e− dmin > k}e∈E

32: w ← k(log |V |+ 2)
33: if SOLVE(I1) and SOLVE(I3) and
34: SOLVEBOUNDED(w, I2) then
35: accept

36: reject

line 11. Condition 2 is ensured by appending F ′
B to both

subinstances I1 and I2. Conditions 3 and 4 are ensured by
the introduction of bmin and the constraints involving it.

Suppose instead that the procedure FIVESPLIT accepts I.
First, note that subinstances I1 and I3 in lines 29 and 31
have at most n/3+1 < n variables. Hence, they admit satis-
fying assignments by the inductive hypothesis. Subinstance
I2 is satisfiable by Lemma 10. Observe that Lemma 16 ap-
plies to the subinstance induced by C ∪D ∪E. We see that
Condition 1 is ensured by the check on line 24, Condition 2
is ensured by appending F ′

D to both subinstances I2 and I3,
and Conditions 3 and 4 are ensured by the introduction of



dmin and the constraints involving it. Let X = C∪D∪E and
consider the subinstance induced by A∪B ∪X . Lemma 16
is applicable and we see that Condition 1 is ensured by the
check on line 23, Condition 2 is ensured by appending F ′

B
to both subinstances I1 and I2, and Conditions 3 and 4 are
ensured by the introduction of bmin and the constraints in-
volving it. Hence, we have showed that I is satisfiable.

We proceed by proving the other direction: if I is sat-
isfiable, then the algorithm accepts it. By Lemma 18, the
instance admits an assignment that splits as in Case 1 or 2.

Case 1. We show that THREESPLIT accepts I. The pro-
cedure enumerates every 3-partition of the variables, so at
some step of the algorithm A = Li, B = Vi and C = Ri,
where (Li, Vi, Ri) is a split under the assignment ϕ. We set
ϕ(bmin) = ki − k and observe that ϕ satisfies instances in
lines 12, 14 and 15. Note that the procedure SOLVE accepts
I1 and I2 by the inductive hypothesis.

Case 2. We show that FIVESPLIT accepts I. The pro-
cedure enumerates every 5-partition of the variables, so at
some step of the algorithm A = Li, B = Vi, C = Ri ∩ Lj ,
D = Vj and E = Rj , where (Li, Vi, Ri ∩ Lj , Vj , Rj) is a
split under the assignment ϕ. We set ϕ(bmin) = ki− k and
ϕ(dmin) = kj − k and observe that ϕ satisfies instances
in lines 25, 26, 29, 30 and 31. Note that the procedure
SOLVE accepts I1 and I3 by the inductive hypothesis. By
Lemma 18, all subsets in Ri ∩ Lj are dense. Since each
of them contains at least n/log n variables, there may be
at most log n such subsets. Taking Vi and Vj into account,
we conclude that ϕ satisfies instance I2 in width at most
k(log n+ 2).

Lemma 20. Algorithm 2 solves instances of CSP(D2,k) in

2O(n log logn) time.

Proof Sketch. Let T (n) be the running time of Algorithm 2
on an instance of CSP(D2,k) with n variables. We claim that

T (n) ≤ cn(log n+2)n = 2O(n log logn) for some constant c.
If n < 8, then T (n) is constant. Otherwise, T (n) = T1(n)+
T2(n) + poly(n), where T1 and T2 are the running times of
the procedures THREESPLIT and FIVESPLIT, respectively.
Note that T1(n) < T2(n) for all n, so we can focus our
attention on the running time of FIVESPLIT.

The running time T2(n) is bounded from above by 5n ·
22n · (2T (n3 + 1) + (k(log n + 2))n) · poly(n), where 5n

is an upper bound on the number of 5-partitions of V , 22n

comes from the upper bound on the running time of the
calls to LISTCERT in lines 27 and 28, 2T (n3 + 1) is an
upper bound on the running time of the recursive calls in
line 33, and (k(log n + 2))n comes from the running time
of the bounded-width algorithm in line 34. Observe that
for sufficiently large values of n we have (log n + 2)n >
C log (εn)

εn
for any constant C and ε < 1. Hence,

(k(log n+2))n asymptotically dominates 2T (n3 +1) by our
initial hypothesis. Finally, observe that

T (n) < 2 · (40k)n · (log n+ 2)n · poly(n).

Setting c = 81k completes the proof.

10 Allen’s Algebra over Unit Intervals
Allen’s (1983) interval algebra is a well-known formalism
for reasoning about time intervals. We consider a restricted
version of it where the intervals are only allowed to have unit
length. Recall that I− and I+ denote the left and the right
endpoints of interval I . Unit Allen is a binary constraint lan-
guage with the following basic relations:

I{p}J I precedes J I+ < J−

I{m}J I meets J I+ = J−

I{o}J I overlaps J I− < J− and J− < I+

I{e}J I equals J I− = J− and I+ = J+

Note that relations p,m, o admit converses p−1,m−1, o−1,
while the relation e is symmetric. Unit Allen contains
every disjunction of the basic relations. Formally, let
U denote the set of all unit intervals on the real line.
Unit Allen contains {(I, J) ∈ U

2 :
∨

r∈S I{r}J} for ev-

ery S ⊆ {p,m, o, e, o−1,m−1, p−1}. CSP(Unit Allen) is
NP-complete (Pe’er and Shamir 1997).

Theorem 21. CSP(Unit Allen) is solvable in 2O(n log logn)

time.

Proof. Observe that every basic relation in Unit Allen can
be expressed as a relation in D2,1 over the left endpoints of
the intervals, i.e.

I{p}J ←→ I− − J− ∈ (−∞,−1),

I{m}J ←→ I− − J− ∈ {−1},

I{o}J ←→ I− − J− ∈ (−1, 0),

I{e}J ←→ I− − J− ∈ {0},

and similarly for the converse relations. Thus, an instance
of CSP(Unit Allen) can be reduced in polynomial time to an
instance of CSP(D2,1) with the same number of variables.
Applying Algorithm 2 completes the proof.

11 Conclusion and Future Work
We initiated the fine-grained complexity analysis of disjunc-
tive extensions of STP and obtained an almost comprehen-
sive picture with respect to the number of variables n and the
maximum number k occurring in any constraint. For future
work, we would like to close the remaining gaps between
our algorithmic lower bounds and upper bounds and con-
sider other natural parameters that are likely to have an influ-
ence on the fine-grained complexity of temporal problems,
such as the maximum arity of relations and the maximum
number of disjuncts in constraints. On a slightly different
note, we would like to determine whether Allen’s interval
algebra can be solved in single-exponential time. We believe

that our 2O(n log logn) algorithm for the case of unit intervals
provides a good starting point for this investigation, as it in-
dicates that this should indeed be the case, given the lack of

natural problems that can be solved in 2O(n log logn) time but
do not admit a single-exponential-time algorithm. In this re-
gard, we remark that the running time of the bounded-width
algorithm (Lemma 10) is the dominant term in the time com-
plexity of our algorithm for Unit Allen. Improving this part
would reduce the overall time complexity.
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