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Abstract

The New Zealand dairy goat industry is important for producing and exporting high-quality

specialised dairy products aimed at niche markets. Efforts to increase the quantity and

composition of goat milk will improve profits for farmers and deliver significant economic

benefits to New Zealand. However, no formal program exists for the genetic improvement

of dairy goats. Therefore, the general aim of this thesis was to perform genetic and genomic

studies that contribute to the design of the breeding program for New Zealand dairy goats.

The first studies estimated variance components and genetic parameters of total lactation

yields of milk, fat and protein, somatic cell score and longevity. The main findings suggest

sufficient variation and favourable genetic correlations between these traits, supporting

their inclusion into a selection index that predicts profit per animal. A random regression

test-day model was then used to predict lactation curves of milk, fat, protein and somatic

cell score. Using this model for genetic evaluation will enable the dairy goat industry to

move from total yields into the prediction of lactation curves, enabling more accurate

predictions and the opportunity of selecting for extended lactations. The first genome-wide

association study of dairy goats in New Zealand was conducted using 3,732 animals

genotyped with the Caprine 50K SNP chip. A highly significant region on chromosome 19

was associated with yields of milk, fat and protein, and somatic cell score, and a region on

chromosome 29 was associated with somatic cell score. A prototype single-step BayesC

model was developed to predict genomic breeding values and demonstrated that including

genomic information into the evaluation can increase the accuracy of predictions compared

to the traditional methods based on pedigrees alone, which is currently implemented in the

New Zealand dairy goat industry. This thesis demonstrates that a single-step prediction

model that uses genomic information would put the New Zealand dairy goat industry in a

very good position to implement a genomic selection scheme. Further studies are required

to define clearer breeding objectives and to systematically design a breeding program for

the genetic improvement of New Zealand dairy goats.
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New Zealand has a small, well established goat milk industry that produces high value dairy

products for export. Goat milk is becoming an increasingly common alternative for people

with intolerances or allergies to cow milk (Bevilacqua et al., 2001; Lara-Villoslada et al.,

2006). Compared to cow milk, goat milk is more readily digestible, more alkaline, lower in

lactose, casein and protein, and with faster protein digestion, it is suitable for people

suffering from eczema, asthma and stomach ulcers (Jandal, 1996; Haenlein, 2004). Unlike

cow milk that is consumed as liquid milk, goat milk is used in the production of niche dairy

foods and sold as high-quality dairy products (e.g. cheese and infant formula). Worldwide

production of goat milk has more than doubled in the last 50 years and, if this trend is

maintained, it is expected to increase by approximately 9.7 Mt (+53%) by 2030 (Pulina et

al., 2018). This growing interest for non-bovine milk provides an opportunity for New

Zealand to expand its goat milk sector and to continue producing high value exports.

The New Zealand dairy goat population is estimated at 66,100 dairy goats distributed in 92

farms (Scholtens et al., 2017). Most of the dairy goat farmers are organised as the Dairy

Goat Cooperative (NZ) Ltd (DGC) which is located in the Waikato region. The DGC is the

leading international manufacturer of goat milk based nutritional powders for infants and

young children (Stafford and Prosser, 2016) and processes 80% of the milk from the New

Zealand dairy goat population.

Although genetic evaluation of milk traits has been implemented since 1997 in New Zealand

(Singireddy, 1997), no formal breeding program exists, and as a result, the national genetic

improvement of dairy goats is stagnant. However, it is vital for the industry to implement a

structured breeding program in order to increase the quantity and composition of goat milk

produced in New Zealand. Improving dairy goat genes is achieved by having a well-designed

and implemented breeding program which enables an increase in the average genetic merit

of each successive generation of replacement does. Therefore, a co-ordinated breeding

program is required to ensure farmers have access to animals of superior genetic merit for

a defined breeding objective, such as profit per animal. Traditional genetic evaluation uses

performance and pedigree records to estimate the genetic merit (breeding values) of

individuals for traits of interest. These breeding values are the estimation of the sum of the
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additive genetic effects for an individual that affect the trait of interest (Falconer and

Mackay, 1996).  Breeding values reflect the potential of an animal as a parent and are,

therefore, widely used to rank animals and select candidates as the parents of the next

generation. The most widely used method of genetic evaluation is the best linear unbiased

prediction procedure (Henderson, 1975), which uses phenotypic and pedigree information

to produce estimated breeding values (EBVs).

In order to remain competitive on the global goat milk stage, the DGC wants to improve

genetic progress within the New Zealand dairy goat industry. This requires a breeding

program that comprises a number of steps (Harris et al., 1984): 1) definition of the breeding

goal (e.g. profit per doe), 2) definition of the breeding objective in which animal traits

related to the breeding goal are defined and their economic values are estimated, 3)

definition of a selection criteria, which generally is a selection index combining EBVs for

traits defined in the breeding objective and other genetically related traits with their

relative economic weights, 4) definition of a selection scheme in which superior animals for

the breeding objective are identified based on the selection index, 5) definition of a

dissemination system in which genes from superior animals are spread into the population,

and 6) perform an economic analysis to evaluate the industry profitability and the cost of

running the breeding program.

Currently, the genetic evaluation of New Zealand dairy goats produces EBVs for total

lactation yields of milk, fat and protein, and average somatic cell score (Singireddy, 1997;

Apodaca-Sarabia et al., 2009). This relies on a two-step process based on a first step of

combining test-day records to phenotypically predict total lactation yields. In Chapter 3 a

multi-trait repeatability model was used to estimate genetic parameters for these total

lactation yields of milk, fat and protein and somatic cell score. Using a multi-trait

repeatability model enables the estimation of genetic and phenotypic correlations between

each of the traits which is essential for developing a selection index. Chapter 4 explored the

potential of implementing a random regression test-day model that would provide more

accurate estimates for each individual and selection programs could be devised to exploit

the genetic variation throughout the lactation period.
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Placing too much emphasis on production, whilst neglecting other traits may result in

undesirable consequences on the health and fertility of animals, which could decrease

longevity (Oltenacu and Broom, 2010). Longevity is an important trait for increasing the

overall economic efficiency of a dairy goat farm and should be considered in the current

genetic evaluation system. In Chapter 5 the heritability of longevity was estimated to

explore the possibility of including this trait into the evaluation and subsequent selection

index.

In Chapter 6 genome-wide association studies (GWAS) were performed to identify genetic

markers associated with quantitative trait loci (QTL) that underlie the phenotypic

expression of specific traits (Goddard and Hayes, 2012). The possibility of applying a single-

step genomic evaluation of dairy goats in New Zealand was investigated in Chapter 7.

Genomic prediction is a method that predicts genomic breeding values (GBVs) using

information from genetic markers located across the entire genome in an attempt to

capture all QTL influencing the variation in a trait (Hayes et al., 2009). Previously, genomic

prediction was limited to genotyped animals, however, the introduction of a single-step

process (Legarra et al., 2009) enables the prediction of GBVs for all animals in the

population. Implementing single-step genomic evaluation in a breeding program for the

New Zealand dairy goat industry would provide an opportunity to rapidly increase the

quantity and composition of goat milk produced in the New Zealand.

The main aim of this thesis was to do genetic and genomic studies of economically

important traits and explore the possibility of applying a single-step genomic evaluation of

dairy goats in New Zealand. The focus of this work was to contribute in the design of the

breeding program that will ensure the dairy goat industry increases the quantity and

composition of goat milk delivering significant economic benefits to New Zealand. To

achieve this, the main objectives of this thesis were to:

- estimate genetic parameters and variance components of total lactation yields of

milk, fat and protein and somatic cell score of New Zealand dairy goats.

- estimate genetic parameters of daily yields of milk, fat and protein and somatic cell

score throughout the lactation of New Zealand dairy goats.
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- estimate heritability of longevity of New Zealand dairy goats.

- identify and evaluate any significant regions on the goat genome that influence

yields of milk, fat and protein and somatic cell score in New Zealand dairy goats, and

- design a prototype prediction equation to estimate genomic breeding values of New

Zealand dairy goats and to quantify the advantages of including genomic

information compared to pedigree-based breeding values.

This thesis will advance the knowledge necessary for the design of a breeding program

using genomic selection for the New Zealand dairy goat industry.



Chapter 2
Review of literature
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2.1 Dairy goats worldwide

Originating from a handful of ancestral wild goat breeds in the Middle East, goats have

descended and evolved into hundreds of different breeds around the world (Haenlein,

2001) with the current population estimated to be about 203 million goats (FAO, 2018). The

popularity of goats and their products can be attributed to their ability to survive and

reproduce under harsh environments and perform well under restricted nutrition (Escareño

et al., 2013). In addition to their resilience, goats are advantageous over other production

ruminants for their early maturity, shorter gestation period, higher prolificacy, longer

lactation (up to 300 days of milking compared to 250 for sheep) and the ability to adapt to

a broad range of environments.

The dairy goat industry is subject to competition from cattle, sheep, buffalo and camel milk

products (Dubeuf et al., 2004). Cattle (83.1%), and buffalos (13.1%) are the most important

milk producers in terms of world production, while goat milk represents only 1.9% (FAO,

2018). There is a growing demand for non-bovine milks. Worldwide goat milk production

has more than doubled during the last 50 years and, if this trend is maintained, it is expected

to increase by approximately 9.7 Mt (+53%) by 2030 (Figure 2.1.) (Pulina et al., 2018). Dairy

goat products are primarily made for dietetic milk or cheese markets, but the profitability

and competitive advantage of these products depends on their relative price and

production systems (seasonality, herd size, goat productivity and milk characteristics)

(Dubeuf et al., 2004). Historically, goats were farmed for home-consumption or sold within

villages (Dubeuf et al., 2004). This is still the case in developing countries (predominantly in

Asia and Africa), however, this has changed for a number of countries in Latin America and

Europe (especially France, Italy, Spain and Greece), with the development of a specific dairy

goat sector where goat milk is sold or transformed into cheese or candies (Escareño et al.,

2013). The establishment of national professional organizations, technical centres, breeding

and selection organizations, along with the steady growth of export markets for goat cheese

has resulted in 90% of goat milk produced in France being sold as cheese (Dubeuf et al.,

2004).



10 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Chapter 2

Figure 2.1. World goat milk production trends from 1960 to 2016 (solid line) and forecast
to 2030 by using time-series model (dashed line) (adapted from Pulina et al., 2018).

In 2018 the worldwide production of goat milk was 18 million t (Table 2.1). Approximately

52.7% of this was produced in Asia, with remarkable amounts in the Indian subcontinent

(i.e. Bangladesh, India and Pakistan), followed by Africa (25.7%), where Sudan and South

Sudan are the largest contributors (FAO, 2018). Europe and Americas contribute 16.6% and

4.9%, respectively, to world goat milk production, while Oceania makes a negligible

contribution to global production (<0.01%). The average milk yield of dairy goats worldwide

ranges dramatically from 35 to 291 L/doe, with some countries such as Ukraine and France

reaching average yields of 500 L/doe and 715 L/doe, respectively. In 2018, Asia contributed

the greatest number of dairy goats and milk production of all continents, but produces on

average 77 L/milk/doe/year, whereas Africa had the second largest dairy goat population

and produces on average 54 L/milk/doe/year. This demonstrates how dairy goat

productivity varies greatly between countries and continents. Goat farms in Asia, Africa and

Latin America, are generally extensively managed grazing on communal land which tends

to be overstocked, degraded and barely providing adequate nutrition (Escareño et al.,
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2013). Some parts of the Middle East, such as Israel, have a well-organized intensive dairy

goat sector with zero-grazing  (Dubeuf et al., 2004), while in Vietnam goats are managed in

either intensive (goats live in cages and are hand-fed), semi-intensive (goats graze during

day and housed at night with supplements provided) or extensive systems (goats graze

without supplementation).

America and Europe had similar population statistics contributing approximately 4% each

to the total world goat population. However, in general, European countries are far more

specialised in milk production than developing countries, contributing 16.6% compared to

America which produced 4.9% of total goat milk produced worldwide in 2018. This could be

attributed to the fact that in the last 20 years dairy goat operations in Europe (especially in

countries such as France, Greece and Spain (de Rancourt et al., 2006)) have tried to

eliminate seasonality and improve milk production by using breeds with high production

potential and intensifying their goat systems (Castel et al., 2011). European goats are

farmed under two types of systems: traditional (grazing in spring and autumn, housed

indoors in winter with vertical transhumance in the summer) or intensive/semi-intensive

(housed indoors under controlled feeding of hay and concentrates) (Nicoloso et al., 2015).

In America, dairy goats are milked to produce fluid or powdered milk (Dubeuf et al., 2004),

while Canada and California have very active dairy goat sectors producing new goat

cheeses, cosmetic products and candy from goat milk (Haenlein, 2000; Haenlein, 2001).

Brazil has a combination of intensive and semi-intensive goat operations. Southeast Brazil

has predominantly intensive production systems where goats are confined and fed

concentrates, while in Northeast Brazil, goats graze on native forests during the rainy

season, then confined indoors for the remainder of the year (Lôbo et al., 2017). The dairy

sector in other parts of the world is less organised or part of dual purpose (milk and meat)

management, with the majority of milk being sold locally, or consumed at home (Dubeuf et

al., 2004).
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Table 2.1. Global dairy goat populations and average annual production per goat in 2018
(FAO, 2018).

Continent

Milking goats Milk production
Milk production

per goat

Number
(Million)

Contribution
(%) (Mt/year)

Contribution
(%) (L/year)

Africa 80 39.6 3.93 25.7 54

Americas 8 4.0 0.75 4.9 66

Asia 106 52.1 8.04 52.7 77

Europe 9 4.3 2.54 16.6 291

Oceania <0.01 <0.01 <0.01 0 35

World 203 100 15.26 100 81

2.2 Dairy goats in New Zealand

Goat farming in New Zealand offers a reasonable economic option for low impact

agricultural diversification when needed to meet environmental compliance conditions.

The local dairy goat industry shows strength in its high-value products and has secure

domestic and international markets. The dairy goat population is estimated at 66,100 goats

distributed in 92 farms (Scholtens et al., 2017), however, the exact population is not known

as there is no census undertaken for dairy goats in New Zealand (Stafford and Prosser,

2016). The New Zealand herd is predominantly of the Saanen breed (85%), but also

including British Alpine, Toggenburg and Anglo-Nubian breeds. Most dairy goats are

intensively managed, with approximately 72% of the dairy goat population located in the

Waikato region (Table 2.2) with the remaining 28% being distributed throughout the rest of

New Zealand (Orr et al., 2010). Dairy farms which supply goat milk processing plants have

an average herd size of 750 milking does, while the smaller farms, which make their own

cheese or supply local cheese makers, tend to have approximately 50 goats.
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Table 2.2. Regional distribution of dairy goats in New Zealand in 2016.

Region
Herds

(Number)

Goats

(Number)

Proportion of population

(%)

Auckland 3 3,732 6.0

Bay of Plenty 1 9 0.01

Hawkes Bay 1 1,000 1.5

Manawatu 5 6,000 9.1

Nelson 1 60 0.1

Northland 4 2,555 3.9

Otago 1 30 0.1

Taranaki 8 5,154 7.8

Waikato 67 47,485 71.8

Wellington 1 75 0.1

Total 92 66,100 100.0

Two types of farming systems are practiced in the New Zealand goat industry. Goats are

housed indoors with a cut-and-carry feeding system, or in an outdoor system where they

live and graze in paddocks (Robertson et al., 2015). The bulk of dairy goat farms are

managed intensively (Morris et al., 1997), housed in open-sided barns and their food is

brought to them two to three times a day. The goats are fed fresh pasture or crops, which

are grown and harvested on-farm and cut and carried to the side of the barn (Solis-Ramirez

et al., 2011). In an outdoor system, the goats live and graze in paddocks with supplements

provided, if needed. Outdoor systems have animal health challenges due to internal

parasitism that can be avoided in cut and carry systems.

Lactation length for goats farmed in indoor systems range from 190-324 days in milk (six-

eleven months) (Robertson et al., 2015; Stafford and Prosser, 2016), with daily milk

production averaging 2.7 L/doe/day with 3.5 L/doe/day at peak lactation (Stafford and

Prosser, 2016). The industry average has been 625 milking does per farm and 86 kg milk

solids/doe/year (Robertson et al., 2015; Stafford and Prosser, 2016). Yearling does produce
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about 75 kg milk solids/doe/year while two and three-year old does can average 100 kg milk

solids/doe/year. These averages are based on the greater proportion of indoor farms, which

tend to have increased numbers and greater production per animal (Robertson et al., 2015).

Dairy goat farms which supply the Dairy Goat Cooperative (NZ) Ltd (DGC), on average,

undertake herd-testing four times during the season. These herd-test records for daily milk

yield (litres), concentrations of fat, protein and lactose, and somatic cell count are managed

and stored in the Livestock Improvement Corporation database, together with individual

animal information.

Definition of a breeding objective and selection indexes with the estimation of economic

values for milk, fat, protein, lactose and somatic cell score (SCS) and longevity were

proposed by Solis-Ramirez et al. (2014). The first genetic evaluation of New Zealand dairy

goats was performed in 1997 for the estimation of breeding values (EBVs) for lactation

yields for milk, fat and protein (Singireddy, 1997) using a univariate repeatability animal

model. Currently, EBVs for lactation yields of milk, fat and protein and average SCS during

lactation, are obtained using a multivariate repeatability animal model (Lopez-Villalobos,

personal communication). Somatic cell score is calculated as SCS=Log2(somatic cell

counts/1000). An economic breeding index combines EBVs for protein, fat and SCS with

economic values for these traits.

A test-day model was proposed for the estimation of breeding values for somatic cell count

in 2009 (Apodaca-Sarabia et al., 2009). In addition to the national evaluation for farmers

supplying DGC, within herd evaluations have been published by Morris et al. (2006) for milk,

fat and protein and Wheeler et al. (2013) for stayability.

Despite the efforts of proposing a selection index and implementing genetic evaluation, a

well-structured selection scheme does not exist. The majority of farmers select bucks and

does as parents for the new generation, based on female phenotypic records. There is

limited use of artificial insemination (AI) to promote the use of superior bucks across herds.

Nevertheless, DGC is progressing towards the use of AI and the possibility of a sire

referencing scheme, but the exchange of animals is currently limited due to the risk of
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spreading Caprine arthritis encephalitis that is present in some herds. In 2016, a team of

bucks were selected from herds diagnosed as disease-free based on dam production and

the economic breeding index of the herds where they were born. Bucks were genotyped

for the αS1-casein polymorphism and were selected if they had the FF genotypes which are

associated with low levels of αS1-casein concentration (Huitema, 2012). However, results

from the animal evaluation have not been implemented as part of a broader selection

scheme. There are no published reports on phenotypic or genetic trends.

2.3 Systematic design of a breeding program for dairy goats

Animal breeding is a tool involving the knowledge of genetic, phenotypic, economic and

farm management factors to select the most suitable animals for the production system

(Harris et al., 1984). Genetic improvement is the result of selecting genetically superior

animals to be the parents of the next generation (Garrick and Fernando, 2014). In practice,

this involves many challenges but can be summarized into seven steps as shown by Lopez-

Villalobos and Garrick (2005) in dairy cattle which follows the systematic approach to the

design of animal breeding programs as proposed by Harris et al. (1984).

Step 1 – Breeding goal

The breeding goal states the desired direction of improvement from the breeding program

(Groen, 2000). Common breeding goals defined in the agricultural industry include, profit

per animal, profit per hectare or, in regards to efficiency, profit per dry matter consumed

(Lopez-Villalobos and Garrick, 2005). The breeding goal can vary for each species, breed,

system and country. For example, the breeding goal of dairy goats in Norway is to increase

milk solids produced per goat and year (Dagnachew et al., 2011). Therefore, this industry is

focused on improving the quantity and quality of milk produced per doe. Likewise, in

Europe, the majority of goat milk is used for cheese, but it is also commonly consumed as

whole milk and yoghurt (Pulina et al., 2018), therefore the goal is more focused on protein

and fat content rather than increasing milk yield (Tabbaa and Al-Atiyat, 2009). In
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comparison, in Brazil, goat milk is sold as whole milk, therefore milk volume is more

important than milk composition (Lopes et al., 2012). Once the breeding goal is defined, the

next step is to decide on the animal traits that influence the goal.

Step 2 – Breeding objective

The breeding objective is a mathematical equation representing important traits which

affect overall farm profit and aims to achieve the breeding goal (Newman et al., 1992;

Charfeddine, 2000). The breeding objective can be described in two steps (Harris et al.,

1984). First, the animal traits which influence the breeding goal are identified and second,

the relative weight of each trait is quantified (Lopez-Villalobos and Garrick, 2005).

Step 3 – Selection criteria

Once the breeding goal and important traits have been defined the next step is to define

the selection criteria. Selection criteria are the traits that can be measured in the animals

at a young age and are genetically correlated with traits in the breeding objective (Lush,

1937). Once traits are identified and economic weights established, selection index theory

(Hazel, 1943) can be used to derive a selection index, which predicts the breeding goal as

accurately as possible. A selection index is a mathematical formula that amalgamates

adjusted phenotypes or estimated breeding values (EBVs) for several traits and incorporates

a relative economic weight. The selection index is a predictor of the aggregate economic

value of an animal. The formulation was first described by Hazel and Lush (1942) and in

their context requires knowledge of population parameters, namely heritabilities and

phenotypic and genetic correlations. Estimates of these genetic parameters should be

specific for the population under consideration (van der Werf and de Boer, 1989). This index

allows the ranking of animals in the population, so that the best animals can be selected for

replacements to achieve the breeding goal.

Genetic improvement programs for dairy goats typically began with an evaluation focused

on improving milk yield, before expanding to an index that include yields of fat and protein,
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and type traits. This has been the case for most selection indexes worldwide. Brazilian

selection focuses on milk yield (Lopes et al., 2013), while the United States of America have

progressed to select for milk, fat and protein yield (Analla et al., 1996; Wiggans and

Hubbard, 2001), and Norway and France have progressed further by including health,

reproduction, conformation and production traits (Aziz, 2010; Lopes et al., 2013). A good

example of a selection index is the Index Combine Caprine which has been implemented in

the French Alpine and Saanen breeds focused on yields of milk, fat and protein, percentages

of fat and protein and udder traits (shape, attachment and teat placement) (Aziz, 2010).

Step 4 – Selection schemes

The design of a selection scheme includes deciding which and how many animals will be

selected as parents for the next generation. Rendel and Robertson (1950) provided a

general framework to systematically design selection schemes based on four pathways of

selection. These pathways are selection of dams to breed female replacements, selection

of dams to breed male replacements, selection of sires to breed female replacements and

selection of sires to breed male replacements. They illustrated these four pathways of

selection in the case of the design of a progeny test for dairy cattle (Robertson and Rendel,

1950). They applied the breeder equation (Equation 2.1) for each pathway to demonstrate

the expected rate of genetic gain. The breeder’s equation was proposed by Lush (1937) and

can be represented in the following way:

ΔG =
ῑrTIσg

L
(2.1)

where ΔG = genetic gain over time, ῑ = standardised selection differential (selection

intensity), rTI = selection accuracy, σg = genetic standard deviation and L = generation

interval. Increasing the rate of genetic gain can be achieved by changing any of the factors
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of this equation, either increasing the selection intensity, accuracy or genetic variation, or

decreasing the generation interval.

The dairy goat industry in France has applied the principles of four pathways of selection in

a progeny test scheme since the 1980’s (Clément et al., 2002). Each year the top 200 bucks

from the selection base entered an individual performance test station. The bucks went into

a 30-day period where conformation, growth, and sanitary conformation controls were

carried out. Then, 120 males continued to be tested for sperm production and sexual

behaviour. From this individual performance station, the top 80 bucks continued and were

evaluated based on their on-farm progenies. The genetic evaluation of each buck was based

on ~200 artificial insemination and performance records of 80 daughters, on average.

Following progeny testing, 30 to 40 of the top bucks were retained each year as elite sires

and used for AI (France Génétique Elevage, 2020).

The progeny test of a buck is completed when the buck is 4-6 years old (Carillier et al., 2013).

This is an expensive and long process to estimate the breeding value of the bucks to allow

the selection of the potential sires to produce male and female replacements. By delaying

selection decisions more information accumulates, and accuracy of EBVs increases, but this

leads to a long generation interval and a reduced rate of genetic gain (Meuwissen, 2003).

Conversely, the information from the pedigree could be available immediately, which could

assist with the selection of replacement does or bucks at an earlier age. However, the early

selection would be based on fewer records, thus, reducing the accuracy of selection and

consequently the rate of genetic gain.

The genomic information used in genomic selection schemes can improve the accuracy of

selection as well as enabling identification of animals with desirable genotypes at a younger

age, both increasing the rate of genetic gain. A genomic selection scheme requires

genotypes of top sires which are included in the previous progeny testing scheme and their

sons. Marker effects are estimated using the genotypes and progeny records. Then, all

possible selection candidates to be a dam to breed male replacements are genotyped (the

top dams) and genomic breeding values (GBVs) are estimated (Schaeffer, 2006). This

genomic selection scheme can be used to rank young animals, allowing bucks to be selected
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earlier in life and allowing earlier identification of replacement candidates (Meuwissen et

al., 2013). In addition, the accuracy of the GBVs are sufficient for selection over several

generations without repeated phenotyping, which reduces the cost and generation

intervals (Habier et al., 2007).

Genomic selection has become a widely adopted method for ranking candidates for

selection in dairy cattle (Hayes et al., 2009; VanRaden et al., 2009; Boichard et al., 2012;

García-Ruiz et al., 2016), dairy sheep (Duchemin et al., 2012; Baloche et al., 2014) and dairy

goats (Carillier et at., 2013; Carillier et al., 2014; Mucha et al., 2015).

Step 5 – Dissemination system

Designing an appropriate system for the transfer of genes from the genetically superior

individuals into the commercial population is largely determined by the size of the

commercial population, and the cost and efficacy of the biotechnologies available (e.g., AI,

multiple ovulation embryo transfer, trans vaginal recovery and in vitro production, and

sexed semen) (Harris et al., 1984; Lopez-Villalobos and Garrick, 2005). Most livestock

industries have a structure that comprises at least two tiers – nucleus herds at the top and

commercial production herds at the bottom (Figure 2.2). A nucleus herd consists of the

animals in the population with the superior genes. These superior animals are generally

owned by breeders or breeding companies and provide the next generation of sires to

breed sires and sires to breed dams. These nucleus herds are recorded for a large number

of traits and are the basis of genetic evaluations. From these herds, the superior genes are

disseminated to the remaining population in the commercial herds, typically using AI. This

is the case in the French dairy goat industry where the official milk recording and selective

mating occurs in the nucleus herds. Then, the breeders associations manage the AI centers

to raise the young bucks from weaning to the age at reproduction, and to organize their

progeny test. The gene flow from the nucleus herds to the commercial herds is achieved

through AI and natural mating males by sons of AI sires (Larroque et al., 2014). The relative

size of the nucleus tier, its composition and the manner in which it interacts with the
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commercial tier strongly influence the genetic improvement and overall profitability of the

industry.

Figure 2.2. A pyramid livestock industry structure in which genetic improvements flow
from the top to the base.

Step 6 – Mating plan

A mating plan is required to maximise the long-term genetic gains obtained in a breeding

program. Designing a mating plan includes the decision of what mating strategy to use,

whether it’s crossbreeding, inbreeding, assortative mating or random mating (Harris et al.,

1984). Within each of these strategies, decisions must be made on the mating ratio of

female to male, and the number of breeding seasons the selected individuals will be used

for (Lopez-Villalobos and Garrick, 2005).

Crossbreeding is a common mating plan implemented by farmers to exploit heterosis

effects and has been successfully implemented in the New Zealand dairy cattle industry

(Lopez-Villalobos and Garrick, 2005). Crossbreeding is also common practice in dairy goat

industries where local breeds are crossed with specialised dairy breeds to “upgrade” local

breeds to produce greater milk yields (Escareño et al., 2013).

Nucleus herds

Commercial herds



Review of literature –––––––––––––––––––––––––––––––––––––––––––––––––––– 21

Assortative mating is another common method for maximising long-term genetic gains

through the use of AI. Artificial insemination is the best dissemination of superior genetics

as it enables farmers to choose which bulls to breed to which cows which enables the

chance of achieving genetic gains for specific traits within a herd. In addition, AI reduces the

need for natural mating, thereby reducing the risk of spreading disease which is an issue in

dairy goats. Admittedly, the use of AI will increase the selection intensity which can lead to

increased rates of inbreeding (Granleese et al., 2015). However, genomic selection is

expected to increase genetic gain of traits of interest, without increasing the level of

inbreeding (Daetwyler et al., 2007; Dekkers et al., 2007).

Dairy goat breeding programs in Canada mainly use AI in the nucleus herds for assortative

mating (Brito et al., 2013). While in France the gene flow from the nucleus to the

commercial herds is based partly on AI males and partly on natural mating males by sons of

AI sires (Carillier et al., 2013).

Step 7 – Economic analysis

The final stage of designing an effective genetic improvement program is the economic

analysis of the proposed program. The economic analysis evaluates the effectiveness of the

breeding program. This is a complex step which requires whole-system modelling including

the cost of the evaluation system, selection scheme and dissemination system (Harris et al.,

1984).

Designing an appropriate breeding program is essential to ensuring genetic improvement

occurs in the right direction for the dairy goat industry. The structure and design of a

breeding program is consistent worldwide however, the breeding goals and selection

criteria will vary among different dairy goat systems. The genetic parameters and EBVs

required for the genetic evaluation are population dependent and their derivation are

explained in further detail.
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2.4 Estimation of genetic parameters

Knowledge of genetic parameters is required for planning efficient animal breeding

programs as the potential genetic improvement largely depends on the heritability of the

traits as well as the genetic relationship (correlation) between the traits. Heritability,

commonly referred to in quantitative genetics as narrow heritability, measures the

proportion of variation of a trait which is due to the genetic variation between individuals

in that population (Hayes and Goddard, 2014). Heritability provides valuable information as

to whether the trait can be improved by selection or management practices, or both. Traits

may also be contingent on one another, with either positive or negative correlations and

genetic and phenotypic correlations that are either strong or weak. In some cases, indicator

traits may be used to exploit such correlations, if they are more readily available than a trait

of interest (Hazel, 1943). Repeatability is the correlation between multiple records on the

same individual from the population (Hazel, 1943). This information can be used when

constructing a selection index or to estimate the individual’s productive ability for future

records.

Estimation of breeding values requires knowledge of the variances and covariances of

genetic effects. Genetic and environmental factors significantly influence milk yield and

quality in ruminants (Selvaggi and Dario, 2015), and genetic gain from selection will be

enhanced if these environmental factors are accounted for in the estimation of genetic

merit. Knowledge of variance components for production traits will enable the design of an

effective genetic evaluation strategy, allowing the selection of animals with superior overall

genetic merit, optimizing direct and correlated selection responses for traits of economic

importance (Barillet, 2007). Such procedures are routinely performed on dairy goats in

South Africa (Muller, 2005), France (Boichard et al., 1989; Bélichon et al., 1998), Spain

(Analla et al., 1996) and the United Kingdom (McLaren et al., 2016).

Many studies have published estimates of genetic parameters of milk production traits in

dairy goat populations. Heritability and repeatability estimates for milk yield (MY), fat yield

(FY), protein yield (PY) and somatic cell score (SCS) range from 0.10-0.45, 0.19-0.40, 0.04-

0.38 and 0.09-0.25, respectively (summarised in Table 2.3). Similarly, genetic relationships
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between these milk traits have also been published and are summarised in Table 2.4. The

differing estimates of genetic parameters of milk production traits in goats can be due to

the breed and population, structure of the data, management conditions, estimation errors

associated with sample size, and the estimation methodology used (Moioli et al., 2007).

Table 2.3. Published heritability and repeatability values for milking traits in dairy goats.
Trait Heritability Average

Milk yield 0.10a, 0.17b, 0.21c, 0.22d,e1,f, 0.23g, 0.24e2,h, 0.29i1, 0.30j1,

0.31i2, 0.32k2, 0.34j2,k1, 0.35l,m,n, 0.37o, 0.45a

0.28

Fat yield 0.19b, 0.20h, 0.25f, 0.32i2,j1, 0.35j2,m, 0.37k1,o, 0.39i1, 0.40k2 0.32

Protein yield 0.04h, 0.17b, 0.23f, 0.31i1,j1, 0.34j2,k2, 0.36i2,k1, 0.37m, 0.38o 0.29

Somatic cell score1 0.09e, 0.12p, 0.15e, 0.20j1, 0.21q, 0.25j2,p 0.18

Repeatability

Milk yield 0.26g, 0.37h, 0.51m, 0.64e, 0.66e 0.42

Fat yield 0.22h, 0.42b, 0.49m 0.38

Protein yield 0.42b, 0.52m, 0.57h 0.50

Somatic cell score 0.46p, 0.58e, 0.59e,p 0.56
1Somatic cell score = average Log2(somatic cell count).

a Mucha et al. (2014) (UK crossbred).
b Torres-Vázquez et al. (2009) (Saanen).
c Delfino et al. (2011) (Maltese).
d Valencia et al. (2007) (Saanen).
e Maroteau et al. (2014) (1Alpine and
2Saanen).
f Selvaggi and Dario (2015) (Jonica).
g Morris et al. (1997) (Saanen).
h Rabasco et al. (1993) (Verata).
i Boichard et al. (1989) (1Alpine and
2Saanen).

j Rupp et al. (2011) (1Alpine and 2Saanen).
k Bélichon et al. (1998) (1Alpine and 2Saanen).
l Morris et al. (2006) (Saanen).
m García-Peniche et al. (2012) (US goats).
n Valencia-Posadas et al. (2017) (Mixed).
o Castañeda-Bustos et al. (2014) (US goats).
q Apodaca-Sarabia et al. (2009) (Mixed).
r Bagnicka et al. (2016) (Polish White Improved
and Polish Fawn Improved).
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Table 2.4. Published phenotypic (above diagonal) and genetic correlations (below
diagonal) between milking traits for dairy goats.

Trait Milk yield Fat yield Protein yield Somatic cell score

Milk yield 0.85a

0.85-0.86b

0.87-0.89c

0.95a

0.93-0.95b

0.94-0.95c

0.59d

Fat yield 0.72a

0.77b

0.80-0.84c

0.88a,b

0.88-0.91c

Protein yield 0.87a

0.89-0.92b

0.90-0.93c

0.80a

0.83-0.86b

0.82-0.91c

Somatic cell score 0.00-0.12e -0.13--0.02e -0.04-0.06e

a Torres-Vázquez et al. (2009) (Saanen).
b Bélichon et al. (1998) (Alpine and Saanen).
c Boichard et al. (1989) (Alpine and Saanen).
d Bagnicka et al. (2016) (Polish White Improved and Polish Fawn Improved).
e Rupp et al. (2011) (Alpine and Saanen).

These genetic parameters are population specific and therefore must be estimated for the

population of interest (van der Werf and de Boer, 1989). The only genetic parameters that

have been published for milk production traits of dairy goats in New Zealand were for MY

(Morris et al., 1997; Morris et al., 2006), SCS (Apodaca-Sarabia et al., 2009) and stayability

(Wheeler et al., 2013). Although genetic parameters have been estimated for dairy goats

worldwide, traits are influenced by genes and the environment, thus, using estimates from

literature does not provide accurate estimates of genetic and environmental variation in

New Zealand dairy goats. More research to obtain genetic parameters for milking traits of

New Zealand dairy goats is required to develop an efficient breeding program for dairy goats

in New Zealand. These genetic parameters will aid in calculating breeding values to be used

in the construction of a selection index.
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2.5 Genome-wide association study

With the declining cost of genotyping technologies and advances in computing capabilities,

genomic studies are becoming increasingly popular in livestock breeding. In early 2007, the

development of next-generation sequencing enabled de novo sequencing of the goat

genome (Dong et al., 2013) which led to the development of the Illumina Goat SNP50

BeadChip, a high-density SNP chip containing 53,347 SNPs (Tosser-Klopp et al., 2014). A SNP

stands for single nucleotide polymorphism which exhibits two or more nucleotide variants

at a single base. These SNPs occur naturally across the genome and are a type of genetic

marker commonly used in genomic studies. The advances in complex statistical models

along with the availability of the Caprine 50K SNP chip provides multiple opportunities for

the inclusion of genome-wide information into the genetic improvement program of the

dairy goat industry through markers association studies and genomic prediction (GP).

A genome-wide association study (GWAS) is the analysis of genetic associations between

genetic markers and specific traits (Goddard and Hayes, 2012). More specifically, these

genetic markers are analysed for variation across the DNA sequence of the individual’s

genome (McCarthy et al., 2008). Identifying genetic markers associated with economically

important traits provides the opportunity to increase the rate of genetic gain using genomic

or marker-assisted selection. Animals with desirable genotypes can be identified and

selected at a young age which can reduce the generation interval (Schaeffer, 2006) and

increase rates of genetic gain. Genome-wide association studies have been performed in

many livestock species, including dairy cattle (Mai et al., 2010; Pryce et al., 2010; Meredith

et al., 2012), sheep (Zhao et al., 2011) and pigs (Sato et al., 2016; Le et al., 2017; Meng et

al., 2017). Since release of the Caprine 50K SNP chip, associations of quantitative trait loci

(QTL) in goats have been published for polledness (Kijas et al., 2013), milking speed (Palhière

et al., 2014), wattles (Reber et al., 2015), coat colour (Becker et al., 2015; Martin et al.,

2016a), supernumerary teats (Martin et al., 2016b), milk production and type traits

(Maroteau et al., 2013; Martin et al., 2017; Mucha et al., 2018a). To date, there are no

published papers reporting GWAS for dairy goats in New Zealand.
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2.5.1 Fitting individual markers

One of the simplest GWAS is testing the association of a single marker and is referred to as

a single-SNP GWAS (sGWAS). The sGWAS is based on a linear regression test of the fixed

covariate effect of a single marker, which treats each SNP as if it has an additive effect. This

model can be adjusted for the structure of the population by fitting principal components

computed from the genomic relationship matrix (Price et al., 2006) as fixed effects. One

problem with this model is that because each SNP is analysed separately, thousands of tests

are performed, which incurs a multiple testing problem. To account for multiple testing the

significance level must be stringent and can be calculated using the Bonferroni correction.

However, setting a significance threshold combined with the testing of so many marker

effects means that the markers likely to exceed the threshold are those with favourable

error terms and in turn have overestimated effects.

A GWAS uses linkage disequilibrium (LD) based methods to identify the associations

between the genetic markers and phenotypic expression of traits of interest. Linkage

disequilibrium is the non-random association of alleles at two or more loci and is influenced

by factors such as population history, effective population size, relatedness between

individuals and the pattern of geographic subdivision (Slatkin, 2008). Analysing individual

SNPs relies on the LD between each marker and the QTL. Therefore, the power of a sGWAS

may suffer if the individual SNP is in low LD with the causal mutation and the LD contained

in flanking markers is ignored (Fernando and Garrick, 2013). On the other hand, it is also

possible to overestimate the effects of the individual SNPs. For example, several SNPs could

all be in LD with the same QTL and therefore each SNP could either explain a part of the QTL

effect, or each SNP could be explaining the same part of the QTL effect, which would lead

to false positives (Martin et al., 2016b).

Overall, this single-SNP approach is capable of detecting a signal (causal mutation),

however, most economically important traits are complex and controlled by several major

loci with small effects. In this case, a more precise method of estimating the number of QTL

is by calculating the variance explained by the effects of the SNPs in a specified

chromosomal region (Habier et al., 2011).
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2.5.2 Fitting all markers simultaneously

Bayesian multiple-regression models can be used to simultaneously fit thousands of SNPs

as random effects to determine the proportion of variance explained by the markers

(Fernando and Garrick, 2013). Fitting all SNPs simultaneously in the model takes into

account the LD between neighboring SNPs which limits the false positive discoveries

(Fernando and Garrick, 2013). Also, it is expected that SNPs near each other will be highly

correlated, therefore, analysing markers within a genomic window would expect to capture

most of the variability at a nearby trait locus (Fernando and Garrick, 2013). Thus, instead of

using P-values to determine significant associations as with the single-SNP approach, these

Bayesian methods make inferences of associations based on the variance explained by each

genomic window (Misztal et al., 2020). The windows that explain the greatest variance can

be used to identify the most informative genomic regions, facilitating the discovery of

associated markers and possible causal mutations (Fernando and Garrick, 2013). By sliding

the window over the chromosome and observing peaks that are greater than those

obtained for the single SNPs, the number of actual QTLs may be inferred more accurately

(Habier et al., 2011).

In addition to sGWAS or fitting all markers simultaneously, the SNPs can be combined into

a haplotype block. A haplotype block is a cluster of SNPs that tend to be inherited together.

Therefore, clustering SNPs into a haplotype block combines information of adjacent SNPs

into composite multi-locus haplotype alleles which may be more informative than individual

SNPs and may also capture the regional LD information, which is arguably more robust and

powerful (Pritchard et al., 2000; Akey et al., 2001). Such haplotypes can be included in the

GWAS analysis to further investigate the true associations obtained from the SNP analyses.

The discovery of thousands of SNPs and their application in GWAS has facilitated the

identification and localisation of regions that control quantitative traits in dairy cattle

(Georges et al., 1995; Jiang et al., 2010; Mai et al., 2010; Pryce et al., 2010; Meredith et al.,

2012) and pigs (Sato et al., 2016; Le et al., 2017; Meng et al., 2017). A few studies have

analysed SNPs and their associations with milking traits in dairy goats. For example, Martin

et al. (2017) attempted a GWAS for dairy goats and revealed that two mutations (R251L and
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R396W) of the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene were responsible for

decreased milk fat content. But, due to the small sample sizes (4,563 and 1,941 goats,

respectively), the associations with candidate genes should be treated as an indication and

further research is required before validation. Thus, there is still very little known about the

loci controlling milk traits in goats.

2.6 Estimation of breeding values

2.6.1 Pedigree and phenotypic based breeding values

In animal breeding, the best linear unbiased prediction (BLUP) is the main method for

predicting the genetic merit of individuals in a population (Henderson, 1950; Henderson,

1963). This method uses phenotypic records of the individual and its relatives (Garrick and

Fernando, 2014) to derive unbiased estimates of the linear functions of the fixed effects,

and the random animal effect included in the mixed model. Pedigree information is used to

estimate the average genetic relationships among the individuals based on the probability

that genes are identical by descent (Wright, 1922), i.e. half- siblings born to unrelated non-

inbred parents are expected to share 0.5 of their alleles, and these probabilities are the

basis for generating the average genetic relationship matrix (A) between close and distant

relatives in the pedigree. A traditional single-trait analysis BLUP model is;

y = Χb + Za + e (2.2)

where

y is the vector of all observations,

X is the design matrix relating fixed effects in b to y,

b is the vector containing fixed effects,

Z is the design matrix relating genetic effects in a to y,

a is the vector containing the animal additive genetic effects,

e is the vector of residual effects.
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It is assumed that the expectations (E) of the variables are: E(y) = Xb, E(a) = 0, E(e) = 0. It is

assumed that residual effects, which includes random environmental and non-additive

genetic effects, are independently distributed with variance σ2e; therefore, var(e) = Iσ2e = R;

var(a) = Aσ2a = G and cov(a,e) = 0, where I is an identity matrix of order n (the number of

records), A is the numerator relationship matrix from the pedigree and σ2a is the additive

genetic variance. Since cov(a,e) = 0, then:

var(y) = V = ZGZ’+ R (2.3)

The implications from the assumptions in the animal model described above include:

(i) All genetic values are from the same distribution and have common genetic

variance, in the absence of inbreeding.

(ii) All residual effects have the same variance and are independent.

(iii) Random effects u and e are assumed to have zero covariance, equivalent to

assuming no genotype-environment interaction.

In 1963, Henderson published a theory which combined the selection index theory (Hazel,

1943) with the least squares method, to find the best linear unbiased estimators of β, and

to use these estimators, β° in predicting u satisfying the above criteria. Henderson’s mixed-

model equations (MME) correspond to a very general matrix model in which u can comprise

of several random factors. Given the assumptions explained in the definition of the model

(Equation 2.2), the MME reduce to (Henderson, 1975):

ቂX'X X'Z
Z'X Z'Z+αA-1ቃ ቂ

β°
uො ቃ = ൤X′yZ'y൨ (2.4)

with

α = σe
2

σa
2
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where

A−ଵ is the inverse of the relationship matrix between individuals in u.

β° is the vector of solutions for fixed effects,

uො is the vector of animal solutions, which are the EBVs.

This BLUP methodology has been applied for genetic evaluation of dairy goats in France

(Boichard et al., 1989; Ducrocq, 1992; Clément et al., 2002) and Norway (Andonov et al.,

2007). These MME can also be extended to multi-trait analysis and more recently genomic

predictions (Meuwissen et al., 2001).

2.6.2 Prediction of genomic breeding values

Genomic prediction uses information from genetic markers covering the whole genome to

predict GBVs for individuals without phenotypic records (Meuwissen et al., 2001). Using

high-density arrays, it is assumed that all the QTL that contribute to trait variation are in

high LD with at least one marker or haplotype (Meuwissen et al., 2001). The GBVs are

calculated as the sum of the effects of markers or marker haplotypes across the entire

genome, thereby potentially capturing all of the additive genetic variance of the trait (Hayes

et al., 2009). Genomic prediction is now widely practiced across commercial livestock

species such as dairy goats (Carillier et at., 2013; Carillier et al., 2014; Mucha et al., 2015),

dairy cattle (Hayes et al., 2009; VanRaden et al., 2009; Boichard et al., 2012; García-Ruiz et

al., 2016), dairy sheep (Duchemin et al., 2012; Baloche et al., 2014), meat sheep (Banks et

al., 2009; Brito et al., 2017a), beef cattle (Weber et al., 2012; Guo et al., 2017; Zhu et al.,

2019), pigs (Christensen et al., 2012; Knol et al., 2016), and poultry (Wolc et al., 2015).

Although GP has been implemented in New Zealand dairy cattle (Spelman et al., 2013),

sheep (Dodds et al., 2014; Nilforooshan, 2020) and trees (Suotama et al., 2019), this

technology has not been applied in the New Zealand dairy goat industry.
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2.6.2.1 Multi-step genomic prediction

The basic principle of GP includes a set of individuals that have phenotypic records and

genotypic information (referred to as the training or reference population), that are used

to construct a model that predicts the GBV of individuals for which only genetic information

is available (validation population). Genomic prediction is a very active area of research

where new algorithms, software and methods are constantly being developed. Within this

context the following section will explain the general mixed model and briefly introduce a

few key ideas of the most common genomic prediction models currently used in livestock

breeding such as the ridge-regression BLUP (RR-BLUP), fixed regression least squares (FR-

LS), genomic BLUP (GBLUP) and Bayesian approaches (BayesA, B, C and Cπ). The general

equation used for the prediction of total genetic merit using genomic information is as

follows (Meuwissen et al., 2001):

y = Χb + Ms + e (2.5)

where

y is the vector of phenotypes,

X is the design matrix relating fixed effects in b to y,

b is the vector containing fixed effects,

M is the matrix of centred marker covariates observed on genotyped animals,

s is the vector containing additive marker effects,

e is the vector of residual effects.
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This estimates of marker effects are obtained from the following MME (Henderson, 1984):

ቂX'X X'M
M'X M'M+ λI

ቃ ൤b෠
ŝ
൨ = ൤X'y

M'y൨ (2.6)

where

b෠ is the vector of solutions for fixed effects,

s îs the vector of marker effects,

λ is the proportion of the residual variance that is explained by the SNPs and is calculated

as σ2e/σ2SNP where σ2e = residual variance and σ2SNP = marker variance,

I is an identity matrix of size equal to the number of markers.

Leading to:

uො = Mŝ (2.7)

therefore

uො is a vector of animal solutions, which are the estimated GBVs.

The main differences between the GP models are the number of SNPs included in the model

and the assumptions of the distribution of SNP effects.

In RR-BLUP, all markers are included in the model and are assumed to contribute equal

variance. This approach was proposed by Meuwissen et al. (2001), which includes a penalty

parameter (λ) that shrinks marker effects uniformly towards zero and was calculated as

σ2g/k where σ2g is the total genetic variance and k is the number of markers. However,

Habier et al. (2007) demonstrated that this calculation of λ is statistically equivalent to BLUP

using the average genetic relationship matrix (A), and suggested λ to be calculated as:

λ= σg
2 2∑ pk(1-pk)kൗ (2.8)
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where σ2g is the additive genetic variance, and pk is the allele frequency at marker locus k.

Biologically, we would expect some SNPs to be in close LD to a gene and therefore have an

effect on the trait of interest, while other SNPs may not be in LD and therefore have no

effect on the trait. However, despite the underlying assumption that all SNPs contribute

equal variance, the RR-BLUP approach performs well when the traits are controlled by many

loci with small effects (Lorenz et al., 2011).

Meuwissen et al. (2001) also proposed a fixed regression least squares (FR-LS) method that

predicts GBVs using information from all markers located across the entire genome in an

attempt to capture all of the QTL influencing the variation in a trait (Hayes et al., 2009).

Similar to RR-BLUP, for the FR-LS model it is assumed that the effects of all SNPs are

normally distributed, and all SNPs have equal variance (λ = constant) (Meuwissen et al.,

2001; VanRaden, 2008). The difference between RR-BLUP and FR-LS is that in FR-LS, λ is the

proportion of the residual variance that is explained by the SNPs and is calculated as

σ2e/σ2SNP, as in Equation 2.6. This ratio dictates the extent of shrinkage in the prediction of

marker effects (Garrick et al., 2014).

An equivalent model to FR-LS is genomic BLUP (GBLUP), which fits a genomic relationship

matrix (VanRaden, 2008) in place of the traditional average genetic relationship matrix (A)

in the BLUP model (Equation 2.4) (Garrick, 2007; VanRaden, 2007). This GBLUP approach is

preferred over FR-LS as regressions are on genotypes rather than haplotypes, and at high

marker numbers, haplotyping would increase computation time with minimal gain in

accuracy (Calus et al., 2008).

Bayesian models were proposed for GP to overcome the limitation of homogeneous

shrinkage of marker effects by partitioning the genetic variance among markers. In Bayesian

models a fraction (π) of the SNPs have an effect whereas a fraction (1-π) have no effect on

the trait (Fernando and Garrick, 2013). This fraction allows the model to perform marker

specific shrinkage of estimates by specifying an appropriate prior density. This assumption that

not all markers have an effect, agrees with the fact that some of the chromosome segments

contain QTL with large effects, some with small effects, and some have no QTL. The assumed

prior density of marker effects determines the extent and type of shrinkage induced and
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whether the model will induce variable selection and shrinkage or shrinkage only (de los

Campos et al., 2013). Bayesian models are known as variable selection models as they only

include markers in the prediction model if they are estimated to have an effect. A brief

overview of the methodology of Bayesian models is described:

In Bayesian models, a prior probability, based on previous knowledge (which can be vague),

is assigned to the data. The prior distribution for the variance of marker i (Vai) assumed as:

Vai= 0 with probability p

Vai ~ χ-2(v,S) with probability (1-p)

where p depends on the marker mutation rate and χ-2(v,S) represents the inverse-Chi

squared distribution, with v degrees of freedom and scale parameter S. Both parameters v

and S depend on the distribution of the mutational effects of the markers, which, in

practice, require estimation (Meuwissen, 2003). Through the Bayes theorem, this prior is

combined with the evidence arising from the data (the likelihood) to obtain a posterior

distribution from which inferences are made. The overall application of this Bayes theorem

becomes complex as its calculation involves multiple integrations. For this reason, Bayesian

analyses are commonly carried out with the use of Markov chain Monte Carlo (MCMC)

methods, in which inferences on the parameters are obtained from statistics of samples

obtained empirically from the likelihood iterations.

In BayesA, it is assumed that all markers have an effect (π = 0) and are included in the model

(Meuwissen et al., 2001). For BayesA the genetic variance is partitioned unequally among

all markers for marker-specific variances (σ2snp) (λ = varies for each marker). A student-t

distribution is used as a prior for the SNPs with effects, which allows some SNPs to have

large effects on the trait (Meuwissen et al., 2001). In BayesB, to accommodate the

assumption that many SNPs have a zero effect (π > 0), these markers are excluded from the

model and the genetic variance is partitioned unequally among the remaining subset of

markers (Habier et al., 2011). The fraction of markers assumed to have non-zero effects are

drawn from distributions with marker-specific variance (λ = varies for each marker)

(Meuwissen et al., 2001). Kizilkaya et al. (2010) developed a BayesB-like mixture model
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called BayesC which assumes that the all markers that have an effect explain equal genetic

variance (λ = constant). However, BayesC is similar to BayesB in that they both assume that

a proportion of the markers (π > 0) contribute to the genetic variance. As only a fraction of

the markers are assumed to have an effect, the BayesB and BayesC models use a mixture

of two priors, one with a point of mass at zero and the other that can either be a scaled-t

distribution in BayesB (Meuwissen et al., 2001) or a Gaussian distribution in BayesC (Habier

et al., 2011). Previous studies have indicated that Bayesian models that differ in their prior

assumptions tend to produce different inferences about individual marker effects and

GBVs; although, in cross-validation studies they often have similar predictive performance

(Gianola, 2013). The main differences between these prediction models are shown in Table

2.5.

Table 2.5. Key parameters considered for each of the genomic prediction models.
Parameter RR-BLUP FR-LS GBLUP BayesA BayesB BayesC
Number of markers
included in the model

All All All All 1-π 1-π

Marker variance (λ) Constant Constant Constant Variable Variable Constant
π NA NA NA NA Known Known

Based on the underlying assumptions of these prediction models, when a trait is controlled

by a few QTL with moderate-to-large effect, the Bayesian variable selection approaches are

expected to perform better than the RR-BLUP or GBLUP models. This was demonstrated by

Wang et al. (2019) in Chinese Simmental beef cattle, reporting that when the traits are

influenced by fewer genes but of large effect, it seems that Bayesian methods have a small

advantage over linear models such as GBLUP, whereas, GBLUP may outperform BayesB for

a trait with many loci with small effects (Wang et al., 2019). This demonstrates that although

these prediction methods have been successfully implemented in livestock species, these

methods may perform differently for different traits (Hayes et al., 2009).
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It must be noted that these GP models can only be applied to animals with genotypes, and

in a practical scenario only a subset of the population, generally the top sires, are

genotyped. However, this genomic information can still be applied to the population using

a “multi-step” approach (Meuwissen et al., 2016): 1) pseudo-phenotypes for genotyped

animals are calculated using information (phenotypes) on its ungenotyped relatives, 2) GP

is performed on genotyped animals using the pseudo- phenotypes and their genotypes, 3)

the pedigree-based EBVs and GBVs are combined into a total EBV (VanRaden, 2008). The

pseudo-phenotypes used in this multi-step approach could be de-regressed breeding values

(Garrick et al., 2009), which require preliminary evaluation of the performance of the buck’s

progeny, referred to as a progeny-test, or daughter-yield deviations (VanRaden and

Wiggans, 1991). Although this method does provide greater accuracies than pedigree-based

EBVs (Harris and Johnson, 2010), handling the data in multiple steps is clearly suboptimal.

2.6.2.2 Single-step genomic prediction

Legarra et al. (2009) proposed a method that uses phenotypes, genotypes and pedigree

information to predict GBVs for both genotyped and non-genotyped individuals in one

single-step, and is referred to as single-step GBLUP (ssGBLUP). Implementing ssGBLUP in

the prediction of the genetic merit generally results in higher accuracy due to the utilisation

of all available data (Silva et al., 2016). Moreover, predicting all genotyped and non-

genotyped individuals simultaneously reduces prediction bias (Vitezica et al., 2011;

Christensen et al., 2012). This method incorporates all individuals in the evaluation by

combining the average genetic relationship matrix (A) with the genomic relationship matrix

(G), into a modified relationship matrix (H) (Legarra et al., 2009):

H = ቆ
Ann+ AngAgg

-1൫G-Agg൯Agg
-1 Agn AngAgg

-1 G
GAgg

-1 Agn G
ቇ (2.8)
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where

Ann is a sub-matrix of the A for non-genotyped animals,

Agg is a sub-matrix for genotyped animals,

Ang (or Agn) are sub-matrices that describe the pedigree-based relationship between non-

genotyped and genotyped animals.

This single-step approach uses Henderson’s MME and the H to yield unbiased predictions

under multivariate normality, even in populations that are undergoing selection and non-

random mating. This single-step procedure increases both power and precision by taking

advantage of phenotypes from related and unrelated animals. Despite these advantages,

ssGBLUP requires computation of the G or its inverse, which can be computationally

demanding when many animals are genotyped.

Several alternative single-step approaches have also been proposed in an attempt to reduce

computations with many genotyped animals (Legarra and Ducrocq, 2012; Fernando et al.,

2014; Liu et al., 2014; Taskinen et al., 2017). These approaches include equations where G

is not inverted, the SNP effects are estimated for genotyped animals and a polygenci effect

is fit for non-genotyped animals, or, SNP effects are estimated for all animals using imputed

genotypes. For example, Fernando et al. (2014) proposed a class of single-step Bayesian

regression methods that does not require the computation of the G or its inverse. Instead,

this single-step Bayesian approach imputes marker covariates for non-genotyped animals

based on their genotyped relatives and a genetic imputation error effect to accommodate

the difference between true and imputed genotypes (Fernando et al., 2014). Later,

Fernando et al. (2016) also proposed another single-step approach called a single-step

hybrid model that utilises Bayesian regression analyses but requires considerably less

computing effort.

In an attempt to minimise prediction bias of GBVs an extra polygenic term can be included

in the prediction model to account for the additive genetic variance not explained by the

markers (Goddard et al., 2007; Christensen and Lund, 2010; Liu et al., 2011). Including this

term in the model tends to increase prediction accuracies if the prediction uses low marker
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density panels, however, if high marker density panels are used, or the markers already

explain most of the genetic variance, inclusion of an extra polygenic effect will hardly

increase prediction accuracies (Calus and Veerkamp, 2007). Only a few published studies

have applied the single-step method with an extra polygenic effect included in the model.

For example, in a ssGBLUP evaluation of dairy goats in the UK, Mucha et al. (2015) included

an extra polygenic effect of 10% of the additive genetic variance to avoid high variance and

to minimise prediction bias of GBV.

The ssGBLUP approach has been explored in many simulation studies (Kang et al., 2017;

Bradford et al., 2019) and successfully applied to different species, including dairy goats

(Desire et al., 2017; Mucha et al., 2018b), dairy cattle (Aguilar et al., 2010; Harris et al., 2012;

Liu et al., 2014; Koivula et al., 2015), beef cattle (Moore et al., 2018), sheep (Swan et al.,

2012; McMillan and Swan, 2017; Brown et al., 2018), broilers (Chen et al., 2011) and pigs

(Christensen et al., 2012). The single-step Bayesian regression has been implemented for

beef cattle (Lee et al., 2017; Golden et al., 2018). In a simulation study comparing the

prediction accuracy of single-step BayesA, single-step BayesB and ssGBLUP with various

numbers of QTL (5, 50, and 500),  Zhou et al. (2018) reported that single-step BayesA and

single-step BayesB models were advantageous over ssGBLUP when there were fewer QTL

affecting the trait. Concluding that single-step BayesA was the most robust and efficient

model across all QTL scenarios. In addition, the authors noted that accuracies of ssGBLUP

did not change significantly as the number of QTL changed, however single-step BayesA and

single-step BayesB accuracies significantly decreased as the number of QTL increased.

These results suggest single-step Bayesian models are more sensitive to the number of QTL

affecting the trait while ssGBLUP is more robust model to handle scenarios with different

number of QTL. Overall, these results are similar to the multi-step predictions, in which the

Bayesian approaches are adventageous when there are fewer QTL but with medium to large

effect.
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2.7 Factors affecting accuracy of prediction

Simulation and empirical studies in animal breeding programs indicate that the accuracy of

GP is influenced by several parameters including the heritability of the trait (Viana et al.,

2017), the number of animals in the reference population (VanRaden et al., 2009; Daetwlyer

et al., 2012), the relationship between animals in the reference population and the target

animals to be predicted (Meuwissen et al., 2001; Solberg et al., 2008; Clark et al., 2012), the

extent of LD between the SNPs and QTL (Meuwissen et al., 2001), the distribution of the

QTL effects (Meuwissen et al., 2001; Goddard, 2009; Hayes et al., 2009) and of course the

prediction method used (Calus, 2010).

2.7.1 Heritability

As trait heritability is the proportion of the total variation due to the genetic variance, it is

not surprising that more heritable traits have greater prediction accuracies (Zhang et al.,

2019). However, compared to phenotypic selection, the efficiency of genomic selection

increases as the heritability of the trait decreases (Viana et al., 2017). This is primarily due

to the fact that the genomic data provides more information to predict the breeding values

(Bouquet and Juga, 2012). This can be seen from the results of using genomic selection in

US dairy cattle, where the rate of genetic gain per year increased by 50-100% for high

heritability traits such as milk yield, but increased by 300-400% for low heritability traits

such as daughter pregnancy rate (García-Ruiz et al., 2016).

2.7.2 Size of reference population

The size of the reference population is an important factor influencing GP as this

information is the basis of the predictions. The more animals in the reference population

will provide more data available to estimate marker effects which in turn will increase

prediction accuracies (Meuwissen et al., 2001; VanRaden et al., 2009). Meuwissen et al.

(2001) showed that training populations consisting of 500, 1,000 and 2,200 animals

obtained prediction accuracies of 0.58, 0.66, and 0.73 using the traditional BLUP approach,
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and 0.71, 0.79, and 0.85 using a BayesB approach, respectively. In addition to population

size, the relationship between animals in the reference and validation populations also has

a significant effect on prediction accuracies (de los Campos et al., 2013). Close relationships

between the two populations results in the greatest GBV accuracies (Habier et al., 2007;

Habier et al., 2010; Clark et al., 2012; Garrick et al., 2012; Habier et al., 2013; Kang et al.,

2017). Using a simulation study Zhou et al. (2018) investigated the influence of relationships

between the training and validation populations on the accuracy of GBVs using various

single-step prediction models. Zhang et al. (2018) reported that prediction accuracies of

ssGBLUP, single-step BayesA and single-step BayesB models all decreased as the distance

of the validation population increased. Thus, the contribution of genetic relationships to the

prediction of GBVs is different in each generation and accuracies will decrease over

generations (Habier et al., 2010; Kang et al., 2017). For example, the contribution to the

prediction accuracy of the parents of individuals in the training population can be high, but

the information from genetic relationships is halved each generation for the following

generations. In addition, the contribution to prediction accuracy from the relationships

between the two populations is likely correlated to the accuracy obtained from the extent

of LD between the markers and QTLs, as the level of LD increases when subgroups are

closely related (Daetwyler et al., 2012). However, the accuracy due to the extent of LD tends

to be more persistent across generations and breeds than the accuracy due to relationships,

which makes LD of particular importance in GP (Meuwissen et al., 2001; Habier et al., 2007;

de Roos et al., 2009).

2.7.3 Level of linkage disequilibrium

Genomic prediction is based on the idea that all QTL that contribute to trait variation will

be in LD with at least one marker and therefore captured in the prediction model

(Meuwissen et al., 2001). The extent of LD is quantified as the correlation between two loci

(r2) which generally increases as the density of markers increases (Garrick et al., 2012). The

greater level of LD between markers is related to more accurate GBVs while an r2 value

greater than 0.20 is suggested to be enough for genomic selection (Meuwissen et al., 2001;
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Calus et al., 2008). The success of GP depends largely on the existence of LD across the

population of interest (Carillier at al., 2013; Baloche et al., 2014). Therefore, when all

individuals come from the same population, the LD between genetic markers and QTL

persists from the training to the validation population. Marker densities also influence

prediction accuracies, with lower densities resulting in poorer predictions (Solberg et al.,

2008). Increasing marker density also provides greater chance that a QTL will be in LD with

at least one marker, which will increase the prediction accuracy, until prediction accuracy

reaches a plateau and does not increase further as marker density increases (Lee et al.,

2017). For example, in New Zealand dairy cattle, Spelman et al. (2014) reported minimal

improvement in GPs when moving from the 50K SNP panels (Harris et al., 2011) to using a

777K marker panel. Also, the increased marker density can increase the risk of slow

convergence or even no convergence of MCMC iterations in Bayesian methods, which may

result in low prediction accuracy (Zhang et al., 2019).

2.7.4 Prediction model

Genomic prediction models can use single markers, haplotypes of markers, or using an

identical by descent approach (Meuwissen et al., 2001; Goddard and Hayes, 2007; Calus et

al., 2008). Methods such as ssGBLUP use all markers and information from the genetic

relationship matrix (Meuwissen et al., 2001), while Bayesian models can use a subset of

markers (Habier et al., 2011). Also, the single-step approaches enable the use of pedigree

and genotypic information from all animals in the population, usually resulting in greater

accuracies than GBLUP, due to the utilisation of all available data (Carillier et al., 2014; Silva

et al., 2016). An important factor when considering the appropriate model to implement is

the genetic architecture (number and position of QTL, magnitude of QTL effects) of the

traits of interest. For example, the standard GBLUP approaches assume that all SNPs follow

the same distribution and contribute the same level of variance, thus all SNPs are assigned

the same weight in the model (Legarra et al., 2009; Stranden and Garrick, 2009; Christensen

and Lund, 2010; Wang et al., 2012; Zhang et al., 2016). Meanwhile Bayesian methods are

able to consider that SNPs explain different proportions of the genetic variance (Habier et
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al., 2011). Allocating more variance to a subset of SNPs allows these Bayesian methods to

take into account the presence of QTL or major gene effects (Teissier et al., 2018). If prior

information is known or assumed about the genetic architecture of the traits of interest

then these can be used to modify the distribution of SNP effects (Teissier et al., 2018), or

use a model which the underlying assumptions match. For example, the αs1 casein gene is

known to have a significant effect on protein content in French dairy goats (Teissier et al.,

2018). Teissier et al. (2018) demonstrated that prediction accuracies of a weighted-ssGBLUP

model, in which weights for SNP variances are used when forming the genomic relationship

matrix (Legarra and Ducrocq, 2012), was more accurate than the regular unweighted

ssGBLUP model.

2.8 Summary of literature review

There is tremendous opportunity to improve the production of milk produced in the New

Zealand dairy goat industry. This review of the literature has identified that there is an

animal evaluation system in the industry, but there is no selection scheme to select and

disperse genes from superior animals into the commercial population. Also, there is lack of

reports of the estimation of genetic parameters for New Zealand dairy goats, restricting the

estimation of breeding values for economically important traits. Additionally, there has

been no genomic research despite the potential benefit of genomic information available

to the New Zealand dairy goat industry.



Chapter 3
Genetic parameters for total lactation yields of milk, fat,
protein, and somatic cell score in New Zealand dairy goats

This Chapter has been published in part elsewhere. It has been reformatted and presented

here with permission:

Scholtens MR, Lopez-Villalobos N, Garrick DJ, Blair HT, Lehnert K, Snell RG. 2019. Genetic

parameters for total lactation yields of milk, fat, protein, and somatic cell score in New

Zealand dairy goats. Animal Science Journal DOI:10.1111/asj.13310.
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Abstract

The aim of this study was to estimate genetic parameters for lactation yields of milk (MY),

fat (FY), protein (PY) and somatic cell score (SCS) of New Zealand dairy goats. The analysis

used 64,604 lactation records from 23,583 does, kidding between 2004 and 2017,

distributed in 21 herds and representing 915 bucks. Estimates of genetic and residual (co)

variances, heritabilities and repeatabilities were obtained using a multiple-trait

repeatability animal model. The model included the fixed effects of contemporary group

(does kidding in the same herd and year), age of the doe (in years) and as covariates, kidding

day, proportion of Alpine, Nubian, Toggenburg, and “unknown” breeds (Saanen was used

as the base breed), and heterosis. Random effects included additive animal genetic and doe

permanent environmental effects. Estimates of heritabilities were 0.25 for MY, 0.24 for FY,

0.24 for PY, and 0.21 for SCS. The phenotypic correlations between MY, FY and PY ranged

from 0.90 to 0.96, and the genetic correlations from 0.81 to 0.93. These results indicate

lactation yield traits exhibit useful heritable variation and that multiple trait selection for

these traits could improve milk revenue produced from successive generations of New

Zealand dairy goats.

Introduction

Dairy goat farming in New Zealand is a profitable industry able to access niche markets for

high value products. The New Zealand Dairy Goat Cooperative’s members collectively

manage 80% of the nation’s dairy goat population (Scholtens et al., 2017). The cooperative

is the leading international manufacturer of goat milk nutritional powders for infants and

young children (Stafford and Prosser, 2016). The industry is dependent on goat milk with

high total milk solids and low bacterial count for the manufacture of high-quality products.

Selecting animals based on a selection index utilises estimates of genetic merit

encompassing economically relevant traits. A breeding program would enable the index

selection of genetically superior animals which would rapidly improve the quantity and
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quality of milk produced from New Zealand dairy goats, and results in improved profits for

farmers.

Modern breeding programs include routine genetic evaluation to enable selection of the

best parents to produce the next generation of animals. Genetic and environmental factors

significantly influence milk yield and quality in ruminants (Selvaggi and Dario, 2015), and

genetic gain from selection will be enhanced if these environmental factors are accounted

for in the estimation of genetic merit. Knowledge of variance components for production

traits will enable the design of an effective genetic evaluation strategy, allowing the

selection of animals with superior overall genetic merit, optimising direct and correlated

selection responses for traits of economic importance (Barillet, 2007). Estimates of genetic

parameters for economically relevant traits have been reported for dairy goats in South

Africa (Muller, 2005), France (Boichard et al., 1989; Bélichon et al., 1998), Spain (Analla et

al., 1996), the United Kingdom (McLaren et al., 2016) and New Zealand (Morris et al., 1997;

Morris et al., 2006). The published values are summarised in Table 2.3 including heritability

and repeatability statistics. The genetic and phenotypic correlations are summarised in

Table 2.4.

Genetic parameters previously reported for dairy goats in New Zealand for yields of milk,

fat plus protein (Morris et al., 1997; Morris et al., 2006) have been estimated based on data

from a single Saanen goat herd with bi-variate repeatability models. The aim of this study

was to use a dataset from a much larger multi-farm dairy goat population and estimate

genetic parameters for MY, FY, PY and SCS by fitting a multiple-trait repeatability animal

model.

Methods

Data

Pedigree information and lactation records for MY, FY, PY and SCS from Alpine, Nubian,

Saanen, Toggenburg and crossbred dairy goats kidding between 2004 and 2017 were

obtained from the herd-test database maintained by Livestock Improvement Corporation.
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The original data set comprised 182,386 lactation records from 87,176 does distributed in

77 herds across the North Island of New Zealand. The pedigree included 1,076 sires and

23,949 dams. Herds were excluded when less than 80% of the dams were recorded. The

final data set contained 64,604 lactation records from 23,583 does distributed in 21 herds.

The does were offspring of 915 sires and 12,108 dams with pedigrees that spanned up to 9

generations. The 778 sires had progeny in only one herd, and 137 sires had progeny in two

herds or more. Breed composition of each doe was calculated from pedigree proportions

of Alpine, Nubian, Saanen, Toggenburg and “unknown” breeds. There was some

crossbreeding but very few first-cross or purebred animals of Alpine, Nubian and

Toggenburg breeds. Therefore, the proportion of these breeds were summed into a single

combined breed group called ANT. Structure of the dataset is provided in more detail in

Table 3.1. All herds have Saanen and it is used as a base breed for crossbred. There was a

total of 136 herd-year contemporary groups, mostly consisting of more than one breed or

cross.

Table 3.1. Number of animals and lactation records, and average breed composition of
the goat population classified by proportion of Saanen.

Proportion of
Saanen (%)

N1 Breed Lactation
records

NSR2

Saanen Alpine Nubian Toggenburg Unknown

>87.5 4,754 0.993 0.000 0.000 0.001 0.006 11,971 2,890

> 75 - ≤ 87.5 1,280 0.853 0.001 0.002 0.026 0.119 4,318 1,280

> 0.50 - ≤ 0.75 3,417 0.684 0.001 0.003 0.052 0.260 10,801 3,390

> 0.25 - ≤ 0.50 6,377 0.449 0.002 0.003 0.035 0.511 17,907 1,887

> 0.125 - ≤ 0.25 3,671 0.231 0.001 0.004 0.025 0.739 9,528 694

> 0 - ≤ 0.125 2,806 0.102 0.001 0.001 0.013 0.883 7,051 401

0 1,278 0.000 0.029 0.032 0.256 0.683 3,028 687
1N = number of animals, 2NSR = this is the number of animals with sire recorded in the pedigree.
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Statistical analysis

The test interval method as described by Sargent et al. (1968), which has a high accuracy

(0.96-0.97) for estimating lactation yields from test-day records (Norman et al., 1999), was

used by Livestock Improvement Corporation to calculate MY, FY and PY for either the actual

realised lactation length or up to 305 days in milk (DIM) for those lactations with more than

305 DIM.

Current practice for the dairy goat industry is to start milking very soon after kidding (after

the colostral phase is over) and start supplying The Dairy Goat Cooperative (NZ) Ltd (DGC)

after the first eight milkings after kidding. Milking is twice daily and herd-testing occurs

three to four times each season. Average SCS over the lactation was calculated as the mean

Log2(somatic cell count) from each herd-test.

Descriptive statistics of MY, FY, PY and SCS were obtained using the MEAN procedure of

Statistical Analysis System version 9.4 (SAS Institute Inc., Cary, NC, USA). Normality was

tested using the UNIVARIATE procedure of SAS.

The genetic parameters were estimated using a multiple-trait repeatability animal model

represented as:

൥
y1
⋮

yn

൩ = ൥
X1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Xn

൩ ൥
b1
⋮

bn

൩ + ൥
Z1 ⋯ 0
⋮ ⋱ ⋮
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൩ ൥
a1
⋮

an

൩ + ൥
W1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Wn

൩ ൥
p1
⋮

pn

൩ + ൥
e1
⋮

en

൩ (3.1)

where for traits i =1,2,..n:

y୧ = vector of observations on all the measured animals,

bi = vector of fixed effects for trait i,

a୧ = vector of random (additive genetic) effects,

p୧ = vector of permanent environmental effects,
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e୧ = vector of random residual effects,

Xi = incidence matrix for the fixed effects,

Z୧ = incidence matrix relating observations to animals,

W୧ = incidence matrix for the permanent environmental effects.

Fixed class effects included in bi were contemporary group (defined as does kidding in the

same herd and year), and doe age in years.  Fixed covariables included day of kidding,

proportion of ANT, and “unknown” breeds (Saanen was used as the base breed), and

coefficient of general heterosis. General heterosis was calculated as 1 − ∑ 𝐩୨
ଶ୤

୨=ଵ where pj is

the proportion of each of the f breeds (Gregory and Cundiff, 1980; Lamberson et al., 1993).

General heterosis was calculated because the number of crossbred animals for each two-

breed combination was inadequate for fitting specific pair-wise heterosis values. General

heterosis assumes that first-cross heterosis is the same for all breed combinations. Random

effects included in the model were additive genetic and permanent environmental animal

effects. The distributional properties of the elements in the model, with expectation (E) and

variance-covariance structures (Var) were as follows:

E ൥
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⋮
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൩ ൥
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൩ (3.2)

and
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and
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and
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Var ൥
e1
⋮

en

൩ = ቎
I2σe1

2 ⋯ I2σe1n

⋮ ⋱ ⋮
I2σe1n ⋯ I2σen

2
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where

A = numerator relationship matrix among animals,

σai
2 , σaj

2 , σaij = animal (co)variance components for traits i and j,

σpi
2 , σpj

2 , σpij
= permanent environmental (co)variance components for traits i and j,

σୣ౟
ଶ , σej

2 , σeij = residual (co)variance components for traits i and j,

I1 = identity matrix for the permanent effects (order equal to the number of

does with records),

I2 = identity matrix for the residuals (of order equal to the number of records).

Estimates of variance and covariance components along with heritability and repeatability

for lactation yields of MY, FY, PY and SCS were obtained using the Restricted Maximum

Likelihood procedure in ASReml version 3 (Gilmour et al., 2009). Some animals had missing

values of SCS. When this occurred, ASReml uses the genetic covariances between the traits

to estimate breeding values for the missing values (Gilmour et al., 2009).

Results

Descriptive statistics are shown in Table 3.2. Mean FY was slightly greater than mean PY.

The coefficients of variation for lactation length and milk production traits were high,

reflecting the large phenotypic variation in all the traits.
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Table 3.2. Descriptive statistics of milking traits of New Zealand dairy goats1 kidding
between 2004 and 2017.
Trait N Mean SD2 Min Max CV3

Lactation length (days) 64604 226.4 89.6 60.0 700.0 40

Yields (up to 305 days)

Milk (kg) 64604 727.9 331.1 30.0 2,262.7 45

Fat (kg) 64604 24.4 11.2 1.0 80.0 46

Protein (kg) 64604 22.2 10.0 1.0 69.0 45

SCS4 (units) 61567 9.3 1.4 3.3 14.8 15
1N = number of records, 2SD = raw standard deviation across herds, 3CV = coefficient of variation,
4SCS = calculated as average log2(somatic cell count).

Estimated effects of age, breed and general heterosis on milking traits are presented in

Table 3.3 with the age group effects of nine-year-old does constrained to zero and the breed

group effects of Saanen does constrained to zero. Three-year-old does produced the highest

MY, FY and PY. Yearling does and then two- and three-year-old does tended to have the

lowest SCS, which increased beyond three-year-olds with the age of the doe. Does of

unknown breed produced the highest milk yield, while does in the ANT breed-group

produced the lowest. For example, three-year-old does produced 281.3 kg milk more than

the average milk production of the animals that were nine years or older. Similarly,

purebred animals that were either Alpine, Nubian or Toggenburg breed produced on

average, 32.1 kg less milk than purebred Saanen does.
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Table 3.3. Effect (±standard error) of doe age relative to nine-year-old does, breed relative
to Saanen, and heterosis for milking traits in New Zealand dairy goats kidding between
2004 and 2017.

Effect Trait

Milk yield
SE

Fat yield
SE

Protein
yield SE

Somatic
cell score1 SE

(kg) (kg) (kg)
Age (years)

1 20.47h 7.74 2.02g 0.27 1.41h 0.23 -1.79h 0.05
2 226.90d 7.64 9.01c 0.27 7.59d 0.23 -1.62g 0.05
3 281.30a 7.56 10.47a 0.26 9.23a 0.23 -1.30f 0.05
4 265.40b 7.51 9.70b 0.26 8.68b 0.22 -1.04e 0.05
5 231.90c 7.50 8.51c 0.26 7.64c 0.22 -0.81d 0.05
6 188.10e 7.58 6.95d 0.27 6.28e 0.23 -0.67c 0.05
7 142.20f 7.84 5.29e 0.27 4.88f 0.23 -0.42b 0.05
8 87.16g 8.45 3.49f 0.30 3.18g 0.25 -0.22a 0.05

Breed
ANT2 -32.07b 8.52 -0.13 0.29 -0.63b 0.25 0.02 0.05
Unknown 44.32a 6.42 1.78 0.22 1.50a 0.19 -0.23 0.04

Heterosis 7.54* 4.15 0.17 0.14 0.26* 0.12 0.04* 0.02
1Somatic cell score = calculated as log2(somatic cell count), 2ANT = breed group including Alpine, Nubian and
Toggenburg animals, a,b,c,d,e,f,g,h,I,j Means with different superscript, within effect, are significantly different (P-
value<0.05), * Significantly different to zero (P-value<0.05).

The variances (additive, permanent environment and residual), heritabilities and

repeatabilities estimated with the multiple-trait animal model for MY, FY, PY, and SCS are

presented in Table 3.4. Heritabilities were similar for the four traits studied as were

estimates of repeatability values, falling within the ranges of 0.21-0.25 for heritability and

0.39-0.48 for repeatability.
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Table 3.4. Estimates of additive, permanent environment and residual variances,
heritability and repeatability and their corresponding standard errors (SE), for milking
traits in New Zealand dairy goats kidding between 2004 and 2017.
Trait Additive

variance
Permanent

environment
variance

Residual
variance

Heritability Repeatability

Milk yield 12,215.70
(526.77)

7,886.44
(425.60)

28,784.20
(198.20)

0.25
(0.01)

0.41
(0.00)

Fat yield 14.01
(0.62)

9.10
(0.50)

35.40
(0.24)

0.24
(0.01)

0.40
(0.00)

Protein yield 10.19
(0.45)

6.16
(0.36)

25.84
(0.18)

0.24
(0.01)

0.39
(0.00)

Somatic cell
score

0.32
(0.02)

0.42
(0.02)

0.79
(0.01)

0.21
(0.01)

0.48
(0.00)

Table 3.5 shows the genetic and phenotypic correlations between milk production traits

and SCS. In general, correlations were high and positive for milk production traits while all

phenotypic correlations with SCS were low and negative. The correlations between MY, FY

and PY ranged between 0.90-0.96 for phenotypic effects and 0.81-0.93 for genetic effects.

Table 3.5. Estimates of genetic (below diagonal) and phenotypic (above diagonal)
correlations and standard errors, among milking traits in New Zealand dairy goats kidding
between 2004 and 2017.

Trait Milk yield Fat yield Protein yield Somatic cell score

Milk yield 0.90 (0.00) 0.96 (0.00) -0.12 (0.01)

Fat yield 0.81 (0.01) 0.92 (0.00) -0.16 (0.01)

Protein yield 0.93 (0.00) 0.93 (0.00) -0.09 (0.01)

Somatic cell score 0.10 (0.04) -0.01 (0.04) 0.10 (0.04)
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Discussion

The average production yields in the data set presented in this analysis are greater than

those obtained from an earlier dataset representing British, Nubian, Saanen, Toggenburg

and crossbred dairy goats in New Zealand (Singireddy et al., 1997). They are also greater

than those reported in Alpine (456-648 kg MY, 14.7-22.7 kg FY and 12.5-19.9 kg PY in 231-

250 DIM) and Saanen goats (512-676 kg MY, 15.7-21.8 kg FY and 13.6-19.9 kg PY in 240-250

DIM) in France (Boichard et al., 1989; Bélichon et al., 1998) or Maltese (532.3 kg MY in 230

DIM) and Jonica goats (281 kg MY, 10.5 kg FY and 9.8 kg PY in 240 DIM) in Italy (Delfino et

al., 2011; Selvaggi and Dario, 2015). However, the New Zealand production figures were

lower than those reported  by Valencia et al. (2007) in Saanen goats in Mexico (800 kg MY

in 285 DIM), and for US dairy goats (García-Peniche et al., 2012; Castañeda-Bustos et al.,

2014) for which reported values ranged from 1026-1,043 kg MY, 37.1-38 kg FY and 30.5-

32.0 kg PY from 305 day lactations. These differences in mean performance from the

present study compared with those obtained in other studies may be attributable to a

number of environmental factors. For example, MY was reported to be significantly

influenced by the age of the goat, season and year of kidding in Saanen goats in Mexico

(Valencia et al., 2002), Black Bengal goats in Bangladesh (Mahal et al., 2014), Alpine and

Saanen breeds in Brazil (Brito et al., 2011) and Damascus goats in Cyprus (Mavrogenis et al.,

1984; Mavrogenis et al., 1989). Also, as in the current study, season of kidding, parity and

herd-year was reported to have a significant effect (P-value<0.01) on FY and PY in Saanen

goats in Mexico (Torres-Vázquez et al., 2009). The difference between mean milk

production values have been attributed to the different breeds and seasonality between

regions of the world (Montaldo et al., 2010), climate and nutritional quality of food (Selvaggi

and Dario, 2015) as well as other management factors (Castañeda-Bustos et al., 2014).

Average SCS values reported in other studies were calculated using a range of logarithmic

scales, including log2, log10 or natural logarithms. In the current study, SCS was calculated

using log2 transformation with an average SCS of 9.3 ± 1.4. This value is within the range of

somatic cell counts previously reported for dairy goat populations worldwide (Bergonier et

al., 2003; Paape et al., 2007; Apodaca-Sarabia et al., 2009; Rupp et al., 2011; Maroteau et
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al., 2014), suggesting the ‘health’ of does in New Zealand is similar to the rest of the world.

It is known that SCS are greater in dairy goats relative to dairy cattle and sheep (Rupp et al.,

2011). It has been proposed that the higher measured SCS in goats may be due to

anomalous measurements because of the presence of larger anucleated cytoplasmic

particles in goat milk, and may be misinterpreted through the assay system as leukocyte

concentration which of course lacks any pathological significance (Dulin et al., 1982; Rota

et al., 1993; Paape et al., 2001). However, this cannot be the reason for the high SCS in this

study as SCC was measured using FOSS technology (Fossmatic) which utilises a DNA stain to

detect somatic cells, thus, anucleated particles are not included in the count.

Age had a significant effect (P-value<0.0001) on yield traits and SCS. Does in their first year

and does which were eight- and nine-years-of-age had the lowest MY, FY and PY compared

to does of three- and four-years-of-age which produced the greatest yields (Table 3.3).

These differences were similar to those reported by Singireddy et al. (1997) and Morris et

al. (1997) who also reported on the milk production of dairy goats in New Zealand. They

showed that four-year-old dairy goats produced 56% (Singireddy et al., 1997), and 94%

(Morris et al., 1997) more milk yield than yearlings. Like lactation yields, average SCS varied

by age group. The lowest SCS was in yearling goats and increased as does aged. This is

consistent with previous reports of dairy goats in New Zealand (Apodaca-Sarabia et al.,

2009) and Poland (Bagnicka et al., 2016), suggesting that the health status of the mammary

gland is best in primiparous goats (Barrón-Bravo et al., 2013). The health of the udder

worsens in older animals due to changes in mammary physiology with succeeding

lactations, resulting in increased susceptibility to infection (Rota et al., 1993; Anniss and

McDougall, 2000).

Breed had a significant effect (P-value<0.0001) on milking traits, with does of unknown

breed producing the greatest MY, FY and PY. As the majority of dairy goats in New Zealand

are Saanen (Scholtens et al., 2017), and considering the effect of breed on milk production,

it is likely that these high producing “unknown” animals are of Saanen origin. Despite

relatively large breed effects on MY, there were no significant differences between SCS for

ANT and Saanen does. This is consistent with the values reported by Apodaca-Sarabia et al.
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(2009), but contrasts those of Paape et al. (2007) who observed that Saanen animals have

significantly lower SCS than Alpine or Toggenburg does.

In this study all heterosis effects were positive, however, due to the limited number of

animals across breeds, only general heterosis was calculated. General heterosis had

significant effects on milk production traits, indicating that first cross does will produce 7.54

kg more milk compared to the average of the population. Two other studies on New Zealand

dairy goats also calculated general heterosis and reported heterosis effects of +52 kg milk

for Saanen, Nubian, British, Toggenburg and crossbred goats (Singireddy et al., 1997) and

+0.072 for SCS in mixed-breed dairy goats (Apodaca-Sarabia et al., 2009), both of greater

magnitude than the heterosis effects found in this study. This could suggest the New

Zealand dairy goat population has become more inbred since these studies were

undertaken and the genetic diversity has either been lost or become more introgressed

within the population.

Heritability estimates calculated in the current study for MY, FY, PY and SCS were within the

range of those published values from different goat populations (0.10-0.45, 0.19-0.40, 0.04-

0.38 and 0.09-0.25, respectively) (summarised in Table 2.3). The heritability values

estimated here suggest that there is genetic variation underlying these traits in the study

population and the consistency of the magnitude of heritabilities of this study with that of

other studies gives confidence in the values estimated.

Estimates of repeatability for the traits studied were generally twice the magnitude of

heritability estimates. Repeatabilities of MY, FY, PY and SCS in this study were close to the

average values reported for dairy goats in the other studies (Table 2.3). Of course the

estimates of heritability and repeatability will differ due to the breed and population,

structure of the data, management conditions, estimation errors, association with sample

size, and estimation methodology used (Moioli et al., 2007).

The phenotypic correlations between all three milk traits were greater than those

previously reported (Table 2.4). The sole value reported for the phenotypic correlation of

SCS with milk production traits was a strong positive correlation between SCS and MY (0.59;
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Bagnicka et al., 2016), much greater than the value of -0.12 obtained in the current study.

This difference may be attributable to estimation errors because of the size of the dataset

(4,417 records) compared with the current study (64,591 records).

All genetic correlations estimated for milk traits in this study were positive (Table 3.4). The

genetic correlations between MY and FY and between MY and PY were similar to the range

of values obtained from Alpine and Saanen goats in France (Table 2.4). Until recently,

information of genetic correlations with SCS in dairy goats was limited. The genetic

correlations between SCS and MY and between SCS and FY were all within the range of

values estimated in Alpine and Saanen dairy goats in France (Table 2.4).

The high and positive genetic correlations between MY and FY and PY traits suggest that

selection for MY alone should also result in an increase of both FY and PY. The slight positive

correlations between SCS and MY and PY indicate that the quality of milk could be

decreased by an increase in SCS if selection is based on high-yielding animals, however

these correlations are relatively low which suggests that there would be minimal changes

in the SCS based on a selection index targeting antagonistic traits. However, selection tools

such as a selection index can be used to constrain changes in SCS while still allowing genetic

improvement of milk production.

Overall, the genetic parameters estimated for MY, FY, PY and SCS in mixed-breed dairy goats

in New Zealand are consistent with the values reported by others. Results from this study

provide the first estimates of heritability for FY and PY and update estimates for MY and

SCS for dairy goats in New Zealand, using a larger, structured data set fitted to a multiple-

trait animal repeatability model. Once there are sufficient numbers of purebred animals in

the population it is recommended that genetic parameters are estimated for each breed,

to gain further understanding of genetic parameters of New Zealand dairy goats.

Using a multiple-trait animal model, this study produced variance and covariance

components and genetic parameters required for genetic evaluation of lactation yields of

milk, fat and protein, and SCS for dairy goats in New Zealand. Genetic evaluation will

produce estimated breeding values that can be combined with corresponding economic
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values and used in a selection index. Farmers can use the selection index to rank animals to

be selected as parents for the next generation.

Genetic evaluation using a multiple-trait model allows breeding values to be estimated for

all animals, even if an animal did not have phenotypic records for a trait. Therefore, if a

selection index is constructed, all animals would be included in the evaluation, albeit with

varying reliabilities. The heritabilities and genetic correlations suggest that milk income per

animal can be improved in this mixed-breed population through selection for MY, FY and

PY, while ameliorating clinical and subclinical mastitis by including a breeding value for SCS

in an economic index (Bagnicka et al., 2016).

The results from this study suggest that there is adequate genetic variation for MY, FY, PY

and SCS of New Zealand dairy goats to allow genetic change.

Conclusions

Positive genetic correlations between lactation yields suggest favourable correlated

responses for selection on any combination of MY, FY and PY. Considerable variation exists

within mixed-breed dairy goats farmed in New Zealand, and goat milk production can be

increased through selection for these traits. These estimates of heritability, repeatability

and correlations can be used for estimating breeding values for these traits and used in a

selection index to enable the selection of animals with superior genetic merit to improve

the quantity and quality of milk produced from successive generations of New Zealand dairy

goats.
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Abstract

The aim of this study was to estimate genetic parameters of daily yields of milk (MY), fat

(FY), protein (PY) and somatic cell score (SCS) of New Zealand dairy goats. The analysis used

113,895 herd-test records from 14,187 does, kidding between 2010 and 2016, distributed

in 11 herds and representing 377 sires. Estimates of genetic and residual (co)variances,

heritabilities (h2) and repeatabilities were obtained using a random regression test-day

animal model. The model included the fixed effects of contemporary group (herd-test-day),

age of the doe (in years) and as covariates, deviation from median kidding date for a given

herd and year, proportion of genes from Alpine, Nubian, Toggenburg and “unknown and

other” breeds (Saanen was used as a base breed), heterosis, and days in milk (DIM)

modelled as a third-order orthogonal polynomial. Random effects included additive animal

genetic and doe-lactation permanent environment effects modelled using third-order

orthogonal polynomials. Estimates of h2 and repeatabilities at different stages of lactation

ranged from 0.13 to 0.35 and 0.39 to 0.81, respectively. These results provide an

opportunity to estimate breeding values at any and every day of lactation, and to change

the shape of the lactation curve by selection.

Introduction

The production efficiency of the dairy goat industry needs to improve to continue expanding

and remain competitive with other dairy industries. Production efficiency can be improved

by increasing milk production or maintaining persistent yields across the lactation period.

Genetic improvement is the most attractive approach to promote permanent gains in

livestock species. Milk solids (fat + protein + lactose yields) is among traits with highest

economic relevance for the industry and maximising milk solid production is a key goal of

dairy farmers. Characterising variation in milk-production traits at specific days during

lactation is important for understanding the genetic associations between traits at different

stages of lactation and would provide parameters required for estimating breeding values

for milk traits at different stages of lactation.
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Milk production during the lactation is an example of a longitudinal trait, characterised by

repeated measures in the same individual over time. Random regression models (RRM)

have become commonly adopted for the genetic analysis of longitudinal data and are

currently used for the national genetic evaluation of production traits of dairy cattle in

Australia, Belgium, Canada, Czech Republic, Denmark, Finland, Germany, Ireland, The

Netherlands, New Zealand and Sweden (Interbull, 2017). Under RRM, records on the sample

day are considered directly in the analysis, therefore, RRM can account more precisely for

environmental factors that could affect animals differently during lactation (Schaeffer and

Dekkers, 1994). In one class of RRM, a fixed curve for the population is calculated and

individual curves are fitted as deviations from the population curve. Any RRM provides the

opportunity to use a function to model any or all of the fixed and random curves.

The average shape of a lactation curve can inform the farmer of the predicted level of

production over the lactation period, whereas the shape of lactation curves for individual

animals can provide insight into the health status of the animal during the lactation process

(i.e., health of the mammary gland, energy supply/deficit) and the environmental effects

affecting its milk production (Hossein-Zadeh, 2016). Information about milk production

levels and the characteristics of the lactation curves allow evaluation of the production

performance and subsequent implementation of improvement strategies, i.e., feeding,

breeding and economic management. Knowledge of heritabilities (h2) at each test-day and

covariances among test days across the lactation period would provide the opportunity to

estimate breeding values at any and every point in time during lactation.

The objective of this study was to estimate genetic parameters for daily yields of MY, FY, PY

and SCS across the lactation period of New Zealand dairy goats using a random regression

test-day model.

Materials and methods

The original data set was provided by Livestock Improvement Corporation and included

304,648 herd-test records across seven lactations from 48,113 does kidding up to parity 14
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between 2010 and 2016 and from 55 herds across the North Island of New Zealand. The

pedigree of these lactating does included 422 sires and 11,803 dams. Breed composition of

each doe was calculated from pedigree proportions of Alpine, Nubian, Saanen, Toggenburg

and “unknown and other” breeds. There were a total of 797 herd-test-day contemporary

groups. Somatic cell score was calculated as SCS=log2(somatic cell count) at each herd-test.

Herds comprising does with <80% of dams known or with contemporary groups with <10

herd-tested does were removed (44 herds and 604 herd-test-day groups). After cleaning,

the data set contained 113,895 herd-test records across seven lactations, representing 14

parities and included 14,187 does distributed in 11 herds. The does were the offspring of

377 sires and 8,043 dams and the known pedigree spanned up to nine generations. Many

of the does were crossbred and there were very few purebred animals of Alpine (1), Nubian

(3) or Toggenburg (40) breeds and, therefore, the covariates reflecting the proportion of

these breeds were summed in a single combined-breed group hereafter called ANT. The

remaining does included 1,358 Saanen, 12,766 crossbred and 19 animals of unknown and

other breeds. There was a total of 229 herd-test-day contemporary groups, mostly

consisting of more than one breed or cross. The structure of the dataset is provided in more

detail in Table 4.1.

Table 4.1. Summary characteristics of dataset comprising test-day yields of dairy goats in
New Zealand.
Breed Herds Animals Herd-test records Animals with known sires
ANT1 3 44 184 1
Saanen 10 1,358 8,757 74
Crossbred 11 12,766 104,808 368
Unknown + other 6 19 136 3
Total - 14,187 113,895 446

1ANT = combined breed group including Alpine, Nubian and Toggenburg animals.
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Estimates of variance and covariance components for test-day yields of MY, FY, PY and SCS

were obtained using the restricted maximum likelihood procedure in ASReml version 3

(Gilmour et al., 2009) to fit a single-trait random regression test-day model. The model

included the fixed effects of contemporary group (herd-test-day) and age of the doe (in

years). Covariates in the model included deviation from median kidding date, proportion of

genes from ANT and “unknown and other” breeds (Saanen was used as a base breed) and

general heterosis. Days in milk (DIM) was modelled as a third-order orthogonal polynomial.

Random effects included additive animal genetic and doe-lactation permanent

environment, both modelled using third-order orthogonal polynomials.

General heterosis was calculated as 1-∑ pj
2f

j=1 where pj is the proportion of each of the f

breeds (Gregory and Cundiff, 1980; Lamberson et al., 1993). General heterosis assumes that

first-cross heterosis is the same for all breed combinations. Residual variances were

assumed to be heterogenous across six stages of lactation, with different residual variances

for 0 to 50, 51 to 100, 101 to 150, 151 to 200, 201 to 250 and 251 to 270 DIM. The genetic

(co)variances across all DIM were estimated as:

 = ’K

in which  is the variance or (co)variance matrix for the traits,  is the matrix of orthogonal

polynomials for each DIM, and K is the matrix of the additive genetic (co)variance matrix of

random orthogonal polynomial coefficients.

Initially, six RRMs were tested in order to identify the one which best fitted the production

records. Models ranged in the orders of the orthogonal polynomial used to describe the

additive animal genetic and doe-lactation permanent environment effects. The model with

best fit had polynomials of 3rd order for the fixed curve of the population and for both the

additive animal genetic and doe-lactation permanent environment effects.
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Results

Descriptive statistics for MY, FY, PY and SCS are shown in Table 4.2. Primiparous does

produced the lowest yields compared to does in later parities. Parity had a significant (P-

value<0.001) effect on test-day yields of MY, FY, PY and SCS over that lactation period. The

coefficients of variation on test-day yields were high, reflecting considerable phenotypic

variation in the shape of the lactation curve.

Table 4.2. Descriptive statistics of milking traits of New Zealand dairy goats kidding
between 2010 and 2016.

Milk yield

(kg/day)

Fat yield

(g/day)

Protein yield

(g/day)

Somatic cell score

(units/day)

N Mean SD1 CV2 Mean SD1 CV2 Mean SD1 CV2 Mean SD1 CV2

Population 113,895 3.4 1.3 37 114.4 44.6 39 106.5 37.2 35 9.1 1.7 19

Parity

1 31,728 2.6 0.9 35 90.1 32.8 36 84.1 27.8 33 8.7 1.8 21

2 29,305 3.6 1.1 32 122.3 42.5 35 112.8 34.1 30 8.9 1.7 19

3 19,329 3.9 1.3 33 130.5 46.4 36 121.4 37.6 31 9.2 1.7 18
1SD = standard deviation across herds, 2CV = coefficient of variation (%).

Orthogonal polynomials of order 3 were used to estimate lactation curves for daily yields of

MY, FY, PY and SCS for does of different parity (Figure 4.1). The shape of lactation curves

were the same for each parity for each trait. Primiparous does had the lowest yields for all

traits while third-parity does had the highest yields. Peak yields were around day 95 for MY,

day 1 for FY, days 12 to 106 for PY and day 270 for SCS.

Figure 4.2 graphically illustrates the additive genetic (σa
2), permanent environment (σpe

2 ),

residual (σe
2) and phenotypic (σp

2) variances estimated using a single-trait RRM for test-day

yields of MY, FY, PY and SCS during the lactation period. The σpe
2 , and σp

2 were greatest at

the beginning of lactation for all traits while the trajectories of σa
2 and σe

2 varied among

traits.
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Milk Fat

Protein Somatic cell score

Figure 4.1. Lactation curves of daily yields of milk, fat and protein and somatic cell score
during the 270-day lactation for does in parity 1 (─), 2 (─•─) and 3 (•••) modelled with
orthogonal polynomials of order 3.
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Milk Fat

Protein Somatic cell score

Figure 4.2. Estimates of additive genetic (─), permanent environment (---), residual (•••)
and phenotypic variance (─•─) of test-day yields of milk, fat, protein and somatic cell score
during the 270-day lactation in New Zealand dairy goats.

Estimated h2 by day of lactation for MY, FY, PY and SCS are in Figure 4.3. The h2 ranged from

0.20 to 0.35 for MY, 0.21 to 0.28 for FY, 0.16 to 0.31 for PY and 0.13 to 0.22 for SCS. Average

repeatability estimates were 0.63, 0.57, 0.61 and 0.45 for MY, FY, PY and SCS, respectively.
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Figure 4.3. Estimates of heritability for test-day yields of milk (─), fat (---), protein (•••)
and somatic cell score (─•─) during the 270-day lactation in New Zealand dairy goats.

Discussion

The mean and standard deviation for daily MY, FY and PY were greater than those reported

in literature: MY in crossbred goats in Brazil (2.61±0.71 kg/day; Lobo et al., 2017) and

Murciano-Granadina goats in Spain (1.93±1.01 and 2.18±1.01; Menéndez-Buxadera et al.,

2010), and FY and PY in Murciano-Granadina goats (0.098 to 0.109±0.05 g/day for FY and

0.068 to 0.072±0.03 g/day for PY; Menéndez-Buxadera et al., 2010). The lower MY could be

due to climatic effects, especially for semi-arid climates in Brazil, which are known to

negatively affect milk production through reduced feed intake and increased maintenance

requirements needed for homeothermy (sweating, panting) (Salama et al., 2014). In

addition, the lower FY and PY in the Spanish study could be due to parity effect, as they only
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study for SCS were similar to 9.35±1.69 units/day, previously reported in goats in New

Zealand (Apodaca-Sarabia et al., 2009).

A typical lactation curve of MY for French dairy goats has been reported to comprise of a

rapid increase at the start of lactation, peak around 50 DIM, then stable for 50 days and a

gradual decrease through to the end of lactation (Arnal et al., 2018). A similar pattern was

also observed in the current study, but the peak was not until 90 to 100 DIM. For

primiparous does, the peak yield is typically earlier and the lactation curve is generally

flatter than multiparous does (Fernandez et al., 2002). The early peak was not observed for

primiparous does in this study, however, the curve was flatter than for does in second and

third parity. The lactation curves estimated for does of first, second and third parity

followed a similar trend for each of the traits. Does in third parity produced the greatest

MY, FY and PY throughout the lactation, until 250 DIM. Overall, second- and third-parity

does produced significantly greater daily yields than primiparous does. This is in agreement

with findings of Amin (2017) and Lobo et al. (2017) who reported that yields increased as

the age of doe increased until about fourth parity, and then decreased. This parity effect is

common for milk-production animals and is suggested to be due to younger does having

lower body weight, body condition score and body reserves than older does, and

consequently, the body and mammary gland of young animals are still developing during

the first lactation. It is also common that the level of SCS is lowest at the beginning of

lactation and increases during the lactation period (Lobo et al., 2017) and that SCS is lowest

in primiparous animals and increases as the number of lactations increases (Amin, 2017;

Lobo et al., 2017).

Orthogonal polynomials of third order were applied for modelling the average production

curve of the population (fixed effect) and for modelling production curves of the random

effects (additive animal genetic and doe-lactation permanent environment). Although

models with more parameters are more accurate (Brito et al., 2017b), this generates greater

computational demand and can lead to problems of convergence and estimation, especially

when using a RRM for genetic evaluations on large datasets. Therefore, it is important to

use less-parameterised models without losing quality of fit. Considering heterogeneity of
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residual variances rather than homogenous residual variance can improve the modelling of

the random effects (Brito et al., 2017b). Therefore, if performing genetic evaluation on a

large data set, we recommend using a RRM with orthogonal polynomials of order 3 for fixed

and random effects and assume heterogenous residual variances.

For MY, the highest value for σa
2 was observed just after peak production (124 DIM). This

trajectory was similar to that seen in dairy goats in Brazil using a multiple-trait analysis, but

their peak lactation was around 60-90 days (Irano et al., 2015) and 40 days (Brito et al.,

2017b). In contrast, Silva et al. (2013) found higher values of σa
2 at the end of the lactation

curve using a single-trait animal model for random regression.

The σa
2 declined from the beginning of the lactation for FY, PY and SCS until days 40-50,

then for SCS the variance increased for the rest of the lactation, for PY this increased for

100 days before slightly decreasing and for FY the variance plateaued for 100 days before

slightly decreasing along the remaining days in milk. Despite there being no literature on

dairy goats, this decrease in genetic variability during the lactation period is commonly

observed in dairy cattle (Biassus et al., 2011).

In this study, σpe
2 followed the same pattern for MY, FY and PY, decreasing as the number of

lactation days increased until 250 DIM before slightly increasing for the last 20 DIM. These

inflated variances at the start of the lactation period were also reported by Thepparat et al.

(2015) using a single-trait RRM, and Oliveira et al. (2016) using a multiple-trait RRM with

different functions to describe each trait. In contrast, Brito et al. (2017b) reported that σpe
2

and σp
2 were lower in early lactation and increased at the end of lactation compared with

the other lactation stages. They proposed that this was expected as there was a greater

reduction in the number of records at the end of lactation, however, this reduction in

records also occurred in this study. Moreover, more variability during the beginning and

end of lactation would be expected, as non-genetic factors, such as management, tend to

influence milk production more expressively during this period. The σp
2 variance generally

decreased as the number of lactation days increased, but also followed a similar trend to
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that of residual variance, which peaked during the 2nd and 3rd stage of lactation (days 51-

100 and 101-150) for MY, FY and PY.

The h2 estimates were greatest from the middle to late lactation. This is expected and is in

agreement with reports by Sarmento et al. (2008) and Oliveira et al. (2016), but are in

contrast to the report by Menéndez-Buxadera et al. (2010) who reported h2 values

decreased throughout the lactation period and Silva et al. (2013) and Brito et al. (2017b)

who found that the h2 values increased in the final third of the lactation. The lower

estimates for MY, FY and PY during early lactation and late lactation could be due to the

greater influence of environmental effects at these stages, while production in mid-

lactation is more influenced by the genetic and permanent effects. For example, most does

are in an advanced stage of pregnancy during late lactation, which can explain the

decreased h2 at that latter stage.

Despite the differing patterns of h2 in the literature, the h2 estimates obtained in this study

were similar, with the range of values published for daily MY of 0.12 to 0.66 (Andonov et

al., 2007; Sarmento et al., 2008; Zumbach et al., 2008; Menéndez-Buxadera et al., 2010;

Irano et al., 2015; Thepparat et al., 2015; Oliveira et al., 2016; Brito et al., 2017b),  daily FY

of 0.12 to 0.25 (Menéndez-Buxadera et al., 2010), daily PY of 0.10 to 0.18 (Menéndez-

Buxadera et al., 2010) and daily SCS of 0.12 to 0.25 (Apodaca et al., 2009). Our results

suggest that there is enough genetic variability to make genetic progress for test-day MY,

FY, PY and SCS in dairy goats in New Zealand and it would be possible to modify the shape

of the curve by selective breeding. In order to maximise milk production, the estimation of

breeding values during early lactation would enable identification and selection of animals

with low genetic merit for culling and of high genetic merit for breeding decisions. However,

the lower σa
2 and h2 near the beginning and end of the lactation would result in lower genetic

response when selecting for increased yield in just the first or last part of lactation. Instead,

the point with the greatest heritability would be the most applicable stage for practicing

selection. The estimate of the h2 to select for increased persistency between 150 and 250

days in milk in this goat population, was between 0.23 and 0.35 for MY, FY and PY.
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At farm level, the biological interpretation of the parameters estimated in this study can

contribute to the improvement of goat milk production throughout the lactation period.

The estimation and interpretation of test-day yields and h2 suggest that selection can help

to raise milk production and persistency in dairy goat herds in New Zealand. This will be of

great relevance to the implementation of genetic evaluations in dairy goats.

Conclusion

Parity has a significant effect on milk production in New Zealand dairy goats. Most lactation

curves of does in second and third parity had similar shapes, while does in first parity tended

to have lower values throughout the lactation. The results showed that the amount of

variation changes during the lactation and the lactation curves for production varies with

parity. The use of a RRM for genetic evaluation of dairy goats may allow for selection to

alter the shape of the lactation curve. Estimates of h2 obtained throughout the lactation

were moderate, indicating there is enough genetic variability to make genetic progress for

test-day yields of MY, FY, PY and SCS in dairy goats.



Chapter 5
Heritability of longevity in New Zealand dairy goats

This Chapter has been published in part elsewhere. It has been reformatted and presented

here with permission:

Scholtens MR, Lopez-Villalobos N, Garrick DJ, Blair HT. 2018. Heritability of longevity in New

Zealand dairy goats. New Zealand Journal of Animal Science and Production 78: 11-15.
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Abstract

Longevity, defined for a doe as the age when it leaves the milking herd, is a trait of

economic importance in dairy goat farming. Actual longevity (AL) is defined as the

number of days from birth to when the animal leaves the herd, whereas functional

longevity (FL) is defined as AL adjusted for first lactation energy-corrected milk yield

(ECMY). This study reports the heritability (h2) for AL and FL in New Zealand dairy goats.

Records of longevity from 12,108 does born between 1993 and 2011 were analysed with

a model that included the fixed effects of herd-year (does born in the same herd and

year) and covariates for the proportion of Alpine, Nubian, Toggenburg and heterosis,

and the random effect of animal. The model for FL was the same as AL but included

ECMY as a covariate. Average AL was 1,891 (SD=832) days. Estimates of h2 were 0.07 for

AL and FL. The estimated regression coefficient for ECMY in AL was 0.56 days/kg. There

were significant differences in longevity among herds, indicating that management and

feeding are important factors affecting longevity. Further research is required to

estimate genetic correlations with economically important traits.

Introduction

Increased longevity of multi-parous animals such as dairy goats, enables an older age

structure and consequently greater milk production by the herd, it also reduces

replacement costs (Serradilla et al., 1997; Castañeda-Bustos et al., 2017). Until recently,

improving production of milk, fat and protein per doe have been the main breeding

objective traits in genetic improvement programs of dairy goats (Desire et al., 2017;

Valencia-Posadas et al., 2017). Placing too much emphasis on production, whilst

neglecting other traits, may result in unexpected and undesirable consequences on the

health and fertility of animals, which decrease longevity (Oltenacu and Broom, 2010).

Either direct or indirect evaluation of longevity, if used in selection, will increase the

overall economic efficiency of the dairy goat industry.

In dairy ruminants, AL takes into account all reasons the animal was removed from the

herd, while FL takes into account all reasons except milk productivity. Adjusting for milk

production results in a longevity value that reflects the animal’s ability to avoid
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involuntary culling due to health and reproductive challenges (Castañeda-Bustos et al.,

2014).

Longevity, or similar traits, such as stayability or survival, are now typically included in

the breeding objective for most dairy cattle breeding programs (Miglior et al., 2005), but

longevity is not yet included in dairy goat breeding programs (Castañeda-Bustos et al.,

2014; Castañeda-Bustos et al., 2017; Valencia-Posadas et al., 2017; Palhière et al., 2018).

Only three papers report longevity of dairy goats in New Zealand (Wheeler et al., 2013;

Wheeler et al., 2014; Gautam et al., 2017). The studies by Wheeler et al. (2013; 2014),

provide estimates of stayability and AL in a single herd. The study by Gautam et al. (2017)

is a retrospective study that analysed risk factors for the animals leaving the herd. None

of these provided estimates of heritability for FL. The objective of this study was to

estimate the heritability of AL and FL of dairy goats in New Zealand.

Materials and methods

Data

The dataset used in this study was obtained from Livestock Improvement Corporation

and comprised 112,009 dairy goats of Alpine, Nubian, Saanen, and Toggenburg breeds

as well as crossbred animals, born between 1973 and 2016. The goats were from 164

herds located throughout North Island, descending from 26,720 dams and 1,284 sires.

Individual birth dates of animals were not available for all animals; some farmers

allocated a single birth date for a group of animals. Contemporary groups that had these

single birth dates for a group of animals were removed from the analysis. Pedigree

information was incomplete; of the does, only 18% had known sires and 44% had known

dams. Therefore, only records from those few better-recorded farms were used to

calculate longevity. The farms whose data were used were those that had more than

70% of does with known sires and with more than 15 does born in a specific year.

Animals were removed from the analysis if they were born before 1993 or after 2011.

These dates were chosen because an exploratory analysis showed that contemporary

groups (animals born in the same herd and year) typically comprised more than 15
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animals. Those does born after 2011 would not yet have had an uncensored opportunity

to express survival.

The number of days from birth to when the animal left the herd defined AL whereas FL

was defined as longevity adjusted by the ECMY in the first lactation, calculated as, ECMY

= 0.327×MY + 12.86×FY + 7.65×PY, where MY, FY and PY were estimated first lactation

yields of milk, fat and protein, respectively (Flores et al., 2009).

Statistical analysis

Descriptive statistics were obtained using the MEAN procedure of Statistical Analysis

System version 9.4 (SAS Institute Inc., Cary, NC, USA). The Kaplan-Meier survival curve

was obtained using the LIFETEST procedure of SAS which is a nonparametric maximum

likelihood estimate of the survivor function (Kaplan and Meier 1958).

Contemporary groups were defined as comprising does born in the same herd and year.

The original dataset included 112,009 animals in 2,058 groups and 12,108 animals in 123

groups after editing.

Analyses of AL and FL were performed using ASReml software (Gilmour et al., 2009)

fitting a mixed linear animal model. The model included the fixed effects of herd-year

(contemporary group), and covariates for proportion of Alpine, Nubian, Toggenburg and

general heterosis, and a random animal effect. General heterosis, instead of specific

two-breed heterosis, was calculated because the number of crossbred animals was

insufficient to determine heterosis for each of the breed combinations. General

heterosis assumes that first-cross heterosis is the same for all breed combinations (Olfati

et al., 2011).

Analysis for FL was the same as AL, but including ECMY as a covariate. Phenotypic

variance was the sum of animal and residual variances, genetic variance was the animal

variance, and h2 was calculated as the proportion of genetic variance with respect to the

phenotypic variance. To explore the level of variation caused by the herd-year effect,

the statistical model was run a second time, but with herd-year considered as a random

effect rather than fixed effect.
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Results

The main studies on different measures of longevity of dairy goats are presented in Table

5.1. The numbers of goats in these studies ranged from 4,910 to 1,137,793 animals and

included the same breeds as in this study. The final dataset included 12,108 does from

eight herds, representing descendants of 407 sires.

Table 5.1. Longevity traits studied in dairy goats around the world.
Country Trait Study
New Zealand Survivability Wheeler et al. (2013)

Longevity Wheeler et al. (2014)
Risk factors associated with the length
of productive life

Gautam et al. (2017)

Mexico Stayability Pérez-Razo et al. (2004)
Productive life Torrero (2010)

France Productive life Palhière et al. (2018)
United States Productive life Valencia-Posadas et al. (2010)

Functional productive life Castañeda-Bustos et al. (2014)
Functional stayability Castañeda-Bustos et al. (2017)

Valencia-Posadas et al. (2017)

Descriptive statistics for first lactation MY, FY, PY, ECMY and AL are in Table 5.2. There

was a 6 kg difference between first-lactation milk yield and ECMY for the same lactation

and a reduction in the maximum milk yield from 1,538 to 1,510 kg, respectively. Average

longevity of does born between 1993 and 2011 was 1,891±832 days.

Table 5.2. Descriptive statistics for first-lactation milk production and longevity of New
Zealand dairy goats, born between 1993 and 2011.
Trait N Mean SD1 Min Max CV2

First lactation yields (kg)
Milk 12,108 502.9 223.2 30.0 1,538.1 44
Fat 12,108 16.9 7.6 1.1 54.3 45
Protein 12,108 15.1 6.5 1.0 43.0 43

Energy-corrected milk 12,108 496.9 216.7 31.4 1,510.0 44
Actual longevity (days) 12,108 1,891 832 400 6,551 44

1SD = standard deviation, 2CV = coefficient of variation (%).
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Figure 5.1 shows the longevity of dairy goats born in the eight herds. There was large

variation in mean longevity among herds, from 1,638 to 2,088 days. When herd-year

was included as a random effect, it was found that herd-year effect explained 35% of

the total variation.

Figure 5.1. Boxplot of the longevity of dairy goats born between 1993 and 2011, in
eight herds throughout the North Island of New Zealand. Number of does in each herd
were; herd 1=2,721, herd 2=1,835, herd 3=611, herd 4=1,610, herd 5=1,327, herd
6=1,208, herd 7=2,117 and herd 8=679 does.

Figure 5.2 shows a Kaplan-Meier survival curve that included the longevity of 12,108

does. After 1,000 days, 85% of the goats remained in the herd and by 2,000 days, only

40% of the animals remained in the herd.
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Figure 5.2. Kaplan-Meier survival curve for longevity of 12,108 New Zealand dairy
goats born between 1993 and 2011.

The estimates of breed and heterosis effects were not significantly different from zero.

The estimate of the regression coefficient of AL on ECMY was 0.56 days/kg ECMY (P-

value<0.0001). Estimates of variance components and h2 for AL and FL are shown in

Table 5.3. The estimates of h2 for AL and FL were the same at 0.07. The phenotypic and

genetic coefficients of variation were 40 and 11% for AL and 40 and 10% for FL,

respectively.

Table 5.3. Estimates of heritability and additive and phenotypic variances for actual
and functional longevity of New Zealand dairy goats born between 1993 and 2011,
obtained using a single-trait analysis.

Actual longevity Functional longevity
Estimate SE1 CV2 Estimate SE CV

Genetic variance 39,547 4.85 11 38,482 4.76 10
Residual variance 529,157 52.61 39 523,033 52.54 38
Total variance 568,700 7,388 40 561,520 7,294 40

Heritability 0.07 0.01 0.07 0.01
1SE = standard error, 2CV = coefficient of variation (%).
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Discussion

Longevity is an economically important trait in production animals, with genetic

parameters being published for dairy cattle, sheep, pigs and rabbits, but there are only

a few reports of the genetics of longevity in dairy goats. The main studies found in the

literature included the same breeds as in this study in addition to the La Mancha

(Castañeda-Bustos et al., 2014; Castañeda-Bustos et al., 2017; Valencia-Posadas et al.,

2017) and Granadina (Pérez-Razo et al., 2004) breeds.

Descriptive statistics suggest that the average longevity of does in New Zealand was

1,891±832 days, which is longer than the 1,644 days previously reported (Gautam et al.,

2017). Both studies used the same dataset but with different editing criteria. The dataset

in this study accounted for pedigree information that limited the number of

observations, whereas, Gautam et al. (2017) did not account for pedigree, so the dataset

included more herds (38 herds).

Comparison with other studies was difficult because of differences in the definition of

survival. Palhière et al. (2018) reported a decline in the length of productive life in

Saanen and Alpine goats born in France from 1991 to 2011. The length of productive life

of animals born in 1991 was 1,150 and 1,175 days for Saanen and Alpine, respectively,

whereas the length of productive life of animals born in 2011 was 800 and 850 days for

the respective breeds. These values of longevity are lower than the values found in this

study, assuming that first kidding for those studies was at 365 days of age.

The proportion of does surviving as they become older shows noticeable dips every 200-

300 days. A similar pattern was observed by Gautam et al. (2012), who modelled the

instantaneous removal hazard (expressed as a probability of removal per day) as a

function of age. Their results showed a reoccurring pattern which has crests

representing the dry period within a lactation cycle (low risk of being culled), followed

by a large dip (high risk of being culled). Therefore, the dips in (Figure 5.2) represent the

end of each lactation period, before the animals are dried off, as this is typically the time

when a farmer will cull undesirable animals, for example, those that are not pregnant or

have low production.
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The regression of AL on first-lactation ECMY was significant indicating that longevity was

increased by 0.56 days for each extra kilogram of ECMY, indicating that does with higher

production lasted longer. However, the estimate of h2 for FL was the same as the

estimate of h2 for AL. This result agrees with Castañeda-Bustos et al. (2014), who

reported similar h2 estimates for productive and functional productive life.

Nevertheless, knowledge about genetic parameters for FL are still important, as genetic

improvement of longevity would be more efficient when the effects of voluntary culling

can be taken into account (Castañeda-Bustos et al., 2014).

Despite low h2 estimates for AL and FL, the genetic coefficients of variation for AL and

FL (11% and 10%, respectively) suggest there is genetic variation of longevity in this dairy

goat population. These results agree with those of Valencia-Posadas et al. (2017) who

reported that there was sufficient additive genetic variation to justify the inclusion of

functional stayability at 24 and 36 months of age, into a breeding program.

Estimates of h2 of longevity vary in different species with low estimates for sows, cows

and sheep (0.02-0.08 VanRaden and Klaaskate, 1993; Serenius and Stalder, 2004; El-

Saied et al., 2005) and larger estimates for rabbits (0.15 Piles et al., 2006). Comparison

of the h2 estimates from this study with other estimates from other studies of goats,

warrants caution as different definitions of longevity and statistical models have been

used. Estimates of h2 for length of productive life in French dairy goats (Palhière et al.,

2018), FL of US dairy goats (Valencia-Posadas et al., 2017) and stayability of New Zealand

dairy goat were low (0.07 to 0.09). Whereas, estimates of h2 for length of productive life

at 72 months old of US dairy goats (Castañeda-Bustos et al., 2014; Castañeda-Bustos et

al., 2017) were higher (0.14 to 0.17). Overall, the h2 estimates in this study were within

the range of published values for longevity of dairy goats.

This study analysed the effect of does kidding in the same herd and year, breed,

heterosis and the individual animal effect on longevity. In addition to these, the effects

of birth month and dam age on survival of progeny, were also investigated. Including

month of birth as a covariate was attempted, but birth date of animals was not

accurately recorded in all farms, therefore, this factor could not be included in the

model. Age of dam was calculated using pedigree data but the dataset containing the

birth date of dams was incomplete. With many missing records, including this variable
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in the analysis would have required that a significant proportion of data would have

been filtered out and excluded from the analysis. However, using an incomplete dataset,

results showed no significant effect of dam age on longevity.

Results from this study suggest that if selection for longevity is included in a selection

index, there is adequate genetic variation for longevity of New Zealand dairy goats to

allow genetic improvement for this trait. Solis-Ramirez et al. (2018) estimated the

economic value for longevity of $0.04 per day, enabling the straightforward inclusion of

this trait into a selection index. However, further work is required, especially in

quantifying the genetic and phenotypic correlations with other traits, to enable the

inclusion of longevity in the current genetic evaluation system.
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Chapter 6
Genome-wide association studies of lactation yields of milk,
fat, protein and somatic cell score in New Zealand dairy
goats

This Chapter has been published in part elsewhere. It has been reformatted and presented

here with permission:

Scholtens MR, Jiang A, Smith A, Littlejohn M, Lehnert K, Snell RG, Lopez-Villalobos N, Garrick

DJ, Blair HT. 2020. Genome-wide association studies of lactation yields of milk, fat, protein

and somatic cell score in New Zealand dairy goats. Journal of Animal Science and

Biotechnology DOI:10.1186/s40104-020-00453-2.
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Abstract

Identifying associations between genetic markers and traits of economic importance will

provide practical benefits for the dairy goat industry, enabling genomic prediction of the

breeding value of individuals, and facilitating discovery of the underlying genes and

mutations. Genome-wide association studies (GWAS) were implemented to detect genetic

regions that are significantly associated with effects on lactation yields of milk (MY), fat (FY),

protein (PY) and somatic cell score (SCS) in New Zealand dairy goats. A total of 4,840 goats

were genotyped with the Caprine 50K SNP chip (Illumina Inc., San Diego, CA, USA). After

quality filtering, 3,732 animals and 41,989 SNPs were analysed assuming an additive linear

model. Four GWAS models were performed, a single-SNP additive linear model and three

multi-SNP BayesC models. For the single-SNP GWAS, SNPs were fitted individually as fixed

covariates, while the BayesC models fit all SNPs simultaneously as random effects. A cluster

of significant SNPs were used to define a haplotype block whose alleles were fitted as

covariates in a Bayesian model. The corresponding diplotypes of the haplotype block were

then fit as class variables in another Bayesian model. Across all four traits, a total of 43

genome-wide significant SNPs were detected from the SNP GWAS. At a genome-wide

significance level, the single-SNP analysis identified a cluster of variants on chromosome 19

associated with MY, FY, PY, and another cluster on chromosome 29 associated with SCS.

Significant SNPs mapped in introns of candidate genes (45%), in intergenic regions (36%),

were 0-5 Kb upstream or downstream of the closest gene (14%) or were synonymous

substitutions (5%). The most significant genomic window was located on chromosome 19

explaining up to 9.6 % of the phenotypic variation for MY, 8.1% for FY, 9.1% for PY and 1%

for SCS. The quantitative trait loci for yield traits on chromosome 19 confirms reported

findings in other dairy goat populations. There is benefit to be gained from using these

results for genomic selection to improve milk production in New Zealand dairy goats.
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Introduction

The majority of dairy goats in New Zealand are housed and their milk is primarily used to

manufacture powdered nutritional products for sale in international markets. There are

estimated to be 92 farms in New Zealand milking 66,100 dairy goats. Current estimates

indicate that 85% of the dairy goats belong to the Saanen breed, while Toggenburg, British

Alpine, and Nubian type crosses comprise the remaining 15%. The Dairy Goat Cooperative

(NZ) Ltd (DGC) is the main processor of goat milk in New Zealand, and accounts for 80% of

the dairy goat production. Farms that supply DGC, and undertake herd testing, participate

in an annual genetic evaluation for MY, FY and PY and for SCS. Breeding values for these

traits were estimated for each animal from a multi-trait repeatability animal model using

available pedigree (Lopez-Villalobos and Garrick, 2001).

Genome-wide association studies identify associations between genetic markers and

phenotypic expression of traits of interest. Genetic markers are analyzed for variation

across the DNA sequence of the individual’s genome (McCarthy et al., 2008). A GWAS allows

the statistical evaluation or association of polymorphic loci with phenotypic variance to be

quantified in a given population and can provide the genetic architecture of the complex

traits which can be useful in medicine, agriculture and evolution (Goddard et al., 2016). One

type of genetic marker commonly used in GWAS is characterised by single-nucleotide

polymorphisms (SNPs), which exhibit two or more nucleotide variants at a single base.

Genome-wide association studies have been performed in many livestock species, including

dairy cattle (Mai et al., 2010; Pryce et al., 2010; Meredith et al., 2012), sheep (Zhao et al.,

2011) and pigs (Sato et al., 2016; Le et al., 2017; Meng et al., 2017). Since release of the

Illumina Caprine 50K BeadChip (Illumina Inc., San Diego, CA, USA), association of

quantitative trait loci (QTL) in goats have been published for polledness (Kijas et al., 2013),

milking speed (Palhière et al., 2014), wattles (Reber et al., 2015), coat colour (Becker et al.,

2015; Martin et al., 2016a), supernumerary teats (Martin et al., 2016b), milk production and

type traits (Maroteau et al., 2013; Martin et al., 2017).

Although the simplest and perhaps the most popular GWAS test for associations is between

a single marker and a quantitative trait, the power of this method may suffer because a
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single SNP may have only low linkage disequilibrium (LD) with the causal mutation and the

LD contained jointly in flanking markers is ignored. An alternative method is to fit SNPs

simultaneously using Bayesian methods, which take into account the LD between

neighboring SNPs, limiting the false positive discoveries (Fernando and Garrick, 2013). Also,

the SNP sliding window approach of the multi marker methods can be used to identify the

most informative genomic regions, facilitating the discovery of associated markers and

possible causal mutations. In addition, SNPs can be combined into a haplotype block.

Clustering SNPs into a haplotype block combines information of adjacent SNPs into

composite multi-locus haplotype alleles which may be more informative than individual

SNPs and may also capture the regional LD information, which is arguably more robust and

powerful (Pritchard et al., 2000; Akey et al., 2001).

Knowledge of genetic markers associated with milk production traits provides an

opportunity to increase the rate of genetic gain using genomic or marker-assisted selection.

Animals of above-average genetic merit can be identified at an early age and with a higher

selection accuracy than conventional approaches, creating options for implementing

selection schemes that reduce generation intervals (Schaeffer, 2006) and increase rates of

genetic gain.

To date, a few GWAS have been conducted for milking traits of dairy goats. Studies that

identified SNPs associated with milk production in dairy goats were performed by Martin et

al. (2017; 2018), Palhière et al. (2018) and Mucha et al. (2018a). There are no published

papers reporting GWAS for dairy goats in New Zealand. The objective of this study was to

identify SNPs and genomic regions significantly associated with milk production traits in

New Zealand dairy goats using the Caprine 50K SNP chip.

Materials and methods

Data

Phenotypic and pedigree records were provided by DGC from a dataset maintained by

Livestock Improvement Corporation that included estimates of 305-day lactation records
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for MY, FY, PY and SCS. The test interval method (Sargent, 1968), was used by Livestock

Improvement Corporation to calculate MY, FY and PY for the actual realised lactation

length, or up to 305 days in milk (DIM) for those lactations with more than 305 DIM. The

dataset included 106,289 animals and 236,858 lactation records. The breed composition of

the goats included Alpine (592), Nubian (374), Saanen (63,370), Toggenburg (1,741) and

crossbred (34,054) animals, located in the Waikato region of New Zealand. Animals were

considered crossbred unless the proportion of the major breed was >0.85. Breed

composition was “unknown” for some goats (4,941). The pedigree contained 105,072

individuals spanning 5 generations, representing 1,322 sires and 27,180 dams. The records

from a farm were included in the analysis if the farm supplied milk to DGC, performed herd-

testing during 2017 or 2018, and contributed records for genetic evaluation. Phenotypes

for the GWAS were pre-corrected for non-genetic factors using the GLM procedure of

Statistical Analysis System version 9.4 (SAS Institute Inc., Cary, NC, USA) that produced

residuals after fitting the fixed effects of herd-year and parity. The significance of

association between the SNP effect or haplotype effect and the phenotype adjusted for

herd-year and parity, as represented by the residual, was calculated at each SNP position.

Genotyping

Skin samples from 3,894 animals distributed in 21 herds were collected for SNP genotyping

with the Illumina Caprine 50K BeadChip (Illumina Inc., San Diego, CA, USA). For three of the

herds, only does in their first or second parity were sampled (14% of genotyped animals).

Does of all parities were sampled in the remaining 18 herds (86% of genotyped animals).

The recorded ancestors of the sampled animals were born between 2003 and 2015 and

included 154 sires and 2,024 dams. Genotyped animals were of Saanen (1,436), crossbred

(1,669), or unknown (789) breeds. A total of 51,462 SNPs were obtained.

The SNP & Variation Suite v8 (SVS) (Golden Helix, Inc., Bozeman, MT, USA) software was

used for quality control, principal component analysis and two of the GWAS. Quality control

was performed to remove genotypes from unreliable SNPs or animals. Records were
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removed for individuals with >2% missing genotypes across all SNPs (call rate <98% which

excluded 162 animals), SNPs with >1% missing genotypes across all individuals (call rate

<99%), that deviated significantly from Hardy-Weinberg equilibrium threshold of P-

value>10-6 or had minor allele frequency <1%. After these quality control edits, 3,732

animals and 41,989 SNPs remained for association analysis and the average distance

between SNPs was 58.2 Kb and the average r2 between two neighbouring SNPs was 0.15.

Genome-wide association study

A single-SNP GWAS was performed in SVS to identify SNPs significantly associated with the

milk traits. The single-SNP GWAS (sGWAS) is based on a linear regression test of the fixed

covariate effect of a single marker, which treats each SNP as if it had an additive effect.

Population structure was estimated by principal component analysis in SVS using the

method described by Price et al. (2006). The genomic relationship matrix was used to

compute the principal components. The top 50 principal components captured 47% of the

variation and were subsequently included as fixed effects in the sGWAS method. To correct

for multiple testing, a Bonferroni correction of α = 0.05 was applied to the genome-wide

significance threshold (Significance threshold = α/number of SNP). The SNP effects were

declared significant at a genome-wide level of P-value = 1.1x10-6 (0.05/41,989). Quantile-

quantile plots were examined to determine the validity of the P-value for the sGWAS.

A BayesC GWAS was implemented in GenSel Software (Fernando and Garrick, 2013) fitting

all SNPs simultaneously (sBayesC) to determine the proportion of variance explained by the

SNPs. The algorithm uses Markov chain Monte Carlo (MCMC) methods to calculate samples

from the posterior distributions of marker effects and variances, and inferences were made

using the posterior means. The chains include 20,000 iterations after a burn-in of 1,000

iterations. For this model the priors for the genetic and residual variances were based on

posterior means in a previous analysis (Scholtens et al., 2019). It was assumed that 99.8%

of the SNPs have no effect on the trait. The genome was partitioned into 1 Mb windows

and the multi-locus contribution to genetic variance of the combined effects of SNPs within
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every one of these intervals were simultaneously estimated by sBayesC (Fernando and

Garrick, 2013). The 1 Mb windows that explained >1% of genetic variance were considered

to be associated with the traits.

The seven most significant SNPs clustered on chromosome 19 were combined into a

haplotype block to further investigate true associations from the SNP analyses. The BayesC

method was implemented a second time but with the alleles in the haplotype block included

as fixed covariates while the remaining panel SNPs were fitted simultaneously as random

effects (hBayesC). Thus, covariates for haplotype allele dosage were fitted instead of the

dosage of alleles at each individual SNP in the QTL region. An expectation-maximisation

algorithm was used to estimate haplotype allele frequencies and haplotype alleles with an

expectation-maximisation probability >= 50% were included in the analysis (10 of the 28

haplotype alleles).

To test for non-additive effects of the haplotype alleles, a BayesC model was re-run again

in GenSel, but fitting diplotypes (pairs of haplotypes) (dBayesC). Diplotypes were defined as

class effects, but were only constructed for the two most common haplotypes. The effects

of these diplotypes and the remaining eight haplotypes were fitted as fixed with the

remaining SNPs simultaneously fitted as random effects.

Effects of haplotypes and diplotypes on the production traits were obtained using the GLM

procedure of SAS. The model fitted for each trait and each haplotype, was Yi = b0 + xib + ei

where Yi is the residual phenotype of animal i, b0 is the intercept, xi is a row-vector indicating

which haplotype and how many copies of the haplotype are carried by the animal; b is the

effect of the haplotype and ei is a residual effect. For the diplotype analysis, diplotype was

treated as a class effect based on the number of copies of the two most common

haplotypes.

Ensembl (Zerbino et al., 2018) was used to search for genes closest to the most significant

SNPs. Gene annotation was retrieved if the SNP was located on an intron, lying 0-5 Kb

upstream or downstream from gene boundaries, or, if the SNP was located in intergenic

regions, the SNPs were assigned to the closest gene.
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Results

Descriptive statistics for raw lactation yields of first and second parity genotyped does are

presented in Table 6.1.

Table 6.1. Descriptive statistics of milking traits of genotyped New Zealand dairy goats in
their first and second parity (N=7,284).
Trait Mean SD1 Min Max CV2

Lactation length (days) 272.3 117.0 60.0 696.0 43
Lactation yields

Milk (kg) 804.5 290.4 58.4 2005.8 36
Fat (kg) 26.7 10.3 2.0 76.5 39
Protein (kg) 25.0 8.9 2.4 63.0 36

SCS3 8.6 1.3 3.5 13.7 15
1SD = standard deviation across herds, 2CV = coefficient of variation (%), 3SCS = somatic cell count calculated
as log2 (somatic cell count).

Figure 6.1 shows the Manhattan plot for the sGWAS for lactation yields of MY, FY and PY

and average SCS. A total of 43 genome-wide significant SNPs were detected across all four

traits. A highly significant region (19:24836694-19:28953102) was identified on

chromosome 19 for all four traits. In this region, 26 SNPs are associated with MY, 24 SNPs

associated with FY and PY and 11 SNPs associated with SCS. Another significant region was

identified on chromosome 29 (29:24850418-29:25328810) with 11 SNPs associated with

SCS. The two top SNPs associated with MY, FY and PY were detected on chromosome 19

(19:26610610 and 19:26662281) with significance levels of -log10(P-value) = 22.51 and 21.67

for MY, 19.14 and 19.60 for FY, and 19.93 and 19.31 for PY. These two SNPs were also the

top SNPs on chromosome 19 associated with SCS (-log10(P-value) = 8.22 and 7.93,

respectively). Results obtained from the sGWAS model showed that the top SNP

(19:26610610) explained 4.4% of the total variance for MY and 3.4% for FY and PY.
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The Quantile-Quantile plot (QQ-plot) in Figure 6.2 shows the observed and expected P-

values (expressed as -log10(P-value)) of the sGWAS for MY, FY, PY and SCS. The dashed line

represents the distribution of the SNPs under the null hypothesis that there is no association

of SNPs with the trait of interest. The strong deviation of the observed from the expected

P-values for all eight QQ-plots indicate that there were more SNPs significantly associated

with all of the four traits than would be expected by chance.
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Figure 6.1. Manhattan plot of sGWAS for lactation yields of milk (A), fat (B) and protein
(C) and average somatic cell score (D), using the Illumina Caprine 50K BeadChip (Illumina
Inc., San Diego, CA, USA) in 3,732 New Zealand dairy goats. The P-values (-log10 (P-value))
for each SNP are shown on the y-axis and chromosomes 1-29 are shown on the x-axis. The
horizontal line indicates the Bonferroni-corrected genome-wide threshold at P-value
0.05.

Milk Fat

Protein Somatic cell score

Figure 6.2. Quantile-quantile plots observed and expected P-values (expressed as –log10

(P-value)) of the sGWAS for yields of milk, fat, protein and somatic cell score in New
Zealand dairy goats.
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In this study the sBayesC model partitioned the genome into 2,520 1 Mb SNP windows with

an average of 17 SNPs per window. The windows were sorted based on the proportion of

genetic variance each window captured. The genomic region with the highest proportion of

explained genetic variance for MY, FY and PY was on chromosome 19 (19:26029220-

19:26956209). The combined effect of the 15 SNPs within this window was estimated to

explain 9.62% of the genomic variance for MY, 8.09% for FY, 9.09% for PY and 0.94% for

SCS. The probability that this window explained more than the average genetic variance

expected under an infinitesimal model of inheritance was 1.00 for MY, FY and PY and 0.98

for SCS. Other windows of interest included one on chromosome 6 (6:86050148-

6:86990478) explaining 1% of the genomic variance of MY, chromosome 14 (14:81032694-

14:81952406) explaining 2% of the genomic variance of FY and a window on chromosome

29 (29:25025234-29:25972909) explaining 3% of genomic variance of SCS.

Table 6.2 shows the variances obtained from the Bayesian analyses in GenSel. The

proportion of phenotypic variance explained by all SNPs fitted in the sBayesC model was

18% for MY, 16% for FY, 14% for PY and 20% for SCS. The genetic variances were reduced

for MY, FY and PY, when the haplotypes or diplotypes in the QTL region were fitted as fixed

effects (hBayesC and dBayesC models), the reduction representing the genetic variance

explained by the haplotypes and diplotypes. When the haplotypes were fitted into the

hBayesC model, the remaining SNPs explained 12% of the total variance for MY, 11% for FY,

9% for PY and 20% for SCS.

When the BayesC model was adjusted for the effects of the haplotypes or diplotypes

(hBayesC or dBayesC, respectively), the SNPs that showed the highest model frequency

were located on chromosomes 6 and 8. This suggested that all of the informative SNPs

located on chromosome 19 were accurately included in the haplotype block.
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Table 6.2. Summary of variances estimated from BayesC GWAS for lactation yields of milk,
fat and protein and average somatic cell score, using the Illumina Caprine 50K BeadChip
(Illumina Inc., San Diego, CA, USA) in 3,732 New Zealand dairy goats.
Trait Model1 Genetic

variance
Phenotypic

variance
Phenotypic variance
explained by SNPs

(%)
Milk yield

sBayesC 12925 73865 18
hBayesC 8739 71128 12
dBayesC 8484 70893 12

Fat yield
sBayesC 13.15 83.27 16
hBayesC 9.23 80.82 11
dBayesC 9.06 80.53 11

Protein yield
sBayesC 8.61 63.91 14
hBayesC 5.48 62.06 9
dBayesC 5.38 61.89 9

Somatic cell score
sBayesC 0.28 1.45 20
hBayesC 0.28 1.45 20
dBayesC 0.28 1.45 20

1Models = sBayesC= BayesC model fitting all SNPs simultaneously, hBayesC = BayesC model fitting 10
haplotype alleles as fixed effect and remaining SNPs as random effects simultaneously, dBayesC = BayesC
model fitting diplotypes of h1 and h2 as well as the 8 remaining haplotypes, and the remaining SNPs as random
effects simultaneously.

The population frequency of the haplotype alleles and their diplotypes are presented in

Table 6.3. The commonest haplotypes, h1 and h2, had estimated frequencies of 49% and

17%, respectively. Diplotypes were derived based on the occurrence of h1 and h2, of which,

79% of the population is estimated to have at least one copy of h1 and 34% of the

population is estimated to have at least one copy of h2.

The estimated effect of haplotypes and diplotypes on milk traits are reported in Table 6.4.

The most frequent haplotype h1 has the greatest positive effect on MY, FY and PY, while

haplotype h7 had the greatest negative effect on MY, FY and PY. The diplotype with the
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greatest effect on yields includes two copies of h1 (h1-h1), of which 29% of the population

is estimated to carry. The diplotype with the largest negative effect on MY and PY comprised

of one copy of h2 (h2-h0), which is estimated to represent 11% of the population.

Table 6.3. Estimated population frequency of the 10 most frequent haplotypes, and
diplotypes within the most significant region on chromosomes 19 associated with milk
production in New Zealand dairy goats.
Haplotype number Haplotype Frequency

h1 TCTTCTG 49%
h2 CTCCTGA 17%
h3 CTCCTTG 11%
h4 CCCCTTG 5%
h5 TCCCTTG 4%
h6 CCTCTTG 4%
h7 CCCCTGA 2%
h8 CCTCTGA 2%
h9 CCTTCGA 1%
h10 TTCCTTG 1%

Diplotype number Frequency
h1-h0 30%
h1-h1 29%
h1-h2 20%
h2-h0 11%
h2-h2 3%
h0-h0 9%

Diplotype numbers with a h0 refers to the occurrence of any haplotype other than h1 and h2.
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Table 6.4. Effects (± standard error) of haplotypes and diplotypes located within the most
significant region on chromosome 19 on milk traits in New Zealand dairy goats.

Milk yield
(kg)

Fat yield
(kg)

Protein yield
(kg)

SCS1

(units)

Haplotypes
h1 73.6 (3.1)a 2.15 (0.11)a 1.91 (0.09)a 0.16 (0.02)a

h2 -57.0 (4.1)a -1.87 (0.14)a -1.54 (0.12)a -0.08 (0.02)a

h3 -28.7 (5.6)a -0.59 (0.19)b -0.68 (0.16)a -0.20 (0.03)a

h4 -59.1 (6.9)a -1.62 (0.24)a -1.64 (0.20)a -0.12 (0.04)a

h5 -70.0 (7.9)a -2.24 (0.27)a -1.89 (0.23)a -0.10 (0.04)b

h6 -5.7 (7.7) -0.10 (0.26) -0.07 (0.22) -0.06 (0.04)
h7 -107.6 (20.9)a -3.59 (0.72)a -2.58 (0.61)b -0.07 (0.11)
h8 -43.4 (18.9)b -2.24 (0.65)a -1.92 (0.55)b 0.01 (0.10)
h9 7.8 (13.1) 1.49 (0.45)a 1.04 (0.38)b -0.02 (0.07)
h10 -44.7 (21.7)b -2.15 (0.75)b -1.05 (0.64) 0.16 (0.12)

Diplotypes
h1-h0 53.4 (4.1)a 1.88 (0.14)a 1.61 (0.12)a -0.18 (0.02)a

h1-h1 103.6 (3.8)a 3.10 (0.13)a 2.75 (0.11)a 0.05 (0.02)b

h1-h2 42.4 (4.6)a 1.17 (0.16)a 1.21 (0.14)a -0.11 (0.02)a

h2-h0 -58.0 (6.9)a -1.49 (0.24)a -1.44 (0.20)a -0.17 (0.04)a

h2-h2 -45.9 (13.5)a -1.83 (0.47)a -1.33 (0.40)a -0.41 (0.07)a

h0-h0 -37.3 (8.4)a -1.08 (0.29)a -0.93 (0.25)a -0.32 (0.04)a

1 SCS = log2(somatic cell count), aP-value<0.001, bP-value<0.05, Diplotype numbers with a h0 refers to the
occurrence of any haplotype other than h1 and h2.

Table 6.5 shows the 43 genome-wide significantly associated SNPs with the milk production

traits and positional candidate genes (i.e. annotated genes that are nearest to each marker).

Half of significant SNPs on chromosome 19 are mapped to introns, 27% to intergenic

regions, 7% introducing synonymous substitutions and the remaining 17% located

upstream or downstream to the closest genes. The two top SNPs from the sGWAS, are

located on chromosome 19 at 26610610 bp, introducing a synonymous substitution in the

RNASEK gene (ENSCHIG00000009505) and at 26662281 bp, located within the intron of the

ASGR2 gene (ENSCHIG00000003690). Both SNPs were significantly associated with all four
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milk traits. Other SNPs included in the haplotype block were SNP 19:26724454, located

within the intron of the DLG4 gene (ENSCHIG00000009974), and 19:26780952, located

downstream of the ELP5 gene (ENSCHIG00000010521), that were also significantly

associated with MY, FY and PY. The functional annotation of SNP (19:27854624) resulted in

a synonymous substitution in MYH10 (ENSCHIG00000018616) and SNP (19: 28079607)

located within an intergenic region but the closest gene being 166 Kb from the MYH10 gene.

Both SNPs were significantly associated with SCS.

Of the 11 SNPs on chromosome 29 significantly associated with SCS, four were mapped to

introns and seven were in intergenic regions. The most significant SNP on chromosome 29

(29: 25328810) is located in an intergenic region and is 60 Kb from the closest gene, PTPN5

(ENSCHIG00000008345). Another significant SNP (29: 25366901), is also near the same

gene (22 Kb). In addition, two SNPs (29: 25649038 and 29: 27144973) significantly

associated with SCS were located within introns of the LDHC gene (ENSCHIG00000013476)

and OR8B4 (ENSCHIG00000012776), respectively. The two remaining SNPs on chromosome

29 (26:25175690 and 29:25206548), were located within introns are of the ZDHH13 gene

(ENSCHIG00000024992).
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Table 6.5. Genes linked to the 43 genome-wide significant SNPs for yields of milk, fat,
protein and somatic cell score in New Zealand dairy goats.
Chr1 Position Trait2 -log10(P) Annotation Gene name Gene description
14 81658443 FY 9.21 Upstream ZNF16 Zinc finger protein 16
19 24836694 SCS 6.97 Intron MYBBP1A MYB binding protein 1a
19 25087981 MY, PY 6.7.2-7.7 Intron KIAA0753 KIAA0753 ortholog
19 25413768 MY, FY,

PY
7.2-7.7 Intergenic WSCD1 WSC domain containing

1
19 25782297 MY 6.7 Intergenic NLRP1 NLR family pyrin domain

containing 1
19 25823025 MY, FY,

PY
9.9-12.5 Intergenic NLRP1 NLR family pyrin domain

containing 1
19 26072328 MY, FY,

PY
16.3-19.3 Intergenic RABEP1 Rabaptin, RAB GTPase

binding effector protein
1

19 26115456 MY, FY,
PY

6.0-7.4 Intergenic ZNF232 Zinc finger protein 232

19 26148755 MY, FY,
PY

16.6-20.1 Downstream ZFP3 Zinc finger protein

19 26192128 MY, FY,
PY

15.2-17.1 Downstream KIF1C KIF1C Kinesin family
member 1C

19 26420506 MY, FY,
PY

13.5-15.2 Intron ZMYND15 Zinc finger MYND-type
containing 15

19 26542254 MY, FY,
PY

6.7.3-7.7 Downstream none Arachidonate 12-
lipoxygenase,
epidermal-type

19 26578775 MY, FY,
PY, SCS

6.5-16.4 Intergenic none Arachidonate 12-
lipoxygenase,
epidermal-type

19 26610610 MY, FY,
PY, SCS

8.2-22.5 Synonymous RNASEK Ribonuclease K

19 26662281 MY, FY,
PY, SCS

7.9-21.7 Intron ASGR2 Asialoglycoprotein
receptor 2

19 26724454 MY, FY,
PY

7.9-8.9 Intron DLG4 Discs large MAGUK
scaffold protein 4

19 26780952 MY, FY,
PY

7.5-8.6 Downstream ELP5 Elongator
acetyltransferase
complex subunit 5

19 27360768 MY, FY,
PY

7.5-8.4 Intron CNTROB Centrobin, centriole
duplication and spindle
assembly protein
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19 27401023 MY, FY,
PY, SCS

6.3-13.6 Intron GUCY2D Guanylate cyclase 2D,
retinal

19 27480793 MY, FY,
PY, SCS

6.5-12.7 Intron ALOXE3 Arachidonate
lipoxygenase 3

19 27529983 MY, FY,
PY, SCS

6.1-12.2 Intron none Vesicle associated
membrane protein 2

19 27558520 MY, FY,
PY

10.3-12.0 Intron TMEM107 Transmembrane protein
107

19 27605322 MY, FY,
PY

9.2-10.5 Intron CTC1 CST telomere
replication complex
component 1

19 27744036 SCS 7.5 Upstream NDEL1 NudE
neurodevelopment
protein 1 like 1

19 27854624 SCS 7.0 Synonymous MYH10 Myosin heavy chain 10
19 28038645 MY, FY,

PY, SCS
6.7-16.5 Intron PIK3R6 Phosphoinositide-3-

kinase regulatory
subunit 6

19 28079607 SCS 7.8 Intergenic MYH10 Myosin heavy chain 10
19 28202268 MY, FY,

PY
7.1-8.9 Intergenic NTN1 Netrin 1

19 28578424 MY 6.7 Intron STX8 Syntaxin 8
19 28730193 MY, FY,

PY
9.3-11.0 Intron GLP2R Glucagon like peptide 2

receptor
19 28953102 MY, FY,

PY
6.8-7.8 Intron none Growth arrest specific 7

29 24850418 SCS 6.2 Intergenic NAV2 Neuron navigator 2
29 25175690 SCS 11.9 Intron ZDHHC13 Zinc finger DHHC-type

containing 13
29 25206548 SCS 12.4 Intron ZDHHC13 Zinc finger DHHC-type

containing 13
29 25328810 SCS 14 Intergenic PTPN5 Protein tyrosine

phosphatase, non-
receptor type 5

29 25366901 SCS 8.3 Intergenic PTPN5 Protein tyrosine
phosphatase, non-
receptor type 5

29 25649038 SCS 8.8 Intron LDHC L-lactate dehydrogenase
C chain

29 26381310 SCS 6.0 Intergenic OR10D3 Putative olfactory
receptor 10D3
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29 26502551 SCS 8.8 Intergenic none Olfactory receptor 145-
like

29 27144973 SCS 10.4 Intron OR8B4 Olfactory receptor
family 8 subfamily B
member 4

29 27407592 SCS 6.7 Intergenic PANX3 Pannexin 3
29 27967983 SCS 9.2 Intergenic PKNOX2 PBX/knotted 1

homeobox 2
1Chromosome, 2MY = milk yield, FY = fat yield, PY = protein yield, SCS = somatic cell score.

Discussion

Genome wide association studies have been used to identify associations between genetic

markers and candidate genes for traits of economic importance. This study evaluated the

associations of 41,989 SNPs with MY, FY, PY and SCS from 3,732 New Zealand dairy goats.

The sGWAS identified 43 SNPs significantly associated with MY, FY, PY and SCS in this

population. A cluster of highly significant SNPs were identified on chromosome 19 for all

four traits and on chromosome 29 for SCS. The two strongest signals were identified at SNP

19:26610610 and 19:26662281. These two SNPs were in high LD (r2 = 0.94) and it is highly

probable that these SNPs were in high LD with a QTL or causal variant that had a very

significant effect on MY, FY and PY in this dairy goat population.

Quantile-quantile plots (Figure 6.2) of the observed and expected P-values of the sGWAS

for each trait indicated that a large proportion of the observed P-values were clearly more

significant than expected under the null hypothesis. This suggested there were some true

associations between SNPs and genes controlling these traits.

The main advantage of the sGWAS is the ease of significance testing. However, single-SNP

analysis relies on LD between the marker and QTL, therefore the results do not provide

information about the location of the causal variant, instead they correspond to the location

of the marker. Also, fitting SNPs individually may result in the same signal picked up in

multiple single SNP tests, thus overestimating the number of actual QTLs detected. And

finally, although a significant signal is identified, if a trait is controlled by many QTLs, which
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is the case for most quantitative traits, the single-locus tests may prove inaccurate

compared with methods where grouped (haplotypes) or all SNPs are jointly considered. For

these reasons, an additional analysis was performed fitting all SNPs simultaneously in a

BayesC GWAS.

The BayesC GWAS that fits all SNPs simultaneously, can improve the accuracy of detecting

QTLs (Wolc et al., 2012) and the 1 Mb window variances provide greater insight for

identifying the genomic region of the casual variant (Fernando and Garrick, 2013) and

estimates the proportion of variance explained by the SNPs.

In the Bayesian analysis, the percentage of genetic variance explained by 1 Mb genomic

windows are used to make inference about the proportion of variance explained by a QTL

and whether the QTL bleeds over multiple windows. The genomic window that explained

the greatest level of genetic variance (8-9%) for MY, FY and PY included 15 SNPs and ranged

from 26420506 to 26780952 bp on chromosome 19. Two of the SNPs located in this window

were also the most frequent SNPs included in the model (suggesting they are informative

SNPs that contribute to the model) and were the top SNPs identified in the sGWAS to be

associated with MY, FY and PY.

Combing these results from the sGWAS and Bayesian analyses provides strong evidence

that those SNPs with the highest model frequency within the genomic window on

chromosome 19 with the largest effect, are likely to be in LD with the causal variant.

To learn more about this potential QTL on chromosome 19 the seven most significant SNPs

identified in the sGWAS were combined into a haplotype block and the Bayesian analysis

was re-run by adjusting for the SNPs in the haplotype block. Fitting covariates for haplotype

alleles rather than the SNP alleles provides higher LD between causal mutations and

haplotype alleles as the multi-locus haplotype takes into account not only the LD

information from the SNPs within the haplotype but also other important polymorphisms

within the QTL cluster region. In addition, the use of haplotypes can provide information

regarding the genetic determinants that cannot be captured by the biallelic markers. For

example, when a SNP is fit in the model there is no guarantee that its alleles are in high LD
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with the QTL allele, whereas in the haplotype, provided there are enough SNPs to represent

them, at least one haplotype must contain the favourable QTL allele and at least one must

include the unfavourable allele. When the haplotypes were fitted into the hBayesC model

as a fixed effect, there were no other signals on chromosome 19 of large effect, indicating

that the majority of the QTL was indeed captured within the genomic region of that

haplotype block. Also, the genetic variance from the hBayesC model was lower than the

sBayesC, indicating that the seven SNPs located in the haplotype are capturing the variation

that exists in that genomic region.

The haplotype effects on milk production in this dairy goat population were estimated for

the 10 haplotypes. Haplotypes h1 and h9 had the greatest positive effect on the milk traits.

Animals that carry one copy of h1 or h9 are estimated to produce +73.6 and +7.8 kg milk,

+2.2 and +1.5 kg fat and +1.9 and +1.0 kg more protein, respectively, per lactation,

compared with the average of the population. Both h1 and h9 are the only haplotypes that

contain the T allele at the loci 19:26610610, which had the strongest signal on the milk traits

as well as the C allele at the loci 19:2666281, which had the second strongest signal on the

milk traits. This suggests that an animal carrying the T and C alleles at the corresponding

loci will have the greatest yields per lactation compared to the average of the population.

The positive effect of these loci on milk production traits should be used in combination

with performance and pedigree information to generate more accurate breeding values.

When selecting animals for breeding replacements, genotyped males carrying the desirable

alleles can be used for mating to females to produce replacements that carry the desirable

alleles and thus the potential to be high yielding animals. In addition, the h7 haplotype had

the greatest negative effects on the milk traits, therefore, farmers could identify animals

with this haplotype and avoid breeding or as a selection method for culling purposes.

When haplotypes are fitted in the model as dosage covariates we assume the haplotypes

have an additive effect, which may not be true. Therefore, to test whether the effect of the

haplotype block was truly additive, we fit diplotypes (pairs of haplotypes) into the model.

Fitting diplotypes allows the estimation of the effect of the heterozygote without assuming
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it is intermediate between the opposite homozygotes, which can determine whether that

haplotype allele is additive, or dominant or over-dominant etc.

The diplotypes included in the trend regression were derived from the two most frequent

haplotypes in the population, h1 and h2. The predominant diplotype (29%) in the study

population had two copies of h1. Animals that do not carry either h1 or h2 had an average

effect of -37.3 kg milk per lactation, relative to the population average. If an animal has only

one copy of h2 then they will have -58.0 kg, which is 20.7 kg less than animals with neither

h1 nor h2. If an animal carries one copy of h1, they will have +53.4 kg milk, producing 90.7

kg more than an animal that carries neither h1 nor h2. If an animal carries two copies of h1

then it will have +103.6 kg milk than the population, producing an extra 50.2 kg milk more

than an animal with one copy of h1. These results follow a similar trend for FY and PY and

suggest that h1 has a positive effect on milk traits and can lead to increased productive

value of dairy goats in New Zealand.

Several studies have identified QTL significantly associated with milk production traits in

goats (Table 6.6). Results from our study confirmed the presence of a QTL reported on

chromosome 19 for MY, FY, PY and SCS and on chromosome 29 for SCS. In addition, several

novel regions were identified, including a QTL for FY on chromosome 14 and genetic regions

associated with MY, FY and PY on chromosome 23 and SCS on chromosome 5.
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Table 6.6. Reported QTL associated with milk production traits in dairy goats.

The QTL on chromosome 19 that was strongly associated with all four traits, was reported

in the French Saanen dairy goat population (Palhière et al., 2014) and a mixed breed

population (Mucha et al., 2018a). In addition to milk traits in dairy goats, this highly

significant region was also associated with type traits (Martin et al., 2018), udder floor

position (Palhière et al., 2014), functional longevity (Palhière et al., 2018) and semen

production (Oget et al., 2018), suggesting a pleiotropic QTL effect. Further investigation into

this genomic region (chromosome 19, 25-29 Mb) revealed that the SNPs significantly

associated with MY in the current study were different to the SNPs identified by Mucha et

al. (2018a) in their mixed breed goat population. This could be because both studies

analysed mixed breed populations, thereby having different levels of linkage disequilibrium

(de Roos et al., 2008), thus, the loci on the SNP have different levels of linkage

disequilibrium with the unknown causal. With that said, although the individual SNPs

differed in statistical significance between the goat populations, this highly significant

region identified in both studies suggests the segregation of a common gene that has a

major effect on milk production in dairy goats.

In this study, the most significantly associated SNP (19:26610610) was located on

chromosome 19 introducing a synonymous substitution in the RNASEK gene

Trait Chromosome Reference
Milk yield 6, 8, 14, 19 and 21 Roldán et al. (2008), Maroteau et al. (2013),

Martin et al. (2017), Mucha et al. (2018a)
Fat yield 2, 14 and 19 Maroteau et al. (2013), Martin et al. (2017)
Protein yield 19 and 20 Maroteau et al. (2013), Martin et al. (2017)
Fat content 6, 7, 14, 20, 21 and

25
Roldán et al. (2008), Maroteau et al. (2013),
Martin et al. (2017)

Protein content 1, 3, 5, 6, 11, 20, 21,
28

Roldán et al. (2008), Maroteau et al. (2013),
Martin et al. (2017)

Fatty acid 1, 7, 8, 11, 14 and 29 Maroteau et al. (2013)
SCS 19, 29 Maroteau et al. (2013), Martin et al. (2018)
Morphology traits 29 Maroteau et al. (2013), Martin et al. (2018)
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(ENSCHIG00000009505). RNASEK is a transmembrane protein ubiquitously expressed and

highly conserved across mammals. RNASEK localises to the cell surface and endosomal

pathway and closely associates with the vacuolar ATPase (V-ATPase) proton pump. RNASEK

is required for endocytosis that prevents the replication of multiple pathogenic viruses such

as rhinovirus, influenza A and dengue (Perreira et al., 2015). This most significant SNP was

strongly associated with all four milk traits, but no previous studies have reported this SNP

or any association with this gene in goats. However, this SNP is in strong LD (r2 = 0.94) with

SNP 19:26662281, which was also strongly associated with all four milk traits. This SNP

(19:26662281), is located within the intron of the ASGR2 gene (ENSCHIG00000003690) and

is in the same region where Mucha et al. (2018a) reported a locus (19:26150581) that is

strongly association with udder depth of mixed breed dairy goats. The ASGR2 gene encodes

a subunit of the asialoglycoprotein receptor involved with the glycoprotein metabolic

process, lipid homeostasis and the regulation of protein stability. Therefore, the possibility

of the ASGR2 gene’s involvement with the milk production traits is supported by its activity

in lipid homeostasis and protein stability.

Another signal strongly associated with all four milk traits is SNP (19:27480793) which is

located within the intron of the ALOXE3 gene. A SNP (19:26972244) in the same gene region

was reported by Mucha et al. (2018a) to be associated with udder depth of mixed breed

dairy goats. This gene is part of the lipoxygenase family of enzymes and is involved in the

metabolic pathway during formation of the epidermal barrier (Krieg et al., 2013). As this

process includes the activity in cell differentiation, cell proliferation and fat metabolism, it

is possible that this gene is involved with udder conformation (Mucha et al., 2018a), and

subsequently milk production.

Another association which was reported by Mucha et al. (2018a) was for SNP

(19:26066457), which is located near the ALOX12 gene (GOAT_ENSP00000251535) and has

a significant effect on MY in dairy goats (Mucha et al., 2018a). However, this SNP and

chromosome region were not significantly associated with milk production traits in this

current dairy goat population.



110 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Chapter 6

In the current study, the SNP (19:26192128) was significantly associated with MY, FY and

PY and is located downstream from the KIF1C gene (ENSCHIG00000000772). This gene is

involved in the movement of molecules from the Golgi back to the endoplasmic reticulum.

This SNP was also reported at the genome-wide significance level, to be associated with

functional longevity in Saanen dairy goats (Palhière et al., 2018). In the same population,

Martin et al. (2017) also reported the same genomic region to be associated with milk

production. This is not surprising as multiple studies have published a positive genetic

correlation between milk production and longevity in dairy goats (Castañeda-Bustos et al.,

2014; Wheeler et al., 2014).

Two significant SNPs were mapped within and close to the MYH10 gene

(ENSCHIG00000018616) which is involved in mitotic cytokinesis. The SNP (19: 27854624)

causes a synonymous substitution and the 19: 28079607 SNP is located 166 Kb from the

gene. Both SNPs were significantly associated with SCS and not with the other milk traits.

Other genes on chromosome 19 associated with milk production traits in dairy goats include

the GH1 gene located in the 47 Mb region (Lan et al., 2007; Dettori et al., 2013) and the

STAT5A gene located in the 42 Mb region (An et al., 2012). However, in our study there

were no associations for milk traits detected in these regions.

We identified a peak of significant SNPs on chromosome 29 associated with SCS. It is evident

there is a QTL located on this chromosome for SCS as we detected strong signals for 11 SNPs

from the sGWAS. However, further investigation using Bayesian methods would provide

more information about the genomic region of the QTL and the level of variance it explains.

Previous studies have reported a chromosome-wide significant SNP on chromosome 29

associated with MY (Mucha et al., 2018a) and fatty acid composition (Maroteau et al., 2013)

in French dairy goats and associated with gastrointestinal nematode resistance in dairy

goats in Zimbabwe (Zvinorova, 2017).

Two of the top SNPs associated with SCS (29: 25175690 and 29:25206548) are within introns

of the ZDHHC13 gene (ENSCHIG00000024992), which is associated with signal transducer

activity and palmitoyltransferase activity. Palmitoyltransferase is important for the positive
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regulation of I-kappaB kinase/NF-kappaB signalling, which is an inflammatory signalling

pathway. This gives credibility to the SNP being associated with SCS in this study.

Other genomic regions that may be involved in SCS include the LDHC gene, which is involved

in carbohydrate metabolic processes such as the chemical reactions and pathways resulting

in the formation of ATP, a universally important coenzyme and enzyme regulator, and the

OR8B4 gene, which changes the activity or state of a cell in response to a chemical stimulus

by chemoreceptors i.e. smell perception.

Only one genome-wide significant signal was detected on chromosome 14 (14:81658443)

with FY. Although associated with FY, the genome-wide significant SNP was not located in

the immediate region of the DGAT1 gene, a gene known to have a major effect on milk fat

content in goats (Martin et al., 2017) and cattle (Grisart et al., 2002). Instead, the SNP was

located upstream of the ZNF16 gene (ENSCHIG00000020215). Although not studied in

goats, this gene promotes cell proliferation and inhibits cell apoptosis in humans (Li et al.,

2011).

Despite only a few papers reporting GWAS studies in dairy goats, candidate genes related

to milk traits have been widely studied. Some polymorphisms associated with milk

production in goats include the LALBA gene (chromosome 5) which is linked to milk yield,

lactose content and milk coagulation properties (Dettori et al., 2015a), the MTHFR gene

(chromosome 6) involved in milk protein synthesis (An et al., 2015), the β-lactoglobulin gene

(chromosome 11) (Dettori et al., 2015b; El Hanafy et al., 2015) associated with milk yield

and daily fat and protein yield, the TLR2 gene (chromosome 17) which is important in the

recognition of the innate immune system of mastitis causing bacteria (Ruiz-Rodriguez et al.,

2017) and the PRLR gene (chromosome 20) (Hou et al., 2013) and the STAT5A gene

(chromosome 19) (An et al., 2012), that are associated with milk yield. But none of the

significant SNPs in the current study were located in the regions of these genes.

Although numerous studies have provided evidence of polymorphisms within specific genes

influencing milk production, there are limited studies using GWAS methodologies to identify

QTL for milk production traits in dairy goats. All of the previous GWA studies identified SNPs

https://www.ebi.ac.uk/QuickGO/term/GO:0043123
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that were of varying significance levels for different breeds (Martin et al., 2017; Martin et

al., 2018; Mucha et al., 2018a; Palhière et al., 2018). In our study, the goats were of mixed

breeds, representative of the New Zealand dairy goat population.

Results from the GWAS strongly show a QTL located on chromosome 19 and the trend

regression analysis suggest this is biallelic with h1 containing the desirable allele. This was

detected when analysing the effects of the haplotypes and confirmed by the estimated

diplotype effects. All diplotypes containing h1 resulted in positive effects on milk traits,

while every diplotype that contained h2 had negative effects on the milk traits, compared

with the average of the population. The fact that animals carrying one copy of both h1 and

h2 still had positive effects on the milk traits shows the greater magnitude of the positive

effect of h1 over the negative effect of h2.

The results from this study provide evidence that there is a likely QTL strongly associated

with milk traits in this population. It is possible that the QTL has an additive effect and is

biallelic. In addition, it is concluded that this QTL has a pleiotropic effect as it has been

identified in other goat populations and associated with a range of traits besides milk

production traits.

Although the study population was small, the significant regions identified were also

reported in other studies, which gives confidence in the results. Nevertheless, the results

require validation. If the new results are consistent with the current results, the identified

markers could be used for marker-assisted-selection. This will enable the prediction of

genetic and phenotypic value of individuals. For example, to predict the future phenotypes

of offspring so that those with the best breeding values can be selected as parents of the

next generation (Goddard et al., 2016). At the same time, the information on the genomic

regions found in this study, can be used to facilitate the identification of candidate genes

for these milk traits. Doing so would enable a greater understanding of the biology

underlying the response from genomic selection, and managing possible consequences of

selecting for mutations with undesirable pleiotropic effects (Goddard and Hayes, 2012).

Ultimately, these results provide an opportunity for adopting genomic selection within the

New Zealand dairy goat population. Implementing genomic selection will increase the
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accuracy of predicted genetic and phenotypic values and reduce the generation interval,

leading to increased rates of genetic improvement within this dairy goat population.

Conclusion

The study identified one region strongly associated with milk production traits in New

Zealand dairy goats. The highly significant region identified on chromosome 19 was also

reported in French dairy goat populations and suggests a major pleiotropic QTL for milk

production traits in dairy goats. The significant SNPs will increase the accuracy of predicted

genetic and phenotypic values of individuals to allow for genomic selection. The results

demonstrated in this study require validation using a larger dataset before implementing

genomic selection within the New Zealand dairy goat population.
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Abstract

Selection on genomic breeding values (GBVs) is now readily available for ranking candidates

in improvement schemes. Our objective was to quantify benefits from including genomic

information in single trait estimation of breeding values (BVs) for a New Zealand mixed

breed dairy goat herd. The dataset comprised phenotypic and pedigree records of 839 does.

The phenotypes comprised estimates of 305-day lactation yields of milk, fat and protein and

average somatic cell score from the 2016 season. Only 388 goats were genotyped with a

Caprine 50K SNP chip and 41,981 SNPs passed quality control. Pedigree-based best linear

unbiased prediction (PBLUP) was used to obtain across-breed breeding values (EBVs)

whereas a single-step BayesC model (ssBC) was used to estimate across-breed GBVs. The

average prediction accuracies ranged from 0.20 to 0.22 for EBVs and 0.34 to 0.43 for GBVs.

Accuracies of GBVs were up to 103% greater than EBVs. Breed effects were more reliably

estimated in the ssBC model compared to the PBLUP model. The greatest benefit of

genomic prediction was for individuals with no pedigree or phenotypic records. Including

genomic information improved the prediction accuracy of BVs compared to the PBLUP

method currently implemented in the New Zealand dairy goat population.

Introduction

The purpose of selection is to improve the performance of a population. Selection based on

GBVs can improve the rate of genetic gain compared to using only performance and

pedigree records and has become a widely adopted method for ranking candidates for

selection in animal breeding schemes (Cole and VanRaden, 2018). The benefits of genomic

prediction (GP) are greatest when traits of interest are difficult to measure, expensive to

record, measured late in an animal’s life, or the traits have low heritability (e.g. disease

resistance, feed efficiency, slaughter traits, survivability and fertility). Nevertheless, GP can

still be beneficial for easy-to-measure heritable traits like milk production traits as GP can

be applied to young animals allowing earlier identification of replacement candidates,

thereby reducing replacement costs and also shortening the generation interval, which may



118 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Chapter 7

increase the rate of genetic improvement provided the accuracy of selection is not greatly

reduced. Genomic prediction can increase the accuracy of GBVs, especially if no records are

available on the selection candidates.

Until recently, the standard method of estimating breeding values was to use PBLUP that

uses phenotypic records of the individual and its relatives (Garrick and Fernando, 2014).

That method uses pedigree information to estimate the average genetic relationships

among the individuals based on the probability that genes are identical by descent (Wright,

1922), i.e. half- siblings born to unrelated non-inbred parents are expected to share 0.5 of

their alleles, and these probabilities are the basis for generating the average genetic

relationship matrix (A) between close and distant relatives in the pedigree. Meuwissen et

al. (2001) proposed a genomic best linear unbiased prediction (GBLUP) method, that

predicted GBV using information from genetic markers located across the entire genome in

an attempt to capture all quantitative trait loci (QTL) influencing the variation in a trait

(Hayes et al., 2009). Including information from all markers, i.e. GBLUP, can provide greater

accuracy for estimating breeding values compared to PBLUP. The GBLUP method uses

single-nucleotide polymorphisms (SNPs) to identify alleles identical in state that can be

shared through common ancestors (not necessarily recorded in the pedigree) to generate

a genomic relationship matrix (G).

Legarra et al. (2009) suggested a single-step genomic BLUP (ssGBLUP) approach using

phenotypes, genotypes and pedigree information to predict GBVs for both genotyped and

non-genotyped individuals, simultaneously. The method combines pedigree information

from the A and genomic information from the G into a modified genetic relationship matrix

(H). This single-step approach uses Henderson’s mixed model equations (MME) and the H

to yield unbiased predictions under multivariate normality, even in populations that are

undergoing selection and non-random mating. A single-step procedure increases both

power and precision by taking advantage of phenotypes from related and unrelated

animals. Despite these advantages, ssGBLUP requires computation of the G or its inverse

which can be computationally demanding when many animals are genotyped. Fernando et

al. (2014) proposed a class of single-step Bayesian regression (ssBR) methods that does not
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require the computation of the G or its inverse. Instead, this ssBR approach imputes marker

covariates for non-genotyped animals based on their genotyped relatives and a genetic

imputation error effect to accommodate the difference between true and imputed

genotypes (Fernando et al., 2014). Another difference between ssGBLUP and ssBR methods

are the assumptions of the distribution of SNP effects and the number of SNPs included in

the model. For ssGBLUP it is typically assumed that the effects of all SNP are normally

distributed, and all SNPs have the same variance (Meuwissen et al., 2001; VanRaden, 2008).

Meanwhile, the Bayesian methods incorporate prior information into the model that

assumes a fraction (π) of the SNPs have an effect whereas a fraction (1-π) have no effect on

the trait. BayesA and BayesB use a student-t distribution as a prior for the SNPs with effects,

which allows some SNPs to have large effects on the trait (Meuwissen et al., 2001) while

BayesC assumes SNP effects are normally distributed and have the same variance (Habier

et al., 2011). Based on these assumptions, if there are known QTL with large effect on traits

within the population, and many SNPs that are unlikely to be causal, then it would be more

appropriate to fit a mixture model where some of the SNPs are assumed to have zero effect.

Estimating breeding values involves a so-called training population that has phenotypes and

genotypes. The prediction model uses this “training data” in ssBR to predict the influence

of genetic markers by regression of the observed phenotypes on marker genotypes. Then,

the marker effects are summed across all loci to get the GBVs of individuals in another

dataset that don’t have observed phenotypic records and are referred to as the validation

population. This method performs best when all individuals come from the same population

and therefore the linkage disequilibrium (LD) between genetic markers and QTL persists

from the training to the validation population. This LD is the non-random association of

alleles at two or more loci and is influenced by population history and the pattern of

geographic subdivision (Slatkin, 2008).

The success of GP depends largely on the existence of LD across the population of interest.

This level of LD persists across larger distances of the genome when the effective population

size is smaller and therefore persists more within breeds than across breeds and as a result,
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GP using 50K SNP markers is generally more successful in purebred populations

(Moghaddar et al., 2014).

Dairy Goat Cooperative (NZ) Ltd (DGC) processes 80% of goat milk in New Zealand. Farms

that supply DGC, and undertake herd testing, participate in an annual genetic evaluation for

lactation yields of milk (MY), fat (FY) and protein (PY) and for average somatic cell score

(SCS). Breeding values for these traits are estimated for each animal from an across-breed

multi-trait repeatability animal model using available pedigree information (Lopez-

Villalobos and Garrick, 2001). In total, there are believed to be 92 farms in New Zealand

milking an estimated 66,100 dairy goats. Current estimates indicate that 85% of the dairy

goats are of the Saanen breed, while Toggenburg, British Alpine, and Nubian type crosses

comprise the remaining 15%. Therefore, although efficacy of GP within-breed is promising,

it is necessary to develop and evaluate across-breed predictors in order for these genomic

tools to be applied to the New Zealand dairy goat industry. Breed covariates are included in

the evaluation in order to account for the differences in expected value of the breeding

values for animals of different breeds or cross.

Only 4,840 of the animals that comprise the New Zealand dairy goat population have been

genotyped. This means that the reference population is relatively small, which will limit the

accuracy of GP using GBLUP or Bayesian methods (Goddard, 2009). The aim of this chapter

was to quantify the benefit from the inclusion of genomic information in the estimation of

breeding values for a single New Zealand dairy goat herd.

Materials and methods

Data

Phenotypic and pedigree records were provided for a single dairy goat herd by the DGC

from a herd-test database maintained by Livestock Improvement Corporation. The original

dataset comprised lactation records from the 2016 season for 883 dairy goats. The

phenotypic records were estimates of 305-day lactation yield records for MY, FY, PY and

SCS. The test interval method (Sargent, 1968), was used by Livestock Improvement
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Corporation to calculate MY, FY and PY for either the realised lactation length, or up to 305

days in milk (DIM) for those lactations with more than 305 DIM. Average SCS over the

lactation was calculated as the mean Log2(somatic cell count) from each herd-test.

Lactation yields were removed if the lactation length was <105 days, MY <100 kg, FY or PY

<3 kg, deviation from median kidding date was less than -90 or more than +90 days. The

final dataset contained 839 animals that were offspring of 46 sires and 589 dams.

Contemporary group was defined as the group of does of the same lactation number (1, 2,

3 4 and ≥5). Breed composition of each animal was calculated from pedigree proportions of

Alpine, Nubian, Saanen, Toggenburg, “other” and “unknown” breeds. There was some

crossbreeding but very few first-cross or purebred animals of Alpine, Nubian, Toggenburg

and “other” breeds. The breed composition of animals in this herd consisted of 21 purebred

Saanen and 818 animals with mixed breed composition. For this analysis the breeds were

described as proportion of Saanen, or the sum of all other breeds referred to as ANTO

(Alpine, Nubian, Toggenburg, other breeds and unknown breed).

Genotyping

Skin samples were collected for SNP genotyping with the Illumina Caprine 50K BeadChip

(Illumina Inc., San Diego, CA, USA) in 2016. Of the 51,462 SNPs obtained, a total of 41,981

SNPs per animal remained after quality control. Quality control of genotypic data was

performed using the SNP & Variation Suite v8 (SVS) (Golden Helix, Inc., Bozeman, MT, USA)

software. Individuals were discarded if they had a call rate <95% or if they didn’t have

phenotypic records. SNPs were discarded if they had a call rate <90%, MAF <1% or deviated

significantly from Hardy-Weinberg equilibrium based on a threshold of P-value<10-6. The

majority of genotypes were from does in their second parity (246 genotyped animals), while

the remaining genotyped animals were in parity one (19 animals), three (90 animals), four

(30 animals) or older than fourth parity (3 animals). The 388 genotyped animals were of

Saanen (14) or unknown (374) breeds.
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Statistical evaluation

In this analysis, a PBLUP model was used as the base model to estimate across-breed EBVs.

A single-step BayesC model (ssBC) was used to estimate across-breed GBVs. Phenotypic and

pedigree records from 839 animals were included in both models and genotypes of the 388

animals were also included in the ssBC model.

Pedigree-based BLUP evaluation

The PBLUP was performed using a single-trait animal model to predict EBV using pedigree

and phenotypic records for all animals in the pedigree. The PBLUP model was performed

using ASReml 3.0 software package (Gilmour et al., 2009) with the following model:

y = Xb + ZDd + Za + e (7.1)

where y is the vector of phenotypes comprising at most one lactation record for MY, FY, PY

or SCS,

b is the vector of fixed effects,

d is the vector of effects of ANTO and unknown breeds,

a is the vector of additive genetic effects (random effects of animal),

e is the vector of random residual effects (residual errors not accounted for by the fixed and

random effects),

X and Z are design matrices relating the fixed and additive genetic effects, respectively,

D is a matrix with a row for each animal in the pedigree and columns for the proportion of

ANTO and the proportion of unknown breed (Saanen was used as the base breed to

constrain the regression coefficient for the Saanen breed effect to zero).
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Fixed effects included in b were contemporary group and as covariates, day of kidding, days

in milk and general heterosis. General heterosis was calculated as 1 - ∑ dj
2f

j=1 where dj is the

proportion of each of the f=3 breeds (Saanen, ANTO) (Gregory and Cundiff, 1980). The

additive animal genetic effect was included as a random effect, and assumed to have a

normal distribution with mean Dd and variance As2g, where A is the numerator relationship

matrix from the pedigree and s2g is the within-breed additive genetic variance. Residuals

were assumed to have a normal distribution with mean zero and variance Is2e, where I is an

identity matrix of size equal to the number of animals with a lactation record, and s2e is the

residual variance.

Estimated breeding values were calculated as:

EBV෢ = Dd෠ + aො (7.2)

where

EBV෢ is the vector of across-breed EBVs,

d෠ is the solutions for the ANTO and unknown breed effects,

aො is the vector of the solution for within-breed random animal effects.

Prediction accuracy for each model and trait were assessed using a validation process by

splitting the herd into two subsets: the training set of the oldest 70% of the herd (587

animals) and the validation set with the youngest 30% (252 animals). The PBLUP model was

used on the training set to produce pedigree-based EBVs (EBV) for the validation set.

The prediction accuracy was also assessed and summarised based on the different levels of

pedigree information available in the evaluation. Using predicted EBVs of animals in the

validation set (252 animals), the average prediction accuracies were calculated when the

animal had: A) neither the sire nor dam were recorded (1 animal), B) the dam was recorded

and had ≥1 lactation record (6 animals), C) the sire was recorded and had ≥5 progeny in the

herd (155 animals), or D) both the sire and dam recorded (161 animals). To demonstrate
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the impact on prediction accuracy when both the sire and dam are unknown, the PBLUP

evaluation was re-run an additional time but by masking the pedigree records of animals

that previously had records of both the sire and dam, resulting in 162 animals in the

evaluations for scenario (A).

Single-step BayesC genomic evaluation

In this population there is a known QTL with a large effect on milk traits (Scholtens et al.,

2020). Therefore, it is appropriate to fit a BayesC model which assumes a mixture of marker

effects, with a point mass at zero with a probability of p and a univariate normal distribution

with probability 1- p for all marker effects. This model was fitted using the JWAS Julia

package (Cheng et al., 2016) fitting 50,000 Markov chain Monte Carlo (MCMC) iterations

(including 1,000 burn in) and p was assumed known at 0.98. The model in matrix notation

was:

൤
yn
yg
൨ = ൤

Xn
Xg
൨b + ൤

ZnDn
ZgDg

൨ d + ൤
ZnJn
ZgJg

൨q + ቈ
ZnMnα+ϵ

ZgM
g
α ቉ + ൤

Wn 0
0 Wg

൨u + e (7.3)

where the vectors and matrices for non-genotyped animals are denoted with subscript n

and those for the genotyped animals with a subscript g. Thus:

yn and yg are the vectors of phenotypes,

Xn and Xg are the incidence matrices for fixed effects,

b is a vector of fixed effects including the contemporary group (does kidding in the same

parity) and as covariates, day of kidding, days in milk and general heterosis,

Dn and Dg are matrices with a row for each non-genotyped and genotyped animal in the

pedigree and columns for the proportion of ANTO and the proportion of unknown breed,

d is a vector of effects of ANTO and unknown breeds,
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Jn and Jg are matrices with a row for each non-genotyped and genotyped animal in the

pedigree and columns for the J covariate for each breed group that were included as fixed

effects to fit the difference between the genotyped founder and non-genotyped founder

breeds. The matrix Jn is computed as AngAgg
-1 Jg, for breed f, where Ang and Agg

-1 are

submatrices of the numerator relationship matrix A, and Jg is the matrix of breed fractions

identical to Dg except that it includes the vector of breed fractions for Saanen,

q is the vector containing the regression covariates for J, which account for the difference

in breeding value between genotyped and non-genotyped animals of the same breed (Hsu

et al., 2017),

Zn and Zg are incidence matrices that relate the breeding values of animals,

Mg is the matrix of centred marker covariates for genotyped animals,

Mn = AngAgg
-1 Mg, is the matrix of marker covariates for the non-genotyped animals that are

imputed from genotyped relatives,

a is the vector of random marker effects,

ϵ is the vector of genetic imputation error effects,

Wn and Wg are incidence matrices that relate the residual polygenic effects,

u is the vector of residual polygenic effects,

e is a vector of residuals.

The fixed effects are assumed to have flat priors. The prior for the marker effects depends

on the marker variance, s2ak, and the prior probability p that SNP k has zero effect and

follows a two-component mixture prior:

ak|π, σak
2 = ൜

0
~ N(0,σak

2 )
with probability π,
with probability (1-π), (7.4)
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where s2ak ~ va,Sa2 X
2

va. A previous study in this population reported that the markers

captured 12% of the genetic variance (Scholtens et al., 2020). To recognise the markers did

not explain the total genetic variance, a residual polygenic effect was included in the model

accounting for 88% of the additive genetic variance. The vector of imputation residual

deviations, ϵ~ N[0,(Ann-AngAgg
-1 Agn)(1-w)s2g] (Fernando et al., 2014), where Ann, Ang,

Agg and Agn are submatrices of A, s2g is the total genetic variance with (s2g|vg,Sg2) ~ vg,Sg2

Xvg
2
, and w is the ratio of residual polygenic to total genetic variance (0.88), u ~ N(0, Aws2g)

that are not captured by markers and e is ei|s2e ~ iidN(0, s2e) with (s2e|ve, Se2) ~ ve Se2 Xve
2
.

Genomic breeding values were calculated as:

GBV෢ = Dd෠ + ൤
Jn
Jg
൨ qො+ ൤M

෡ n
Mg

൨αෝ+ ቂZn
0 ቃ ϵෝ (7.5)

where

GBV෢ are the across-breed GBV’s,

d෠ is the solutions for the ANTO and unknown breed effects,

qො is a vector of regression coefficients for the J covariates for each breed group,

αෝ is the vector of solutions for random marker effects,

ϵෝ is a vector of solutions for imputation residuals.

The BayesC mixture model used in the single-step analysis requires that unknowns to be

estimated using MCMC techniques. Due to the limited number of observations in this

evaluation (a single herd), variance components were estimated using the ssBC model and

data from a larger dataset first (phenotypic records from 24,317 individuals and 41,981

markers on 2,681 individuals). That posterior residual variance and the heritability values
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previously estimated for this population (Scholtens et al., 2019) for each of the traits were

used to calculate the total genetic variance. The “known” variance components were then

considered known in both the PBLUP and ssBC models (Table 7.1). All ssBC models were

fitted for 50,000 MCMC iterations including a burn-in of 1,000 iterations using the JWAS

package in Julia. Convergence of MCMC iterations were assessed using the coda package in

RStudio based on the method of Geweke (1991).

Table 7.1. Prior across-breed variance components fitted in the PBLUP and ssBC models.
Trait Polygenic variance SNP variance Residual variance π h2

Milk yield 9,098.6 1,011.0 30,345.0 0.98 0.25
Fat yield 8.66 1.33 35.20 0.98 0.24
Protein yield 5.69 0.88 23.10 0.98 0.24
Somatic cell score 0.51 0.08 2.50 0.98 0.21

Reliabilities of PBLUP EBVs were calculated as (1-(PEV/sg2)) where PEV is the predicted error

variance calculated by inverting the coefficient matrix of the MME (Henderson, 1975) and

sg2 is the total genetic variance. For ssBC the PEV were computed from the Bayesian

posterior variance of GBV samples. Prediction accuracies were calculated as the square root

of the reliability.

The across-breed EBVs and GBVs were standardised to a base population mean of zero

because PBLUP and ssBC were independent evaluations. The EBVs were standardised by

subtracting each EBV by the mean EBV and each GBV was standardised by subtracting by

the mean GBV, resulting in the population means of EBVs and GBVs being zero.

Results

Descriptive statistics are shown in Table 7.2. Mean FY and PY were both 31.8 kg. The

coefficients of variation for the milking traits reflect the phenotypic variation in this herd.
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Table 7.2. Descriptive statistics of milking traits of 839 dairy goats kidding in the 2016
season from a single New Zealand herd.
Trait Mean SD1 Min Max CV2

Lactation length (days) 288 23 185 305 8
Yields (up to 305 days)
Milk yield (kg) 1,002.0 268.3 292.4 1811.3 27
Fat yield (kg) 31.8 8.9 8.2 67.1 28
Protein yield (kg) 31.8 8.4 8.9 58.5 26
SCS3 (units) 9.5 1.2 6.5 12.6 12

1SD = raw standard deviation across the herd, 2CV = coefficient of variation (%), 3SCS = calculated as average
log2(somatic cell count).

Average accuracies of GBVs obtained for MY, FY, PY and SCS were greater than the average

accuracies of EBVs (Table 7.3). The greatest increase in accuracy was obtained for FY with

+103% more accurate GBVs compared to EBVs.

Table 7.3. Accuracies (r) of EBV and GBV of milk traits for animals in the validation
population using PBLUP1 and ssBC2 methods, N=100.

EBV GBV Gain
Trait r SE r SE
Milk yield 0.22 0.01 0.38 0.01 +73%
Fat yield 0.21 0.01 0.43 0.01 +103%
Protein yield 0.21 0.01 0.34 0.01 +64%
Somatic cell score 0.20 0.01 0.39 0.01 +95%

1PBLUP = pedigree-based best linear unbiased prediction model, 2ssBC = single-step BayesC model, 3SE =
average standard error from animals in the validation population.

For all scenarios and all traits, the GBVs had greater accuracies than the EBVs (Figure 7.1).

When the individual had no lactation records but had a sire and dam recorded in the

pedigree (Scenario D), the average accuracies of EBV and GBV were 0.27 and 0.43 for MY,

0.26 and 0.47 for FY, 0.24 and 0.39 for PY and 0.24 and 0.43 for SCS, respectively. The

greatest increase in accuracy between the two prediction models was if the animal had no
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phenotypic or pedigree information (Scenario A), with GBV prediction accuracies of 0.39 for

MY, 0.30 for FY and SCS and 0.33 for PY, compared to 0 for EBVs.

Figure 7.1. Average prediction accuracies of EBV and GBVs of milk traits obtained using
PBLUP and ssBC models, respectively, for validation animals. Animals in scenarios B, C and
D were obtained from the same evaluations and accuracies were summarised for animals
when both the sire and dam was recorded (Scenario D, N=161 animals), the sire was
recorded and had ≥5 progeny in the herd (Scenario C, N=155 animals), the dam was
recorded and had ≥1 lactation record (Scenario B, N=6 animals). Animals in scenario A
were obtained from a second evaluation where the pedigree records of animals that
previously had records of both the sire and dam were masked (N=162 animals).

Figure 7.2 shows scatterplots of GBV against EBV of milk traits of the animals in the

validation population that have both the sire and dam known after base adjustment. The

correlations ranged from 0.603 to 0.978.
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Figure 7.2. Scatterplot of standardised-GBV against standardised-EBV of milk yield, fat
yield, protein yield and somatic cell score of animals in the validation set that have both
the sire and dam recorded, N= 161.

Table 7.4 shows the breed coefficients obtained from the PBLUP model and the sum of the

breed and J covariate coefficients obtained from the ssBC model for each breed group. The

breed effects of the Saanen breed group are constrained to zero. Based on pedigree and

phenotype records, the effect of either ANTO or unknown breed groups are lower than the

Saanen breed, however, when genotypes are included in the model the group for the
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animals of unknown breed is estimated to be better than that for the Saanen breed for MY

and PY. The breed effects are much more reliably estimated in the ssBC model compared

to the PBLUP model, as evident by comparing their SE.

Table 7.4. Estimated breed coefficients and standard errors (SE) of milk traits obtained
from PBLUP1 and the sum of breed and J covariate coefficients obtained from ssBC2.

Breed coefficient of traits

Model Breed
Milk yield

(kg) SE
Fat yield

(kg) SE

Protein
yield
(kg) SE SCS3 SE

PBLUP
Saanen 0 0 0 0
ANTO -100.60 138.70 -0.52 4.69 -1.07 3.80 -0.02 1.22
Unknown -33.12 45.10 -1.18 1.52 -1.50 1.24 0.11 0.40

ssBC
Saanen -112.54 2.52 -0.59 0.08 -2.11 0.07 0.47 0.02
ANTO -364.56 5.82 -5.28 0.19 -8.87 0.16 0.01 0.05
Unknown -64.04 2.34 -0.92 0.08 -1.42 0.07 0.46 0.02

1PBLUP = pedigree-based best linear unbiased prediction model, 2ssBC = single-step BayesC model, 3SCS =
calculated as average log2(somatic cell count).

Breed and J covariate coefficients for each breed group obtained from the ssBC model are

shown in Table 7.5. The broad range between breeds reflect the large differences between

the breed groups, particularly the values of the J covariate for the ANTO breed group for

MY. The SEs of ssBC estimates of breed or J covariates are much larger than those for the

sum of the breed effects and J covariates shown in Table 7.4, indicating that the breed and

J covariates in the ssBC model are confounded.
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Table 7.5. Estimated breed and J covariate coefficients and standard errors (SE) of milk
traits obtained from the ssBC1 model.

Breed and J coefficients of traits

Breed
Milk yield

(kg) SE
Fat yield

(kg) SE
Protein yield

(kg) SE SCS2 SE

Saanen 0 0 0 0
ANTO 94.04 247.57 4.99 8.54 7.03 6.73 1.03 2.25
Unknown -164.89 83.04 -2.29 2.67 -4.53 2.37 0.58 0.72

Breed specific J covariate coefficient of traits
JSaanen -112.54 78.95 -0.59 2.56 -2.11 2.25 0.47 0.71
JANTO -458.60 300.00 -10.28 10.23 -15.90 8.19 -1.02 2.76
JUnknown 100.85 34.88 1.38 1.14 3.11 1.00 -0.12 0.31

1ssBC = single-step BayesC model, 2SCS = calculated as average log2(somatic cell count).

Discussion

The aim of this study was to evaluate how the inclusion of genomic information would

impact the accuracy of predicting breeding values for milk traits in New Zealand dairy goats.

Across-breed breeding values were estimated for MY, FY, PY and SCS using the PBLUP model

and a ssBC model. A training population was used to develop the prediction equation that

was then used to predict EBVs and GBVs of the animals in the validation population. In

addition to comparing prediction accuracies of EBVs and GBVs of animals in the validation

population, the effect of the level of pedigree information available in the evaluations were

also explored.

This study reported that a ssBC model using genotypes, pedigree and phenotypic records

can obtain more accurate predictions of animal genetic merit compared to the PBLUP model

currently used for the genetic evaluation of dairy goats in New Zealand. The average

prediction accuracies ranged from 0.20 to 0.22 for EBVs and 0.34 to 0.43 for GBVs. The

increase in accuracy is particularly valuable as these GBVs can be estimated for all

individuals in the evaluation, even those without phenotypes or pedigree information.

Whereas with the PBLUP evaluation those animals without phenotypic or pedigree records
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would have otherwise been excluded. Another benefit of predicting GBVs is the early

selection of young bucks that would be used for breeding without the need to wait for

progeny testing or does producing their first lactation records.

The expected prediction accuracy of PBLUP EBV of MY of this population when both the sire

and dam of an individual is known should be ~0.36 (0.71*√h2) (Van Vleck, 1993). Likewise,

the average prediction accuracy when the dam is known and has a lactation record is

expected to be ~0.25 (0.5*√h2). The low prediction accuracies obtained in this study from

the PBLUP model suggest the current pedigree records provide limited information to the

genetic evaluation of animals in this herd. Whereas the genomic information provides a

significant amount of information to the evaluation as shown by the increased prediction

accuracies. Despite this increase, these accuracies are much lower than those reported in

other dairy goat populations. Multiple studies using ssGBLUP approaches have published

prediction accuracies for milk traits in dairy goats including accuracies of 0.61 for MY in the

UK (Mucha et al., 2015), 0.69 for MY in Spain (Molina et al., 2018), from 0.64 to 0.74 for MY,

FY and PY (Carillier et al., 2014) and from 0.73 to 0.77 for protein content in France (Teissier

et al., 2018). These studies (Carillier et al., 2014; Mucha et al., 2015; Molina et al., 2018;

Teissier et al., 2018) reported that the genomic models only increased accuracies by +5% to

+12% compared to PBLUP models, while in the current study, the accuracies increased by

+64% to +103%. The minimal increase in accuracy in the UK, Spanish and French populations

demonstrates that when the population has rich pedigree records, including genomic

information is not as advantageous. Meanwhile, the significant increase in accuracy

obtained in the current population demonstrates the substantial benefit that genomic

information can have on the prediction of GBVs in this population. This is due to the ability

of the ssBC model to capture additive genetic relationships between the individual and its

relatives from their shared genotypes.

The greatest benefit of including genomic information in the evaluation is for animals that

have no pedigree or phenotypic records. In a PBLUP genetic evaluation these animals would

not be linked to the pedigree and excluded from the evaluation. Whereas, the ssBC model

can capture the additive genetic relationships, enabling the evaluation to predict a GBV
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based on the GBV of their relatives. For this reason, the average prediction accuracies of

GBVs when neither the sire or dam were recorded, ranged from 0.30 to 0.39 for the four

traits. It should be noted that these GBV accuracies obtained when neither the sire and dam

are known, are also greater than the accuracies of EBVs when both the sire and dam of the

individual is known (0.24 to 0.27), demonstrating the benefit of including genomic

information into the evaluation.

When animals in the validation population have a dam in the reference population with at

least one lactation record, this animal was able to be included in the evaluation, as the

PBLUP model could then include information from the dam to estimate the genetic merit

of the individual. In this scenario, prediction accuracies of EBVs range from 0.18 to 0.22. The

accuracy of the GBVs of FY and SCS was slightly greater when the dam was recorded in the

pedigree and had her own lactation record, compared to the animal having no pedigree

records. However, the prediction accuracy was lower for prediction of MY and PY GBVs.

These contradictory accuracies of GBVs could be due to the limited number of animals in

the validation population that had dams with lactation records (6 animals), and therefore

was not an accurate representation of the true effect of having this additional information

in the reference population. On the other hand, these differing accuracies between traits

could suggest that the inclusion of the dam and her lactation records does not add much to

the accuracy of GPs. The latter coincides with other GP studies which also suggest that

adding females to the reference population does not contribute a great deal to the accuracy

of GPs (Cooper et al., 2014; Mucha et al., 2015).

When the animals have a sire recorded in the pedigree that has at least five progeny

records, the average prediction accuracy of both models was greater than the accuracies

obtained when the dam was recorded in the pedigree and had her own lactation record.

This difference in accuracy suggests that most of the information is captured by the males

present in the reference population, rather than the females. Although actual sires were

not included in the reference population, the link between the sires and their progeny

provides greater benefit to the predictions compared to the information provided by the

dams with lactation records.
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The prediction accuracy of EBVs and GBVs when animals have a sire recorded that has at

least five progeny, was similar to corresponding accuracies when both the sire and dam was

known. This suggests that animals in the validation population that have recorded sires

linked to the reference population, provides as much information to the prediction of

breeding values as the animals with both the sire and dam recorded.

Accuracy of predictions are important in livestock genetic improvement programmes as this

gives confidence of a reliable estimate of the individuals true breeding values. If the

accuracy is low, there is greater risk that the EBVs and GBVs are not reliable and there is

more chance of selecting a genetically dud animal. The accuracy of GP largely depends the

size of the reference population (Daetwlyer et al., 2012), the relationship between animals

in the reference population and the target animals to be predicted (Clark et al., 2012), the

LD between the SNPs and QTL and the distribution of the QTL effects (Hayes et al., 2009),

the heritability of the trait  and of course the prediction method used. All of which can be

changed to improve accuracies.

Unlike the dairy cattle industry that has high accuracies due to a well-established recording

system and large reference populations (Harris et al., 2008), the dairy goat population is

significantly smaller and pedigree records are more often incomplete. The more

information provided in the genetic evaluation, the greater the accuracy, therefore, as

animals are included in the reference population these accuracies should increase. Due to

Mendelian sampling, the maximum reliability from additional information from siblings is

constrained to 0.25 for half-sibs and 0.5 for full-sibs. To achieve greater reliabilities like the

dairy cattle industry, progeny testing and / or genomic information is required. Likewise,

the lower accuracies obtained in this study for the across-breed EBVs and GBVs could be

due to an insufficient number of genotyped and phenotyped animals in the reference

population required to accurately represent all breeds in the validation population.

Furthermore, this study used a medium-density SNP chip which limited the LD between SNP

and QTL, and consequently limited the prediction accuracies. However, using a denser SNP

chip or whole-genome-sequencing could increase the LD, providing greater accuracy of

across-breed GPs. Additionally, reducing environmental or residual components will
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increase the heritability of the trait, since the heritability is the proportion of phenotypic

variation attributed to genetic variation. This could be achieved by adjusting for covariates

that explain part of the environmental factors in the analysis. Lastly, the prediction model

fitted in this study was a single-step BayesC approach, which is different to the ssGBLUP

approaches generally used in GP studies of milk traits in dairy goats (Carillier et al., 2014;

Mucha et al., 2015; Molina et al., 2018; Teissier et al., 2018). Currently, dairy goat

populations are relatively small and therefore the ssGBLUP approach provides an efficient

process for obtaining GBVs. In this population there is a large QTL known to have a

significant effect on milk production in dairy goats. While it is true that ssGBLUP assumes a

normal distribution of marker effects, this approach can accommodate different weightings

for different loci (Teissier et al., 2018). However, Bayesian methods use a prior allowing for

genes of moderate to large effect, therefore fitting a mixture model such as BayesC seemed

appropriate. Even though the prediction accuracies using this ssBC model were lower than

those obtained in other studies using the ssGBLUP approaches, this could be due to the

limited information available in the evaluation, rather than the model. The prediction

accuracies obtained in the current study were based on a single herd however, these

accuracies are expected to increase as the size of the reference population increases.

Without knowing the actual genotype of an individual and when the animals are young and

have not yet produced their own records, the EBVs are based on the average of their

parents EBVs. This was the method of genetic evaluation in animal breeding before the

introduction of genomic technologies. Genomic breeding values were predicted to

demonstrate the effect of including genomic information into the genetic evaluation

system. The slope of standardised-GBV against standardised-EBV is used as a measure of

genomic inflation. The expected value is 1, indicating that the GPs are on a similar scale as

the EBVs i.e. not inflated of deflated. In this study, the regression coefficients obtained for

FY, PY and SCS were less than 1 (0.85 to 0.93), indicating GBVs of these traits are slightly

inflated, and the regression coefficient for MY is 1.06, indicating slight deflation. Inaccurate

prediction of GBVs could potentially lead to selection of the wrong candidates, for example,

deflated GBVs would result in high producing animals being underestimated and the low
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producing animals would be overestimated. Likewise, for inflated GBVs, high producing

animals would be overestimated, and low producing animals would be underestimated.

However, the regression coefficients obtained in this study give confidence that the

standardised-GBVs are similar to the EBVs and given the improved accuracy of GBVs,

reiterates the potential of including genomic information in the genetic evaluation of these

traits.

Genetic evaluation of New Zealand dairy goats is performed annually and carried out using

a PBLUP multi-trait animal model to produce EBVs of milk production traits using pedigree

and phenotypic records. The dairy goat population in New Zealand consists of animals with

various and often unknown breed compositions. The predominant breed is Saanen, but

there are too few animals of other breeds to carry out effective within-breed evaluations.

Thus, the industry currently uses an “across-breed” genetic evaluation enabling evaluation

of all purebred and crossbred animals. Across-breed GBVs are calculated by including the

breed effect. The breed effect can have a large influence on the accuracy of EBVs and GBVs

in a multibreed genetic evaluation and will be important for ranking of animals. Although

this data set is relatively small, the regression coefficients obtained for these breed groups

illustrate the importance of breed effects. Likewise, J coefficients obtained for the

difference between the genotyped founder and non-genotyped founder breeds ranged

from -472.5 kg MY for ANTO to +101.67 kg MY for the “unknown” breed group. These

coefficients are included in the across-breed GBVs for each animal where the value for non-

genotyped animals will vary widely, depending on how closely related they are to the

genotyped animals and their breed proportions of each breed group. Previously, GBVs were

predicted based solely on their pedigree and genotypes, which led to overestimation as the

genotyped animals were generally the most superior in the population. However, correcting

for the difference between genotyped and non-genotyped founder breeds enables

prediction of genetic merit in a population where selection is absent as the analysis is

conditional on the data used for selection.

A single-step approach that includes both genotyped and non-genotyped animals would be

recommended for the genetic evaluation of the New Zealand dairy goat population as the



138 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Chapter 7

inclusion of genomic information improved the accuracy of prediction of across-breed

breeding values for all traits and for all scenarios. The accuracies obtained for the different

scenarios demonstrate what farmers could expect with varying degrees of relationships to

the reference animals. Prediction accuracies are important for farmers as this shows how

reliable the estimation is and provides trust that the GBVs between selection candidates

are consistent. Results from this study suggest GP is possible in the New Zealand dairy goat

population however, this was based on a single-herd and requires further investigation

before implementing for the entire population.

Conclusion

Including genomic information improved the prediction accuracy of breeding values

compared to the pedigree-based BLUP method currently implemented in the New Zealand

dairy goat industry. Prediction accuracies were slightly lower than other populations, but

these accuracies are expected to increase as more animals enter the reference population.

The use of a higher density SNP chip or whole-genome-sequencing would increase the

extent of LD which would improve accuracies of across-breed GPs. Although this genomic

evaluation was of a single New Zealand dairy goat herd, the inclusion of genomic

information would enable prediction of GBV for all animals, even those without known

pedigree or phenotypic records, which would benefit the New Zealand dairy goat

population.



Chapter 8
Overall discussion and conclusion
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8.1 Review of important findings

No formal breeding program exists in the New Zealand dairy goat industry, and as a result,

the national genetic improvement of dairy goats is stagnant. Although only a small

proportion of the New Zealand dairy goat population has been genotyped to date, the

inclusion of genomic information into a single-step genomic evaluation will enable

prediction of genomic breeding values (GBVs) of all genotyped individuals and their

recorded relatives.  This will allow ranking of selection candidates at a young age, and if

these rankings are used for selection will provide real genetic progress. Therefore,

implementing single-step genomic evaluation in a breeding program for the New Zealand

dairy goat industry would provide an opportunity to increase quantity and composition of

milk produced in the New Zealand dairy goat industry.

In order to achieve the rate of genetic gain offered by genomic selection there needs to be

a well-defined breeding program. There is a logical process to the development of a

breeding program and this thesis investigated a number of these aspects. This discussion

covers the genetic parameters of traits of interest and their suitability of inclusion in the

breeding objective. Genomic studies identified significant regions on the goat genome that

influence the milk traits and a prototype single-step genomic evaluation model was

developed. Important aspects required to successfully implement genomic evaluation in

this population were highlighted including: re-defining the breeding objective, considering

traits other than production, establishing a database and improving pedigree records, and

managing the level of inbreeding, were discussed. Last of all, this information was

consolidated into a summary for the Dairy Goat Cooperative (NZ) Ltd (DGC) to successfully

implement genomic evaluation in the New Zealand dairy goat population.

8.1.1 Estimation of genetic parameters (milk traits)

The estimation of genetic parameters is an essential step to develop an effective breeding

program (Harris et al., 1984). Genetic parameters such as heritability, repeatability,

(co)variances, phenotypic and genetic correlations of traits are estimated to assess the
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sources of variation and to evaluate relationships between traits of interest. These genetic

parameters are specific to the population in which they are estimated as they can change

due to selection, migration of genes from one population to another, or changing

environmental conditions (van der Werf and de Boer, 1989). Estimates of the heritability

and phenotypic variances for total lactation yields of milk (MY), fat (FY) and protein (PY) and

somatic cell score (SCS) were reported in Chapter 3 and suggest that most traits are under

moderate genetic control and show sufficient phenotypic variation to achieve reasonable

genetic gains through selection. Favourable genetic correlations between these traits

support the use of an economic index which appropriately weights the traits in order to

maximise the economic response for the farmers.

8.1.2 Estimation of genetic parameters (lactation curves)

Currently the New Zealand genetic evaluation relies on a two-step process based on a first

step of combining test-day records to phenotypically predict total lactation yields. However,

a random regression test-day model that considers sample day records directly in the

analysis can account more precisely for environmental factors that could affect animals

differently during the lactation (Schaeffer and Dekkers, 1994). In addition, this test-day

model can be used with incomplete lactation records (Freeman, 1998). This model was used

to estimate genetic parameters of daily MY, FY, PY and SCS in New Zealand dairy goats.

Results from this study are important to the farmer as the average shape of the lactation

curve provides the predicted level of production over the lactation period, enabling the

farmer to make informed management decisions such as feeding, breeding and economic

management. Lactation curves obtained for individual animals provide farmers insight into

the health status of the animal during the lactation process and the environmental effects

affecting its milk production (Hossein-Zadeh, 2016). The genetic parameters of the lactation

curves provide insight into the genetic associations between the traits at different stages of

the lactation and enable the estimation of breeding values to select for improving milk traits

over the whole lactation. Heritability estimates obtained for the lactation curves (Chapter

4) indicate sufficient genetic variability to make genetic progress for these traits. The results
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from this analysis were similar to those obtained in dairy goat populations in Brazil, Spain,

Norway, Germany, Thailand which have already adopted this test-day approach in their

genetic evaluations (Andonov et al., 2007; Zumbach et al., 2008; Menéndez-Buxadera et al.,

2010; Irano et al., 2015; Thepparat et al., 2015; Oliveira et al., 2016; Brito et al., 2017b).

Moving to a random regression test-day model would provide more accurate estimates for

each individual and selection programs could be devised to exploit the genetic variation of

the lactation period.

8.1.2.1 Potential for extended lactations

Extending the lactation period in dairy goats would enable a continual supply of milk to

producers without producing potentially unwanted kids. In addition, extending the lactation

period would reduce the metabolic stress related to negative energy balance during early

lactation (Knight, 1997). However, goats have a narrow seasonal breeding pattern, making

it difficult to achieve year-round dairy production (Desire et al., 2017). In France, attempts

to extend the lactation period in goats led to a decrease in milk yield across the lactation,

and the high genetic merit females had fewer opportunities to contribute high-merit herd

replacements (Desire et al., 2017). Conversely, in Holland and Spain, an extended lactation

period was successfully adopted in dairy goats, enabling goats to be milked consistently for

2 to 7 years without significant losses in milk yield (Salama et al., 2005; Schuiling, 2007). In

the dataset used in this thesis many animal lactations were identified as extended,

suggesting some dairy goat farmers have already adopted the practice of extending the

lactation period of their does. The random regression test-day model introduced in Chapter

4 could easily be extended to estimate genetic parameters and breeding values to enable

genetic evaluation of these extended lactation traits (Portolano et al., 2001). The shape of

the lactation curves obtained in Chapter 4 were explored to examine the potential for

selecting for extended lactations in the New Zealand dairy goat population. Results showed

that heritability estimates of daily yields were greatest between days 150 and 250,

indicating that production during mid-lactation is more influenced by the genetic effects of

the individual and less by environmental factors. With this in mind, genetic correlations
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between different attributes of the lactation curve (peak yield, day at peak and persistency)

and total lactation yields should be estimated to understand the relationship between these

traits, as selecting for desired characteristics of the lactation curve could negatively

influence yield traits (Ferris et al., 1985). Extending the lactation period could be a useful

strategy for simplifying herd management and would mitigate production of surplus males

and should be seriously considered for inclusion within the New Zealand breeding scheme.

8.1.3 Heritability of survival

Milk traits are currently included in the annual genetic evaluation as the DGC is focused on

producing milk with high total milk solids and low bacterial count for the manufacture of

high-quality products. However, placing too much emphasis on production, whilst

neglecting other traits may result in undesirable consequences on the health and fertility of

animals, which decreases longevity (Oltenacu and Broom, 2010). Longevity is an important

trait for increasing the overall economic efficiency of a dairy goat farm as it results in an

older age structure of the herd, leading to greater milk production within the herd and

reduced replacement costs (Serradilla et al., 1997; Castañeda-Bustos et al., 2017).

Therefore, longevity should be considered in the current genetic evaluation system. In

Chapter 5 the estimated heritability of longevity in this population was reported to be low

(0.07), but the coefficients of variation ranged from 43 to 45 indicating useful levels of

phenotypic variation that could be exploited by its inclusion in a breeding program.

Although longevity-type traits are not currently included in breeding objectives in dairy

goats (Castañeda-Bustos et al., 2017), they are exploited in the breeding program of New

Zealand dairy cattle and have a similar heritability value of 0.06 (DairyNZ, 2020a). An

economic value for longevity in New Zealand already exists which would enable easy

inclusion of this trait into a selection index (Solis-Ramirez et al., 2018), but further work is

required to quantify the genetic and phenotypic correlations with other traits currently

included in the index.
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8.1.4 Genome-wide association studies

We performed the first genome-wide association study (GWAS) of dairy goats in New

Zealand (Chapter 6) using single nucleotide polymorphism (SNP) genotypes obtained from

3,732 animals using the Caprine 50K SNP chip (Illumina Inc., San Diego, CA, USA). A genomic

region on chromosome 19 was significantly associated with MY, FY, PY and SCS and a region

on chromosome 29 was associated with SCS. It is possible the quantitative trait locus (QTL)

on chromosome 19 has major pleiotropic effects in dairy goats as it was also significantly

associated with type traits, udder morphology, functional longevity and semen production

in the French dairy goat population (Palhiere et al., 2014, Martin et al., 2018; Oget et al.,

2018; Palhiere et al., 2018). Although the haplotype frequencies obtained in the New

Zealand population suggest that the major QTL on chromosome 19 is not yet fixed in the

New Zealand dairy goat population, it exhibits undesirable pleiotropic effects on milk

production and udder traits in French dairy goats (Martin et al., 2018). Genetic markers

affecting gene function, in high linkage disequilibrium with genes, or known to be causal

mutations can be fitted in the model as fixed effects to improve the accuracy of genomic

predictions (Xu et al., 2020). Further research is recommended to distinguish whether these

negative pleiotropic effects occur within the current population before implementing

marker-assisted selection. If further analysis identifies favourable effects on important

traits, then results from the GWAS could be used in selection programs for implementing

marker-assisted-selection. Alternatively, genomic prediction captures all QTL across the

genome and therefore, would account for both positive and negative effects, providing the

greatest benefit over marker-assisted-selection (Xu et al., 2020).

8.1.5 Estimation of genomic breeding values

Currently, the genetic evaluation of New Zealand dairy goats relies on a multi-step process

and high-quality pedigree records to estimate breeding values (EBVs). These multi-step

prediction models require pseudo-phenotypes such as de-regressed breeding values

(Garrick et al., 2009), which require preliminary evaluation of the performance of the buck’s
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progeny, referred to as a progeny-test. The New Zealand dairy goat industry have poor

pedigree records and no progeny test scheme, therefore the reliabilities of bucks EBVs are

low. The benefits of a single-step genomic evaluation will enable more accurate estimates

of GBVs of bucks and the ability to accurately evaluate bucks at a very young age, instead

of waiting for them to be evaluated through progeny testing of their daughters, will achieve

faster genetic gains on sex-limited traits.

In Chapter 7, a prototype genomic prediction evaluation of a single-herd proved that across-

breed genomic prediction could be implemented in the multi-breed dairy goat population

in New Zealand. A single-step BayesC (ssBC) model that included phenotypic, pedigree and

genotypic information from genotyped and non-genotyped animals was fitted to predict

GBVs for a single dairy goat herd. Prediction accuracies of GBVs were significantly greater

than prediction accuracies of EBVs obtained from a pedigree-based BLUP method which is

currently implemented in the New Zealand dairy goat industry that uses phenotypes and

pedigree records (Singireddy et al., 1997). Including genomic information substantially

increased prediction accuracy within a single herd and is expected to provide even greater

benefits for the rest of the population that has even more animals with missing pedigree

records than the herd evaluated. The genomic prediction model used for this single herd

can be applied to the wider New Zealand dairy goat population and with the increased

animals in the training population, the prediction accuracies are expected to increase.

This chapter demonstrates the benefits of the single-step prediction model compared to

the current evaluation, and adopting this model would put the New Zealand dairy goat

industry in a very good position to implement genomic selection.

8.2 Important aspects to improve the New Zealand dairy goat industry

A few areas that the DGC needs to focus on in order to successfully implement genomic

selection were identified in this thesis and discussed in the sections below. These include;

re-defining a breeding objective, considering traits other than production, improving

pedigree records and managing inbreeding.
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8.2.1 Re-defining the breeding objective

Although this thesis focusses on improving the quantity and quality of goat milk in New

Zealand, the potential rate of genetic gains possible through the use of genomic information

also introduces great risk. Before implementing genomic prediction, great care must be

taken to decide on the desired direction of genetic gain. The first step in a breeding program

is to define the breeding goal which states the desired direction of improvement from the

breeding program (Groen, 2000). However, the most important decision in the design of a

breeding program, is the definition of the breeding objective (James, 1982). This requires

identification of traits that influence the breeding goal and the relative importance of each

trait (Garrick and Fernando, 2014). If too much emphasis is put on a trait, then genetic gains

will be achieved at a rapid rate, but in the wrong direction. Therefore, the DGC needs to

take care in re-defining a clear breeding objective. For example, the national breeding

objective in the New Zealand dairy cattle industry is Breeding Worth (BW). The traits and

relative emphasis of each trait on the breeding objective includes milk fat (24%), protein

(17%), milk volume (13%), live weight (11%), fertility (13%), somatic cell score (6%), residual

survival (9%) and body condition score (7%) (DairyNZ, 2020b). Thus, the BW index is

currently putting the greatest emphasis on increasing milk fat while also ensuring genetic

gain is not detrimentally increasing other traits. To achieve genetic improvement towards a

more sustainable dairy goat industry, it is important to broaden the breeding objective to

include traits other than production, similar to the dairy cattle industry. For dairy goat

farming the traits currently perceived as being of primary importance are milk yield, body

size, fertility, growth rate and disease tolerance (Bett et al., 2009), length of lactation,

reproductive traits (Lopes et al., 2013) and udder morphology traits (Martin et al., 2018).

Incorporating live weight and feed efficiency into a genetic improvement program could

reduce feed costs per unit of output. In addition to the enormous potential for reducing

costs to producers, genetic improvement of live weight and feed efficiency also have

positive implications from an environmental sustainability standpoint. Therefore, live

weight, longevity, fertility and feed efficiency are important traits that should be considered

in the breeding objective of the New Zealand dairy goat industry.
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Once the breeding objective is clearly defined, genetic parameters and the relative

importance of each trait (economic values) can be estimated and a selection index that

includes the traits and economic weights can be implemented.

8.2.2 Including traits other than production

The current genetic evaluation produces EBVs for MY, FY, PY and SCS. The DGC uses an index

that weights each of these traits with respective economic values. With the majority of goat

milk being sold as infant formula, the index is currently focused on increasing PY. However,

placing too much emphasis on production whilst neglecting other traits will result in

undesirable consequences on the health and fertility of animals. For example, in the French

dairy goat population, MY has an antagonistic association with udder type traits (Manfredi

et al., 2001) and the highly successful selection of milk production led to a deterioration in

udder shape (Martin et al., 2018). Five udder type traits found to explain 80% of the genetic

variability of udder and teat morphology (Clément et al., 2006) have since been included in

the selection index to simultaneously improve milk production and udder shape (Martin et

al., 2018). To avoid issues like this occurring in the New Zealand dairy goat population, the

DGC is now moving towards the inclusion of other traits such as live weight, longevity and

fertility into the selection index. The genetic parameters required for inclusion in the index

were estimated for longevity in Chapter 5 but could not be obtained for live weight or

fertility due to lack of records. Also, economic values have already been developed for

longevity and live weight, but one is required for fertility. Other traits that should be

considered and are currently included in other dairy goat indices around the world include

feed efficiency (Desire et al., 2018), mammary health traits (Manfredi et al., 2001; Martin

et al., 2018), disease tolerance (Berton et al., 2017) and fertility (Desire et al., 2017).

If the goal of the DGC is to improve the quality of milk to produce leading infant formulas,

it would be beneficial to invest in understanding the composition of goat milk and the

possibility of estimating genetic parameters for these elements and potentially begin some

form of selection to produce animals that produce milk more suited to infant formula. Key
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issues would be determining principal milk constituents and knowledge of fatty acid

composition of the goat milk in New Zealand. The development of automated infrared

instruments (mid-infrared and near-infrared spectroscopy) enables rapid analysis of milk

components, which has been adopted into the routine analysis of samples in the dairy cattle

industry (Tiplady et al., 2020). With the infrared spectra, milk components important for

infant formula can be predicted, and just like other phenotypes, GBVs can be developed.

8.2.3 Establishing a database and improving pedigree records

Once the breeding objective is clearly defined, the DGC must set up a strong foundation for

recording and managing records. This will require an organised database and implementing

appropriate recording techniques to ensure that sufficient high-quality pedigree and

phenotypic data are collected and managed. Currently, pedigree-records in the New

Zealand dairy goat population are incomplete with some pedigree errors. Inconsistencies

were observed when the A-matrix (based on pedigree records) was compared to the G-

matrix (based on genomic information). Additionally, the parents recorded in the pedigree

file were often not confirmed through the genotypes, indicating parent misidentification.

These pedigree errors can affect the genetic evaluation by introducing biases in the

estimation of genetic parameters and EBVs (Bradford et al., 2019). For example, 10% of

pedigree errors can reduce genetic progress by up to 4% (Jiménez-Gamero et al., 2006). In

such cases, genomic tools are advantageous in optimising breeding programs by verifying

or assigning parentage (Talenti et al., 2018). Genomic information can be used to discover

maternal parentage, specifically maternal grandsires and great-grandsires when the dam is

not known, as well as assessing breed composition (Strucken et al., 2017), which is another

inconsistency in the records of the New Zealand dairy goat population. A possible way to

address the poor pedigree recording in this population is to use the genomic information

provided by the genotyped animals. Although this is a small number of genotyped animals,

information from genotypes will provide a lot more information about the relationships

within the population which will increase the accuracy of predictions. Provided such

analyses are limited to the genotyped animals, genotyping animals with poor pedigree
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records would provide a more structured pedigree and substantially improve the accuracy

of predictions.

High-quality pedigree and phenotype information is crucial for the success of a genetic

evaluation system. Accurate phenotypes will reduce experimental errors and

environmental effects, improving the estimation of heritabilities, and since heritability is a

function of phenotypic variation, improve prediction accuracies. Accurately recorded data

will result in more reliable genetic indexes, providing farmers with more accurate breeding

values to make informed decisions when selecting candidates for breeding. Although

recording phenotypes and pedigree is an extra task amongst an already busy schedule of

work, increasing the number and quality of records will be a worthwhile investment in the

long term (LIC, 2020).

In order to maximise the genetic improvement of the New Zealand dairy goat herd,

increased data recording is essential. Three areas in which farmers can provide more data

include the collection of pedigree records, fertility results and health events. Pedigree

records are the most important piece of data that can be recorded on any animal as this is

the link required in the genetic evaluation to obtain a breeding value based on performance

records of the individual and its relatives. The full potential of genotyping will only be

realised if it is paralleled by these high-quality phenotypes and a well-designed database.

8.2.4 Managing inbreeding

Due to the inadequate breeding structure in the dairy goat sector, inbreeding should be a

serious concern for New Zealand dairy goat breeders. Traditional selection methods such

as BLUP can lead to an increased rate of inbreeding per generation because the covariance

between EBV of family members may be high, especially for young animals using EBVs

derived from ancestral information (Clark et al., 2013). In addition, increasing the use of

reproductive and genetic technologies such as (e.g., artificial insemination and multiple

ovulation and embryo transfer) can increase rates of genetic gains but also increases

selection intensity for females in breeding programs, which can significantly increase the
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rates of inbreeding (Granleese et al., 2015). To ensure inbreeding is not unnecessarily

increased, breeders should monitor inbreeding levels to limit the potential decrease in

performance caused by inbreeding. Meuwissen (1997) introduced the Optimal Contribution

Selection method that determines the optimal levels of the genetic contributions of

selection candidates in an attempt to maximise the rate of genetic gain for a specified level

of inbreeding. However, if genomic prediction is applied to the New Zealand dairy goat

population, the rates of inbreeding per generation are expected to reduce, due to the GBVs

explaining more of the mendelian sampling variation compared to EBVs (Daetwyler et al.,

2007; Dekkers et al., 2007). Therefore, implementing genomic prediction in this population

is expected to increase genetic gain of traits of interest, while maintaining the populations

genetic diversity (Clark et al., 2013).

8.3 Summary for the New Zealand Dairy Goat Cooperative

The DGC needs to redefine the breeding objective, set up a genotyping program and

establish a breeding structure to achieve the rapid genetic progress offered by genomic

evaluation. Most importantly, the DGC should consider defining the breeding goal in terms

of profit per kilogram of dry-matter intake. This goal will ensure the breeding program

produces efficient animals and a sustainable dairy goat industry. The breeding objective

should include traits that effect profitability such as lactation yields of milk, fat and protein,

somatic cell score, live weight, longevity and fertility. Including traits other than production

traits will ensure genetic gain does not negatively impact fitness traits such as health and

fertility. The relative emphasis of each trait is crucial as this ensures the genetic gains occur

at the desired level and in the desired direction. These relative weights depend on the

priority of the DGC but should consider the long-term goal. With the breeding goal and

objective clearly defined, the DGC must set up a strong foundation for storing, recording

and managing the data. This step is paramount to the success of a breeding program and

ensuring high-quality phenotypic data can be collected. The recording system should

include the sire and dam, knowledge of the herd, contemporary group, sex, date of birth,

age of the animal, and the genotypes. The DGC should put strong emphasis on the quality
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of such information as inconsistencies in the database can introduce bias and low prediction

accuracies. The DGC could establish an incentive to encourage farmers to collect accurate

records and invest in genotyping, as these would benefit the interest of farmers and the

DGC. For example, if the farm participates in genotyping, or, provides pedigree records with

minimal errors, then they receive the GBVs for their herd, otherwise they will only receive

the BLUP EBVs. The handling of the genetic information and database management is a vital

aspect of a genetic improvement program. The DGC must decide on how the genetic

information is managed and reported back to farmers. In addition, the DGC needs to

establish a genotyping scheme and method of disseminating the superior genes to the rest

of the population. The use of artificial insemination and optimum contributions selection

would be a fast and safe (low risk of disease) method of disseminating superior genes while

managing inbreeding.

8.4 General conclusion

The results of this thesis contribute in the design of the breeding program that will ensure

the dairy goat industry increases the quantity and composition of goat milk produced in

New Zealand. Genetic parameters and favourable genetic correlations between milk traits

support the use of a selection index to predict the breeding objective. A random regression

test-day model was developed, enabling more accurate estimates for each individual and

the option of extending lactation traits. Longevity showed sufficient variation to warrant

inclusion into the evaluation, but further work is required to quantify the genetic and

phenotypic correlations with other traits currently included in the index. Genomic regions

were identified on chromosome 19 for MY, FY, PY and SCS and on chromosome 29 for SCS,

that can be exploited for a more desirable milk composition. A single-step genomic

prediction model demonstrated that inclusion of genomic information into the evaluation

can achieve significantly greater prediction accuracies than the traditional pedigree-based

evaluation currently implemented in the New Zealand dairy goat industry. This single-step

model will enable the evaluation of bucks at a younger age which can rapidly increase in the

rate of genetic gain within the New Zealand dairy goat industry. However, the DGC should
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re-define the breeding objective to ensure the genetic progress occurs in the right direction

and should consider including traits other than production in the evaluation. To achieve the

full potential of genomic evaluation, it is paramount that the DGC establishes a well-

structured database and recording system to ensure high-quality pedigree and phenotypic

records are maintained. Furthermore, the DGC should consider the risk of inbreeding when

disseminating superior genetics.

Overall, the results presented in this thesis advance the knowledge required for the design

of a breeding program using genomic information and provide a framework of statistical

tools and steps required to implement genomic prediction in the New Zealand dairy goat

industry. Including the single-step model in the breeding program will dramatically improve

the quantity and composition of goat milk produced in New Zealand, enabling the DGC to

remain competitive on the global stage.
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Cosıó F, Meza-Herrera C. 2004. Risk factors associated with dairy goats stayability.
Livestock Production Science 89: 139-146.

Perreira JM, Aker AM, Savidis G, Chin CR, McDougall WM, Portmann JM, Meraner P, Smith MC,
Rahman M, Baker RE, Gauthier A, Franti M, Brass AL. 2015. RNASEK is a V-ATPase-
associated factor required for endocytosis and the replication of rhinovirus, influenza A
virus, and dengue virus. Cell Reports 12: 850-863.

Piles M, Garreau H, Rafel O, Larzul C, Ramon J, Ducrocq V. 2006. Survival analysis in two lines of
rabbits selected for reproductive traits. Journal of Animal Science 84: 1658-1665.

Portolano B, Montalbano L, Militi W. 2001. Genetic and environmental sources of variation for
milk yield traits in Barbaresca siciliana breed. Small Ruminant Research 41: 195-202.

Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D. 2006. Principal components
analysis corrects for stratification in genome-wide association studies. Nature genetics 38:
904-909.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus
genotype data. Genetics 155: 945-959.

Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME, Hayes BJ. 2010. A
validated genome-wide association study in 2 dairy cattle breeds for milk production and
fertility traits using variable length haplotypes. Journal of Dairy Science 93: 3331-3345.

Pulina G, Milán MJ, Lavín MP, Theodoridis A, Morin E, Capote J, Thomas DL, Francesconi AHD, Caja
G. 2018. Invited review: Current production trends, farm structures, and economics of the
dairy sheep and goat sectors. Journal of Dairy Science 101: 6715-6729.

Rabasco A, Serradilla JM, Padilla JA, Serrano A. 1993. Genetic and non-genetic sources of variation
in yield and composition of milk in Verata goats. Small Ruminant Research 11: 151-161.

Reber I, Keller I, Becker D, Flury C, Welle M, Drögemüller C. 2015. Wattles in goats are associated
with the FMN1/GREM1 region on chromosome 10. Animal Genetics 46: 316-320.

Rendel JM, Robertson A. 1950. Estimation of genetic gain in milk yield by selection in a closed herd
of dairy cattle. Journal of Genetics 50: 1-8.

Robertson A, Rendel JM. 1950. The use of progeny testing with artificial insemination in dairy
cattle. Journal of Genetics 50: 21-31.

Robertson K, Symes W, Garnham M. 2015. Carbon footprint of dairy goat milk production in New
Zealand. Journal of Dairy Science 98: 4279-4293.

Roldán DL, Rabasa AE, Saldaño S, Holgado F, Poli MA, Cantet RJC. 2008. QTL detection for milk
production traits in goats using a longitudinal model. Journal of Animal Breeding and
Genetics 125: 187-193.

Rota AM, Gonzalo C, Rodriguez PL, Rojas AI, Martín L, Tovar JJ. 1993. Effects of stage of lactation
and parity on somatic cell counts in milk of Verata goats and algebraic models of their
lactation curves. Small Ruminant Research 12: 211-219.



168

Ruiz-Rodriguez CT, Brandt JR, Oliverio R, Ishida Y, Guedj N, Garrett EF, Kahila Bar-Gal G, Nikolaidis
N, Cardoso FC, Roca AL. 2017. Polymorphisms of the toll-like receptor 2 of goats (Capra
hircus) may be associated with somatic cell count in milk. Animal Biotechnology 28: 112-
119.

Rupp R, Clément V, Piacere A, Robert-Granié C, Manfredi E. 2011. Genetic parameters for milk
somatic cell score and relationship with production and udder type traits in dairy Alpine
and Saanen primiparous goats. Journal of Dairy Science 94: 3629-3634.

Salama AAK, Caja G, Such X, Casals R, Albanell E. 2005. Effect of pregnancy and extended lactation
on milk production in dairy goats milked once daily. Journal of Dairy Science 88: 3894-
3904.

Salama AAK, Caja G, Hamzaoui S, Badaoui B, Castro-Costa A, Facanha DAE, Guilhermino MM, Bozzi
R. 2014. Different levels of response to heat stress in dairy goats. Small Ruminant Research
121: 73-79.

Sargent FD, Lytton VH, Wall OG. 1968. Test interval method of calculating dairy herd improvement
association records. Journal of Dairy Science 51: 170-179.

Sarmento JLR, Albuquerque LG, Torres RA, Rodrigues MT, Lopes PS, Reis Filho JC. 2008.
Comparação de modelos de regressão aleatória para estimação de parâmetros genéticos
em caprinos leiteiros. Revista Brasileira de Zootecnia 37: 1788-1796.

Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito T, Sakuma H, Miyashita S, Arata S, Kojima T.
2016. SNP-and haplotype-based genome-wide association studies for growth, carcass, and
meat quality traits in a Duroc multigenerational population. BMC Genetics.
DOI:10.1186/s12863-016-0368-3.

Schaeffer LR, Dekkers JCM. 1994. Random regressions in animal models for test-day production in
dairy cattle. Proceedings of the World Congress of Genetics Applied Livestock Production
18: 443-446.

Schaeffer LR. 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal
Breeding and Genetics 123: 218-223.

Scholtens MR, Smith RMC, Lopez-Lozano SR, Lopez-Villalobos N, Burt D, Harper L, Tuohy M,
Thomas DG, Carr AJ, Gray DI, Tozer P, Schreurs NM. 2017. Brief communication: The
current state of the New Zealand goat industry. Proceedings of New Zealand Society of
Animal Production 77: 164-168.

Scholtens MR, Lopez-Villalobos N, Garrick DJ, Blair HT, Lehnert K, Snell RG. 2019. Genetic
parameters for total lactation yields of milk, fat, protein, and somatic cell score in New
Zealand dairy goats. Animal Science Journal. DOI:10.1111/asj.13310.

Scholtens MR, Jiang A, Smith A, Littlejohn M, Lehnert K, Snell RG, Lopez-Villalobos N, Garrick DJ,
Blair HT. 2020. Genome-wide association studies of lactation yields of milk, fat, protein
and somatic cell score in New Zealand dairy goats. Journal of Animal Science and
Biotechnology. DOI:10.1186/s40104-020-00453-2.

Schuiling HJ. 2007. Duurmelken bij geiten = Prolonged lactations in goats. Animal Sciences Group,
Wageningen University. https://edepot.wur.nl/42847.

Selvaggi M, Dario C. 2015. Genetic analysis of milk production traits in Jonica goats. Small
Ruminant Research 126: 9-12.

Serenius T, Stalder KJ. 2004. Genetics of length of productive life and lifetime prolificacy in the
Finnish Landrace and Large White pig populations. Journal of Animal Science 82: 3111-
3117.

Serradilla JM, Sanchez-Palma A, Micheo JM. 1997. Preliminary analysis of the possibility of
including longevity as a breeding goal of Maguena goats. In: Gabina D, Bodin L (eds). Data
collection and definition of objectives in sheep and goat breeding programmes: New



169

prospects. 33: 207-219. Options Mediterraneennes. Serie A: Seminaires Mediterraneens
(CIHEAM).

Silva FG, Torres RA, Brito LF, Euclydes RF, Melo ALP, Souza NO, Ribeiro Jr JI, Rodrigues MT. 2013.
Random regression models using Legendre orthogonal polynomials to evaluate the milk
production of Alpine goats. Genetics and Molecular Research 12: 6502-6511.

Silva RMO, Fragomeni BO, Lourenco DAL, Magalhães AFB, Irano N, Carvalheiro R, Canesin RC,
Mercadante MEZ, Boligon AA, Baldi FS, Misztal I, Albuquerque LG. 2016. Accuracies of
genomic prediction of feed efficiency traits using different prediction and validation
methods in an experimental Nelore cattle population. Journal of Animal Science 94: 3613-
3623.

Singireddy SR, Lopez-Villalobos N, Garrick DJ. 1997. Across-breed genetic evaluation of New
Zealand dairy goats. Proceedings of the New Zealand Society of Animal Production 57: 43-
45.

Slatkin M. 2008. Linkage disequilibrium—understanding the evolutionary past and mapping the
medical future. Nature Reviews Genetics 9: 477-485.

Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE. 2008. Genomic selection using different
marker types and densities. Journal of Animal Science 86: 2447-2454.

Solis-Ramirez J, Lopez-Villalobos N, Blair HT. 2011. Dairy goat production systems in Waikato, New
Zealand. Proceedings of the New Zealand Society of Animal Production 71: 86-91.

Solis-Ramirez J. 2014. A genetic improvement programme for New Zealand dairy goats. PhD in
Animal Science, Institute of Veterinary, Animal and Biomedical Sciences, Massey
University, Palmerston North, New Zealand.

Solis-Ramirez J, Lopez-Villalobos N, Blair HT. 2018. Estimation of economic values for longevity and
somatic cell score in New Zealand dairy goats. Proceedings of the World Congress on
Genetics Applied to Livestock Production 11: 367.

Spelman RJ, Hayes BJ, Berry DP. 2013. Use of molecular technologies for the advancement of
animal breeding: genomic selection in dairy cattle populations in Australia, Ireland and
New Zealand. Animal Production Science 53: 869-875.

Spelman RJ, Tiplady K, Harland C, Winkelman AM, Sherlock RG, Keehan MD, Littlejohn MD. 2014.
Application of large-scale sequence datasets for the discovery of genomic variations of
economic importance in dairy cattle. Proceedings of the 10th World Congress of Genetics
Applied to Livestock Production. Vancouver, Canada.

Stafford K, Prosser C. 2016. Goat production. In: Stafford K (ed). Livestock production in New
Zealand: the complete guide to dairy cattle, beef cattle, sheep, deer, goats, pigs and
poultry. Massey University Press, New Zealand.

Strandén I, Garrick DJ. 2009. Technical note: Derivation of equivalent computing algorithms for
genomic predictions and reliabilities of animal merit. Journal of Dairy Science 92: 2971-
2975.

Strucken EM, Al-Mamun HA, Esquivelzeta-Rabell C, Gondro C, Mwai OA, Gibson JP. 2017. Genetic
tests for estimating dairy breed proportion and parentage assignment in East African
crossbred cattle. Genetics Selection Evolution 49: 67-67.

Suontama M, Klápště J, Telfer E, Graham N, Stovold T, Low C, McKinley R, Dungey H. 2019.
Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different
selection histories. Heredity 122: 370-379.

SVS. SNP & Variation Suite ™ [Software]. Bozeman, MT: Golden Helix, Inc.
http://www.goldenhelix.com.



170

Swan AA, Johnston DJ, Brown DJ, Tier B, Graser H. 2012. Integration of genomic information into
beef cattle and sheep genetic evaluations in Australia. Animal Production Science 52: 126-
132.

Tabbaa MJ, Al-Atiyat R. 2009. Breeding objectives, selection criteria and factors influencing them
for goat breeds in Jordan. Small Ruminant Research 84: 8-15.

Talenti A, Palhière I, Tortereau F, Pagnacco G, Stella A, Nicolazzi EL, Crepaldi P, Tosser-Klopp G.
2018. Functional SNP panel for parentage assessment and assignment in worldwide goat
breeds. Genetics Selection Evolution. DOI:10.1186/s12711-018-0423-9.

Taskinen M, Mäntysaari EA, Strandén I. 2017. Single-step SNP-BLUP with on-the-fly imputed
genotypes and residual polygenic effects. Genetics Selection Evolution.
DOI:10.1186/s12711-017-0310-9.

Teissier M, Larroque H, Robert-Granie C. 2018. Weighted single-step genomic BLUP improves
accuracy of genomic breeding values for protein content in French dairy goats: a
quantitative trait influenced by a major gene. Genetics Selection Evolution.
DOI:10.1186/s12711-018-0400-3.

Thepparat M, Boonkum W, Duangjinda M, Tumwasorn S, Nakavisut S, Thongchumroon T. 2015.
Genetic evaluation using random regression models with different covariance functions
for test-day milk yield in an admixture population of Thailand goats. Animal Science
Journal 86: 655-660.

Tiplady KM, Lopdell TJ, Littlejohn MD, Garrick DJ. 2020. The evolving role of Fourier-transform
mid-infrared spectroscopy in genetic improvement of dairy cattle. Journal of Animal
Science and Biotechnology 11: 1-13.

Torrero GY. 2010. Estimación de covarianzas para características de longevidad y producción en
cabras. Universidad de Guanajuato, Irapuato, Gto. México.

Torres-Vázquez JA, Valencia-Posadas M, Castillo-Juárez H, Montaldo HH. 2009. Genetic and
phenotypic parameters of milk yield, milk composition and age at first kidding in Saanen
goats from Mexico. Livestock Science 126: 147-153.

Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, Donnadieu-Tonon C, Eggen
A, Heuven HCM, Jamli S. 2014. Design and characterization of a 52K SNP chip for goats.
PLOS ONE. DOI:10.1371/journal.pone.0086227.

Valencia-Posadas M, Torrero-Garza Y, Vicencio-Reyes CV, Shepard L, Montaldo HH. 2010.
Phenotypic relationships between characteristics of conformation with the ability of
permanence to the 36 months in Alpine goats. Acta Universitaria 20: 40-44.

Valencia-Posadas M, Torrero-Garza Y, Torres-Vázquez JA, Ángel-Sahagún CA, Gutiérrez-Chávez AJ,
Shepard L, Montaldo HH. 2017. Genetic parameters for functional stayability to 24 and 36
months of age and first lactation milk yield in dairy goats. Small Ruminant Research 149:
209-213.

Valencia M, Doble J, Arbiza SI. 2002. Sources of environmental variation affecting lactation and
pre-weaning growth characteristics in Saanen goats. Cuban Journal of Agricultural Science
36: 117-122.

Valencia M, Dobler J, Montaldo HH. 2007. Genetic and phenotypic parameters for lactation traits
in a flock of Saanen goats in Mexico. Small Ruminant Research 68: 318-322.

van der Werf JHJ, de Boer W. 1989. Estimation of genetic parameters in a crossbred population of
black and white dairy cattle. Journal of Dairy Science 72: 2615-2623.

Van Vleck LD. 1993. Selection index and introduction to mixed model methods. CRC Press, Boca
Raton.

VanRaden PM, Wiggans GR. 1991. Derivation, calculation, and use of national animal model
information. Journal of Dairy Science 74: 2737-2746.



171

VanRaden PM, Klaaskate EJH. 1993. Genetic evaluation of length of productive life including
predicted longevity of live cows. Journal of Dairy Science 76: 2758-2764.

VanRaden PM. 2007. Genomic measures of relationship and inbreeding. INTERBULL bulletin 33-33.
VanRaden PM. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science

91: 4414-4423.
VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS.

2009. Invited review: Reliability of genomic predictions for North American Holstein bulls.
Journal of Dairy Science 92: 16-24.

Viana JMS, Piepho H. 2017. Quantitative genetics theory for genomic selection and efficiency of
genotypic value prediction in open-pollinated populations. Scientia Agricola 74: 41-50.

Vitezica Z, Aguilar I, Misztal I, Legarra A. 2011. Bias in genomic predictions for populations under
selection. Genetics Research 93: 357-366.

Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. 2012. Genome-wide association mapping
including phenotypes from relatives without genotypes. Genetics Research 94: 73-83.

Wang X, Miao J, Chang T, Xia J, An B, Li Y, Xu L, Zhang L, Gao X, Li J. 2019. Evaluation of GBLUP,
BayesB and elastic net for genomic prediction in Chinese Simmental beef cattle. PLOS
ONE. DOI:10.5061/dryad.4qc06.

Weber KL, Thallman RM, Keele JW, Snelling WM, Bennett GL, Smith TPL, McDaneld TG, Allan MF,
Van Eenennaam AL, Kuehn LA. 2012. Accuracy of genomic breeding values in multibreed
beef cattle populations derived from deregressed breeding values and phenotypes.
Journal of Animal Science 90: 4177-4190.

Wheeler M, Foote BJ, Foote JF. 2013. Brief communication: genetic parameters of stayability
measures in a dairy goat herd. Proceedings of the New Zealand Society of Animal
Production 73: 165-167.

Wheeler M, Foote BJ, Foote JF. 2014. Brief Communication: relationships between longevity and
herd-test traits in a dairy goat herd. Proceedings of the New Zealand Society of Animal
Production 74: 49-51.

Wiggans GR, Hubbard SM. 2001. Genetic evaluation of yield and type traits of dairy goats in the
United States. Journal of Dairy Science 84: 69-73.

Wolc A, Arango J, Settar P, Fulton JE, O’sullivan NP, Preisinger R, Habier D, Fernando R, Garrick DJ,
Hill WG. 2012. Genome-wide association analysis and genetic architecture of egg weight
and egg uniformity in layer chickens. Animal Genetics 43: 87-96.

Wolc A, Zhao HH, Arango J, Settar P, Fulton JE, O’sullivan NP, Preisinger R, Stricker C, Habier D,
Fernando RL. 2015. Response and inbreeding from a genomic selection experiment in
layer chickens. Genetics Selection Evolution. DOI:10.1186/s12711-015-0133-5.

Wright S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56: 330-338.
Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A. 2020.

Enhancing genetic gain through genomic selection: from livestock to plants. Plant
Communications. DOI:10.1016/j.xplc.2019.100005.

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón
CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann
T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J,
Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS,
Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A,
Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M,
Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. 2018. Ensembl 2018.
Nucleic Acids Research 46: 754-761.



172

Zhang H, Yin L, Wang M, Yuan X, Liu X. 2019. Factors affecting the accuracy of genomic selection
for agricultural economic traits in maize, cattle, and pig populations. Frontiers in Genetics.
DOI:10.3389/fgene.2019.00189.

Zhang X, Lourenco D, Aguilar I, Legarra A, Misztal I. 2016. Weighting strategies for single-step
genomic BLUP: An iterative approach for accurate calculation of GEBV and GWAS.
Frontiers in Genetics. DOI:10.3389/fgene.2016.00151.

Zhao X, Dittmer KE, Blair HT, Thompson KG, Rothschild MF, Garrick DJ. 2011. A novel nonsense
mutation in the DMP1 gene identified by a genome-wide association study is responsible
for inherited rickets in Corriedale sheep. PLOS ONE. DOI:10.1371/journal.pone.0021739.

Zhou L, Mrode R, Zhang S, Zhang Q, Li B, Liu J. 2018. Factors affecting GEBV accuracy with single-
step Bayesian models. Heredity. DOI:10.1038/s41437-017-0010-9.

Zhu B, Guo P, Wang Z, Zhang W, Chen Y, Zhang L, Gao H, Wang Z, Gao X, Xu L. 2019. Accuracies of
genomic prediction for twenty economically important traits in Chinese Simmental beef
cattle. Animal Genetics 50: 634-643.

Zumbach B, Tsuruta S, Misztal I, Peters KJ. 2008. Use of a test day model for dairy goat milk yield
across lactations in Germany. Journal of Animal Breeding and Genetics 125: 160-167.

Zvinorova PI. 2017. A genome-wide association study on mechanisms underlying genetic
resistance to gastrointestinal parasites in goats, Zimbabwe PhD thesis, Stellenbosch
University.



173

Curriculum vitae

Megan Scholtens was born on the 19th October 1993 in Whakatane, Bay of Plenty, New

Zealand. She completed her primary education in 2006 at Waiotahe Valley School, Bay of

Plenty, New Zealand. She finished her secondary school in 2011 at Opotiki College, Bay of

Plenty, New Zealand. In 2014 she was awarded Massey Equine Student of the Year and in

2015 she graduated with a Bachelors of Agri Science from Massey University, New Zealand.

In 2016, she obtained a Masters Degree with First Class Honours from the Department of

Animal Science, Massey University, New Zealand with the thesis "Genetic evaluation of milk

traits, live weight, somatic cell score, and litter size at birth, and development of a selection

index for dairy sheep", under the supervision of Prof. Nicolas Lopez-Villalobos and Dr Sam

Peterson. In 2017 she was awarded a full scholarship by MBIE to realise her Ph. D studies.

She started her Ph. D program in the Department of Animal Science, Massey University,

New Zealand. In 2018 she was awarded the Young Member Finalist Award from the New

Zealand Society of Animal Production, New Zealand. During her PhD she attended and

presented at multiple conferences including the World Congress for Genetics Applied to

Livestock Production in New Zealand, 2018 and the European Association of Animal

Production in Belgium, 2019. She is going to start a Genetics and Breeding job at the

Cawthron Institute, Nelson, New Zealand working with salmon, mussels and oysters.



DRC 16 

GRS Version 5 – 13 December 2019 
DRC 19/09/10 

STATEMENT OF CONTRIBUTION 
 DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have consented to 
their work being included in the thesis and they have accepted the candidate’s contribution as indicated 
below in the Statement of Originality. 

Name of candidate: 

Name/title of Primary Supervisor: 

In which chapter is the manuscript /published work: 

Please select one of the following three options: 

The manuscript/published work is published or in press 

• Please provide the full reference of the Research Output:

The manuscript is currently under review for publication – please indicate: 

• The name of the journal:

• The percentage of the manuscript/published work that
was contributed by the candidate:

• Describe the contribution that the candidate has made to the manuscript/published work:

It is intended that the manuscript will be published, but it has not yet been submitted to a journal 

Candidate’s Signature: 

Date: 

Primary Supervisor’s Signature: 

Date: 

This form should appear at the end of each thesis chapter/section/appendix submitted as a manuscript/ 
publication or collected as an appendix at the end of the thesis. 

Megan Scholtens

Prof. Nicolas Lopez-Villalobos

3

Scholtens MR, Lopez‐Villalobos N, Garrick DJ, Blair HT, Lehnert K, Snell RG. 2019. Genetic 
parameters for total lactation yields of milk, fat, protein, and somatic cell score in New Zealand dairy 
goats. Animal Science Journal 10.1111/asj.13310

26-Aug-2020

26-Aug-2020

Megan Scholtens
Digitally signed by Megan 
Scholtens 
Date: 2020.08.26 14:16:46 +12'00'

Digitally signed by Nicolas Lopez-Villalobos
DN: cn=Nicolas Lopez-Villalobos, c=NZ, 
o=Massey University, ou=Institute of 
Veterinary, Animal and Biomedical Sciences, 
email=N.Lopez-Villalobos@massey.ac.nz
Date: 2020.08.26 15:15:43 +12'00'

Nicolas Lopez-
Villalobos



DRC 16 

GRS Version 5 – 13 December 2019 
DRC 19/09/10 

STATEMENT OF CONTRIBUTION 
 DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have consented to 
their work being included in the thesis and they have accepted the candidate’s contribution as indicated 
below in the Statement of Originality. 

Name of candidate: 

Name/title of Primary Supervisor: 

In which chapter is the manuscript /published work: 

Please select one of the following three options: 

The manuscript/published work is published or in press 

• Please provide the full reference of the Research Output:

The manuscript is currently under review for publication – please indicate: 

• The name of the journal:

• The percentage of the manuscript/published work that
was contributed by the candidate:

• Describe the contribution that the candidate has made to the manuscript/published work:

It is intended that the manuscript will be published, but it has not yet been submitted to a journal 

Candidate’s Signature: 

Date: 

Primary Supervisor’s Signature: 

Date: 

This form should appear at the end of each thesis chapter/section/appendix submitted as a manuscript/ 
publication or collected as an appendix at the end of the thesis. 

Megan Scholtens

Prof. Nicolas Lopez-Villalobos

4

Scholtens MR, Lopez-Villalobos N, Garrick DJ, Blair HT, Lehnert K, Snell RG. 2019. Estimates of 
genetic parameters for lactation curves for milk, fat, protein and somatic cell score in New Zealand 
dairy goats. New Zealand Journal of Animal Science and Production 79: 177-182.

26-Aug-2020

26-Aug-2020

Megan Scholtens
Digitally signed by Megan 
Scholtens 
Date: 2020.08.26 14:25:27 +12'00'

Digitally signed by Nicolas Lopez-Villalobos
DN: cn=Nicolas Lopez-Villalobos, c=NZ, 
o=Massey University, ou=Institute of 
Veterinary, Animal and Biomedical Sciences, 
email=N.Lopez-Villalobos@massey.ac.nz
Date: 2020.08.26 15:16:52 +12'00'

Nicolas Lopez-
Villalobos



DRC 16 

GRS Version 5 – 13 December 2019 
DRC 19/09/10 

STATEMENT OF CONTRIBUTION 
 DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have consented to 
their work being included in the thesis and they have accepted the candidate’s contribution as indicated 
below in the Statement of Originality. 

Name of candidate: 

Name/title of Primary Supervisor: 

In which chapter is the manuscript /published work: 

Please select one of the following three options: 

The manuscript/published work is published or in press 

• Please provide the full reference of the Research Output:

The manuscript is currently under review for publication – please indicate: 

• The name of the journal:

• The percentage of the manuscript/published work that
was contributed by the candidate:

• Describe the contribution that the candidate has made to the manuscript/published work:

It is intended that the manuscript will be published, but it has not yet been submitted to a journal 

Candidate’s Signature: 

Date: 

Primary Supervisor’s Signature: 

Date: 

This form should appear at the end of each thesis chapter/section/appendix submitted as a manuscript/ 
publication or collected as an appendix at the end of the thesis. 

Megan Scholtens

Prof. Nicolas Lopez-Villalobos

5

Scholtens MR, Lopez-Villalobos N, Garrick DJ, Blair HT. 2018. Heritability of longevity in New Zealand 
dairy goats. New Zealand Journal of Animal Science and Production 78: 11-15.

26-Aug-2020

26-Aug-2020

Megan Scholtens
Digitally signed by Megan 
Scholtens 
Date: 2020.08.26 14:28:08 +12'00'

Digitally signed by Nicolas Lopez-Villalobos
DN: cn=Nicolas Lopez-Villalobos, c=NZ, 
o=Massey University, ou=Institute of 
Veterinary, Animal and Biomedical Sciences, 
email=N.Lopez-Villalobos@massey.ac.nz
Date: 2020.08.26 15:17:38 +12'00'

Nicolas Lopez-
Villalobos



DRC 16 

GRS Version 5 – 13 December 2019 
DRC 19/09/10 

STATEMENT OF CONTRIBUTION 
 DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have consented to 
their work being included in the thesis and they have accepted the candidate’s contribution as indicated 
below in the Statement of Originality. 

Name of candidate: 

Name/title of Primary Supervisor: 

In which chapter is the manuscript /published work: 

Please select one of the following three options: 

The manuscript/published work is published or in press 

• Please provide the full reference of the Research Output:

The manuscript is currently under review for publication – please indicate: 

• The name of the journal:

• The percentage of the manuscript/published work that
was contributed by the candidate:

• Describe the contribution that the candidate has made to the manuscript/published work:

It is intended that the manuscript will be published, but it has not yet been submitted to a journal 

Candidate’s Signature: 

Date: 

Primary Supervisor’s Signature: 

Date: 

This form should appear at the end of each thesis chapter/section/appendix submitted as a manuscript/ 
publication or collected as an appendix at the end of the thesis. 

Megan Scholtens

Prof. Nicolas Lopez-Villalobos

6

Scholtens MR, Jiang A, Smith A, Littlejohn M, Lehnert K, Snell RG, Lopez-Villalobos N, Garrick DJ, 
Blair HT. 2020. Genome-wide association studies of lactation yields of milk, fat, protein and somatic 
cell score in New Zealand dairy goats. Journal of Animal Science and Biotechnology 
10.1186/s40104-020-00453-2

26-Aug-2020

26-Aug-2020

Megan Scholtens
Digitally signed by Megan 
Scholtens 
Date: 2020.08.26 14:32:31 +12'00'

Digitally signed by Nicolas Lopez-Villalobos
DN: cn=Nicolas Lopez-Villalobos, c=NZ, 
o=Massey University, ou=Institute of 
Veterinary, Animal and Biomedical Sciences, 
email=N.Lopez-Villalobos@massey.ac.nz
Date: 2020.08.26 15:18:05 +12'00'

Nicolas Lopez-
Villalobos


