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Abstract

Natural hazards such as earthquakes, floods and landslides threaten communities in

every part of the world. Exposure to such perils can be reduced by mitigation and

forward planning. These procedures require the estimation of event likelihoods, a pro-

cess which is well understood for single hazards. However, spatio-temporal interaction

between natural hazards, through triggering or simple coincidence, is not uncommon

(e.g. Alaska 1964, the Armero tragedy, the Kaikoura earthquake), and can lead to more

severe consequences than the simple sum of two separate events. Hence single hazard

assessments may underestimate, or incorrectly estimate, the real risk through a lack of

interaction analysis. In the existing research literature, multi-hazards assessments are

most commonly approached qualitatively or semi-quantitatively, evaluating hazards via

an interaction matrix, without formal quantification of the risk. This thesis presents a

quantitative framework, using point processes as the key tool, to evaluate the interac-

tion of primary hazards in the occurrence of secondary (triggered) ones. The concept

of the ‘hazard potential’ is developed, as a means of generalizing hazard interactions in

space and time, allowing event outcomes to be simulated within a simple point process

framework. Two particular examples of multiple hazard interactions are presented:

rainfall and/or earthquake-induced landslides, and the survival of landslide dams. In

the first case, point processes are used to model the triggering influence of multiple

factors in a large real dataset collected from various sources. By discretizing space

and time to match the data resolution, a daily-spatio-temporal hazard model to eval-

uate the relative and combined effects on landslide triggering due to earthquakes and

rainfall is created. The case study on the Italian region of Emilia-Romagna suggests

that the triggering effects are additive. In the second example, a Bayesian survival

model is developed to forecast the time to failure of landslide dams, based on their

characteristics and those of the potential reservoir. A case study on heterogeneous Ital-

ian events is presented, together with examples of potential results (forecasting) and

possible generalizations of the model.

xi
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Chapter 1

Introduction

1.1 Motivation

Natural hazards are a significant threat to human society, beyond death and injury, as

their consequences can disrupt the activities and the economy of the affected commu-

nities. As part of efforts to mitigate the effects produced by natural hazards, hazard

assessments are carried out to evaluate where, when and how these events may occur.

Historically, hazard assessments have been single-hazard analyses (Camassi and Stuc-

chi, 1996; Brunetti et al., 2006; Zhuang et al., 2012), focusing on the occurrences of one

hazard, without considering any others. In some cases, a triggering mechanism from

another hazard (e.g. rainfall triggering landslides) has been involved in the analyses

(Guzzetti et al., 1999; Dai et al., 2002; Casagli et al., 2003; Berti et al., 2012). How-

ever, it is known that hazards are not necessarily independent (De Pippo et al., 2008;

Kappes et al., 2010). In fact, they can occur in the same region within the same time

window (Gill and Malamud, 2014), potentially aggravating the consequences on the

communities. That suggests the need for an all-encompassing analysis of hazards and

their interactions, known in the literature as multi-hazard analysis. This is a relatively

new topic that has received increased interest in recent years (Tilloy et al., 2019), as an

effect of the rising awareness that the combined effect of interacting hazards potentially

produces aggravated consequences on communities (Komendantova et al., 2014; Liu

et al., 2015; UNDDR, 2019). Hence, several multi-hazard or resilience programs such

as HAZUS (Schneider and Schauer, 2006), RiskScape (Reese et al., 2007), Resilience

Challenge (National Science Challenges, 2019), MATRIX (Komendantova et al., 2014)

have shed light on this topic.

Although there is a widely expressed need for a multi-hazard framework, the ex-

amples presented in the literature are limited in number and mostly focused on the

qualitative description of interactions. The obvious missing aspect is a tool to estimate

the likelihood or the consequences of hazard occurrences. Several aspects make the

1



CHAPTER 1. INTRODUCTION 2

building of such framework challenging, particularly from a quantitative point of view.

Multi-hazard analysis has to deal with “elements of quite different kinds” (Hewitt and

Burton, 1971), because hazards differ in characteristics, in frequency, in consequences:

so their assessments differ too. Furthermore, their interactions can be equally diverse.

Gill and Malamud (2014) classified four different types of triggering: direct trigger-

ing, increased probability, decreased probability, spatio-temporal overlapping. Kappes

et al. (2010) and Heinimann (1998) hypothesised that the interaction between hazards

is the result of disposition, of the area to the hazard, and triggering, from other haz-

ards. The disposition is related to environmental elements. Therefore, the assessment

of potential interactions requires a well-conceived multi-hazard framework (Marzocchi

and Woo, 2009; Chen et al., 2010; Kappes et al., 2010, 2012a; Gill and Malamud, 2014;

Esharti et al., 2015). This framework would need to include characteristics and inter-

actions of hazards, with the final aim of more effective risk mitigation and resilience

procedures (Mahendra et al., 2011).

Multi-hazard methodologies are in the early stages, especially in quantitative terms.

Many qualitative or semi-quantitative examples (e.g. Gill and Malamud 2014; Komen-

dantova et al. 2016) have appeared in the literature, but the lack of statistical models

or analyses hinders the replicability of the proposed method to any group of interacting

hazards, as well as to any area in the world. For example, the use of qualitative or

semi-quantitative matrices for the evaluation of hazards (De Pippo et al., 2008; Kappes

et al., 2012b) represents a step towards a multi-risk framework, as there is the ac-

knowledgement and the attempt to evaluate interactions between hazards. Qualitative

methods can only provide a description of the effects, which is a solid knowledge basis

for quantitative models, but cannot provide any estimates. Semi-quantitative methods

propose a categorization of quantitative effect (e.g. Kappes et al. (2012b) classify actual

ranges of hazard intensities into three categories: low, moderate, high) or attempt the

creation of indices based on ranked qualitative categories and occurrence frequencies

(Gill and Malamud, 2014). Furthermore, these analyses are often based on a specific

area (De Pippo et al., 2008), which may result in models that are too specific to be

applied to other areas or hazards. With the aim of proposing a more reliable and

widely-applicable framework, some authors have proposed quantitative multi-hazard

methods based on generated data that do not reflect the complexity of natural hazards

(Mignan et al., 2014). The simulation of data was justified by the lack of complete and

consistent data for natural hazards of different natures. Hence, the challenging idea

is to build a framework starting from real data, based on a specific hazard chain, but

that can be generalised and used in other regions and for other hazard chains.

The reason for preferring a stochastic modelling approach is that it would allow us to

calculate the likelihood of a certain event, i.e. the probability of occurrence. Therefore,
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it is vital to be able to study the frequency and magnitude of a hazard, particularly

in combination with the frequency and magnitude of triggering and/or interacting

hazards. In this way, it is possible to observe the occurrences of hazards over time and

evaluate more realistically the future occurrence probabilities of the triggered hazard.

The best way of achieving this is to build a fully quantitative and dynamical statis-

tical model capable of evaluating the interactions among natural hazards. The existing

literature proposes limited use of statistical methods (mostly copulas and extreme value

distributions), to model hazard thresholds (Tilloy et al., 2019), such as the rainfall

amount necessary to trigger a landslide (Berti et al., 2012). However, these cannot be

considered as stochastic models, because they do not study the evolution of a hazard

over time. More flexible methods, such as point processes (Vere-Jones, 1978; Isham and

Westcott, 1979; Ogata, 1988), would be useful for this task because they can model

the occurrence of events over time, while taking into consideration their magnitude or

other characteristics. However, the shortage of data, which characterises natural haz-

ard analyses on multi-hazard occurrences (Aksha et al., 2020), has heavily limited the

research so far.

Point processes are stochastic models used to describe the occurrence of events

in time or space. They have commonly been used in hazard analysis, particularly to

model earthquake occurrences (Zhuang et al., 2004; Ogata and Zhuang, 2006; Lombardi

and Marzocchi, 2010; Zhuang, 2011), rainfall and storms (Isham and Westcott, 1979;

Rodriguez-Iturbe and Eagleson, 1987; Cowpertwait et al., 2007), eruptions (De la Cruz-

Reyna, 1991; Bebbington, 2008; Wang et al., 2020) and wildfires (Xu and Schoenberg,

2011; Yang et al., 2015; Aragó et al., 2016). One of the main advantages of point

processes is that they can be adapted to model various types of events, in relation to

their interactions.

In particular, we need processes that can embrace the features typical of the possi-

ble interactions between hazards. Processes such as self-exciting ones (Hawkes, 1971;

Ogata, 1988), self-correcting ones (Isham and Westcott, 1979), and their combinations

(Schoenberg and Bolt, 2000) are able to capture the characteristics of the events in

terms of frequency distribution, from short-term-high-frequency ones (clustering) to

long-term-low-frequency ones (fast decay).

Features such as these can be adapted and extended to model not only the hazard

occurrences, but the interaction between hazards. In fact, there is a connection with

the classes of hazard interactions (direct triggering, increased/decreased probability,

spatial/temporal overlapping) proposed by Gill and Malamud (2014). For example,

the occurrence of one type of event in a short time period may increase the probability

of occurrence of another hazard. Hence, these models can be useful methodologies for

our framework.
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To comprise all possible aspects related to the hazard interactions, more sophis-

ticated models, such as marked point processes or processes with multiple layers of

stochasticity (Rodriguez-Iturbe et al., 1987), can be used to include additional di-

mensions (e.g. magnitude, space) or combine more than one point process to express

different features of a phenomenon, making the overall model a better representation

of the data.

1.2 Overview

This thesis aims to explicitly examine the possibilities for placing multi-hazard analysis

in a quantitative footing. As a first step, I will present a quantitative multi-triggering

model for landslides triggered by earthquakes and rainfall. The second step will be

to investigate the feasibility of extending the multi-hazard framework further into the

proposed hazard chain. This will be done by studying the time to failure of landslide

dams. Finally, the concept of potentials in multi-hazard analysis will be introduced, as

a first step to a broad and comprehensive framework for multi-hazard analysis.

1.2.1 Point process for hazard interactions

The first part of the thesis is a review of the quantitative methodologies that can be

used for a multi-hazard analysis in Chapter 2. Chapter 3 assesses the state of the art

for hazard assessments, with a particular focus on a specific hazard chain, that will be

described below.

To produce a first attempt at a quantitative framework for multi-hazard model, the

scope of the study has been restricted to the chain of hazards constituted by earth-

quakes and rainfall triggering landslides and extended to landslide dams, as shown in

Figure 1.1. Earthquakes and rainfall overlap in space, but are considered to be only

coincidentally related, meaning that their coincidence is considered random (Gill and

Malamud, 2014; Havenith et al., 2016). However, they can both trigger landslides (Shou

et al., 2011; Zhou et al., 2015b; Iverson, 2000; Berti et al., 2012), so there is a need

(Kappes et al., 2012b) for a statistical model that incorporates both features, in such

a manner that the separate and joint triggering effects can be estimated.

As mentioned above, there is a lack of the type of data required for a quantita-

tive multi-hazard analysis. More specifically, it is not easy to find time-homogeneous,

time-stamped, geographically congruent data, ideally with magnitude data for at least

two hazards. In some cases, data is available but with different levels of completeness

and homogeneity. For example, rainfall datasets from different institutions (NIWA

(2012), New Zealand; TRMM (2017), USA; Arpa-Piedmont (2018), Italy), and land-

slide datasets (ISPRA, 2019) differ substantially in completeness and homogeneity.
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Figure 1.1: Example of complex chain of hazards. The image is from Orchiston et al. (2018),
modified to include rainfall, and to highlight the reduced chain of hazards that has been chosen
for this thesis. Each arrow represent an interaction between events. The bold arrows highlight
the chain of events that is used in this thesis.

Hence, combining these datasets in one framework is challenging, and it is one of the

challenges on quantitative multi-hazard modelling. Hazard occurrences may be also

relatively rare for certain hazards, such as landslide dams (Costa and Schuster, 1988;

Tacconi Stefanelli et al., 2015), due to the nature of the hazard. Furthermore, the dif-

ficulties in the collection process lead to recording errors and incompleteness, resulting

in incorrect or missing data (Santi, 2018). Finally, due to these issues, datasets have

different resolutions: for instance, earthquakes are typically recorded to the second,

landslides to the day or to lesser precision. Therefore, not only it is difficult to obtain

data, but there is often also the need for a substantial process of data cleaning and data

imputation, to merge multiple datasets for a multi-triggering assessment. Chapter 4

includes considerable material on how this problem has been dealt with, in the case of

three datasets for the Italian region of Emilia-Romagna.

In order to provide a first attempt at a quantitative multi-triggering model, Chapter

4 proposes a process to model the interaction between rainfall and earthquakes in the

triggering of landslides. The region was chosen because of its pronounced seismic
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activity: the 2012 earthquake sequence studied in Govoni et al. (2014) is an example

of a long sequence with large earthquakes and aftershocks, in a region with diffuse

seismicity (Chiarabba et al., 2005; Boccaletti et al., 2011). Furthermore, the region is

particularly interesting for the presence of one of the largest landslide datasets available

(ISPRA, 2019).

In the chosen hazard chain in Figure 1.1, landslides are commonly assessed via

susceptibility maps, where the susceptibility is proportional to the spatial likelihood

of a landslide, given a landslide has occurred. With appropriate normalization, it

represents a spatial intensity. The only relevant interactions that have been studied

so far are the triggering interactions earthquake-landslide and rainfall-landslide. These

are usually studied via threshold analysis, e.g. intensity/duration (Berti et al., 2012),

or susceptibility analysis, logistic regression Ayalew and Yamagishi (2005).

As mentioned earlier, point processes are useful methods to model the triggering

effects of hazards over time. Nevertheless, landslides do not occur on the vast majority

of days because, being predominantly triggered by heavy rainfall or earthquakes, not

all days are suitable for landslide occurrence. A Zero-inflated Poisson (ZIP) model is

proposed in Chapter 4, in order to deal with extremely sparse data over time, as it

can model the excess of zeroes separately to the landslide process. Another challenge

encountered was that landslides are recorded as discrete, often grouped data: events

occur in remote areas and recorders are not able to recover the exact time of the event,

but can only provide an approximation within bounds. Consequently, landslides with

uncertain dates have been reallocated in proportion to the conditional probability of

occurrence calculated from those recorded events considered to be precise.

The model is composed of terms specifically tailored to express the triggering ef-

fect on landslides: the earthquake triggering term, the rainfall triggering term, and

the interaction term between earthquakes and rainfall in the triggering of landslides.

In particular, the coseismic effect is based on existing empirical relationships (Utsu,

1970; Ogata, 1988; Wetzler et al., 2016) between main event magnitude and aftershock

productivity as a proxy for ground shaking. Hence, the driving factors of the coseis-

mic term are the magnitude of the earthquake and the distance between landslide and

epicentre. In terms of rainfall, two terms expressing the average of the last two days of

rainfall (short-term) and the weighted average of the last ∆ days of rainfall (long-term)

will express the effect of rainfall on landslides occurrences (Monsieurs et al., 2019; Rossi

et al., 2010).

Although rainfall and earthquakes overlap in space and time, it is unclear how these

factors interact in the triggering of landslides. The long-term rainfall effect is the main

candidate to provide interaction with seismicity, as its prolonged effect is more likely to

temporally overlap with seismic occurrences (Brain et al., 2017). Furthermore, the soil
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saturation might have an effect on coseisimic landslides (Martino et al., 2020). Because

of this knowledge gap, different formulations of the model has been assessed to view

the best way to model the interaction.

1.2.2 Survival analysis of landslide dams

Chapter 5 moves further into the hazard chain shown in Figure 1.1. I apply a survival

model to a landslide dam dataset in order to study the time-to-failure of these hazards.

This kind of analysis is especially important for those hazards whose risk needs to be

quickly assessed, as their situation can evolve rapidly. Insights will also be sought on

how to deal with multivariate data with missing values in one or more variables.

Landslide dams are a common hazard which threatens downstream human settle-

ment or infrastructure, as their collapse may result in a flash flood. The accumulated

water compound the danger; therefore, the estimation of the time to failure becomes

crucial for assessing proposed engineering procedures, and other risk mitigation tech-

niques. The survival analysis is carried out by building a Bayesian model to predict

the time to failure of landslide dams, based on the characteristics of landslide dams

present in a dataset containing nearly 300 events occurred in Italy.

There are very few datasets for landslide dams (Costa and Schuster, 1988; Ermini

and Casagli, 2003; Tacconi Stefanelli et al., 2015), and due to the nature of the event,

they are characterised by a high percentage of missing data. The dataset by Tac-

coni Stefanelli et al. (2015) was chosen as one of the most complete in terms of variety

of events: it includes dams that failed within hours or days, which are usually missing

from other datasets. However, only 8 observations out of 300 were complete, including

the time of damming and time of failure, which are vital in a time-to-event analysis.

Together with the lack of time-to-failure data, there are also missing values within the

covariates. Hence, Bayesian imputation was used to impute the missing values, via an

analysis of the covariance structure of the variables.

The dimensions of landslide dams are considered as crucial factors for their survival,

and they have been used to evaluate the dichotomy between failure and non-failure of

landslide dams (Ermini and Casagli, 2003; Korup, 2004; Liao et al., 2018). By includ-

ing these covariates in a survival model, it is possible to understand which ones in

particular affect a landslide dam the most. This will allow for a quantitative assess-

ment of the time-to-failure, which is an important improvement from the qualitative

or semi-quantitative failure/non-failure assessments. The proposed model will lead to

a significant advancement in the field, as it proves that robust quantitative results can

be obtained even from very limited data. Furthermore, this approach will provide vital

tools for the engineers and the stakeholders, taking decisions on a hazard that might

produce severe consequences within a certain period of time.
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1.2.3 Potentials

The large variety of hazards and interactions (De Pippo et al., 2008; Gill and Malamud,

2014) complicate multi-hazard analysis, due to different evaluation methods and hazard

characteristics. Nevertheless, the identification of some patterns among the interaction

of hazards might help finding a method that would transform this problem into an

opportunity. To do so, in Chapter 6 I propose a conceptual framework for the occur-

rence of hazards, which considers the history of the hazards, their characteristics and

their interactions. Starting from the concept of “potential” (Mignan et al., 2014), ideas

from several authors (Kappes et al., 2010; Gill and Malamud, 2014) will be combined,

particularly focusing on the notions of susceptibility and triggering (Heinimann, 1998;

Kappes et al., 2010). Taking the example of landslides once again, the ground features,

e.g. type of soil, affect the susceptibility of a land to landslides, but it is the combination

of triggering hazard (rainfall and earthquakes) in space and time that actually increase

or decrease the potential of a landslide.

Hence, in Chapter 6 I define the potential as a scalar-valued function encapsulating

the history of the process up to a given time t into a single value. This would simplify

the estimate of the current state of a system of natural hazards, producing an outcome

that summarizes the combined effect of the disposition and triggering of the hazard

over time. A key concept is the possibility to isolate and trace the different processes

affecting the change of potential over time. For instance, in Chapter 4 the rainfall haz-

ard is split into two components, expressing the short and long term effects of rainfall

on landslide occurrence. Similarly, rainfall will be considered in the potential frame-

work as the combination of two distinct processes affecting the potential of landslides.

Examples of application of the potential concept on pre-existing models are presented.

We will start with single-hazard models: self-exciting processes, such as the Hawkes

process, are natural candidates for this framework because of how their conditional

intensities are expressed. On the contrary, other models do not allow for the use of

a potential function to summarize the history of the process. This is the case with

Epidemic Type Aftershock Sequences, or ETAS (Ogata, 1988), because of the formula-

tion of part of the conditional intensity. Multi-hazard cases will be investigated, with

a focus on the different functions that can be chosen to model the different processes

and their interactions. The cases of earthquake/rainfall triggered landslides, landslide

dams and debris flow are explored. I will demonstrate the possibility of building mod-

ules of processes with concatenated marks to simplify the structure of the overall model

and at the same time to mark the interaction among hazards. Also, I will show that

in some cases processes can be approached from different angles, by introducing the

concept of a masking function. This function shows or hides the potential of a hazard,

while a second function delivers the effect of an continuous process. For instance, the
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presence/absence of debris is a masking function for the potential of debris flow, given

that the rainfall is the continuous process. It will be shown that it is possible to switch

these two functions, using the rainfall as a masking function and a continuous process

for the presence of debris. This provides a certain degree of freedom to adjust the

model to other chain of hazards.

Similarly to Mignan et al. (2014), the framework will be assembled with a building

block approach, which will allow for the combination of processes in order to express

their interactions. The use of point processes as a basic structure for the framework

will facilitate this process. Furthermore, the building block approach will also have

an important benefit in the simulation of multi-hazard processes. Existing algorithms

allow for single-hazard or limited multi-hazard examples, with drawbacks of lack of

speed and the need of a large amount of process memory. Instead, the flexibility

of this framework can simplify and increase the speed of the simulation by using a

block for each hazard and taking into consideration that marks are inherited from a

triggering hazard to a triggered hazard. The reduced process memory requirements will

consequently facilitate forecasting and provide a solid base for more complex systems.

Finally, Chapter 7 discusses the results of the thesis and proposes suggestions for

future research.



Chapter 2

Methodology review

2.1 Introduction

In aiming for a quantitative framework for hazard assessment, it is paramount to use

appropriate statistical methods. Such methods should allow for the representation of

event occurrences in time and/or space, describing events with respect to their history.

A good level of flexibility is also essential so that these models can be combined, or

enhanced with additional hazard features. A family of suitable models that hence

will be used in this thesis is that of point processes. A point process is a “stochastic

model that defines probabilistic rules for the occurrence of points in time and/or space”

(Zhuang et al., 2012), and every new temporal or spatial point of the process is related

to the history of previous points.

In particular, this chapter will review the temporal point process as a possible tool

for the analysis of hazard interactions over time. Then, the time discretization of point

processes will be investigated, as necessary means to deal with data characterised by

different levels of temporal resolution (see Chapter 4).

Then, a review of survival analysis is presented, in order to have a methodology

for time-to-event data, of particular interest when a hazard occurrence produces an

impending threat. Furthermore, Bayesian imputation will be introduced, as a useful

tool to extract as much information as possible from datasets naturally characterised

by missing data.

2.2 Point Processes

The history of point processes can be traced back to Siméon-Denis Poisson in the mid-

19th century, although their main development occurred in the 20th century as a result

of the contribution of measure theory. A good portion of the terminology now used

in point process, as well as the use of models that we associate with point processes

10
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(e.g. exponential distribution), is derived from renewal theory. This latter studies

the sequence of intervals between occurrences of an event, the concept of life tables

(from actuarial statistics), and the enumeration of occurrences of events in specific

time periods or space (Daley and Vere-Jones, 2003).

2.2.1 Definition and properties of temporal point processes

There are several approaches to define a point process, thanks to their applicability

to many disciplines. One of them defines the point process as a counting process,

which enumerates the occurrences of an event in a specific set, usually time or space.

It is possible to imagine a temporal point process as points (events) on a line. In

each interval on the line, there might be zero, one or more points. Each point occurs

according to a rule, an intensity function, and to the previous history of the process.

A temporal point process is described by a counting process N(t), the number of

events occurring up to and including t, where N(0) = 0. In particular, in a sufficiently

short time interval (t, t+ ∆t], with ∆t small, the probability of an event is λ(t|Ht)∆t+

◦(∆t). The function λ(t|Ht) is called the conditional intensity function and it expresses

the expected rate of events at time t given the history of the process Ht up to time t:

λ(t|Ht) = lim
∆t→0

P [N(t+ ∆t)−N(t) > 0|Ht]

∆t
(2.1)

where N(t+∆t)−N(t) is the number of events in a small interval (t, t+∆t], also called

differential. (2.1) can be explained as the instantaneous conditional probability of an

event. In other words, it represents the conditional risk of an event occurrence in t given

the previous realizations of the process in the interval from the time origin to t (Daley

and Vere-Jones, 2003). The conditional intensity λ(t|Ht) is then a rate function based

on the process history, and because the probability of an event in any interval is non-

negative, then the conditional intensity function needs to be non-negative everywhere

as well.

If the conditional intensity λ(t|Ht) is parameterized, then the parameters can be

estimated by maximizing the log-likelihood:

logL =

N(T )∑
i=1

log[λ(ti|Hti)]−
∫ T

0
λ(t|Ht)dt (2.2)

where the process is observed on the window [0, T ] and events occur at times {ti} where

0 ≤ t1 < t2 < . . . < tn ≤ T .

A point process is defined as stationary if the structure of the process, its conditional

intensity, is not altered by the translation of time by an arbitrary shift (Cox and Isham,

1980). In other words, P [N(t+ ∆t)−N(t) > 0|Ht] depends on the length of ∆t, and
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not on the time instance t.

Renewal process and Poisson process

The simplest class of temporal point processes is the renewal process, a random point

process with interarrival times Xi with i = 1, . . . , n defined as independent and identi-

cally distributed random variables. Defining the arrival times as

Tn =
n∑
i=1

Xi, n ∈ N (2.3)

where Tn is the time for the nth arrival for n ∈ N. The sequence T = (T0, T1, . . .) is the

arrival time process, although T0 = 0 is not necessarily considered an arrival. Then,

the interarrival times can be recovered from the arrival times:

Xi = Ti − Ti−1 (2.4)

Hence, the process is a renewal process if the interarrival times {Xn : n ≥ 1} are non

negative i.i.d. with distribution function

F (x) = P (X ≤ x), x ∈ [0,∞) (2.5)

It has to be noted that X1 might have a different distribution from the other times

possibly due to incomplete observation, as the time at which observation of the process

began may not have been an event.

For the elementary renewal theorem (Feller, 1941; Smith, 1958), the rate of the

process is equal to the reciprocal of the mean interarrival times, asymptotically. With

lim
t→∞

N(t)

t
= λ (2.6)

Because tN(t) ≤ t < tN(t)+1 and tN(t) = X1 + . . .+XN(t), dividing by N(t) we obtain

1

N(t)

N(t)∑
i=1

Xi ≤
t

N(t)
≤ 1

N(t)

N(t)+1∑
i=1

Xi (2.7)

Because the extremes converge to E(X) with t → ∞ (for the law of large numbers),

then also the element in the middle will converge too.

An important special case of renewal process is the Poisson process, which is used

in many fields. A Poisson process is a temporal point process, with independent incre-

ments. In fact, given 0 ≤ q < r ≤ s < t, N(r)−N(q) and N(t)−N(s) are independent

Poisson random variables. The interarrival times {Xn : n ≥ 1} in a Poisson process are
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i.i.d following an exponential distribution with probability density

f(x) = λ exp(−λx) for x ≥ 0 (2.8)

The parameter λ is the rate of the process and it is constant over time. In other

words, for any unit time interval, there is a constant expected number of occurrences.

This can be compared with a general renewal process, whose rate is constant only

asymptotically. Furthermore, the mean interarrival time is equal to the reciprocal of

the rate: 1/λ = E(X). Consequently, the Poisson process is characterised by the

memoryless property: the time to the next occurrence is not dependent on the time

elapsed from the previous one. Thus, the expected number of arrivals is the same

for two non-overlapping intervals. Given t ≥ 0 and s ≥ 0, the probability of event

occurrence after t + s, given s, is equal to the probability of event occurrence after t:

P (X > t + s|X > s) = P (X > t). Therefore, the counting process N(t) is a Poisson

process of rate λ, independent of the history of the process.

Pr{N(t+ ∆t)−N(t) = 1|Ht} = λ∆t+ ◦(∆t) (2.9)

Figure 2.1 shows an example of Poisson process: there is no pattern among the events.
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Figure 2.1: Example of Poisson process. The first plot show the cumulated events over time,
while the second plot shows the occurrences.
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Self-correcting processes

Self-correcting processes model the occurrence of events over time in an environment

that is more general when compared to a renewal process. The key difference is the

self-correcting process is dependent on earlier occurrences in such a way that allows

for automatic correction of deviations from the mean. This can be achieved by specific

models with a negative correlation between event occurrences so that the likelihood of

an event is somewhat reduced by the occurrence of the earlier ones.

The first self-correcting model was proposed by Isham and Westcott (1979) as a

model capable of producing ρt events over (0, t] for a process with rate ρ. The self-

correction seeks to have a difference between N(t) and ρt close to zero. In other words,

it corrects the deviations from the mean. To do so, the conditional intensity is defined

as

λ(t|Ht) = ρφ(N(t)− ρt) (2.10)

where ρ > 0 and the function φ(·) is chosen so that 0 ≤ φ(x) <∞ and φ(x) ≥ c ∀x > 0.

In the same period, Vere-Jones (1978) introduced a substantially similar model, based

on the elastic rebound theory (Knopoff, 1971).

Stress release model The Stress Release Model (SRM) (Vere-Jones, 1978; Vere-

Jones and Deng, 1988), is used for phenomena characterised by characterised by loading

and release (Reid, 1910). As parametrized by Vere-Jones (1978),

X(t) = X(0) + ρt− S(t) (2.11)

where X(t) is the Benioff stress of the system at time t, X(0) the initial level of stress, ρ

the constant loading rate from external tectonic forces (which makes the stress increase

linearly), and S(t) the accumulated stress release from earthquakes within the region

in: S(t) =
∑

ti<t
Si (Bebbington and Harte, 2003).

The conditional intensity is an exponential function of X(t):

λ(t|Ht) = exp[µ+ νX(t)] = exp[µ+ νX(0) + ν(ρt− S(t))] (2.12)

The function µ/ν + X(0) can be interpreted as a parameter for the initial value of

stress, which is unknown. The parameter ν can then be interpreted as the composition

of strength and heterogeneity of the area, respectively. It is possible to re-parametrize

(2.12) as shown by Ogata and Vere-Jones (1984):

λ(t|Ht) = exp[µ+ νX(0) + νρt− νS(t)] = exp[a+ bt− cS(t)] (2.13)

where the last step is an alternative parametrization used for numerical optimization
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(Harte, 1999), where α + βX(0) = a, βρ = b and β = c. The conditional intensity in

(2.12) or (2.13) evaluates probability of an earthquake in relation to the stress level.

The SRM accounts for the constant increase of stress over time, but also for the stress

release (Si) after an earthquake i. A large release of stress can make X(t) become

even negative. Ergo, during such recharge time, any subsequent event will be unlikely

to occur. A variant was proposed by Bebbington et al. (2010), where the maximum

magnitude was limited in order to keep X(t) non-negative, and thus exclude the large

events, except when the stress level was high. In this particular case, the model,

studying the San Francisco Bay Region data, showed a reduced activity before a large

event (Schwartz et al., 2014). For each event i with magnitude Mi, the energy released

is computed as Si = 100.75(Mi−M0), where a convenient lower magnitude threshold M0

is subtracted from the magnitude of every earthquake, for computational reasons.

Self-exciting processes

On the opposite side, self-exciting point processes describe random sequences of events,

where every event increases the likelihood of occurrence of future events. This increased

likelihood leads to clustering of events, hence this type of stochastic models can repre-

sent the parent-offspring relationship between earthquake main shock and aftershocks

(Hawkes and Oakes, 1974; Reinhart, 2017; Derek Tucker et al., 2019). In such a case,

the covariance between interarrivals will be positive, so that the next event will be in a

way attracted by the occurrence of the former one. These models have applications in

a wide range of topics, from epidemiology (Meyer et al., 2012) to seismology (Musmeci

and Vere-Jones, 1992), from criminology (Mohler et al., 2011) to finance (Errais et al.,

2010). The concept behind the self-exciting process is that the seismicity can be seen

as the sum of “background” earthquakes caused by tectonic loading and earthquakes

“triggered” by other earthquakes. Earthquakes are complex phenomena to study, but

the use of stochastic model, in the last thirty years (Kattamanchi et al., 2017), has

helped the progression of this field.

Hawkes process The original self-exciting process is the Hawkes process (Hawkes,

1971), on which several self-exciting processes are based. The conditional intensity of

the process is:

λ(t) = µ+

∫ t

−∞
h(t− s)N(ds) (2.14)

where µ is the constant background rate and the function h(·) is the triggering function,

which is often exponential, gathering the effects of the events occurring in a certain time

window. Each event will increase the likelihood in relation to its magnitude, and this

effect will decrease, e.g., exponentially at a given rate. This function will depend on
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recent history or rather take into consideration a longer period, in relation to the form

chosen for h(·). Figure 2.2 shows an example of Hawkes process.
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Figure 2.2: Example of Hawkes process: the line represents the conditional intensity of the
process. At the bottom, the realization of the process, i.e. event occurrences. Each event
produces a jump in the conditional intensity, represent by a spike in the line, followed by a
temporal decay. A cluster of events produced a bigger jump and a longer decay.

ETAS model The ETAS model (Ogata, 1988, 1998a; Console et al., 2009) is formu-

lated to incorporate empirical rules (such as Omori’s law) to improve the modelling of

earthquake sequences. The starting point of this model is that an earthquake event

can trigger aftershocks in relation to its magnitude. With this approach, we consider

that each event, large or small, can produce an aftershock cascade. The temporal

conditional intensity of this model is:

λ(t) = µ+
∑
i:ti<t

Kexp[α(Mm −Mc)]

(t− ti + c)p
(2.15)

where µ is the background rate. The model includes the Omori decaying frequency

law for aftershocks (Omori, 1894) λ(t) = k/(t− ti− c)p in its modified version by Utsu

and Ogata (1995) and the productivity law (Utsu, 1969) N = Kexp[α(Mm −Mc)]:

the number of aftershocks exponentially distributed and dependent on the mainshock

magnitude. The multiplicative parameter K is called “aftershock productivity” and

regulates the triggering intensity. It can be computed as the mean number of direct

aftershocks per earthquake (Sornette and Werner, 2005). The parameter α controls

how the productivity increases with magnitude.
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Marked Point Processes

Before introducing spatial and spatio-temporal point processes, it is worthwhile to

introduce a type of enhanced point processes, as they are also used to include spatial

information in temporal point processes. In fact, marked point processes are useful

tools for more complex models. It is possible to define a series of events as a marked

point process (MPP) {(tj ,mj) : tj ∈ (0,T ],mj ∈ M}, where {tj} is a temporal point

process and {mj} are the associated marks. The conditional intensity function is formed

from two parts (Harte, 2010): the ground intensity function and the distribution of the

marks:

λ(t,m|Ht) = λ(t|Ht)× f(m|t,Ht) (2.16)

The ground intensity function λ(t|Ht) is the temporal point process describing the

occurrence of events, while the density function of the mark distributions f(m|t,Ht)

describes the characteristics of the events, making the model more realistic.

For instance, it is possible to apply MMP to earthquakes, modelling the mark

distribution to follow the Gutenberg-Richter frequency-magnitude law. This law ex-

presses that the earthquakes N with a magnitude greater or equal to M in a region are

distributed as a power law: N = 10a−bM . It can be also used to model the mainshock-

aftershock distribution (Utsu, 1969). The b parameter then regulates the frequency-

magnitude of aftershocks (Rotondi and Varini, 2019). It has been observed that b is

large after a strong earthquake, and it reduces only after a large aftershock (Wiemer

et al., 2002). The magnitude of earthquakes was already present in the conditional

intensity functions of the SRM and ETAS models, but in MPP they are generated by a

dedicated function (additional to the intensity function), rather than being provided in-

dependently to the process. The overall conditional intensity λ(t,m|Ht) of the marked

point process expresses the infinitesimal expected rate of events occurring at time t

with mark m. Therefore, a marked point process can be interpreted as an extended

version of a point process, taking into account the distribution of marks.

2.2.2 Spatio-temporal models

So far, this chapter has covered the review of temporal models, but natural hazards

occur and interact in space and time. Then, it essential to identify and use models

that incorporate both spatial and temporal information in a multi-hazard framework

(Kappes et al., 2012a; Gill and Malamud, 2014). In this section we will propose a

review of space-time models. Before that, we need to briefly introduce spatial models,

in order to have a basic understanding of both the models (temporal and spatial)

forming spatio-temporal ones. Because the data of some natural hazards may not suit

models with continuous dimensions, this section will also discuss the discretization of
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at least one dimension.

Brief introduction to spatial point processes

Spatial point processes describe the distribution of events in space (Cressie, 1993; Dig-

gle, 2003). The main difference from the temporal processes is that time is monoton-

ically ordered, while space is not, and so they have to be treated differently. Spatial

point processes are used in different environments, from medicine (Jing et al., 2011) to

forestry (Mateu et al., 1998) and wildfire (Aragó et al., 2016).

In the case of a Poisson spatial process, with N(B) being the number of points

falling into a subset of B a 2-D space, the probability of an event occurring in a given

area is:

Pr{N(B) = 1|εB} = λ|B|+ ◦(|B|) (2.17)

where εB represents all the points occurring outside B, |B| is the measure of B (usually

area), considered and λ is the constant rate of event occurrences per unit area. If λ is not

constant but instead a function of position, the process is called a non-homogeneous

Poisson process. One of the main issues with this process is that geographical unit

cannot be considered independent. In the example of a wildfire, one unit is likely to be

similar to the next ones in terms of vegetation and geomorphology. This issue can be

dealt by using complex dependency structures, or using a kernel smoothing estimator.

However, spatial processes cannot represent the whole behaviour of natural hazards,

as the temporal aspect is not considered. Spatio-temporal point processes have been

used for modelling the occurrences of wildfire (Yang et al., 2015; Dı́az-Avalos et al.,

2016) and earthquakes (van Lieshout and Stein, 2012; Zhang and Huang, 2017). One

of the most recognised of such models is the spatio-temporal application of the earlier

presented ETAS models.

Spatio-temporal ETAS Spatio-temporal ETAS are well established models for mod-

elling short-term seismicity (Console et al., 2009; Iwata, 2015; Guo et al., 2015), for-

mulated by Ogata (1998a). In these cases, the background occurrence rate is assumed

to be a function of spatial location and time (Ogata, 1998b). The model is charac-

terized by a probability distribution of the time until the appearance of a child event,

and a probability distribution of location (x,y) and magnitude m of a child event (an

aftershock), dependent on the magnitude mk and location (xk,yk) of its parent. The

conditional intensity function is:

λ(t,x,y,m) = λ0(x,y) +
∑
k:tk<t

h(mk)g(t− tk)f(x− xk,y − yk,mk) (2.18)
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where k(mk) is the magnitude distribution of new events above a threshold magnitude.

This function can be linked to the productivity law expressed in (2.15). The functions

g(t− tk) and f(x−xk,y− yk,mk) are the probability density for the occurrence in time

and space of the offspring events from an ancestor of magnitude mk, at time tk and

location (xk,yk); λ0(x,y) is the background event in the given location.

2.2.3 Discretization

In the previous section it has been noted that spatial and spatio-temporal processes

can be used to model natural hazards. Nevertheless, these models often cannot be

entirely continuous because of the type of available data. Some hazards have naturally

discretized data, which might hamper the application of point processes. This is the

case of landslide data. As will be discussed in Chapter 4, landslides times have a daily

precision at the most, and their localization may not be accurate enough to allow for

continuous spatial data (such as geographical coordinates. Building a multi-hazard

framework implies combining hazards with different data precision both in space and

time. Hence, we need to find models which let us express events over possibly discretized

time and space data. Because this issue is not infrequent with natural hazards, there

is the need to find a way to treat data that are naturally discretized in a point process

environment.

Space discretization

In Section 2.2.2, we have discussed point processes that treat both space and time in a

continuous way. However, some natural hazards may have naturally discretized spatial

data, to model which the point processes need to be modified. In the literature there are

examples of point processes in which the discretization of space and/or time is used to

adapt to the available data and carry out complex models. For example, Preisler et al.

(2004) have used discretized voxels (three-dimensional pixels) to study the propagation

of wildfire both in time and space. Wotton and Martell (2005) used discretized space

to model lightning as cause of wildfires in Canadian forest. The use of pixels, voxels or

spatio-temporal units allow spatial or spatio-temporal models to express the spread of

hazards from one geographical and/or temporal unit to the next ones, hence in a non

continuous way.

Often the reason for such discretization is the different data precision among natural

hazards. The use of pixels or geographical units requires to take into consideration the

possible dependence between them: a wildfire in a pixel increases the likelihood of

wildfire in the neighbour pixels. This not often considered, as demonstrated but some

landslide susceptibility analyses, where the factors are considered in function of the
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presence or not presence of a landslide in a single pixel (Garcia-Rodriguez et al., 2008;

Aristizábal et al., 2015; Feng et al., 2016).

In other cases, there is a problem of spatial non-homogeneity, which pertains to

a non-equally partitioned space. A terrain can be subdivided into a grid of equally

measured squares, but in the risk assessment of natural hazards it is common to work

with areas of different sizes. This is the case if political units or seismic regions used

instead of continuous space. Landslides might be spatially recorded as occurrences in a

defined region, rather than with provided geographical coordinates. In such cases, the

daily rate of landslides per town might be equal between two towns, but the effect of

landslides will be higher in the smaller of the two. This is a case considered in Chapter

4, where the landslide data used only have the location name information. A simple

example of discretization in point processes is that used by the linked stress release

model (LSRM).

LSRM An example of a point process with discrete space is the linked stress release

model, based on the previously mentioned SRM, proposed by Lu et al. (1999) and

further investigated by Bebbington and Harte (2003). The model updates (2.11) to

capture the propagation of stress in space (from one seismic region to another), as it is

not realistic to consider that one region is independent to another one. In particular,

Bebbington and Harte (2003) used a transfer parameter θij to measures the proportion

of stress transferred from region i to region j.

Xi(t) = Xi(0) + ρit−
∑
j

θijS
(j)(t) (2.19)

where S(j)(t) is the accumulated stress release in region j up to time t; the coefficient θij

can be positive or negative, which results in discharge or excitation. Following (2.12),

the conditional intensity function for the LSRM can use an exponential function for

each region λi(t|Ht) = exp[µi + νiXi(t)]. Hence, for i = 1,2,... we obtain:

λi(t|Ht) = exp

µi + νi

Xi(0) + ρit−
∑
j

θijS
(j)(t)

 (2.20)

where for each region i µi and νi are parameters to be estimated similarly to (2.12), ρi

the constant loading rate and θij reflects the stress drop transferred from region i to

region j.

Overall, the model evaluates the stress release in time (treated as continuous) be-

tween regions, and so with space treated in a discrete fashion. Therefore, this is an

example of how the spatial discretization can be used to model natural hazards with

point processes.
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In Chapter 4 it will be shown how this type of space discretization can be applied

to a nonhomogeneous Poisson process for landslide occurrences. For this study, the

landslides were provided with discretized space information (the town, or municipality).

The centroid of each municipality was used as the nominal location of corresponding

landslides. In such cases, rather than having a temporal ground intensity function and

a mark density functions, the time and the severity of triggering events is expressed

through “components” (C1,...), which define the effect of each triggering hazards:

λ(x,t) = λ(x) · g(C1(x,t),C2(x,t),...,Cn(x,t)). (2.21)

where λ0(x) is the baseline parameter for each location x and g(·) is a non-negative

valued function. With this discretization, each municipality is treated as a single spatial

element, as we only observed the number N(x,t) of landslides at location x and time t.

Time discretization

Time in point processes is generally considered a type of continuous data. Nevertheless,

the lack of data availability and different precision levels between datasets sometimes

require a temporal discretization. In Chapter 4, a time discretization of a point process

is proposed because of the naturally time-discretized landslide data, and the level of

temporal detail provided in the rainfall dataset (daily precipitation).

A continuous time interval can be discretized into a partition of discrete intervals.

For instance, a continuous time interval (0,T ) can be partitioned in days {1,2,...,T}. If

N(t) is a Poisson process with rate λ, we can redefine the rate as:

µd =

∫ d

d−1
λ(t)dt (2.22)

where d ∈ {1,2,...,T}. Hence,
∫ d
d−1λ(t)dt is an average of the ground intensity over

(d− 1,d]. Therefore, in the partition of the time interval we have one Poisson random

variable N(d,d+ 1) = N(d+ 1)−N(d) for each discrete time interval.

Taking again the case of landslides in Chapter 4 as an example, the process of

landslides in the region of Emilia-Romagna is spatially discretized in municipalities

(Italian political territories), and temporally discretized in days. A large input from

earthquakes or rainfall can trigger more than one landslides within a municipality.

Hence, if the Poisson process for landslide occurrences over time is N(d,d + 1), the

conditional intensity of a Poisson process on a given day is µd, with a rate equal to the

mean daily rate over day d.
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2.3 Survival Analysis

Survival analysis is a branch of statistics that studies the lifespans of the individuals in

a population. The focus is on time-to-event data, which is the time elapsed from a time

origin to an endpoint. The endpoint may be the occurrence of a specific event. For

instance, survival analysis can be applied to cardiology to evaluate the death or survival

for patients with a cardiac disease (Ahmad et al., 2017). For an insurance company,

survival analysis can be used to estimate the time before an accident (Brockett et al.,

2008)

Assuming that T is a random variable of the time of an event, we can define the

survival function S(t). This function describes the distribution of the survival times,

hence the probability that the failure will not happen before a specific time.

S(t) = P (T ≥ t) (2.23)

and it can also be defined as the integral of the density function of the survival times

f(t).

S(t) =

∫ ∞
t
f(u)du (2.24)

The hazard function expresses the conditional failure rate at time t for the portion of

population still not failed in t or the instantaneous failure rate at t. It is the ratio

between the density function and the survival function:

h(t) = lim
∆t→0

P [t ≤ T < t+ ∆t|T ≥ t]
∆t

=
f(t)

S(t)
(2.25)

The hazard function can be linked back to the conditional intensity function in (2.1),

as they both evaluate a conditional rate of occurrence, given the history, within a small

interval.

λ(t|Ht) = lim
∆t→0

P [N(t+ ∆t)−N(t) = 1|Ht]

∆t
=
f(t)

S(t)
(2.26)

The main difference is that while point process can observe more than one event, in

survival analysis there is only one possible event, the failure. However, in a renewal

process, each failure time is identically distributed, and so survival analysis techniques

can be used to analyze series of events.

Together with Poisson processes, survival analysis is commonly used for time-related

analysis (In and Lee, 2018; Hancock et al., 2014). Survival analysis is a statistical

methodology commonly used to evaluate time-to-event data in many scientific areas.

Although it is more common in clinical studies (Rossouw et al., 2002; Stupp et al.,

2005), it has been used for hazard analysis as well. Some examples exist in geological
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applications, where this method is used for time to failure in landsliding (Federico et al.,

2012; Segalini et al., 2018). The variable of interest is then the time to occurrence of a

landslide, a landslide dam, etc., which can provide helpful information, particularly in

case of hazards whose magnitude is related to the time elapsed. For example, landslide

dams can lead to floods, and the size of the flood is dependent on how much water have

been accumulated behind the landslide dam. The amount of water depends on how

much time has passed since the damming. The times to failure can be estimated with

respect to covariates affecting the hazard. A landslide dam failure time will then be

evaluated in relation to the covariates, e.g. the characteristics, that affect its stability:

landslide dam dimensions, material, water accumulation. Hence, the survival analysis

can also help understanding which covariates are critical in influencing the hazard

failure.

An important concept of survival models is related to censoring. Survival analysis

hypothetically studies subjects over time until their death/failure. However, studies

are usually limited in time, so the subjects are studied from a starting time to a set

end time. Those observations whose failure has not been observed by the end of the

study are an example of (right) censored data. For instance, the time to failure for

landslide dam is usually censored: short-term landslide dams, collapsing within hours

or days, may be recorded only after their failure (Tacconi Stefanelli et al., 2015; Chen

et al., 2014). In other words, the exact life time is not known, as the observation is

recorded after observing the failure. Similarly, if engineering techniques are put in

place to stabilize the landslide dam, we will not observe the failure, due to this external

event.

Among the types of censoring, the most common one is right-censoring, which is the

case of a non-failed subject (a landslide hasn’t failed by the end of the study), either

because the study reached a predetermined end of time (Type I censoring) or because

a random event precludes subsequent observation of the event of interest (random

censoring). In this case, the time of failure is higher than the censoring time T > C.

In Chapter 5, we will see a particular case of Type I censoring, called observational

censoring: some failures have not been observed yet, but there is no predetermined end

of the study. Left-censoring is related to a subject whose failure has occurred before

the beginning of the study. Hence, we only know that the time of failure is less than

the time of the beginning of the study T < t0. Interval censoring is when the event has

occurred, but the only information available is that the event time is within a certain

interval (a,b].

The estimation of the parameters in (2.23) and (2.25) is usually done via maximizing

the log-likelihood. In the case of all uncensored observations, the log-likelihood is the
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sum of all log densities evaluated at the observed failure times:

l(θ) = logL(θ) =
n∑
i=1

logf(ti,θ) (2.27)

If some observations are right-censored, then these will contribute to the log-likelihood

with their survival function S(ci,θ) (where ci is the censoring time), as they have not

failed yet. Hence the log-likelihood becomes:

l(θ) = logL(θ) =
n∑
i=1

{δilog[f(ti,θ)] + (1− δi)log[f(S(ci,θ)]} (2.28)

where δi is an index to distinguish censored and uncensored data: when δi = 1 the

observation is uncensored. The survival function S(ci,θ) represents the contribution to

likelihood from censored data ci. Similarly, the log-likelihood for interval censored data

will be:

l(θ) =
n∑
i=1

{δilog[f(ti;θ)] + (1− δi)log[S(ai;θ)− S(bi;θ)]} (2.29)

2.4 Bayesian imputation of missing data

Missing data are quite common in statistical analysis. Usually, computer programs

such as R can deal with missing data by just ignoring them in the analyses (Rubin,

1976; Gelman and Hill, 2007). However, in some cases this approach is not viable. For

example, if the data availability is limited, then discarding one observation because of

one missing value becomes counterproductive, given then small population or sample.

As each data is vital for the analysis on small datasets, then it would be better

to impute the missing value, which means to estimate what the missing value would

have been if it were to be observed. There are several imputation methods, that range

from simple ones, such as mean imputation, to probabilistic ones, such as random

imputation, to model-based methods. In the case of mean imputation, imputing the

value of missing observations can be done using the mean of all other existing values.

For example, if there are missing data under the variable “height” of the landslide dam,

then those will be imputed by calculating the mean of the observed heights of the other

events.

Random imputation implies the random selection of a value from the range of

observed data of the given variable. This selection is obtained sampling a random

number from the observed ones (e.g. simple functions can be written in any statistical

software) or predicting (e.g.) from a linear regression function, where a parametric

model is used to impute the missing values. For example, it is possible to create a

regression of the variable with missing values, as a function of all the other covariates.
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Then, the prediction of the missing values can be obtained by using the known values

of the other variables.

A further step in the methodology is represented by multiple imputation, where

replacement values are drawn repeatedly from the estimated conditional distribution

of the variable. A good approach is to model it as conditional on the other variables,

similarly to the regression approach mentioned above. In Chapter 5, an example of

Bayesian imputation is provided, where the distribution of each variable is modelled

conditional on the other variables. This allows for the imputation of missing values

while maintaining the existing correlation structure among the variables.



Chapter 3

Literature review

There has been a long debate on the definition of hazard, but it can be broadly defined as

a phenomenon or a process which can affect human life, settlements and halt social and

economic activities (UNDDR, 2016). This interpretation is not akin to the statistical

definition of hazard, which refers to the likelihood of occurrence of a perilous event

(Papathoma-Kohle et al. (2007) defines a hazard as “the probability of occurrence of a

potentially damaging event within a specified time and given area”). For clarity, this

thesis will use a non-statistical definition of hazard, to build a framework of models to

evaluate the risk of hazards in a multi-hazard environment.

Marzocchi et al. (2012) define a hazard as “anything that can potentially generate

adverse events and consequently create damage to the population or environment”.

Thus, a natural hazard is a natural event, linked to geographical processes (Bokwa,

2013). Many regions of the world are affected by multiple natural hazards (Liu et al.,

2016; Kappes et al., 2012b,c). In each region these events depend on natural factors

(Liu et al., 2016; Kappes et al., 2010) and occur within environmental systems. If a

system can be affected by more than one natural hazard, there might be interaction

among hazards, which can alter their occurrences and/or consequences. For example,

the strong MW 7.8 Kaikoura earthquake in New Zealand on 14 November 2016 have

contributed to the triggering of thousands of landslides (Massey et al., 2018). The sub-

sequent rainfall and storms contributed as well. The earthquake might have weakened

or predisposed - influenced (Gill and Malamud, 2014) - slopes to fail or be reactivated

if a successive triggering event (rain) occurred (Dellow et al., 2017; Mason et al., 2018).

Hence, the question arising is how much the interaction among hazards has the po-

tential to affect the occurrence of other hazards in terms of when, how many and how

large.

Hazards should not be evaluated in separated hazard assessments. Instead, it is

crucial to consider the interactions among them (Lee and Rosowsky, 2006; Zuccaro

et al., 2008; Kappes et al., 2010) within a single multi-hazard assessment. Furthermore,

26
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hazards are history-dependent, which is particularly recognizable with earthquakes:

large events are followed by aftershocks (Toda et al., 1998; Chiarabba et al., 2009),

but at the same time catastrophic earthquakes may not occur for centuries (Stirling

et al., 2012). Nevertheless, hazards depend on the history of triggering hazards as well.

Landslides may or may not re-occur in the same area depending on their history, but

also in relation to the history of, for instance, heavy antecedent rainfall. Hence we

will define a hazard as is an event which occurs in time and space, in relation to the

spatio-temporal and severity history of that hazard and those which can trigger it (Gill

and Malamud, 2014).

Several authors (Marzocchi et al., 2009; Chen et al., 2010; Kappes et al., 2010,

2012a; Esharti et al., 2015; Gill and Malamud, 2014) have already pointed out the

necessity for a multi-hazard framework so that risk mitigation and resilience proce-

dures can be more effective (Mahendra et al., 2011). This awareness is also highlighted

by the establishment of multi-hazard or resilience programs over the years, for exam-

ple HAZUS (Schneider and Schauer, 2006), RiskScape (Reese et al., 2007), Resilience

Challenge, MATRIX (Komendantova et al., 2014). Nevertheless, multi-hazard method-

ologies are not yet well established. The reason can be in the wide range of hazards,

and consequently in the wide range of hazard assessments: the hazard description and

characteristics, i.e. size, distribution in time and space, substantially differ from one

hazard to another. For example, the clustering of earthquakes in time and their prop-

agation in space is substantially different from the spatial and temporal distribution of

rainfall and landslides. Consequently, models based on specific hazard features often

cannot be used for other hazards. Hence, while a joint hazard analysis, treating the

assessments as independent, would be possibly more convenient in terms of time and

data consumption, it may not accurately depict the reality, unless a well-structured

multi-hazard method is conceived (Kappes et al., 2012a). An example is provided by

fragility curves, expressing the probability of damages by hazards per damage classes,

which assume the absence of any disturbance from any hazard in the structure of any

other hazard (Selva et al., 2013).

3.1 Scope of study

To build a multi-hazard framework, it is good practice to look at the state of the

art of hazard assessments, whether the assessment is for a single hazard, for example

the susceptibility analysis of an area to a hazard (Evans and Hungr 1993; Ayalew

and Yamagishi 2005, see Section 3.2.3), a single hazard triggered by another hazard

(Scott et al., 2005; Marc et al., 2016), or a multi-hazard approach (Thierry et al.,

2008; Mahendra et al., 2011). Nevertheless, there is a considerable number of hazards,
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and their differences ultimately reverberates on assessment methodologies. Hence, this

thesis will focus on one specific chain of hazards, small enough to make the analysis

feasible, and big enough to provide a good range of triggering interactions. This should

provide an insight into the features of events and their interactions, providing a basis

on which to build a generalised framework.

The selected chain is the one of landslides triggered by earthquakes and rainfall

(Figure 3.1). The choice of landslides is due to their geographical extension, i.e. land-

slides occur in many countries. At the same time the modelling of earthquake and

rainfall is advanced, compared to other hazards. Several authors have attempted the

analysis of this geomorphic hazard chain after major earthquakes (Han et al., 2007;

Zhou et al., 2015b; Fan et al., 2019). Relevant projects are underway to build resilience

against coseismic hazards, such as Project AF8 in New Zealand (Orchiston et al., 2018)

and rainfall-induced landslides, Landslide EVO Project in Nepal (Cieslik et al., 2019).

A particular modelling extension of this chain is also considered: if a landslide falls

Figure 3.1: Schematic diagram of the selected chain of hazards: earthquakes and rainfall
can trigger landslides; landslides may fall on a river causing a landslide dam. The failure of a
landslide dam can cause floods.

on a river, there are chances for the formation of a natural dam and its consequent

possible failure leading to a flood. Thus, the extended chain we will consider is the

earthquake/rainfall→landslide→landslide dams, on which a preliminary multi-hazard

framework will be built. Overall, the chain includes four different phenomena that will

be used to guide a review of hazard assessments already existing in the literature. This

review will provide a sound basis of knowledge, a starting point for the multi-hazard

framework. In particular, as mentioned in Chapter 1, the main objective is to build

quantitative models, so the purpose of this chapter is to present and review the state

of the art on natural multi-hazard assessments, whether they are already quantitative

or not, and how they can be improved or used for the framework.
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3.2 Single hazard assessments

Understanding how single hazards are assessed is the first step for a multi-hazard

methodology. The evaluation of magnitude and space-time distribution of a hazard

will be used to formulate models so that the full extent of the hazard’s characteristics

is expressed.

3.2.1 Earthquake

Earthquakes are “sudden slip on a fault, and the resulting ground-shaking and radiated

seismic energy caused by the slip”(USGS, 2019a). Earthquakes are recorded in cata-

logues together with their characteristics: time, hypocenter, size, and other technical

information (Kagan, 1991). There are many well-detailed datasets, from local ones such

as the Italian catalogue (Camassi and Stucchi, 1996), to the worldwide one (ISC, 2019;

USGS, 2019a). With modern technology, seismic events are recorded to high temporal

and spatial precision. However, catalogues are not time-homogeneous in their precision

and completeness. This creates issues in dealing with long earthquake datasets, i.e.

earthquake hazard, but is less of a problem when dealing with earthquakes triggering

a secondary hazard, if the triggered hazard records, e.g. landslides, are not as long.

For the earthquake size (magnitude) there are several methodologies in use. The

earthquake magnitude is a measure of the size (amplitude) of the seismic waves reg-

istered by seismographs. The most common measures used are the moment magni-

tude, the peak ground velocity (Joyner and Boore, 1981), peak ground acceleration

(Boore et al., 1997) and Arias intensity (Arias, 1970). For instance, the moment

magnitude is calculated from the seismic moment, i.e. the energy released, M0 as

Mw = 2/3logM0− 10.7 (Hanks and Kanamori, 1979). This measure is more reliable as

an estimate of earthquake size compared to other previous measures, which were less

efficient particularly in relation to the distance between the earthquake location and the

seismograph registering the shake (Wells and Coppersmith, 1994). The Arias intensity

determines the ground-shaking as the integral of the square of ground acceleration a of

seismic waves over time: IA = π
2g

∫ Td
0 a(t)2dt.

As described in Chapter 2, point processes are widely used for the modelling of

earthquake occurrences. Three features characterize the earthquake occurrences: time,

space and magnitude. Several models for the temporal or spatial distribution of earth-

quakes have been proposed, where the occurrences are dependent on the temporal or

spatial history of previous events, together with their magnitudes. This thesis focuses

mainly on the continuous temporal occurrence of events: the spatial distribution is

considered but discretized, as explained in Chapter 2 and Chapter 4. The analysis of

seismic patters has developed substantially in the last thirty years (Zhuang et al., 2012),
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from the use of Poisson processes for the number of earthquakes in a time interval, to

the application of the theory of elastic rebound (Reid, 1910; Knopoff, 1971; Vere-Jones,

1978). These models are mostly for the modelling of mainshocks, but one major char-

acteristics of earthquakes is that they tend to cluster. In fact, a mainshock can trigger

or increase the probabilities of a sequence of aftershocks, which is a series of smaller

events (in terms of magnitude), clustered right after the mainshock. For the aftershock

modelling, it is common to use Omori’s decaying frequency law of aftershocks (Omori,

1894; Ogata, 1988; Wetzler et al., 2016) n(t) = k
c+t (the frequency of aftershock de-

creases hyperbolically over time), where t is the time from the mainshock, k > 0 and

c > 0 are parameters related to productivity and time scale respectively. Alternatively,

self-exciting models, such as the temporal Epidemic Type Aftershock Sequence (ETAS)

model (Ogata, 1999; Helmstetter and Sornette, 2002), are used as described in Chapter

2.

3.2.2 Rainfall

Conventional models for rainfall data are time series (Mekis and Hogg, 1999; Brunetti

et al., 2006; Park et al., 2019) or point processes (Rodriguez-Iturbe and Eagleson, 1987;

Onof et al., 2000; Cowpertwait et al., 2007). As long-term rainfall time series are often

inhomogeneous, due to the tools used (e.g. faulty or relocated rain gauge - when the

political boundaries are changed), time series are usually homogenised (Auer et al.,

2007) by interpolation, filtering and statistical testing, to improve data quality and

to allow comparison and analysis over time. Although they might be presented as

homogenised over time, long-term catalogues on a much finer location base (not at a

regional level, but town by town) tend to be much less homogenised. As will be seen in

Chapter 4: the rainfall dataset in use has thousands of missing values, some negative

values, and a non constant indication of snow-type precipitation data over the time

window. This required a time-consuming process of cleaning before being able to use

the data.

Point processes are used to model and simulate precipitation (Rodriguez-Iturbe

et al., 1984, 1987; Onof et al., 2000; Isham et al., 2005; Cowpertwait et al., 2007). The

first model proposed (Rodriguez-Iturbe et al., 1984, 1987) is based on the concept that

a storm (a rainfall event) is produced by pulses of overlapping rain cells. Each rain cell

(the atomic component of the point process, with random duration and depth) does

not have a physical interpretation but provides random pulses. Their magnitude and

length define the intensity and duration of the storm. The intensity is set to be constant

within the rain cell, although further models (Cowpertwait et al., 2007) overcome this

limitation assuming that each rain cell is characterised by a Poisson process of rainfall

pulses, which provides some fluctuation within the cell.
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Precipitation data are gathered in databases (e.g. Arpa-Piedmont (2018)), together

with information on the location of the rain gauges (the instrument that records the

amount of precipitation), the amount (in millimetres), and the time. Typical mea-

surements of the precipitation amount are cumulative rainfall values (daily, monthly,

seasonal, etc. ), as well as averages across wet days (rainfall events) (Haylock et al.,

2006).

3.2.3 Landslides

A landslide is “the movement of a mass of rock, debris, or earth down a slope” (USGS,

2019b). Landslides are a common hazard in many terrains. Usually they are triggered

by rainfall (Berti et al., 2012; Aristizábal et al., 2015; Peruccacci et al., 2017) or seismic

activity (Lee, 2014a; Havenith et al., 2016; Robinson et al., 2016a). They are recorded

in catalogues (e.g. Kirschbaum et al. 2010; Piacentini et al. 2018; ISPRA 2019), with

information about the location, the time and the size. While the size of a landslide is

often available and well-documented, the time and location are often missing, particu-

larly for historical events (Steger et al., 2017). If a landslide occurs in a remote area,

the time of the event can only be constrained between successive observations, which

is the concept of interval-censored data that will be used in Chapter 5. Nowadays, the

location can be specified with satellite or aerial methods, but for historical inventories

the location can be as generic as the topographic name(Guzzetti et al., 2012). Accu-

racy and completeness are challenging to achieve, but there are examples of catalogues

(e.g. ISPRA 2019) which combine different databases into a single one, providing a

good step towards completeness, although it still lacks accuracy, due to the extent of

the task and the numerous sources used. Landslide assessments are usually done via

susceptibility mapping (Guzzetti et al., 1999; Ayalew and Yamagishi, 2005; Aleotti and

Chowdhury, 1999; Dai et al., 2002), where GIS-based data and ground characteristics

data are combined, usually through logistic regression, which attempts to find the best

combination of factors to describe the susceptibility of areas to landslides. The derived

susceptibility values are reported in a map, using a color-coding scheme in relation to

the level of susceptibility.

3.2.4 Landslide dams

Landslide dams can be considered as a natural extension of the earthquake/rainfall-

landslide chain. Landslide dams involve a mass of debris (landslide) falling on a river

and damming it (Costa and Schuster, 1988; Ermini and Casagli, 2003; Korup, 2004;

Zhou et al., 2015a; Tacconi Stefanelli et al., 2016; Liao et al., 2018). The subsequent

accumulation of water behind such barriers creates a danger for the population down-

stream, increasing with the size of the lake, which may be released if the dam fails.
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Many disastrous events have been observed over the years: the dams associated with

the Wenchuan earthquake (Yin et al., 2009), rock avalanches in the Himalayas (Hewitt,

1998), local storms or typhoons (Tsou et al., 2011).

As for landslides, the number of existing catalogues for landslide dams is limited,

but the few available ones (Costa and Schuster, 1988; Tacconi Stefanelli et al., 2015)

are precious material for any landslide dam assessment. Generally, these catalogues

have poor temporal information, with more detailed information in terms of location

and dam characteristics, due to the scarcity of long-lasting events, and the rapidity at

which the majority of them fail.

The stability of landslide dams is usually evaluated via indices, used to partition

the landslide dams into groups by setting threshold values. An example is the Blockage

Index (Casagli and Ermini, 1999), BI = log(V/C) the logarithm of the ratio between

the volume of the landslide dam (V ) and the catchment area (C). Ermini and Casagli

(2003) further developed this approach by proposing the Dimensionless Blockage Index

DBI = log(CH/V ), where H is the dam height. Although these indices provide a

picture, despite being static over time, of the dam conditions, they are subject to

miss-classification, due to the limited number of results (e.g. failure/non-failure, or

stable/unstable/uncertain). Furthermore, these indices are built on location-specific

datasets, which are naturally biased to reflect the characteristics of events occurring

within that region. The application of these indices may lead to miss-classification

of events in other parts of the world. On the other hand, if the indices are built on

a world-wide dataset, they will again represent medium to large events (Casagli and

Ermini, 1999), which are only a part of landslide dams. Finally, these indices represent

a snapshot of dams that have failed at the time of analysis, not considering the time

elapsed since the dam was formed. This is a limitation, as these indices only provide a

static picture of the current state of a landslide dam, rather than information on the

evolution over time.

3.3 Hazard triggering

In a system of hazards, such as the chain in Figure 3.1, hazards are not independent

entities, as they interact and occur with potential overlapping in space and time. Al-

though it would be possible to ignore the interaction among hazards and analyse them

as independent (Fleming et al., 2016), it is not a good idea, because there is a high risk

of underestimating the overall effect of the hazards (Kappes et al., 2010). The first step

towards a multi-hazard assessment is the analysis of hazard interactions, particularly

the most direct mechanism: one hazard inducing one or more other subsequent events.

The terminology and definition differ slightly from author to author. Delmonaco et al.

(2006) refers to this phenomenon as domino effect or cascading failure which is a:
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“failure in a system of interconnected parts, where the service provided

depends on the operation of a preceding part, and the failure of a preceding

part can trigger the failure of successive parts”.

Marzocchi et al. (2009) defines them as “coupled events” where “an adverse event

triggers one or more sequential events (synergistic event)”. Hence, a triggering model

assessment will depend on the characteristics (frequency, magnitude, location) of the

triggering hazard, as this information can provide evidence of the elements affecting

the occurrence of the triggered hazard. A landslide assessment should be based on

factors related to rainfall or earthquakes, a tsunami assessment on volcanic eruptions or

earthquakes, periglacial debris flows are linked to ice melting, weather and temperature.

The analysis of the history of past events becomes then crucial to find patterns and

relationships among factors to allow for the prediction of future occurrences (Yalcin,

2008). The temporal distribution of seismic events, i.e. the past release of tectonic

stress (Reid, 1910; Ogata, 1988; Bebbington and Harte, 2001), is an example of history

dependence.

In general, single hazard assessment methods can be divided between temporal

or spatial, depending on whether the purpose is to evaluate the temporal or spatial

likelihood of a hazard occurrence. These methods can be qualitative or quantitative,

where the former are mostly based on expert knowledge, often expressing the risk of a

hazard with categorical or at most ordinal scales (e.g. more likely, less likely), rather

than being based on the analysis of data. The latter are based on on statistical and

mathematical models, often informed by physical notions (e.g. the system of forces in

the occurrence of a landslide), in order to estimate or predict hazards. Part of the

analysis of a triggering mechanisms is focused on the intensity of the triggering events.

Against the definition of hazard selected at the beginning of this chapter, some authors

do not include specific processes in the definition of hazard (Kappes et al., 2010). An

example is provided by heavy rainfall which is considered by Kappes et al. (2012b)

as a natural process, that becomes a hazard within certain conditions. Nevertheless,

the author herself states that heavy rainfall can cause floods and debris flows. The

keyword is “heavy”, which suggests a certain level of intensity. Retaining the definition

of hazard proposed at the beginning of this chapter, it is possible to state that a primary

hazard has the potential to trigger or influence the occurrence of a secondary one if

certain conditions are met. Such conditions are related to the temporal and magnitude

distribution of the triggering event.

Within the scope established in Section 3.1, it is possible to evaluate how the

triggering mechanisms are apportioned between rainfall and landslides, and between

earthquakes and landslides. Therefore, the following section presents a review of such

triggering assessments.
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3.3.1 Rainfall induced landslides

The literature provides many examples of rainfall-triggered landslides: whether it is

seasonal precipitation or sudden storm, the accumulation of water in the ground can

modify and weaken the structure of the soil until a portion of a slope detaches (Iverson,

2000). Therefore, several studies have focused on the rainfall-landslide mechanism,

mostly following two paths. In the first case, studies have focused on the production

of hazard maps to pinpoint those soil characteristics that would make an area more

or less prone to landslides (Dahal et al., 2008; Yalcin, 2008), using GIS-data combined

with geological and environmental information, and sometimes complex models such as

neural networks (Pradhan and Lee, 2010). In the second case, authors have worked on

the definition of a rainfall threshold in terms of intensity and duration (Berti et al., 2012;

Aristizábal et al., 2015; Peruccacci et al., 2017) in order to provide useful information

for early-warning systems.

Landslide hazard maps show the proneness of an area to landslides, evaluated as a

function of geological or environmental factors. For example, the water saturation of

the ground may lead to a landslide, as the ground is weakened. The amount of water

in the ground is related to another event (e.g. precipitation, flood, snow-melting, etc. )

which can be considered the trigger event for the landslide. Earlier literature proposed

spatial assessment methods that are mostly qualitative (Humbert, 1977; Godefroy and

Humbert, 1983; Zimmermann et al., 1986), as they are conditional to the opinions

of experts and expressed in descriptive terms. Usually, such methods are based on

landslide inventories: experts are used to evaluate the landslide risk of an area by

identifying similarities with known events listed in the inventories. The elements used

for the comparison range from slope characteristics (e.g. steepness, position) to other

geomorphological features of the area (e.g. soil composition). For instance, Zimmer-

mann et al. (1986) created a landslide hazard map of an area in Nepal, by a visual

comparison of maps and photos of the field, and producing indices by filling check-

lists. These factors can be in quantitative analyses, provided that their selection occurs

via statistical or mathematical tools (e.g. logistic regression). In some cases these ap-

proaches become semi-quantitative by using hierarchical methods (Barredo et al., 2000),

a decision-making tool where factors are weighted in relation to what the experts be-

lieve are the essential elements discerning the different levels of risk. Nevertheless, the

weighting of ordinal indices is once again questionable, as an opinion-based selection

method is being preferred over a method based on data analysis. This also hampers

the possibility of extending the applicability of such method to other areas.

In more recent literature, authors have taken advantage of GIS-data (Guzzetti et al.,

1999; Pradhan and Lee, 2010; Yalcin, 2008; Ohlmacher and Davis, 2003) for a higher
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level of data precision on vast areas. In some cases, weighted linear combination (Ay-

alew and Yamagishi, 2005) was used for variable selection, assigning weights (scores)

to the factors using expert opinions. Another example is the weights-of-evidence model

used by Dahal et al. (2008) in combination with GIS data, to obtain landslide suscep-

tibility maps. The method is based on the evaluation of the predictive power of factors

(e.g. soil type, aspect, relief, flow accumulation, etc. ) on the occurrences of landslides.

The proposed formula is a log odds ratio of occurrence of a landslide

Wi = ln
B|L
B|L

(3.1)

where the weight of each factor (B) is calculated in relation to the presence or absence of

a landslide (L) in a specific location. These weights are defined as positive or negative,

expressing the presence or the absence of a factor for a specific event. For each event i

the positive W+
i and negative weights W−i express the positive correlation between the

presence/absence of the factor and the presence/absence of the landslide. In the end,

the magnitude of the differences between the positive and negative weights provides a

spatial association between the factor and the landslide. Overall, it is an estimation

of the conditional probability of a landslide occurrence given a specific factor. The

method is possibly over-complicated, and highlights that a different method, perhaps

quantitative, may simplify and produce a more rigorous approach to hazard assessment.

All the above mentioned methods are decisional tools that are based on expert

knowledge, even if combined with high-resolution data. However, the main issue with

landslide hazard maps is that the proneness to the hazard is expressed for each map

unit (e.g. a pixel). Each, say, pixel is then more or less susceptible to a hazard in

relation to the level of some factors. Several papers, like the ones above cited, do not

mention whether the map units are considered dependent. Indeed, they cannot be

independent, as one small portion of land is very likely to be similar, and so at least

related, to an adjacent one. Furthermore, the selection and description of the factors in

some papers (Dahal et al., 2008) differ from others, making the comparison with other

methods difficult. The selection methods of factors have to be rigorous and supported

by quantitative analysis.

Other proposed methods used in landslide assessments range from principal com-

ponents (Londoño-Linares, 2017; Santos et al., 2019) and logistic regression (Guzzetti

et al., 1999; Dai et al., 2002; Yesilnacar and Topal, 2005; Ayalew and Yamagishi, 2005)

to neural networks, often combined with spatial information, usually GIS-based. Al-

though they tend towards a quantitative assessment, they still produce a classification

of landslides based on the combination of the proposed factors. For example, Santos

et al. (2019) have used what they call a “boosting technique”, discriminant analysis
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applied on the principal components in a landslides dataset, claiming a better selection

of classifiers, and an improved separation between stable and unstable slopes.

Logistic regression models the probability of presence or absence of an event (a

landslides), against a set of regressors, which describe specific characteristics of the

area (e.g. lithology, groundwater, slope angle). For instance, the odds ratio of the

landslide probability occurrence can be modelled as

p

1− p
= exp(β0 + β1X1 + β2X2 + ...+ βkXk) (3.2)

Among the most common regressors affecting the stability of slopes there are the aspect

(direction of the slope), the elevation, the lithology and the slope angle (Dai et al., 2002;

Ayalew and Yamagishi, 2005; Yesilnacar and Topal, 2005). Some of these, such as

lithology, are usually described qualitatively (Guzzetti et al., 1999), hence the inclusion

of this type of data in a quantitative model might be challenging requiring the use of

multiple intercepts.

The advantage provided by the logistic regression is that it assigns a probability,

rather than a two point classification. This is an improvement compared to the mere

distinction between stability and instability of a slope to establish whether a specific

area or pixel is prone to landslides or not. A twofold classification is likely to be

restrictive: highlighting one area as unstable does not imply when the landslide may

occur, and under which circumstances.

However, the logistic regression is still lacking of important aspects such as time.

Geomorphological characteristics are somewhat seen as static in time but the triggering

of hazards has a temporal aspect that needs to be included. For example, the size of

landslide dams represent a static snapshot of the hazard. Nevertheless, in Chapter 5 I

will present a model which uses these to evaluate the time-to-failure of landslide dams.

Therefore, it is vital to consider the temporal distribution of landslides in relation to

the rainfall levels over time.

Several authors have attempted to evaluate rainfall and water runoff thresholds

(Glade et al., 2000; Guzzetti et al., 2007; Rossi et al., 2017), a tool to evaluate the

levels of rainfall above which landslide occurrence is likely, particularly useful with

real-time rainfall analysis. Hence, the two crucial aspects for the triggering mechanism

become the intensity and the duration of rainfall events. Evaluating their combination

can provide information on the risk of landslides as a function of rainfall and time.

Brunetti et al. (2010) focused on rainfall threshold curves in Italy, considering that the

minimum level of rainfall to trigger a landslide can variate in relation to the intensity/-

duration ratio of rainfall. These threshold curves follow a power law I = αD−β, where

I is the intensity of the rainfall, D the duration, α the scaling constant and β is a shape

parameter. Brunetti et al. (2010) tested both frequentist and Bayesian approaches to
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fitting the best threshold curve to separate events based on the combined intensity/du-

ration. Figure 3.2 shows rainfall events that resulted in landslides, with the thresholds

for the frequentist (T1) and Bayesian (TB) performing similarly. Rossi et al. (2017)

Figure 3.2: Rainfall thresholds obtained using the Bayesian (TB , green line) and the Frequen-
tist (light blue line is the 1% threshold, T1; red line is the 5% threshold T5) methods. Error
bars on the rainfall mean intensity I show systematic error, assumed fixed and equal to 10%.
Errors on the rainfall duration D were considered negligible and are not shown. Picture and
original caption from Brunetti et al. (2010)

found similar results by applying a power-law to the intensity/duration threshold the

the Italian region of Umbria. In an antecedent paper, Rossi et al. (2010) also studied

the rainfall-triggered landslides phenomenon in Emilia-Romagna, our region of inter-

est in Chapter 4. Rossi et al. (2010) took a slightly different approach to Rossi et al.

(2017) focusing specifically on two statistics: the number of landslides in a day DL and

the number of landslides in an event Sevent (which is a series of consecutive days with

rainfall). Both these measures were once again linked with a function of the power-

law family (a Zipf). Interestingly, it was found that the minimum amount of rainfall

required to trigger landslides differs between short-term rainfall and long-antecedent

rainfall. In the first case, the minimum amount varies in relation to the landslide inten-

sity: considerably much more rainfall required for a high number of landslides within

the same one-day rainfall. In the second case, the long-antecedent rainfall does needs

little to actually trigger landslides, possibly due to ground saturation (Peruccacci et al.,
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2012). However, the results by Rossi et al. (2010) did not consider any spatial diversity

of the region (Emilia-Romagna, Italy), which is equivalent to considering the whole re-

gion as a single point in space. Nevertheless, they demonstrate that a rainfall-landslide

assessment needs to be non-static over time in the evaluation of the triggering mecha-

nism. In Chapter 4 we will explore how to link the likelihood of landslide occurrences

to the changing rainfall levels over time, taking into consideration that short-term and

long-term precipitations can produce different effects.

3.3.2 Earthquake induced landslides

Coseismic landslides are a major hazard, that occurs in correspondence with an earth-

quake. Many large earthquakes have been followed by extensive landsliding. This is

the case of Chi-Chi in 1999 (Shou et al., 2011), Kashmir in 2005 (Owen et al., 2008),

Wenchuan in 2008 (Zhou et al., 2015b), Kaikoura in 2016 (Dellow et al., 2017) and

Molise 2018 (Martino et al., 2020).

Past studies have highlighted that earthquakes generate superficial ground move-

ments which produces instability on slopes (USGS, 2019b). Keefer (1984) and then

Rodriguez et al. (1999) and Keefer (2002) determined that the mechanism of coseismic

triggering needs a minimum earthquake magnitude (MW 4), that the number of coseis-

mic landslides is often underestimated and it can reaches several thousands, spanning

to hundreds of kilometers from the epicentre, in relation to the magnitude of the earth-

quake. Also, some studies suggest that the earthquakes might have a long-term effect

on the potential occurrence of landslides for several years (Keefer, 1994; Wei et al.,

2014).

Among the most important aspects affecting coseismic landslide occurrences, the

most commonly used are: earthquake intensity (Arias intensity), fault location, al-

titude, climate and lithology (Keefer and Wilson, 1989; Syvitski and Schafer, 1996;

Rodriguez et al., 1999; Keefer, 2002; Garcia-Rodriguez et al., 2008; Havenith et al.,

2016). Susceptibility analysis, as for rainfall-landslide triggering, has been used to

evaluate the factors affecting the susceptibility of landslide-prone areas are assessed in

relation to earthquake triggering (Lee and Evangelista, 2006; Umar et al., 2014). Logis-

tic regression has been used focusing on the geomorphological characteristics (e.g. slope

gradient, elevation) and the features of the earthquakes (e.g. peak ground acceleration,

distance from fault; Yin et al. 2009; Alfaro et al. 2012; Vessia et al. 2013), sometimes

using physical models (Jibson et al., 2000). Li et al. (2013) produced coseismic land-

slides susceptibility maps for the Wenchuan 2008 and Lushan 2013 earthquakes, using

a scale of colors, here with defined thresholds to have 5 color bands, rather than using a

continuous scale. The results highlighted the importance of slope, lithology, elevation,

distance from the fault.
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Overall, the earthquake-landslide triggering mechanism is well known in the liter-

ature: with a minimum magnitude, an earthquake can trigger a landslide in the near

proximity of a fault. Susceptibility analysis has been helpful to highlight the most im-

portant factors in the coseismic landslides triggering mechanism. Furthermore, it has

been shown that large earthquakes can have a prolonged effect on the susceptibility of

landslides (Yan et al., 2017; Li et al., 2020). Nevertheless, the literature still lacks of

a solid temporal analysis between earthquakes and landslides, as all coseismic analysis

are focused on the distribution of landslides immediately after a large earthquake has

occurred. It is vital to evaluate the temporal distribution of earthquakes and landslides

together, in order to capture the evolution of the process, and improve the knowledge

of the triggering mechanism. In this view, Chapter 4 will propose a model in which

earthquakes and landslides are treated as point processes, to incorporate the evolution

of the triggering mechanism over time.

3.4 Multi-hazard assessment attempts

Hazard systems are usually quite complex and may cover different types of hazards,

which can overlap in space and time. The interactions among hazards influence the

overall hazard level, both in terms of size and frequency (Kappes et al., 2012b). Mar-

zocchi et al. (2009) discussed the concept of “transfer”, the possible amplification of

the overall hazard due to interaction, because of their non independence. A debris flow

resulting from the failure of a landslide dam might be of a higher magnitude than ex-

pected channel or slope debris flows. Hence, it is not possible to reduce a multi-hazard

assessment to the sum of single, independent hazard assessments. Earthquake and rain-

fall can both trigger landslides, but they are only coincidentally related; they can occur

randomly in the same area at the same time (Gill and Malamud, 2014; Havenith et al.,

2016). However, their joint occurrence is likely to produce effects on the occurrence

of landslides (Dellow et al., 2017). In the example of the Kaikoura earthquake, it is

worth questioning whether the number of occurred landslides have been affected by the

spatio-temporal overlap of the earthquake, the aftershock sequence and the rainfall,

recalling also that large earthquakes may produce a prolonged effect on the landslide

susceptibility of the affected area, as mentioned in Section 3.3.2. Nevertheless, the

state of art of these methods is far from reliable quantitative approaches (Selva, 2013;

Mignan et al., 2014; Kappes et al., 2012c; Gill and Malamud, 2014), and we will review

the most important examples in this section.

Kappes et al. (2010) suggested that the first step for a multi-hazard assessment is

the identification of the interactions between hazards, followed by the formulation of

the links between hazard models, taking into consideration their characteristics and
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differences. The identification of interactions has been the subject of important review

works (Gill and Malamud, 2014), as we will see later on in this section. The second

step is even more complicated, as the interactions are many and varying, and combining

hazard, interactions and assessments that area substantially different it is not a simple

process.

Hazard interactions For Kappes et al. (2010) an event is caused by the combination

of two aspects: disposition and triggering event. The disposition represents a slow

process changing the environmental settings over time, while the triggering event is a

much faster process, able to modify the system quickly enough to lead to a possible

immediate hazard occurrence An example is water filtering through the ground: after

a certain time, depending on the ground composition), the leaking may have increased

the ground water saturation enough to trigger a landslide. Otherwise, an intense day of

rainfall can trigger the landslide in a much shorter period of time, with a much higher

level of intensity needed from the primary hazard, the rainfall.

Liu et al. (2015) refers to cascading events (a directly produced occurrence of a

secondary event), conjoint events (two phenomena occurring in the same area and time

window), and dynamic hazards (the occurrence of one hazard affecting the chances of

the occurrence of a secondary hazard).

Kumasaki et al. (2016) analysed cascading natural disasters in Japan through infor-

mation on local and national newspapers, in order to have a wide review of all possible

events. Interactions were classified as striking (primary disaster has significant further

impact by imparting sufficient energy to move a significant mass or to propagate energy

through media), undermining (a primary disaster lowers the resistance or weakens a

system maintaining mass and the mass collapses) and compounding (a primary disaster

lowers the resistance of a system and adds to the amount of mass affected)

While Kumasaki et al. (2016) provided a classification that seems more related to

the effect on the communities, Liu et al. (2015) shows similarities with the classification

seen in another paper (Gill and Malamud, 2014), a major review of the state of art of

multi-hazard methodologies and a call for quantitative ones.

One of the most interesting classification was proposed by Gill and Malamud (2014).

Starting from the distinction between primary and secondary hazards, they have pre-

sented a classification based on the assumption that in nature there are different re-

sulting effects depending on the type of interaction. The proposed classification is the

following:

• Triggering

• Increased hazard probability
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• Decreased hazard probability

• Spatial/Temporal coincidence of hazards.

The first type is the most direct interaction, where one primary hazard triggers one

or more secondary hazards. Every secondary event can also trigger other events itself,

producing a chain of hazards. Hence, there is a direct activation of an event by another.

Without the first event, there would be no triggering. The triggering can be caused also

by the simultaneous occurrence of two or more events. Examples from the first class

are volcanic eruptions triggering earthquakes, or earthquakes triggering landslides. The

second and third classes reflect the mechanism of one hazard changing the environmen-

tal circumstances, hence altering the frequency or magnitude of another hazard. The

primary hazard may or may not directly trigger a secondary natural hazard, leading

however to its occurrence. Examples from the second and third classes are events re-

lated to rain and drought. Long rain-less periods may increase the chances for wildfire

and landslides or debris flow. However, rainfall can directly trigger landslides or debris

flow when certain levels of intensity and duration are reached. Finally, spatial/tem-

poral coincidence of hazards occurs when two or more hazards (neither triggering the

other) overlap in space and time, producing compounding losses potentially bigger than

the sum of the effects of the hazards considered independently (Kappes et al., 2010;

Mignan et al., 2014). For example, a volcano erupting during a typhoon may cause

violent lahars and floods (Mount Pinatubo eruption, Umbal and Rodolfo (1996)).

Because the topic is new and potentially complex, it is important to review the

proposed methods for multi-hazard analysis present in the literature. Even if such

methods are qualitative or semi-quantitative they can provide precious information on

how to build a multi-hazard framework. The final aim is to translate the interaction

among hazards and how it affects the triggering mechanism into a quantitative sta-

tistical model, one that can be modified and applied to several chains of hazards and

in different geographical areas, so that it is not limited to a case study or to specific

events.

The most widely used approach is the use of risk matrices, a discrete approach

which describes the hazard level coming from the combination of two hazards. It usu-

ally requires less data than other approaches (Kappes et al., 2012b), but its qualitative

nature limits any further statistical analyses. In fact, hazard combinations are quali-

tatively described and perhaps ranked on the basis of expert judgement. Nevertheless,

these risk matrices represent a milestone to build a quantitative hazard framework.

De Pippo et al. (2008) has proposed a matrix (Tab. 3.4) which helps with under-

standing the possible hazard interactions in a coastal hazard assessment. With the aim
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of avoiding the underestimation of risks, the matrix is built by listing all the identified

connections between hazards, in terms of inputs and outcomes.

For instance, landslides can accelerate cliff erosion and dam rivers. On the other

hand, shoreline erosion and river flooding may increase the chance for landslides. This

approach is totally qualitative, as it presents all possible interaction into a matrix-

style representation, probably more helpful for decision-making at management level,

or rather as a starting point for a quantitative risk assessment. In fact, this matrix

states what should be included in a hazard assessment for this chain of hazards, but

not how these interactions should be evaluated.

Another, perhaps more complete, version of a hazard matrix has been proposed by

Gill and Malamud (2014). Their work is actually more than just a matrix. It is an

extensive review of hazards and their possible connections and the presentation of some

methods of representation. The hazards identified by the authors are listed in Table

3.2.

Hazard group Hazard

Geophysical

Earthquake
Tsunami

Volcanic Eruption
Landslide

Snow avalanche

Hydrological
Flood

Drought

Shallow Earth
processes

Regional subsidence
Ground collapse

Soil (local) subsidence
Ground heave

Atmospheric

Storm
Tornado

Hailstorm
Snowstorm
Lightning

Extreme temperatures (Hot)
Extreme temperatures (Cold)

Biophysical Wildfire

Space/Celestial
Geomagnetic storms

Impact events

Table 3.2: list of all hazards divided into groups

The proposed hazard matrix (Figure 3.3), shows the interaction between hazards,

together with the potential of such interactions in terms of number of possible triggered
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hazards. For instance, the impact of a meteorite can directly trigger a tsunami, and

potentially a large number of earthquakes. Snowstorms can either trigger or increase

the probability of a large number of avalanches. Droughts can increase the probability

of wildfire.

Figure 3.3: The figure shows the possible interaction between hazards, divided the type of
interaction and the potential number of triggered events. For example, a volcanic eruption
has the potential to trigger directly and increase the probability of a large number of landslide
events. Reproduced from Gill and Malamud (2014)

Qualitative Multiple Hazard Assessment

The above matrices are a good starting point in terms of descriptive knowledge of causes

and effects, but they also provide attempts of qualitative evaluations for a multi-hazard

assessment.

Gill and Malamud (2014) proposed a factor based indicator on an ordinal scale that

may help to summarise the information enclosed in a matrix (Figure 3.3), using ranks.

The values come from a literature review of hazards run by the authors:

OLFT =

V I∑
OLF=I

(fOLF ×OLF ) (3.3)
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where the total score is the sum of the frequency f (number of times the hazard inter-

action is considered overlapping in the literature) multiplied by the overlap-likelihood

factor, calculated as a rank. This Overlap-Likelihood Factor OLF represents the com-

bination of spatial overlap (from 1 to 3) and temporal likelihood (from 1 to 3). These

multiplications give values 1,2,3,4,6,9 that have been categorised into OLF values I

to V I. For example, as from the Figure 3.4, snowstorms and volcanic eruptions are

classified as non-likely to occur both at the same time (1) and in the same area (1), so

OLF = I. Overall, this is a weighted average of ordinal variables, which does not assure

Figure 3.4: The table shows the interaction between hazards classified into nine classes,
depending on the chance of spatial overlapping and temporal likelihood. It is possible to see
that earthquakes have high probabilities of both with other seismic events, while tsunami is
very high in temporal likelihood with ground heave, but limited in spatial overlapping.

the preservation of the ordering. Factors have been arbitrarily ordered, and the same

can be said about the values assigned. Also, the information on hazards have been

collected from a literature review of single hazard assessments: the evaluations may

differ substantially, and the consequential artificial categorization may be meaningless.

The classification is made by assigning numbers to classes from an ordinal scale, which

is eventually qualitative. This association is not probabilistic or quantitative, and that
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hinders the possibility of any comparison and to produce quantitative outcomes. Fur-

thermore, it is not clear if the classification low to medium/limited to large is made

assuming independence or not. There might be some further degree of interaction that

is not captured by this ordinal classification.

Similarly, De Pippo et al. (2008) evaluated the interactions of the hazards affecting

a given area by an interaction matrix in Table 3.4. Because every hazard is supposed to

have different ranges of effects, not often comparable, the authors ranked the effects for

each hazard and combined them into a weighted multi-hazard index H for the overall

coastal hazard.

H =

6∑
n=1

IpnXpn (3.4)

where Xp are ranks 0 to 6 expressing the percentage of influence of each parameter on

the overall hazard, and Ip are a code of effects, ranked from 0 to 4 in relation to the

severity of the effect (see Figure 3.4). The index H is a sort of cause/effect analysis, and

is subjective, and somewhat arbitrary. The ranking of effects and parameter influence

is not only fuzzy (ranks are arbitrarily assigned) but related to limited case studies

which might not express the overall underlying process of interaction among hazards.

The table in 3.4 shows the events and the possible effects. The result is still qualitative

so hardly applicable to other events, and it is not possible to obtain quantitative and

comparable results.

Another indicator, with similar issues, is the indicator-based RVI (relative vul-

nerability index), based on the PTVA (Papathoma Tsunami Vulnerability Approach;

Papathoma et al. (2003)) and further developed by Kappes et al. (2012c), presented as

a multi-hazard indicator for shallow landslides, large earthflows and debris flow trig-

gered by intense rainfalls and summer storms. An intensity scale (low, medium, high)

was used to classify the hazard by damage size, although Kappes et al. (2012c) con-

ceded that the vulnerability to a hazard should not be limited only to the extent of

the damages. A formula, similar to (3.4) was used, altough weights are now defined so

that they sum to 1:

RV I =

m∑
i=1

wmImSm (3.5)

where Im are indicators of the vulnerability of an area and Sm are assigned scores of

vulnerability. This equation bears the same issues of (3.4).

A different approach was proposed by Fleming et al. (2016), who combined risk

curves (as the above cited Lee (2014b)) arising form different hazards, in order to

calculate a common total risk. In particular, it is stated that independent risks can

be combined using Pi(Lj), the probability of exceedance of the jth loss per annum for
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independent ith risk source:

P (Lj)tot = 1−
∏

(1− Pi(Lj)) (3.6)

Each risk’s impact is classified from insignificant to disastrous, and the probability of

exceedance of a given loss is ranked from very unlikely (≤ 0.00001 per year) to very

likely (up to 0.1 per year). With this information, a 5 by 5 matrix is built to provide

a visual estimate of the relationship between probability of exceedance and impact of

the overall risk. However, this equation is incorrect, unless at most one hazard can

occur. There are anyway some possible changes that can be done to improve this

method. As written before, we cannot consider the hazards independently, hence it

would be useful here to consider a method to combine hazards together before plotting

them. Furthermore, if the entire risk evaluation is quantitative, we may have a matrix

plot with continuous changing colors instead of blocks with sets of colours based on

qualitative ranks. That is the case of hazard maps made out of semi-quantitative

models, which are presented in the next subsection.

The issue with these approaches is the non-replicability, as they are built on specific

cases, with expert judgements on qualitative information. The application of any of

these equations to other areas or hazard chains might require to restructure completely

the equations. Another problem is that, assuming that they actually express the level

of risk in a given area, they show a static picture of the multi-hazard interactions, as

the time is not considered at all. As stated in Section 3.3, the effect of the triggering

mechanism is definitively temporally related. Thus, the above equations represent a

qualitative and vague idea of vulnerability of an area to more than one hazard, and not

a multi-hazard assessment of the likelihood of triggered events.
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Because this thesis will be mostly based on point processes, we can consider the

implication of these categories on the construction of a conditional intensity for a trig-

gered hazard. The direct triggering and the increased/decreased probability can be

specified in a conditional probability as function of time and the history of the primary

triggering of influencing hazard, as well as the history of the triggered hazard itself:

λ2(t|Ht) = f(t|H(1)
t ,H

(2)
t ) (3.7)

where H
(1)
t and H

(2)
t are the histories for the triggering and triggered hazard, respec-

tively. The function f(·) will need to be specified in a manner that the conditional

intensity will express an increased/decreased probability of occurrence of the secondary

hazard in relation to the behaviour of the primary one over time, with the possibility of

direct triggering given that the primary hazard will occur with specific features (e.g. in

the case of coseismic landslide, the landslide will occur depending on the distance from

the epicentre and the magnitude of the earthquake). For example, taking inspiration

from (2.14) we may have a function that sums the contribution of each earthquake i

up to time t:

λLS(t|HEQ) = f(t,m,d) = α+ β
∑
i:ti<t

exp

[
g(mi)

h(di)

]
(3.8)

where the g(mi) and h(di) are some functions of magnitude and distance of earthquake

i, while α and β are parameters.

In the case of spatio/temporal overlap, the triggered hazard will occur in relation

to its history and the history of the two primary hazards. As we expect possible

compounding effect, we can imagine the resulting conditional intensity of the triggered

event as the sum of the two single conditional intensities of the primary hazards:

λ3(t|Ht) = λ1(t|H(1)
t ,H

(3)
t ) + λ2(t|H(2)

t ,H
(3)
t ) (3.9)

where λ1(·) and λ2(·) are the conditional intensities for the two primary events, both

dependent on their respective history H
(1)
t or H

(2)
t and the history of the triggered

hazard H
(3)
t . There are other possible combinations of these interaction categories. For

instance, the two triggering hazards may interact in space and time in the triggering

mechanism of the third hazard (e.g. earthquakes and rainfall occurring in the same area

and time, affecting landslide events). In such case, we might prefer the product of the

two triggering conditional intensities:

λ3(t|Ht) = λ1(t|H(1)
t ,H

(3)
t )× λ2(t|H(2)

t ,H
(3)
t ) (3.10)

In general, there may be the need to build the conditional intensity of the triggered
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hazard as a function g(·) of the combined effects of the triggering hazards, so that the

complexity of the system is well expressed:

λ3(t|Ht) = g(t,f1(H
(1)
t ),f2(H

(2)
t )) (3.11)

where f1(·) and f2(·) are the functions of the histories of the two triggering hazards,

expressing, for instance, their magnitudes. In the case of earthquakes and rainfall:

λLS(t|HEQ,HRF ) = α+ βexp[γfRF (p,t) + δgEQ(m,d,t)] (3.12)

where fRF (p,t) is some function of the precipitation p and time t, gEQ(m,d,t) is function

of the earthquake as previously mentioned in (3.8), while α, β, γ and δ are parameters.

An example of (3.11) is developed for the rainfall/earthquake → landslide system in

Chapter 4.

3.5 A new idea: hazard potential

As mentioned in Section 3.4, Kappes et al. (2010) proposed that the mechanism leading

to the occurrence of a hazard can be seen as the combination of two aspects: a slow and

a fast one, namely called disposition and triggering. This theory is based on Heinimann

(1998), where the slow process is defined as “the general setting which favors the specific

process”, while the triggering event is the process “which leads to the threshold crossing

of a factor relevant for the hazard incidence”. The underlying idea of this vision is that

the interactions among hazards can be broken down into two separate processes running

at different speed. Considering a rainfall-induced landslide: the lithology of the area is

the basis of the hazard occurrence, because the characteristics of the soil (e.g. porosity)

determine the susceptibility of the area to landslides. Then, the rainfall can be a short

and intense event or a long period of moderate events, as well as a combination of both.

Considering the approach with point processes in use in this thesis, it is possible to

imagine that the conditional intensity for the possible occurrence of a hazard, such a

landslide, starts from a baseline value (depending on the area susceptibility), and then

increases or decreases in relation to faster or slower processes. The main difference

between these two processes will need to be expressed in the equations, with the faster

process showing a predominant ability to speed up the process and suddenly push the

conditional intensity to a level at which the occurrence of the hazard is very likely.

On the other hand, the slow process will increase or decrease the conditional intensity

by small amounts over time, possibly triggering a hazard only under specific long-term

conditions (recall duration and intensity in Section 3.3.1. This is also reminiscent of the

increasing/decreasing probability of a hazard mentioned in Gill and Malamud (2014).
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This is a pivotal concept which has been expressed more or less clearly by the

above mentioned authors, but that one author have particularly emphasized. Mignan

et al. (2014) channeled this theory into the concept of “potential” of an interaction

process, indicating the ability of a hazard to trigger a secondary one. Therefore, in

this thesis there will be a constant reference to this concept, as the purpose is not only

the creation of a working and replicable multi-hazard model, but most importantly to

have an extensive and in depth framework in which such model can be built. Such

“potential” framework, will then be based on the idea of a hidden layer governing the

occurrence of a hazard, in relation to the factors that may affect it.

In their work, Mignan et al. (2014) built a probabilistic multi-risk framework based

on Monte Carlo method, in which time series (representing different scenarios) of events

are generated from a Poisson distribution. The interactions between hazard are com-

puted through a so called “hazard correlation matrix” filled with conditional probabili-

ties generated by the algorithm used. Although the overall work is a simulation and so

not based on real data, it does highlight an important point. If there is the possibility to

develop the concept of potential throughout a wide base of hazards, or in other words if

it is possible to find a common approach to define conditional intensities using functions

with specific features, there is the chance to make a step forward a feasible multi-risk

framework. In fact, the complexity of combining different hazards, data, functions can

be reduced with the use of conditional intensities built as blocks, connected in relation

to the type of interactions. With this approach, a new algorithms may be developed

for the simulation and evaluation of hazard occurrences with a substantially reduced

amount of computer memory requirement. In Chapter 6, the concept of potential will

be explored to produce examples of hazard interactions that can be expressed in such

framework.



Chapter 4

A statistical model for

earthquake and/or rainfall

triggered landslides

4.1 Introduction

As discussed in Chapters 1 and 3, hazard analysis is mostly single-hazard focused,

and examples of multi-hazard analyses are limited to susceptibility maps and models

tailored to specific areas and events. In all these cases, the temporal aspect is sup-

pressed, as the focus is mostly on the study of characteristics that make a certain area

more or less susceptible to an event (Feng et al., 2016), or on the distribution of sec-

ondary events given the features (such as the magnitude) of the triggering hazard (Fan

et al., 2012). However, the spatio-temporal overlapping of hazards suggests the need

for multi-hazard analysis, making it possible to take into account the interaction among

primary hazards in the triggering of secondary ones.

Landslides are one of the most common types of hazards, as they occur in a large

number of countries, and their separate triggering by rainfall or earthquakes has been

extensively studied. Recent projects have focused on the creation of large landslide

databases, merging smaller existing ones (e.g. ISPRA 2019). The new availability of

this data makes possible new analyses on landslides and their interaction with their

triggering hazard. Therefore, in this chapter landslides will be used to investigate the

feasibility of quantitative multi-hazard analysis able to capture the interaction among

rainfall and earthquakes in the process of triggering landslides.

Even though there are data for rainfall, earthquakes and landslides, the lack of

multi-hazard analyses is to be ascribed to the limited availability of quantitative data

with specific space-time requirements, as explained in Chapter 1 (time-homogeneous,

51
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time-stamped, congruent in time and space, ideally with magnitude expressed), as well

as to the complexity of combining datasets with substantially different hazard temporal

resolutions. Nevertheless, in Chapter 2, point processes have been presented as a viable

option for multi-triggering modelling, thanks to their flexibility. In fact, it is possible

to formulate the conditional intensity of a point process in order to include all the

natural hazards occurring in a specific multi-triggering process. In other words, all the

triggering hazards can be combined in the conditional intensity for a triggered hazard

occurrence. The use of point processes, with suitable data preparation, allows for the

development of a quantitative multi-triggering model. Therefore, in this chapter we

will demonstrate that point processes can be used to model the multi-triggering effects

of primary hazards on secondary ones, evaluating the interactions in the triggering

process. In particular, we will be apportioning the relative and combined effects on

landslide triggering given by earthquakes and rainfall.

Landslides are a common hazard in many terrains. Usually they are triggered by

rainfall (Berti et al., 2012; Aristizábal et al., 2015; Peruccacci et al., 2017) or seismic

activity (Lee, 2014a; Havenith et al., 2016; Robinson et al., 2016a). The risk associated

to landslides can be quantified (Papathoma et al., 2015; Vega and Hidalgo, 2016), by

probabilistic modelling (Lari et al., 2014a). Landslides are thus part of an important,

and relatively well-documented, hazard chain (Han et al., 2007; Gill and Malamud,

2014), which also includes landslide dams. Earthquakes and rainfall are only coinci-

dentally related; they can occur randomly in the same area at the same time (Gill and

Malamud, 2014; Havenith et al., 2016). Because landslides can be triggered by either,

there is a need (Kappes et al., 2012b) for a statistical model that incorporates both

features, in such a manner that the separate and joint triggering effects can be esti-

mated. To formulate a probabilistic model, we require a large database with landslide,

earthquakes and rainfall well distributed throughout the spatial and temporal extents.

While seismic and precipitation databases are commonly available, landslide ones are

rarer and usually incomplete (Malamud et al., 2004; Guzzetti et al., 2012; Xu, 2015;

Steger et al., 2016).

Previous work on landslide triggering has commonly looked at modelling the suscep-

tibility (Kritikos et al., 2015; Aristizábal et al., 2015; Feng et al., 2016), i.e., the spatial

distribution of events, in which the temporal dependence in triggering is suppressed.

Some studies have focused on high-resolution models specifically tailored for a single

area or short time period. Such models incorporate location-specific factors like slope,

presence of watersheds and soil characteristics (Montrasio et al., 2012; Lee, 2014a; Aris-

tizábal et al., 2016) driving the occurrence of landslides. It is difficult to extend this

approach to a scale that supports robust statistical analysis of triggering causes due

to data demands: small and localized datasets are much more refined, however the



CHAPTER 4. EARTHQUAKE/RAINFALL TRIGGERING LANDSLIDES 53

collection of such data is time-consuming and expensive. Also, the null (landslides)

data can dominate the problem without remedy. Nevertheless, thanks to recent efforts

in landslide risk management, there exist some datasets that suit our need. One of

the largest and most complete datasets is the Italian historical archive of landslides,

collected by the IFFI project (Trigila et al., 2010). This has combined all the local

and historical landslide archives, together with modern aerial photos. Additionally,

Italy is prone to medium to high intensity earthquakes (Gasperini et al., 2013), and in

many areas intense seasonal rainfall that can lead to flooding and landslides. Of all the

Italian regions, Emilia-Romagna has the longest complete record of landslides, and an

exploratory analysis of part of the landslide record has been performed by Rossi et al.

(2010).

The rest of this chapter is organised as follows: Section 4.2 describes the datasets

used, from the region of Emilia Romagna. Then, Section 4.3 introduces the model and

its components. Finally, Section 4.4 presents the results obtained and the conclusions.

4.2 Data

I have chosen to base our analysis on the Italian region of Emilia Romagna because

one of the largest and most complete datasets is the Italian historical archive of land-

slides, collected by the IFFI project (Trigila et al., 2010). This has combined all the

local and historical landslide archives, together with modern aerial photos. Of all the

Italian regions, Emilia-Romagna has the longest complete record of landslides, and an

exploratory analysis of a lengthy part of the landslide record has been performed by

Rossi et al. (2010). Additionally, Italy is prone to medium to high intensity earthquakes

(Gasperini et al., 2013), and in many areas intense seasonal rainfall that can lead to

flooding and landslides.

The region of Emilia-Romagna occupies a large area in Northern Italy, the southern

boundary of which follows the Apennines range from north-west to south east. Half

of the region consists of plains (part of the Po valley), while the remaining part is

equally split between hills and mountains. The landslide prone areas are located on

the Apennines, which represent a complex geological and tectonic setting (Martelloni

et al., 2012), of a “fold-and-thrust post-collisional belt” formed by the subduction of

the Adriatic plate with the European one (Bertolini et al., 2005). The deposits are

mainly formed by sandstones and calcarenites (Vai and Martini, 2001).

4.2.1 Earthquake data

The earthquake dataset covers all seismic events of magnitude 3 or above which occurred

in Italy from 1981 to 2018. The dataset is an updated version of the one compiled by
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Gasperini et al. (2013) (up to 2015), provided by INGV, and extended until 2018 with

the INGV online database. Note that this sets the temporal limits of our analysis.

The data includes the location (latitude and longitude) of the epicentre, the moment

magnitude, and time (to the nearest second). A large number of earthquakes could

not possibly trigger landslides in Emilia-Romagna due to their distance (e.g. events

in Southern Italy). Therefore, we have pruned the dataset using the distance from

each epicentre to the centroid of the Emilia-Romagna region, retaining only the events

within 400km (Khazai and Sitar, 2004). This subsetting method is much less severe than

those in other studies (Marc et al., 2015), but our model will automatically discount

earthquakes at too great a distance for their magnitude. With this threshold, I retained

the L’Aquila sequence, containing many of the most recent and strongest events in the

dataset. The number of events in the dataset is 8584, with a moment magnitude ranging

between 3 and 6.5. The per annum rate of earthquakes in the triennium 2016 − 2018

is substantially greater than that for the 1981 − 2015 portion of the dataset as the

number of events per year in Italy doubled (Italian National Institute of Geophysics

and Volcanology, 2019). Figure 4.1 shows that most of the earthquakes have occurred

along the Apennines, affecting in particular the province of Forl̀ı-Cesena.

4.2.2 Rainfall data

The rainfall dataset (from ARPAE, the Emilia-Romagna environmental agency) is a

compendium of daily precipitation from 1981−2018. The data are from 441 rain gauges

across 328 municipalities of the region, and each day/gauge observation is characterized

by the amount of precipitation (mm), the geographical location (latitude and longitude)

of the municipality and the type of precipitation: daily (from 00:00 to 24:00), cumu-

lated (over a number of days) or snow (whether the precipitation is flagged as snow

precipitation or not). As mentioned in Chapter 3, catalogs over a long period, such as

this one, tend to have inhomogenous features. In fact, this dataset required a lot of

cleaning before it could be used in the model.

We have redistributed cumulated values equally over their given time periods and

further averaged values for municipalities with more than one operating gauge, and

imputed missing values at a given municipality with that from the closest municipality

value available. We thus have created the potential for a finer spatial analysis of

landslide triggering than that of Rossi et al. (2010), who analyzed the region as a whole

using only a single rain record. The resulting geographical distribution of rainfall over

Emilia-Romagna is shown in Figure 4.2, highlighting the higher levels of precipitation

along the Apennines. In particular, Figure 4.2 shows two clusters of higher average

levels of precipitation, one in the south-east area of the region, but especially the one

in the north-west. This mountainous area characterized by higher rainfall values is in
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Figure 4.1: Earthquake distribution in centre-north Italy from 1981 to 2018. The L’Aquila
sequence is visible in the bottom-right corner of the map. In Emilia-Romagna (shaded inset),
earthquakes mostly follow the Apennines ridge but also some events occurred on foothills (be-
tween Rimini and Ravenna) and flat lands of Po Valley (all the top part of the region). The
light blue concentration below Verona is the 2012 earthquake series. Municipality boundaries
are shown in black.

the province of Piacenza.

4.2.3 Landslide data

The landslide data (ISPRA, 2019) for Emilia-Romagna contains 15118 landslides from

prehistory to present. The data is heterogeneous, reflecting the multiple sources used

to build the archive. The majority of landslides are reported with location (usually

the name of the municipality), time (see paragraph below) and, when available, size.

About 30% of records are incomplete.

As mentioned in Chapter 3, landslide data are often extracted from aerial photos or

GIS data, incorporated with information on soil characteristics. This leads to datasets

that are mainly focused on recording location and size of the event, but that rarely

have temporal information with a level of precision and accuracy ideal for quantitative
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Figure 4.2: Geographical distribution of daily rainfall average (mm) 1981-2018 in the Emilia-
Romagna region. Municipality boundaries are shown in black.

analysis. This is also attributable to the fact that landslides are often surveyed days

or even weeks after a rainfall or earthquake event (Qi et al., 2010), which means that

landslide clusters will typically be assigned to an arbitrary single date, even though they

may have occurred days earlier or later. For instance, of the thousands of landslides

occurred after the Kaikoura earthquakes (Mason et al., 2018), we don’t know how many

fell on that day, and how many the following days due to aftershocks or rainfall.

Rossi et al. (2010) discussed the completeness of a portion of this dataset at con-

siderable length, arguing that it is complete enough for use from 1950 onward, the re-

maining time-inhomogeneities being ascribed to changes in triggering effects (primarily

meteorological) and anthropogenic influences such as land use. The time window is

further truncated to the period 1981-2018, to match the earthquake/rainfall catalog,

leaving 7743 landslides. The main triggering factor of landslides in Emilia-Romagna is

considered to be rainfall, while seismic-induced events are less frequent but still possible

(Pizziolo et al., 2015; Piacentini et al., 2018; Troiani et al., 2017). Figure 4.3 shows the

resulting geographical distribution of landslides, with the majority of landslides located

in the mountainous area of the Apennines.

Landslide event time The major issue encountered in the landslide dataset is that

of dating accuracy and precision. This is exemplified by the “first day problem” - the

number of landslides recorded as occurring on the first day of a month is 2239 (Figure

4.4 A), 29% of the total amount.

This appears to be a consistent feature of the data, across years, seasons and munic-

ipalities. Figure 4.4 B shows the distribution of landslides in relation to the accuracy

code, a variable included in the dataset that should express the dating precision of each
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Figure 4.3: Landslide locations 1981-2018 in the region of Emilia-Romagna. Municipality
boundaries are shown in black.

event. The figure indicates that the “first day” problem is spread across all accuracy

classes, and hence these codes cannot be used to stochastically reallocate landslides

over appropriate time intervals. Moreover, we can deduce that the accuracy codes on

other days of the month are not reliable. From Figure 4.4A, there appears to be no

clear pattern from day two onward, so it is assumed that days other than day one can

be treated as precise to the day, and that day one events occurred on either day one

(with a probability that will estimated), or on another day of the month, with some

unknown distribution that I will likewise estimate. The rest of our solution to this

problem is part of the model inference, which is covered in Sections 4.3 and 4.6.

Distances and geographical location While the earthquake data is specified to a

high precision in space and time, the rainfall and landslide data are only geographically

specified in terms of municipality name, and with (at best) daily precision in time.

Hence, distances between earthquakes and potentially triggered landslides will be cal-

culated from the earthquake epicentre to the municipality centroid. Our model will

consider the number of landslides per day for each municipality, relative to the amount

of precipitation within those municipalities and the distances to and magnitudes of

seismic events. The metadata of the datasets used are summarized in Table 4.1.
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Figure 4.4: Distribution of landslides by day of the month (A) and in relation to the accuracy
code provided (B). The dataset includes an “accuracy code”, which should give an idea of the
precision of the date. A landslide with code 1 indicates a claimed daily precision of dating,
while code 2 means a short period precision (1 − 7 days). Codes 3 to 7 indicate a monthly,
bimonthly, seasonal, biannual and yearly precision. Code 8 stands for a multiple year precision,
while 9 and 10 indicate the date on the document or an uncertain date. Finally, 11 stands for
events with unknown accuracy. For the period 2016− 2018 we have no information about the
accuracy, but plot C exhibits the same distribution as plot A.

4.3 Stochastic model(s) for landslide triggering

As mentioned in Chapter 3 and in Section 4.1, the main triggering factors for landslides

are rainfall and earthquake events. Additionally, many papers suggest a possible con-

nection between these causes (Havenith et al., 2016; Marc et al., 2015). In this paper,

we seek to quantify this influence by proposing a stochastic model that involves earth-

quakes, rainfall, landslides and their interactions in order to estimate the possibility of

landslide events in relation to time and magnitude of seismicity and precipitation.

Because precipitation and earthquakes are two distinct types of triggering events,

our model need to incorporate the effect of magnitude at distance of each of the trig-

gering events and link their effects to landslide occurrences. As a suitable tool for this

purpose (Chapter 2), we will consider a spatio-temporal point process over the space S

(Emilia-Romagna) and the time horizon [1981,2018]. Particularly, we consider a non-

homogeneous Poisson process denoted by a counting function N(S,T ) which counts
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Table 4.1: Description of the datasets used.

Event Type Earthquakes Rainfall Landslides

Time Window 1981-2018 1981-2018 1981-2018
Time Precision Seconds Days Day at best
Location Epicentre lat/long Municipality centroid Municipality centroid
Magnitude Moment Magnitude Millimeters per Day Area or Volume
Features > 8000 events average average 1.11 landslides

distance <400km 825.17mm per year per municipality/
magnitude ≥3 year

the number of events occurring in S ⊂ S and T ⊂ [1981,2018]. It is commonly as-

sumed that landslide occurrences follow a Poisson process (D’Odorico and Fagherazzi,

2003; Lari et al., 2014b), hence we will examine this assumption in our model. A

Poisson process can be characterized by its intensity function (in continuous time and

space) which describes the expected number of events. At the location s ∈ S and time

τ ∈ [1981,2018], the intensity function of landslides is a non-negative function denoted

by λ(s,τ), where the probability of an event in a sufficiently small interval of space ∆s

and time ∆τ is approximately λ(s,τ)∆s∆t.

Discrete-time approximation As mentioned in Section 4.2, our datasets have dif-

ferent levels of spatial and temporal resolution, and that of rainfall and landslides is

insufficient to fit a continuous (in time and space) model. This feature of the data

implies a need to discretize time and space. Time is specified as days, which leads to

a natural discretization of time in days (as mentioned in Chapter 1 and explained in

Chapter 2). The centroid of each municipality was used as the nominal location of

corresponding landslides. This leads to a discretization of space as S = ∪Xx=1Sx which

is a disjoint union of spaces associated with municipalities over the index set of all

municipalities x ∈ {1,...,X}. In other words, each municipality is treated in its entirety

as a single spatial element. Therefore, we only observe the counts N(Sx,[t,t + 1)) for

landslides where t ∈ {1,...,T} is the index set of different days. Basically, we count the

landslide occurrence for each day t and each municipality x. For the sake of simplicity,

we replace Sx by x and [t,t+ 1) by t in the following analysis without ambiguity. Since

we use a Poisson process with intensity λ(s,τ), the number of events N(s,t) follows a

Poisson distribution with mean

µ(x,t) =

∫
s∈Sx

∫
τ∈[t,t+1)

λ(s,τ)dsdτ.

A ZIP model for landslides Because of the nature of the landslide series, the daily

values are dominated by zeros (Witt et al., 2010), on 99.76% of the municipality-days.

This suggests fitting a Poisson model is inappropriate, as the variance is nowhere near
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the mean. The standard approach in such circumstances, which we adopt here, is to

use a Zero-Inflated Poisson (ZIP) model, a random mixture of a Poisson variate and an

atom at zero. If N(x,t) is the number of landslides at location x and time t, the ZIP

model augments the Poisson model by setting

Pr(N(x,t) = n) =

{
q(x,t) + (1− q(x,t))exp(−µ(x,t)), n = 0

(1− q(x,t))exp(−µ(x,t))(µ(x,t))n/n!, n > 0.
(4.1)

Briefly, a zero count can be produced either by the zero process or by the Poisson

process, while a landslide occurrence will be produced only by the latter. Therefore,

the probability of getting a zero count is q(x,t), plus 1 − q(x,t) times the probability

that the Poisson distribution produces zero. The probability q(x,t) is estimated with a

logit model:

q(x,t) =
exp(−νx,t)

1 + exp(−νx,t)
(4.2)

where νx,t ∈ (−∞,∞) will defined as a linear function of the data.

4.3.1 Breaking down the triggering factors

The core of Eq. (4.1) is µ(x,t), a conditional mean function that links the occurrence

of landslides with the possible triggering processes. We seek to parameterise it in

terms of antecedent rainfall and earthquakes, modelling their temporal correlations

and clustering, identified by Witt et al. (2010), as follows:

µ(x,t) = µ0(x) · g(C1(x,t),C2(x,t),...,Cn(x,t)). (4.3)

where µ0(x) is a baseline and Ci(x,t) are components that capture the triggering ef-

fects of the primary events. The function g(·) is a link function, as is commonly used

in generalised linear models. The purpose of the link function is simply to express the

relationship between the components and the expected occurrence of landslides. The

function g(·) and the components have now to be defined, based on our physical un-

derstanding of the triggering process. The components should increase with triggering

propensity, and g(·) must be non-negative and monotonically increasing (Lawless, 1987;

Daley and Vere-Jones, 2003).

One of our components will register the shaking effect of earthquakes, as they are

one of the main triggers of landslides. Then, we want to differentiate between short

and long-term rainfall, as it has been established that there are two distinct rainfall

processes for triggering landslides (Rossi et al., 2010). In Eq.(4.3), we want to consider

measures of short-term rainfall (denoted CRS), long-term rainfall (CRL) and seismic

intensity (CE) that increase with the triggering effect of the respective events. The
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parameter µ0 abstracts the susceptibility of municipality x to landslides, in terms of

geography, lithology, soil structure and anthropogenic effects. This acknowledges the

fact that landslides can be affected by local effects and isolates these to our search

for a spatio-temporal relationship between earthquakes, rainfall and landslides. In the

following paragraphs the components will be explained.

Seismic component An earthquake’s ability to trigger a landslide is related to its

magnitude within a certain period of time and within a certain distance from the epi-

centre (Robinson et al., 2016b; Parker et al., 2015; Kritikos et al., 2015; Marc et al.,

2015). Kritikos et al. (2015) identified, via a fuzzy logic methodology, the most im-

portant factors in the triggering of coseismic landslides to be ground shaking intensity

and distance (Chapter 3). Similar results were obtained by Parker et al. (2015, 2017)

using logistic regression on datasets of various origins. As a proxy of ground shaking we

will use the relationship (Utsu, 1970; Ogata, 1988; Wetzler et al., 2016) between main

event magnitude and aftershock productivity, assuming that the forces that produce

aftershocks are proportional to those that initiate landslides.

As it is not clear whether a landslide registered on day t has resulted from an

earthquake on day t or day t − 1, we aggregate the overall effect of seismic events

occurred on both days. I thus propose a component

CE(x,t) =
∑

t−2<tk≤t

101.5(mk−3)

rβx,k
(4.4)

where the kth earthquake has magnitude mk, at time tk, a distance rx,k from location

x. Spatial decay is modelled by a power law, with the distance being expressed in

hundreds of kilometers (for numerical reasons). Following Meunier et al. (2007) and

Zonno and Montaldo Falero (2009), we take β = 1, although a value of 1.8 (Travasarou

et al., 2003) or even an exponential decay (Meunier et al., 2007) could be considered.

The threshold of 3 in the magnitude simply reflects the cutoff in the catalogue.

Long-term rainfall component In order to define a tool for rainfall triggering

landslides, a similar approach to the one by Monsieurs et al. (2019) is followed, using a

measure of the antecedent rainfall rather than intensity-duration techniques (Chapter

3). Two rainfall components are considered in order to account for both the short

and long-term effects on the triggering of landslides. While the short-term rainfall

component will summarise the rainfall effect on the days t and t− 1, for the long-term

component we will use an exponential smoother (Montrasio et al., 2012) on a period of
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∆ days prior to t− 1 (i.e. days t−∆− 1,...,t− 2):

CRL(x,t) =
1

∆

∆∑
δ=1

ωδ−1P (x,t− δ − 1), (4.5)

where P (x,t) is the precipitation recorded at location x on day t. Some experimentation

established that values of ∆ = 150, ω = 0.98 produced the best fit to the data, although

the fit was statistically similar for any ∆ ∈ (120,180) days. The exponential smoother

increases the effect of the days closer to the landslide day; with ω = 0.98 it was

found that day t − 152 contributes approximately 5% as much as day t − 2. The 150

days period, which may include multiple rain events (Palenzuela et al., 2016), agrees

with the range of 42-400 days identified by Rossi et al. (2010), but is in excess of the

approximately 30 days suggested by Guzzetti et al. (2012) and Berti et al. (2012).

The sub-continental climate of Emilia-Romagna may drive the length of this influenced

period as the precipitation is generally well-distributed during the year, with two peaks

in spring and autumn (Nistor, 2016).

Short-term rainfall component Treating the long-term rainfall as in (4.5) allows

us to use the simple average rainfall of the day of the landslide (t) and the day preceding

(t− 1) as a component expressing the mean intensity of the last two days.

CRS(x,t) =
P (x,t− 1) + P (x,t)

2
(4.6)

As with earthquakes, this accounts for the inability to separate which day of rain may

have triggered the landslide. The components (4.5) and (4.6) do not define a cumulated

rainfall-duration threshold in the sense of Rossi et al. (2017). Instead we are using a

“soft threshold”, where events become more or less likely depending on their values,

rather than possible/impossible. Effectively we are accounting for the uncertainty in

the triggering conditions, driven by the fact that we include non-events (days without

landslides) in our analysis. In other words, the model will not give dichotomous results,

but rather the rate of daily landslides depending on the levels of the three components.

4.3.2 Three interaction models

I trialled three arrangements for the link function g(·) in (4.3), in order to test the

interactions between the components.

Recalling Eq.(4.3), each model is a combination of the susceptibility term µ0(x)

and a function of the three components previously listed.All the components were

normalised by dividing them by their grand mean across municipalities and time.
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Model 1:

µ(x,t) = µ0(x)exp[µ1CRS(x,t) + µ2CRL(x,t) + µ3CE(x,t)] (4.7)

treats the component effects as multiplicative.

Model 2:

µ(x,t) = µ0(x){exp[µ1CRS(x,t)] + exp[µ2CRL(x,t)] + exp[µ3CE(x,t)]} (4.8)

treats the effects as additive, while in

Model 3:

µ(x,t) = µ0(x){exp[µ1CRS(x,t) + µ2CRL(x,t)] + exp[µ2CRL(x,t) + µ3CE(x,t)]} (4.9)

there are multiplicative effects between long-term rainfall and the other components,

which are then added. This model represents long-term rainfall as a weakening factor,

with the final impetus being provided by either intense precipitation or seismic shaking.

The relative strengths of each component or interaction are measured by coefficient

parameters µ1 ,µ2, µ3.

4.3.3 ZIP terms

The ZIP form is compiled in four different forms (A to D), from the simplest ZIP form

A, including only the intercept ν0

A : νx,t = ν0 (4.10)

to models B and C, which are ZIP model forms that account for inflated zeros from

the absence of the short or the long-term rainfall components, as suggested by the fact

that rainfall is considered to be the dominant controlling mechanism for landslides in

Emilia-Romagna:

B : νx,t = ν0 + ν1CRS(x,t) (4.11)

C : νx,t = ν0 + ν2CRL(x,t) (4.12)

and finally model D, which is the full model, allowing for inflated zeros to be influenced

by all three components:

D : νx,t = ν0 + ν1CRS(x,t) + ν2CRL(x,t) + ν3CE(x,t) (4.13)
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4.4 Results

The parameters were numerically optimized to maximize the likelihood. The suscepti-

bility parameters µ0(x), location based multipliers, were estimated as described in the

Section 4.6. The model fitting was restricted to municipalities with at least ten recorded

landslides in the period 1981 - 2018, to avoid the model fitting driven by individual

landslides. The likelihood functions of the models are derived in the Appendix. The

three components terms (4.4), (4.5) and (4.6) are used in the ZIP models (4.10)-(4.13)

proposed in the previous section. Table 4.2 shows the estimated parameters and the

value of the log-likelihood. Models are identified by a number denoting the form of

µ(x,t) (Eq.4.7-4.9) and a letter identifying the ZIP model (Eq.4.10-4.13).

Model 1 Model 2 Model 3

ZIP B ZIP D ZIP B ZIP D ZIP B ZIP D

µ0 (mean) 1.18E-03 3.95E-02 3.18E-03 3.93E-03 1.96E-03 1.53E-03

µ0 (SD) 8.03E-04 4.09E-02 2.15E-03 2.68E-03 1.34E-03 1.04E-03

µ1 0.23 0.23 0.18 0.18 0.21 0.15

µ2 6.69E-08 0.16 0.06 0.16 0.02 0.15

µ3 1.01E-05 1.02E-05 1.06E-06 1.44E-12 2.00E-04 6.00E-04

ν0 7.64 8.05 7.55 7.92 7.58 11.9

ν1 -22.7 -0.27 -2.24 -2.27 -22.9 -0.30

ν2 -0.19 -0.45 -4.70E-75

ν3 -3.20E-11 -1.00E-04 -0.01

Log-likelihood -44710 -44670 -44393 -44337 -44587 -44792

Table 4.2: Parameter estimates (normalised components) and resulting log-likelihood for each
model.

Of the ZIP forms presented in Eq.(4.10) - (4.13), only B and D have been retained

as they were clearly superior to the others. Model 2 is preferred, as the log-likelihood

is much the largest of the three, indicating that the earthquake and rainfall triggering

effects on the number of landslides are best described as additive. The large differ-

ences in likelihood demonstrate that Models 1 and 3 are a poor reflection of reality in

comparison with Model 2. Looking at the ZIP form, the difference in log-likelihood

between Model 2B and Model 2D is not large, with a slight preference for 2D. Due to

the complexity of the model, it is not clear if the improvement in log-likelihood from 2B

to 2D is significant bearing in mind the two additional parameters (ν2 and ν3). These

two extra parameters allow for different interpretations, particularly in terms of earth-

quakes, with one model (2B) including earthquakes as a term that mainly increases the

number of landslides when at least one occurs, and the other (2D) having earthquakes

affect the probability of there being any landslides at all.

The normalisation of the components (Figure 4.5) allows us to compare the impor-

tance of different components via the parameters with estimates in Table 4.2, while
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the graphical representation in Figures 4.7 and 4.8 shows visually whether each model

properly represents the data. Focusing on Models 2B and 2D, we first see that, regard-

less of which model is considered, the short-term rainfall parameter µ1 is the largest

contributor to landslide occurrences when only short-term rainfall is considered in the

ZIP portion of the model. If the full ZIP parameterisation (4.13) is considered, the

long-term rainfall parameter µ2 increases in magnitude, but this is offset by the con-

tribution from ν2 in the ZIP portion. While the earthquake component parameter µ3

is superficially low, we note that the values of the normalised seismic component can

be orders of magnitude larger than the rainfall terms (Figure 4.5). Hence the seismic

component is more variable, with a long tail, and the lower value of µ3 means that the

model is separating out the higher values of shaking. However, its effects can apparently

be expressed through either µ3 or ν3, but not both. Turning to whether the models

reflect the data, in Figure 4.7 we see the expected number of landslides consistently

following the expected pattern from Model 2B. However, Model 2D shows a poor fit

(Figure 4.8), where the expected landslides process is visually very different from the

observed landslides one, being dominated by the 2016-2018 period which had slightly

higher levels of rainfall overall. Hence Model 2D appears to be over-sensitive to the

rainfall level. Model 2B shows a representation of landsliding which is more in line with

other studies, which determined short-term rainfall to be the main driver of landsliding

in Emilia-Romagna (Piacentini et al., 2018; Troiani et al., 2017).

Figure 4.5: Histograms of the normalised three components.

The location-specific susceptibilities µ0(x) are shown in Figure 4.6 against the num-

ber of landslides per municipality: while µ0 increases in general with the number of

landslides, the triggeringeffects of the model are demonstrated in the variation around
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a hypothetical straight line. Again, we see that Model 2D extracts less information

from the triggering data. Figures 4.7 and 4.8 present three panels showing the compo-

Figure 4.6: Estimated location susceptibilities for Model 2A (left) and 2D (right).

nents and the expected/observed landslides across all municipalities in the time window

1981-2018, respectively for Model 2B and 2D. The first plot displays short and long-

term rainfall, the second one observed and expected landslides and the third one the

earthquake component. As expected, looking at the first and second it is possible to

see that the expected number of landslides has a temporal pattern which follows the

rainfall one. At the end of the time window, due to the high peak of rainfall (the last

three years of data show an increase in short-term rainfall), the expected landslides

count is elevated. In the same period, there is a peak in the estimated earthquake

effect which may have affected the triggered landslides. This 2016-2018 effect is seen

more clearly in Figure 4.8, where the line expressing the expected landslides is higher

compared to the one in Figure 4.7. and 4.8. Model 2B as illustrated in Figure 4.7

seems to provide a good representation of expected landslides against observed ones,

remembering that many “day 1” landslides are obvious artifacts in the wrong tempo-

ral location. In contrast, Model 2D exhibits poor correlations between expected and

observed landslide numbers, with the former being over sensitive to rainfall, and hence

dominated by the higher levels of rainfall in 2016-2018.

A big spike in the expected number of landslides around 2012 reflects the anomaly of

that year, where no landslides were recorded during or after the earthquake sequence

mentioned in Section 4.2. It is interesting to notice that the correspondence in the

number of observed and expected landslides around late 2008 to early 2009 includes

considerable earthquake contributions, and some medium scale short- and long-term

rainfall terms.
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The plots in Figure 4.9 shows the relationship between the three components (4.4),

(4.5) and (4.6). The distributions of the components have been separated by days with

landslides (black dots) and days without landslides (grey squares). In the first plot, the

distributions of long-term against short term rainfall components exhibit interesting

features: landslides tend to concentrate at medium to high values of long-term rainfall,

as well as non-landslide values (see also the third plot, against the earthquake compo-

nent). This indicates that high long-term precipitation values by themselves may not

be a certain indication of landslide triggering. Recalling Table 4.2, the presence of a

significant value of ν2 term in Model 2D, confirms this finding: for high values of long-

term precipitation, there are landslide occurrences but also many zero-landslide days

(excess of zeros), resulting in a less than obvious link between landslides and long-term

rainfall. This observation highlights the complexity of hazard interactions, mentioned

in Chapter 3, that will be further discussed in Chapter 6.

The short-term rainfall values for days with landslides tend to be low, against either

of the other two components, indicating that the short-term rainfall component by itself

is not sufficient to trigger landslides, which is inconsistent with the estimates in Models

1B and 3B. When looking at each rainfall component against the earthquake one, it is

possible to see a cluster of events at higher values of earthquakes component (in both

the second and third plots) associated with low values of rainfall (short or long-term),

suggesting the possible presence of coseismic landslide triggering expressed either as

an amplifying term (Model 2B) or an initiating term (Model 2D), although this is

somewhat difficult to identify in Figures 4.7 and 4.8.
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4.5 Discussion

I have demonstrated our proposition from Chapter 2: point processes can be used to

model the triggering influence of multiple factors in a discrete approximation, with

different configurations to examine possible hypotheses, and for a coarse resolution

dataset. The formulation can be adapted to naturally discrete recorded data. Physical

coefficients such as the weight {µi} for each component are treated as constants across

space and time. Each location is assumed to have its own susceptibility to landslides,

which acts as a multiplier. The temporal component is represented by a time-series of

the triggering factors, the model structure remaining constant over time. The basis of

the model is one that accommodates a spectrum of behavior from “increased probabil-

ity” (Gill and Malamud, 2014), where the occurrence of an event increases the chances

for the occurrence of a secondary event without directly triggering it, to almost direct

triggering should the intensity rise quickly enough.

The available data for the landslide triggering problem in Emilia-Romagna is nat-

urally at a daily precision. Hence the vast majority of location-days had no landslides.

This over-abundance of zeros in the data required us to use a Zero-Inflated Poisson

(ZIP) model (Chapter 2). This allowed us to treat the power-law decay in number of

landslides per day (Rossi et al., 2010) as an aggregation across 139 municipalities of a

few Poisson values and many zeros. I found that rainfall in particular exerted a strong

effect on the likelihood of no landslides, agreeing with previous work by Rossi et al.

(2010, 2017) and Peruccacci et al. (2017). With this foundation, the best triggering

model has an additive form, where long-term and short-term (i.e., duration and inten-

sity) rainfall, and coseismic triggering add together to raise the expected number of

landslides. A multiplicative form was explicitly rejected by the data, as was a com-

bined version where long-term rainfall was used as a multiplier for short-term rainfall

and coseismic influence, and the terms added.

A possibility I did not examine, due to the already low level of coseismic landsliding

in our dataset, is possibly transient triggering effects of earthquakes. It has been sug-

gested that earthquakes can have a cumulative effect (even possibly a negative one) on

landslide triggering (Brain et al., 2017), or that earthquakes and rainfall can interact in

a complex manner over a period of years (Marc et al., 2015). This would require a new

term in the model, where the cumulative effect of earthquakes is tracked (Bebbington

and Harte, 2003). Considerable experimentation will be needed to identify character-

istic time-windows and their dependence on data such as magnitude. A complicating

fact is that the 2012 earthquake sequence represents a peculiar example of a seismic

event without landslides. The reason may be due to a combination of factors, includ-

ing the location of the epicentres of the two main shocks (about 50km away from the

closest high ground) on a non-Apenninic fault, and the SE direction of seismic wave
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propagation, which hence propagated unilaterally through the Po Valley towards the

sea, rather than towards the mountains (Cesca et al., 2013; Pezzo et al., 2013; Vannoli

et al., 2015).

At a finer level, if sufficient data on landslide location is available, the location

susceptibility term could be parameterized in the usual manner (Parker et al., 2015),

leading to a mapped intensity. However, this will require much more intensive develop-

ment in the fitting process, as the data will be dichotomous (either a landslide occurs

at that location and time, or not). Hence a spatial intensity will need to be fitted,

possibly with a model for a size mark (Bebbington, 2015). The problem of whether a

landslide inhibits (or encourages) a subsequent landslide at the same location would

also need to be addressed.

Other avenues for future work include the possibility of including debris flows (Gi-

annecchini et al., 2016) as a tertiary hazard, but with a complex triggering mechanism

from rainfall, conditioned on the existence of previous landslides. The Melton ratio,

measure of the area proneness to debris flows, of the catchment will then also have a

role in the model (Welsh and Davies, 2011). A similar treatment could be accorded

landslide dams (Tacconi Stefanelli et al., 2015).

4.6 Appendix

4.6.1 Estimation

Defining N(x,t) as the actual number of landslides at location x on day t, we have that

Pr(N(x,t) = n) =
exp[−µ(x,t)][µ(x,t)]n

n!
, (4.14)

for n = 0,1,2,....

The log-likelihood for the process is therefore

logL =

T∑
t=1

X∑
x=1

[
− µ(x,t) +N(x,t)log(µ(x,t))− logN(x,t)!

]
. (4.15)

Maximizing (4.15) is computationally expensive, due to different susceptibility terms

µ0(x) for every location. However, we can simplify this using a property of the point

process Maximum Likelihood Estimate (MLE). Let us suppose that the conditional

intensity for continuous time is written as µ(x,t) = µ0(x)h(x,t,θ), where h(x,t,θ) is a

function of components expressing the triggering mechanisms and of a vector θ of j pa-

rameters. The parameter µ0(x) is a purely location based multiplier that expresses the

susceptibility of a location to landslides. In static approaches an equivalent quantity is

usually estimated via logistic regression (Garcia-Rodriguez et al., 2008; Minder et al.,
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2009). For any value of θ, the log-likelihood at each location x is maximized by set-

ting the conditional intensity (expected number of landslides) equal to the (observed)

number of landslides in a given location across time

µ0(x)
∑
t

h(x,t,θ̂) =
∑
t

N(x,t),

where θ̂ is the MLE of θ. We now assume that this property is inherited by the ZIP

model, thus equating the observed and expected numbers of landslides at that location,

and hence

µ0(x)
∑
t

h(x,t,θ̂) =
∑
t

N(x,t). (4.16)

This allows us to operate a two-step numerical optimization, where θ̂ is first updated,

holding {µ0(x)} fixed, and then the {µ0(x)} are recalculated according to (4.16).

4.6.2 Landslide dating accuracy problem

As described in Section 4.2, we decided to consider all landslides that are reported on

other than the first day of a month as reliable, and all landslides dated on the first

day as potentially unreliable. Considering the intrinsic scarcity of landslide data (82%

of days have no landslide events), it is not feasible to reduce our analysis to only the

landslides not occurring after day one of each month, as we would not take account of

a large portion of events and, more importantly, we would lose the continuity of their

triggering effects. Moreover, the number of day one events differs sharply by month,

and hence they still contain some information about triggering effects.

Let us define Y as the number of landslides at a given location in a specific month,

with µ as their average daily rate of occurrence across the T days in the month. Then

Y = y1 + y2, respectively the number of landslides recorded on the first day of a

month and on the remaining days. Similarly, T = t1 + t2, split into the number of

first days (t1 = 1) and the number of remaining days t2. Furthermore, let x1 and

x2 denote the true (unobservable) number of landslides on the first day of a month

and on the remaining days. Then if π is the unknown mis-specification rate at which

landslides occurred from non-first days of a month but were recorded on the first day,

we have Y1 = X1 +
∑X2

i=1Zi, and Y2 = X2 −
∑X2

i=1Zi =
∑X2

i=1(1 − Zi), where Zi is a

Bernoulli random variable with Pr(Zi = 1) = π. Taking expected values, we obtain

E[Y1] = E[X1] + πE[X2] = µt1 + πµt2 and E[Y2] = (1 − π)E[X2] = (1 − π)µt2. We

can now impute the missing data by replacing Y1, Y2 and µ with y1, y2 and µ̂ = y1+y2
t1+t2

,

obtaining

π̂ =
y1/t1 − y2/t2
y1/t1 + y2/t1

(4.17)
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where we need y1
t1
> y2

t2
(i.e., a noticeable excess of first day events) for a reasonable

estimate. In order to obtain the probability that a landslide occurred on the first day

of a month (event A), given that it has been recorded as such (event B), we can use

Bayes Theorem to write

̂Pr(A|B) =
t1

t1 + πt2
=

t1/(t1 + t2)

y1/(y1 + y2)
(4.18)

Thus we know (1 − ̂Pr(A|B))y1 landslides need to be redistributed across other days

of the month. We can do so by using the Expectation Maximization (EM) algorithm

(Dempster et al., 1977), where they are allocated at each optimization step in proportion

to the expected number of events. Note that we do not require landslides to be an

integer at this point, as the log-likelihood calculations (4.15) or (4.19) do not require it

(the factorial term in 4.15 is a constant, and thus does not feature in the maximization).

4.6.3 Log-likelihood of the ZIP model

The log-likelihood for the ZIP process is

logL =

T∑
t=1

X∑
x=1

I0(N(x,t))log{q(x,t) + [1− q(x,t)]exp(−µ(x,t))}

+

T∑
t=1

X∑
x=1

{[1− I0(N(x,t))][log(1− q(x,t))− µ(x,t) +N(x,t)logµ(x,t)

−log(N(x,t)!)]}, (4.19)

where I0(N(x,t)) is 1 if no landslide occurred at location x on day t, 0 otherwise.

The summation reveals that the model is fitted to the daily counts summed across

municipalities (Rossi et al., 2010), but that each municipality contributes its own spatial

triggering factors in rainfall, earthquake and susceptibility.

Data and code used can be found at the respective GitHub repository:

https://github.com/gfrigerioporta/eqrfls.git



Chapter 5

Landslide Dams

The material in this chapter forms the basis of a paper published in Landslides, (Frige-

rio Porta et al., 2020).

5.1 Introduction

In Chapter 4, I presented a model for the interactions in the triggering of landslides by

rainfall and earthquakes. Going further into this hazard chain (see Figure 3.1), there is

another consequential type of event whose analysis is similarly affected by the lack of

sufficiently large and detailed datasets: landslide dams. A landslide dam occurs when

a landslide falls on a river and blocks the water flow, causing water accumulation. The

subsequent possible failure of the landslide dam will lead to a flash flood. This hazard

threatens downstream human settlement or infrastructure. The danger is intensified by

the amount of water accumulated, therefore estimation of the time to failure becomes

crucial for assessing engineering risk mitigation procedures Chapter 3).

Modern engineering techniques have provided means to reduce the impact of a

potential dam break, and in some cases the damage can be controlled (Wang et al.,

2015). However, sometimes a failure occurs quickly and causes devastation and a high

number of fatalities (Nibigira et al., 2018). Without any engineering mitigation, the

presence of a dammed river creates a waiting game against nature, with high chances

of devastating results (Inoue et al., 2013). The majority of landslide dam failures occur

shortly after the formation (Dong et al., 2009; Korup, 2005), but the longer it takes the

dam to fail, the more water is accumulated. Hence a quick assessment of the failure

time of the dam becomes vital for determining if engineering options are necessary, or

indeed feasible.

Other than by external events (e.g. earthquakes), the failure of a dam is mainly

caused by overtopping or seepage (Awal et al., 2007). In overtopping, the water reaches

the crest of a dam and spills over, eroding the structure, which eventually collapses

75
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(Massey et al., 2013; Harrison et al., 2015). In case of seepage, the water filters through

the mass of the dam (due to the porosity of the material) and weakens the structure

until it collapses. Even if we exclude the effects of external events, the stability of a

landslide dam is affected by multiple factors. Dams are subject to a certain amount of

stress due to the pressure of the accumulated water. The type of material it is made

of, the shape of the dam (McKillop and Clague, 2007), the size of the valley and of the

resulting reservoir (Dong et al., 2009) are all crucial determinants of the durability of

a landslide dam.

Previous studies (Casagli and Ermini, 1999; Korup, 2005; Deng et al., 2017) have

focused on the dichotomy of failure/not failure using dam dimension indices, descriptive

multivariate analysis and logistic regression (see Chapter 3). Although it is important

to predict whether a dam will fail or not, it is perhaps more vital to know when it will

fail. With a time to failure estimate, it is possible to put in place emergency procedures

to secure the dam or to adopt other solutions such as safe release of the water (James

and De Graff, 2012; Zhang et al., 2015; Chen et al., 2017) and implement evacuation

plans. There is thus the need for a time-to-event model capable of forecasting the time

of failure in relation to the dam characteristics. I therefore propose a Bayesian survival

model to predict the time to failure of landslide dams, based on their characteristics and

those of potential reservoir. A case study on heterogeneous Italian events is presented,

where length and height of dams, and the catchment area behind them, are identified

as the most important covariates controlling the time to failure.

The rest of the chapter is organized as follows. 5.2 discusses the landslide dam

phenomenon. After that, we will introduce the dataset of landslide dams taken from the

catalogue of Tacconi Stefanelli et al. (2016) in 5.3. 5.4 proposes a detailed description

of our model, its inference and results. Finally, in 5.5 and 5.9 we discuss the results

and conclude with possible generalizations of the model.

5.2 Landslide Dams

Our model will work with the dam characteristics only, in order to focus on the actual

damming material, rather than the entire landslide. This also allows us to avoid the use

of computed variables (e.g. volume). The dam characteristics consist of the material

it is made of and its dimensions. As mentioned in Chapter 3, while the material is

sometimes known prior to dam failure if geological studies in an area have been carried

out, the dam dimensions play a more crucial role in the evaluation of time to failure

(Dong et al., 2014). Several authors (Costa and Schuster, 1988; Casagli and Ermini,

1999; Tacconi Stefanelli et al., 2016) have also highlighted the importance of the dam

dimensions in controlling dam failure. Therefore we will focus on the quantitative

analysis of the dam dimensions, bearing in mind that our model is a first step towards
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more complicated and tailored ones, that can incorporate other information such as

the dam material.

A landslide dam is usually abstracted as a triangular prism, with a vertical surface

spanning the valley on the upstream side. The length of a dam describes how large

the blockage is in relation to the width of the valley, i.e. how likely the river is to be

blocked, or to bypass the obstacle without forming a lake. The height of the dam,

from the bottom of the valley to the crest of the structure, is a good indicator of how

long it will take before the dam can be over-topped, and hence how long the material

may have consolidated. The width of the dam is the along-valley dimension, and may

indicate how robust the barrier should be, all other characteristics being equal.

Environmental (reservoir) characteristics are equally important as they give an idea

of how much water can accumulate behind the dam (and hence the pressure on the dam)

and of the inflow rate, which should indicate how fast the point of overtopping can be

reached. A commonly used quantity for the latter is the catchment area, described as

the area within which water flows (from rainfall and springs) towards the dam. Note

that the treatment we are going to present here does not consider rainfall, which could

be involved in decision making, but for which we lack data in this consideration of

historical dams. Such factors contribute to the residual variation (standard error) in

the model.

Any individual characteristic mentioned above cannot fully explain the durability

of the dam, and they need to be combined into effective assessment tools. An example

of these are geomorphological indices (Swanson et al., 1986; Ermini and Casagli, 2003),

that have been developed to portray the condition of a dam using combinations of the

dam and reservoir variables. These indices are usually calculated with only medium to

large landslide dams, which lead to a biased representation of the landslide dams, as

smaller ones, which are more likely to have failed by the present day, are not represented.

An example, previously mentioned in Section 3.2.4, is the Blockage Index (Casagli

and Ermini, 1999), BI = log(V/C) the logarithm of the ratio between the volume of

the landslide dam (V ) and the catchment area (C). Ermini and Casagli (2003) fur-

ther developed this approach by proposing the Dimensionless Blockage Index DBI =

log(CH/V ), where H is the dam height. These indices were used to partition the land-

slide dams into groups by setting threshold values. For example, Ermini and Casagli

(2003) suggest that the dam is stable if DBI < 2.75 (H in m, V in m3, C in km2),

unstable if DBI > 3.08 and uncertain otherwise.

Such calculations, however, only produce a static picture of the current state of the

dam, without taking into consideration the temporal aspect of the hazard occurrence,

such as the time since dam formation. The shortage of available data also hampers

analysis, and restricts the use of these indices (Ermini and Casagli, 2003; Coico et al.,
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2013) in other settings. Working on limited samples results in implicit biases given by

the nature of the selected events. To combat this, Costa and Schuster (1988), as well as

Ermini and Casagli (2003), compiled a worldwide databases of landslide dams, but the

information about each dam is severely limited. Tacconi Stefanelli et al. (2016) instead

attempted to avoid selection biases by assembling a more complete catalogue of Italian

events. This dataset includes several types of events ranging from stable long-term dams

with accompanying lake, to short-term failure events lasting just hours. This variety of

events allows for more realistic analyses on the time to failure of dams. In fact short-

term failure landslide dams are more frequent than long-lasting dams, and they are not

free of risk. For example, Tsou et al. (2011) discussed the case of a typhoon-induced

landslide that dammed the Chishan River in Taiwan and then failed a few hours later.

Almost half of the events in the dataset of Tacconi Stefanelli et al. (2016) have failed

after a short period of time with a lake still in the process of formation.

Furthermore, these short-term failures may be correlated with a categorical char-

acteristic of the landslide. Costa and Schuster (1988) categorized landslides with the

potential of damming a stream into six groups:

Type I: “..small landslides with respect to the width of the valley floor and do not

reach opposite side of the valley”;

Type II: “..larger and span the entire valley floor, occasionally depositing material

high up on opposite valley sides”;

Type III: “..fill the valley from side to side and move considerable distances up valley

and down valley from the failure”;

Type IV: “..form by the contemporaneous failure of material from both sides of a

valley. The landslides can adjoin head-to-head in the middle of the valley, or they

can juxtapose one another”;

Type V: “..form when the same landslide has multiple lobes of debris that extend

across a valley floor and form two or more landslide dams in the same reach of

river”;

Type VI: “..involve one or more failure surfaces that extend under the stream or river

valley and emerge on the opposite valley side from the landslides. these dams

typically involve slow basal sliding and slumping and form lakes by raising the

elevation of the stream bed, changing the local gradient of the stream”.

According to Costa and Schuster (1988), the most common landslide dams are type

II and III (80% all together), followed by type I. The dataset summarized in the next

section has a strong predominance of Type II (40%), followed by type I and III (26%

and 24%).
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5.3 Data

We have excluded 6 events from the dataset of Tacconi Stefanelli et al. (2016), due to

missing information (lacking all the variables we need for our model). The remaining

landslide dams include 295 events across Italy, Switzerland and San Marino, from the

Alps (60% of events), through the central Apennines (10%) down to the mountains of

Sicily (30%).

Figure 5.1: Geographical distribution of landslide dams in our dataset.

Each entry in the dataset consists of a single dam event, described by the quantita-

tive variables presented in Table 5.1, and two categorical variables which are the land-

slide type (e.g. type I, etc.) from Costa and Schuster (1988), and the lifetime, ordered

from “hours” to “millennia”. The latter is, with a handful of exceptions, expressed as

one of a number of ordinal categories. This is termed, in statistics, interval-censored

data, in that we know (in our case we hypothesize) the lower and upper bound, but

not the exact value.
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Variables % Missing Group

Dam Width 40.73% A

Dam Height 31.85% A

Dam Length 31.07% A

Dam Altitude 27.42% A

Riverbed slope 22.98% A

Catchment Area 1.57% A

Dam Type 0% A

Dam Surface 92.43% B

Dam Volume 31.33% B

Potential energy 97.13% C

Lake Volume 82.25% C

Lake Surface 67.89% C

Lake Depth 79.37% C

Max Flow capacity 76.50% C

Lake Width 72.06% C

Lake Length 69.19% C

Landslide Surface 78.07% D

Landslide Thickness 43.60% D

Landslide Volume 13.05% D

Table 5.1: Variables in the dataset.

As mentioned in Chapter 2, working with natural hazards such as landslide dams

means dealing with incomplete or missing data. Table 5.1 summarizes the quantitative

variables in the dataset with respect to completeness. The variables have been divided

into four groups: Group A (variables we will use in our analysis), Group B (variables,

such as volume, derived from those in Group A), Group C (variables with too many

missing values to use, and no feasible way to impute them) and Group D (landslide

variables). Bayesian imputation for Group C variables would not be robust, while

using the variables in Group B would make the model over-specified. Therefore, it was

decided to exclude these variables from our analysis and focus on the remaining ones

in Group A. It is emphasized that only direct dam measurements (e.g. dam length)

will be used, rather than computed ones (e.g. dam volume), in order to highlight the

elementary/fundamental relationships among variables/dimensions driving the failure

time of landslide dams. Hence the model we are going to build will be able to suggest the

most important driving factors among direct measurements, and the best combination

of them, if any. Furthermore, as noted above, we will use dam variables rather than

landslide variables, as we are primarily interested in the potential mismatch between

the size of the dam and the size of the valley (Costa and Schuster, 1988). If we did

use compound variables such as dam volume or landslide volume, we would prefer

the first one because it brings information about the landslide and, at the same time,

the topography of the area (valley width). The landslide information could have a

starring role, when combined with environmental variables, in forecasting the formation

of landslide dams. This is, however, irrelevant to our aim of forecasting failure times
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of dams that have occurred, and is left to future research.

Dam State Lifetime Class

Hours Days Months Years Centuries Millennia Missing Total

Alluviation 1 15 2 6 22 46

Drained 5 14 9 1 29

Existing 2 8 14 4 2 30

Stabilized 1 1

Not formed 2 3 1 92 98

Failed 21(2) 26(3) 10(2) 15(1) 6 13 84

Total 23 34 28 47 23 10 130 295

Table 5.2: Frequency of the events with known dam lifetime and condition. “Drained” and
“Stabilized” refer to human intervention. Disappearance of the lake by aggradation is indicated
as “alluviation”. The counts in brackets are the events with exact damming and failure times.

Table 5.2 summarizes the lifetime and current status of the events in the dataset.

In terms of time to failure, 51 out of 190 events (with known lifetime) have failed after

a period of years, 100 within a year and 24 after just a few hours. Nine dams are still

extant, with current lifetimes lasting from years to millennia. The “not-formed” class

of landslide dams has many missing data. This was expected, as in such cases the dams

disappear in a short time, making the data collection difficult. It is assumed that all

these events would have a lifetime of hours.

Dam lifetime Classification of the lifetime period, from days to millennia;

Dam length Length of dam (m) from where the landslide has originated

to as far as the dam goes towards the other side of the valley;

Dam height Height of dam (m) from the bottom of the valley to the crest;

Dam width Width of dam (m), indicating how far the dam goes upstream

or downstream following the direction of the valley;

Dam altitude The altitude of the dam crest above sea level (m);

Catchment area The watershed above the dam (km2);

River slope Steepness (degrees) of the river bed

Dam type Category of dam by Costa and Schuster (1988) representing

the complexity of the landslide event and the dimensions

and position of the dam in the valley.

Table 5.3: Glossary of the variables used.

The variables used are summarized in Table 5.3. Figure 5.2 shows the distribution

of the variables by dam conditions. All variables but river slope are higher on average

in the case of a formed dam, compared to the events in which dams did not form.

If we look at the three dimensions of a dam (height, length, width), we can also see
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these are higher in the case of piping, against overtopping. This is expected, as piping

is a slower mechanism than overtopping, hence a larger dam is more likely to survive

overtopping long enough to fail from piping. River slope appears to be the same on

average among the lake conditions, suggesting that the formation of a lake is more

related to the dimension of the dam, rather than the speed at which the water fills the

valley.
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Figure 5.2: Box plots for the variables by dam conditions.

We will first examine the distribution of individual variables, and then consider their

relationships. The histograms of the selected variables in Figure 5.3 exhibit highly

right-skewed distributions. In order to simplify the analysis, all variables have been

transformed by taking logarithms, after which all of the variables become approximately

normally distributed, as can be seen in Figure 5.4. Hence from here on we will use the

log-transformed variables and assume them to be normally distributed. The dam types

defined by Costa and Schuster (1988) and the indices proposed by Casagli and Ermini

(1999) and Ermini and Casagli (2003) highlight the importance of the relationship

between variables when assessing the potential lifetime. A dam must be large enough

to allow for quick water accumulation (or the river would just modify its path), high

enough to not be easily overtopped by the accumulating water, and wide enough to

resist the pressure of the lake that will form behind the wall. Therefore, a wider valley

is less likely to be fully dammed, due to the larger volume landslide required to build
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Figure 5.3: Histogram plots for the log-transformed selected variables.

a dam spanning the valley width. Narrower valleys are more prone to enduring events,

as landslides are more likely to run over the entire section of the gorge. Such conditions

are more common at higher altitudes, where valleys are narrower and deeper (Korup,

2004).

Table 5.4 shows the Spearman correlation coefficients between the variables. The

highest correlation is observed between dam length and dam width followed by length

with height, altitude and area, and height with width. Similar results have been found

by Dong et al. (2009) in a smaller Japanese dataset. All the variables are significantly

correlated except for altitude and catchment area, and all correlations are positive ex-

cept those with river slope. Note that in such situations, correlation may be propagated

between two variables that are not directly related by means of a third with which the

first two are related. This will be used in the model specification.
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Log of Dam Altitude (m)

Log of Catchment Area (km2)

Log of Dam Height (m)

Log of Dam Lenght (m)

Log of Dam Width (m) Log of River Slope (degrees)

Figure 5.4: Cumulative distribution function plot of each variable (dotted line): the log-
normal distribution (solid line) is a good fit.

Length Height Altitude Width Catchment area River slope

1 0.5421 0.4328 0.7066 0.4255 -0.2064 Length

1 0.2343 0.5054 0.2132 -0.1658 Height

1 0.3303 (0.0802) 0.1563 Altitude

1 0.3893 -0.1656 Width

1 -0.641 Catchment area

1 River slope

Table 5.4: Spearman correlation matrix. Non-significant (at 5% level) correlations are in
parentheses.

Figure 5.5 shows the distribution of the variables by dam lifetime class. Dams with

greater dimensions (height, length, width) tend to survive longer. Similar separations

are not observed in the other three variables.

Table 5.4 and Figure 5.5 suggest that we cannot consider only the marginal effect
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Figure 5.5: Box plots for the variables split by lifetime class

of each variable in our model; we need to consider the interaction between variables.

Finding a suitable correlation structure between the variables will enable us to apply

Bayesian imputation to the missing values, and hence to build a more robust model

for the landslide dam failure time. Figure 5.6 shows the positive relationship between

dam length and dam width, as a typical example of the positive correlation among the

dam variables.

In contrast, Figure 5.7 shows the relationship between dam length and river slope,

suggesting a relative lack of correlation. This occurs in every plot between river slope

and the other variables, apart from catchment area. In that case we have a negative

correlation, indicating that an increase in river slope implies a decrease in catchment

area.

Importantly, Figures 5.6 and 5.7 contain data from events that occurred in Sicily,

which appear dissimilar to the rest of the data. Sicily is mostly (86%) covered by

hills and mountains (Barbera and Cullotta, 2012), and landslide dams are common.

Nevertheless, the events in Sicily have, on average, smaller dam length and width, as

well as catchment area, as can be seen in Figure 5.8. The fact that landslide dams in

Sicily are smaller (and so more likely to fail quickly), together with the fact that these

events in Figures 5.6 and 5.7 show different correlation patterns compared to the other

events, suggests that we may need to consider this difference in the model formulation.
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Figure 5.6: Scatter plots of Dam length against Dam width.

For the moment, these events will be retained in the dataset, with alternative models

accounting for the differences presented in Section 5.7.
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Figure 5.8: Variable distributions of events in Sicily and in the rest of Italy. The Sicilian
events tend to have smaller values.
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Figure 5.7: Scatter plots of River slope against Dam length.

5.4 Methods

As past studies have shown, certain specific characteristics of landslide dams can be

used in creating discriminant functions to assess the stability of the dam (Casagli and

Ermini, 1999; Ermini and Casagli, 2003). Other studies have estimated the probability

of failure via logistic regression (Dong et al., 2011) on the dam dimensions, with good

results in prediction for regionally localized datasets. However, together with the failure

probability of a dam, it is crucial to know the time to failure, so that authorities can

take decisions with the best information available. Survival analysis is a statistical

methodology commonly used to evaluate time-to-event data in many scientific areas

Chapter 2). It has been used, for example, in geological applications to evaluate the

time to failure in landsliding (Federico et al., 2012; Segalini et al., 2018). Similarly

to logistic regression, our survival model incorporate the variables describing the dam

and the environment (discussed above) into the model as covariates, but instead of

estimating the probability of failure, it estimates the survival time for each dam from

its creation.

5.4.1 Covariate effects

The information obtained from the dataset can be combined into a model to predict

the failure times of landslide dams. In particular, we are interested in understanding
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how the covariates discussed above influence the failure time of a dam, denoted by a

non-negative random variable T . For example, we might expect that a longer or higher

dam is likely to survive longer than a shorter or narrower one, but to what extent is

this related to the catchment area or the river slope?

A log-normal distribution is assumed for the failure times, i.e. log-transformed times

are normally distributed as log T ∼ N(µ,σ2), where µ is formulated as a function of

the covariates to account for their effects on the expected dam failure time, and σ2

the uncertainty (variance). These assumptions are, within the limitations of the data,

consistent with them (see, e.g. , Ermini and Casagli (2003)[Figure 2]). The assumptions

can be easily revisited should sufficient data be obtained to assess them. It is to be

denoted the log-transformed dam length, width, height, altitude, catchment area and

river slope by Li,Wi,Hi,Ai,Ci,Ri for the ith dam respectively, and each of the (log-

transformed) variables is assumed to be normally distributed.

The model expresses the effect on the mean µi of the log-transformed survival times

for the ith dam as a linear combination of the covariates:

µi = β0 + βHHi + βLLi + βWWi + βAAi + βCCi + βRRi + γD,i (5.1)

The parameter β0 is the model baseline, and the other β are parameters representing the

effects of the explanatory variables on the time to failure for the dams. The parameters

γD represent the influence of the dam type Di (Costa and Schuster, 1988) of the ith

event, assigning a different intercept for each category. Type II, the smallest type of

dam reaching the other side of the valley, is used as a baseline, consequently γ2 is

set to zero to avoid over-parametrization. The use of Type I landslides as a baseline

was explored, but those landslides do not reach the other side of the valley. As this

type includes only dams that did not form or that failed within hours, this resulted in

numerical instability. No events in the dataset are of dam type V, therefore we only

have four of these effect terms.

5.4.2 Imputation of missing values

As mentioned above, each variable has a certain percentage of missing values, apart

from dam type. In order to extract maximum value from the dataset, we will exploit

the correlation structure between the variables to fill the gaps. We can do so by a

method touched on in Chapter 2: Bayesian imputation (Little and Rubin, 1986), which

involves the imputation of a missing value by looking at the distribution of that variable

conditional on the others. The imputation is reiterated multiple times for each variable,

in order to ensure the validity of the imputed values. It is important at this point to

note that we have two completely different models here: the imputation model and the
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survival model, previously explained. Once the first model has imputed the missing

values, the second model estimates the relationships between the variables to establish

which driving factors are affecting the time to failure of landslide dams.

Therefore the distribution of each variable has been modelled as conditional on

others, creating a correlation structure among the variables. The relationship between

the covariates is modelled using a sequence of conditional distributions in the structure

illustrated in Figure 5.9, reflecting the correlation matrix in Table 5.4:

Figure 5.9: Concatenated conditional structure of the selected variables. The lines in black
represents the conditional structure used. The grey lines reflects other postulated connections
that were not significant in the regression models.

As can be seen in Figure 5.9, altitude is used as the starting point of a concatenation

of conditional distributions. The length of a dam is given by the span of the landslide

material across the valley, and the height by the amount of material accumulating on

the floor of the valley. Assuming that the valley width is inversely correlated with

altitude, for a certain landslide volume a dam is more likely to block the entire floor

and to expand upwards in a narrow valley. On the contrary, in a wider valley, landslide

volume being equal, a dam may be longer but lower. Hence, dam length is modelled

conditional on altitude, and then height on altitude and length, and width on altitude,

length, height and width. River slope being mildly correlated with the other variables

in general, has been conditioned on altitude, as seems natural. Subsequently, catchment

area is modelled conditional on river slope and altitude.

The altitude is used merely as a starting point for the conditional imputation of
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missing values, taking advantage of the correlation structure among variables. There is

no physical effect of the altitude on the other variables, or indeed the dam failure time.

In particular, and as a check on the physical reality of the modelling, the survival model

does not identify the altitude as a significant variable for the failure time of landslide

dams (see Results Section)

The mean of each variable is conditional on other covariates. For example, the

conditional mean of the dam height, given the dam length, is assessed by linear regres-

sion on the dam length, µH|L = b1 + b2L, where the b parameters are to be estimated.

Frequentist linear regression using the lm() function (Chambers and Hastie, 1991) func-

tion in R was initially used to investigate the correlation structure, and provide starting

values for the coefficients in the imputation models. As a first step, the hypothesized

structure (Figure 5.9), assumes that the length is conditional on the altitude

L ∼ N(bL + bLA,σ
2
L), (5.2)

where σ2
L expresses the variability in the relationship. Subsequently, the height was

modelled conditional on the length and altitude, but the latter was non-significant

once the effect of height was accounted for. Hence the formulation is

H ∼ N(aH + bHL,σ
2
H). (5.3)

Finally, the width was modelled conditional to the height, length and altitude, with

length being the only significant variable

W ∼ N(aW + bWL,σ
2
W ). (5.4)

The river slope is conditional on altitude,

R ∼ N(aR + bRL,σ
2
R), (5.5)

and finally the catchment area is conditional on the river slope and altitude, both of

which are significant,

C ∼ N(aC + bC,1A+ bC,2R,σ
2
C). (5.6)

The linear models suggest that some of the slopes become non-significant in the con-

ditional structure (e.g. height as a predictor variable for width), because other factors

(e.g. length) are co-linear, and explain the entirety of the relationship.
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5.4.3 Bayesian framework and censoring

Given the amount of missing values across the entire dataset, we use a Bayesian sur-

vival model (Christensen et al., 2011), based on the conditional structure of variables

described above. Ideally, the times of past events would be known, but in our dataset

the exact failure time is known in only a few cases (8/295). Generally speaking, we

can divide the observations up into three periods: events from Prehistory up to year

999, middle ages to nineteenth century (1000-1899), and post nineteenth century (1900

to today). For prehistoric events, we do not have a certain damming date, but we

know if the dam (and the lake) still survives or not (in which case, we may know the

failure date). For the middle age to nineteenth century events, we often do not have

the damming date but we may have an approximate idea of the time of occurrence.

For the third case, we usually have the damming date, but we are lacking the failure

date for two main reasons. In the case of not-formed events, it is possible to suppose

that the failure date is equal to the damming date or is a few days later, but there

is no clear information about it. The second reason is due to the fact that from the

twentieth century engineering applications have been put in place to control the dam.

Therefore, the failure and inflow occur in an hours to days period, due to engineering

solutions put in place. These cases are right-censored events, as these dams are known

to have survived up to a certain time but may have failed subsequently if not for human

intervention. In such cases, we do not have specific information on the time of the final

extinction of the dam, only that it would have been beyond the date of stabilization or

drainage.

With a Bayesian survival model we are able to work on data with limited available

information, and we can use the dam lifetime information as an approximation of the

survival time, incorporating it in our model to maximize the estimation power of our

scheme. The Bayesian framework allows us to deal with missing data by generating

them via MCMC methods from the conditional distribution of the respective variable,

given the model and the other variables. This will preserve the correlation between

variables by ensuring they follow the conditional structure deduced above.

5.4.4 Implementation

The model fitting was implemented in OpenBUGS, using MCMC methods to obtain

samples of the posterior distributions (Lunn et al., 2012). The code is included in

a GitHub repository, whose address is presented at the end of this chapter. Non-

informative priors were used for all the parameters. For initial values, the b parameters

(Eqs. (5.2)-(5.6)) were initialized with values estimated from their frequentist versions.

The β parameters (Eq. 5.1) have been initialized as 0, expressing an initial state of

no covariate effect on the failure time. The missing failure times were initialized by
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apportioning specific starting values in relation to lifetime class. Parameter estimates

were based on three chains of 10000 simulations each with different starting values for

σ). Convergence was checked using the BGR diagnostic (Brooks and Gelman, 1998),

based on which the first 1000 simulations were discarded as a burn-in period. Because

of autocorrelation in the chains, iterations were thinned by a factor of 10 to obtain an

approximately independent and identically distributed sample.

5.5 Results

Table 5.5 shows summary statistics for the posterior distributions of the a and b pa-

rameters.

Parameters Mean St.Dev 2.5% Median 97.5%

aL 0.839 0.573 -0.228 0.818 2.019

bL 0.667 0.092 0.477 0.671 0.840

aW 3.095 0.182 2.737 3.095 3.450

bW 0.557 0.036 0.487 0.557 0.628

aH 0.971 0.194 0.591 0.971 1.347

bH 0.378 0.038 0.303 0.378 0.453

aR -0.521 0.577 -1.637 -0.524 0.589

bR 0.201 0.093 0.022 0.201 0.380

aC 1.250 0.813 -0.363 1.263 2.813

bC,1 0.465 0.132 0.210 0.462 0.728

bC,2 -1.104 0.084 -1.268 -1.104 -0.939

Table 5.5: Estimates of the b coefficients for predictor imputation.

In Bayesian analyses, one typically concentrates on the median, with the 95% ‘credi-

ble interval’ defined by the 2.5 and 97.5 percentiles serving to indicate whether an effect

is “significant” (does not contain 0) or not. Only the intercepts b1 and b7, for dam length

as a function of altitude and river slope as a function of altitude, are non-significant

because the credible interval (2.5% to 97.5%) includes zero, indicating a possible null

effect of the parameter. The point estimates (means, medians) of the slope coefficients

are mostly positive, reflecting the positive correlations, but the effect of river slope on

catchment area (b11) is negative because a steeper slope indicates that the event has

occurred at a higher altitude, where valleys tend to be narrower.

The parameter estimates of β and γ in Table 5.6 measure the effect of their respec-

tive covariates on the failure times.
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Parameters Mean St.dev 2.5% Median 97.5%

β0 -3.149 5.790 -14.4 -3.192 8.149

β1 (Height) 1.789 0.826 0.195 1.788 3.421

β2 (Length) 5.202 0.715 3.831 5.189 6.633

β3 (Width) -1.179 0.953 -3.056 -1.17 0.6835

β4 (Altitude) 0.829 0.909 -0.949 0.842 2.601

β5 (Catchment Area) -1.234 0.392 -2.010 -1.233 -0.4637

β6 (River Slope) 0.535 0.526 -0.486 0.526 1.576

γ1 (Type I Dam) -5.979 1.406 -8.788 -5.965 -3.274

γ3 (Type III Dam) 2.717 1.133 0.503 2.708 4.965

γ4 (Type IV Dam) -1.918 2.025 -5.937 -1.905 2.025

γ5 (Type VI Dam) 1.080 1.979 -2.831 1.091 4.963

Table 5.6: Estimates of the parameters expressing the effects of the dam measurements,
catchment area, river slope and type of dam on its survival time.

Each of the parameters from β1 to β6 in Table 5.6 expresses the marginal effect of

the corresponding variable from Figure 5.9. The coefficients for the height and length

are positive and significant, affirming that the there is a direct effect of these variables

on the lifetime of a dam: the longer and higher the dam, the more likely it is to endure,

given other covariates being equal. A longer dam is more likely to span across the entire

valley width, having more chances of blocking the river completely. It also indicates

that the lake may be wider, and hence fill more slowly, which as with a higher dam

indicates that over-topping will take longer to occur. The credible intervals (the 2.5% to

97.5% values) for the altitude and river slope include zero, suggesting a non-significant

residual effect, after accounting for the other variables, on the lifetime of the dam.

Catchment area has a significant and negative correlation, suggesting an inverse effect

on the lifetime of the dam. This is intuitively sensible for the catchment area, as water

reaches the dam at a higher rate, making overtopping occur earlier.

With type II as a baseline, the estimated values for the γ parameters express how

much the type of landslide affects the lifetime of a dam compared to an event with

type II landslide. The parameter for type I (dams that do not span across the valley)

is negative as expected, because this type indicates a temporary obstacle that the river

can circumvent or wash away. The effect for type III is significantly positive, suggesting

that when a landslide not only reaches the opposite side of the valley but also spans

upstream and downstream, the resulting dam is more likely to survive longer than when

the landslide only reaches the opposite side. Interestingly, the parameter for type IV

dams (multiple failures from both sides of the valley) is negative and non-significant,

while the one for type VI (more complex phenomena) is positive but still non-significant.

These last two results may suggest that these types of events are so complex that they

retain a certain intrinsic uncertainty in terms of failure time.
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5.6 Results with known lifetime class only

Tables 5.7 and 5.8 show the results obtained from the 190 events with known lifetime

class, therefore excluding those ones for which we have assumed a failure period of

“hours”.

Parameters Mean St.Dev 2.5% Median 97.5%

aL 0.819 0.572 -0.313 0.819 1.940

bL 0.671 0.092 0.490 0.671 0.853

aW 3.093 0.182 2.736 3.094 3.450

bW 0.558 0.036 0.487 0.557 0.628

aH 0.970 0.193 0.591 0.971 1.350

bH 0.379 0.038 0.303 0.378 0.453

aR -0.563 0.572 -1.644 -0.575 0.581

bR 0.207 0.092 0.024 0.209 0.382

aC 1.240 0.804 -0.333 1.245 2.822

bC,1 0.467 0.130 0.210 0.465 0.722

bC,2 -1.104 0.084 -1.267 -1.103 -0.940

Table 5.7: Estimates of the b coefficients for predictor imputation.

Parameters Mean St.dev 2.5% Median 97.5%

β0 -3.303 5.666 -14.400 -3.333 7.603

β1 (Height) 1.794 0.828 0.195 1.793 3.431

β2 (Length) 5.225 0.714 3.856 5.211 6.655

β3 (Width) -1.171 0.947 -3.060 -1.161 0.657

β4 (Altitude) 0.852 0.890 -0.879 0.858 2.599

β5 (Catchment Area) -1.247 0.394 -2.024 -1.243 -0.484

β6 (River Slope) 0.532 0.527 -0.506 0.528 1.577

γ1 (Type I Dam) -6.014 1.388 -8.784 -6.005 -3.299

γ3 (Type III Dam) 2.718 1.133 0.528 2.715 4.939

γ4 (Type IV Dam) -1.874 2.021 -5.837 -1.877 2.132

γ5 (Type VI Dam) 1.120 1.982 -2.822 1.127 4.980

Table 5.8: Estimates of the parameters expressing the effects of the dam measurements,
catchment area, river slope and type of dam on its survival time.

5.7 Sicilian data

Table 5.9 shows the results of the model outlined in the paper, but excluding the

data from Sicily. We can see that the baseline β0 has increased, suggesting that events

outside Sicily last longer on average (recall that all dams in Sicily are non-formed ones).

All other estimates differ little from the results when the Sicilian events are included.
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Mean St.dev 2.5% Median 97.5%

β0 7.225 6.048 -4.781 7.253 19.1

β1 (Height) 2.457 0.9362 0.633 2.455 4.303

β2 (Length) 4.476 0.7807 2.947 4.47 6.017

β3 (Width) -0.07029 1.124 -2.272 -0.06569 2.125

β4 (Altitude) -0.5165 0.9426 -2.361 -0.5147 1.358

β5 (Catchment Area) -1.716 0.4429 -2.608 -1.706 -0.8715

β6 (River Slope) 0.6104 0.551 -0.4688 0.6102 1.693

γ1 (Type I) -3.587 1.834 -7.234 -3.566 -0.02069

γ3 (Type III) 1.718 1.155 -0.5077 1.715 3.987

γ4 (Type IV) -1.793 2.058 -5.843 -1.798 2.25

γ5 (Type VI) 1.462 2.054 -2.594 1.474 5.453

Table 5.9: Estimates (main model) without using Sicilian data

A more elaborated model was created to consider dissimilarities among dams within

and outside Sicily. This introduces some new parameters in the model that allow for

separate baselines in Sicily (β0,Sicily) and elsewhere, and adds additional effects for

Sicily in the calculation of the conditional means for length, height and width. For

example, the conditional mean for height on length becomes µH|L = b1 + b2L + φH .

The parameter φH differs from zero only in case of Sicilian events. Table 5.10 shows

some interesting results. First of all, the overall intercept β0 has become positive (as

for the the results not considering Sicily), although it retains its variability and its

confidence interval includes zero. The Sicilian baseline (β0,Sicily) is negative and sig-

nificant, suggesting a stronger tendency of failure of these events in the short term. The

three different added effects for the width, length and height have different characters.

That for length is negative, suggesting that these landslides are smaller compared to

the non-Sicilian ones (many of these events are type I dams). That for height is small

but positive, indicating that Sicilian dams are higher for their length than elsewhere,

and that for the width is almost null and non-significant. In terms of dam types, type

IV and VI have become similar to type II, and type III is negative but non-significant.
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Mean St.dev 2.5% Median 97.5%

β0 9.619 5.866 -1.725 9.563 21.15

β0,Sicily -14.57 1.932 -18.54 -14.5 -10.97

β1 (Height) 2.753 0.8692 1.056 2.751 4.483

β2 (Length) 5.378 0.7277 3.985 5.366 6.838

β3 (Width) -1.184 0.9696 -3.099 -1.177 0.6996

β4 (Altitude) -0.5864 0.9129 -2.373 -0.5771 1.184

β5 (Catchment Area) -1.612 0.4011 -2.413 -1.609 -0.8414

β6 (River Slope) 0.7403 0.5351 -0.3039 0.7358 1.803

γ1 (Type I Dam) -1.986 1.098 -4.155 -1.979 0.1557

γ3 (Type III Dam) -2.839 2.049 -6.864 -2.855 1.177

γ4 (Type IV Dam) -0.1886 2.019 -4.132 -0.1793 3.765

γ5 (Type VI Dam) 0.02522 3.148 -6.134 0.03943 6.15

φH 0.52 0.09955 0.3241 0.5191 0.7159

φL -1.062 0.1202 -1.299 -1.062 -0.828

φW 0.1857 0.09825 -0.00697 0.1862 0.3765

Table 5.10: Resutls with specific intercepts for Sicily.

5.8 Forecasting

As an example of the potential results we can obtain with this model, Table 5.11

shows the probability of survival for a canonical dam (type VI, 25m tall, 250m long,

500m wide, at an altitude of 585m above sea level with a catchment area of 76.9km2

and a river slope of 1.4◦). We can see that the probability of survival at 50 years

is almost halved from that at 5 years. If we double the length or the height, then

both probabilities increase. Contrarily, the survival probability decreases if we double

catchment area. Doubling the width does not significantly affect the probabilities. If

we switch to dam type II and IV we have higher probabilities both at 5 and 50 years,

while types I and III result in inferior survival chances.



CHAPTER 5. LANDSLIDE DAMS 97

Year Probability St.dev 2.5% Median 97.5%

Original
5 0.433 0.219 0.065 0.422 0.861

50 0.287 0.193 0.023 0.252 0.727

Length doubled
5 0.594 0.222 0.146 0.616 0.949

50 0.440 0.225 0.063 0.430 0.875

Height doubled
5 0.542 0.224 0.116 0.551 0.926

50 0.387 0.217 0.046 0.367 0.832

Width doubled
5 0.413 0.221 0.053 0.397 0.853

50 0.271 0.192 0.018 0.232 0.716

C. Area doubled
5 0.344 0.211 0.032 0.315 0.796

50 0.214 0.172 0.010 0.171 0.639

Type I Dam
5 0.422 0.052 0.322 0.421 0.527

50 0.253 0.046 0.169 0.251 0.348

Type II Dam
5 0.553 0.063 0.428 0.554 0.674

50 0.369 0.062 0.252 0.368 0.495

Type III Dam
5 0.292 0.116 0.107 0.282 0.531

50 0.160 0.081 0.041 0.146 0.352

Type IV Dam
5 0.456 0.139 0.196 0.453 0.731

50 0.290 0.122 0.090 0.278 0.560

Table 5.11: Table showing the probability of survival at five and fifty years for a canonical
dam.

5.9 Discussion

The main message we obtain from these results is that there is a positive effect of length

and height on the survival of dams, and a negative effect of catchment area. This can

be summarized as T ∝ LH/C, a ratio which is reminiscent of that (CH/V ) used in

the Dimensionless Blockage Index suggested by Casagli et al. (2003). Fig. 5.10 shows

how the DBI index, applied to our dataset, fails to produce a clear distinction among

events with different characteristics in terms of predicted median time to dam failure.

Looking more closely, we see that CH/V = 2CH/(LHW ) = 2C/(LW )), using the

typical representation (V = LWH/2) of a dam as a triangular prism. So, in qualitative

terms, our conclusion differs from that of Casagli et al. (2003) primarily in seeing the

height rather than the width of the dam as important. However, our model is essentially

quantitative, rather than qualitative, and provides a statistical distribution of failure

time, rather than a “hard” prediction
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Figure 5.10: Distribution of median dam failure time against DBI index for each event in the
presented dataset

Concerning the dam width, the correlation matrix presented in the data section sug-

gests that width is correlated with height and length, therefore we would expect a pos-

itive slope in this model. Instead, the estimated value is negative and non-significant,

as the credible interval includes zero.

The baseline parameter, β0 has a high standard deviation, which suggests a high

variability among the failure times of different events, regardless of the significant in-

formation obtained from other parameters such as length and height. This variability

results from factors not included in our model due to lack of data, such as rainfall,

material properties, local topography (spill ways, etc.).

As mentioned earlier, Sicilian events show some dissimilarities from dams in the

rest of the dataset. These events typically occurred at lower altitudes, with a peculiar

ratio between width and height or length. In fact, they often span upstream and

downstream, but they are not tall or wide enough to create a resistant blockage for

the local seasonal streams (landslides here are mostly rainfall triggered, therefore the

stream flow is at its peak). If we run our model on all the events but the Sicilian ones,

the parameter for width moves towards zero, confirming the non-significance of the

width in the prediction of failure times.

To further consider such dissimilarities among dams’ characteristics, I created an
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extended version of the model, in which I introduce new additive parameters to allow

for differences between Sicily and the other regions in the survival model (Eq. 5.1) and

the imputation model (Eqs. (5.2)-(5.6)). The results, in Table 5.9, show that Sicilian

events are effectively different, with wider but shorter (in terms of length) dams. These

are mainly Type I dams, where the entire section of the side of a valley fails without

fully damming the river. Because all Sicilian dams in the dataset have failed, the

most predominant characteristics of these dams, width, is non-significant. The original

model, that without Sicilian events, and the one modified with specific terms for the

Sicilian events, show qualitatively similar results, confirming the robustness of our

methodology.

These results suggest also that future work may explore the use of area-level random

effects, rather than fixed intercepts, as we did for the Sicilian events. Such addition

may further improve the estimation and forecasting ability of our model, towards a

better understanding of events with area-related specific characteristics.

The model has the potential to be made more elaborate with more accurate and

complete data. This could also include examining the most appropriate measurement

for quantities such as river slope, which is currently recorded at the dam site, but

obviously varies above the dam.

5.10 Conclusions

Landslide dams are a significant threat because the sudden release of water can have

devastating consequences. I have presented a model that quantifies the time to fail-

ure of a newly formed dam, based on its characteristics and those of the potential

reservoir. It demonstrates how a survival model for a natural hazard can be combined

with a Bayesian imputation model to create a feasible tool for the analysis of time-to-

event data where a large portion of the data is missing. The model can be used to

probabilistically forecast the probable lifetime of a dam, and is robust, based on the

results in fitting it to a heterogeneous national dataset. The dam height and length,

and the catchment area above the dam are the most important variables controlling

the time to failure, but the width of the dam does not significantly affect the lifetime

after the length and height are accounted for. Using the Sicilian data, I have shown

how the model can be generalised (maintaining its robustness) to include more specific

geomorphological settings, if such information were to become available.

Data and code used can be found at the at the respective GitHub repository:

https://github.com/gfrigerioporta/Landslide-Dams.git



Chapter 6

A concept of natural hazard

potentials

6.1 Definition of potential

In Chapter 3, we mentioned that there is a wide range of hazards and interactions

(De Pippo et al., 2008; Gill and Malamud, 2014), which makes multi-hazard analysis

particularly challenging. Despite that, hazard interactions show some patterns and

similarities that might be helpful from a multi-hazard framework point of view. Figure

6.1 shows the large number of interactions that exist between a selection of natural

hazards, but also how they can be grouped by the interaction mechanism. In fact,

hazards can overlap in space and time, can be directly triggered, or influenced by other

hazards, where the latter refers to the occurrence of a hazard increases or decreases the

probability of occurrence of another hazard (Gill and Malamud, 2014).

This complexity is reflected in the hazard assessments: in Chapters 3 and 4, we

mentioned that single-hazard assessments are usually based on the analysis of the sus-

ceptibility or disposition (Zimmermann et al., 1997) of a given area to a hazard. Part

of susceptibility analysis is based on the study of local environmental factors, which

affect the hazard likelihood but do not change much over time. For example, the char-

acteristics of the soil can suggest how much a portion of land is prone to landslides.

However, susceptibility analyses provide an image that is static in time, in relation to

the characteristics of the environment that can affect the hazard occurrence, e.g. soil

features for landslides. Instead, it is of great interest to assess how the interaction of

factors and events can affect the process of the hazards and consequently, the prob-

ability of possible occurrence of hazards over time. The evaluation of future hazard

occurrences in time is very arduous, particularly from a multi-hazard framework point

of view, due to the complexity of hazard interactions and, consequently, the variety of

their assessment methods.

100
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To model the future occurrences of hazards in a multi-hazard framework, we can

use the simplifying concept of “potential”, defined as the ability of a hazard to trigger

a secondary one (Mignan et al., 2014). In the dictionary, potential is defined as the

“.. latent qualities or abilities that may be developed and lead to future success or

usefulness..” and “..the possibility of something happening” (Oxford Dictionary, 2010).

Therefore, we have here the opportunity to fill a knowledge gap by developing a con-

ceptual framework to include the wide variety of hazards and their interactions into

an all-embracing hazard assessment scheme. We will produce a potential framework

for multi-hazard systems through a building block approach, where the different types

of factors and interactions affecting the hazards can be modelled together. This will

facilitate estimating the current state of a system at a certain point in time, in rela-

tion to all the inputs. Some existing models can already fit this framework, as will be

demonstrated later on in the chapter, while others can be easily modified to do so. The

framework will also serve as a base for simulation of natural hazard occurrences in dif-

ferent systems, where a low dimensional memory, or current state, facilitates multiple

runs to estimate uncertainty.

In the literature, there are several examples of triggered hazard analysis (Yasuo

et al., 2015; Brain et al., 2015) or susceptibility analysis (Yalcin, 2008; Monsieurs et al.,

2019). However, a complete multi-hazard analysis with a quantification for both trigger-

ing mechanism and susceptibility has not yet been carried out, due to the difficulties

of obtaining and working on multi-hazard triggering data, as described in previous

chapters. Robinson et al. (2016b) studied coseismic landslides in New Zealand, men-

tioning both triggering and susceptibility aspects, but the earthquake triggering was

not quantified. Ogata (1998a) and Ogata and Zhuang (2006) considered both aspects

for earthquakes but not in a multi-hazard environment.

Hazards differ substantially in terms of their description and characteristics. Conse-

quently, hazard assessments will differ as well, and one assessment may not be used for

another hazard. Therefore, combining everything in one scheme is even more challeng-

ing, unless a well-structured multi-hazard method is conceived (Kappes et al., 2012a).

In Chapter 4, we have presented a novel multi-hazard model in which differently as-

sessed hazards are considered to trigger the occurrence of a secondary hazard. Nev-

ertheless, there is an opportunity here to build a framework which would simplify

multi-hazard analysis from a simulation and computational point of view. The analysis

of the possible occurrence of hazards over time is also limited due to data availabil-

ity. For example, earthquakes and rainfall over time have been analysed with specific

models (Cowpertwait et al., 2007; Harte, 2013), while landslides are mostly assessed in

term of the susceptibility of the ground, with no temporal aspect involved (Feng et al.,

2016). Therefore, there is a need for a framework in which these two elements can be
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combined to model the occurrence of hazards. Such a framework has to be adaptable to

several types of hazards and locations and be able to measure the possibility of hazard

occurrences over time.

Figure 6.1: Diagram of possible interactions, according to Gill and Malamud (2014). The full
arrow ( ) represents a “triggering and increased provability” interaction, the dashed arrow
( ) represents an “triggering” interaction and the dotted arrow ( ) represents a “increased
probability” interaction. Adapted from Gill and Malamud (2014), Figures 2 and 4 of the
paper. FL = flood, GH = ground heave, SS = soil subsidence, GC = ground collapse, RS =
regional subsidence, AV = avalanche, LA = landslide, VO = volcanic eruption, TS = tsunami,
EQ = earthquake, WF = wildfire, ET(C) = extreme temperature (cold), ET(H) = extreme
temperature (hot),, LN = lightning, SN = snowstorm,HA = hailstorm, TO = tornado, ST =
storm, DR = draught

A general concept to start with is the susceptibility, which is expressed via factors

describing the environmental conditions that can increase or decrease the proneness of

an area to a hazard. For example, the characteristics of the ground (type of soil, slope,

water drainage) can be used to evaluate the susceptibility of an area to landslides. The

fluctuation of the rainfall intensity/duration over time represents a process that can

trigger the landslide, or at least that can speed up the process and lead to the occur-

rence. Because the susceptibility provides an instant snapshot of the environmental

conditions, it can be used as a baseline of a hazard potential.

In addition to the basic idea of susceptibility, there may be a triggering mechanism

that controls the hazard process. An event can be considered to be caused by the com-

bination of disposition and triggering event (Heinimann, 1998; Kappes et al., 2010; Liu

et al., 2016). Disposition is explained as “the general setting, which favours the specific

process”; disposition can be further divided in basic disposition (constant factor) and

variable disposition (related to seasonal or periodic changes). Hence, we can see the
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basic disposition as another definition for susceptibility (and we will call it susceptibil-

ity from now on), while the variable disposition is a slow process affecting the hazard

occurrence. The triggering event is the process “which leads to the threshold crossing

of a factor relevant for the hazard incidence” Kappes et al. (2010). Building upon

that, the suggestion by Kappes et al. (2010) is to consider the triggering mechanism as

composed of two processes of different types: one reflecting a slow, long-term change

and the second one a faster, short-term one. The slow process can be considered as

slowly modifying the susceptibility of an area to the hazard. Conversely, the fast pro-

cess is related to the occurrence of other hazards that may produce a sudden increase

or decrease in the likelihood of a hazard.

Rainfall and/or seismically induced landslides can be used as an example to un-

derstand better the concepts expressed above. The occurrence of a landslide depends

firstly on geomorphological characteristics (factors) of a specific area. The geomorpho-

logical factors can be considered the starting point of a landslide occurrence because

the characteristics of the soil (e.g. porosity) determine the susceptibility of the area to

landslides. Then, rainfall and earthquakes provide inputs that vary in intensity and

duration over time. An earthquake produces an instantaneous effect (fast process) on

the likelihood of the landslide, but it can also produce a long term effect on the po-

tential of future events. In fact, strong earthquakes can weaken the soil and therefore

increase the probability of future landslides (Cui et al., 2011), particularly in the case

of subsequent rainfall events (Towhata et al., 2013). The rainfall is usually considered

a long-term process that slowly (Polemio and Sdao, 1999) increases the likelihood of

landslides (slow process), as the accumulation of water in the soil, slowly modified the

stability of the slope. Nevertheless, short-term heavy rainstorms (fast process) can be

intense enough to speed up the process by quickly saturating the soil moisture (Munto-

har and Liao, 2010; Martha et al., 2014). In fact, the level of moisture changes the

rainfall thresholds necessary for triggering a landslide (Baum and Godt, 2010; Ponziani

et al., 2012). In particular, the presence of the short-term rainfall component in the

model allows for an acceleration of the mechanism towards landslide occurrences (He

et al., 2020). Hence, we need a framework in which models are able not only to accom-

modate direct triggering but also to include the concept of “increased probability” and

the complexity of interactions between hazards.

If we combine the idea of Kappes et al. (2010) with those of Gill and Malamud (2014)

and Mignan et al. (2014), we can build a conceptual framework for the occurrence of

hazards, taking into consideration their interactions, triggering and disposition, under

the single concept of “potential” of a hazard. The potential of a hazard should be a

function of the hazard history, producing an outcome that summarizes the combined

effect of the disposition and triggering of the hazard over time. The analysis of the
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variation of potential over time becomes then a critical tool to evaluate possible future

hazard occurrences. It is possible to construct a function affected by the slow and fast

processes at difference paces over time. If we consider once again Gill and Malamud

(2014), we can combine their types of interactions with the concepts expressed so far.

In particular, the occurrence of certain hazards can increase or decrease the probability

of the occurrence of other hazards. Hence, the probability of a hazard can go upward

or downward depending on other hazards. As their relationship is driven by the hazard

magnitude and frequency, consequently the increased/decreased probability is affected

by these features as well. Going back to the example of rainfall: a long-term event

slowly increases the probability of a landslide. If the soil moisture has not become

saturated when the period of rainfall ends, then the likelihood of landslide will start

dropping. In other words, a hazard occurrence depends initially on the susceptibility

of the area (disposition), long-term changes (slow processes) and the occurrence and

interaction of other hazards in the short term (fast processes). The combined analysis of

these aspects constitute the hazard potential and will provide an estimate of the current

state of the system. Therefore, this chapter will explore the concept of potential of the

hazard and the possibility to quantitatively build such a multi-hazard framework.

We can assume that the potential of a hazard is dependent on time, as the factors

that alter the process of hazard occurrence can change over time, e.g. the weakening of

the soil due to long term rainfall.

Hazard occurrences are usually modelled as history-dependent (see Chapter 2). In

a multi-hazard setting, the natural extension is to be multi-history dependent. The

history of the process thus becomes high-dimensional. In order to fully exploit the

framework, we want the potential to be low-dimensional, ideally a scalar, so that it

simplifies the approach to multi-hazard assessment without overly compromising the

inherent sophistication of combined natural hazards.

Definition. The potential of a specific hazard U(t) is a scalar-valued function of the

entire history of all the triggering factors in a multi-hazard system which control the

intensity of the occurrence of this specific hazard. It increases or decreases in response

to internal and external events.

Formally, we define U(t) as a piece-wise continuous scalar function dependent on

time, as we are interested in how the occurrences of point events and the modification

of internal and external factors can alter the potential of a hazard over time. As a

piece-wise function, U(t) can jump in response to external point events. As a scalar,

it summarizes the hazard in t as an overall effect of all processes affecting the system

up to time t. Mathematically, we suppose λ(t|Ht) = λ(t|U(t)), which expresses that

the potential synthesizes the history up to time t into one scalar value, U(t) so that

U(t) : Ht → R. This allows us to evaluate the conditional intensity of a hazard at t
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with the advantage of summarizing the history-dependence of the process into λ(t|Ht)

with just a scalar value U(t). The intensity of the given hazard, λ, dependent on the

time t and the history up to t, see equation (2.1), will then be defined as a function of

the potential and consequently of time:

λ(t|Ht) = g(t,U(t);θ) (6.1)

This has important consequences, namely that the intensity can only depend on

the potential and on any “external” process (i.e. not modelled through U(·)) occurring

at time t. We will explain this theme below. The function g(t,U(t);θ) should be a

monotonic increasing function of U(t), defined as g : (0,∞) × (−∞,∞) → [0,∞) with

θ as a vector of parameters. In particular, g(·) acts as a link function between the

potential function and the conditional intensity function of the hazard. In some cases,

g(·) can be restricted to a non-negative domain (0,∞)×(0,∞): this would happen if the

potential is composed of elements that are strictly non-negative, meaning that there

is only an exciting effect of the history on the conditional intensity and no inhibition

effect (represented by negative values).

A simple candidate for g(t,U(t);θ) is the exponential function, a monotonically

increasing function:

g(t,U(t);θ) = exp[α+ βU(t)], with α ∈ R,β > 0 (6.2)

with θ = (α,β). Another example is provided by the Heaviside function H(·), which

allows g(·) to be written as a stepwise function.

g(t,U(t);θ) = H(U(t)) (6.3)

or, more generally:

g(t,U(t);θ) = αU(t)βH(U(t)) (6.4)

Because the occurrences of hazards over time modify the potential of a hazard, we

are interested not only in the current state of the system at time t but also in the

change of state over time. Hence, let us define U(t+∆t)−U(t), the change in potential

from t to t+ ∆t, with ∆t small, as in (6.5).

U(t+ ∆t) = U(t) + ψU(t)∆t +

J∑
j=1

ρj∆t +
∑

i:ti∈[t,t+∆t)

φi(ti) (6.5)

where ρj ∈ (−∞,∞) for j = 1,...,J are locally linear input/outputs (slow process),

that can be called factors and φi(ti) are the effects of jump events i (fast process) that
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occur between t and t + ∆t. The factor ψ allows for proportional decay (or inflation)

in the potential. The third and fourth components are the exogenous inputs that can

increase and decrease the potential. Hence, if ρj and φi are positive, then inhibition is

not present and so U(t) > 0, where only excitation is possible.

Figure 6.2: Example of a potential framework. The susceptibility is the baseline for the
potential function U(t), which is affected by slow and persistent fast processes and affect the
likelihood of the hazard. Transient fast processes can affect the likelihood of the hazard. A
direct triggering of the hazard occurrence is visible as a spike in the conditional intensity λ(t),
as it will be explained in Figure 6.3

The change in potential over time depends on different phenomena. As it is a

function of the history, in our definition U(t + ∆t) depends both on U(t) and the

change in potential over t + ∆t. Then, hazards occurring in the system may interact

and add to this change with their specific processes. The slow process of input j has

an effect on the potential equal to ρj∆t in the time interval. Similarly, a persistent fast

process i (which is a fast process endogenous to the system or, alternatively, events that

can be modelled with point processes) affects the change in potential in the interval (see

Figure 6.2) through the sum of φi(·). These events are also referred to as “immigrants”

(Hawkes and Oakes, 1974), as we will explain later with Figure 6.3. For example, if we

split the rainfall process into two, following what we have achieved in Chapter 4, we can

designate the long-term rainfall component as a slow process and the short-term rainfall

component as a persistent fast process. This second process would be formulated as

φi(ti) in (6.5).

Another category of process able to produce a change is the one of transient pro-

cesses. A transient process is represented by an exogenous hazard temporarily affecting

a system (Pavel et al., 2018). These transient processes do not affect the history, and

hence the potential, of the process, but directly the conditional intensity λ(t) under
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certain conditions, as shown in Figure 6.3. For example, an earthquake, considered

external to a system, may trigger a landslide if the epicentre is close and the magnitude

is large enough (see Chapter 4).

These occurrences enter the process at time t and produce a shock (the vertical

spike in Figure 6.3) on the conditional intensity of the hazard λ(t), which produces

consequently an effect on the potential function for a certain period of time. An example

is given in the Figures 6.3b and 6.3c, where an earthquake instantaneously increases the

potential function U(t) but then affects it for longer as U(t) does not return to the value

before the earthquake occurrence. Transient processes can be modelled with a separate

point process or components, for example, in the fashion of the third component of

(6.5) (the sum of φi), added to U(t). (6.1) can be rewritten as (6.6), where µ represents

a transient process, not defined as part of U(t).

λ(t|Ht) = g(t,U(t);θ) + µI[s,s+∆s](t) (6.6)

In the case of Figure 6.3b, the potential function after the immigrant earthquake re-

mains higher than the previous level with U(t + ∆t) = U(t) + αµ, where α > 0 (Cui

et al., 2011). However, different sequences of earthquakes (different combinations of

frequency/magnitude) lead to different effects on landslide stability in the post-seismic

period (Brain et al., 2017). Hence in Figure 6.3c, the effect is to reduce the potential

level compared to the level before the earthquake: U(t + ∆t) = U(t) − αµ. This can

be linked to the “healing” effect: in other words, the reduction of susceptibility or

likelihood of hazard over time (Marc et al., 2015).

6.2 Potential for a single hazard

As a first step, we are going to investigate some examples of a potential function for a

single hazard, hence without considering any interaction between triggering events.

6.2.1 Hawkes process

Self-exciting point processes (Ogata, 1999; Helmstetter and Sornette, 2002), reviewed

in Chapter 2, are good candidates for the potential representation of a hazard. The

main characteristic of these processes is that they allow for the modelling of events

over time, with a focus on clustering events (Richter, 1958; Bak et al., 2002; Gu et al.,

2013).

One of the earliest self-exciting processes is the Hawkes process (Hawkes, 1971).

The Hawkes process can be used in the potential framework in the form without the
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Figure 6.3: Examples of three different earthquakes affecting the change on a landslide condi-
tional intensity function (CIF) and potential function between t and t+ ∆t, as per (6.5). In all
three cases, the earthquake increases instantaneously in time the conditional intensity, up to a
value which can cause consequences (e.g. landslides). In case 6.3a, the potential is not affected,
as after the event it is equal to the pre-earthquake level. In case 6.3b, the earthquake produces
the effect of keeping the potential higher than before the seismic event for a while (weakening).
In case 6.3c, the earthquakes lower the potential to less than the value pre-earthquake (healing),
which suggests an inhibition of following consequences.

immigration term µ. However, we can retain µ provided that it is not a function of t:

λ(t) = µ+ η
∑
i:ti<t

exp[ν(ti − t)] (6.7)

where µ,η,ν are positive constants, and events occur at times {ti}. In (6.7) µ is a

parameter representing the background rate of the process, while the self-excitation is

expressed by the sum of the exponential of ν(ti−t) in relation to the time elapsed, where

ti are the time points prior to t. Hence, every event (say an earthquake) occurring at

time ti before t increases the likelihood of further events, by self-excitation. Figure 2.2

in Chapter 2 shows an example of Hawkes process: the occurrence of an event increases

the conditional intensity of the process. Hence, further events are more likely to occur,

further increasing the intensity.

For a self exciting process such as the Hawkes process, U(t) needs to be strictly
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positive. This will allow us to retain the self-excitation mechanism, as we want the

potential function to react in the case of multiple events occurring within a short time

period. As we have seen in (6.2), it is possible to use an exponential function for g(·), to

link the conditional intensity function of the Hawkes process to its potential function.

Hence, we can generalize (6.2) to provide a g(t,U(t);θ) function:

g(t,U(t);θ) = α+ βU(t), with α ≥ 0,β > 0, (6.8)

with θ = (α,β) = (µ,η). The structure of the function mimics the one in (6.7), as de-

sired. As mentioned earlier, we are interested in understanding the change in potential

from t to t + ∆t, so below we attempt to derive a form of (6.5) for (6.7). Hence, we

start from the change from t to t+ ∆t in the conditional intensity function, taking into

consideration that in such time interval we have to consider the possible occurrence of

further events, expressed by the second sum in the equation below:

λ(t+ ∆t) = µ+ η
∑
i:ti<t

exp[ν(ti − t−∆t)] + η
∑

t≤si<t+∆t

exp[ν(si − t−∆t)]

= µ+ ηexp(−ν∆t)
∑
i:ti<t

exp[ν(ti − t)] + η
∑

t≤si<t+∆t

exp[ν(si − t−∆t)]

= µ+ ηexp(−ν∆t)U(t) + η
∑

t≤si<t+∆t

exp[ν(si − t−∆t)]

= µ+ ηU(t+ ∆t)

(6.9)

where

U(t+ ∆t) = exp(−ν∆t)U(t) +
∑

t≤si<t+∆t

exp[ν(si − t−∆t)]

= ψ +
∑

i:ti∈[t,t+∆t)

φi(ti)
(6.10)

Therefore, the change in potential from t to t+ ∆t is given by an exponential effect

exp(−ν∆t) multiplied by the value of the potential function in t, plus the sum of the

effects obtained from new events. Recalling (6.5), the first component can be seen as

a constant ψ, providing the proportional decay and the sum of the effects from jump

events φi. Therefore, it is proved that the Hawkes process, as defined in (6.7), can be

expressed in terms of a scalar potential function (6.5).

6.2.2 Epidemic type aftershock-sequences model

Another example of self-exciting process is provided by the Epidemic Type Aftershock-

Sequences (ETAS) processes Ogata (1988), a form of Hawkes process (Hawkes, 1971),
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based on the idea that the intensity can be considered as the sum of “background”

earthquakes caused by tectonic loading and “triggered” earthquakes. Furthermore,

the ETAS models incorporate Omori’s decaying frequency law for aftershocks (Omori,

1894), in the Utsu and Ogata (1995) modified version λ(t) = k/(t − ti − c)−p, and

the productivity law (Utsu, 1969) N = Kexp[α(Mm − Mc)], by which the number

of aftershocks is an exponential function of the mainshock magnitude. The temporal

conditional intensity of this model is:

λ(t) = µ+
∑
i:ti<t

k

(t− ti − c)p
exp[α(mi −mc)] (6.11)

where µ is the background rate (immigrants), and the second part expresses the self-

exciting effect.

We want to know if we can derive (6.11) in the form of (6.5), to find the potential

function for an ETAS model and to evaluate its change over time. Substituting (6.11)

in (6.5) we get (6.12):

λ(t+ ∆t) = µ+ k
∑
i:ti<t

exp[α(mi −mc)]

(t+ ∆t− ti − c)p
(t− ti − c)p

(t− ti − c)p
+ k

∑
j:sj∈[t,t+∆t)

exp[α(mi −mc)]

(t+ ∆t− si − c)p

(6.12)

which is not a recursive function anymore.

The Hawkes process allowed for this procedure thanks to the exponential function

used in the conditional intensity equation, which allowed for the separation of the ∆t

effect from the rest of the function. Here, instead, the power function does not allow for

the extraction of the ∆t effect without compromising the function, because we would

need to know all the ti times to calculate the effect coming from each i event.

This model cannot be written using (6.5). In fact, even assuming that the ETAS can

be written without µ, it would not be possible to separate the ∆t effect from the rest

of the function. Nevertheless, there are alternative methods to ETAS that are able to

characterise the mechanism mainshock-aftershock mimicking the modified Omori’s law

and avoiding the issue we have found in the ETAS model. For example, Borovkov and

Bebbington (2003) proposed a two-nodes model for the stress release and production of

aftershocks, which might be a candidate to represent ETAS-like models in a potential

framework. A hierarchical Hawkes process was introduced by Wang et al. (2012) to

model the earthquake cycle, including aftershock regimes.

6.2.3 Stress release model

Another example of U(t) is provided by the stress release model (SRM) (Vere-Jones,

1978), mentioned in Chapter 3. The SRM is a process that describes how the tectonic
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stress level of a system increases over time and is released in the case of earthquakes.

U(t) = X(t) = X(0) + ρt− S(t) (6.13)

where X(t) is the Benioff stress of the system at time t, X(0) is the initial level of

stress, ρ is the constant loading rate from external tectonic forces (which makes the

stress increase linearly) and S(t) is the accumulated stress release from earthquakes

within the region in (t): S(t) =
∑

i:ti<t
Si. Evidently, a large release of stress (Si large)

can make X(t) become very small, which means that any subsequent event within this

recharge time will have a very low likelihood of occurrence.
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Figure 6.4: Example of conditional intensity and potential functions for stress release model.
The drops in the function correspond to event occurrences. The potential function has been
obtained from (6.15). Data from Harte (2010)
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In a short time interval [t,t+ ∆t), the function becomes:

U(t+ ∆t) = U(t) + ρ∆t− [S(t+ ∆t)− S(t)]

= U(t) + ρ∆t−
∑

tj∈[t,t+∆t)

Sj
(6.14)

It is possible to link ρ∆t in (6.14) to the effect by factors ρj(∆t) in (6.5), as well

as S(t + ∆t) − S(t) =
∑

j:tj∈(t,t+∆t]Sj as the effect of events φi(ti). Notably, here

φi < 0, which is the earlier mentioned case of inhibition. We can use (6.1) to write the

conditional intensity corresponding to (6.13) using an exponential:

λ(t|Ht) = exp[α+βU(t)] = exp[α+βX(0) +βρt−βS(t)] = exp[a+ bt− cS(t)] (6.15)

where the last step in (6.15) shows an alternative parametrization used for numerical

optimization (Harte, 1999), where α + βX(0) = a, βρ = b and β = c. The parameter

a can then be interpreted as the initial value of stress of the system, while b represents

the characteristics of the crust (Borovkov and Bebbington, 2003)

6.3 Linking simple systems together - potential in a multi-

triggering environment

As mentioned earlier and in Chapter 3, hazards occur and interact in natural systems,

therefore the models have to reflect such complexity. Triggering events do not produce

the same level of effects in every system (e.g. different locations equate to different

geological, morphological and climatological settings) and the occurrence of an event

in one place may affect the potential of a hazard in another space or time differently.

Furthermore, there might be interaction among the processes (slow, persistent fast or

transient fast) behind each of the hazards we take into consideration. Figure 6.5 is a

schematic representation of hazard interactions in a system: notice that external and

internal processes affect U1(t) differently, as the internal process influences the recursive

behaviour of the potential function (e.g. as in the SRM, where the system loads stress

until the discharge). The dashed line depicts the boundary of one concept of a hazard

system, where the internal process and the first hazard are included.

In Chapter 4, we demonstrated that it is possible to produce a quantitative model

to evaluate the multi-triggering effect of the interaction between two primary hazards

(earthquakes and rainfall) on the occurrences on secondary hazards. Each of the pri-

mary hazards, indexed with p = 1,...,n, can be described by a process with a conditional

intensity, based on the history of that process. Applying (6.1), each history is expressed

in terms of the potential function for that hazard:
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Figure 6.5: Example of interaction between hazards in a system. An external/internal process
can affect the potential of a hazard (represented by the function U(t)) and consequently provoke
a secondary hazard occurrence. The latter may then trigger a third hazard. The dashed line
encompasses the hazard system.

λp(t|H(p)
t ) = λp(t|U (p)(t)) (6.16)

Secondary hazards can be triggered by multiple triggering events, which may inter-

act. Therefore, we can consider that the conditional intensity of a secondary hazard is

the result of the combination of the history of the secondary hazard and the histories

of possible primary triggering hazards:

λs(t|H(s)
t ,H

(p1)
t ,...,H

(pn)
t ) = λs(t|U (s)(t)) (6.17)

where the potential function of the secondary hazard, following (6.1), can be expressed

as function of the history of the secondary hazard and the history of all the primary

hazards that can trigger it:

U (s)(t) = h(H
(s)
t ,H

(p1)
t ,...,H

(pn)
t ) (6.18)

As seen earlier with ETAS (Section 6.2.2), there are many models that do not

fit into the potential framework as they are. In particular, they do not allow for

the simplification of the history to a scalar value and therefore do not enable a clear

separation of the temporal effect on the hazard potential, as in (6.5). Nevertheless,

models can be modified to meet the requirements of the potential framework, retaining

their characteristics in terms of triggering mechanism. An example is the two-nodes

model by Borovkov and Bebbington (2003). This issue becomes even more important
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when combining models together. Here below, we present two examples of linked models

to show how it is possible to build a link between simple models using the potential

concept.

6.3.1 Earthquake/rainfall triggered landslides

As discussed in Chapter 3, landslides are usually triggered by rainfall (Berti et al., 2012;

Aristizábal et al., 2015; Peruccacci et al., 2017) or seismic activity (Lee, 2014a; Havenith

et al., 2016; Robinson et al., 2016a). Rainfall-triggered landslides occur based on the

groundwater saturation, which is linked to the intensity/duration of the precipitation.

Coseismic landslides are caused by a combination of the proximity to the epicentre and

the amount of energy released.

Rainfall is characterised by fluctuation in terms of duration and intensity: there

can be long-term events with limited intensity, as well as short-term heavy periods of

rain. The amount of groundwater, which is the water present in the soil, affects the

stability of slopes. Hence, the amount of rainfall water necessary to trigger a landslide

depends on the amount of groundwater, and the rainfall intensity/duration is then

crucial (Iverson, 2000).

Rodriguez-Iturbe et al. (1984), Rodriguez-Iturbe et al. (1987), Onof et al. (2000),

Isham et al. (2005), Cowpertwait et al. (2007) and many others have used point pro-

cesses to model rainfall over time. The atomic component of these processes is a rain

cell, with random duration and depth. A rain cell produces pulses (which provide the

intensity of the rain), and the overlapping of pulses constitutes a storm. Modelling

the duration and the intensity of each rain cell with a specific point process results

in the possibility of simulating different types of rainfall events, in terms of time and

intensity. These models can be included in the potential framework if it is possible to

find a function that adequately represents the history of the process as a scalar, as per

(6.1). In some cases, they might be too complicated to be fit, for example, due to auto-

correlation (Kaczmarska et al., 2014), but we can still include them in the framework

as exogenous processes. Hence the very important ability to simulate them easily is

allowed for. Several papers have proposed water runoff thresholds (Glade et al., 2000;

Guzzetti et al., 2007; Rossi et al., 2017) to evaluate the required rainfall process to trig-

ger landslides. Rossi et al. (2010) also highlighted the connection between landsliding

and a preceding short rainfall period.

However, there is another aspect to be considered: the runoff thresholds might

change over time (He et al., 2020) in relation to the amount of rain filter through the

ground. Long-term and short-term rainfall, as well as the intensity of it, affect this

process, as the natural drainage of the soil might take more time and so make the

ground unstable for longer. This suggests that a temporal model for rainfall-triggered
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landslides need to be sophisticated enough to consider all these features. The model we

have proposed in Chapter 4 is capable of taking into consideration all aspects involved

in the process.

Coseismic landslides are primarily linked to the superficial ground movements gen-

erated by earthquakes. The energy released produces instability on slopes (USGS,

2019b). The two key factors to consider are the distance from the epicentre and the

intensity of the energy released (Kritikos et al., 2015; Parker et al., 2015; Havenith

et al., 2016; Parker et al., 2017). Both factors are closely linked together: the larger

the earthquake, the larger the area of landsliding (Keefer, 1984; Gorum et al., 2011),

all other things being equal. Similarly to rainfall, there are many earthquake simula-

tors using complex numerical simulations (Vere-Jones, 1978; Ogata, 1998a; Field et al.,

2014), of varying degrees of complexity (and hence memory) that can be used to include

earthquakes as exogenous processes. As mentioned earlier in Figure 6.3, the occurrence

of an earthquake produces a spike in the potential function of a landslide. Such spikes

represent an instantaneous release of energy which translates into an instantaneous

increase in the likelihood of landslides, although the slope instability may persist, lead-

ing to post-seismic events (Robinson et al., 2016b; Parker et al., 2015; Kritikos et al.,

2015; Marc et al., 2015). The post-seismic decay in potential is usually fast and can

be described with a power-law (Travasarou et al., 2003) or an exponential (Meunier

et al., 2007). The difference in the temporal distribution of the two hazards suggests

that rainfall and earthquakes are quite different hazards: their simultaneous presence

in a landslide model needs to be properly addressed.

In Chapter 4, the coseismic component was built using the relationship between

main event magnitude and aftershock productivity (Utsu, 1970; Ogata, 1988; Wetzler

et al., 2016) as a proxy of ground-shaking. The component includes both a ground-

shaking measure and the distance from the epicentre. Their combination allows the

component to mimic the sharp increases seen in Figure 6.3, in correspondence with

strong earthquakes (Brain et al., 2015).

Provided that the two triggering mechanisms are differently modelled but both im-

portant in the landsliding process, the need for a statistical model that incorporates

both hazards (Kappes et al., 2012b) is then substantial. Before our attempt (Chapter

4), some authors have tried to combine rainfall and earthquakes when assessing land-

slide risk (Vega and Hidalgo, 2016; Nguyen and Kim, 2019), attempting to establish a

connection between seismicity and rainfall after a major earthquake (Shou et al., 2011;

Fan et al., 2019). The study of the rainfall-induced landslides after the 1999 Chi-Chi

(Taiwan) earthquake (Lin et al., 2006; Shou et al., 2011) has shown that the earthquake

reduced the geomorphological stability of the area and two consequent rainfall events
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(typhoons) in 2000 and 2001 have triggered more events than the earthquake itself

(which caused over 9000 landslides) (Lin et al., 2006).

Shou et al. (2011) combined the empirical model by Uchiogi (1971) with an ex-

ponential decay to incorporate the effect of time from the Chi-Chi earthquake. This

empirical model estimates the future landslide rate of a watershed (where another event

has occurred) as a function of a future rainfall event. The landslide rate Y = Ca/a =

K(R−R0)a is defined as the landslide area (Ca) over watershed area (a) and assumed

to be a function of rainfall, where K is a location-specific parameter, R the measure of

one-day rainfall and R0 is the critical rainfall level for landslides. To incorporate the

temporal effect of the previous Chi-chi earthquake, this is multiplied by an exponential

decay term b0 + b1e
−bt, with b0 = b1 = 1 for the study area according to the author.

Assuming b > 0, the landslide rate is then:

Y (t) = Y0

(
1 + e−bt

)
= K(R−R0)a

(
1 + e−bt

)
(6.19)

where Y0 is the baseline, (R−R0)a a function of rain and
(
1 + e−bt

)
∈ (1,2). The func-

tion is not well parametrized for our needs: while in Chapter 4 the rainfall component

is endogenous, here it is treated as an exogenous variable, as there can be no complex

memory in the potential. Furthermore, the earthquake component should be linked at

least to the magnitude of the earthquake and, in this example, the earthquake depen-

dence is not general. Nevertheless, (6.19) can be seen as the multiplicative effect of a

rainfall component and an earthquake component. We have explored this possibility in

Chapter 4, with specific components for the Italian region of Emilia-Romagna.

However, if we modify slightly (6.19) to allow for updating, making R a function of

time more clearly and generalize the magnitude in the earthquake component (taking in-

spiration from the productivity law), the equation can be seen as a conditional intensity.

Hence, we have a function that has a rainfall function over time K(R(t)−R0)a, and the

sum of all earthquake effects up to t considering the magnitude effect exp[α(mi −mc)]

and the time decay exp[−b(t− ti)]:

λ(t|Ht) = K(R(t)−R0)a

{
1 +

∑
i:ti<t

exp[α(mi −mc)]exp[−b(t− ti)]

}
(6.20)

It is to be noticed that the resulting exponential term is a Hawkes process as per (6.7).

We can update the potential to (t + ∆t) following (6.5), separating the effect of the

seismic component over (t,t + ∆t). Also, we will use (6.8) as the g(·) function to link
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the conditional intensity to the potential function.

λ(t+ ∆t|Ht) = K(R(t+ ∆t)−R0)a

{
1 +

∑
i:ti<t

exp[α(mi −mc)]exp[−b(t+ ∆t− ti)]

+
∑

t≤sj<t+∆t

exp[α(mj −mc)]exp[−b(t− sj −∆t)]


= K(R(t+ ∆t)−R0)a

{
1 + exp[−b∆t]

∑
i:ti<t

exp[α(mi −mc)]exp[−b(t− ti)]

+
∑

t≤sj<t+∆t

exp[α(mj −mc)]exp[−b(t− sj −∆t)]


= K(R(t+ ∆t)−R0)a

×

1 + exp[−b∆t]U(t) +
∑

t≤sj<t+∆t

exp[α(mj −mc)]exp[−b(t− sj −∆t)]


= K(R(t+ ∆t)−R0)a{1 + U(t+ ∆t)}

(6.21)

where

U(t+ ∆t) = exp[−b∆t]U(t) +
∑

t≤sj<t+∆t

exp[α(mj −mc)]exp[−b(t− sj −∆t)] (6.22)

With ∆t small we can approximate exp(−b∆t) ≈ 1 − b∆t, which allows us to obtain

U(t+∆t) = U(t)−b∆tU(t)+
∑

t≤sj<t+∆t{exp[α(mj −mc)]exp[−b(t− sj −∆t)]}. This

last result can be linked to (6.5) to obtain the following:

U(t+ ∆t) = ψU(t)∆t+
∑

i:ti∈[t,t+∆t)

φi(ti) (6.23)

where ψ = −b.

As mentioned earlier, the model by Shou et al. (2011) was not sufficiently parametrized

to support multiple earthquake and rainfall triggering effects over time on landslide

occurrences, and our proposed update (6.20) still includes the rainfall component as

endogenous. The literature proposes limited examples on earthquake/rainfall triggered

landslides from a temporal point of view (see Chapter 4), in Chapter 4 we have proposed

a point process specifically built to evaluate the effects of both rainfall and earthquakes

on landslide occurrences, and that can be modified to be included in the potential

framework. Compared to (6.21), this model is more complex in terms of interactions of

triggering hazards. In the Chapter 4 case, the earthquake component is the exogenous

one as it has no memory within the system, while the rainfall is endogenous, as it
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contributes in the long-term to the triggering, and so needs to form the potential. To

better address the characteristics of rainfall, the phenomenon has been split into two

separate components, in order to consider both the long-term effect of seasonal rainfall

(slow process) and the high-intensity-short-term events (fast process). Furthermore, all

the three components are functions of time and can be easily adapted to be recursive

and so be used in the potential framework. The conditional intensity function from

Chapter 4 is:

λ(x,t) = λ0(x)exp[λ1CRS(x,t) + λ2CRL(x,t) + λ3CE(x,t)] (6.24)

One obvious complication arises in formulating this model as a potential. As expressed

in Chapter 4, the model works on discrete time, to reflect the naturally discretized data

of landslides and the available rainfall data. Therefore, the potential function can be

only linked to (6.5), only if we discretize the latter. Hence, we can re-write (6.5) as:

U(t+ 1) = U(t) + ψU(t) +

J∑
j=1

ρj +

I∑
i=1

φi(t+ 1) (6.25)

where all the decay/inflation, linear and exogenous inputs are considered only at time

t+ 1.

We now need to consider whether this obeys the updating rule (6.25), and is thus

within our potential framework. We will first examine each of the components in turn.

While the earthquake component is considered exogenous, the rainfall components

can be adapted to (6.25), by writing (6.24) as λ(t|H(t)) = g(t,U(t)) = g1(t,U(t)) ×
g2(CE), notationally suppressing the location x for simplicity.

The short-term rainfall component is the arithmetic mean of the last two days of

rainfall.

CRS(x,t) =
P (x,t− 1) + P (x,t)

2
(6.26)

While this is reasonably simple, it does require keeping two days of rain “in memory”.

Instead, we can define CS(x,t) as the linear combination of itself at t−1 and the rainfall

value at t. Let

CS(x,t) = 0.5[CRS(x,t− 1) + P (x,t)]× I(0,∞)[P (x,t)] (6.27)

This way, (6.27) is a recursive function of short term rainfall, where CS(x,t − 1) is

updated by taking the average between its value in t−1 and the amount of precipitation

in t. The average is multiplied by an indicator function which makes CS(x,t) = 0 if there

is no precipitation in t. This way, the history of the component can be evaluated as

required to be part of this framework, and the indicator function keeps the component
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a short-term one, as per the original (6.26).

The long-term rainfall component is

CRL(x,t) =
1

∆

∆∑
δ=1

ωδ−1P (x,t− δ − 1) (6.28)

where ∆ = 150. Hence 150 days of rainfall need to be kept in memory. Instead, we can

use an alternative definition:

CL(x,t) = ωCRL(x,t− 1) + P (x,t) (6.29)

which makes CL(x,t) an exponential smoother, and hence an updatable scalar. The new

long-term component has become a true exponential smoother, expressing the change

in the long-term rainfall trend. It is to be noted that these two new components work

for “perfect” data, i.e. when every aspect of the data is known, and their accuracy is

ideal.

The new model is subject to the same data quality issues as the old, except that

additional approximation might be needed to initialize (6.29) in the case of missing

rainfall data. Hence, we can rewrite (6.24) as follow:

λ(x,t) = λ0(x)exp[λ1CS(x,t) + λ2CL(x,t) + λ3CE(x,t)] (6.30)

Therefore, we can suppose that the link function is the generalization of (6.2):

g(t,U(t);θ) = αexp[βU(t)], with α > 0,β > 0 (6.31)

Thus, we can get the potential function for (6.24) as follow:

αexp[βU(t)] = λ0(x)exp[λ1CS(x,t) + λ2CL(x,t) + λ3CE(x,t)] (6.32)

We can define α = λ0exp[λ3CE(x,t)] (as the earthquake component is exogenous), so

that the equation becomes:

exp[βU(t)] = exp[λ1CS(x,t) + λ2CL(x,t)] (6.33)

Applying a log transformation we obtain:

βU(t) = λ1CS(x,t) + λ2CL(x,t) (6.34)

And dividing both terms by β we get:

U(t) = b1CS(x,t) + b2CL(x,t) (6.35)
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where b1 = λ1/β and b2 = λ2/β. Substituting (6.27) and (6.29) into (6.35) we have:

U(t) = b1
1

2
[CRS(x,t− 1) + P (x,t)]× I(0,∞)[P (x,t)]

+ b2[ωCRL(x,t− 1) + P (x,t)]
(6.36)

Grouping the elements of (6.36) by time of calculation t and t+ 1, we get

U(t) =

{
b1
CRS(x,t− 1)

2
× I(0,∞)[P (x,t)] + b2ωCRL(x,t− 1)

}
+

{
b1

1

2
P (x,t) + b2P (x,t)

} (6.37)

It is to be noticed that the indicator function in (6.36) is not required in the last term

anymore, as rainfall is non-negative, and there is no contribution here if p(x,t) is zero.

We can now identify U(t− 1) as the first term in (6.37), hence

U(t) = U(t− 1) +

{
b1
2
P (x,t) + b2P (x,t)

}
= U(t− 1) +

{
b1 + 2b2

2
P (x,t)

} (6.38)

Therefore, we can shift it by one temporal lag so that (6.38) can be compared to (6.25):

U(t+ 1) = U(t) +

{
b1 + 2b2

2
P (x,t+ 1)

}
= U(t) + bP (x,t+ 1) (6.39)

where b = (b1 + 2b2)/2 for convenience and P (x,t+ 1) provides a rainfall input to the

potential in t+ 1, which contributes to both the rainfall components above presented.

Therefore, recalling (6.25), we can write:

U(t+ 1) = U(t) + φ(t+ 1) (6.40)

In this model, the potential is the rainfall and the earthquakes exogenous while in

(6.20) we have the opposite situation. Note also that this new model with (6.27) and

(6.29) is a different model than the one proposed in Chapter 4 and it would need to

be re-fitted, with possibly different conclusions. Nevertheless, it will still be able to

embrace all the concepts expressed earlier on in this chapter, from direct triggering

to increased probability and complex interaction among hazards over time. Hence, it

might mimic the above mentioned soil moisture concept, in the case of data paucity,

which is not uncommon with natural hazards. Nevertheless, as shown in Chapter 4,

the large amount of missing data is a major characteristic of this type of analysis.

The components proposed in (6.27) and (6.29) may need further work to be applied to

missing data.
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6.3.2 Linked stress release model

A limitation of the SRM is that (6.13) evaluates the accumulation and release of stress

within the same region. Nevertheless, the occurrence of an earthquake in one region may

affect a nearby region due to the propagation of seismic waves (considering space/time

decay). Since this paper aims to introduce a framework for hazard potentials, as an

example of a linked system, we will look into the Linked Stress release model (LSRM)

proposed by Lu et al. (1999) and further investigated by Bebbington and Harte (2003).

This modified version of the Stress release model takes into account the stress transfer

between adjacent regions by using a link between systems. If (6.13) is valid for any

given region, (6.41) represents the stress accumulation/release for region i:

Ui(t) = Ui(0) + ρit−
∑
j

θijS
(j)(t) (6.41)

where S(j)(t) is the accumulated stress release in region j up to time t, and the coef-

ficient θij measures the fixed proportion of stress transferred from region j to region

i.

Assuming that the conditional intensity for each region is exponential (as per (6.1))

and that each region has a different set of parameters θi = (αi,βi), the conditional

intensity function for region i, following (6.2) and (6.15):

λi(t) = exp{αi + βiUi(t)} = exp

αi + βi

ρit−∑
j

θijS
(j)(t)


= exp

ai + bit−
∑
j

cijS
(j)(t)


(6.42)

6.3.3 Landslides leading to landslide dams

Landslide dams occur when a landslide falls into a river. Depending on the dam’s and

valley’s characteristics, the dam may survive a period of time that spans from minutes

(Dong et al., 2009; Korup, 2005) to centuries or more (Tacconi Stefanelli et al., 2016).

It is possible to summarize the process of a landslide dam failure in three pivotal steps

that may or may not lead to a dam failure: the occurrence of a landslide, the formation

of the dam and the possible failure of the dam (Costa and Schuster, 1988). If a landslide

has fallen on a river, it may or may not form a dam. The morphology of the landslide

(in terms of material, layout and size) establishes if the dam may be washed away

within a very short time period, or if it consolidates, allowing for water accumulation

(Massey et al., 2013; Harrison et al., 2015). In the second case, there is a chance for

flash flooding in the case of dam failure (see Chapter 5). Finally, the third phase is the
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failure of the dam. This mechanism depends on the morphology of the dam (McKillop

and Clague, 2007) and the water-flow (Dong et al., 2009), responsible for the water

accumulation. The more cubic meters of waters there are behind the landslide dam,

the higher is the risk of flooding. Therefore, we can consider these three phases one at

a time, to build a complete conditional intensity function for this complex process.

A key concept is that there is a link between the size of a landslide and the possible

formation of a landslide dam (Tacconi Stefanelli et al., 2020). The characteristics

of a landslide dam are inherited, at least partially, from the landslide features and

location. These features need to reflect the characteristics of the phenomenon so that

it is possible to establish whether the landslide will fail or not, and how long it will take

to be overtopped or washed away. Therefore, we could use the dam dimensions and

the valley size (Costa and Schuster, 1988; Casagli and Ermini, 1999; Tacconi Stefanelli

et al., 2016). The dam dimensions are directly related to the characteristics of the

landslide originating the dam. Hence, the larger the landslide, the more likely it is that

there is sufficient material to build a high or large dam blocking the river, all other

things being equal. In addition to the dam dimensions, the catchment area (CA) at

the landslide location is also important to evaluate the rate at which water accumulates

behind the dam. Thus, it provides a measure of how much pressure of water the dam

might need to sustain over time.

The first phase is the occurrence of a landslide on a river. We have already seen a

conditional intensity for a landslide occurrence (6.30), as a function of the triggering

processes produced by rainfall and earthquakes. This is the mechanism that initiates

the landslide dam chain (e.g. an earthquake triggering a landslide that falls into a

river). To model this phenomenon within our framework and particularly within the

landslide dam chain, an ideal candidate is the marked point process. As explained in

Chapter 2, the MPP combines a ground intensity function and a mark distribution

(Harte, 2010). In this case, a possible conditional intensity for a landslide occurrence

that might produce a landslide dam is given by:

λLS(t,H,L,W |H(t)) = gLS(t,ULS(t);θ)× ψ(mLS |ULS(t),x)I(L,W,H)(f(mLS ,x)) (6.43)

The ground intensity function gLS(t,ULS(t);θ) is the conditional intensity describing

the occurrence of a landslide. This function can be expressed as (e.g.) in (6.30). The

ψ(mLS |U(t),x) function is the probability density for the mark mLS , characteristics of

the landslide size given the location x. For our analysis, we can reduce the concept

of marks to solely the landslide volume VLS(x) for a landslide at location x, although

other aspects could possibly be included. We have conceptualized this function as

conditional on the potential, in order to allow for the possibility of a link between

landslide occurrence probability and landslide size. The mark density is multiplied by
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an indicator function I(L,W,H)(f(mLS ,x) expressing that the three dimensions L,H and

W will have to be the particular values that a landslide of volume mLS would make in

that location; also, the function f(·) maps the landslide volume and location into the

the dimensions of the landslide dam in that location.

The landslide volume will be affected by the magnitude of the triggering event. We

wish to stress, once again, that earthquakes are treated as exogenous events in Chapter

4 but as endogenous in (6.20). The earthquake magnitude M has been linked to the

total landslide volume with log(VLS)(x) ∼ aM − b (Gutenberg-Richter law, Keefer

(1994); Malamud et al. (2004)), and the frequency of landslides per given volume is

assumed to follow a negative power law f(VLS) ∼ V −cLS . A similar relationship has been

observed between the number of landslides and earthquake magnitude (Keefer, 2002;

Li et al., 2011; Alvioli et al., 2014). In terms of rainfall, it is not clear if there is a

similar effect between rainfall magnitude and landslide volume. The rainfall-triggered

landslides phenomenon is quite complex, as the size of landslides might be related

to a combination of intensity and duration (hence the potential), with some papers

suggesting that these events are more likely with longer rainfall periods (Chen et al.,

2017). Rainfall-landslides related studies have suggested that the Gutenberg-Richter

law applies to landslides frequency/volume distributions (Whitehouse and Griffiths,

1983; Dai and Lee, 2001; Gao et al., 2018), and a power-law would suit the frequency-

area distribution (Hovius et al., 1997). Hence we can leave open the possibility of there

being a similar dependence on the triggering process in the rainfall case, which we

will assume can be expressed through the potential function. Therefore, assuming for

simplicity mLS = VLS(x), we can define the landslide marks as a power-law function,

and the cumulative distribution would be:

Ψ(mLS |ULS(t),x) = 1− k[ULSVLS(x)]b (6.44)

where b < 0 is the power-law exponent and k is a scaling factor which needs to be

k = U−bLS in order to allow (6.44) to integrate to 1, where VLS > 0. The mark density

is then the derivative of the cumulative distribution:

ψ(mLS |ULS(t),x) =
d

dVLS(X)
Ψ(mLS |ULS(t),x) = −bkU(t)[U(t)VLS(x)]b−1 (6.45)

Alternatively, if U(t) > 0 for all t, as for (6.8), we can have U(t) as part of the exponent.

In this case, k = 1:

Ψ(mLS |ULS(t),x) = 1− k[VLS(x)]bU(t) (6.46)
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The mark density is then:

ψ(mLS |ULS(t),x) =
d

dVLS(X)
Ψ(mLS |ULS(t),x) = −kbU(t)VLS(x)bU(t)−1 (6.47)

Assuming that the landslide has fallen on a river, we move to the second phase, the

formation of a landslide dam. Hence, we need a probability that the landslide will form

a landslide dam, i.e. that the potential landslide dam actually blocks the river.

The dimensions of the dam are used to assess the stability of a dam via indices

(Ermini and Casagli, 2003). Although these indices might be useful to distinguish

landslide in terms of failure/non-failure, they are based on dams failed at a given time.

Instead, we are interested in the failure at the time of dam formation. However, the

dams types, as defined by Costa and Schuster (1988), offer greater insights. A type I

event is defined as non-formed landslide dam, as the landslide does not reach the other

side of the valley, which is when the length of the dam is not large enough compared

to the width of the valley, so the landslide dam will not form as it is not able to retain

water. Hence, a landslide dam that is not a type I is a dam that has formed. Types II

to VI represent landslides that reach the other side of the valley and are differentiated

by how much material is accumulated, e.g. depositing material higher up in the valley,

or multiple landslides joined together. So the key question is whether the landslide

extends across the entire valley. Hence, we can use the length of the landslide dam and

the valley width as the crucial variable to assess the probability of formation. If the

length is larger than the valley width, then the landslide dam formation may occur:

P (LSD|H,L,W,x) =

1 if L > WV (x) + ε(H,W )

0 if L < WV (x) + ε(H,W )
(6.48)

where WV (x) is the valley width at location x and ε is a positive, but decreasing,

function of H and W , which represents whether the “tip” of the landslide seals off the

far side of the valley.

The final phase is the failure of the dam. The dam failure is related to the dimension

of the dam, but also to the accumulation of water behind it. Water inflow was not

considered in Chapter 5, due to data availability, but it becomes necessary in this

framework, as we want to model the dam failure over time with a point process. The

water inflow can be expressed as a function of time, affecting the failure of the dam, as

it can provide an estimate of how long it will take for the water to reach the crest of

the dam, which is typically the point at which the dam will fail through overtopping if

it is not sufficiently consolidated. It is important to remember that the dam failure can

occur in two different ways, by overtopping and by seepage (Awal et al., 2007). In the

case of seepage, the water filters through the landslide dam from the upstream face to
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the downstream face; this is a fast failure, as the dam is weakened by water saturation

until the collapse. In the case of overtopping, it takes more time for the dam to fail, as

the water needs to accumulate. Once the water reaches the top of the dam, it erodes

the material from the downstream face until the dam collapses.

We need to consider how the two types of failures can be modelled separately,

before combining them into one conditional intensity for the failure of the landslide

dam. One aspect that is in common between the two failure types is that they are

both functions of the water inflow. Consequently, if r(t) is the inflow rate at time t, we

can define R(t) as the cumulative inflow since the dam formation: R(t) =
∫ t

0r(u)du.

In particular, we can use the catchment area CA and write r(t) ≈ CA × r0(t), where

r0(t) = rainfall rate across the catchment. This approach is advantageous as there are

several existing point process models that can be used for rainfall (Rodriguez-Iturbe

et al., 1987; Cowpertwait et al., 2007; Kaczmarska et al., 2014). The cumulative inflow

rate is important, as it provides an insight of the time to failure. In fact, we can model

the failure by seepage as a negative exponential of the cumulative inflow rate. Figure

6.6 shows schematically the two possible functions of these failures of a dam. The red

line highlights the case of seepage that we shall call λD,S(·): because this is the fastest

of the two failures: the function is at its maximum after the dam formation, and then

it falls sharply. Therefore, we can suppose:

λD,S(t,R(t);θ) = a0exp{b[Vl,max −R(t)]} (6.49)

where a0 and b are parameters. Using the updated link function presented in (6.31),

the potential function in (6.49) is thus equal to the cumulative inflow: UD,S(t) =

Vl,max −R(t). The blue line in Figure 6.6 shows how the second type of failure can be

modelled. The conditional intensity for overtopping, that we shall call λD,OV (·), can be

regarded as a Gaussian-like function, increasing as the cumulative inflow (orange line)

approaches the maximum lake volume (R(t) = Vl,max). Afterwards, the risk of failure

reduces, suggesting a stabilization of the dam. Hence we can write:

λD,OV (t,R(t);θ) = a1exp

[
−

(R(t)− Vl,max)2

2c2

]
(6.50)

where a1 and c are parameters. In this case, the potential function is equal to the

square difference between cumulative inflow and maximum water volume in the lake:

UD,OV (t) = (R(t) − Vl,max)2 Because there are two mechanisms involved but a single

event, the failure of the landslide dam, we need a single scalar potential as a function of

the two potentials of the conditional intensities presented in (6.49) and (6.50). Without

considering the mark function, we can assume that the conditional intensity function

of the potential failure of a landslide dam can be defined as λ(t|H(t)) = gD(t,Ui(t);θ),
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Figure 6.6: Examples of plots describing the two possible failures of dam: immediate failure
after the landslide fall (red line) and failure due to accumulation of water (blue line). This
plot schematically represents the two functions (6.49) and (6.50, left y-axis) in relation to the
amount of water in the dam (orange line, right y-axis).

where g(·) is a single link function combining the two failure mechanisms. Hence, we

need to identify which type of function is the best option. We can assume, from (6.49)

and (6.50), that the link function is can be written as an exponential, so that the overall

conditional intensity function, using the form of (6.1), is λD(t) = exp[UD(t)] and so it

can be seen as the product of the two marginal conditional intensities:

λD(t,UD(t);θ) = λ1(t)× λ2(t) = aexp[b1U1(t) + b2U2(t)] (6.51)

Although the summation of the two conditional intensities (competing risks model)

would be more natural, it does not fit the potential framework, as there is not then a

single scalar potential. In fact, with a summation we would have obtained

λ(·) = λ1(·)× λ2(·) = a1exp(b1U1(·)) + a2exp(b2U2(·)) (6.52)

which does not provide a single value. Given the degrees of freedom provided by the

constants a, b1 and b2, it is possible for the overall failure intensity to be close enough

in the product form (6.51) to the competing risks model, as shown in Figure 6.7.

Finally, we can combine all the equations we have proposed so far to formulate

the conditional intensity function of a flood triggered by a landslide dam failure, that

we shall name λF (t|H(t)). This function is built as the product of the three elements

expressed above for two main reasons: first, as mentioned earlier, this method allows

for the transfer of marks from one function to another; secondly, this transfer through

the concatenation of potentials can simplify the simulation of the system. In fact, this

method exploits the modularization of a simulation by splitting it into concatenated

smaller ones and reducing the memory requirements, as all transfers between modules
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Figure 6.7: Examples of the resulting functions shown in Figure 6.6. The red line represents
the product in (6.52), while the blue line the sum of of (6.49) and (6.50).

are performed by way of potentials. Because of this modularization, the conditional

intensity of a flood triggered by a landslide dam failure is composed of several mod-

ules. Conceptually, the first one is the conditional intensity of the landslide occurrence

λLS(·) at location x, for which we can use (6.43), followed, in order, by the probability

distribution of the landslide dam formation (6.48), the cumulative water inflow R(t),

and the conditional intensity of the landslide dam failure (6.51). Furthermore, while

the failure is assumed to occur at t, the rainfall, the landslide and the dam formation

are assumed to occur at s < t.

To have a flood of volume mF at time t, the landslide dam has to fail at t and

at the same time the flood volume must be equal to the volume of water in the dam:

mF = min{mD,R(t− s)}, where s < t is the time of the landslide and the formation of

the landslide dam, with the maximum lake volume being at least equal to the volume

of the flood: mD ≥ mF . To build the flood conditional intensity, we can simplify for

a moment the parametrization of λLS(·), into λls(·), using the maximum lake volume

rather than the landslide volume (recall that the lake volume is dependent on the

landslide volume thanks to the cascading parametrization adopted above in (6.43) and

(6.51)).

λF (t,mF |UD(t)) = λD(t,UD(t);θ)

∫ ∞
mF

∫ t

−∞
P (LSD|H,L,W,x)

× λls(s,v)I{mF }(min{mD,R(t− s)}) ds dv

(6.53)

This allows us to consider the time lapse t− s between landslide occurrence/landslide

dam formation and dam failure, particularly in terms of flood volume produced by a

dam at location x, with certain dimensions and with the water accumulated between s

and t. For the latter we have used an indicator function expressing that the minimum
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of the lake volume and the inflow (i.e. the volume of water in the lake at failure) must

be equal to mF . It is to be noted that the conditional intensity of the dam failure

λD(·) does not have a mark distribution associated with it, as the flood volume is

deterministic. However, it can be obtained from the potential, given the knowledge of

the maximum lake volume.

Next, we can replace λls(·) with (6.48) and (6.43):

λls(s,v) = λLS(s,H,L,W |ULS(s);θ)× I{h(v,x)}(H) (6.54)

where λLS(·) is now characterised by the landslide volume. The maximum lake volume

comes into play with the indicator function I{h(u,x)}(H), which requires that the height

of the dam, H, at location x, be such as to produce a maximum lake volume of v. This

provides the link between landslide, landslide dam, lake volume and flood. We can then

combine (6.53) with λLS(·):

λF (t,mF |UF (t)) = λD(t,UD(t);θ)

∫ ∞
mF

∫ t

−∞
P (LSD|H,L,W,x)

× λLS(s,H,L,W |ULS(s);θ)× I{h(v,x)}(H)

× I{mF }(min{mD,R(t− s)}) ds dv

(6.55)

Going further, we can replace the conditional intensity function of the dam failure with

the multiplication of the two mechanisms, and the conditional intensity function of the

landslide dam with (6.43):

λF (t,mF |UF (t)) = [λD,S(t,UD(t);θ)× λD,OV (t,UD(t);θ)]

×
∫ ∞
mF

∫ t

−∞
P (LSD|H,L,W,x)× [gLS(s,ULS(s);θ)

×ψ(mLS |ULS(s),x)I(L,W,H)(f(mLS ,x))
]

× I{h(v,x)}(H)× I{mF }(min{mD,R(t− s)}) ds dv

(6.56)

Hence, we have obtained a flood conditional intensity function that takes into considera-

tion all the aspects affecting the event, from the occurrence of the landslide (considering

time elapsed, location and volume), the formation of the landslide dam (with its di-

mensions inherited from the landslide volume) to the landslide dam failure, taking into

consideration the two different failure mechanisms. Overall, we have demonstrated that

the conditional intensity function of a hazard such as a flood can be written with cas-

cading modules expressing the potential of antecedent events, using their conditional

intensities and mark densities.
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6.4 Inhibition/threshold

The occurrence of a hazard depends, among other things, on the characteristics de-

scribing the other hazards involved in the triggering processes. For example, in Section

6.3.1 we have discussed how the characteristics of earthquakes (magnitude, distance)

and rainfall (intensity, duration), may affect the occurrence of landslides, which can

even cluster, depending on the marks of the primary hazards. Similarly, in Section

6.3.3, we have seen how the features of a landslide can be transferred to and alter the

durability of a landslide dam. While in some cases the effects of marks can be modelled

via continuous functions, as presented in the previous section, there are situations in

which effects of marks need to be expressed differently. This is the case for qualitative

marks, such as the geomorphologic features of an area, which are often expressed in

categories. Thresholds can be used to overcome this problem. The underlying idea is

that if a certain characteristic is present or absent, that will drastically change the con-

ditional intensity of a hazard, although the potential may be unaffected. As mentioned

at the beginning of this chapter, an event occurs if its disposition, frequency or mag-

nitude for Kappes et al. (2012b), is altered by another one (Kappes et al., 2010). Gill

and Malamud (2014) described this interaction as “increased probability”: the charac-

teristics of the secondary hazards can be moved towards a threshold (or tipping point,

minimum value), which can be evaluated via analysis of the temporal likelihood. For

example, strong earthquakes such as the 9.2Mw one in Alaska, 1964 produced regional

subsidence, which increased the probability of future flooding. Hence, the phenomenon

of subsidence produces a boosting effect on flooding potential. In fact, the modifica-

tion of the ground produced by a powerful earthquake might affect a watercourse, by

blocking the water or opening new paths. This could result in a drastic increase of

the likelihood of a flood in the proximity of the river, even if the potential of a flood

pre-earthquake had not suggested that, e.g. not enough rain in the preceding period to

trigger a flood.

Thresholds have been used to evaluate the occurrence of hazard in relation to the

properties of primary ones, particularly for the analysis of rainfall-triggered landslides

(Keefer, 1984; Brunetti et al., 2010). Among others (Guzzetti et al., 2007; Badoux

et al., 2009; Baum and Godt, 2010), Cannon et al. (2008) have used empirical intensi-

ty/duration rainfall thresholds to explain the occurrence of debris flows. The triggering

mechanism of this phenomenon can be synthesised into two aspects: the presence of

loose material (Iverson et al., 1997; Tang et al., 2009) and the occurrence of a hazard

entraining the material, usually rainfall (Peng et al., 2015; Ferreira et al., 2016; Gian-

necchini et al., 2016). As the main purpose of these papers was to build a warning

system for the occurrence of debris flow, the presence of loose material was considered

as an existing condition, and the research focused on the study of rainfall thresholds, to
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evaluate whether or not the debris flow would be triggered. Guzzetti et al. (2007) have

shown different examples of intensity/duration thresholds from different studies on a

dataset of debris flows in Figure 6.8. In our wider scope of the potential framework,

we can consider the rainfall as a quantitative process expressed through a potential

as in (6.40). Hence, the aspect that can be represented via threshold is the presence

of debris. That would allow the threshold to have the function of either inhibiting or

allowing for the occurrence of a hazard.

Figure 6.8: Comparison between the global ID thresholds defined in this study and published
global (worldwide) ID rainfall thresholds. 1 Caine (1980); 2 Innes (1983); 3 Clarizia et al.
(1996); 4 Crosta and Frattini (2001); 5 Cannon and Gartner (2005); 6 threshold inferred from
the entire set of ID rainfall data (this work); 7 thresholds inferred from the probability estimates
of the rainfall conditions, for two different rainfall periods (D < 48h, and D ≥ 48h) (this work).
Dashed line shows 0.25mm h−1 rainfall intensity. Picture and original caption from Guzzetti
et al. (2008)

To pursue this idea, we can define, W (t) as the Inhibition/Excitation function

(“I/E function” from now on), which allows or inhibits the triggering of a hazard by
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the process modelled using the potential function. Because there are different types

of thresholds, we will need to define different types of functions. One function can be

defined as “hard threshold”: these are often used with natural hazards to evaluate the

minimum magnitude values of hazards which can trigger secondary ones. A common

example is the one of rainfall threshold as early warning systems for hazards such as

landslides (Begueria and Vicente-Serrano, 2006; Tiranti and Rabuffetti, 2010). Simi-

larly, the above mentioned Casagli and Ermini (1999) used a hard threshold to separate

stable and at-risk landslide dams using an index based on the dam dimensions.

However, depending on the characteristic of the hazard and because events in nature

may not have a clear cut between occurrence and non-occurrence, the hard threshold

might be of a draconian nature that does not go well with all situations, particularly

if the processes involved may produce different results at different levels of the pro-

cesses expressed in the threshold. In this case, the use of “soft thresholds” can be a

valid alternative. Figure 6.9 shows an example of soft threshold, where the likelihood

of a hazard changes in relation to the progression of specific factors. In Chapter 4,

we have presented two rainfall components that can serve as soft threshold for land-

slides. In fact, high levels of these components, which reflect high levels of short- and

long-term rainfall, increase the likelihood of landslides, rather than suggesting a sharp

landslide/no-landslide boundary. In Figure 6.9, we can imagine the two horizontal axes

on the bottom plane as the two rainfall components, and the surface represents the

probability of the hazard: at increasing levels of the components, the surface function

shows a smooth transition through different levels of potential, rather than shifting

abruptly from one line to another as per hard threshold curves, which may not have

enough flexibility. It is then possible to see the I/E function as a function, which

Figure 6.9: Examples of threshold function influenced by two factors. On the two axes on the
horizontal plane, there are two components producing a probability surface.
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“masks” it or “reveals” U(t), inhibiting or allowing for hazard occurrence. In other

words, the event can only occur if a certain condition is satisfied, conditions that are

condensed in W (t). A possible way to define W (t) is presented in (6.57), where W (t) is

either 0 or 1 whether the condition for the occurrence of the external event is satisfied

or not.

W (t) =

1 condition satisfied

0 otherwise
(6.57)

In the case of a soft threshold, the support of W (t) can be [0,1], instead of {0,1} as in

(6.57).

6.4.1 Debris flows

As mentioned earlier, debris flows provide a good example of the use of thresholds in

the potential framework. Debris-flow occurs when intense precipitation mobilises loose

sediments in a watershed or channel (Iverson, 2000). There are two main drivers in

this hazard: water and loose material. A strong rainfall event, possibly a short-term-

high-intensity one, acts as a vehicle, moving the loose material present on a slope (Peng

et al., 2015). Furthermore, the topography of the area plays also an important role,

as the presence of a watershed with steep slopes or stream channel with active erosion

increases the chances of debris flow. Loose sediments may be the result of a recent

landslide (e.g. portion of ground that is detached but that has not reached the bottom

of the valley), a volcanic eruption (ashes), or wildfire (i.e. the reduced moisture in the

ground increases the instability of it)(Welsh and Davies, 2011).

The case of debris flow can be expressed by two components. One is the presence

of loose material (debris), and one is the mechanism that triggers the movement of the

material (e.g. rainfall). While the second can be modelled with a point process, the

presence of debris (consequence of a primary event such as a volcanic eruption or a

landslide) can be defined using (6.57). Hence, when W (t) = 1, the debris flow potential

is revealed, and the event can occur. With W (t) = 0, the event cannot occur, as there

is no material to move. We assume W (t) to be a function of a vector of parameters

representing the satisfaction of certain conditions for the occurrence of the external

event at a given time: W (t) = f(ξ(t)).

Therefore, the W (t) function can be implemented in the potential framework as a

new method to address the change of potential in relation to other events, particularly

concerning those phenomena that do not produce any potential unless they occur, such

as for the debris flow example. For instance, we can extend the concept of (6.1) by

implementing W (t):

g(t,U(t);θ) = g(t,U(t);θ)×WD(t) (6.58)



CHAPTER 6. A CONCEPT OF NATURAL HAZARD POTENTIALS 133

Hence, in (6.58)W (t) activates the link function g(t,U(t);θ) and ultimately the potential

of a hazard.

In the literature (Melton, 1965; Jackson Jr. et al., 1987), a way to evaluate whether

an area is prone to debris flow is to evaluate the steepness through the Melton ratio:

R =
Hb√
Ab

(6.59)

where Ab is the catchment area in km2 and Hb is the basin relief in km (the difference

between the highest elevation and the lowest elevation in the catchment). The ratio is

built so that the narrower and steeper is the channel, the more likely it is to observe

debris-flows. In fact, a common subdivision of the values is the following:

• if R ≤ 0.3 conventional fluvial processes occur;

• if 0.3 < R < 0.6 debris floods occur;

• if R ≥ 0.6 debris flows occur.

Debris floods are phenomena in between a flood and a debris flow. In fact, while

the latter can have peak discharges up to 40 times greater than floods, debris floods

discharges go up to twice those of flood.

Because debris floods and debris flows are similar in terms of mechanism (both need

debris and rainfall), we can summarize the information from the Melton ratio into a

new index, that we shall call P (R) the probability density of debris flows occurrence.

This will be a continuous function, monotonic in R. For example, one possibility is:

P (R) =
Φ
[
R−a
b

]
− Φ

(
−a
b

)
1− Φ

(
−a
b

) (6.60)

where Φ is the standard normal distribution function, and a,b are constants chosen so

that P (R = 0.3) = ε and P (R = 0.6) = 1− ε for some suitable (small) value of ε.

One option to model the potential of debris flow is to use a threshold function for

the debris flow, as without debris the phenomenon would not occur. Debris flows get

mobilised by a large amount of water fallen in a short period of time, which can be

hours to days (Bacchini and Zannoni, 2003; Pan et al., 2018). Therefore, given how

we have developed our rainfall components, it is safer to include both in this example.

Once we have settled the rainfall and Melton Ratio contribution, we can look at the

threshold function for the debris. The presence of debris can be written using an I/E

function for the presence of debris: W (t) is equal to 1 only if there are debris in the
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area in analysis. Hence a step function will serve our need:

WD(t) =

1 debris in t

0 no debris in t
(6.61)

Therefore, following (6.58), the link function between potential and conditional inten-

sity function for the occurrence of debris flow gDF (·) will be composed of a rainfall-

related gRF (·) function and the I/E function for the presence of debris.

gDF (t,U(t);θ) = P (R)× gRF (t,URF (t);θ)×WDF (t) (6.62)

However, we can also consider the converse formulation, with the presence of debris

being modelled by the ground intensity function, based on the potential of debris flows

UD(t), and the rainfall as an I/E function. Hence, (6.58) will become:

g(t,UDF (t);θ) = gDF (t,UDF (t),P (R);θ)×WRF (t) (6.63)

where gDF (t,UD(t);θ) is a link function for the amount of debris in t, which also takes

into account the probability distribution of the Melton Ratio P (R), to evaluate what

kind of event may occur. Then, the WRF (t) function will need to assess the amount

of debris in comparison to the amount of rainfall: if the two volumes are roughly

equivalent, then debris floods would occur; if the amount of debris is much bigger than

the rainfall, there is a higher probability of debris flows. In case of the amount of

debris being smaller than the amount of rainfall, it is then the ordinal fluvial process.

Hence, we can define D as the ratio between debris flow volume and rainfall volume,

and update (6.60):

WRF (t) =
Φ
[
D−α
β

]
− Φ

(
−α
β

)
1− Φ

(
−α
β

) (6.64)

where Φ is the standard normal distribution function, and α,β are constants chosen so

that P (R = 0.3) = η and P (R = 0.6) = 1− η for some suitable value of η < 0.5.

6.5 A framework for multi-hazard simulation.

At the beginning of this chapter, we have mentioned that the complexity of inter-

actions among natural hazards was substantially a call for a framework capable of

unifying multi-hazard assessment under one model structure. We have proposed an

initial framework that can accommodate both single-hazard and multi-hazard assess-

ments. Using point process models as a basic structure, we have shown that pre-existing

models can often be included, or adapted to our framework. This is the case of the
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Hawkes process for earthquakes, of point processes for rainfall, and of our model for

earthquake/rainfall triggering landslides from Chapter 4. Furthermore, the landslide

dams section suggests that we can expand a process to take into account new hazards.

The last model proposed for debris flows also shows that in some cases we also have

the choice of modelling events from different perspectives.

An important aspect of this framework is that the flexibility of this all-encompassing

framework can play a very important role in terms of simulation. There are pack-

ages that allow for simulation of quantitative models on the different platforms, such

as PtProcess (Harte, 2010), which allows for simulation and fitting of marked point

processes. Nevertheless, other hazards are modelled via physical models (CAESAR

flooding model, Coulthard et al. (2002)) or via hazard maps (landslides, Dahal et al.

(2008); Yalcin (2008)). Hence, with our framework there is an opportunity to combine

hazards with different characteristics into one single framework to simulate interacting

hazards.

As shown earlier in this chapter, point processes allow for a flexible framework

where interacting hazards can be combined to evaluate their occurrences. The men-

tioned landslide dams chain is a natural example: concatenated marked point processes

can evaluate the occurrence of landslide dam failures and consequently the size of floods.

The package PtProcess (Harte, 2010), for instance, would allow writing a ground in-

tensity function and mark distribution to build a specific marked point process, which

can then be combined with another one to simulate a more complex phenomenon such

as the one of landslide dams. This is a novel approach that is able to overcome the

complexity of natural hazards, as it allows to split a potentially vast simulation algo-

rithm in smaller modules, easier to handle and faster at simulating. Hence, we can

imagine a package where we can define the conditional intensity function λ(t|Ht) or

the link function g(·), to evaluate, fit and simulate the potential function of a hazard.

The functions would need to be specified in terms of characteristics of the environment

such as the Melton ratio, landslide susceptibility characteristics, et cetera and to other

processes affecting the triggering of the hazard (such as earthquakes for the landslide

model).

In this view, the framework could facilitate the development and integration of

the assessment for a natural hazard processes within our multi-hazard environment,

using a building block approach of point process models. In fact, hazard estimates

are generally obtained by simulation and require many simulations to quantify the

uncertainty. The number of simulations required will rise steeply with the complexity

of the system, while at the same time, the simulations become slower. A big part of

this is the history, particularly in spatial environments. Hence the potential framework,

with its lessened memory requirements, will facilitate forecasting.
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A similar “brick-by-brick” concept was proposed by Mignan et al. (2014), where an

initial approach to a potential framework was proposed. The authors produced Monte

Carlo simulated time series, each one representing a different scenario of natural and

man-made events. Each hazard as simulated from a Poisson distribution with specific

long-term parameters, and events were combined with conditional probabilities. Our

method proposes to go beyond this kind of approach, as each hazard would have a

tailored conditional intensity and the modularization approach with cascade-like blocks

would not only reduces time and memory requirements, but also provide flexibility and

allow for realistic quantification of hazard interactions.



Chapter 7

Discussion and future research

This thesis contributes to the development of multi-hazard assessments, by provid-

ing examples of quantitative models for hazard interactions, and developing valuable

concepts for spatio-temporal analysis of hazard occurrences. The statistical method-

ologies used have proved to be useful tools to produce substantially solid results and

to overcome the challenging issues arising from the lack of data, typical of natural haz-

ards. This final chapter closes the thesis by reviewing the achievements obtained in the

previous chapters and proposing suggestions for future research.

The goals of this thesis, as defined in Chapter 1, can be summarised as follows:

• Formulate a quantitative multi-triggering model to evaluate the interaction among

primary hazards in the triggering of secondary ones.

• Extend the hazard chain with a further hazard, using different techniques to

investigate the feasibility of different types of analysis in relation to the type of

hazard.

• Develop the concept of “hazard potential” in a quantitative framework, as an

underlying process governing the occurrences of events.

Given these goals, I present here below a brief review of the work completed in the

previous chapters, together with a discussion on possible future steps for these topics.

Because of the variety of natural hazards and their interactions, the thesis is based on

the earthquake/rainfall-landslide-landslide dams hazard chain, described in Chapter 3,

large enough to possess a certain level of variety of hazards and their interactions.

Chapter 4 provided a first attempt at modelling a multi-triggering point process,

developed to evaluate the landslide occurrences triggered by the interactions between

earthquake and rainfall. Both earthquakes and rainfall are known to trigger landslides

(Shou et al., 2011; Zhou et al., 2015b; Iverson, 2000; Berti et al., 2012), but their
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concurrence is considered to be coincidental, although they spatially overlap. Never-

theless, there have been examples of potentially augmented landsliding events due to

strict overlapping or temporal proximity (within a time window) of the two hazards,

e.g. Kaikoura, Orchiston et al. (2018).

Landslides data are naturally discrete ones, and the Emilia-Romagna dataset I have

used was not different, with temporal information recorded at a daily precision: from

1981 to 2018 (13789 days) there have been 7743 landslides over 328 municipalities; thus

the count of landslides per day/location is zero for the majority of the day-municipality

“cells” in the dataset (99.75%). Therefore, I have used a nonhomogeneous Poisson

process then discretized it into a zero-inflated Poisson regression. This process was

used to model the occurrences of landslides triggered by rainfall and earthquake, also

taking into consideration the interaction among the triggering events. This method is

able to model the excess of zeros naturally resulting from the triggering mechanisms of

earthquake and rainfall, which do not produce landslides for the majority of the days.

The landslide process is conceived to embrace a range of interaction types, as in

Gill and Malamud (2014), from the “increased probability” to almost direct triggering

should the intensity rise quickly enough. That is achieved by formulating a Poisson

process with components which expresses the triggering of rainfall, the triggering of

earthquakes and the combined effect of the two primary hazards. Such components

have been designed using proxies (Utsu, 1970; Ogata, 1988; Rossi et al., 2010; Wetzler

et al., 2016; Monsieurs et al., 2019) which transfer the characteristics of the triggering

effects (intensity, distance) into the landslide process. Hence, the model structure

remains constant over time, with the baseline of the model, µ0(x), representing the

susceptibility of each location x, which acts as a multiplier, and the strength of each

component {µi} (with i = 1,2,3) is treated as constant across space and time. The

temporal component of the model is provided by the time-series of the triggering factors.

Three different models have been tested to find the best fitting combination of the three

components, and the preferred model (comparing their log-likelihoods) was the one with

additive triggering effects (long-term and short-term rainfall, and coseismic triggering).

Although the multiplicative form was rejected, other hazard chains or regions might

show different results.

The model highlighted a strong effect of long-term rainfall on the likelihood of no

landslides, for Emilia-Romagna, agreeing with previous work by (e.g.) Rossi et al.

(2010, 2017) and Peruccacci et al. (2017). Two additive models are flagged as the best

ones, with very close log-likelihood. Although these treat the earthquake triggering

differently, due to the complexity of the models, it is not clear which one is the best.

Considering the landslide occurrences across all municipalities individually is a novel

approach compared to previous works, as it has allowed us to consider the region
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not as a single point in space (Rossi et al., 2010), but as a set of multiple locations.

Hence, each location contributes differently to the triggering mechanism, due to the

specific geomorphic features of the municipality and the triggering effect received by

the municipality from earthquakes and rainfall, which cannot be equal across the whole

region.

Hence, Chapter 4 demonstrates that point processes are useful tools in a multi-

triggering framework, particularly to model the triggering influence of multiple factors

in a discrete approximation, as the formulation is adapted to naturally discrete recorded

data.

It is to be noted that although the proposed model has been built on a specific

hazard chain, it can be adjusted to include other hazards of the same chain, as well

as to other hazard chains. The components expressing the triggering effects on land-

slides are built to model rainfall and earthquakes triggering. Hence, it is possible to

tune model and components to different hazards. For instance, volcanic eruptions and

earthquakes might be included in a similar model to evaluate their triggering effects on

tsunami (Geist, 2014; Schmidt et al., 2011; Garza-Giron et al., 2018). In fact there is

a known correlation between earthquakes and eruption, with the former able to trigger

eruptions (Marzocchi, 2002; Bebbington and Marzocchi, 2011), and the latter able to

trigger earthquakes. That is because the model has been built with the purpose of

creating a tool in a multi-hazard framework, keeping in mind the variety of hazards

and interactions among them (see Chapter 3), rather than building a model for that

hazard chain only.

Two remarks can be made on the seismic triggering. First, I did not include any

transient triggering effects of earthquakes: it has been suggested that there might be

a (positive or negative) accumulative effect on landslide triggering (Brain et al., 2017),

which might allow for more complex interactions with rainfall (Marc et al., 2015).

In such a case, the model would need to include a new term, tracking the cumula-

tive effect of earthquakes (see SRM in Sections 2.2.1 and 6.2.3). In order to examine

this, it would be needed to find more suitable data, as the homogeneous period of the

Emilia-Romagna landslide catalogue coincided with an unusually quiet period in the

earthquake catalogue in the vicinity of Emilia-Romagna. The weak seismic shaking

during that period of the catalogue have consequently produced limited evidence on

earthquake triggering. Nevertheless, the analysis of the time series of the three com-

ponents shows that landslides have occurred in correspondence to medium to strong

earthquakes (with epicentres in or near the mountainous region) at times correspond-

ing low rainfall. The two major earthquakes that occurred during the study period in

Emilia-Romagna, on the contrary, were located in the flat areas of the Po valley, with

characteristics that tend not to produce any landslides.
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Some suggestions can be provided on this issue. A transient triggering component

is needed to fill the gap and capture all the aspects of the coseismic triggering. Once

again, this would require a specific set of data not available for our analysis. Further-

more, it is suggested that future work would test this model in other areas with more

evidences of coseismic landsliding, so that the model can be tested further and im-

proved. Nevertheless, this approach would find issues with inadequate available data,

as coseismic landslide inventories for specific regions usually have no time dimensions

(Tang et al., 2016; Tian et al., 2019). Hence, this problem will need to be addressed.

A second remark that can be made is about the location parameter µ0(x). With

more refined data, particularly in terms of locations, the landslide susceptibility can be

spatially re-parametrized (Parker et al., 2015), leading to a mapped intensity. In order

to calculate spatial intensity, a model for a size mark (e.g. Bebbington 2015) might

be required, but that would also need geomorphological data with a certain level of

definition, such as the one needed for our models (time-homogeneous, time-stamped,

congruent in time and space, ideally with magnitude expressed). This would need to

be done within each municipality to achieve better spatial definition.

Finally, one more aspect that can be addressed as an example of future work is

that in Chapter 4 I have not considered if the probability of new landslides is either

increased or decreased after an occurrence. In other words, there is here the possibility

to investigate if there is inhibition or excitation (clustering) of landslides in one loca-

tion. The model would need to be modified to address this purpose, in relation to the

characteristics of the area, and the short and long term triggering effects. The type

of data I have used do not allow for such analysis. In general, landslides are tempo-

rally recorded in relation to the moment they have been discovered, which produces

low-definition temporal data.

Chapter 5 explored a natural extension of the landslide hazard chain, the landslide

dam. Because of their nature, landslide dams are a type of hazard that needs to be

assessed rapidly, as their failure can result in flash floods. The danger is compounded by

the amount of water accumulated, hence the estimation of the time to failure becomes

crucial for planning risk mitigation procedures.

The lack of data has always limited the studies on this hazard, especially in terms of

quantitative analysis. Chapter 5 aimed to overcome some of the limitations of landslide

dams data by proposing a Bayesian model to predict the time to failure of landslide

dams, based on imputing missing dam and reservoir measurements via an analysis of

their covariate structure.

Survival analysis techniques were used to model the failure time of landslide dams

in relation to their characteristics, improving the current state of the art of landslide

dams analyses, which are mostly based on indices (Casagli and Ermini, 1999; Ermini
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and Casagli, 2003; Korup, 2004) or logistic regression on the probability of failure (Dong

et al., 2011). These methods produce a snapshot of a landslide dam conditions, which

is an expression of whether the landslide dam will fall or not. Instead, a survival model

allows the estimation of the failure times, hence quantifying the temporal aspect of the

hazard. This is extremely important, especially in the process of decision making, if

the water is filling the valley and engineering procedures might need to be put in place

to avoid flash flood and disastrous consequences.

The biggest challenge in the dams analysis was the scale of missing data, an inherited

feature of landslide dam datasets (Costa and Schuster, 1988; Ermini and Casagli, 2003).

The dataset I have worked with, by Tacconi Stefanelli et al. (2015), has the unique

peculiarity of including the type of landslide dams that Costa and Schuster (1988)

classified mostly under Type I: those landslides that do not form a dam or form a

dam that fails quickly. The nature of these events makes the data collection difficult.

Hence, I have embraced the presence of these events in our model, together with the

other landslide dam types, and used the concept of censored data to overcome the

challenge of dealing with only 3% of data with exact time to failure. Concerning the

missing values of the covariates, Bayesian imputation has been used, benefiting from

the correlation structure among the variables. Linear regression was used to evaluate

which of the landslide dams and valleys characteristics are the most important ones in

determining the time-to-failure of the event.

Chapter 5 shows that the model can be used to probabilistically forecast the prob-

able lifetime of a dam in a robust manner, based on the results in fitting it to a

heterogeneous national dataset. The results obtained highlight that dams with longer

length and higher height tend to survive longer while dams with larger catchment area

survive for shorter times. This recalls the conclusions from other studies (Ermini and

Casagli, 2003), with the important difference that our results have been obtained via

quantitative analysis, which provides a statistical distribution of failure time, rather

than a “hard” prediction. In fact, Figure 7.1 shows a comparison between a plot by

Ermini and Casagli (2003) and one obtained from our data. The plot on the left visu-

alizes how the DBI index (see Sections 3.2.4 and 5.2) divided landslide dams, looking

at the relationship between the ratio volume/height and the catchment area. In the

plot on the right, I have tried to recreate the same plot, using a computed version of

the landslide dam volume (see Chapter 5). Ermini and Casagli (2003) have used the

DBI to divide the dams into three groups, although only two are shown in the plot:

stable, uncertain and unstable. Actually, the real meaning of “stable” should be “has

not failed yet” and for “unstable” should be “has failed”, with “uncertain” providing

an in-between group of not yet failed dams. I have applied the same thresholds on our

plot, and we can see that the DBI thresholds, obtained by Ermini and Casagli (2003),
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(a) Original plot by Ermini and Casagli (2003)
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Figure 7.1: The first plot (by Ermini and Casagli (2003) shows Italian dams in terms of
watershed area (Ab) and the ratio volume/height split by DBI index (UD = unstable dam, SD
= stable dam). The second plot is built on the dataset used for our analysis in Chapter 5.

are not correct for our dataset, as the majority of the dams are labelled as stable, while

the majority of the dams in the dataset have disappeared within minutes or hours.

This suggests that studying only large events introduces a bias in the analysis. Figure

7.2 shows the DBI index against median survival times. Again, the lines represent the

thresholds suggested by Ermini and Casagli (2003): the DBI is not able to differentiate

between landslide dams when the survival times are taken into consideration.

Figure 7.2: Distribution of log median dam failure time against DBI index (on a log scale) for
each event in the presented dataset. The two lines indicate the two DBI thresholds indicated
in Ermini and Casagli (2003).

The results of Chapter 5 also indicated that the dam width is not significant with a
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negative coefficient. Other studies hypothesise that dam width should be as important

as dam height (Ermini and Casagli, 2003; Liao et al., 2018). However, in Chapter 5

it was observed that the dam width has a medium to strong correlation with length

and height. Given the significance of length and height, the effect produced by width is

most likely absorbed by these two variables. As expressed by Costa and Schuster (1988),

length is a crucial dimension, as it can be used as a proxy of dam formation/resistance

(if the dam length is shorter than the valley width, it is unlikely that a lake will be

formed). In this view, the dam width becomes secondary to other variables. It is also

possible that our model is emphasizing the concept of dam length in comparison to

valley width, but is important to remind that this is the first time that landslide dams

with very short survival times have been included in a study. There might also be a

river slope effect, produced by the fact that in a greater slope the width is less resistive

(Costa and Schuster, 1988).

The addition of location-based intercepts suggests that geomorphic differences be-

tween regions may be quite distinctive. This is supported by the fact that the baseline

parameter, β0, has a high variability among survival times. The Sicilian events are a

clear example of the need for regional intercepts. These events are characterised by

lower altitudes and a different distribution of height-width ratio. Hence, further re-

search may focus on incorporating geomorphic characteristics into the model, which

are usually qualitative data. Another way to explore this aspect is using location-level

random effects, rather than fixed intercepts, which should help to improve the estima-

tion and forecasting ability of our model, towards a better understanding of events with

location-related specific characteristics.

In addition, the model has the potential to be made more elaborate, with more

accurate and complete data. This could also include examining the most appropriate

measurement for quantities such as river slope, which is currently recorded at the dam

site, but obviously varies above the dam.

Finally, Chapter 6 proposes an innovative approach to multi-hazard analysis using a

framework based on the concept of potentials. The proposed idea is that the potential

can synthesize and store the whole history of a process into a scalar value. Hence, it is

expression of all the internal processes affecting the occurrences of a hazard, and their

changes over time. This model relies on the use of monotonic increasing link functions

of the potential U(t), which are able to translate the history of the process Ht into a

scalar value in λ(t|Ht). Furthermore, I have categorized the components contributing to

the change of potential over time, expressing slow and fast processes, decay or inflation

and exogenous inputs.

I started by investigating how pre-existing single-hazard models can be adapted to

this framework. Self-exciting processes (Hawkes process) can easily be incorporated



CHAPTER 7. DISCUSSION AND FUTURE RESEARCH 144

because the conditional intensity uses an exponential function, which can be updated

to express the change of potential from t to t+ ∆t. In particular, the Hawkes process

change of potential is characterised by a constant (proportional decay) and a sum of

jump effects provided by events occurring within a small time interval. On the contrary,

ETAS models cannot be used in this framework because of the use of power law decay

functions, which do not allow U(t) to be updated from t to t+ 1.

Then, I moved to the core of the problem: the expression of multi-hazard processes

in the potential framework. The crucial point is to be able to formulate the different

type of hazard interactions and all the processes concurring in the potential of a hazard.

With a building-block approach, it is possible to include each process separately, so that

the conditional intensity is able to characterize the behaviour of each process in terms

of time and magnitude. Then, all these blocks can be combined in relation to their

interactions, taking advantage of the range of point processes explored in previous

chapters

The adaptation of the multi-hazard model presented in Chapter 4 is a clear example

of this concept. The two rainfall components (long-term and short-term) have been

adapted to fit the definition of potential, highlighting the change in potential over

time. Furthermore, this example is important because it shows that the potential

concept extends to discrete time. This result further suggests the flexibility of this

method, which is particularly important given the different precision between hazard

data, as explored in previous chapters.

I have also mapped the extended hazard chain explored in Chapter 5 to the potential

framework. This was a more challenging exercise, as it was crucial to consider all the

interactions from the starting point of the chain (the occurrence of a landslide) to the

size of the resulting event (the flood due to landslide dam failure). Hence, embracing the

building-block type of model construction seen in Chapter 4, I have built the conditional

intensity of a flood due to landslide dam failure as a composite of the single conditional

intensities and probability distributions that lead to the flood: landslide occurrence,

dam formation and dam failure. This particular chain of hazards also allowed us to

explore the use of marks to model how the interaction between events could affect

the size of a triggered hazard. In fact, the marks of the landslide are passed to the

landslide dam in the first place, and then to the flood.The landslide dam dimensions

are dependent on the size of the landslide originating the dam and the formation of the

dam is once again determined by the size of the landslide (Costa and Schuster, 1988).

Furthermore, it is possible to formulate the dam failure and flood size by taking into

account the size of the lake as function of the location of the landslide and the size of

the landslide dam and the inflow between formation and failure or filling of the dam.

Another important aspect considered is that there is more than one type of failure
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mechanism for a landslide dam, two in particular: seepage and overtopping. Hence,

the conditional intensity expressing this event needs to include both. Although the

sum of the two conditional intensities following a competing risk model would be more

obvious, it would not fit the potential framework. Nevertheless, it has been shown

that it is possible to approximate the same resulting conditional intensity with the

use of a multiplication between the two failure mechanisms. In Chapter 6, I have also

investigated the use of thresholds to model the potential of specific type of events. The

example provided is the one of debris flow, as the occurrence of such event is strictly

dependent on the presence/absence of debris. This type of scenario can be addressed

as an extension of the concept of “increased probability” defined by Gill and Malamud

(2014), assuming that the presence of debris would produce a non-zero probability of

an occurrence of debris flow. Hence, I have defined a function W (t) that activates the

potential of debris flow, in relation to the presence of debris. It has also been shown,

that this approach is flexible as it allows a certain level of degree to adjust the model as

needed, by switching the role of hazard phenomena in the model. In fact while in one

case the presence of debris is modelled with a threshold function and the rainfall with

an intensity function, it is also possible to formulate the debris flow with an intensity

function and the rainfall with a threshold function.

One of the major upsides provided by the potential framework is to accelerate multi-

hazard simulation. The complexity of hazards and their interactions usually demands

high memory requirements. I have used point processes as a base for our model, as

they allow for multiple solutions that can be adapted to several hazard chains and

reflect the hazard characteristics in terms of temporal occurrences and size. This al-

lows for modularization of a complex conditional intensity (e.g. with several param-

eters within a single function) into concatenated block functions. For example, the

earthquake/rainfall-landslides model proposed in Chapter 4 and revisited in Chapter

6. With this modularized approach it is possible to use marked point process: each

block function can carry a mark distribution function, which can be linked to the fol-

lowing functions, so that marks are interconnected between hazards. For instance, the

landslide volume is reflected on the landslide dam size and on the flood size. This

would increase the simulation speed and lessen the memory requirements. This result,

together with those obtained in the previous chapters, highlights that quantitative

models of multi-hazard analyses can not only be carried out, but also that they are

flexible to include and combine hazards with different characteristics. The examples

in Chapters 4 and 5 provide tools that can be built upon in new case studies on other

hazard chains and datasets. The possibility of improving computer simulations via the

use of point processes and the modularization approach made feasible by the potential

framework opens the possibility of multi-hazard estimation by point process simulation.
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“Landslides caused by the Mw7.8 Kaikōura earthquake and the immediate response,”

Bulletin of the New Zealand Society for Earthquake Engineering, 50, 106–116.

Delmonaco, G., Margottini, C., and Spizzichino, D. (2006), “New methodology for

multi-risk assessment and the harmonisation of different natural risk maps,” Tech.

rep., European Commission - Applied multi-risk mapping of natural hazards for

impact assessment.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society,

Series B, 39(1), 1–38.

Deng, D., Li, L., and Zhao, L. (2017), “Limit equilibrium method (LEM) of slope

stability and calculation of comprehensive factor of safety with double strength-

reduction technique,” Journal of Mountain Science, 14(11), 2311–2324.

Derek Tucker, J., Shand, L., and Lewis, J. (2019), “Handling missing data in self-

exciting point process models,” Spatial Statistics, 29, 160 – 176.

Diggle, P. (2003), Statistical Analysis of Spatial Point Patterns, Arnold.

D’Odorico, P. and Fagherazzi, S. (2003), “A probabilistic model of rainfall-triggered

shallow landslides in hollows: A long-term analysis,” Water Resources Research, 39

(9), 1–14.

Dong, J., Lai, P., Chang, C., Yang, S., Yeh, K., Liao, J., and Pan, Y. (2014), “Deriving

landslide dam geometry from remote sensing images for the rapid assessment of

critical parameters related to dam-breach hazards,” Landslides, 11(1), 93–105.

Dong, J.-J., Tung, Y.-H., Chen, C.-C., Liao, J.-J., and Pan, Y.-W. (2009), “Discrim-

inant analysis of the geomorphic characteristics and stability of landslide dams,”

Geomorphology, 110(3-4), 162–171.



BIBLIOGRAPHY 153

— (2011), “Logistic regression model for predicting the failure probability of a landslide

dam,” Engineering Geology, 117(1-2), 52–61.

Dı́az-Avalos, C., Juan, P., and Serra-Saurina, L. (2016), “Modeling fire size of wildfires

in Castellon (Spain), using spatiotemporal marked point processes,” Forest Ecology

and Management, 381, 360 – 369.

Ermini, L. and Casagli, N. (2003), “Prediction of the behaviour of landslide dams using

a geomorphological dimensionless index,” Earth Surface Processes and Landforms,

28(1), 31–47.

Errais, E., Giesecke, K., and Goldberg, L. (2010), “Affine point processes and portfolio

credit risk,” SIAM Journal on Financial Mathematics, 1(1), 642–665.

Esharti, L., Mahmoudzadeh, A., and Taghvaei, M. (2015), “Multi hazards risk assess-

ment, a new methodology,” International Journal of Health System and Disaster

Management, 3(2), 79–88.

Evans, S. and Hungr, O. (1993), “The assessment of rockfall hazard at the base of talus

slopes,” Canadian Geotechnical Journal, 30(4), 620–636.

Fan, X., Scaringi, G., Domènech, G., Yang, F., Guo, X., Dai, L., He, C., Xu, Q., and

Huang, R. (2019), “Two multi-temporal datasets that track the enhanced landsliding

after the 2008 Wenchuan earthquake,” Earth System Science Data, 11(1), 35–55.

Fan, X., van Westen, C., Xu, Q., Gorum, T., and Dai, F. (2012), “Analysis of landslide

dams induced by the 2008 Wenchuan earthquake,” Journal of Asian Earth Sciences,

57, 25 – 37.

Federico, A., Popescu, M., Elia, G., Fidelibus, C., Internò, G., and Murianni, A. (2012),
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