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Abstract

Background: Transmission of multidrug-resistant tuberculosis (MDRTB) requires spatial proximity between
infectious cases and susceptible persons. We assess activity space overlap among MDRTB cases and community
controls to identify potential areas of transmission.

Methods: We enrolled 35 MDRTB cases and 64 TB-free community controls in Lima, Peru. Cases were whole
genome sequenced and strain clustering was used as a proxy for transmission. GPS data were gathered from
participants over seven days. Kernel density estimation methods were used to construct activity spaces from GPS
locations and the utilization distribution overlap index (UDOI) was used to quantify activity space overlap.

Results: Activity spaces of controls (median = 35.6 km2, IQR = 25.1–54) were larger than cases (median = 21.3 km2,
IQR = 17.9–48.6) (P = 0.02). Activity space overlap was greatest among genetically clustered cases (mean UDOI =
0.63, sd = 0.67) and lowest between cases and controls (mean UDOI = 0.13, sd = 0.28). UDOI was positively
associated with genetic similarity of MDRTB strains between case pairs (P < 0.001). The odds of two cases being
genetically clustered increased by 22% per 0.10 increase in UDOI (OR = 1.22, CI = 1.09–1.36, P < 0.001).

Conclusions: Activity space overlap is associated with MDRTB clustering. MDRTB transmission may be occurring in
small, overlapping activity spaces in community settings. GPS studies may be useful in identifying new areas of
MDRTB transmission.
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Introduction
Tuberculosis (TB) is commonly transmitted outside of
the home in community-based settings during social
contact between infectious cases and susceptible com-
munity members [1, 2]. Prior studies have used ques-
tionnaires to identify epidemiologic links between
unrelated TB cases and have found spatial links between

cases in community settings [3–6]. Identifying spatial
areas of transmission is important for contact tracing and
infection control, as epidemiologic links between TB cases
are often unclear [7, 8]. Moreover, targeting infection con-
trol in geographic hotspots of TB transmission may re-
duce overall levels of community transmission [9].
Activity spaces are used in epidemiologic studies to

represent geographic spaces wherein people spend their
time during regular daily activities [10–12]. Past studies
of human activity spaces have relied predominantly on
place-tracing questionnaires to delineate activity spaces
[3–5, 13]. More recent approaches now leverage global
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positioning systems (GPS) [10, 14, 15]. The widespread
availability of GPS technology has facilitated fine scale
study of human movement patterns and are less prone
to recall and measurement errors common in retrospect-
ive place-tracing interviews [16–19].
The goal of this study was to compare the activity

spaces of multidrug resistant tuberculosis (MDRTB)
cases and healthy (TB-free) community controls, identify
areas of activity space overlap among clustered cases to
identify areas of potential transmission, and to quantify
the association between activity space overlap and gen-
etic clustering of MDR Mycobacterium tuberculosis
(Mtb) strains.

Methods
Study design and setting
Study participants were recruited from the areas of Cal-
lao and Lima Sur located to the north and south of
Lima, Peru, respectively. These two regions report the
greatest proportion of incident MDRTB cases in Peru
[20]. Callao has an area of 147 km2 with nearly all one
million residents living in urban areas. Lima Sur encom-
passes 11 districts with a total area of 852 km2 and 1.5
million residents.
Between February 2016 and May 2017, patients were

recruited from a completed parent study that enrolled a
household-based cohort of MDRTB patients between
2010 and 2013 [21]. Sputum samples from cases were
taken at diagnosis and processed on liquid microscopic
observation drug susceptibility assays (MODS) and solid
Ogawa media. Aliquots of positive sputum samples were
reserved for DNA extraction and genotyping via whole
genome sequencing [22]. The single nucleotide poly-
morphism (SNP) calling analysis was performed on an
Illumina HiSeq2000 with paired-end reads of length of
100 bp [23]. A pairwise matrix of MDRTB cases and the
number of single nucleotide polymorphism (SNP) differ-
ences in their Mtb strains was assembled; cases with
Mtb strains within ≤5 SNP differences were considered
genetically clustered [24]. This threshold was our work-
ing definition for MDRTB transmission. Exclusion cri-
teria included genetically clustered pairs from the same
household. Where a case was genetically clustered to
multiple cases from the same household, only one mem-
ber of that household was enrolled.
We enrolled community controls, who verbally con-

firmed that they had never received TB treatment or
diagnosis, as a comparison sample. Controls included
community health workers and nurses that worked at
community health posts serving case neighborhoods.
Additional controls were referred by community health
workers and sourced from churches, restaurants, com-
munal kitchens and education centers located in case
neighborhoods. Controls were frequency matched to

cases on age (± 5 years), sex (male/female) and study re-
gion (Callao/Lima Sur) to ensure comparability across
these variables.
Informed consent was obtained from participants prior

to data collection. The study protocol, consent forms
and data collection instruments were reviewed and ap-
proved by the Institutional Committee of Ethics for
Humans at La Universidad Peruana Cayetano Heredia.

Data sources and measurements
Questionnaires were used to collect demographic infor-
mation from participants during face-to-face interviews.
We used Qstarz BT-Q1000XT (Qstarz International,
Taipei, Taiwan) GPS loggers to gather data on partici-
pant’s movements over seven days of observation. The
units were configured to log participant’s locations (i.e.,
geocoordinates) every minute. Consenting participants
were given a GPS logger and instructed to keep the log-
ger powered on, carried with them at all times, and
recharged nightly. Study nurses called participants every
other day during the 7-day data collection period to re-
mind them to carry GPS loggers.

Constructing activity spaces
Spatial ecologists have developed a suite of methods to
study movement patterns of wildlife using GPS technol-
ogy to delineate areas of regular space use called ‘home
ranges’ and are analogous to activity spaces in human
research [25]. These methods account for non-uniform
space use by representing home ranges (i.e., activity
spaces) as spatial probability density functions of space
use called utilization distributions (UD) [26]. Instead of
assuming space-use is uniform across an activity space,
UDs highlight areas of concentrated activity with prob-
ability contours and are better representations of space
use. In this study, we use home ranges to represent par-
ticipant activity spaces.
Kernel density estimation (KDE) was used to construct

participant activity spaces [25, 27]. We used iterative vi-
sualizations of GPS kernel densities generated with a
Gaussian kernel and bandwidths between 100 m and
1200 m to identify UDs that provided adequate smooth-
ing of raw GPS locations while highlighting distinct
“peaks” of areas where locations were concentrated. The
final chosen bandwidth was 950 m.
Home range (i.e., activity space) sizes were estimated

at 50, 95 and 99% contours of each participant’s UD.
These percentages correspond to the smallest home
range area encompassing 50, 95 and 99% of a partici-
pant’s GPS locations. The 95% contour is the standard
used in home range studies, while the 50% contour is
considered the “core area” of activity [28, 29]. The 99%
contour is the most inclusive contour, containing areas
of sparse activity.
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Measuring spatial overlap
After estimating the UDs to represent each participant’s
activity space, we calculated the utilization distribution
overlap index (UDOI) to quantify the amount of activity
space spatial overlap between participants [26]. The
UDOI is estimated as the cumulative sum of the cell-by-
cell product of two participant UDs multiplied by the
intersecting area (i.e., product of two UDs) [26, 28]. The
UDOI of two participants is high when their GPS loca-
tions are concentrated within the same space [26]. The
UDOI ranges from 0 (no spatial overlap) to 1 (complete
spatial overlap) and can take on values > 1 if the UDs
are non-uniformly distributed and have a high degree of
overlap. We estimated the UDOI’s at each home range
contour level (50, 95, and 99%) to examine the magni-
tude of association between MDRTB transmission and
activity space overlap. We created UDs for each partici-
pant and estimated the UDOIs for all pairs of partici-
pants using the ‘adehabitatHR’ package [30] in R
(version 3.6.1, The R Foundation).

Statistical analyses
T-tests, Wilcoxon rank sum tests (when appropriate),
and chi-squared tests were used to compare cases and
controls by demographics, home range size and mean
UDOI.
We compared the mean pairwise UDOI of cases and

controls to determine the degree of spatial overlap
within and between groups. The mean UDOI of case
dyads (i.e., case-case pairs), control dyads (i.e., control-
control pairs), and case and control dyads (i.e., case-
control pairs) were evaluated. Bonferroni adjusted P-
values were reported to account for multiple
comparisons.
We used logistic regression to estimate the odds of be-

ing genetically clustered as a function of spatial overlap
(among cases). Linear regression was used to assess the
relationship between the UDOI of case pairs and degree
of genetic strain similarity (i.e., SNP differences). SNP
difference values were log (base 10) transformed and
logit transformed UDOI values were used to meet nor-
mality assumptions for modelling.

Results
Comparing cases and controls
A total of 99 participants were enrolled, including 35
MDRTB cases (35%) and 64 healthy community controls
(65%). Only 35 participants of the original study could
be contacted and consented, as the majority were no
longer contactable, had moved house or had died. Six-
teen (46%) cases were genetically clustered with match-
ing Mycobacterium tuberculosis (Mtb) strains (within ≤5
SNPs). Frequency matching between cases and controls
was achieved by region, age and sex (Table 1). The

median age, gender and regional distribution of partici-
pants in both case and control groups were comparable,
though not found to be statistically significant. Partici-
pants in both groups had similar levels of employment,
but participants in the case group generally had a lower
level of educational attainment compared to controls
(31.4% vs 6.3% had primary education or less). The case
group had a lower monthly income compared to the
control group (77.1% vs 20.3% earned less than 1000
PEN/month). The differences in education and income
were statistically supported. The sublineages of Mtb
strains included in our study cohort were compared with
those from the parent study population (Table S1).
There was a similar distribution of sublineages repre-
sented between the two studies.
A median of 8253 GPS locations (IQR 5634-9828)

were collected per participant, representing about 138 h
of data (IQR 94–164) per participant. A median of 7756
GPS locations (IQR 4813-9493), equivalent to 129 h
(IQR 80–158), were collected for cases and a median of
8364 GPS locations (IQR 6766-9887), equivalent to 139
h (IQR 113–165), were collected for controls. There
were, however, no statistically significant differences in
the amount of GPS locations collected between cases
and controls.

Home ranges of cases and controls
The aggregated 50 and 95% home ranges of all cases in
Callao and Lima Sur are shown in Fig. 1.
In Callao, the 50% home range of cases were located

on either side of Jorge Chávez International Airport in
high traffic corridors and densely populated neighbor-
hoods; another 50% core was located in a densely com-
mercial area of Ventanilla. In Lima Sur, there was one
50% home range core located in the district of Villa
Maria Del Triunfo. Case home ranges were significantly
smaller than control home ranges at all contour levels
(Table 1).

Spatial overlap between cases and controls
Table 2 summarizes the mean UDOI by dyad type (i.e.,
pairs of participant types) at the 95% home range con-
tour. Mean UDOI was greatest among clustered case
dyads (mean = 0.29, sd = 0.55) in all regions whereas
mean UDOI was lowest among non-clustered cases
(mean = 0.05, sd = 0.20) (P < 0.01). Mean UDOI was
higher among controls (mean = 0.14, sd = 0.36) than
among cases (mean = 0.06, sd = 0.22) (P < 0.001). Figure 2
provides three illustrative examples of low, medium and
high UDOI values for three dyads of cases. There was a
high proportion of non-overlapping dyads (between 35
to 47% of possible dyads that did not have overlapping
activity spaces). As a sensitivity analysis, we analyzed the
mean UDOI of dyad types with only overlapping dyads
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Table 1 Summary of study participants and comparison of multidrug resistant tuberculosis (MDRTB) cases and TB-free community
controls enrolled in this study

Cases (N = 35) Controls (N = 64) Total (N = 99) P-Value

Age (years), mean (sd) 34.9 (15.0) 35.5 (14.4) 35.3 (14.5) 0.86

Female, n (%) 16 (45.7) 25 (39.1) 41 (41.4) 0.52

Study Region, n (%) 0.68

Callao 16 (45.7) 32 (50) 48 (48.5)

Lima Sur 19 (54.3) 32 (50) 51 (51.5)

Employed, n (%) 24 (68.6) 47 (73.4) 71 (71.7) 0.52

Primary Education or Less, n (%) 11 (31.4) 4 (6.3) 15 (15.2) 0.001

Income < 1000 PEN/month*, n (%) 27 (77.1) 13 (20.3) 40 (40.4) < 0.001

GPS Data, median (IQR)

GPS relocations (thousands) 7.8 (4.7–9.5) 8.4 (6.6–9.9) 8.3 (5.6–9.8) 0.13

Hours of Tracking (hundreds) 1.3 (0.8–1.6) 1.4 (1.1–1.6) 1.4 (0.9–1.6) 0.13

Home Range Size (km2), median (IQR)

50% Home Range Contour 4.3 (4.0–7.0) 5.3 (4.4–7) 5.0 (4.2–7.0) 0.02

95% Home Range Contour 21.3 (17.9–48.6) 35.6 (25.1–54) 32.3 (19.8–53.5) 0.02

99% Home Range Contour 49.4 (28–94.3) 72.5 (45.7–127.8) 64.7 (35–113.3) 0.05

* PEN = Peruvian Nuevo Sol

Fig. 1 District maps of Lima, Peru illustrating home ranges in Callao and Lima Sur. a home ranges of all MDRTB cases in Callao and b) home
ranges of all MDRTB cases in Lima Sur. The 50% home range contours are drawn with a thick solid border and 95% home range contours are
drawn with a dashed line

Bui et al. BMC Infectious Diseases          (2021) 21:275 Page 4 of 10



Table 2 Comparison of mean 95% utilization distribution overlap index (UDOI) values by dyad type and study regions (Callao and
Lima Sur)

Dyad Type N Dyads No Overlap,
n (%)

Overlap,
n (%)

All Dyads
95% UDOI,
mean (sd)

Overlapping Dyads Only
95% UDOI,
mean (sd)

Both Regions

Both Cases 595 385 (64.7) 210 (35.3) 0.06 (0.22) 0.17 (0.34)

Both Controls 2016 1089 (54.0) 927 (46.0) 0.14 (0.36) 0.31 (0.47)

Case-Control 2240 1311 (58.5) 929 (41.5) 0.06 (0.19) 0.13 (0.28)

Clustered 15 8 (53.3) 7 (46.7) 0.29 (0.55) 0.63 (0.67)

Not Clustered 580 377 (65.0) 203 (35.0) 0.05 (0.20) 0.15 (0.31)

Callao Only

Both Cases 120 68 (56.7) 52 (43.33) 0.12 (0.33) 0.29 (0.45)

Both Controls 496 126 (25.4) 370 (74.6) 0.29 (0.43) 0.39 (0.46)

Case-Control 512 232 (45.3) 280 (54.69) 0.09 (0.23) 0.16 (0.29)

Clustered 4 2 (50.0) 2 (50) 0.63 (0.81) 1.26 (0.63)

Not Clustered 116 66 (56.9) 50 (43.1) 0.11 (0.29) 0.25 (0.40)

Lima Sur Only

Both Cases 171 36 (21.1) 135 (78.9) 0.12 (0.27) 0.15 (0.30)

Both Controls 496 34 (6.9) 462 (93.2) 0.3 (0.49) 0.32 (0.50)

Case-Control 608 79 (13.0) 529 (87.0) 0.13 (0.28) 0.14 (0.30)

Clustered 7 2 (28.6) 5 (71.4) 0.27 (0.48) 0.38 (0.55)

Not Clustered 164 34 (20.7) 130 (79.3) 0.11 (0.26) 0.14 (0.29)

Fig. 2 Three examples of home ranges with differing 95% home range overlaps. Low (Panel a), moderate (Panel b) and high (Panel c) 95% home
range overlaps measured by their utilization distribution overlap index (UDOI). The small circles are GPS relocation trails and the larger outlines
are the 95% home ranges of each case. The blue and red coloring are used to differentiate the two cases. Map outline is of districts in Lima.
Panel a shows two (non-clustered) cases with very low overlap (UDOI< 0.01); Panel b shows two (non-clustered) cases with moderate overlap
(UDOI = 0.63) and Panel c shows two (clustered) cases with very high overlap (UDOI> 1.0)

Bui et al. BMC Infectious Diseases          (2021) 21:275 Page 5 of 10



and found that mean UDOI increased across all dyad
types, but there was no change in inferences (Table 2).

Association between spatial overlap and genetic
clustering
There was a statistically significant positive association
between the UDOI of cases and genetic clustering (i.e. be-
ing part of a recent transmission chain). At the 95% con-
tour, the odds of two cases being clustered increased by
22% per 0.10 increase in their shared UDOI (OR = 1.22,
CI = 1.09–1.36, P < 0.001). The effect was larger at the
50% contour where the odds of two cases being clustered
was increased by four-fold for every 0.10 increase in UDOI
(OR = 4.25, CI = 1.85–9.73, P = 0.001) (Table 3).
There was a statistically significant association be-

tween spatial overlap and Mtb genetic similarity (i.e.,
SNP differences) among cases (Fig. 3a and b). At the
95% home range contour, for every log increase in the
number of SNP difference, there was a 2.6-unit reduc-
tion in the logit transformed UDOI (coef = − 2.6, CI = -
3.8–1.4, P < 0.001) or approximately 0.0025 reduction in
UDOI (Table 3). In other words, as genetic similarity of
two Mtb strains increased, their level of home range
overlap increased.
Since there was a large proportion of non-overlapping

dyads that might have influenced the negative associ-
ation between SNP difference and UDOI, we conducted
a sensitivity analysis excluding non-overlapping dyads
and found the association between Mtb genetic dissimi-
larity and UDOI of two cases attenuated but was still
statistically significant (Fig. 3c and d). During post-hoc
review, we found one clustered dyad of related family
members, resulting in a very high UDOI that may be
considered an outlier. After excluding this dyad from
analysis, the mean UDOI of clustered cases was reduced,
but remained greater than all other dyad pairs (Table
S2). The association between the genetic similarity of
two Mtb strains and UDOI was slightly attenuated, but
remained statistically significant at all home range levels
(Table S3).

Discussion
In this study, we compared the activity spaces of
MDRTB cases to healthy community controls. We found
that cases had significantly smaller activity spaces than
controls, that the activity space overlap was greatest
among genetically clustered cases, and that there was a
statistically significant association between activity space
overlap and Mtb strain genetic similarity. These findings
suggest that MDRTB contact, exposure and transmission
may be occurring among cases in relatively small, over-
lapping activity spaces in community settings.
The demonstration of high overlap amongst genetic-

ally clustered cases and lower overlap between cases and
controls in the dyad analysis suggests that spatial segre-
gation between the groups may be occurring, as found
in a previous study [31]. Spatial segregation of MDRTB
cases may support the use of spatially targeted screening
interventions to improve local control and indirectly re-
duce MDRTB prevalence [32]. The high spatial overlap
among cases may explain why spatial clustering of
MDRTB genotypes has been previously found in local-
ized hotspots in Lima [2]. The association between Mtb
genetic similarity and spatial overlap was observed at all
home range contours but was particularly pronounced
at the smaller 50% home range contour (median of
5km2), suggesting that transmission of MDRTB may be
occurring at very local levels near case residences. Yang
et al. found that genetic similarity of Mtb strains of
MDRTB case pairs in China increased as their residen-
tial proximity increased [33]. A phenomenon of MDRTB
spillover from a prison in Lima to the surrounding
population was demonstrated by Warren et al. and pro-
poses a mechanism whereby local transmission may be
occurring in the community [34]. Moreover, as clustered
cases tended to have substantially smaller activity spaces
than non-clustered cases, this suggests that movement
and spatial overlap in small geographic hotspots may be
driving MDRTB transmission in this population. Focus-
ing infection control in those areas of high overlap may
reduce MDRTB transmission and result in community-
wide benefits as suggested by Dowdy et al. [9]. It is

Table 3 Association between genetic similarity of Mycobacterium strains of two case pairs (measured in number of different single
nucleotide polymorphisms (SNP) and their utilization distribution overlap index (UDOI)

Linear regression of Log (SNP difference) on logit (UDOI). Coef. 95%CI P

50% UDOI −0.87 −1.35 −0.40 < 0.001

95% UDOI −2.59 −3.80 −1.37 < 0.001

99% UDOI −3.57 −5.00 −2.14 < 0.001

Odds of being in a clustered dyad vs. a non-clustered dyad by UDOI. OR 95%CI P

50% UDOI 4.25 1.85 9.73 0.001

95% UDOI 1.22 1.09 1.36 < 0.001

99% UDOI 1.10 1.04 1.16 0.001
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important to recognize, however, that drivers of trans-
mission hotspots are likely to vary between rural and
urban environments. Nelson et al. demonstrated that
transmission of extensively drug resistant TB (XDRTB)
was likely occurring far away from cases’ residences in
rural South Africa. The authors suggest that cyclical
rural-to-urban migration for work was an important
determinant of transmission (Nelson et al. 2018). Shift
of XDRTB transmission towards workplaces in urban
centers in Durban was also highlighted by Peterson
et al. [13].
To date, studies investigating transmission sites for TB

have relied on questionnaires about frequented locations
[6], which generally underestimate spatial mobility and
are subject to information bias [16, 18]. This study uses
GPS tracking to obtain objective spatial information on
participants and does not rely on participants’ recall. Ac-
tivity spaces of individuals, calculated using GPS logging
data, were shown to be larger than those derived from
geotagging venues reported in questionnaires [35].
Moreover, place-tracing questionnaires often focus only

on community venues and do not take into account
routes travelled between them [35]. This suggests that
GPS methods are superior in acquiring a greater amount
of spatial information. This methodology is easily repro-
ducible and demonstrates the utility of GPS tracking in
combination with whole genome sequencing to identify
potential transmission sites.
There are several limitations to our study that should

be noted. Firstly, it is likely that selection bias was intro-
duced through our non-random selection of controls. As
this was an exploratory study, our sample of controls
were convenience-based and were often health workers
or their family and friends. As a result, they generally
had a higher level of education and income and were
not necessarily representative of the general population.
Moreover, given the higher socioeconomic status (SES)
of controls, it is likely that controls did not live in the
same neighborhoods nor frequent the same shops and
venues that cases did, which may have resulted in the
observed low UDOI between case and control dyads
(but the relatively higher UDOI among control-dyads).

Fig. 3 Two-way scatter plots and linear regression predictions of 95% UDOI and SNP difference. a Two-way scatter plot of 95% UDOI and SNP
difference between case pairs, and b) linear regression prediction of 95% UDOI and SNP difference with confidence interval. There is a statistically
significant negative association between UDOI and SNP difference (Coef = − 2.59, P < 0.001). Note UDOI is logit transformed to reduce variable
skew for regression modelling. Panel c and d exclude case pairs with no overlap
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We attempted to address this source of bias through
matching controls by age, sex and study region, but this
was not sufficient to control for confounding caused by
SES. Our healthy controls were also recruited on the
basis that they had never been treated or diagnosed with
previous TB. However, this was not confirmed by med-
ical records and may represent another potential source
of bias. Our analysis of genetic clusters relied on a SNP
difference threshold to determine which cases were gen-
etically clustered, representative of recent transmission
[24]. While a small SNP difference between two M. tu-
berculosis strains is generally regarded as evidence of
transmission, the appropriate clustering threshold de-
pends on the environment and setting [36]. While GPS
monitoring is considered to be more precise than struc-
tured interviews at identifying activity locations, GPS lo-
cations alone do not provide context for locations (i.e.,
types of places or reasons for visiting areas) that inter-
views could elicit; combining the two forms of data
collection is preferable [15, 16]. On average, study par-
ticipants provided slightly less than seven days of GPS
location data, so these movement patterns might not be
representative of typical activity. However, prior studies
have found that human movement patterns tend to be
regular and stable, particularly in urban settings where
routines are structured and people tend to spend signifi-
cant amounts of time in few, regularly visited locations
[18, 25, 37].
The small sample size was another limitation to the

study. This was mainly due to the large numbers of po-
tential participants who had moved or had unfortunately
died. The findings of this study can therefore only be
regarded as exploratory in nature.
A larger prospective study with a bigger sample size

would be useful to confirm our findings and determine
whether the differences between cases and controls, in
terms of activity space size and overlap likelihood at all
activity space contour sizes, are statistically meaningful.
Potential sources of bias could be reduced through the
recruitment of confirmed TB-free controls from cases’
neighbourhoods. A detailed investigation into commu-
nity venues within overlapping activity spaces of
genetically-clustered participants is essential to isolate
specific areas where transmission is occurring. Add-
itionally, follow-up questionnaires conducted alongside
GPS telemetry would be useful to characterise the con-
text of visits to community venues. Data collection
could be made simpler and more effective by using al-
ternative sources of GPS data, such as Google maps lo-
cation history on participants’ smartphones. Data on
the movement patterns of TB patients during the
period of transmission itself may provide greater insight
into specific locations where transmission may have
occurred.

Conclusion
In Lima, Peru, activity space overlap is associated with
genetic clustering of MDRTB cases and case activity
spaces are relatively small. Case finding activities should
focus on areas within 5 km of case residences which is
the core area of movement for cases and where commu-
nity transmission may be most likely.
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