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Nature has revealed an astounding degree of phylogenetic and physiological diversity in
natural environments — especially in the microbial world. Microbial communities are
incredibly diverse, ranging from 500-1000 species in human guts to over 10% species in
marine ecosystems. Historically, theoretical ecologists have devoted considerable effort
to analyzing ecosystems consisting of a few species. However, analytical approaches and
theoretical insights derived from small ecosystems consisting of a few species may not
scale up to diverse ecosystems. Understanding such large complex ecosystems poses
fundamental challenges to current theories and analytical approaches for modeling and
understanding the microbial world. One promising approach for tackling this challenge
that I develop in my thesis is to adapt and expand ideas from statistical mechanics to
theoretical ecology. Statistical mechanics has helped us to understand how collective
behaviors emerge from the interaction of many individual components. In this thesis, I
present a unified theoretical framework for understanding complex ecosystems based on
statistical mechanics, random matrix theories and convex optimization. My thesis work

has three key aspects: modeling, simulations, and theories.

Modeling: Classical ecological models often focus on predator-prey relationships. How-
ever, this is not the norm in the microbial world. Unlike most macroscopic organisms,
microbes relie on consuming and producing small organic molecules for energy and re-
production. In this thesis, we develop a new Microbial Consumer Resource Model that
take into account these types of metabolic cross-feeding interactions. We demonstrate
that this model can qualitatively reproduce and explain statistical patterns observed
in large survey data, including Earth Microbiome Project and the Human Microbiome

Project.

Simulations: Computational simulations are essential in theoretical ecology. Complex
ecological models often involve ordinary differential equations(ODE) containing hun-
dreds to thousands of interacting variables. Typical ODE solvers are based on numerical
integration methods, which are both time and resource intensive. To overcome this bot-
tleneck, we derived a surprising duality between constrained convex optimization and
generalized consumer-resource models describing ecological dynamics. This allows us to
develop a fast algorithm to solve the steady state of complex ecological models. This
improves computational performance by between 2-3 orders of magnitude compared to

direct numerical integration of the corresponding ODEs.
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Theories: Few theoretical approaches allow for the analytic study of communities con-
taining a large number of species. Recently, there has been considerable interest in the
idea that ecosystems can be thought of as a type of disordered systems. This mapping
suggests that understanding community coexistence patterns is actually a problem in
“spin glass” physics. This has motivated physicists to use insights from spin glass theory
to uncover the universal features of complex ecosystems. In this thesis, I use and extend
the cavity method, originally developed in spin glass theories, to answer fundamental
ecological questions regarding the stability, diversity, and robustness of ecosystems. I
use the cavity method to derive new species backing bounds and uncover novel phase

transitions to typicality.



“The way was long, and wrapped in gloom did seem,

As I urged on to seek my vanished dream.”

Qu Yuan
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Chapter 1

Introduction to mathematical

models in ecology

1.1 Background

One of the most stunning aspects of the natural world is the variety of life present in most
environments. Ecosystems consisting of many species can exhibit numerous fascinating
large-scale, collective phenomenons and perform critical functions in cycling of matter
and energy on earth. This serves as major motivation for studying the general principles

governing complex ecosystems.

Historically, theoretical ecologists have devoted considerable effort to analyzing ecosys-
tems consisting of a few species. This was largely due to experimental limitations stem-
ming from the difficulty of collecting large-scale ecological data. Even though the ab-
solute number of a specific species in an ecosystems can be huge, individuals are often
distributes sparsely over a large wild area making it inefficient to monitor multiple species
with field surveys. Temporally, the breeding-cycle of experimental mammals and plants
is often months or years, making it time-consuming it difficult to perform controlled

experiments.

In contrast, microbial communities do not suffer from many of these technical limita-
tions. Microbial community surveys using RNA sequencing technology have revealed
an astounding degree of phylogenetic and physiological diversity. Species diversity es-
timates range from 500-1000 species in human guts [HGK*12b] to over 10% species in
marine ecosystems [SCCT15]. Spatially, millions of bacterias can survive on a single
dish. Temporally, the cell division circle is around an hour. Furthermore, growth condi-

tions can be manipulated easily by choosing different temperatures, nutrients supplies,



Chapter 1. Mathematical Models in Ecology 2

and species pools. This makes microbial ecosystems an ideal experimental framework

for studying complex ecosystems.

Microorganisms can be identified using a gene region in the ribosome (16S rRNA), mak-
ing it possible to measure the relative abundance of microbes in a community using
DNA sequencing [CLW*11, SWGV14]. Numerous microbial datasets have been gener-
ated with high resolution across numerous communities. However, understanding such
the large amounts of data being generated by sequencing experiments presents some

daunting challenges to current theories and analytical approaches in theoretical ecology.

1.2 Mathematical modeling in ecology

Mathematical models are necessary to understand ecological data quantitatively. In

general, there are four classes of variables appearing in most ecological models:

1. species populations, which are also direct observables in the data,

2. interaction variables, describing how species interact with other species or envi-

ronments,

3. species or environment variables, such as the species’ birth, death rate, and envi-

ronmental resource supply rate,

4. dynamical variables, such as time and space.

In this thesis, we do not consider spatial processes and restrict ourselves to well-mixed
populations. We also focus primarily of the steady-state dynamics of these models. For
these reasons, the models presented in this thesis are restricted to the first three classes

of variables discussed above.

1.2.1 Neutral theory and niche theory

There are two popular theories in ecology: niche theories that emphasize selection and
species differences and neutral theory that emphasizes stochasticity and treats all species
as identical. Both of these theories are commonly used to explain observed species
coexistence patterns. We view these two perspectives as complementary rather than

conflicting.

Neutral theory is inspired from the analogous theory in population genetics. In ecol-

ogy, neutral theory deals with species within a the same trophic level, i.e., all species
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FIGURE 1.1: Schematic of Lotka—Volterra model

occupy the same niche and do not interact with each other and emphasizes the effect of
stochastic drift and and migration on coexistence patterns. Stochastic processes are used
extensively here. Let N = (N7, N, N3 ... Ng) be a species abundance of an ecosystem
with S species. Let P(N,t) be the probability of the state N at time ¢. Assuming that
the stochastic dynamics are Markovian, the time evolution of P(IN,¢) can be expressed

as a master equation:

dP(N, 1)

o = 2T P(N', 1) = Tow P(N, 1)) (1.1)

N/
where Tyne and TN are the transition matrices. The behaviors of neutral theory can

be investigated by studying mathematical properties of equation 1.1.

In contrast, niche theory is based on niche differentiation resulting from competing
among species at the same trophic level. A fundamental result in niche theory is the
competitive exclusion principle: each niche can only be occupied by at most one species.
Niche theories mostly deal with purely deterministic processes, neglecting the stochastic
effects emphasized in neutral theories. In niche theories, species interact with other

species and the environments through fixed deterministic rules.

In this thesis I focus on the interactions between species and resources, i.e., niche theory,

and refer readers interested in neutral theory to [ASGT16].
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1.2.2 Lotka—Volterra model

The Lotka Volterra model describes the a model where species directly interact with
each other (see Figure. 1.1). For an ecosystem with S species, the abundance Nj; of

species 7 is described by the ordinary differential equation

dN;

W:Ni(rifZAiij), i=1,2,...5 (1.2)

i#]
where 7; is its intrinsic growth rate, and A;; measures the interaction strength between
population 7 and j. The factor IV; appearing outside the bracket ensures that when
the species invade a new environment (i.e., all N; < 1), they grow exponentially and
that species abundances N; never become negative. The second term in the bracket
can be though of as the effective growth rate of species i. Notice that the presence of
other species modifies the effective growth rate of species 4, lowering it for competitive

interactions (A;; > 0) and raising it for a synergistic interaction (4;; < 0).

From the physicist’s perspective, we can analyze the Lotka—Volterra dynamics in terms
of the first-order expansion near a stable fixed point, assuming such a fixed point exists.

If the species’ growth rate follows a general dynamics:

dN;
dt

= Nigi(N), (1.3)
we can expand the growth rate g; to the first order around a fix point N* to get

dN;
dt

=N; |gi(N) + > 5]‘(\2 (Nj — NY) + O((N; — N})?) (1.4)
i

Relating equation 1.2 to equation 1.4 yields

0Gi \ru 9gi
N} Aij = —6Nj.

r, = gz(N*) — 6N jo
j J

Lotka—Volterra models can exhibit rich dynamical behaviors, even for a small ecosystem

(see Figure 1.2). Let’s consider an ecosystem consisting of two species,

Y4 — Ny(ry - A — AN) (L6

M2 = Ny(ry — Ap1 Ny — AgoN»)

By solving dc% =0 and % = 0, the steady state abundances can be written as

Aqirg — Agrry
T A Agy — AnnArz |

Agory — Aqaro
" A11Age — Ag1 Ara

Nl = Max (0 :| s NQ = Max |:0 (17)
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FicUre 1.2: Different phases of Lotka-Volterra systems

However, such as steady-state may not exist or be stable. A trivial example of this if
Ajj = 0 are zero and r; is positive. In this case, the species abundance grows exponen-
tially and will go to infinity after a long time. These equations can also exhibit periodic
oscillation similar to harmonic motion. We can perturb equation around its fix point

and only keep the linear terms [Mur07],

el _3 N, Jo_ NiAnn NiAg (1.8)
LI Ny ) NaAg NyAg .

where §N; = N; — N;". If the eigenvalues of J are purely imaginary, we can expect the

solutions in the neighborhood of the fixed point (N7, N3) are periodic. We will return
to these ideas when we analyze Lotka—Volterra models using methods from statistical

physics in the limit where the number of species S becomes large.

1.2.3 MacArthur’s consumer resource model

We now introduce another commonly used ecological model, MacArthur’s consumer re-
source model (MCRM). In contrast to Lotka—Volterra model, the MCRM has no direct
species-species interactions. Instead, species consume resources present in the ecosys-
tem [ML67a] and species-species interactions emerge indirectly through competition for
common resources. As shown in Figure 1.3, the MacArthur Consumer Resource Model
consists of S species or consumers with abundances N; (i = 1...5) that can consume
one of M substitutable resources with abundances R, (o = 1...M), whose dynamics are

described by the equations

dN;
7 = NZ(Z CigRg — m;)

. A (1.9)
= Ra(Ko — Ra) — %:NjCjQRa.
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FIGURE 1.3: Schematic of MacArthur’s consumer resource model

The consumption rate of species ¢ for resource « is encoded by the entry Cj, in the
S x M consumer preference matrix C, K, is the carrying capacity of resource a, and m;
is maintenance energy that encodes the minimum amount of energy that a species 4 must
harvest from the environment in order to survive. R,(K, — R, ) is the resource supply
dynamics, taken to be logistic growth in the original MCRM. In Chapter 6, we will

discuss other forms of resource dynamics and how it affects the community properties.

When the system is in the steady state, some species and resources can vanish. We
denote the numbers of surviving species and resources by S* and M?*, respectively, and
in general, at steady state we will have S* < M*. From an ecological view, we can
interpret different types of resources as different niches. For M resources, at most, there

exist M niches, resulting in M surviving species.

The Lotka-Volterra model can be derived from the MacArthur’s consumer-resource
model by assuming resource dynamics are much faster than species dynamics. Solving
for the steady-state values of the non-extinct resources by setting the bottom equation
in (1.9) equal to zero gives:
Ry =Ko —Y NiCia (1.10)
i

Substituting this into the top equation in (1.9) gives:

dN;
dtl =N; E Cia Ko —mi — E AijNj (1.11)
aceM* J

where we have defined an interaction matrix A;; = Y, o C_'ngj and M* is the set of

surviving resources. We can use this equation to solve for the steady-state (equilibrium)



Chapter 1. Mathematical Models in Ecology 7

abundances of non-extinct species, and arrive at the expression:

Ni=Y " AG(Y " CiaKa—my)

jES* aceM*

where S* is the set of surviving species. In terms of Nj, the Lotka-Volterra equations

become:

= = =N; > Ay(N; = Ny) (1.12)

In the future chapters, we will repeatedly return to variations of equation 1.9 and in-
vestigate its mathematical properties and ecological predictions for different ecological

assumptions.

1.3 Mathematical modeling of microbial ecosystems

Microbial communities appear at every corner of our planet, from our own nutrient-rich
guts to the remote depths of the ocean floor. The functional structure of these commu-
nities is highly variable, with functional traits often reflecting the environment in which
the communities are found [TSM*17, HGK"12a]. A central goal of microbial commu-
nity ecology is to understand how the effects of environments on diversity, stability, and
functional structure [WAP*16]. And thus, it is important to build mathematical models

to understand the mechanisms behind experimental phenomena.

However, the classical ecological models, based on niche competition, do not suit mi-
crobial communities. MacArthur’s consumer resource model focuses on competition for
resources. While it is true that bacteria compete for nutrients, they also often produce
new resources in the form of metabolic byproducts. For this reason, the role of microbes
is not limited to being a consumer, but also “producer” [GLB*18, HRD*14, ZS16]. The
small molecules bacteria produce during metabolism always leak out into the environ-
ment and provide nutrients for other species. Crossfeeding helps change environments
and shape species composition. In this thesis, we show that this little difference is one
of the essential distinctions between classical and microbial ecology and can lead to

dramatically different large-scale ecological properties.

1.3.1 Microbial consumer resource Model

Our starting point is to extend MacArthur’s Consumer Resource Model to include cross-

feeding interaction by considering the energy flux, the exchange, and consumption of
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(A) (B) Consumption of resource

@ external resource
O metabolic byproduct

o x W o

Consumer matrix Metabolic matrix

FIGURE 1.4: Schematic of (A) microbe-mediated energy fluxes in Microbial Consumer
Resource Model; (B) Consumption of resource and metabolite exchange; (C) consumer
matrix; (D) metabolic matrix. Made by Robert Marsland III in [MCM20]

metabolites (see Figure 1.4).

Just like in the original MacArthur’s consumer resource model, the rate at which species
1 harvests energy from resource o depends on the resource concentration R, and species’

consumer preferences Cj,. This is encoded in the input flux
JN = CioRy. (1.13)

A core assumption of our model is that a species can not fully utilize the whole in-
put energetic flux and releases some this energy back into the environment as leaked
byproducts. We assume that a fraction (< 1) of the input energy J;g returns to the

environment so that the power available to the cell for sustaining growth is

JEY =3 (1= 1a)Jih. (1.14)

[e%
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The time-evolution of the species abundance N; can be described with the equation

dN;
dt

N; (JF —my) (1.15)

where m; is the maintenance cost for species 7.

The leaked energy flux Jo" =" laJ}E from each cell of species i is partitioned among
the M possible resource types via the biochemical pathways operating within the cell.
We assume that all species share the same metabolism, encoded in a transformation
matrix Dg,. Each element of Dg, specifies the fraction of leaked energy from resource
« that is released in the form of resource 8. To enforce energy conservation, we have

> 5 Dpa = 1. Thus, the outgoing energy flux contained in metabolite 8 is given by
I =" Dgaladip. (1.16)
(e}

The resouce dynamics depends on the incoming and outgoing energy fluxes through the

equations

dR,
dt

= ho(Ra) + Y Nj(Jout = Ji), (1.17)
J

where hq (R, ) is the resources dynamics in the absence of any microbes. In MacArthur’s
consumer resource model, h, = Ry (Ko — Ry) is assumed to be logistic. While such
resource dynamics is reasonable for biotic resources, abiotic resources, such as minerals
and small molecules cannot self-replicate and are usually supplied externally to the
ecosystem. A simple way to model this scenario is by using linearized resource dynamics
of the form,

ho(Ra) = ko — Ty ' Ra. (1.18)

where 7, is the degredation rate of resource «. In many of the experiments that motivate
our work, microbial communities are grown in minimum synthetic environments with a
single externally supplied resource oo = 0. To model such experiments, all k. are set to
zero except kg. These equations for N; and R, along with the expressions for J;g and

JoUt completely specify the ecological dynamics of the model:

dN;
i N; Z(l —1a)CiaRo —m; |,
iR o (1.19)
a —1 (. (.
= Ha = Ty R — E;NlCWRa + Z;DaﬁzﬁNlcwRﬁ.

An immediate technical problem that arises is to understand how to solve the above
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dynamics when the number of species and resources becomes extremely large. I discuss

this in Chapter 2.



Chapter 2

Numerical simulations of complex

ecosystems

Computational simulations are essential in theoretical ecology. Complex ecological mod-
els always involve ordinary differential equations(ODE) containing hundreds to thou-
sands of interacting variables. Typical ODE solvers are based on Runge—Kutta methods,
which are both time and resource consuming, motivating us to develop fast simulation
algorithms for complex ecological models. In this Chapter, we show a surprising duality
between constrained optimization with inequality constraints and generalized consumer-
resource models describing ecological dynamics [MCWMI19, MICM20], allowing us to
develop a new Python package for simulating complex ecosystems [MCGM20]. Using
this duality to solve for steady-state dynamics speeds-up performance by between 2-3
orders compared to direct numerical integration of the corresponding ODEs. Employing
this package, we can reproduce large-scale patterns in microbial biodiversity from the

Human Microbiome Project, Earth Microbiome Project, and similar surveys [MCM20).

2.1 Duality between constrained convex optimization and

ecological dynamics

Optimization is an important problem for numerous disciplines, including physics, com-
puter science, information theory, machine learning, and operations research [BV04,
Ber99, MMO09]. Many optimization problems are amenable to analysis using techniques
from the statistical physics of disordered systems [Zde09, MPZ02, MM11]. Over the
last few years, similar methods have been used to study community assembly and eco-

logical dynamics suggesting a deep connection between ecological models of community

11
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assembly and optimization [FM14, KS15, DFM16, Bun17, ABM18b, BABL18, BBC18b,
TM17, MICG™19].Yet, the exact relationship between these two fields remains unclear.

Here, we show that constrained optimization problems with inequality constraints are
naturally dual to an ecological dynamical system describing a generalized consumer
resource model [ML67a, Mac70, Che90a]. As an illustration of this duality, we start
a particular important and commonly encountered constrained optimization problem:
quadratic programming (QP) [BV04]. In QP, the goal is to minimize a quadratic ob-
jective function subject to inequality constraints. We show that QP is dual to one of
the most famous models of ecological dynamics, MacArthur’s Consumer Resource Model
(MCRM) introduced in Chapter 1, a system of ordinary differential equations describing
how species compete for a pool of common resources [ML67a, Mac70, Che90a]. We also
show that the Lagrangian dual of QP has a natural description in terms of generalized
Lotka-Volterra equations that can be derived from the MCRM in the limit of fast re-
source dynamics. Later, we will generalize our results to other consumer-resource model

dynamics.

2.1.1 Optimization as ecological dynamics

Consider an optimization problem of the form
L R
minitnize f(R)
subject to ¢;(R) <0,i=1,...,5. (2.1)
R,>0,a=1,..., M.

where the variables being optimized R = (Ry, Rq, ..., Rys) are constrained to be non-
negative. We can introduce a ‘generalized’ Lagrange multiplier \; for each of the S
inequality constraints in our optimization problem. In terms of the )\;, we can write a
set of conditions collectively known as the Karush-Kuhn-Tucker (KKT) conditions that
must be satisfied at any local optimum R,,;, of our problem [BV04, Ber99, Bis06]. We
note that for this reason, in the optimization literature the A; are often called KKT-

multipliers rather than Lagrange multipliers. The KKT conditions are:

Stationarity: VR f(Rmin) + Z A VR gj(Ruin) =0
J

Primal feasibility: g;(Rmin) < 0
Dual feasibility: \; > 0

Complementary slackness: Aigi(Rmin) = 0,
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where the last three conditions must hold for alli = 1,..., M. The KKT conditions have
a straightforward and intuitive explanation. At the optimum R, either g;(Ruyin) =0
and the constraint is active A; > 0, or ¢;(Rmin) < 0 and the constraint is inactive
A; = 0. In our problem, the KKT conditions must be supplemented with the additional

requirement of positivity R, > 0.

One can easily show that the four KKT conditions and positivity are also satisfied by
the steady states of the following set of differential equations restricted to the space
>\i7 Ra > 0:

dX;
dt

= Xgi(R), = [-0r.f(R) — Z AjOR, 9j(R)] Ra. (2.2)

The first of these equations just describes exponential growth of a “species” 7 with
a resource-dependent “growth rate” g;(R). Species with g;(Rmin) < 0 correspond to
constraints that are inactive and go extinct in the ecosystem (i.e, Ajmin = 0), whereas
species with ¢;(Rmin) = 0 survive at steady state and correspond to active constraints
with A\j min 7# 0 (see Fig. 2.1 for a simple two-dimensional example). The second equation
in (2.2) performs a “generalized gradient descent” on the optimization function f(R)+
> Aigi(R) (note the extra factor of Ry in our dynamics compared to the usual gradient
descent equations). In the context of ecology, these equations describe the dynamics of
a set of resources {R,} produced at a rate —0g, f(R)R, and consumed by individuals

of species j at a rate \;0,9;(R)Ra.

2.1.2 Ecological duals of Quadratic Programming (QP)

The optimization function of QP is quadratic, f(R) = %RTQR—i—bTR, with Q a positive
semidefinite matrix, and linear inequality constraints. The positivity of @) guarantees
that the problem is convex. By going to the eigenbasis of @), we can always rewrite the
QP problem as minimizing a square distance
s 1 2
minimize —||R — K||
R 2

subject to ZCmRa <m; it=1,...,85. (2.3)
«

R, >0, a=1,..., M.

Following (2.2), we introduce Lagrange (KKT) multipliers A; dual to each of the S
constraints and Langrange KKT (multipliers) p,. that enforce positivity. Then, the
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FIGURE 2.1: Constrained optimization with inequality constraints is dual
to an ecological dynamical system described by a generalized consumer re-
source model (MCRM). The variables to be optimized (hexagons) and Lagrange
multipliers (ovals) are mapped to resources and species respectively. Species must
consume resources to grow. (Bottom left) A quadratic programming (QP) problem
with two inequality constraints where the unconstrained optimum differs from the
constrained optimum. (Bottom right) Dynamics for MacArthur’s Consumer Resource
Model that is dual to this QP problem. The steady-state resource or species abundances
correspond to the value of variables or Lagrange multipliers at the QP optimum. For
this reason, species corresponding to inactive constraints go extinct. Made Pankaj
Mehta in [MCWMI19]

function to be optimized is

1
maximize minimize > (R2 = 2KoRa + K2)+ > Xj(CjaRa —mi) = ptaRa
d Ro a i (2.4)
subject to Aj2>205=1,...,8

We take the derivative with respect to R, and note that

Ry = max[0, Ky — Z Cjaj] (2.5)
J

where we have used the KKT condition poRa« = 0

Plugging this back into (2.4), we find that the function to be maximized with respect to

the \; is
1
Z Ailri = 5 Z AijAj (2.6)
i J

with

ki = Z K,Ciq —my (2.7)
a,Rqx#0
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and

A= > CiaCla. (2.8)
a,Ra+«#0

We can construct the dual ecological model:

d\;
E = /\z(za: CiaRa — mz)

dR,
dt

(2.9)

Ro(Ko — Ra) = Y A\jCjaRa.
J

The is the famous MacArthur Consumer Resource Model (MCRM), the same as equa-
tion 1.9, which was first introduced by MacArthur and Levins in their seminal papers
[ML67b, Mac70] and has played an extremely important role in theoretical ecology
[Che00, Til82a].

In optimization problems, one often works with the Lagrangian dual of an optimization

problem. We show in Chapter 1 that the dual to equation 1.12 is just

. . 1
maximize Z Ailki — 3 Z AijAjl
7 J

subject to  A\; > 0,

(2.10)

the sum restricted to a for which R, min # 0. It is once again straightforward to check
that the local minima of this problem are in one-to-one correspondence with steady
states of the Generalized Lotka-Volterra Equations (GLVs) of the form:

dX;
E = )\i(lﬂ - Z,Aij)\j) (2.11)
J

As with the primal problem, the species in the GLV have a natural interpretation as
Lagrange multipliers enforcing inequality constraints. This GLV can also be directly
obtained from the MCRM in equation 2.9) in the limit where the resource dynamics are
extremely fast by setting % = 0 in the second equation and plugging in the steady-
state resource abundances into the first equation [Mac70, Che90a]. This shows the
Lagrangian dual of QP maps to a dynamical system described by a GLV — which itself
can be derived from the MCRM which is the dynamical dual to the primal optimization

problem!
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2.2 Minimization Principle for generalized consumer re-

source models

This results derived in Section 2.1 are important for understanding the nature of steady
states in ecological models. A key limitation of the derivation in the last section is that
it is limited to cases where there is only one fixed point for the dynamics. This can
be seen by noting that there exists a global Lyapunov function f(R) for the dynamics.
Here we show that optimization ideas presented in the last section can be extended to
larger classes of population dynamics, suggesting that an optimization approach applies

much more broadly than previously supposed [MICM20, TM17].

2.2.1 General derivation

Let’s consider a general form of the consumer-resource model:

dN;
dtZ = Nigi(R)
dR, (2.12)
o = ha(R)+ D Nigia(R).
%

gi(R) is the growth rate. q;(R) specifies the magnitude and direction of the resource
abundance change induced by a single individual of the species [Til82b, Lei95]. The
function h(R) encodes the externally supplied resource dynamics [Til82b, CLO03].

Comparing equation 2.12 with equation 2.2, yields the following relation between con-

sumer resource quantities and quantities appearing in the optimization problem:

_ 9g(R)

, of(R)
Gio =~ 50

“ OR,

Ra, ha=-R (2.13)

Surprisingly, the objective function in equation 2.3 of the corresponding optimization
problem depends only on the function h(R), which characterizes the resource dynamcis

in the absence of consumers, through the relation
R
* ha(x)
R)=- ——=dx,. 2.14
)= [ B, (214)

Note that we are free to add a constant to f(R) while still satisfying the conditions and
can therefore always make f(K) = 0 at its unconstrained minimum K (the carrying

capacity of the resources without any consumers).

With the help of equation 2.14, we can obtain the objective function for different con-

sumer resource models through a direct integral. He we illustrate this for two simple
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variants of the MacArthur’s consumer resource model. For the MacArthur’s consumer
resource model with logistic growth, ho(R) = Ry (Ko — Ra), the objective function in

equation 2.3 becomes:

f(R) = Z RKQ Ko — zodre = Z %(Ra - Ka)Q- (215)

o
This is just ordinary quadratic programming. For the MacArthur’s consumer resource
model with linear resource dynamics ( equation 1.18 with 7, = 1), one has
Ko K, — x4 K,
fR)y=>" — TOir, = Z[KalogR— + Ra — Kal. (2.16)
o v Ba La « «
This functional form is just the Kullback—Leibler divergence, a commonly used similarity

measure used in machine learning [Bis06].

With a convex objective function and known constraints, the steady states can be ob-
tained through typical convex optimization packages, for instance, CVXPY in Python
[AVDBIS]. This results in significant improvement in numerical simulations since con-
vex optimization algorithms converge to their minima between one and two orders of

magnitude faster than direct numerical integration of the corresponding ODEs.

2.3 Extend for arbitrary niche models

The relation ¢;o, = — 8%3(35) R, cannot always be satisfied for choices of ¢;,,. One common

way this happens is if an organism affects the resource dynamics in ways that are unre-
lated to their own growth rate, whether by producing novel byproducts (cross-feeding),

or by consuming resource types that do not limit their growth.

To solve this issue, in [MICM20], we show that the minimization principle can be ex-
tended to a much larger class of niche models that do not satisfy the stringent require-
ment that ¢, = fagiTgaR)Ra. To do so, we separate ¢, into a symmetric term and a

remaining antisymmetric term:
Gia = Gy + Giovs Ty = —Ra09i/ORa. (2.17)

As the expressions for ¢;, and qg{’; are known, we also know q{}x = Gio + Ra0gi/OR,.
Without loss of generality, substituting above equations into the general equation for

the resource dynamics of equation 2.12, we obtain

dR, _ A . 892'
0 —ha(R)+;quia(R) ;NZERQ. (2.18)
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We can rearrange the above equation into the form

dR,  + 4 0g;
o = ha(R) EZ:NZaRa' (2.19)

where we repalce h,(R) by an effective resource dynamics

ha(R) = hoz(R) + ZNiqzz(R)Ra-

Note that there still exists unknown variables N and R. However, we only care about
the steady states (N, R) and thus replace the time-dependent variables with the steady

state population abundance,

ha(R) = ha(R) + ) Nigip(R). (2-20)

7

If N and R are known, we can solve for the steady states with the new objective function,

Ko X
U %m+szmﬁ“. (221)

Lo

The reason this procedure can not be applied directly is that we do not a priori know
the steady state values of the species or resources (N,R). If we knew the values in
the first place, there would be no need to solve these equations at all. This problem
of minimizing an objective function whose parameters depend on the solution arises
frequently in Machine Learning, in the context of fitting models with latent variables
[MBW ™19, Bis06]. It can be solved with a simple iterative approach, called Expectation
Maximization (EM), where one starts by guessing the values of these parameters, then
minimizes the function, and then updates the estimates using the new solution. This

procedure results in the Algorithm shown in Algorithm 1.

2.3.1 Application to microbial consumer resource model

We now show that this algorithm can be applied to solve for the steady-states of the
microbial consumer resource models (MicroCRM) introduced in Section 1.3. The Mi-
croCRM does not obey the relations in equation 2.13 because the production of metabo-
lites breaks the symmetry of the effective interactions in the original consumer resource

model. The dynamics of the MicroCRM (equation 1.19 with 7,— = 1 for simplicity) are
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Algorithm 1 Expectation Maximization (EM) Algorithm

Initialization: randomly initialize N,R, N,R
while |R — R| < e do > e controls the precision of the numerical solution.
N,R+< N,R
Expectation Step:
JR) =3, [ [ha(x) + 32, Nigip(R)] &=
Maximization Step:
R < maximize f(R) subjected to constraints g;(R) < 0, R, > 0.
N + KKT multipliers corresponding to the constraints g;(R) < 0

end while
return N, R.

described by the equations

dé\,ffl = N; Z(l - la)CiaRa —m|,
o o (2.22)
dta =Ko — Ra— Y _NiCiaRa+ Y _ DaslgN;CigRg.
i Byi

Substituting these equations into equations 2.13 and 2.17 yields:

qu = 7(1 - la)CiaRaa q;i = ZDaﬁlﬁNiCi/jRﬁ —10CiaRa (223)
B

Assuming the steady state N and R are known, the effective resource dynamics is

BQ(R) = Kq — Ro + Z Ni(DaglgﬁiCigéﬁ — lacmRa) (2.24)
i,
As the second term is a constant, it is equivalent to replace k with
(2.25)

Fa = Ko + Z Ni(DaﬂlﬁNijRﬂ — laCiaRa).
i,

The objective function still keeps the form as equation 2.16 but replace the upper integral

limit with Ko. Then, the microbial consumer resource model can be solved with the EM

Algorithm 1.
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FIGURE 2.2: Sampling parameters and adding metabolic structure. (a) Sampling the
consumer matrix C;,. An example of each of the three sampling choices is shown,
with white pixels representing C;, = 0 and darker pixes representing larger values.
The examples have F' = 3 consumer families with specialism level ¢ = 0.9, each with
Sa = 25 species, plus a generalist family with Sgen = 25 species. (b) Sampling the
metabolic matrix D,g. Each column represents the allocation of output fluxes resulting
from metabolism of a given input resource. This example has T' = 3 resource classes,
and an effective sparsity s = 0.05. (¢) Diagram of three-tiered metabolic structure. A
fraction fs of the output flux is allocated to resources from the same resource class as
the input, while a fraction f,, is allocated to the “waste” class (e.g., carboxylic acids).
In the example of the previous panel, allocation fractions were f; = f,, = 0.49. Made
by Robert Marsland IIT in [MCGM20]

2.4 Comparison with experimental observations

A major goal in ecology is to identify general principles shaping microbial ecosystems.
In order to avoid unnecessary time-consuming and expensive wet lab experiments, one
promising approach is to use minimal mathematical models to reproduce and understand
experimentally observed ecological patterns [MCM20]. Here, we show that the Microbial
Consumer Resource Model (MiCRM) (see Section 1.3) can reproduce patterns found
in large-scale survey data, including the Earth Microbiome Project (EMP) and the
Human Microbiome Project (HMP). Our model can help explain mechanisms resulting

in patterns observed at the species scale.
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2.4.1 Model assumptions

MiCRM considers the exchange and consumption of metabolites by introducing con-
sumer matrix Cj, and metabolic matrix D,g. Typically, the elements in these matrices
can be determined by measuring the specie’s growth rate in different pair of two-species
or species-resource coculture in experiments. However, a diverse community consists of
hundreds of species and resources, suggesting to measure several thousands of parame-
ters, which is unfeasible. For simplification, we just assume all parameters are sampled
from a random distribution, for instance, the consumer matrix Cj,, the maintenance
cost m; are sampled from Gaussian distribution. We encode the energy conservation in
sampling the metabolic matrix D,g by using a Dirichlet distribution, whose elements in
the column are summed to be 1. k, is a nonzero value only for « = 0 as we expect few

resources are available in the environment.

Actually, C;o and D,g are not purely random as we have to incorporate metabolic
and taxonomic structure at different levels by assuming species or resources from the
same family have similar consumer preferences or byproduct stoichiometry. This is a
reasonable biological assumption , for example, it is well known that bacteria from the
Enterobacteria family have a strong preference for fermenting sugars. To capture this,
we assign the M resources to T classes (e.g. sugars, amino acids, etc.), each with My
resources where A =1,...T and ) 4, M4 = M. Likewise the total Sio species can be
assigned to F' families, with F' < T, and each family preferentially consuming resources
from a different resource class. A generalist family can also be included, with Sge, species
and no preferred resource class, so that Sgen + > 4 S4 = Stot. These setups result in the

block structures in Cj, and D,g in Figure 2.2.

In practice, we choose the metabolic matrix D,g according to a three-tiered secretion
model illustrated in Figure 2.2 (c). The first tier is a preferred class of ‘waste’ products,
such as carboyxlic acids for fermentative and respiro-fermentative bacteria, with M,
members. The second tier contains byproducts of the same class as the input resource.
For example, this could be attributed to the partial oxidation of sugars into sugar al-
cohols, or the antiporter behavior of various amino acid transporters. The third tier
includes everything else. We encode this structure in D,g by sampling each column 3 of
the matrix from a Dirichlet distribution with concentration parameters d,g that depend
on the byproduct tier, so that on average a fraction f,, of the secreted flux goes to the
first tier, while a fraction fs goes to the second tier, and the rest goes to the third. The
Dirichlet distribution has the property that each sampled vector sums to 1, making it
a natural way of randomly allocating a fixed total quantity (such as the total secretion
flux from a given input). To write the expressions for these parameters explicitly, we let

A(a) represent the class containing resource «, and let w represent the ‘waste’ class. We
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FIGURE 2.3: Relationship between diversity and environmental harshness is modu-
lated by environmental complexity. Left: Gray dots are the number of distinguishable
strains observed in each sample of the EMP, plotted vs. pH and temperature. Black
dots represent the 99th percentile of all communities at a given pH or temperature.
Colored lines are fits of a Laplacian and a Gaussian distribution to the 99the percentile
points. Reproduced from Figure 2 of the initial open-access report on the results of
the EMP[TSM™17]. Right: The number of species surviving to steady state in sim-
ulated communities, plotted vs. environmental harshness. Harsher environments at
extreme pH or temperature were simulated by increasing the total amount of resource
consumption m; required for growth (by the same amount for all species). Blue squares
are simulation results when all the energy was supplied via a single resource type, while
orange circles are simulations where the incoming energy was evenly divided over all 90
possible resource types. Made by Robert Marsland III in [MCM20]

also introduce a parameter s that controls the sparsity of the reaction network, ranging
from a dense network with all-to-all connection when s — 0, to maximal sparsity with
each input resource having just one randomly chosen output resource as s — 1. With

this notation, we have

Dy = Dir(dig, dag, dag, - . ., drig)a (2.26)
sﬁ”wa if A(B) # w and A(a) = w
Wi if A(B) # w and A(a) = A(B)

dos = | st itar,y TA(B) #w and A(a) # A(9) (2.27)
Lt if A(8) = w and A(a) = w
S if A(8) = w and A(a) £ w

The final two lines handle the case when the ‘waste’ type is being consumed. For
these columns, the first and second tiers are identical. This led to an ambiguity in the
expression presented in the Supporting Information of [MICG*19], which we have now
clarified by treating this case separately. Note that in the third line, it is implicit that
A(a) # w, since A(a) = w is covered in the first line. For more simulation and model

details, we refer interested readers to [MCGM20].
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2.4.2 Patterns in the Earth Microbiome Project

The Earth Microbiome Project consists of over 20,000 samples in 17 different environ-
ments located on all 7 continents [TSM™17]. One of the interesting patterns is anti-
correlation between richness and environmental harshness reproduced in Figure 2.3.
Samples near neutral pH or at moderate temperatures (~ 15°C) showed much higher
richness than samples from more extreme conditions. Peak richness dropped by a factor
of 2 for pHs less than 5 or greater than 9, and temperatures less than 5 °C or greater
than 20 °C. The EMP samples also showed a strongly nested structure, namely, species
appearing in lowly diverse communities tended to belong to one of the highly diverse
communities. The nested structure is clearly shown in Figure 2.4, where each column

in the matrix corresponds to a different sample and each row to a specific taxon.

These patterns may result from that microbes require higher maintenance cost to survive
in harsher environments [HJ13]. For example, powering chaperones to prevent protein
denaturation and running ion pumps to maintain pH homeostasis both require significant
amounts of ATP. We hypothesized that varying m; could explain the patterns observed
in the EMP. In the MiCRM, m; is sampled from a Gaussian distribution with mean 1 and
standard deviation 0.01. In order to model the varying harshness of the environment, we
can sample the mean value by sampling the mean value m uniformly between 0.5 and 10.5
with the same standard deviation. As a large m corresponds to harsh environments with
increased energetic demands. the anti-correlation between richness and environmental

harshness can be expected, shown in Figure 2.3.

Surprisingly, the same simulation also captures the nestedness of the EMP data, shown
in Figure 2.4. To confirm the nested pattern results from harshness variations, we ran
simulations with the varying dispersal limitation, i.e., the initial number of species from
the regional species pool allowed to colonize the community was randomly chosen. In the
new simulations, shown in the bottom right panel of Figure 2.4, the nestedness vanishes,

suggesting nestedness may be a sign of selection-dominated community assembly.

2.4.3 Patterns in the Human Microbiome Project

The Human Microbiome Project is a large-scale survey of the microbial communities
that reside in and on the human body [HGK™12a]. Here we discuss two major patterns
in the human microbiome, shown in the top half of Figures 2.5 and 2.6. First, for a
given body site, different individuals had similar community composition patterns in
the phylum level (see Fig. 2.5). But samples from different body sites typically differed

more than samples from the same body site, leading to the second pattern, shown
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FIGURE 2.4: Nestedness of community composition indicates selection-dominated com-
munity assembly. Top: Presence (colored) or absence (white) of each microbial phylum
in a representative set of 2,000 samples from the EMP. Reproduced from Figure 3 of the
EMP report [TSMT17]. Different colors represent different biomes. Bottom: Presence
(black) or absence (white) of species in simulated communities. Two different regimes
of community assembly were simulated. The first is the selection-dominated scenario
of Figure 2.3, where variability in diversity is produced by variations in environmen-
tal harshness, and all samples are initialized with the vast majority (150/180) of the
species in the regional pool. The second is a dispersal-dominated scenario, where en-
vironmental conditions are identical for all samples, but each sample is initialized with
a different number of species, varying from 1 to 180. See main text and Methods for
simulation details. Made by Robert Marsland IIT in [MCM20]

in Figure 2.6 of clustering of microbial communities by body site across individuals
[HGK T 12a, QLR 10], which suggests the sample location can be inferred by the relative

abundance data.

One important factors is that different kinds of externally supplied nutrients, such as
fibers and proteins, are thought to encourage growth of different microbial taxa. For this
reason, we hypothesized that the patterns in the HMP may arise from heterogeneity in
the resources available in different environments. In order to reproduce such patterns,
it is important to assume some minimal level of taxonomic and metabolic structure. As
a result, we divided resources into six resource classes and species into six families, with
each family specializing in one resource class, as illustrated in Figure 2.2 and described

above.

We first assumed there were only two externally supplied resources. In particular, the
three different “body sites” was modeled by supplying with a unique pair of resources
from distinct resource classes (i.e. body site 1 was supplied with a resource from class
A and a resource from class B, body site 2 with a resource from class C and a resource

from class D, and body site 3 with a resource from class E and a resource from class
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FIGURE 2.5: Low-dimensional nutrient supply variation reproduces patterns in human
microbiome survey data. Top: Each column represents one sample from the Human
Microbiome Project (HMP). Colored segments represent relative abundances of differ-
ent phyla in each community. Reproduced from Figure 2 of the initial open-access
report on the results of the HMP[HGK"12a]. Bottom: Each column represents one of
900 simulated samples, each stochastically colonized with 2,500 species from a regional
pool of 5,000 species, comprising seven metabolically distinct families. Colored seg-
ments represent relative abundances of the seven families defined in Figure 2.2. Each
of the three “body sites” was supplied with resources from a different pair of resource
classes, with total nutrient supply fixed. In the first set of simulations (left), one re-
source from each class was supplied, and the ratio of the two supply rates was randomly
varied from sample to sample. In the second set (right), all resources from each class
were supplied, with randomly chosen supply rates for each sample, normalized to keep
the total supply fixed. The brown family present in all three environments specializes
in the typical byproducts (e.g., carboxylic acids) generated from all the other resource
classes. Within each body site, samples are sorted by relative abundance of this family.
See main text and Methods for simulation details. Made by Robert Marsland III in
[MCM20]

eps2

F). We modeled variability in the availability of resources across individuals at a fixed
body site by changing the ratio of the two supplied resources while holding the total
supplied energy fixed. We generated a regional pool of 5,000 species (approximately the
number of OTU’s identified in the HMP [HGK'12a]), and stochastically colonized 300
samples per body site with 2,500 species each. Figure 2.5 shows the resulting patterns
for simple (two externally supplied resources from different classes) and complex envi-
ronments (supplied with 100 randomly chosen distinct resources regardless of resource
class). For simple environments, our simulations reproduced the patterns exhibited in
the data including gradients in the dominant families present at each of the body sites.
In contrast, for complex environments we see that the relative abundance of different
families stays almost constant across individuals for each body site. This suggests that

the patterns found in Fig 2.5 may reflect the combined effects of environmental filtering
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FIGURE 2.6: Correlations between inter-site nutrient variation and metabolic
structure affect distinguishability of body sites. Left: Principal coordinate analy-
sis (PCoA) of MetaHIT OTU-level community compositions, using the Jensen-Shannon
distance metric. Data points are colored by the body site from which the sample was
taken. Reproduced from Figure 1 of [CHM™18]. Right: Jensen-Shannon PCoA of
species-level compositions of the simulated communities. In the first set of simulations
(left), the nutrients supplied to different body sites come from different resource classes.
In the second set of simulations (right), each environment is supplied with a randomly
chosen set of resource types, with each site being supplied with about one third of the
300 possible resources. Made by Robert Marsland III in [MCM20].

and competition between species in the presence of a few dominant externally supplied

resources.

We can also perform a PCoA across body sites to the data from simulations, as in
the MetaHIT data. As can be seen in Figure 2.6, these simulations recapitulated the
pattern seen in real microbial communities. We found that this clustering by body
site depended strongly on the fact that different body sites had metabolically distinct
resources. For example, the clusters were no longer fully separable on a two-dimensional
PCoA for a complex environment (right most graph in Figure 2.6). This suggests that
the clustering of human microbiomes according to body-sites likely reflects the fact that
these body sites have metabolically distinct environments that result in different patterns

of byproduct secretion.

In summary, our analysis suggests several hypotheses relating mechanism to large scale
patterns observed in both the EMP and HMP. We show it is possible to reproduce these
patterns with a minimal mathematical model and quantitatively understand patterns at

both the species and community levels.



Chapter 3

Statistical-physics-inspired
approaches for complex

ecosystems

Nature has revealed an astounding degree of phylogenetic and physiological diversity
in microbial communities. Recent advances in DNA sequencing technologies makes it
possible to measure microbial communities abundances at high resolution, opening a
new precision era in microbial ecology [CLWT11, SWGV14]. Understanding such large
amounts of microbial data challenges current theories and analytical approaches, most
of which were developed using models that consider only a few species. This challenge
motivated us to develop new theoretical approaches for understanding ecology directly
in a high-dimensional setting by analyzing ecological models with a large number of

species and resources.

In Chapter 1, our discussion and examples were limited to ecosystems consisting of
few species. In low dimensions, describing every degree of freedom (e.g. resources and
species abundances) is tractable. Community properties can be evaluated by exhaus-
tively searching all states directly. However, most microbial ecology dataset are high
dimensional, simultaneously measuring the relative abundances of hundreds of species
across different habitats. A huge number of combinations of states must be considered,
and the use of exhaustive search strategies is no longer feasible, i.e., one suffers from the

curse of dimensionality [Ric57].

One pertinent example in statistical mechanics is the simple example of particles in a
box. At any time ¢, the microstate of system of IV particles is described by the positions

Z;(t) and the momenta p;j(t) of the different particles. When N is not too large, the

27
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evolution of a microstate can be predicted precisely by solving Hamilton’s equations for
all particles. When N becomes large, for example, a typical volume of gas has the order
of Ngo ~ 10?% particles, the complexity of predicting the microstate is too high to be

feasible.

Taking the analogy between particles in a box and species in the ecosystem, analytical
approaches and theoretical insights derived from small ecosystems may not scale up
to large ecosystems. Instead, one should look for theoretical frameworks that directly
work in the high-dimensional setting. This suggests that we should develop a statistical

mechanics approach to complex ecosystems.

3.1 Large N limit and typicality

We have stressed the practical difficulties in high dimension. Actually, taking the ther-
modynamic limit NV — oo can also lead to a number of simplifications. As we all know,
statistical mechanics has successfully dealt with the system with a very large number of
degrees of freedom [Mal8]. For the particles in a box example, instead of trying to pre-
dict the behavior of individual particles in a box, we can make quite accurate statements
about the macro behavior averaged over millions of particles. Because typical features
of the gas can emerge from the collective behavior of many individuals, we can often
even ignore many details about the identity of the particles themselves. For example,
the macroscopic quantities, such as pressure, temperature, volume and entropy follow
Maxwell relations, no matter if the gas is formed by oxygen, nitrogen or mixed. In order
to derive typical relations in thermodynamics, statistical physicists have to assume some
general principles. For example, in order to obtain the Boltzmann distribution, we have
to assume the maximum entropy principle, which means thermal systems are at the

largest uncertainty, i.e. every microstate is identical and has the same probability.

Taking the analogy between species in ecosystems and particles in box, we can learned

three lessons from statistical mechanics that we can apply to ecological systems:

1. We need to find typical relations between macro properties of the ecosystem, such
as the relation between statistical properties of the species and resources, rather

than functions and behaviors of one particular species.

2. Some principle must be assumed in order to obtain these typical relations. For
example, the ecosystem is disordered (meaning parameters can be modeled as being
drawn from a random distribution). With this simple but important assumption,
we can apply physics-inspired approaches to derive many interesting relations in

complex ecosystems.
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3. The typical relations depends on the ecological dynamics. We will solve Lotka-
Volterra and consumer-resource models with cavity method, and then can show

how distinct macro behaviors emerge depending on which dynamics we use.

3.2 Disorder ecosystems

Why can we treat ecosystems as disorder systems? Starting with Robert May’s pio-
neering work in 1972 [May72], there is a long tradition in theoretical ecology of treating
ecosystems like disorder systems. In order to apply the physics-inspired approaches
introduced in this chapter, we have to assume the species-species or species-resource
interactions are random. In reality, species in the same family share similar metabolic
pathways, leading to correlations among parameters [GLB118]. However, we still make
this simplifying assumption for three reasons. First, it greatly simplifies the mathe-
matics. While more realistic taxonomic structures with correlated parameters can be
analyzed with advanced mathematical tools, such as replica symmetry breaking in spin
glass theory [MPV87], this is quite mathematically challenging. Second, we can learn
a lot from a simple models. In the history of solid state physics, people worked on
understanding Ising model, which only considers the nearest neighbor interactions and
assumes all interactions have the same amplitude. In real materials, the interactions are
more complex and these assumptions do not hold. Third, our work shows that com-
plex ecosystem may actually behave as if they were random even if they are structured
because introducing even a small amount of noise can cause a phase transition to “typ-
icality” [CMIM19]. Given a deterministic structure of the consumer preference matrix
(an identity or a block matrix), we show that adding even a small amount of noise
in the consumer preferences (proportional to the inverse system size, 1/.5) will destroy
the engineered structure and make the macroscopic properties of an ecosystem indistin-
guishable from a random ecosystem. This suggests complex ecosystems can be treated
like disordered systems as long as we are concerned with predicting macroscopic ecolog-
ical properties that reflect averages over many species and/or resources. We provide a

mathematical proof of these statements in Chapter 5.

3.3 Random matrix theory

The eigenvalues of the interaction matrix play an important role in the dynamics of an
ecosystem. Random matrix theory(RMT) can tell us what the eigenvalue spectrum look
like analytically, when the matrix size is large and all its elements are independent and

identically sampled from a distribution whose tail is exponentially bounded [Tao12]. For
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FIGURE 3.1: Schematic for May’s stability criteria. The red scatter points are the
eigenvalues on the complex plane.

a Gaussian random matrix A, whose elements are sampled independent and identically
sampled from a Gaussian distribution, the spectrum follows Girko’s Circular Law and
all its eigenvalues distribute uniformly on a circle in the complex plane [Gin65]. If A
is a symmetric Gaussian random matrix, it follows Wigner Semicircle Law and all its
eigenvalues distribute uniformly on a semicircle in the real plane [Wigh8]. If it is a
random consumer matrix C, which is not square, RMT tells its covariance matrix CC”

follows Marchenko—Pastur distribution [MP67a].

An amazing observation is that the eigenvalues of a RMT are distributed over a bounded
domain. The upper and lower bounds are determined by the variables in the corre-
sponding sampled probability distribution. As we know, the largest/smallest eigenvalue
determines the stability of a fixed point in a dynamical system. This suggests there
exists a stability-instability phase transition, and the critical point defining the transi-
tion can be predicted by RMT. In Section 3.3.1, introduce the May’s famous stability
criteria [May72] and describe its relation to RMT. In Chapter 5, we use recent progress
in RMT to explain why complex ecosystems tend to behave as if they were completely

disordered.

3.3.1 May’s Stability Criteria

For an ecosystem of S species, May’s theorem concerns the S x S community matrix J,
whose entries J;; describe how much the growth rate of species i is affected by a small

change in the population N; of species j from its equilibrium value. The population
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dynamics is obtained by Taylor expansion around some equilibrium point N i

dN; _
= > Jii(N; = N;) (3.1)
j

From above equation, the stability of this equilibrium can be quantified in terms of the
largest eigenvalue Apax of J. If Apax is positive, the equilibrium is unstable, and a small

perturbation will cause the system to flow away from the equilibrium state.

In the 1960’s, Jean Ginibre derived a mathematical formula for the distribution of eigen-
values in a special class of large random matrices[Gin65]. Girko’s Circular Law states
when the J;; are sampled independently from probability distributions with zero mean
and variance o2, taking the limit S — oo, its eigenvalues are uniformly distributed on
a disk with radius » = v/So in the complex plane, shown in Fig. 3.1. And thus, the
largest eigenvalue Apax is at the boundary of this disk. With this result in mind, May
considered a simple ecosystem where each species inhibits itself, with J; = —1, but
different species initially do not interact with each other. This ecosystem is guaranteed
to be stable for any level of diversity. He then examined how the stability is affected by
adding randomly sampled interactions, and found that Ay .x typically becomes positive
when the root-mean-squared total strength V/So? of inter-specific interactions reaches

parity with the intra-specific interactions, which gives May’s stability criterion:
So? =1. (3.2)

For a given pairwise interaction strength o, this relation gives that the diversity S

promotes ecosystem instability and large ecosystems tend to be unstable.

Before the 1970s, ecologists believed that diversity enhanced ecosystem stability. May’s
stability criteria challenged this idea and led to what is now commonly know as the
diversity-stability debate [McC00]. Theorists have tried to circumnavigate May’s origi-
nal argument by changing the May’s admittedly non-realistic assumptions, including by
adding biologically realistic correlation structures [AT12], modular structures [GRA16],
and correlations [AT15] to the interaction matrix, incorporating the dependence of the
community matrix on population sizes [GGRA18], and considering high-order interac-
tions in Lotka—Volterra dynamics [GBMSA17].

3.4 Spin-glass-inspired approaches

Recently, it is recognized that the generalized Lotka-Volterra model can be approxi-

mately reduced to a presence-absence model by replacing the absolute value of species
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abundance N; with a binary variable S;, where S; = 1 if the species is present and
S; = 0if it is absent [FM14, DFM16]. By making an analogy between the presence/ab-
sence of a species in an ecosystem and whether a spin is up or down, it is possible to
map ecological dynamics to the dynamics of spin models in statistical physics, which
have been studied for more than one century [Isi25]. For disorder ecosystems, under-
standing community coexistence pattern becomes a spin glass problem and motivates
physicists to use insights from spin glass theory to uncover the universal features of
complex ecosystems. The spin-glass-inspired approaches are divided into two categories:
cavity method (see Chapter 4) and replica method[MPV87, MMO09]. These two methods
have been proven to be equivalent to each other but formalize the same problem from
very different perspectives [MP03]. Finally, we note that both the cavity method and
replica methods have deep connections with RMT. We refer the interested readers to
[RCKTO08, LNV18, CRM20].

3.4.1 Replica Method

Before proceeding, for completeness we briefly discuss the Replica Method in the context
of ecological dynamics. The replica method is another theoretical method originally
developed to study spin glasses. The basic idea of replica method is to use replica
trick logZ = lim, o % to estimates the partition function Z, which occurs in many
problems of statistical mechanics and describes the statistical properties of a thermal-
equilibrium system. The application of Replica method requires a predefined energy
function. In Chapter 2, we have shown there is duality between a wide class of ecological
dynamics and constrained optimization over Lyapunov functions. As constraints can also
be expressed as energy functions, combining the Lyapunov function and constraints, the
partition function can be estimated by replica method, and thus properties of ecological

systems at steady states can be analyzed.

In principle, replica method is equivalent to the cavity method [MPO03]. [BBC18b]
shows replica approach can reproduce the cavity solution for Lotka-Volterra model in
the unique equilibria phase and find the phase transition point from unique to multiple
equilibria phase. These results were originally derived using cavity methods in [Bunl7].
However, we note that a naive application of the cavity method fails in multiple equilibria
phase and it becomes tedious to consider multiple-equilibria corrections. While replica

method still works with one step replica-symmetry-breaking (RSB) approximation.
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Another important application of replica method is to study feasibility in ecology. Struc-
tural stability gives a quantitative measurement of feasibility. It is challenging to esti-
mate structural stability in high dimension because of the undersampling problem. As-
suming ecosystems are disorder, replica method can analytically estimate structural sta-
bility since this quantity is closely related to properties of partition functions [GAST17].
The formalism of underlying feasibility problems actually belongs to a class of constraint
satisfaction problem, including random K-SAT and jamming problems [MPZ02, FP16],
and this analogy has been discussed in [TM17, LE20]. In this thesis, we do not make use

of the replica method, instead drawing on ideas and techniques from the cavity method.



Chapter 4

Cavity method for ecological

models

The cavity method is not just limited to spin glasses. It has been successfully used
for solving computer science problems, including K-SAT [MPZ02], compressed sens-
ing [KMS™12] and combinatorial optimization [ZK16]. The original cavity method is
designed for a model with binary variables. Over the last five or six years, tremen-
dous progress has been made to develop and generalize this method to solve ecological
models with non-negative continuous variables (e.g. species and resource abundance)
[Bunl7, ABM18a, BA17].

The basic idea behind the cavity method is to derive self-consistency equations by relat-
ing an ecosystem with S species / M resources to another ecosystem with S+1 species /
M+1 resources. In the thermodynamic limit S, M — oo there is no difference between
observables computed in both systems. In other words, the statistical properties, such
as the first and second moment of species abundance (N), (N?) and resource abun-
dance (R), <R2> are the same for both systems. Adding a new ”cavity” species/resource
(which by convention we designate with the index 0) to the original ecosystem results
in a perturbation to the original equilibrium state. In the cavity methods, one assumes
that the adding a new “cavity” species/resource is small perturbation (of order 1/S or
1/M) and hence the system before and after addition can be related using perturbation
theory. Combining this with the idea of self-averaging allows for the derivation of a
coupled set of self-consistent mean-field equations for the moments of the species and

resource distributions.

The cavity method can predict coexistence patterns (species/resource abundances), sta-

bility, and species packing bounds (how many species can survive in an ecosystem) of

34
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1. Factor graph representation 2. Add “Cavity” species 0
for species dynamics

3. Sum the influences from “cavity” species to the 4. Estimate the species distribution

others and update the species distribution with central limit theorem
ri— Y AN~ N(r — p(N),\/o2qn + 0?)
v 3/0

Ni = Nijo =3 viiAnNo (N

\ i/0

Use the linear response relation and the

s non-negativity constraint

1—po2v’ 1-poiv

- — u(N) Jo2qn 2
N, = Max [O.N(r nN) Votay +oi,

A

self-consistency for the susceptibility
v ONo\ _ _ on
arg 1—po2v

FIGURE 4.1: Schematic outlining steps in cavity solution for Lotka—Volterra model.
1. The species dynamics in eq. (4.2) are expressed as a factor graph. The edges are
bi-directional and sampled from a Gaussian distribution. 2. Add the ”Cavity” species
0 as the perturbation. 3. Sum the resource abundance perturbations from the ” Cavity”
species 0 at steady state and update the species abundance distribution to reflect the
new steady state. 4. Employing the central limit theorem and the non-negativity
constraint, the species distribution is expressed as a truncated normal distribution.
The susceptibility appearing in the species distribution is the self-consistency relation.

a random ecosystem. We derive cavity equations for generalized Lotka-Volterra model

and consumer-resource model in Section 4.1 and 4.2.

4.1 Cavity Method for Lotka—Volterra model

The following calculations follow [Bunl7] closely. We consider the following generalized

Lotka-Volterra equations consisting of S species,

dN; ,
— = giNi(ri — N; = Y AyjN;), i=12,...8. (4.1)
J




Chapter 4. Cavity method 36

Here g; are the intrinsic growth rates, r; are the carrying capacities and A;; encode
inter-species interactions, with positive and negative values representing competition

and mutualism interactions, respectively. We care about the statistical properties of the

dN; _
dt

point and hence we set them equal to one in what follows. The steady-state equations

fixed point , where 0. Notice the intrinsic growth rates do not affect the fixed
become
0= Nl(’l"l - Nz - ZAUNJ) (42)
J#i

where N; are the species abundance in equilibrium.

The self-consistency equations are derived in the thermodynamics limit S — co. In this
limit, we assume many species present in the community have no correlation with each
other so that the carry capacities r; are independent and identically (i.i.d.) sampled
from some probability distribution. For the interaction coeflicients A;;, we consider a
correlation coefficient p = corr(A4;;, Ai;) with —1 < p < 1. p = 1,—1 correspond to

completely symmetric and asymmetric interaction coefficients, respectively.

We assume that the A;; are sampled from a Gaussian distribution with mean (A;;) = &
and variance var(4;;) = "—SZ We can rewrite

Ai]‘ = % + oa;j (4.3)

where (a;;) =0, (aijakl)i# kAl = %6¢k5jl+§5il(5jk. The scaling in the mean and variance
is to keep the interaction term Zj Ai;N; in eq. (4.2) independent of the system size.
r; is also sampled from another gaussian distribution with mean r and variance o,

independent of A;;. We rewrite it as
r; =1+ 01, (4.4)

where (dr;) = 0, (67;6r;) = 025ij.

Now we perturbed the original ecosystem with a new “cavity” species Ny with interac-

tions Ag; and Ajo,

S
NQ(TO — NO — ZAOij) =0. (45)
j=1

We represent the original steady state with S species is N, Jo and the new steady state
with S+ 1 species with N;. The susceptibility function to the perturbation is defined by

Vij = %—JTVJ Adding the “cavity” species Ny is equivalent to decreasing r; by > y AjoNo.

Note that in the thermodynamic dynamics limit S — oo, Ag; and Ajp scale as %, other
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O(1/S) terms are ignored. The perturbation equation becomes:

S
Ni = N1/0 — Z VijAjoNo (46)
Jj=1

With the help of eq. (4.3) and eq. (4.4), solving eq. (4.5) yields:

(4.7)

S
ro— Y7 10a0iN; 0 — (N
Ny = max (07 0 E]—l 0;Nijo — 1 >>

S
1= 02327 -1 Vijaojaio

where (N) = %Z] N;. max is a function to take the maximum value in the bracket.
The sum term in the denominator can be written by noting that to leading order in .S
that 5
Z V3005 0io = %Z Vjj = pV. (4.8)
Ji=1 J

From the definition of susceptibility v;;, the self-consistency relation yields

9No N
V= = . 4.9
< oro > 1—po?v (49)
where ¢y = % is the fraction of nonzero species in the ecosystem. Note that the

factor of ¢y results from the fact that if Ny = 0, the corresponding derivative in the

susceptibility average is also zero.

Assuming N; are weak correlated with each other, using the central limit theorem, the
sum Zle oag;N;o in the numerator can be approximated to a Gaussian distribution
with mean 0 and variance o2 (N?), where (N?) = Ziszl N?Z. We rewrite eq. (4.10),

4.1
1— pov (4.10)

r—p{N)+ /0242 (N?)z
Nozmax(@ p(N) + V/o? + 0 (N?)
which is a truncated Gaussian. Here z is an auxiliary Gaussian variable with mean 0
and unit variance and /o2 4+ 2 (IN2) results from the sum of two Gaussian variables.
Now we have unknown truncated Gaussian moments ¢y, (N) and <N 2>, which can be

determined by the species abundance distribution eq. (4.10).
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The following notations are helpful. Let y = max (O, 7+ %z), with z being a Gaussian

random variable with zero mean and unit variance. Then its j-th moment is given by

2

e 5 (%x + %)] dz (4.11)

T2 (:,C + g)] dxr
c

(V') \/12?/00
SOE
- ()t

x

here we define w;(%) = \/% ff’% e~ 7 (z+ %)J de.

S

With the help of wj;, we have all self-consistency equations,

V= %7 ON = wO(\/%)y (4.12)
2+ 02 (N2 .
<N> - {jpoQ(y]V >w1( 0_7% +‘LLO_<2]\<]]>V2> )7 (4.13)
o OrF+ 0% (N?) r—p(N)
NS =T ooy “’2me (4.14)

Above self-consistency equations can be solved numerically in Mathematica. Fig. 4.2
show the Comparison between the cavity solution and 500 independent numerical simu-
lations for various ecosystem properties such as the fraction of surviving species % and
the first and second moment of the species distribution for a symmetric (p = 1) and
uncorrelated (p = 0) A;; with S =200, u = 2., r = 1., 0, = 0.1. As can be seen in the

figures, our analytic expressions agree remarkably well over a large range of o..

4.1.1 Connection with May’s Stability Criteria

Fig. 4.2 shows, in the symmetric case, cavity solution starts deviating from the numerical
simulations when o, > 0.5. This is actually indicative of the emergence of a new phase
where the replica symmetric ansatz used in our cavity calculations no longer holds. To
understand this phase we can look at the minimum eigenvalue of the interaction matrix
A;‘j restricted to species that survive in the ecosystem at steady-state. Fig. 4.2 (D)
shows the minimum eigenvalue of A7, as a function of noise in the consumer preferences
0c. The minimum eigenvalue decrease monotonically with increasing o. until it reaches
zero and then the cavity solution fails. In the numerics, this happen slightly earlier than
zero due to finite size effects. This is reminiscent of the scenario described by May’s
stability criteria discussed in Section 3.3.1. In May’s case, there are only two phases:

unique fixed point (UFP) and unbounded growth (UG), characterizing by Apsy, larger or
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FIGURE 4.2: Comparison between the cavity solution (equation 4.12 - 4.14) and sim-
ulations for the fraction of surviving species ¢y = %, (a) the fraction of surviving

species ¢r = MW and (b) the first moment (N) and (c) the second moment (N?) of the
species distributions as a function of o.. (d) The minimum eigenvalue of the submatrix
Aj; at at different o.. The error bar shows the standard deviation from 500 numerical
simulations with S = 200, u = 2., r = 1., 0, = 0.1 and p = 1.The black solid lines
separate the results in three different regimes: unique fixed point, multiple attractors
and unbound growth.

smaller than zero, as shown in Fig. 3.1. While in the full Lotka—Volterra dynamics, Fig.
4.2 (D) shows that there exists an additional multiple-attractors(MA) phase separating
these regimes, where A\, gets pinned to zero over a finite range of o, (see Fig. 4.3).
This MA phase was first discovered in [Bunl7].

In the MA phase, the dynamics system is marginally stable and highly sensitive to initial
conditions. It has deep connections with the de Almeida-Thouless line in spin glass
theories [dAT78] and chaotic behavior in random one-layer neural networks [SCS8S].
The UFP-MA phase only happens in certain parameters regime, for example 1 > 0 and
p = 1. In other regimes, the system may have a UFP-UG phase transition instead of
a UFP-MA phase transition. The replica symmetric cavity approach can only predict
the o* when A\, = 0, but has no idea about whether A, will stay zero (MA) or
become negative(UG) when further increasing o.. This is because the replica symmetry
is broken in the MA and UG phases. Analysis beyond the UFP phase has been carried
out using the replica approach with replica symmetry breaking [BBC18a].
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FIGURE 4.3: Spectrum of the whole species interaction matrix A and the surviving
species interactions matrix A* at the unique fixed point, multiple attractor and un-
bounded growth phase. The parameters are the same as Fig. 4.2.

What causes the difference in behaviors between LV dynamics eq. (4.1) and May’s
dynamics governed by eq. (3.1)? In May’s case, we asked about the stability of the fixed
point where all species survive for the special case of symmetric A and derived May’s
stability criteria:

40% = 1. (4.15)

Note that this Eq. looks superficially different from eq. (3.2). However, these difference
can be understood by noting: first, we have scaled the variance with the system size
in eq. (4.3), namely 0 — %; and second, for simplicity, we consider a symmetric A,
which follows Wigner’s Semicircle law rather than Girko’s Circular law. This difference

contributes a prefactor of 4.

In contrast, in the LV dynamics we allow species to go extinct and some fraction ¢ =
S5*/S of the species survive at the fixed point. Fig. 4.3 compares the spectrums of the full
interaction matrix A and spectrum of the interaction matrix restricted to the surviving
species A*. In the UFP phase, both of these spectrums follow Wigner Semicircle law
but with slightly different radii: 202 for A, and 2¢n0o? for A*, respectively. This small
difference can result in big qualitative differences. The reason is that how many and
which species survive in the LV dynamics can show big fluctuation in the MA and UG
phases. For this reason, the interaction matrices may be not “self-averaging” in the
large N limit, and consequently the spectrum of A* does not converge to a deterministic

spectrum.

The discussion above suggests an intuitive criteria for the stability of a fixed point of
Lotka—Volterra dynamics where a fraction ¢ species survive, namely we should replace

o2 by ¢no? in May’s stability criteria:

4pno® =1, ¢y =S5*/S. (4.16)
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1. Initial parameter information 2. Factor graph representation 3. Add “Cavity” species 0 4. Sum the influences from “cavity” species to the
for species dynamics resources and update the species distribution
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FIGURE 4.4: Schematic outlining steps in cavity solution. 1. The initial parameter
information consists of the probability distributions for the mechanistic parameters:
K, m; and C;,. We assume they can be described by their first and second moments.
2. The species dynamics N;(>_,, ciaRa —m;) in egs. (4.18) are expressed as a factor
graph. 3. Add the ”Cavity” species 0 as the perturbation. 4. Sum the resource
abundance perturbations from the ”Cavity” species 0 at steady state and update the
species abundance distribution to reflect the new steady state. 5. Employing the central
limit theorem and the non-negativity constraint, the species distribution is expressed
as a truncated normal distribution. 6. Repeat Step 2-4 for the resources. 7. The
resource distribution is also expressed as a truncated normal distribution. 8. The
self-consistency equations are obtained from the species and resource distributions.

This equation was first derived in [Bunl7, BBC18b] using the cavity method, replica
method and random matrix theory. Alternatively, it can be understood by solving the
self-consistency equation for the susceptibility v:

v= L(1— V1—4ppno?, (4.17)

202

which has no real solution when 4pgyo? > 1 for p = 1. This criteria also corresponds
the point where the minimum eigenvalue A,;, first crosses zero. This suggests the
susceptibility in the cavity equations have a deep connections with the spectrum of the
random matrix describing interactions. This connections was developed in [CMIM19].
Finally, we note that for p < 1, we need to analyze the susceptibility in a complex plane.

For brevity, we will not discuss these results here.
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4.2 Cavity method for MacArthur’s consumer-resource model

The MacArthur consumer resource dynamics is described with eq. (4.18) and eq. (4.19),

dN;
7 NZ(Z cigRg —my), (4.18)
B

dR,
dt

= Ra(Ko — Ra — Y _ Njcja) (4.19)
j

This model can also be analyzed using the cavity method and in this section, we closely
follow the derivation in [ABM18b)]

As shown in Fig. 4.4: step 1, consumer preference c;, are random variables drawn from
a Gaussian distribution with mean p/M and variance o2 /M. It is helpful to decompose
the consumer preference into an average and fluctuating component: ¢;o, = /M +0cd;n,

where the fluctuating part d;, obeys

(dia) = 0 (4.20)

0;ii0a
(diadjg) = —L22.

o (4.21)

We also assume that both the carrying capacity K, and the minimum maintenance cost

m; are independent Gaussian random variables with mean and covariance given by

(K,) = K (4.22)
Cov(Ka, Kpg) = Sapoi (4.23)
(mg) = m (4.24)
Cov(m,m;) = &ijor, (4.25)

Let (R) = +; > s Rp and (N) = %ZJ N; be the average resource and average species
abundance, respectively. With all these defined, we can re-write eq. (4.18) and eq.

(4.19) as
dN;

7t = Ni(,u <R> —m+ zﬁ: UcdiBRB — dm;) (4.26)
dR, .
o = Ba(K+0Ka—Ra—y"' i (N) - Z 0edjoN;) (4.27)
J

where 0K, = K, — K,dm; = m; —m and v = M/S. The basic idea of cavity method is
to relate an ecosystem with M + 1 resources (variables) and S + 1 species to that with
M resources and S species. In Fig. 4.4: step 2, we can express eq. (4.27) as a bipartite

factor graph model for visualization. At step 3, we add a “cavity” species Ny and a



Chapter 4. Cavity method 43

“cavity” resource Ry into the ecosystem,

dN,
TtO = No(u(R) —m + Z ocdoglRg — omo) (4.28)
)
dRo _ Ro(K+6Ko—Ro—~"" 1t (N) =Y _ oedjoN;) (4.29)
dt —

Adding new species and resource will perturb the original steady state. To characterize

the perturbations, we introduce the following susceptibility matrices:

_ N _ 4.

Xap 8K5 ’ Xia 0K, ) ( 30)
AR, ON;

vl — gt vl = om; (4.31)

We can express the steady-state species and resource abundances in the (S + 1, M + 1)
system with a first-order Taylor expansion around the (S, M) values. Because the mean

part of the consumer resources, 4 ~ (’)(ﬁ), are much smaller than the fluctuation term,

» M
oedin ~ O(ﬁ)’ we can neglect the means and consider the perturbations due to the
fluctuating components of the consumer preferences o.d;oRo in eq. (4.27) and o.doaNo

in eq. (4.26) to m;, and K, respectively.

Let us denote the species and resource abundances before adding the new species and
resources by Nj,o and R, /g respectively, From the definition of the susceptibilities, we
can relate the species and resources abundances after the perturbation (N; and R,) to

the abundances before the perturbation (N;/ and R, /o) through the expressions:

Ni = Ni/O — O¢ ZX%dOﬁNO — O¢ Z ngjORO (432)
8/0 /0

Ra = Ra/o — O¢ Z Xgﬁd()@]vo — O¢ Z Vo}?jdjORO (4.33)
B/0 /0

Note ;o and 35/, mean the sum excludes the new species 0 and the new resource
0. The next step is to plug eq. (4.32) and eq. (4.33) into eq. (4.28) and eq. (4.29) and

solve for the steady-state value of Ny and Ry.
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4.2.1 Self-consistency equations for species

For the new “cavity” species Ny, the steady equation takes the form

0 = No(u(R)—m— dmo—0c2Ng Z Xgﬁd()adoﬁ (4.34)
a/0,3/0
—UER()Z ngdogdoj+zUcd05R5/0+Ucd00R0)
B/0,5/0 8/0

Notice that each of the sums in this equation is the sum over a large number of weak
correlated random variables, and can therefore be well approximated by Gaussian ran-
dom variables for large enough M and S. Using Eq. 4.20, we can calculate the sum of

the random variables in the thermodynamic limit:

1
Z viidopdoj = Vi Z vi6j0650 =0 (4.35)
B/0,5/0 £/0,5/0
1
Z X&sdoados = Vi Z X550a8 = X (4.36)
a/0,8/0 «/0,8/0

where x = % Yo 10,8/0 ngéaﬁ = %Tr(xgﬁ) is the average susceptibility. Using these

observations about above sums, we obtain

0 = No(u(R)—m —o2xNo+ Z oedosRa 0
B/0
+ O’cdo()R() —dmyp) + (’)(]\471/2)7 (4.37)

Employing the Central Limit Theorem, we introduce an auxiliary Gaussian variable zy

with zero mean and unit variance and rewrite this as

Z oedogRa 0 + ocdogRo — 6mo = 2n\/ 02qr + 02,

B/0

where ¢g is the second moment of the resource distribution,
— (R2) = 1 Z R2
qr = o/ = M B-
B
We can solve eq. (4.37) in terms of the quantities just defined:

p{R) —m — o2xNo + \/o2qr + 0%2n <0 (4.38)
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Inverting this equation one gets the steady state of species

_ 2 2

Ny = max | 0, 5
oeX

which is a truncated Gaussian.

Combining eq. (4.39) and eq. (4.11), we can easily write down the self-consistency
equations for the fraction of non-zero species as well as the moments of their abundances

at the steady state:

_ S pB)—m
én = 3 _w°<¢m> (4.40)

_ (Votarton ) o p{R)—m
(N) = ( o2y ) 1(m) (4.41)

2
B Vo2qr + 02, ws p(R) —m ) (4.42)
we= 02X ? VOo2qr + 02, '

4.2.2 Self-consistency equations for resource

We now derive the equations for the steady-state of the resource dynamics. Inserting

eq. (4.33) into eq. (4.29) gives:

0= RO(K_ RO — ’7_1/14 <N> —I—UzNOzX%djodoﬁ (4.43)
8/0,3/0
+U(2;R02ng0id0j —Z O'Cdj()Nj/O —0edooNo +0Kp)
i/0,5/0 /0

where v = % We can also define the trace of the species susceptibility

1 1
v=g Z l/i]}[(si]‘ = gTr(VzN)
/0,5/0

. Using the properties of d;q, i.e. eq. (4.20) and eq. (4.21), and following steps analogous
to the derivation of eq. (4.36) and eq. (4.35), we get

chdjon/ofacdooNo +5K0 = ZRW/Ug’yfqu =+ O'%(,
i/o

where qy = <Ni2> = %Z j N j2 and we have introduced an auxiliary Gaussian variable
zr with zero mean and unit variance. Plugging these expressions into Eq. 4.43 and

solving for Ry shows that the resource abundance distribution is also truncated gaussian
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distribution of the form:

1
Ro = max<07 K—~ N<N>+ZR)

4.44
1—~"loZv (444)
By analogy with the LV equations, We can easily write down the self-consistency equa-
tions for the fraction of non-zero resources as well as the moments of their abundances

at the steady state:
M*

- K= (N)

M wo( Ozp

2~—1 2
\/7eY AN + Ok K —~7'u(N)
(R)= | —mmi,e, |l - ) (4.46)
T o Voirtav o

2
2,1 2
Vot tok\ K-y
qr= = wa( ) (4.47)
T e VoRrtan+ok

The susceptibilities are given by averaging ul-];[ and 2 |

) (4.45)

r <S§Z> N <2§2> =1- jio.gyv (4.48)
b <§ZZ>:<§$>:_EC (4.49)
Solving above two equations yields
! N

X=0¢r—7"¢n, v= (4.50)

Co2or—7lon
4.2.3 Comparison with numerics

Fig. 4.5 shows a comparison between the cavity solution and 1000 independent numerical
simulations for various ecosystem properties such as the fraction of surviving species
S5* /S, the fraction of surviving resources M* /M, and the first and second moment of the
species and resource distributions. As can be seen in the figure, our analytic expressions
agree remarkably well over a large range of o.. As a further check on our analytic
solution, we ran simulations where the c¢;, were drawn from different distributions. One
pathology of choosing ¢;, from a Gaussian distribution is that when o, is large, many of
consumption coefficients are negative. To test whether our cavity solution still describes
ecosystems when c;, are strictly positive, we compare our cavity solution to simulations
where the ¢;, are drawn from a binomial or uniform distribution in Fig. 4.6. As before,

there is remarkable agreement between theoretical predictions and numerical simulations
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FIGURE 4.5: Comparison between cavity solutions (see main text for definition) and
simulations for the fraction of surviving species ¢n
species ¢p = MT; and the first and second moments of the species and resources dis-
tributions as a function of o.. The error bar shows the standard deviation from 100
numerical simulations with M = S =100 =1., K =1., 0 = 0.1, m = 0.1, 0,,=0.01.
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Simulations were run using the CVXPY package [AVDB18].

in most of the range. Note that for the binomial distribution, if p is too small, the matrix

become sparse and Gaussian distribution is not a good approximation and our cavity

equations are less accurate.

4.2.4 Susceptibilities and Marchenko—Pastur distribution

A remarkable feature of the cavity solution is that we can directly relate the suscepti-
bilities defined in eq. (4.30) and eq. (4.30) to results in Random Matrix (RMT) theory

Recall, that these four susceptibility matrices that measure how the steady-state re-

source and species abundances respond to changes in the resource supply and species

death(growth) rates. In fact, it turns out this relationship between susceptibilities and

RMT is quite general and suggests a deep connection between RMT and phase transi-

tions.
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FIGURE 4.6: Comparison between cavity solutions and simulations for strictly positive
distributions. The parameters are the same as Fig. 4.2 except ¢;, is sampled from uni-
form distribution between 0 and b, and binomial distribution with nonzero probability

p.

In what follows, we restrict the susceptibility matrices to surviving species and resources.
The reason for this is that for the extinct species and resources, by definition the suscep-
tibilities are zero. To proceed, we derive explicit equation satisfied by our four suscep-
tibility matrices. Our starting point are the steady-state equations (Eq. 4.18) Eq. 4.19)

for MacArthur’s consumer-resource model:

0= N,(Z CiaRa — mi), (4.51)

0= Ro(Ko — Ra — Y _ Njcja) (4.52)
J

. Differentiating these equations with respect to Kg and m; yields the relations

0= Y ciaXtgs  Gap=Xag+ D X}hCsa
aeM* jEeS*

8ij = Z cmygj, 0= l/fi + Z Vﬁcja- (4.53)
aeM* jES*

where M* and S* denote the sets of surviving resources and species, respectively. These

two equations can be written as single matrix equation for block matrices:

c 0 v xR

1 7 NN

=1 (4.54)
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To solve this equation, we define a S* x S* matrix: Ag; = > oy cmégj. A straightfor-

ward calculation yields

Xfﬁ = Gap— Z Z CMA” . (4.55)
i€ES* jES*
X = D Ajtes vE= A (4.56)
jES* JES*
vl = —A7', ijeS"anda,feM (4.57)

Since the consumer preferences ¢;, are random matrices, this suggests that we should be
able to derive susceptibilities in cavity methods with Random Matrix Theory (RMT). We

now show that this is indeed the case. Our starting point are the average susceptibilities

X::‘if j{: ngv v= S 2{: Vij -

aceM* i€S*

which are defined as:

From the cavity calculations, we only care about x* B and Y, because the other suscep-

iy
tibilities are lower order in 1/M. We can combine with (4.56) to obtain

1 1 1
X = 5;T0a) — 57T SN CLAGCs

1€S* jeS*
M* 1
= S un SN AGCsCE,
i€S* jeS*
— _Z _ 4,
(YA brR—7 ON (4.58)

A;j; is the outer product of a random matrix ¢ with itself, i.e., a Wishart matrix. The
underlying reason for this is the bipartite nature of the consumer resource models re-
sulting from the presence of two types of degrees of freedom: resources and species
[RCKTO08, RCKT08, AF19, AABF19]. Random Wishart matrices are well-known to
follow a different eigenvalue distribution, the Marchenko-Pastur law[MP67b] given by

Vb —z)(x—a)+060(c—1)1 - cHd(z) (4.59)

p( 27rcr cr

where ¢ = M* and O(z) represents the Heaviside step function. Since S* < M* is always
Cy-aégj takes the form of a Wishart
Matrix. We will exploit this to calculate x and v. Notice,

true, the second term can be ignored. A = cg-

— _ 1
v = STr )= SZ)\ (4.60)
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where J; is the eigenvalue of A;;.

Substituting equation (4.59) into the expression for v and replacing the sum with an

integral yields:

v = —g bl (x)dx——gia—’_b_%/%
S J, o’ S do2yab
1 oN

02 ¢or — 7 1N

(4.61)

The second line of equation (4.61) is obtained by transferring the integral function to a

complex analytic function and applying the residue theorem.



Chapter 5

When will complex ecosystems

behave like random systems?

In 1972, Robert May triggered a worldwide research program studying ecological com-
munities using random matrix theory. Yet, it remains unclear if and when we can treat
real communities as random ecosystems. In Chapter 2, we have shown that such models,
initialized with random parameters, can predict lab experiments on complex microbial
communities [GI83, MCM20] and reproduce large-scale ecological patterns observed in
field surveys, including the Earth and Human Microbiome Projects [MCM20]. This sug-
gests that the large-scale, reproducible patterns we see across Microbiomes are emergent

features of random ecosystems.

Yet, it remains unclear why random ecosystems can accurately describe real ecological
communities. To answer these questions, in this paper we exploit ideas from random
matrix theory and statistical physics to analyze generalized consumer-resource models
in spirit of May’s original analysis. We show that the macroscopic ecological properties
of diverse ecosystems can be described using random ecosystems, much like thermody-
namic quantities like pressure and average energy of the ideal gas can be described by

considering particles to be random and independent.

o1
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FI1GURE 5.1: Random interactions destabilize an ecosystem of specialist con-
sumers. (A) Left: an ecosystem with system size M = 5 starts with specialists
consuming only one type of resource, resulting in a consumer preference matrix B = 1.

Right: off-target consumption coefficients C ~ N (£, \‘/’—Cﬁ) are sampled from a Gaus-

sian distribution, resulting in an overall consumer preference matrix C = B + C. (B)
Fraction of surviving species S* /M vs. o, numerically computed using M = 100 for an
ecosystem described by Eq. 5.2, along with the corresponding results for a completely
random ecosystem with B = 0. The error bar shows 1 standard deviation from 10000
independent realizations. Also shown are examples of the matrices C employed in the
simulations. (C) Heatmap for the identity matrix plus a gaussian random matrix with
o. = 1 for two system sizes: M = 100 and M = 500.

5.1 Models

To explore these ideas, we devised a more concrete version of May’s original thought
experiment describing an ecosystem consisting of S non-interacting species where in-
teractions are gradually turned on. May’s original argument only considered the lo-
cal dynamics near a pre-specified equilibrium point that eventually becomes unsta-
ble. Since we are interested in exploring what happens in consumer resource models,
we must make additional modeling assumptions to arrive at a complete set of non-
linear dynamics. We focus on numerous variants of the Consumer Resource Model
(CRM)[ML67a], including different choices of resource dynamics, consumer preferences,
as well as more dramatic variants such as the Microbial Consumer Resource Model
introduced in [GLB*18, MCGM20, MCGM20].

The original MacArthur Consumer Resource Model [ML67a] consists of S species or
consumers with abundances N; (i = 1...S) that can consume one of M substitutable
resources with abundances R, (o = 1...M), whose dynamics are described by the equa-

tions

G = Ni(X 5 CipRs — mi)

K ) (5.1)
= Ra(Ka — R, — Ej NjCja)~

The consumption rate of species i for resource a is encoded by the entry Cj, in the

S x M consumer preference matrix C, K, is the carrying capacity of resource o, and
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m; is a maintenance energy that encodes the minimum amount of energy that a species
1 must harvest from the environment in order to survive. When the system is in the
steady state, some species and resources can vanish. We denote the numbers of surviving
species and resources by S* and M*, respectively, and in general at steady state we will
have S* < S and M* < M. For this reason, we refer to this model as the CRM with

resource depletion and consider its effects analytically and numerically in later sections.

In the beginning, we focus primarily on a popular variant of the original CRM introduced

by Tilman with slightly different resource dynamics[Til82b]:

W = Ni(Y 3 CipRg — mi)

dRoy ~

(5.2)

The main difference between this model variant and the original CRM is that consumers
can no longer deplete a resource (i.e. M* = M). This makes this models significantly
easier to analyze (especially within the context of Random Matrix Theory) and leads
to much simpler analytic expressions. For this reason, we largely focus on this model
without resource depletion. However, we note that a major drawback of this model is
that it can lead to unphysical, negative resource concentrations and hence is physically
flawed. Despite this limitation, the CRM without resource depletion captures almost
all the qualitative behaviors present in more complicated and physically realistic CRMs

(though there are some subtle but important differences discussed below).

Both the models in Eq. 5.1 and Eq. 5.2 make very specific assumptions about re-
source dynamics (i.e. that resources are themselves self-replicating entities that can
be described by logistic growth in the absence of consumers). To check the general-
ity of our results, we also numerically analyzed generalizations of the CRM including
linear resource dynamics where resources are supplied externally, and a model of micro-
bial ecology with trophic feedbacks where organisms can feed each other via metabolic
byproducts [GLB118, MICGT19, MCM20, MCGM20]. Furthermore, for simplicity, in
most of this work we assume that S = M. However, we have numerically checked that

our results are robust to breaking on this assumption.

In CRMs, the identity of each species is specified by its consumption preferences. In real
ecosystems, it is well established that organisms can exhibit strong consumer preferences
for particular resources. However, recent work has shown that consumer resource models
with random consumer preferences can reproduce experimental observations in field sur-
veys and laboratory experiments [GLB*18, MCM20]. To understand this phenomena,
we asked how adding noise to consumer preferences changes macroscopic ecosystem level

properties like diversity and average productivity. To do so, we considered a thought
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FIGURE 5.2: Community properties for structured and random ecosystems.
(A): Examples of designed interactions Top: the identity matrix; Middle: a Gaussian-
type circulant matrix; Bottom: a block matrix (see Methods for details). Simulations
of designed and random ecosystems where the random component of the the consumer
preferences C are sampled from a (B) Gaussian distribution N(0, \(/TCM)’ (C) Uniform
Distribution: ¢(0,b) or a (D): Binomial distribution: Bernoulli(p.). The plots show
the fraction of surviving species S*/M, mean species abundance (N), and second mo-
ment of the species abundances <N 2> for designed and purely random ecosystems the
number of non-specific consumer preferences is increased.

experiment where we started with non-interacting species where each species consumes

its own resource, and then added “noise” to the consumer resource preferences.

A set of non-interacting species can be constructed by engineering each species to con-
sume a different resource type, with no overlap between consumption preferences. For
example, one can imagine designing strains of E. coli where each strain expresses trans-
porters only for a single carbon source with all other transporters edited out of the
genome: i.e a strain that can only transport lactose, another strain that can only trans-
port sucrose, etc. An ecosystem with such consumer preference structure is shown in
Figure 5.1(A). In such an experiment, horizontal gene transfer would eventually begin
distributing transporter genes from one strain to another, so a realistic model would
have to allow for some amount of unintended, “off-target” resource consumption. In
line with May, we can model the consumer preferences Cj, of species i for resource a

in such an ecosystem as the sum of the identity matrix 1 and a random component Cj,
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with variance o2 that encodes non-specific preferences (see Figure 5.1A right). In other

words, the full consumer matrix can be written as C = I + C.

5.2 Phase transition to random ecosystems

Figure 5.1(B) shows how the number of surviving species at steady-state as one adds
more and more non-specific resource preferences to an ecosystem initially composed
of non-interacting species. Just as in May’s analysis, the appropriate measure of the
importance of the random component is the root-mean-squared off-target consumption
0c = VMo? (recall M = S). This scaling reflects the fact that two consumer matrices
C with the same o, but different system sizes M can have very different amounts of
absolute noise as shown Figure 5.1(C), but exhibit almost identical community-level
properties (with all differences coming from finite size effects). Figure 5.1(B) shows the
fraction of surviving species S*/M in the ecosystem as a function of o.. At small values
of 0., all the species survive and S* = S. As high as 0. = 0.7, almost all of the original
species are still present in the community. But between o. = 0.7 and o, = 1, there is
a sharp transition in community structure, which results in about half of the original

species becoming extinct.

Remarkably, the fraction of surviving species converges to the same value as for a com-
pletely random consumer preference matrix and remains finite as o, — oo [SCGT18].
This means that ecosystems with an arbitrarily large number of species can be stably
formed by considering a sufficiently large initial ecosystem. We also examined two other
community-level properties: the mean species abundance (N) (i.e. the average produc-
tivity), and the second moment of the population size (N?), which includes information
about the distribution of population sizes of various species. Figure 5.2 shows that both
of these quantities are also well-approximated by the random consumer preference ma-
trix for o, > 1. These numerical predictions are in excellent agreement with analytic
predictions derived in the S — oo limit derived in Section 5.3 using the cavity method
[Bunl7, ABM18b].

This convergence to random ecosystem behavior is quite robust, and holds for other
choices of designed consumer preferences beyond the identity matrix considered above.
Figure 5.2 shows numerical simulations of the diversity S*/M, average productivity
(N), and second moment of the species abundances (N2) as a function of the noise o,
for two other choices of designed consumer preference matrices: a block structure with
pre-defined groups of species exhibiting strong intra-group competition and a unimodal
structure where each species is more likely to consume resources similar to its preferred

resource. Once again, we see that the ecosystem quickly transitions to a behavior where
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these macroscopic properties are indistinguishable from those of a random ecosystem.
The primary effect of the choice of consumer preference matrix is to adjust the threshold
value of o, where the transition to typicality takes place. In all cases, we find that the
random behavior takes over when the average total off-target consumption capacity over
all M resource types becomes greater than the consumption of the primary resource in
the original designed ecosystem in the absence of noise, the same as May’s stability
criteria [May72].

The character of the self-organized state is also robust to changes in the sampling scheme
for the random component of the consumer preferences. Gaussian noise in consumer
preferences allows the clearest comparison to May’s result but also sometimes results
in non-physical negative values for consumer preferences. We therefore tested two sam-
pling schemes that always produce positive values for consumer preferences: uniformly
sampling the random component of preferences Cj, in an interval from 0 to b, and bi-
nary sampling where Cj, = 1 with probability p. and zero otherwise. Changing b or
pe affects both the mean and the variance of the random components of the consumer
preferences simultaneously making it difficult to directly compare to the Gaussian case.
Nonetheless, as can be seen in the Figure 5.2, the qualitative behaviors is identical to the
Gaussian case, with macroscopic ecological properties becoming indistinguishable from
those of a fully random ecosystem when the average off-target resource consumption

comparable to the the consumption of the designed resources.

5.2.1 Sensitivity to perturbations and the transition to typicality

To better understand why mass extinctions happen at o} ~ 1 and allow for comparison
with May’s original analysis, we calculated an effective species-species competition ma-
trix A;; between species for an ecosystem whose dynamics are governed by Eq. 5.2. We
exploited the observation by MacArthur and others that if resource abundances always
remain close to their steady state values, the steady-states of the CRM coincide with

those of an effective generalized Lotka-Volterra model of the form

dN;
dtz = Ni Z CiozKa —my; — ZAiij 5 (53)
aceM J

with the species-species interaction matrix given by

A=Y CinCl; (5.4)

aeM
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FIGURE 5.3: Effect of random interactions on ecosystem sensitivity. (A): The
bipartite interactions Cj, in MacArthur’s consumer-resource model can be mapped to
pairwise competition coefficients A;; in generalized Lotka-Volterra equations through
Aij =Y nem C’iaé’gj. (B) Spectra of A;; at different o, for C = 1 + C, where C is
a random matrix with i.i.d entries drawn from a normal distribution with mean zero
and standard deviation o.. The red solid line is the Marchenko-Pastur distribution.
(C): Comparison between numerical simulations and analytic results for the minimum
eigenvalue of A at different o.. (D): Comparison between numerical simulations and
analytic solutions for the mean sensitivity v of steady-state population sizes to changes

in species growth rates.

(see Figure 5.3(A) for details).

This matrix is related to May’s community matrix

governing stability J discussed in the introduction through the relation J;; = fNiAij,
where N; is the steady-state abundance of species i. For symmetric interaction matrices
of the form in Eq. 5.4, it is possible to prove that the largest eigenvalue Apax of J
reaches zero from below only when the smallest eigenvalue A, of A reaches zero from

above (see Appendix A).

As shown in Figure 5.1(B), the behavior broadly falls into one of three different regimes
depending on the amount of noise introduced in the consumer preferences: a low-noise
regime when 0. < 1, a cross-over regime when 0 < o, < 1, and a high-noise regime
when o, > 1. Figure 5.3(B) shows how the eigenvalue spectrum of the corresponding

Lotka-Volterra interaction matrix A change as o, increases.

Low-noise regime (0. < 1): In the low-noise regime, the engineered structure in
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the consumer preference controls large scale ecological properties. Furthermore, the
eigenvalue spectrum of the LV-interaction matrix A is centered around 1 reflecting
the fact there is very little competition between species (i.e. species still occupy largely
independent niches). For this reason, in this regime all the initial species in the ecosystem

survive to steady-state so that S*/M = 1.

Crossover regime (0 < o, < 1): With increasing o., the eigenvalues due the noise
component in A repel each other like in the Coulomb gas and the spectrum spreads out
[Dys62]. Apin decreases until it reaches the threshold of stability Amin = 0 at o) = 1.
Note that Ay, is close to 0 but not exactly at 0 because the steady-state of the CRM is
alway stable [Che90b]. In this regime even a small environmental perturbations or small
amounts of demographic noise can result in species extinctions [DB20]. This is closely
related to the divergence of structural stability when Apin ~ 0[RSB14]. In Section 5.3 we
show analytically using the Cavity method [Bunl7, ABM18b] that in the limit M — oo,
Amin 18 approaches 0 from above when o) = 1. At o, ~ 1 the engineered structure
and noise have comparable amplitudes. For the case where the consumer preferences
are chose to be binary noise, this threshold corresponds to a critical noise level p. ~ ﬁ,
meaning on average there is one random nonzero element in the row besides the diagonal
one. More generally, our numerics suggest that the threshold to typicality occurs in a
wide variety of models when the expected off-target resource consumption rates become

comparable to the the consumption rate for the designed resources.

Noise-dominated regime (o, > 1) In this regime, we observe two new phenomena
that were not accessible in May’s original framework. First, the spectrum of the species-

species interaction matrix A;; approaches the Marchenko-Pastur law [MP67b],

P(2) = 5k /B = 0) (@ — @) +O(c — 1)(1 — ¢ 1)d(x) (5.5)

where a = 02(1 — 1/¢)?, b = 02(1 + /c)?, ¢ = S*/M and O(z) represents the Heaviside
step function. This differs from May’s analysis where the spectrum of the interaction
network follows Girko’s Circular law [RCKTO08, AF19, AABF19]. The reason for this
difference is that species-species interaction matrix obtained from the CRM is the outer
product of a random matrix C with itself (i.e., a Wishart matrix, see Eq. 5.4), reflecting
the fact that the CRM has two different kinds of degrees of freedom: resources and
species. The Marchenko-Pastur law is the distribution we would expect for an ecosystem
with completely random consumer preferences [MP67b]. This helps explain our earlier
observations that community-level observables of ecosystems are indistinguishable from

the purely random ecosystems when o, is sufficiently large (see Figure 5.3(B)).

Secondly, as o, increases past 1 and ecosystem properties become typical, the resulting

ecosystems once again become insensitive to external perturbation [DB20]. To see this,
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we note that we can measure sensitivity to perturbations by examining the minimum
eigenvalue of the interaction matrix A;;, with larger Anin meaning decreased sensitivity
to perturbations (see Appendix A.1). The minimum eigenvalue in the Marchenko-Pastur

Distribution is located at
Amin = 07 (1 = /S*/M)?. (5.6)

As one increases o, S*/M — 1/2 from above since there is increases competition be-
tween species for shared resources. Consequently, Ay, is always be much larger than

zero once ecosystems crossover to their typical behavior.

The above analysis suggests that Ani, is an important property that can be used to
characterize the three regimes seen in Figure 5.3(C). In the low-noise regime, species-
species interactions are weak and Ay, =~ 1, whereas in the high-noise regime Ay, =
02(1 — \/S*/M)?. The calculation of Ayin in Regime B is challenging because of the
mixture between the engineered structure and noise. However, we can use techniques
from RMT for wireless communication (i.e information-plus-noise models) to analytically
estimate Apin [CD11, LV+11]. The results are shown in the red scatter points in Figure
5.3(D) (see Appendix 5.4.3). As discussed above, A\pin approaches zero as o, approaches

one.

The spectrum of A also contains quantitative information about the sensitivity of the
ecosystem in the Cavity method. Specifically, as shown in Section 5.3, we can define a
susceptibility v that measures the average response of the steady-state population size
N; to perturbing of the species maintenance cost m; (see Eq. 5.2). We further show
that v is directly related to the the sum of the inverse eigenvalues of A;; through the

expression

v — % (/) = %u(A*l). (5.7)

Figure 5.3(D) shows that this quantity is initially constant as o, is increased from O,
then reaches the maximum value at . = 1, and finally rapidly decreases to near zero.
In Section 5.3 we provide analytical calculations based on the cavity method confirming

these numerical results.

Note that our results are not restricted to Gaussian noise but also apply to the other
cases where the noise in consumer preferences is binary or uniform. This is because
the central limit theorem guarantees that the statistics of eigenvalues of large random
matrices converges to the statistics in Gaussian random matrices for many biologically

plausible choices of consumer preferences.
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FIGURE 5.4: Effect of resource extinction on an ecosystem. A schematic for the
consumer preference matrix with ((A)) and ((B))without resource extinction for spe-
cialist consumers that each eat independent resources. The left schematic corresponds
to the initial consumer matrix, and the right schematic to the consumer matrix after
species and resource extinctions. Notice that resource extinctions can result in singu-
lar consumer matrices (C) Spectra of A;; at 0. = 0.3 with consumer matrices chosen
as in Figure 5.3 with (left) and without resource extinction (right). The zero modes
are marked with a red ellipse. (D) the mean sensitivity v of steady-state at different
o.. The dashed lines in (D) are cavity solutions. The scatter points are results from
numerical simulations. See Section 5.3 for detailed calculations.

5.2.2 Effect of resource depletion

Thus far we have focused on a CRM without resource extinctions specified by Eqs. 5.2.
As discussed extensively in Section 5.3, if we instead allow for resource extinction (Egs.
5.1), somewhat surprisingly, our cavity method predicts a first-order phase transition
to typicality rather than a cross-over as is the case without resource extinction. The
signature of such a first order transition is the divergence of the susceptibility matrix v
discussed above. Figure 5.4 shows v with and without resource extinction, numerically
confirming the existence of this first order transition. This first order transition is also
reflected in the spectrum of the interaction matrix A through the the appearance of zero

eigenvalue modes for CRMs when resources can go extinct.

The existence of zero modes can be understood by noting that resource extinction and
species extinction correspond to the column and row deletion in the consumption matrix
(shown in Figure 5.4(A)). Such deletions can change the engineered component of the
effective consumer preferences for surviving species and resources, resulting in large
fluctuations in the interaction matrix A. In the presence of these large fluctuations, the
interaction matrix no longer self-averages, giving rise to the observed first-order phase

transition. This same mechanism also leads to a first-order phase transition to typical
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behavior when the engineered portion of the consumer resources is block diagonal, even

in the absence of resource extinctions (see Figure 5.4).

5.3 Cavity solution

When the designed component of the consumer preferences is the identity (i.e B = 1,
the effect of random off-target consumption on system-scale properties can be computed
analytically in the M, S — oo limit using the cavity method introduced in Chapter 4.
The cavity calculation is straightforward but tedious. For this reason, it is helpful to

introduce the notation as before:

o M2 =g, (R) = ﬁZg Rg and qp = 37 28 R% = (R?) , where M* is the number

Of surv1v1ng resources.

. % = ¢n, (N) = %Zj Nj and gy = %Z] Nj2 = (N?), where S* is the number of

surviving species.

o Cio = 4 +0cdiq assuming (dia) = 0, (dind;g) = 6”50[3 - with (cia) = 47, (CiaCjp) =
O 51j0as + Lo & 55,i00s.

o K, =K + 0K, with (K,) = 57 Y3 Kp =K, (0Ko0Kp) = 6apoi-

o m; = m+ om; with (m;) = m, (dm;dm;) = 5ij‘772n-

° v = % and for the identity matrix v = 1.

Following similar steps as in Chapter 4 and [ABM18b], we perturb the ecosystem with

a new species and resource Ny and Ry. Ignoring O(1/M) terms yields the following

equations:
dczl\tfi = Ni|Ri m+z +ocdip) R + (1/\2+Ucdi0>R0_5mi (5.8)
dclli;a = Ro |K+6K,—Ry— Z L ot oedjo)N, (%—l—acdm)N@ (5.9)
% = No | Ro *erZ —+0cdja)Rz—dmg (5.10)
% = R _K +0Ko — Ro— No — z]:(g + oedjo) Nj (5.11)
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Denote by N, /05 R, /0 and Ni, R, the equilibrium values of the species and resources
before and after adding the newcomers, respectively. These can be related to each other

using the susceptibilities defined above:

Ni = Nyjg—o0c» vjdoRo— e xihdosNo (5.12)
J B

Ra = Ra/O — O¢ Z Vo}?idiORO — O¢ Z Xg@dOBNO (513)
i B

In what follows we assume Replica Symmetry. In this case, the sums in the equations
above can be approximated as Gaussian random variables. For this reason, it is helpful

to introduce new auxiliary random variables:
ZN = ZUCR5/0d05 - 5m0 (5.14)
B

ZR = ZUch/OdjO*(SKO (515)
J

where (z2n) =0, 02y = \/02qr + 02, and (zg) =0, 0., = \/02qN + 0%

Case 1: both Ry and Ny are positive. Following calculations analogous to [ABM18b]
and noting that v = % =1 yields:

_ 02 (K — p{N)+ zg) — p(R) +m — z
Ry = max [o, eX( “éli;lﬁlgx“jﬁ* N] (5.16)
1—o2v R)y—m+z K—p(N)+=z
No = max [0,( S (ﬁ—ﬁi)élil pN) + R} (5.17)

Case 2: either Ry or Ny is zero. We get exactly the same expression as the random
ecosystem we derived in [ABM18b].

p(R)y —m+zy or. No— -~ K —p(N)+zr

2

Ry=0, Ny=
0 ) 0 o2x 0 1—o2v

(5.18)

Case 3: both Ry and Ny are zero, namely,

Ry =0 and Ny = 0. (5.19)
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Combining the cases above, the steady state solution is a Gaussian mixture depending

on the positivity of Ry and Nj.

o2 - ZR) — m—z
Ro = ©(Ro)0(No) 72X “Efl\’z;j)agxu +<If> +m = 2y

o (5.20)
+O(Ro)(1 = O(No) ——— 35—

o (1 02v)(u(R) = m +2x) + K — p(N) + 2r

No = O(No)O(Ro) (1-o02v)o2x +1 (5.21)

p(R) —m+ 2y

2

+ O(No)(1 = ©(Ro)) o

Cavity equations for the susceptibilities can be obtained directly by differentiating these

equations:

L % S = 321:1@ _ Onor(1—0Zv)  ¢n(1-—¢R) (5.22)

(I-o2v)o2x+1  o2x
. = 1 . 0(Ro) _ ¢noROZX (1—9¢n)¢r (5.23)
M e 0K (1-02v)o2x+1 1—o2v '
5.3.1 With resource depletion
Two solutions are found by solving eq. (5.22) and eq. (5.23):
1
¢R_¢N:O> XZOa V:Ugfl (524)

¢r—¢N >0, X =¢r— N,
1= 26n0% + 6ro? — /1 +2(1 = 26x)602 + $ho? (5.25)
o 20%(dr — ON) '

5.3.2 Without resource depletion

In this case, the resource never vanishes so that we can fix ¢ = 1 and solve eq. (5.22)

and eq. (5.23). Two solutions are found:

1_¢N:O> XZOa v =

(5.26)

B 172¢)NUZ+037\/1+20374¢N03+0'§

208(—1 + o) - (6:27)

1_¢N>07 X:1_¢N7 v
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(A) MacArthur's consumer-resource model (B) MacArthur's consumer-resource model
without resource depletion with resource depletion
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FIGURE 5.5: Comparison between numerical simulations(scatter points) and cavity
solutions(solid lines) for x at different o, for different cases. (A) CRM without resource
depletion, egs. (5.2). (B) CRM with resource depletion, egs. (5.1). Note S* and M* are
obtained from the numerical simulations, although in principle they could be obtained
by solving the cavity equations directly.

Above two solutions are continuous at the transition point: x = 0 i.e. ¢y = 1. Assume
there is a small perturbation near the transition: ¢y = 1 — € and € < 1 and v in eq.
(5.27) can be expanded around e. It is easy to check the v in eq. (5.27) has the same

expression as eq. (5.26) at the first order of e. Therefore, only one solution exists:

x=1-¢n, v= 1—2¢n02 + 07 — /14202 — 4902 + 0}
7 208(—1+ ¢n)

(5.28)

The comparison between cavity solutions and numerical simulations for x and v are

given in Figure 5.5 and Figure 5.4 respectively.

5.3.3 Without resource depletion and species extinction

In this case, both the resource and the species never vanish so that we can fix ¢p = 1

and ¢y = 1. Solving eq. (5.22) and eq. (5.23), only one solution is found:

(5.29)

5.3.4 Behavior in Three Regimes

To understand these solutions and behaviors better, it is helpful to consider three
regimes: Regime A where x = ¢r — ¢y = 0, Regime B where xy becomes nonzero
and species start to extinct, and Regime C where o, > 1 and it becomes a random

ecosystem.
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In Regime B, resource depletion has a significant effect on the system’s feasibility, shown
in Figure 5.4. With resource depletion, equation (5.25) shows there is a sudden change
for the linear response function v from Regime A: x = 0 to Regime B x # 0. As

v even a slightly decrease of the number of surviving species will induce a

1
~ Sr—on’
huge perturbation to the ecosystem, corresponding to a phase transition between Regime

A and Regime B at o ~ 0.2.

Without resource depletion, equation (5.28) shows the linear response function v is
continuous from Regime A to Regime B. There is a crossover instead of a phase transition
there. The peak for the crossover is a finite value and can be calculated by taking the
derivative of equation (5.28) over o, ignoring the correlation between o, and ¢n. It
happens approximately at o} = /4dxy — 2 ~ 1.04, where ¢y = 0.77 can be obtained
from numerical simulation. The explanation for the difference from random matrix
theory are provided in the main text and also the spectrums in Figure 5.3 and Figure
5.4.

Without resource and species depletion, as shown in equation (5.29), v diverges at
oy =1, corresponding to Amin reaching exactly zero. This result is also consistent with
equation (5.44), predicted by random matrix theory, which ignores the effect of row or
column deletions in the interaction matrix. This tells there do not exists any feasible
solutions for the coexistence of M species and M resources. Therefore species must go

extinct before o} = 1.

In Regime C, further increasing of o, after o, > 1, the o term in the square root becomes
dominating and the the susceptibility v behaves like a random ecosystem quickly, which
explains the dramatic drop of the species packing shown in Figure 5.1. It indicates the

ecosystem tends to a self-organized random state.

5.3.5 Solutions in Regime A and C

In Regime A(o. < 1), for egs. (5.1) with resource depletion, the solutions for the

steady-states become,
Ry = max[0,m — zy], Nop=max|[0,K + zg]. (5.30)
For egs. (5.2) without resource depletion, the solutions for the steady-states become,

Ry =m —zy, No=max|[0,K + zg]. (5.31)
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For ecosystems without resource and species extinction, the solutions for the steady-

states become,

Ro=m—2zn, No=K + zg. (5.32)

For Regime C (o, > 1), for egs. (5.1) with resource depletion, the solutions for the

steady-states become,

K — p{N)+ zp
1—o02v

Ry = max |0, (5.33)

],%ﬂmww%wwy

azX
in agreement with the equations obtained in [ABM18b] for purely random interactions.
For equations. (5.2) without resource depletion, the solutions for the steady-states

become,

_K—,LL<N>+ZR

R
0 1—o02v

5.34
o2x (5.34)

R) —
,%ﬁmhw>mﬂﬂ
For ecosystems without resource and species extinction, the solutions for the steady-
states become,

Ry —m+z
Np = MR —m N (5.35)

_ K —p(N) +2g
o2xX

1—o0c2v

Ry

3

5.4 Correspondence between RMT and cavity solution

Our numerical simulations show that after the transition, our ecosystems are well de-
scribed by purely random interactions. This suggests that we should be able to derive
our cavity results using Random Matrix Theory (RMT). We now show that this is indeed

the case. Our starting point are the average susceptibilities which are defined as:

1 1
X = 372 Xaa=77 D Xea (5.36)
aeM aeM*
1 1
v = EZVZJZVZEZVZ]ZV (5.37)
€S i€S*

From the cavity calculations, we only care about ng and Z/i];[ , because the other suscep-

tibilities are lower order in 1/M.
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We can combine these equations with (4.56) and (4.57) to obtain

X = =5 Z Xaa: (Xaﬁ) (538)

aEM*
= I - CLACs
- M r( aﬁ) M r 2{: zg: aiflij
1€S* jeS*

M* 1

= T D2 D A5 CisCh
i€S* jeS*

= 7 %R N (5.39)

We now show that the cavity solutions are consistent with results from RMT using

equations (4.56) and(4.57) in Regime A and Regime C described in the main text.

5.4.1 Regime A: C=1

This regime happens when o, < 1. Substituting, C = 1 into equations (4.56) and (4.57)
yields
x=0 v=-1 (5.40)

This is consistent with the cavity solution equation (5.24) with o, = 0 since in this case

S*=5=M.

5.4.2 Regime C: Cy, i.i.d. N(0,0./vM)

In this regime, o, > 1. In this case, A;; =) Cmc’gj takes the form of a Wishart

Matrix. We will exploit this to calculate x and v. Notice,

aES*

_ 1
SZ = —Tr )= SZA (5.41)
1€S*
where J\; is the eigenvalue of A;;. From the Marchenko-Pastur law [MP67b], we know
that the eigenvalues of a random Wishart matrix obey the Marchenko-Pastur distribu-

tion. Substituting equation (5.6) into the expression for v and replacing the sum with
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an integral yields:

st [t
v = —g/a ;p(z)dw (5.42)

S*a+b—2Vab
S 4o2yvab
1 PN
T2 be — Loy
¢ ¢R Y d)N
The second line of equation (5.42) is obtained by transferring the integral function to a
complex analytic function and applying the residue theorem. This result is the same as

the cavity solution equation (5.25) when o, > 1.

5.4.3 Regime B using the Stieltjes transformation

In Regime B, it hard to estimate the minimum eigenvalue. We can use Stieltjes trans-
formation of information-plus-noise-type matrices which are well studied in wireless
communications[DS07, CD11, LV*11], where B represents the information encoded in

the signal and C is the noise in wireless communications. In this case, we have

Cia =1+ Cio, Cig ii.d. N(0,0./VM).

A=Y CiaCli= Y CiCli+Cia+CL+1 (5.43)
aeM* aceM*

Using Theorem 1.1 in [DS07][DS07], the Stieltjes transform m(z) of A;; satisfies
odzm3 —202zm + (624 2—-1)m—1=0 (5.44)

The asymptotic spectrum of A;; can be obtained by m(z), the solution of equation (5.44)
with

m(x —ie) — m(x + ie)

p(x) = lim (5.45)

e—0t 2

The result is shown in Figure 5.6. The minimum eigenvalue reaches 0 nearly at o} = 1,

as predicted by the cavity solution.
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FIGURE 5.6: The asymptotic spectrum of A;; for different values of o. by solving
equation (5.45) numerically.

5.5 Summary

It is common practice in theoretical ecology to model ecosystems using random matrices.
Yet it remains unclear if and when we can treat real communities as random ecosys-
tems. Here, we investigated this question by generalizing May’s analysis to consumer
resource models and asking when the macroscopic, community level properties can be
accurately predicted using random parameters. We found that introducing even modest
amount of stochasticity into consumer preferences ensures that the macroscopic proper-
ties of diverse ecosystems will be indistinguishable from those of a completely random

ecosystem.

We confirmed our analytic calculations using numerical simulations on CRMs with dif-
ferent types of resource dynamics and different classes of non-specific interactions. We
also showed that despite the fact that random ecosystems can make accurate predic-
tions about macroscopic properties like the average diversity or productivity, they will
in general fail to capture species level details. This phenomena is well understood in the
context of statistical physics where it is possible to predict thermodynamic quantities

such as pressure and temperature even though one cannot accurately predict microstates.

These observations may help explain the surprising success of consumer resource models
with random parameters in predicting the behavior of microbial ecosystems in the lab
and natural environments [GLB'18, MCM20]. They also suggest that maybe possible
to predict macroscopic ecosystem level properties like diversity or total biomass even

when ecosystems are poorly characterized or have lots of missing data.
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The foregoing analysis has several other interesting implications. First, it suggests that
bottom-up engineering of complex ecosystems may be very difficult. As the number
of components increases, small uncertainties in each of the interaction parameters may
eventually overwhelm the designed interactions, and destabilize the intended steady
state. Instead, such system are much more likely end up in a typical state which our
theory suggests is much more stable than the intended designed state as ecosystems

become more diverse.

Our work also suggests that in ecosystems well described by consumer resource mod-
els, crossing the May transition generically gives rise to typical random ecosystems
rather than a marginal stable phase as was found in a recent analysis of the Generalized
Lotka-Volterra model [BBC18b]. For this reason, even when the cumulative parame-
ter uncertainties preclude a priori prediction of the detailed structure of the new state,
methods from statistical physics and Random Matrix Theory can be employed to pre-
dict system-level properties [BABL18, SCGT18]. For these reasons, we feel that further
development of these methods are likely to play an important role in enabling top-down
control of ecosystems and may help to identify assembly rules for microbial communities

with many species [FHG17]

In this Letter, we only consider white noise, which is independently and identically
added to all interaction components. In the future, it will be interesting to ask how
other specialized noises, resulting from demographic stochasticity, phenotypic variation,
can affect our results. Based on our experience, we expect that, even in these more
complicated ecosystems, our conclusion will hold quite in the thermodynamics limit

generically. But much more work needs to be done to confirm if this is really the case.



Chapter 6

Effects of Resource Dynamics

Few works recognize the importance of resource dynamics in shaping ecosystems. In
theoretical ecology, often, it is assumed that all resources are the same. In contrast, we
show that it is really important to also think about the dynamics of the resources if we
really want to understand how much biodiversity an ecosystem can support. The linear
resource dynamics we consider here are especially important in the realm of microbial
ecosystems (Microbiomes). Understanding why the microbiomes we observe as so di-
verse is a fundamental question in biology. Our work can help design experiments to
systematically understand how resource dynamics affects species coexistence patterns,

and we are setting up collaborations to try to understand this better.

6.1 Model

Here we consider General consumer resource models (CRMs) describing the ecological
dynamics of S species of consumers N; (i = 1,2,....5) that can consume M distinct
resources R, (o = 1,2,...,M). The rate at which species N; consumes and depletes
resource g is encoded in a matrix of consumer preferences Cjg. In order to survive,
species have a minimum maintenance cost m;. Equivalently, m; can also be thought
of as the death rate of species i in the absence of resources. These dynamics can be

described using a coupled set of M + S ordinary differential equations of the form

dl]i\{i = NZ‘ Zﬁ CilgR/g - Nimi
(6.1)

% = ha(Ra) - Zj NjCjaRou

71
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( a) Self-Renewing Resources (b) Externally Supplied Resources
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FIGURE 6.1: Schematic description for two types of resources. (a) Self-renewing re-
sources (e.g. plants), which are replenished through organic reproduction; (b) Ex-
ternally supplied resources (e.g. nutrients that sustain gut microbiota), which are
replenished by a constant flux from some external source, and diluted at a constant
rate; (¢) The supply rate as a function of resource abundance for both choices, with
K=wo=K,=1.

where hq(R,) a function that describes the dynamics of the resources in the absence of

any consumers (see Fig. 6.1).

For self-renewing resources (e.g. plants, animals), the dynamics can be described using

logistic growth of the form
ha(Ra) = Ra(ka — Ra), (6.2)

with x the carrying capacity. While such resource dynamics is reasonable for biotic
resources, abiotic resources such as minerals and small molecules cannot self-replicate
and are usually supplied externally to the ecosystem ( Fig. 6.1(b)). A common way to

model this scenario is by using linearized resource dynamics of the form
ho(Ro) = Ko — wo Ra.- (6.3)

Fig. 6.1(c) shows a plot of these two choices. Notice that the two resource dynamics

behave very differently at low resource levels. The self-renewing resources can go extinct
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and eventually disappear from the ecosystem while this is not true of externally supplied

resources.

Recent research has shown some unexpected and interesting non-generic phenomena
can appear in GCRMs in the presence of additional constraints on parameter values.
A common choice of such constraints is the imposition of a “metabolic budget” on the
consumer preference matrix [PTW17, LLLT19] tying the maintenance cost m; to the
total consumption capacity » 5 Cig [TM17, AF19]. These metabolic tradeoffs can be
readily incorporated into the cavity calculations and have significant impacts on species

packing as will be discussed below.

6.2 Cavity solution

1. Initial parameter information 2. Factor graph representation 3. Add “Cavity” species 0 4. Sum the influences from “cavity” species to the
for species dynamics resources and update the species distribution
Ko ~N(K, %) my ~ N (m,0,n) N 5 —mo 20
Y 1 ® - Raojo~ Y XByeanNo

A A

[ o
o~ N 757

5 omy N ®
5 g 2

7 s ® \,n
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1

Thermodynamics Limit

M>1, S$>1

/\ M/S =~

¥ ,L /

5. Estimate the species distribution 6. Repeat the same process for resources 7. Estimate the resource distribution 8. Derive self-consistency equations from the
with central limit theorem ) with central limit theorem species and resource distributions
Ni=Nijg =Y vl cjoRo
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FIGURE 6.2: Schematic outlining steps in cavity solution. 1. The initial parameter
information consists of the probability distributions for the mechanistic parameters:
K, m; and Cj,. We assume they can be described by their first and second moments.
2. The species dynamics N;(3, CiaRa —m;) in eqs. (6.4) are expressed as a factor
graph. 3. Add the ”Cavity” species 0 as the perturbation. 4. Sum the resource
abundance perturbations from the ”Cavity” species 0 at steady state and 