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Nature has revealed an astounding degree of phylogenetic and physiological diversity in

natural environments – especially in the microbial world. Microbial communities are

incredibly diverse, ranging from 500-1000 species in human guts to over 103 species in

marine ecosystems. Historically, theoretical ecologists have devoted considerable e↵ort

to analyzing ecosystems consisting of a few species. However, analytical approaches and

theoretical insights derived from small ecosystems consisting of a few species may not

scale up to diverse ecosystems. Understanding such large complex ecosystems poses

fundamental challenges to current theories and analytical approaches for modeling and

understanding the microbial world. One promising approach for tackling this challenge

that I develop in my thesis is to adapt and expand ideas from statistical mechanics to

theoretical ecology. Statistical mechanics has helped us to understand how collective

behaviors emerge from the interaction of many individual components. In this thesis, I

present a unified theoretical framework for understanding complex ecosystems based on

statistical mechanics, random matrix theories and convex optimization. My thesis work

has three key aspects: modeling, simulations, and theories.

Modeling: Classical ecological models often focus on predator-prey relationships. How-

ever, this is not the norm in the microbial world. Unlike most macroscopic organisms,

microbes relie on consuming and producing small organic molecules for energy and re-

production. In this thesis, we develop a new Microbial Consumer Resource Model that

take into account these types of metabolic cross-feeding interactions. We demonstrate

that this model can qualitatively reproduce and explain statistical patterns observed

in large survey data, including Earth Microbiome Project and the Human Microbiome

Project.

Simulations: Computational simulations are essential in theoretical ecology. Complex

ecological models often involve ordinary di↵erential equations(ODE) containing hun-

dreds to thousands of interacting variables. Typical ODE solvers are based on numerical

integration methods, which are both time and resource intensive. To overcome this bot-

tleneck, we derived a surprising duality between constrained convex optimization and

generalized consumer-resource models describing ecological dynamics. This allows us to

develop a fast algorithm to solve the steady state of complex ecological models. This

improves computational performance by between 2-3 orders of magnitude compared to

direct numerical integration of the corresponding ODEs.
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Theories: Few theoretical approaches allow for the analytic study of communities con-

taining a large number of species. Recently, there has been considerable interest in the

idea that ecosystems can be thought of as a type of disordered systems. This mapping

suggests that understanding community coexistence patterns is actually a problem in

“spin glass” physics. This has motivated physicists to use insights from spin glass theory

to uncover the universal features of complex ecosystems. In this thesis, I use and extend

the cavity method, originally developed in spin glass theories, to answer fundamental

ecological questions regarding the stability, diversity, and robustness of ecosystems. I

use the cavity method to derive new species backing bounds and uncover novel phase

transitions to typicality.



“The way was long, and wrapped in gloom did seem,

As I urged on to seek my vanished dream.”

Qu Yuan
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Chapter 1

Introduction to mathematical

models in ecology

1.1 Background

One of the most stunning aspects of the natural world is the variety of life present in most

environments. Ecosystems consisting of many species can exhibit numerous fascinating

large-scale, collective phenomenons and perform critical functions in cycling of matter

and energy on earth. This serves as major motivation for studying the general principles

governing complex ecosystems.

Historically, theoretical ecologists have devoted considerable e↵ort to analyzing ecosys-

tems consisting of a few species. This was largely due to experimental limitations stem-

ming from the di�culty of collecting large-scale ecological data. Even though the ab-

solute number of a specific species in an ecosystems can be huge, individuals are often

distributes sparsely over a large wild area making it ine�cient to monitor multiple species

with field surveys. Temporally, the breeding-cycle of experimental mammals and plants

is often months or years, making it time-consuming it di�cult to perform controlled

experiments.

In contrast, microbial communities do not su↵er from many of these technical limita-

tions. Microbial community surveys using RNA sequencing technology have revealed

an astounding degree of phylogenetic and physiological diversity. Species diversity es-

timates range from 500-1000 species in human guts [HGK+12b] to over 103 species in

marine ecosystems [SCC+15]. Spatially, millions of bacterias can survive on a single

dish. Temporally, the cell division circle is around an hour. Furthermore, growth condi-

tions can be manipulated easily by choosing di↵erent temperatures, nutrients supplies,

1



Chapter 1. Mathematical Models in Ecology 2

and species pools. This makes microbial ecosystems an ideal experimental framework

for studying complex ecosystems.

Microorganisms can be identified using a gene region in the ribosome (16S rRNA), mak-

ing it possible to measure the relative abundance of microbes in a community using

DNA sequencing [CLW+11, SWGV14]. Numerous microbial datasets have been gener-

ated with high resolution across numerous communities. However, understanding such

the large amounts of data being generated by sequencing experiments presents some

daunting challenges to current theories and analytical approaches in theoretical ecology.

1.2 Mathematical modeling in ecology

Mathematical models are necessary to understand ecological data quantitatively. In

general, there are four classes of variables appearing in most ecological models:

1. species populations, which are also direct observables in the data,

2. interaction variables, describing how species interact with other species or envi-

ronments,

3. species or environment variables, such as the species’ birth, death rate, and envi-

ronmental resource supply rate,

4. dynamical variables, such as time and space.

In this thesis, we do not consider spatial processes and restrict ourselves to well-mixed

populations. We also focus primarily of the steady-state dynamics of these models. For

these reasons, the models presented in this thesis are restricted to the first three classes

of variables discussed above.

1.2.1 Neutral theory and niche theory

There are two popular theories in ecology: niche theories that emphasize selection and

species di↵erences and neutral theory that emphasizes stochasticity and treats all species

as identical. Both of these theories are commonly used to explain observed species

coexistence patterns. We view these two perspectives as complementary rather than

conflicting.

Neutral theory is inspired from the analogous theory in population genetics. In ecol-

ogy, neutral theory deals with species within a the same trophic level, i.e., all species
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Figure 1.1: Schematic of Lotka–Volterra model

occupy the same niche and do not interact with each other and emphasizes the e↵ect of

stochastic drift and and migration on coexistence patterns. Stochastic processes are used

extensively here. Let N = (N1, N2, N3 . . . NS) be a species abundance of an ecosystem

with S species. Let P (N, t) be the probability of the state N at time t. Assuming that

the stochastic dynamics are Markovian, the time evolution of P (N, t) can be expressed

as a master equation:

@P (N, t)

@t
=
X

N0

[TNN0P (N0, t)� TN0NP (N, t)] (1.1)

where TNN0 and TN0N are the transition matrices. The behaviors of neutral theory can

be investigated by studying mathematical properties of equation 1.1.

In contrast, niche theory is based on niche di↵erentiation resulting from competing

among species at the same trophic level. A fundamental result in niche theory is the

competitive exclusion principle: each niche can only be occupied by at most one species.

Niche theories mostly deal with purely deterministic processes, neglecting the stochastic

e↵ects emphasized in neutral theories. In niche theories, species interact with other

species and the environments through fixed deterministic rules.

In this thesis I focus on the interactions between species and resources, i.e., niche theory,

and refer readers interested in neutral theory to [ASG+16].



Chapter 1. Mathematical Models in Ecology 4

1.2.2 Lotka–Volterra model

The Lotka Volterra model describes the a model where species directly interact with

each other (see Figure. 1.1). For an ecosystem with S species, the abundance Ni of

species i is described by the ordinary di↵erential equation

dNi

dt
= Ni(ri �

X

i 6=j

AijNj), i = 1, 2, . . . S (1.2)

where ri is its intrinsic growth rate, and Aij measures the interaction strength between

population i and j. The factor Ni appearing outside the bracket ensures that when

the species invade a new environment (i.e., all Nj ⌧ 1), they grow exponentially and

that species abundances Ni never become negative. The second term in the bracket

can be though of as the e↵ective growth rate of species i. Notice that the presence of

other species modifies the e↵ective growth rate of species i, lowering it for competitive

interactions (Aij > 0) and raising it for a synergistic interaction (Aij < 0).

From the physicist’s perspective, we can analyze the Lotka–Volterra dynamics in terms

of the first-order expansion near a stable fixed point, assuming such a fixed point exists.

If the species’ growth rate follows a general dynamics:

dNi

dt
= Nigi(N), (1.3)

we can expand the growth rate gi to the first order around a fix point N⇤ to get

dNi

dt
= Ni

2

4gi(N⇤) +
X

j

@gi
@Nj

(Nj �N⇤
j ) +O((Nj �N⇤

j )
2)

3

5 (1.4)

Relating equation 1.2 to equation 1.4 yields

ri = gi(N
⇤)�

X

j

@gi
@Nj

N⇤
j , Aij = �

@gi
@Nj

. (1.5)

Lotka–Volterra models can exhibit rich dynamical behaviors, even for a small ecosystem

(see Figure 1.2). Let’s consider an ecosystem consisting of two species,

8
<

:

dN1
dt = N1(r1 �A11N1 �A12N2)

dN2
dt = N2(r2 �A21N1 �A22N2)

(1.6)

By solving dN1
dt = 0 and dN2

dt = 0, the steady state abundances can be written as

N̄1 = Max


0,

A22r1 �A12r2
A11A22 �A21A12

�
, N̄2 = Max


0,

A11r2 �A21r1
A11A22 �A21A12

�
. (1.7)
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Figure 1.2: Di↵erent phases of Lotka-Volterra systems

However, such as steady-state may not exist or be stable. A trivial example of this if

Aij = 0 are zero and ri is positive. In this case, the species abundance grows exponen-

tially and will go to infinity after a long time. These equations can also exhibit periodic

oscillation similar to harmonic motion. We can perturb equation around its fix point

and only keep the linear terms [Mur07],

 
d�N1
dt

d�N2
dt

!
= J

 
�N1

�N2

!
, J = �

 
N̄1A11 N̄1A12

N̄2A21 N̄2A22

!
(1.8)

where �Ni = Ni � N̄i
⇤
. If the eigenvalues of J are purely imaginary, we can expect the

solutions in the neighborhood of the fixed point (N̄1, N̄2) are periodic. We will return

to these ideas when we analyze Lotka–Volterra models using methods from statistical

physics in the limit where the number of species S becomes large.

1.2.3 MacArthur’s consumer resource model

We now introduce another commonly used ecological model, MacArthur’s consumer re-

source model (MCRM). In contrast to Lotka–Volterra model, the MCRM has no direct

species-species interactions. Instead, species consume resources present in the ecosys-

tem [ML67a] and species-species interactions emerge indirectly through competition for

common resources. As shown in Figure 1.3, the MacArthur Consumer Resource Model

consists of S species or consumers with abundances Ni (i = 1...S) that can consume

one of M substitutable resources with abundances R↵ (↵ = 1...M), whose dynamics are

described by the equations

dNi

dt
= Ni(

X

�

Ci�R� �mi)

dR↵

dt
= R↵(K↵ �R↵)�

X

j

NjCj↵R↵.
(1.9)
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Figure 1.3: Schematic of MacArthur’s consumer resource model

The consumption rate of species i for resource ↵ is encoded by the entry Ci↵ in the

S⇥M consumer preference matrix C, K↵ is the carrying capacity of resource ↵, and mi

is maintenance energy that encodes the minimum amount of energy that a species i must

harvest from the environment in order to survive. R↵(K↵ � R↵) is the resource supply

dynamics, taken to be logistic growth in the original MCRM. In Chapter 6, we will

discuss other forms of resource dynamics and how it a↵ects the community properties.

When the system is in the steady state, some species and resources can vanish. We

denote the numbers of surviving species and resources by S⇤ and M⇤, respectively, and

in general, at steady state we will have S⇤
 M⇤. From an ecological view, we can

interpret di↵erent types of resources as di↵erent niches. For M resources, at most, there

exist M niches, resulting in M surviving species.

The Lotka-Volterra model can be derived from the MacArthur’s consumer-resource

model by assuming resource dynamics are much faster than species dynamics. Solving

for the steady-state values of the non-extinct resources by setting the bottom equation

in (1.9) equal to zero gives:

R̄↵ = K↵ �
X

i

NiCi↵ (1.10)

Substituting this into the top equation in (1.9) gives:

dNi

dt
= Ni

0

@
X

↵2M⇤

Ci↵K↵ �mi �
X

j

AijNj

1

A (1.11)

where we have defined an interaction matrix Aij =
P

↵2M⇤ C̄i↵CT
↵j and M⇤ is the set of

surviving resources. We can use this equation to solve for the steady-state (equilibrium)
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abundances of non-extinct species, and arrive at the expression:

N̄i =
X

j2S⇤

A�1
ij (

X

↵2M⇤

Cj↵K↵ �mj)

where S⇤ is the set of surviving species. In terms of N̄i, the Lotka-Volterra equations

become:

dNi

dt
= �N̄i

X

j

Aij(Nj � N̄j) (1.12)

In the future chapters, we will repeatedly return to variations of equation 1.9 and in-

vestigate its mathematical properties and ecological predictions for di↵erent ecological

assumptions.

1.3 Mathematical modeling of microbial ecosystems

Microbial communities appear at every corner of our planet, from our own nutrient-rich

guts to the remote depths of the ocean floor. The functional structure of these commu-

nities is highly variable, with functional traits often reflecting the environment in which

the communities are found [TSM+17, HGK+12a]. A central goal of microbial commu-

nity ecology is to understand how the e↵ects of environments on diversity, stability, and

functional structure [WAP+16]. And thus, it is important to build mathematical models

to understand the mechanisms behind experimental phenomena.

However, the classical ecological models, based on niche competition, do not suit mi-

crobial communities. MacArthur’s consumer resource model focuses on competition for

resources. While it is true that bacteria compete for nutrients, they also often produce

new resources in the form of metabolic byproducts. For this reason, the role of microbes

is not limited to being a consumer, but also “producer” [GLB+18, HRD+14, ZS16]. The

small molecules bacteria produce during metabolism always leak out into the environ-

ment and provide nutrients for other species. Crossfeeding helps change environments

and shape species composition. In this thesis, we show that this little di↵erence is one

of the essential distinctions between classical and microbial ecology and can lead to

dramatically di↵erent large-scale ecological properties.

1.3.1 Microbial consumer resource Model

Our starting point is to extend MacArthur’s Consumer Resource Model to include cross-

feeding interaction by considering the energy flux, the exchange, and consumption of
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(A) (B) Consumption of  resource

Metabolite exchange

Consumer matrix Metabolic matrix

(C) (D)

Figure 1.4: Schematic of (A) microbe-mediated energy fluxes in Microbial Consumer
Resource Model; (B) Consumption of resource and metabolite exchange; (C) consumer
matrix; (D) metabolic matrix. Made by Robert Marsland III in [MCM20]

metabolites (see Figure 1.4).

Just like in the original MacArthur’s consumer resource model, the rate at which species

i harvests energy from resource ↵ depends on the resource concentration R↵ and species’

consumer preferences Ci↵. This is encoded in the input flux

J in
i↵ = Ci↵R↵. (1.13)

A core assumption of our model is that a species can not fully utilize the whole in-

put energetic flux and releases some this energy back into the environment as leaked

byproducts. We assume that a fraction l↵(< 1) of the input energy J in
i↵ returns to the

environment so that the power available to the cell for sustaining growth is

Jgrow
i =

X

↵

(1� l↵)J
in
i↵. (1.14)
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The time-evolution of the species abundance Ni can be described with the equation

dNi

dt
= Ni (J

grow
i �mi) , (1.15)

where mi is the maintenance cost for species i.

The leaked energy flux Jout
i =

P
↵ l↵J

in
i↵ from each cell of species i is partitioned among

the M possible resource types via the biochemical pathways operating within the cell.

We assume that all species share the same metabolism, encoded in a transformation

matrix D�↵. Each element of D�↵ specifies the fraction of leaked energy from resource

↵ that is released in the form of resource �. To enforce energy conservation, we have
P

� D�↵ = 1. Thus, the outgoing energy flux contained in metabolite � is given by

Jout
i� =

X

↵

D�↵l↵J
in
i↵. (1.16)

The resouce dynamics depends on the incoming and outgoing energy fluxes through the

equations

dR↵

dt
= h↵(R↵) +

X

j

Nj(J
out
j↵ � J in

j↵), (1.17)

where h↵(R↵) is the resources dynamics in the absence of any microbes. In MacArthur’s

consumer resource model, h↵ = R↵(K↵ � R↵) is assumed to be logistic. While such

resource dynamics is reasonable for biotic resources, abiotic resources, such as minerals

and small molecules cannot self-replicate and are usually supplied externally to the

ecosystem. A simple way to model this scenario is by using linearized resource dynamics

of the form,

h↵(R↵) = ↵ � ⌧�1
↵ R↵. (1.18)

where ⌧↵ is the degredation rate of resource ↵. In many of the experiments that motivate

our work, microbial communities are grown in minimum synthetic environments with a

single externally supplied resource ↵ = 0. To model such experiments, all ↵ are set to

zero except 0. These equations for Ni and R↵, along with the expressions for J in
i↵ and

Jout
i↵ , completely specify the ecological dynamics of the model:

dNi

dt
= Ni

"
X

↵

(1� l↵)Ci↵R↵ �mi

#
,

dR↵

dt
= ↵ � ⌧�1

↵ R↵ �
X

i

NiCi↵R↵ +
X

i,�

D↵�l�NiCi�R� .

(1.19)

An immediate technical problem that arises is to understand how to solve the above



Chapter 1. Mathematical Models in Ecology 10

dynamics when the number of species and resources becomes extremely large. I discuss

this in Chapter 2.



Chapter 2

Numerical simulations of complex

ecosystems

Computational simulations are essential in theoretical ecology. Complex ecological mod-

els always involve ordinary di↵erential equations(ODE) containing hundreds to thou-

sands of interacting variables. Typical ODE solvers are based on Runge–Kutta methods,

which are both time and resource consuming, motivating us to develop fast simulation

algorithms for complex ecological models. In this Chapter, we show a surprising duality

between constrained optimization with inequality constraints and generalized consumer-

resource models describing ecological dynamics [MCWMI19, MICM20], allowing us to

develop a new Python package for simulating complex ecosystems [MCGM20]. Using

this duality to solve for steady-state dynamics speeds-up performance by between 2-3

orders compared to direct numerical integration of the corresponding ODEs. Employing

this package, we can reproduce large-scale patterns in microbial biodiversity from the

Human Microbiome Project, Earth Microbiome Project, and similar surveys [MCM20].

2.1 Duality between constrained convex optimization and

ecological dynamics

Optimization is an important problem for numerous disciplines, including physics, com-

puter science, information theory, machine learning, and operations research [BV04,

Ber99, MM09]. Many optimization problems are amenable to analysis using techniques

from the statistical physics of disordered systems [Zde09, MPZ02, MM11]. Over the

last few years, similar methods have been used to study community assembly and eco-

logical dynamics suggesting a deep connection between ecological models of community

11
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assembly and optimization [FM14, KS15, DFM16, Bun17, ABM18b, BABL18, BBC18b,

TM17, MICG+19].Yet, the exact relationship between these two fields remains unclear.

Here, we show that constrained optimization problems with inequality constraints are

naturally dual to an ecological dynamical system describing a generalized consumer

resource model [ML67a, Mac70, Che90a]. As an illustration of this duality, we start

a particular important and commonly encountered constrained optimization problem:

quadratic programming (QP) [BV04]. In QP, the goal is to minimize a quadratic ob-

jective function subject to inequality constraints. We show that QP is dual to one of

the most famous models of ecological dynamics, MacArthur’s Consumer Resource Model

(MCRM) introduced in Chapter 1, a system of ordinary di↵erential equations describing

how species compete for a pool of common resources [ML67a, Mac70, Che90a]. We also

show that the Lagrangian dual of QP has a natural description in terms of generalized

Lotka-Volterra equations that can be derived from the MCRM in the limit of fast re-

source dynamics. Later, we will generalize our results to other consumer-resource model

dynamics.

2.1.1 Optimization as ecological dynamics

Consider an optimization problem of the form

minimize
R

f(R)

subject to gi(R)  0, i = 1, . . . , S.

R↵ � 0, ↵ = 1, . . . ,M.

(2.1)

where the variables being optimized R = (R1, R2, . . . , RM ) are constrained to be non-

negative. We can introduce a ‘generalized’ Lagrange multiplier �i for each of the S

inequality constraints in our optimization problem. In terms of the �i, we can write a

set of conditions collectively known as the Karush-Kuhn-Tucker (KKT) conditions that

must be satisfied at any local optimum Rmin of our problem [BV04, Ber99, Bis06]. We

note that for this reason, in the optimization literature the �i are often called KKT-

multipliers rather than Lagrange multipliers. The KKT conditions are:

Stationarity: rRf(Rmin) +
X

j

�jrR gj(Rmin) = 0

Primal feasibility: gi(Rmin)  0

Dual feasibility: �i � 0

Complementary slackness: �igi(Rmin) = 0,
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where the last three conditions must hold for all i = 1, . . . ,M . The KKT conditions have

a straightforward and intuitive explanation. At the optimum Rmin, either gi(Rmin) = 0

and the constraint is active �i � 0, or gi(Rmin)  0 and the constraint is inactive

�i = 0. In our problem, the KKT conditions must be supplemented with the additional

requirement of positivity R↵ � 0.

One can easily show that the four KKT conditions and positivity are also satisfied by

the steady states of the following set of di↵erential equations restricted to the space

�i, R↵ � 0:

d�i

dt
= �igi(R),

dR↵

dt
= [�@R↵f(R)�

X

j

�j@R↵gj(R)]R↵. (2.2)

The first of these equations just describes exponential growth of a “species” i with

a resource-dependent “growth rate” gi(R). Species with gi(Rmin)  0 correspond to

constraints that are inactive and go extinct in the ecosystem (i.e, �imin = 0), whereas

species with gi(Rmin) = 0 survive at steady state and correspond to active constraints

with �imin 6= 0 (see Fig. 2.1 for a simple two-dimensional example). The second equation

in (2.2) performs a “generalized gradient descent” on the optimization function f(R) +
P

j �jgj(R) (note the extra factor of R↵ in our dynamics compared to the usual gradient

descent equations). In the context of ecology, these equations describe the dynamics of

a set of resources {R↵} produced at a rate �@R↵f(R)R↵ and consumed by individuals

of species j at a rate �j@↵gj(R)R↵.

2.1.2 Ecological duals of Quadratic Programming (QP)

The optimization function of QP is quadratic, f(R) = 1
2R

TQR+bTR, with Q a positive

semidefinite matrix, and linear inequality constraints. The positivity of Q guarantees

that the problem is convex. By going to the eigenbasis of Q, we can always rewrite the

QP problem as minimizing a square distance

minimize
R

1

2
||R�K||

2

subject to
X

↵

Ci↵R↵  mi, i = 1, . . . , S.

R↵ � 0, ↵ = 1, . . . ,M.

(2.3)

Following (2.2), we introduce Lagrange (KKT) multipliers �i dual to each of the S

constraints and Langrange KKT (multipliers) µ↵. that enforce positivity. Then, the
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Figure 2.1: Constrained optimization with inequality constraints is dual
to an ecological dynamical system described by a generalized consumer re-
source model (MCRM). The variables to be optimized (hexagons) and Lagrange
multipliers (ovals) are mapped to resources and species respectively. Species must
consume resources to grow. (Bottom left) A quadratic programming (QP) problem
with two inequality constraints where the unconstrained optimum di↵ers from the
constrained optimum. (Bottom right) Dynamics for MacArthur’s Consumer Resource
Model that is dual to this QP problem. The steady-state resource or species abundances
correspond to the value of variables or Lagrange multipliers at the QP optimum. For
this reason, species corresponding to inactive constraints go extinct. Made Pankaj
Mehta in [MCWMI19]

function to be optimized is

maximize
�j

minimize
R↵

1

2

X

↵

(R2
↵ � 2K↵R↵ +K2

↵) +
X

j,↵

�j(Cj↵R↵ �mi)� µ↵R↵

subject to �j � 0 j = 1, . . . , S

(2.4)

We take the derivative with respect to R↵ and note that

R↵⇤ = max[0,K↵ �
X

j

Cj↵�j ] (2.5)

where we have used the KKT condition µ↵R↵⇤ = 0

Plugging this back into (2.4), we find that the function to be maximized with respect to

the �i is X

i

�i[i �
1

2

X

j

Aij�j ] (2.6)

with

i =
X

↵,R↵⇤ 6=0

K↵Ci↵ �mi (2.7)
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and

Aij =
X

↵,R↵⇤ 6=0

Ci↵Cj↵. (2.8)

We can construct the dual ecological model:

d�i

dt
= �i(

X

↵

Ci↵R↵ �mi)

dR↵

dt
= R↵(K↵ �R↵)�

X

j

�jCj↵R↵.
(2.9)

The is the famous MacArthur Consumer Resource Model (MCRM), the same as equa-

tion 1.9, which was first introduced by MacArthur and Levins in their seminal papers

[ML67b, Mac70] and has played an extremely important role in theoretical ecology

[Che00, Til82a].

In optimization problems, one often works with the Lagrangian dual of an optimization

problem. We show in Chapter 1 that the dual to equation 1.12 is just

maximize
�i

X

i

�i[i �
1

2

X

j

Aij�j ]

subject to �i � 0,

(2.10)

the sum restricted to ↵ for which R↵min 6= 0. It is once again straightforward to check

that the local minima of this problem are in one-to-one correspondence with steady

states of the Generalized Lotka-Volterra Equations (GLVs) of the form:

d�i

dt
= �i(i �

X

j

Aij�j) (2.11)

As with the primal problem, the species in the GLV have a natural interpretation as

Lagrange multipliers enforcing inequality constraints. This GLV can also be directly

obtained from the MCRM in equation 2.9) in the limit where the resource dynamics are

extremely fast by setting dR↵
dt = 0 in the second equation and plugging in the steady-

state resource abundances into the first equation [Mac70, Che90a]. This shows the

Lagrangian dual of QP maps to a dynamical system described by a GLV – which itself

can be derived from the MCRM which is the dynamical dual to the primal optimization

problem!
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2.2 Minimization Principle for generalized consumer re-

source models

This results derived in Section 2.1 are important for understanding the nature of steady

states in ecological models. A key limitation of the derivation in the last section is that

it is limited to cases where there is only one fixed point for the dynamics. This can

be seen by noting that there exists a global Lyapunov function f(R) for the dynamics.

Here we show that optimization ideas presented in the last section can be extended to

larger classes of population dynamics, suggesting that an optimization approach applies

much more broadly than previously supposed [MICM20, TM17].

2.2.1 General derivation

Let’s consider a general form of the consumer-resource model:

dNi

dt
= Nigi(R)

dR↵

dt
= h↵(R) +

X

i

Niqi↵(R).
(2.12)

gi(R) is the growth rate. qi(R) specifies the magnitude and direction of the resource

abundance change induced by a single individual of the species [Til82b, Lei95]. The

function h(R) encodes the externally supplied resource dynamics [Til82b, CL03].

Comparing equation 2.12 with equation 2.2, yields the following relation between con-

sumer resource quantities and quantities appearing in the optimization problem:

qi↵ = �
@gi(R)

@R↵
R↵, h↵ = �R↵

@f(R)

@R↵
. (2.13)

Surprisingly, the objective function in equation 2.3 of the corresponding optimization

problem depends only on the function h(R), which characterizes the resource dynamcis

in the absence of consumers, through the relation

f(R) = �
X

↵

Z R↵

K↵

h↵(x)

x↵
dx↵. (2.14)

Note that we are free to add a constant to f(R) while still satisfying the conditions and

can therefore always make f(K) = 0 at its unconstrained minimum K (the carrying

capacity of the resources without any consumers).

With the help of equation 2.14, we can obtain the objective function for di↵erent con-

sumer resource models through a direct integral. He we illustrate this for two simple
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variants of the MacArthur’s consumer resource model. For the MacArthur’s consumer

resource model with logistic growth, h↵(R) = R↵(K↵ � R↵), the objective function in

equation 2.3 becomes:

f(R) =
X

↵

Z K↵

R↵

K↵ � x↵dx↵ =
X

↵

1

2
(R↵ �K↵)

2. (2.15)

This is just ordinary quadratic programming. For the MacArthur’s consumer resource

model with linear resource dynamics ( equation 1.18 with ⌧↵ = 1), one has

f(R) =
X

↵

Z K↵

R↵

K↵ � x↵
x↵

dx↵ =
X

↵

[K↵log
K↵

R↵
+R↵ �K↵]. (2.16)

This functional form is just the Kullback–Leibler divergence, a commonly used similarity

measure used in machine learning [Bis06].

With a convex objective function and known constraints, the steady states can be ob-

tained through typical convex optimization packages, for instance, CVXPY in Python

[AVDB18]. This results in significant improvement in numerical simulations since con-

vex optimization algorithms converge to their minima between one and two orders of

magnitude faster than direct numerical integration of the corresponding ODEs.

2.3 Extend for arbitrary niche models

The relation qi↵ = �@gi(R)
@R↵

R↵ cannot always be satisfied for choices of qi↵. One common

way this happens is if an organism a↵ects the resource dynamics in ways that are unre-

lated to their own growth rate, whether by producing novel byproducts (cross-feeding),

or by consuming resource types that do not limit their growth.

To solve this issue, in [MICM20], we show that the minimization principle can be ex-

tended to a much larger class of niche models that do not satisfy the stringent require-

ment that qi↵ = �@gi(R)
@R↵

R↵. To do so, we separate qi↵ into a symmetric term and a

remaining antisymmetric term:

qi↵ = qSi↵ + qAi↵, qSi↵ = �R↵@gi/@R↵. (2.17)

As the expressions for qi↵ and qSi↵ are known, we also know qAi↵ = qi↵ + R↵@gi/@R↵.

Without loss of generality, substituting above equations into the general equation for

the resource dynamics of equation 2.12, we obtain

dR↵

dt
= h↵(R) +

X

i

Niq
A
i↵(R)�

X

i

Ni
@gi
@R↵

R↵. (2.18)
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We can rearrange the above equation into the form

dR↵

dt
= h̄↵(R)�

X

i

Ni
@gi
@R↵

. (2.19)

where we repalce h↵(R) by an e↵ective resource dynamics

h̄↵(R) = h↵(R) +
X

i

Niq
A
i↵(R)R↵.

Note that there still exists unknown variables N and R. However, we only care about

the steady states (N̄, R̄) and thus replace the time-dependent variables with the steady

state population abundance,

h̄↵(R) = h↵(R) +
X

i

N̄iq
A
i↵(R̄). (2.20)

If N̄ and R̄ are known, we can solve for the steady states with the new objective function,

f̄(R) =
X

↵

Z K↵

R↵

"
h↵(x) +

X

i

N̄iq
A
i↵(R̄)

#
dx↵
x↵

. (2.21)

The reason this procedure can not be applied directly is that we do not a priori know

the steady state values of the species or resources (N̄, R̄). If we knew the values in

the first place, there would be no need to solve these equations at all. This problem

of minimizing an objective function whose parameters depend on the solution arises

frequently in Machine Learning, in the context of fitting models with latent variables

[MBW+19, Bis06]. It can be solved with a simple iterative approach, called Expectation

Maximization (EM), where one starts by guessing the values of these parameters, then

minimizes the function, and then updates the estimates using the new solution. This

procedure results in the Algorithm shown in Algorithm 1.

2.3.1 Application to microbial consumer resource model

We now show that this algorithm can be applied to solve for the steady-states of the

microbial consumer resource models (MicroCRM) introduced in Section 1.3. The Mi-

croCRM does not obey the relations in equation 2.13 because the production of metabo-

lites breaks the symmetry of the e↵ective interactions in the original consumer resource

model. The dynamics of the MicroCRM (equation 1.19 with ⌧↵� = 1 for simplicity) are
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Algorithm 1 Expectation Maximization (EM) Algorithm

Initialization: randomly initialize N̄, R̄, N,R
while |R� R̄| < ✏ do . ✏ controls the precision of the numerical solution.

N̄, R̄ N,R

Expectation Step:

f̄(R) =
P

↵

RK↵

R↵

⇥
h↵(x) +

P
i N̄iqAi↵(R̄)

⇤
dx↵
x↵

.

Maximization Step:

R̄ maximize f̄(R) subjected to constraints gi(R)  0, R↵ � 0.
N̄ KKT multipliers corresponding to the constraints gi(R)  0

end while
return N̄, R̄.

described by the equations

dNi

dt
= Ni

"
X

↵

(1� l↵)Ci↵R↵ �mi

#
,

dR↵

dt
= ↵ �R↵ �

X

i

NiCi↵R↵ +
X

�,i

D↵�l�NiCi�R� .

(2.22)

Substituting these equations into equations 2.13 and 2.17 yields:

qSi↵ = �(1� l↵)Ci↵R↵, qAi↵ =
X

�

D↵�l�NiCi�R� � l↵Ci↵R↵ (2.23)

Assuming the steady state N̄ and R̄ are known, the e↵ective resource dynamics is

h̄↵(R) = ↵ �R↵ +
X

i,�

N̄i(D↵�l�N̄iCi�R̄� � l↵Ci↵R̄↵) (2.24)

As the second term is a constant, it is equivalent to replace  with

̄↵ = ↵ +
X

i,�

N̄i(D↵�l�N̄iCi�R̄� � l↵Ci↵R̄↵). (2.25)

The objective function still keeps the form as equation 2.16 but replace the upper integral

limit with ̄↵. Then, the microbial consumer resource model can be solved with the EM

Algorithm 1.
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(a)

(b) (c)

Gaussian Gamma Binary

Sugars Lipids

Carboxylic
Acids

Figure 2.2: Sampling parameters and adding metabolic structure. (a) Sampling the
consumer matrix Ci↵. An example of each of the three sampling choices is shown,
with white pixels representing Ci↵ = 0 and darker pixes representing larger values.
The examples have F = 3 consumer families with specialism level q = 0.9, each with
SA = 25 species, plus a generalist family with Sgen = 25 species. (b) Sampling the
metabolic matrix D↵� . Each column represents the allocation of output fluxes resulting
from metabolism of a given input resource. This example has T = 3 resource classes,
and an e↵ective sparsity s = 0.05. (c) Diagram of three-tiered metabolic structure. A
fraction fs of the output flux is allocated to resources from the same resource class as
the input, while a fraction fw is allocated to the “waste” class (e.g., carboxylic acids).
In the example of the previous panel, allocation fractions were fs = fw = 0.49. Made
by Robert Marsland III in [MCGM20]

2.4 Comparison with experimental observations

A major goal in ecology is to identify general principles shaping microbial ecosystems.

In order to avoid unnecessary time-consuming and expensive wet lab experiments, one

promising approach is to use minimal mathematical models to reproduce and understand

experimentally observed ecological patterns [MCM20]. Here, we show that the Microbial

Consumer Resource Model (MiCRM) (see Section 1.3) can reproduce patterns found

in large-scale survey data, including the Earth Microbiome Project (EMP) and the

Human Microbiome Project (HMP). Our model can help explain mechanisms resulting

in patterns observed at the species scale.
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2.4.1 Model assumptions

MiCRM considers the exchange and consumption of metabolites by introducing con-

sumer matrix Ci↵ and metabolic matrix D↵� . Typically, the elements in these matrices

can be determined by measuring the specie’s growth rate in di↵erent pair of two-species

or species-resource coculture in experiments. However, a diverse community consists of

hundreds of species and resources, suggesting to measure several thousands of parame-

ters, which is unfeasible. For simplification, we just assume all parameters are sampled

from a random distribution, for instance, the consumer matrix Ci↵, the maintenance

cost mi are sampled from Gaussian distribution. We encode the energy conservation in

sampling the metabolic matrix D↵� by using a Dirichlet distribution, whose elements in

the column are summed to be 1. ↵ is a nonzero value only for ↵ = 0 as we expect few

resources are available in the environment.

Actually, Ci↵ and D↵� are not purely random as we have to incorporate metabolic

and taxonomic structure at di↵erent levels by assuming species or resources from the

same family have similar consumer preferences or byproduct stoichiometry. This is a

reasonable biological assumption , for example, it is well known that bacteria from the

Enterobacteria family have a strong preference for fermenting sugars. To capture this,

we assign the M resources to T classes (e.g. sugars, amino acids, etc.), each with MA

resources where A = 1, . . . T and
P

AMA = M . Likewise the total Stot species can be

assigned to F families, with F  T , and each family preferentially consuming resources

from a di↵erent resource class. A generalist family can also be included, with Sgen species

and no preferred resource class, so that Sgen+
P

A SA = Stot. These setups result in the

block structures in Ci↵ and D↵� in Figure 2.2.

In practice, we choose the metabolic matrix D↵� according to a three-tiered secretion

model illustrated in Figure 2.2 (c). The first tier is a preferred class of ‘waste’ products,

such as carboyxlic acids for fermentative and respiro-fermentative bacteria, with Mw

members. The second tier contains byproducts of the same class as the input resource.

For example, this could be attributed to the partial oxidation of sugars into sugar al-

cohols, or the antiporter behavior of various amino acid transporters. The third tier

includes everything else. We encode this structure in D↵� by sampling each column � of

the matrix from a Dirichlet distribution with concentration parameters d↵� that depend

on the byproduct tier, so that on average a fraction fw of the secreted flux goes to the

first tier, while a fraction fs goes to the second tier, and the rest goes to the third. The

Dirichlet distribution has the property that each sampled vector sums to 1, making it

a natural way of randomly allocating a fixed total quantity (such as the total secretion

flux from a given input). To write the expressions for these parameters explicitly, we let

A(↵) represent the class containing resource ↵, and let w represent the ‘waste’ class. We
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Figure 2.3: Relationship between diversity and environmental harshness is modu-
lated by environmental complexity. Left: Gray dots are the number of distinguishable
strains observed in each sample of the EMP, plotted vs. pH and temperature. Black
dots represent the 99th percentile of all communities at a given pH or temperature.
Colored lines are fits of a Laplacian and a Gaussian distribution to the 99the percentile
points. Reproduced from Figure 2 of the initial open-access report on the results of
the EMP[TSM+17]. Right: The number of species surviving to steady state in sim-
ulated communities, plotted vs. environmental harshness. Harsher environments at
extreme pH or temperature were simulated by increasing the total amount of resource
consumption mi required for growth (by the same amount for all species). Blue squares
are simulation results when all the energy was supplied via a single resource type, while
orange circles are simulations where the incoming energy was evenly divided over all 90
possible resource types. Made by Robert Marsland III in [MCM20]

also introduce a parameter s that controls the sparsity of the reaction network, ranging

from a dense network with all-to-all connection when s ! 0, to maximal sparsity with

each input resource having just one randomly chosen output resource as s ! 1. With

this notation, we have

D↵� = Dir(d1� , d2� , d3� , . . . , dM�)↵ (2.26)

d↵� =

8
>>>>>>>>>><

>>>>>>>>>>:

fw
sMw

, ifA(�) 6= w and A(↵) = w

fs
sMA(�)

, ifA(�) 6= w and A(↵) = A(�)

1�fs�fw
s(M�MA(�)�Mw) , ifA(�) 6= w and A(↵) 6= A(�)

fw+fs
sMw

, ifA(�) = w and A(↵) = w

1�fw�fs
s(M�Mw) , ifA(�) = w and A(↵) 6= w.

(2.27)

The final two lines handle the case when the ‘waste’ type is being consumed. For

these columns, the first and second tiers are identical. This led to an ambiguity in the

expression presented in the Supporting Information of [MICG+19], which we have now

clarified by treating this case separately. Note that in the third line, it is implicit that

A(↵) 6= w, since A(↵) = w is covered in the first line. For more simulation and model

details, we refer interested readers to [MCGM20].
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2.4.2 Patterns in the Earth Microbiome Project

The Earth Microbiome Project consists of over 20,000 samples in 17 di↵erent environ-

ments located on all 7 continents [TSM+17]. One of the interesting patterns is anti-

correlation between richness and environmental harshness reproduced in Figure 2.3.

Samples near neutral pH or at moderate temperatures (⇠ 15�C) showed much higher

richness than samples from more extreme conditions. Peak richness dropped by a factor

of 2 for pHs less than 5 or greater than 9, and temperatures less than 5 �C or greater

than 20 �C. The EMP samples also showed a strongly nested structure, namely, species

appearing in lowly diverse communities tended to belong to one of the highly diverse

communities. The nested structure is clearly shown in Figure 2.4, where each column

in the matrix corresponds to a di↵erent sample and each row to a specific taxon.

These patterns may result from that microbes require higher maintenance cost to survive

in harsher environments [HJ13]. For example, powering chaperones to prevent protein

denaturation and running ion pumps to maintain pH homeostasis both require significant

amounts of ATP. We hypothesized that varying mi could explain the patterns observed

in the EMP. In the MiCRM,mi is sampled from a Gaussian distribution with mean 1 and

standard deviation 0.01. In order to model the varying harshness of the environment, we

can sample the mean value by sampling the mean valuem uniformly between 0.5 and 10.5

with the same standard deviation. As a large m corresponds to harsh environments with

increased energetic demands. the anti-correlation between richness and environmental

harshness can be expected, shown in Figure 2.3.

Surprisingly, the same simulation also captures the nestedness of the EMP data, shown

in Figure 2.4. To confirm the nested pattern results from harshness variations, we ran

simulations with the varying dispersal limitation, i.e., the initial number of species from

the regional species pool allowed to colonize the community was randomly chosen. In the

new simulations, shown in the bottom right panel of Figure 2.4, the nestedness vanishes,

suggesting nestedness may be a sign of selection-dominated community assembly.

2.4.3 Patterns in the Human Microbiome Project

The Human Microbiome Project is a large-scale survey of the microbial communities

that reside in and on the human body [HGK+12a]. Here we discuss two major patterns

in the human microbiome, shown in the top half of Figures 2.5 and 2.6. First, for a

given body site, di↵erent individuals had similar community composition patterns in

the phylum level (see Fig. 2.5). But samples from di↵erent body sites typically di↵ered

more than samples from the same body site, leading to the second pattern, shown
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Figure 2.4: Nestedness of community composition indicates selection-dominated com-
munity assembly. Top: Presence (colored) or absence (white) of each microbial phylum
in a representative set of 2,000 samples from the EMP. Reproduced from Figure 3 of the
EMP report [TSM+17]. Di↵erent colors represent di↵erent biomes. Bottom: Presence
(black) or absence (white) of species in simulated communities. Two di↵erent regimes
of community assembly were simulated. The first is the selection-dominated scenario
of Figure 2.3, where variability in diversity is produced by variations in environmen-
tal harshness, and all samples are initialized with the vast majority (150/180) of the
species in the regional pool. The second is a dispersal-dominated scenario, where en-
vironmental conditions are identical for all samples, but each sample is initialized with
a di↵erent number of species, varying from 1 to 180. See main text and Methods for
simulation details. Made by Robert Marsland III in [MCM20]

in Figure 2.6 of clustering of microbial communities by body site across individuals

[HGK+12a, QLR+10], which suggests the sample location can be inferred by the relative

abundance data.

One important factors is that di↵erent kinds of externally supplied nutrients, such as

fibers and proteins, are thought to encourage growth of di↵erent microbial taxa. For this

reason, we hypothesized that the patterns in the HMP may arise from heterogeneity in

the resources available in di↵erent environments. In order to reproduce such patterns,

it is important to assume some minimal level of taxonomic and metabolic structure. As

a result, we divided resources into six resource classes and species into six families, with

each family specializing in one resource class, as illustrated in Figure 2.2 and described

above.

We first assumed there were only two externally supplied resources. In particular, the

three di↵erent “body sites” was modeled by supplying with a unique pair of resources

from distinct resource classes (i.e. body site 1 was supplied with a resource from class

A and a resource from class B, body site 2 with a resource from class C and a resource

from class D, and body site 3 with a resource from class E and a resource from class
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Figure 2.5: Low-dimensional nutrient supply variation reproduces patterns in human
microbiome survey data. Top: Each column represents one sample from the Human
Microbiome Project (HMP). Colored segments represent relative abundances of di↵er-
ent phyla in each community. Reproduced from Figure 2 of the initial open-access
report on the results of the HMP[HGK+12a]. Bottom: Each column represents one of
900 simulated samples, each stochastically colonized with 2,500 species from a regional
pool of 5,000 species, comprising seven metabolically distinct families. Colored seg-
ments represent relative abundances of the seven families defined in Figure 2.2. Each
of the three “body sites” was supplied with resources from a di↵erent pair of resource
classes, with total nutrient supply fixed. In the first set of simulations (left), one re-
source from each class was supplied, and the ratio of the two supply rates was randomly
varied from sample to sample. In the second set (right), all resources from each class
were supplied, with randomly chosen supply rates for each sample, normalized to keep
the total supply fixed. The brown family present in all three environments specializes
in the typical byproducts (e.g., carboxylic acids) generated from all the other resource
classes. Within each body site, samples are sorted by relative abundance of this family.
See main text and Methods for simulation details. Made by Robert Marsland III in
[MCM20]

eps2

F). We modeled variability in the availability of resources across individuals at a fixed

body site by changing the ratio of the two supplied resources while holding the total

supplied energy fixed. We generated a regional pool of 5,000 species (approximately the

number of OTU’s identified in the HMP [HGK+12a]), and stochastically colonized 300

samples per body site with 2,500 species each. Figure 2.5 shows the resulting patterns

for simple (two externally supplied resources from di↵erent classes) and complex envi-

ronments (supplied with 100 randomly chosen distinct resources regardless of resource

class). For simple environments, our simulations reproduced the patterns exhibited in

the data including gradients in the dominant families present at each of the body sites.

In contrast, for complex environments we see that the relative abundance of di↵erent

families stays almost constant across individuals for each body site. This suggests that

the patterns found in Fig 2.5 may reflect the combined e↵ects of environmental filtering
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Figure 2.6: Correlations between inter-site nutrient variation and metabolic
structure a↵ect distinguishability of body sites. Left: Principal coordinate analy-
sis (PCoA) of MetaHIT OTU-level community compositions, using the Jensen-Shannon
distance metric. Data points are colored by the body site from which the sample was
taken. Reproduced from Figure 1 of [CHM+18]. Right: Jensen-Shannon PCoA of
species-level compositions of the simulated communities. In the first set of simulations
(left), the nutrients supplied to di↵erent body sites come from di↵erent resource classes.
In the second set of simulations (right), each environment is supplied with a randomly
chosen set of resource types, with each site being supplied with about one third of the
300 possible resources. Made by Robert Marsland III in [MCM20].

and competition between species in the presence of a few dominant externally supplied

resources.

We can also perform a PCoA across body sites to the data from simulations, as in

the MetaHIT data. As can be seen in Figure 2.6, these simulations recapitulated the

pattern seen in real microbial communities. We found that this clustering by body

site depended strongly on the fact that di↵erent body sites had metabolically distinct

resources. For example, the clusters were no longer fully separable on a two-dimensional

PCoA for a complex environment (right most graph in Figure 2.6). This suggests that

the clustering of human microbiomes according to body-sites likely reflects the fact that

these body sites have metabolically distinct environments that result in di↵erent patterns

of byproduct secretion.

In summary, our analysis suggests several hypotheses relating mechanism to large scale

patterns observed in both the EMP and HMP. We show it is possible to reproduce these

patterns with a minimal mathematical model and quantitatively understand patterns at

both the species and community levels.



Chapter 3

Statistical-physics-inspired

approaches for complex

ecosystems

Nature has revealed an astounding degree of phylogenetic and physiological diversity

in microbial communities. Recent advances in DNA sequencing technologies makes it

possible to measure microbial communities abundances at high resolution, opening a

new precision era in microbial ecology [CLW+11, SWGV14]. Understanding such large

amounts of microbial data challenges current theories and analytical approaches, most

of which were developed using models that consider only a few species. This challenge

motivated us to develop new theoretical approaches for understanding ecology directly

in a high-dimensional setting by analyzing ecological models with a large number of

species and resources.

In Chapter 1, our discussion and examples were limited to ecosystems consisting of

few species. In low dimensions, describing every degree of freedom (e.g. resources and

species abundances) is tractable. Community properties can be evaluated by exhaus-

tively searching all states directly. However, most microbial ecology dataset are high

dimensional, simultaneously measuring the relative abundances of hundreds of species

across di↵erent habitats. A huge number of combinations of states must be considered,

and the use of exhaustive search strategies is no longer feasible, i.e., one su↵ers from the

curse of dimensionality [Ric57].

One pertinent example in statistical mechanics is the simple example of particles in a

box. At any time t, the microstate of system of N particles is described by the positions

~xi(t) and the momenta ~pi(t) of the di↵erent particles. When N is not too large, the

27



Chapter 3. Statistical-physics-inspired approaches 28

evolution of a microstate can be predicted precisely by solving Hamilton’s equations for

all particles. When N becomes large, for example, a typical volume of gas has the order

of NA ⇠ 1023 particles, the complexity of predicting the microstate is too high to be

feasible.

Taking the analogy between particles in a box and species in the ecosystem, analytical

approaches and theoretical insights derived from small ecosystems may not scale up

to large ecosystems. Instead, one should look for theoretical frameworks that directly

work in the high-dimensional setting. This suggests that we should develop a statistical

mechanics approach to complex ecosystems.

3.1 Large N limit and typicality

We have stressed the practical di�culties in high dimension. Actually, taking the ther-

modynamic limit N !1 can also lead to a number of simplifications. As we all know,

statistical mechanics has successfully dealt with the system with a very large number of

degrees of freedom [Ma18]. For the particles in a box example, instead of trying to pre-

dict the behavior of individual particles in a box, we can make quite accurate statements

about the macro behavior averaged over millions of particles. Because typical features

of the gas can emerge from the collective behavior of many individuals, we can often

even ignore many details about the identity of the particles themselves. For example,

the macroscopic quantities, such as pressure, temperature, volume and entropy follow

Maxwell relations, no matter if the gas is formed by oxygen, nitrogen or mixed. In order

to derive typical relations in thermodynamics, statistical physicists have to assume some

general principles. For example, in order to obtain the Boltzmann distribution, we have

to assume the maximum entropy principle, which means thermal systems are at the

largest uncertainty, i.e. every microstate is identical and has the same probability.

Taking the analogy between species in ecosystems and particles in box, we can learned

three lessons from statistical mechanics that we can apply to ecological systems:

1. We need to find typical relations between macro properties of the ecosystem, such

as the relation between statistical properties of the species and resources, rather

than functions and behaviors of one particular species.

2. Some principle must be assumed in order to obtain these typical relations. For

example, the ecosystem is disordered (meaning parameters can be modeled as being

drawn from a random distribution). With this simple but important assumption,

we can apply physics-inspired approaches to derive many interesting relations in

complex ecosystems.
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3. The typical relations depends on the ecological dynamics. We will solve Lotka-

Volterra and consumer-resource models with cavity method, and then can show

how distinct macro behaviors emerge depending on which dynamics we use.

3.2 Disorder ecosystems

Why can we treat ecosystems as disorder systems? Starting with Robert May’s pio-

neering work in 1972 [May72], there is a long tradition in theoretical ecology of treating

ecosystems like disorder systems. In order to apply the physics-inspired approaches

introduced in this chapter, we have to assume the species-species or species-resource

interactions are random. In reality, species in the same family share similar metabolic

pathways, leading to correlations among parameters [GLB+18]. However, we still make

this simplifying assumption for three reasons. First, it greatly simplifies the mathe-

matics. While more realistic taxonomic structures with correlated parameters can be

analyzed with advanced mathematical tools, such as replica symmetry breaking in spin

glass theory [MPV87], this is quite mathematically challenging. Second, we can learn

a lot from a simple models. In the history of solid state physics, people worked on

understanding Ising model, which only considers the nearest neighbor interactions and

assumes all interactions have the same amplitude. In real materials, the interactions are

more complex and these assumptions do not hold. Third, our work shows that com-

plex ecosystem may actually behave as if they were random even if they are structured

because introducing even a small amount of noise can cause a phase transition to “typ-

icality” [CMIM19]. Given a deterministic structure of the consumer preference matrix

(an identity or a block matrix), we show that adding even a small amount of noise

in the consumer preferences (proportional to the inverse system size, 1/S) will destroy

the engineered structure and make the macroscopic properties of an ecosystem indistin-

guishable from a random ecosystem. This suggests complex ecosystems can be treated

like disordered systems as long as we are concerned with predicting macroscopic ecolog-

ical properties that reflect averages over many species and/or resources. We provide a

mathematical proof of these statements in Chapter 5.

3.3 Random matrix theory

The eigenvalues of the interaction matrix play an important role in the dynamics of an

ecosystem. Random matrix theory(RMT) can tell us what the eigenvalue spectrum look

like analytically, when the matrix size is large and all its elements are independent and

identically sampled from a distribution whose tail is exponentially bounded [Tao12]. For
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Figure 3.1: Schematic for May’s stability criteria. The red scatter points are the
eigenvalues on the complex plane.

a Gaussian random matrix A, whose elements are sampled independent and identically

sampled from a Gaussian distribution, the spectrum follows Girko’s Circular Law and

all its eigenvalues distribute uniformly on a circle in the complex plane [Gin65]. If A

is a symmetric Gaussian random matrix, it follows Wigner Semicircle Law and all its

eigenvalues distribute uniformly on a semicircle in the real plane [Wig58]. If it is a

random consumer matrix C, which is not square, RMT tells its covariance matrix CCT

follows Marchenko–Pastur distribution [MP67a].

An amazing observation is that the eigenvalues of a RMT are distributed over a bounded

domain. The upper and lower bounds are determined by the variables in the corre-

sponding sampled probability distribution. As we know, the largest/smallest eigenvalue

determines the stability of a fixed point in a dynamical system. This suggests there

exists a stability-instability phase transition, and the critical point defining the transi-

tion can be predicted by RMT. In Section 3.3.1, introduce the May’s famous stability

criteria [May72] and describe its relation to RMT. In Chapter 5, we use recent progress

in RMT to explain why complex ecosystems tend to behave as if they were completely

disordered.

3.3.1 May’s Stability Criteria

For an ecosystem of S species, May’s theorem concerns the S ⇥ S community matrix J,

whose entries Jij describe how much the growth rate of species i is a↵ected by a small

change in the population Nj of species j from its equilibrium value. The population
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dynamics is obtained by Taylor expansion around some equilibrium point N̄j ,

dNi

dt
=
X

j

Jij(Nj � N̄j) (3.1)

From above equation, the stability of this equilibrium can be quantified in terms of the

largest eigenvalue �max of J. If �max is positive, the equilibrium is unstable, and a small

perturbation will cause the system to flow away from the equilibrium state.

In the 1960’s, Jean Ginibre derived a mathematical formula for the distribution of eigen-

values in a special class of large random matrices[Gin65]. Girko’s Circular Law states

when the Jij are sampled independently from probability distributions with zero mean

and variance �2, taking the limit S ! 1, its eigenvalues are uniformly distributed on

a disk with radius r =
p
S� in the complex plane, shown in Fig. 3.1. And thus, the

largest eigenvalue �max is at the boundary of this disk. With this result in mind, May

considered a simple ecosystem where each species inhibits itself, with Jii = �1, but

di↵erent species initially do not interact with each other. This ecosystem is guaranteed

to be stable for any level of diversity. He then examined how the stability is a↵ected by

adding randomly sampled interactions, and found that �max typically becomes positive

when the root-mean-squared total strength
p

S�2 of inter-specific interactions reaches

parity with the intra-specific interactions, which gives May’s stability criterion:

p

S�2 = 1. (3.2)

For a given pairwise interaction strength �, this relation gives that the diversity S

promotes ecosystem instability and large ecosystems tend to be unstable.

Before the 1970s, ecologists believed that diversity enhanced ecosystem stability. May’s

stability criteria challenged this idea and led to what is now commonly know as the

diversity-stability debate [McC00]. Theorists have tried to circumnavigate May’s origi-

nal argument by changing the May’s admittedly non-realistic assumptions, including by

adding biologically realistic correlation structures [AT12], modular structures [GRA16],

and correlations [AT15] to the interaction matrix, incorporating the dependence of the

community matrix on population sizes [GGRA18], and considering high-order interac-

tions in Lotka–Volterra dynamics [GBMSA17].

3.4 Spin-glass-inspired approaches

Recently, it is recognized that the generalized Lotka-Volterra model can be approxi-

mately reduced to a presence-absence model by replacing the absolute value of species
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abundance Ni with a binary variable Si, where Si = 1 if the species is present and

Si = 0 if it is absent [FM14, DFM16]. By making an analogy between the presence/ab-

sence of a species in an ecosystem and whether a spin is up or down, it is possible to

map ecological dynamics to the dynamics of spin models in statistical physics, which

have been studied for more than one century [Isi25]. For disorder ecosystems, under-

standing community coexistence pattern becomes a spin glass problem and motivates

physicists to use insights from spin glass theory to uncover the universal features of

complex ecosystems. The spin-glass-inspired approaches are divided into two categories:

cavity method (see Chapter 4) and replica method[MPV87, MM09]. These two methods

have been proven to be equivalent to each other but formalize the same problem from

very di↵erent perspectives [MP03]. Finally, we note that both the cavity method and

replica methods have deep connections with RMT. We refer the interested readers to

[RCKT08, LNV18, CRM20].

3.4.1 Replica Method

Before proceeding, for completeness we briefly discuss the Replica Method in the context

of ecological dynamics. The replica method is another theoretical method originally

developed to study spin glasses. The basic idea of replica method is to use replica

trick logZ = limn!0
Zn

n to estimates the partition function Z, which occurs in many

problems of statistical mechanics and describes the statistical properties of a thermal-

equilibrium system. The application of Replica method requires a predefined energy

function. In Chapter 2, we have shown there is duality between a wide class of ecological

dynamics and constrained optimization over Lyapunov functions. As constraints can also

be expressed as energy functions, combining the Lyapunov function and constraints, the

partition function can be estimated by replica method, and thus properties of ecological

systems at steady states can be analyzed.

In principle, replica method is equivalent to the cavity method [MP03]. [BBC18b]

shows replica approach can reproduce the cavity solution for Lotka-Volterra model in

the unique equilibria phase and find the phase transition point from unique to multiple

equilibria phase. These results were originally derived using cavity methods in [Bun17].

However, we note that a naive application of the cavity method fails in multiple equilibria

phase and it becomes tedious to consider multiple-equilibria corrections. While replica

method still works with one step replica-symmetry-breaking (RSB) approximation.
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Another important application of replica method is to study feasibility in ecology. Struc-

tural stability gives a quantitative measurement of feasibility. It is challenging to esti-

mate structural stability in high dimension because of the undersampling problem. As-

suming ecosystems are disorder, replica method can analytically estimate structural sta-

bility since this quantity is closely related to properties of partition functions [GAS+17].

The formalism of underlying feasibility problems actually belongs to a class of constraint

satisfaction problem, including random K-SAT and jamming problems [MPZ02, FP16],

and this analogy has been discussed in [TM17, LE20]. In this thesis, we do not make use

of the replica method, instead drawing on ideas and techniques from the cavity method.
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Cavity method for ecological

models

The cavity method is not just limited to spin glasses. It has been successfully used

for solving computer science problems, including K-SAT [MPZ02], compressed sens-

ing [KMS+12] and combinatorial optimization [ZK16]. The original cavity method is

designed for a model with binary variables. Over the last five or six years, tremen-

dous progress has been made to develop and generalize this method to solve ecological

models with non-negative continuous variables (e.g. species and resource abundance)

[Bun17, ABM18a, BA17].

The basic idea behind the cavity method is to derive self-consistency equations by relat-

ing an ecosystem with S species / M resources to another ecosystem with S+1 species /

M+1 resources. In the thermodynamic limit S,M ! 1 there is no di↵erence between

observables computed in both systems. In other words, the statistical properties, such

as the first and second moment of species abundance hNi,
⌦
N2
↵
and resource abun-

dance hRi,
⌦
R2
↵
are the same for both systems. Adding a new ”cavity” species/resource

(which by convention we designate with the index 0) to the original ecosystem results

in a perturbation to the original equilibrium state. In the cavity methods, one assumes

that the adding a new “cavity” species/resource is small perturbation (of order 1/S or

1/M) and hence the system before and after addition can be related using perturbation

theory. Combining this with the idea of self-averaging allows for the derivation of a

coupled set of self-consistent mean-field equations for the moments of the species and

resource distributions.

The cavity method can predict coexistence patterns (species/resource abundances), sta-

bility, and species packing bounds (how many species can survive in an ecosystem) of

34
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1. Factor graph representation 
for species dynamics

2. Add “Cavity” species 0

3. Sum the influences from “cavity” species to the 
others and update the species distribution

4. Estimate the species distribution
with central limit theorem

Use the linear response relation and the 
non-negativity constraint 

Lorem ipsum

Figure 4.1: Schematic outlining steps in cavity solution for Lotka–Volterra model.
1. The species dynamics in eq. (4.2) are expressed as a factor graph. The edges are
bi-directional and sampled from a Gaussian distribution. 2. Add the ”Cavity” species
0 as the perturbation. 3. Sum the resource abundance perturbations from the ”Cavity”
species 0 at steady state and update the species abundance distribution to reflect the
new steady state. 4. Employing the central limit theorem and the non-negativity
constraint, the species distribution is expressed as a truncated normal distribution.
The susceptibility appearing in the species distribution is the self-consistency relation.

a random ecosystem. We derive cavity equations for generalized Lotka-Volterra model

and consumer-resource model in Section 4.1 and 4.2.

4.1 Cavity Method for Lotka–Volterra model

The following calculations follow [Bun17] closely. We consider the following generalized

Lotka-Volterra equations consisting of S species,

dNi

dt
= giNi(ri �Ni �

X

j

AijNj), i = 1, 2, . . . , S. (4.1)
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Here gi are the intrinsic growth rates, ri are the carrying capacities and Aij encode

inter-species interactions, with positive and negative values representing competition

and mutualism interactions, respectively. We care about the statistical properties of the

fixed point , where dNi
dt = 0. Notice the intrinsic growth rates do not a↵ect the fixed

point and hence we set them equal to one in what follows. The steady-state equations

become

0 = N̄i(ri � N̄i �
X

j 6=i

AijN̄j). (4.2)

where N̄i are the species abundance in equilibrium.

The self-consistency equations are derived in the thermodynamics limit S !1. In this

limit, we assume many species present in the community have no correlation with each

other so that the carry capacities ri are independent and identically (i.i.d.) sampled

from some probability distribution. For the interaction coe�cients Aij , we consider a

correlation coe�cient ⇢ = corr(Aij , Aij) with �1  ⇢  1. ⇢ = 1,�1 correspond to

completely symmetric and asymmetric interaction coe�cients, respectively.

We assume that the Aij are sampled from a Gaussian distribution with mean hAiji =
µ
S

and variance var(Aij) =
�2

S . We can rewrite

Aij =
µ

S
+ �aij (4.3)

where haiji = 0, haijaklii 6=j,k 6=l =
1
S �ik�jl+

⇢
S �il�jk. The scaling in the mean and variance

is to keep the interaction term
P

j AijN̄j in eq. (4.2) independent of the system size.

ri is also sampled from another gaussian distribution with mean r and variance �r,

independent of Aij . We rewrite it as

ri = r + �ri, (4.4)

where h�rii = 0, h�ri�rji = �2
r�ij.

Now we perturbed the original ecosystem with a new “cavity” species N0 with interac-

tions A0j and Aj0,

N0(r0 �N0 �

SX

j=1

A0jNj) = 0. (4.5)

We represent the original steady state with S species is N̄i/0 and the new steady state

with S+1 species with N̄i. The susceptibility function to the perturbation is defined by

⌫ij =
@Ni
@rj

. Adding the “cavity” species N0 is equivalent to decreasing ri by
P

j Aj0N0.

Note that in the thermodynamic dynamics limit S !1, A0j and Aj0 scale as
1p
S
, other
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O(1/S) terms are ignored. The perturbation equation becomes:

N̄i = N̄i/0 �

SX

j=1

⌫ijAj0N0 (4.6)

With the help of eq. (4.3) and eq. (4.4), solving eq. (4.5) yields:

N0 = max

 
0,

r0 �
PS

j=1 �a0jNi/0 � µ hNi

1� �2
PS

j,i=1 ⌫ija0jai0

!
(4.7)

where hNi = 1
S

P
j Nj . max is a function to take the maximum value in the bracket.

The sum term in the denominator can be written by noting that to leading order in S

that
SX

j,i=1

⌫ija0jai0 =
⇢

S

X

j

⌫jj = ⇢⌫. (4.8)

From the definition of susceptibility ⌫ij , the self-consistency relation yields

⌫ =

⌧
@N0

@r0

�
=

�N

1� ⇢�2⌫
. (4.9)

where �N = S⇤

S is the fraction of nonzero species in the ecosystem. Note that the

factor of �N results from the fact that if N0 = 0, the corresponding derivative in the

susceptibility average is also zero.

Assuming Ni are weak correlated with each other, using the central limit theorem, the

sum
PS

j=1 �a0jNi/0 in the numerator can be approximated to a Gaussian distribution

with mean 0 and variance �2
c

⌦
N2
↵
, where

⌦
N2
↵
= 1

S

PS
i=1N

2
i . We rewrite eq. (4.10),

N0 = max

 
0,

r � µ hNi+
p
�2
r + �2 hN2iz

1� ⇢�2⌫

!
(4.10)

which is a truncated Gaussian. Here z is an auxiliary Gaussian variable with mean 0

and unit variance and
p

�2
r + �2 hN2i results from the sum of two Gaussian variables.

Now we have unknown truncated Gaussian moments �N , hNi and
⌦
N2
↵
, which can be

determined by the species abundance distribution eq. (4.10).
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The following notations are helpful. Let y = max
�
0, ab +

c
bz
�
, with z being a Gaussian

random variable with zero mean and unit variance. Then its j-th moment is given by

⌦
yj
↵

=
1
p
2⇡

Z 1

�a
c

e�
x2

2

⇣c
b
x+

a

b

⌘j
dx (4.11)

=
⇣c
b

⌘j 1
p
2⇡

Z 1

�a
c

e�
x2

2

⇣
x+

a

c

⌘j
dx

=
⇣c
b

⌘j
wj(

a

c
)

here we define wj(
a
c ) =

1p
2⇡

R1
�a

c
e�

x2

2
�
x+ a

c

�j
dx.

With the help of wj , we have all self-consistency equations,

⌫ =
�N

1� ⇢�2⌫
, �N = w0(

r � µ hNip
�2
r + �2 hN2i

), (4.12)

hNi =

p
�2
r + �2 hN2i

1� ⇢�2⌫
w1(

r � µ hNip
�2
r + �2 hN2i

), (4.13)

⌦
N2
↵
=

�2
r + �2

⌦
N2
↵

(1� ⇢�2⌫)2
w2(

r � µ hNip
�2
r + �2 hN2i

). (4.14)

Above self-consistency equations can be solved numerically in Mathematica. Fig. 4.2

show the Comparison between the cavity solution and 500 independent numerical simu-

lations for various ecosystem properties such as the fraction of surviving species S⇤

S and

the first and second moment of the species distribution for a symmetric (⇢ = 1) and

uncorrelated (⇢ = 0) Aij with S = 200, µ = 2., r = 1., �r = 0.1. As can be seen in the

figures, our analytic expressions agree remarkably well over a large range of �c.

4.1.1 Connection with May’s Stability Criteria

Fig. 4.2 shows, in the symmetric case, cavity solution starts deviating from the numerical

simulations when �c > 0.5. This is actually indicative of the emergence of a new phase

where the replica symmetric ansatz used in our cavity calculations no longer holds. To

understand this phase we can look at the minimum eigenvalue of the interaction matrix

A⇤
ij restricted to species that survive in the ecosystem at steady-state. Fig. 4.2 (D)

shows the minimum eigenvalue of A⇤
ij as a function of noise in the consumer preferences

�c. The minimum eigenvalue decrease monotonically with increasing �c until it reaches

zero and then the cavity solution fails. In the numerics, this happen slightly earlier than

zero due to finite size e↵ects. This is reminiscent of the scenario described by May’s

stability criteria discussed in Section 3.3.1. In May’s case, there are only two phases:

unique fixed point (UFP) and unbounded growth (UG), characterizing by �min larger or
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MA

UFP UG

(a)

(c)

(b)

(d)

Figure 4.2: Comparison between the cavity solution (equation 4.12 - 4.14) and sim-
ulations for the fraction of surviving species �N = S⇤

S , (a) the fraction of surviving

species �R = M⇤

M and (b) the first moment hNi and (c) the second moment
⌦
N2
↵
of the

species distributions as a function of �c. (d) The minimum eigenvalue of the submatrix
A⇤

ij at at di↵erent �c. The error bar shows the standard deviation from 500 numerical
simulations with S = 200, µ = 2., r = 1., �r = 0.1 and ⇢ = 1.The black solid lines
separate the results in three di↵erent regimes: unique fixed point, multiple attractors
and unbound growth.

smaller than zero, as shown in Fig. 3.1. While in the full Lotka–Volterra dynamics, Fig.

4.2 (D) shows that there exists an additional multiple-attractors(MA) phase separating

these regimes, where �min gets pinned to zero over a finite range of �c (see Fig. 4.3).

This MA phase was first discovered in [Bun17].

In the MA phase, the dynamics system is marginally stable and highly sensitive to initial

conditions. It has deep connections with the de Almeida-Thouless line in spin glass

theories [dAT78] and chaotic behavior in random one-layer neural networks [SCS88].

The UFP-MA phase only happens in certain parameters regime, for example µ > 0 and

⇢ = 1. In other regimes, the system may have a UFP-UG phase transition instead of

a UFP-MA phase transition. The replica symmetric cavity approach can only predict

the �⇤ when �min = 0, but has no idea about whether �min will stay zero (MA) or

become negative(UG) when further increasing �c. This is because the replica symmetry

is broken in the MA and UG phases. Analysis beyond the UFP phase has been carried

out using the replica approach with replica symmetry breaking [BBC18a].
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Unique Fixed Point Multiple Attractor Unbounded Growth

Figure 4.3: Spectrum of the whole species interaction matrix A and the surviving
species interactions matrix A⇤ at the unique fixed point, multiple attractor and un-
bounded growth phase. The parameters are the same as Fig. 4.2.

What causes the di↵erence in behaviors between LV dynamics eq. (4.1) and May’s

dynamics governed by eq. (3.1)? In May’s case, we asked about the stability of the fixed

point where all species survive for the special case of symmetric A and derived May’s

stability criteria:

4�2 = 1. (4.15)

Note that this Eq. looks superficially di↵erent from eq. (3.2). However, these di↵erence

can be understood by noting: first, we have scaled the variance with the system size

in eq. (4.3), namely � ! �
S ; and second, for simplicity, we consider a symmetric A,

which follows Wigner’s Semicircle law rather than Girko’s Circular law. This di↵erence

contributes a prefactor of 4.

In contrast, in the LV dynamics we allow species to go extinct and some fraction �N =

S⇤/S of the species survive at the fixed point. Fig. 4.3 compares the spectrums of the full

interaction matrix A and spectrum of the interaction matrix restricted to the surviving

species A⇤. In the UFP phase, both of these spectrums follow Wigner Semicircle law

but with slightly di↵erent radii: 2�2 for A, and 2�N�2 for A⇤, respectively. This small

di↵erence can result in big qualitative di↵erences. The reason is that how many and

which species survive in the LV dynamics can show big fluctuation in the MA and UG

phases. For this reason, the interaction matrices may be not “self-averaging” in the

large N limit, and consequently the spectrum of A⇤ does not converge to a deterministic

spectrum.

The discussion above suggests an intuitive criteria for the stability of a fixed point of

Lotka–Volterra dynamics where a fraction �N species survive, namely we should replace

�2 by �N�2 in May’s stability criteria:

4�N�2 = 1, �N = S⇤/S. (4.16)
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5. Estimate the species distribution
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6. Repeat the same process for resources 7. Estimate the resource distribution
with central limit theorem

8. Derive self-consistency equations from the 
species and resource distributions

Use the linear response relation and the 
non-negativity constraint 

Truncated normal distributionTruncated normal distribution
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..

Figure 4.4: Schematic outlining steps in cavity solution. 1. The initial parameter
information consists of the probability distributions for the mechanistic parameters:
K↵, mi and Ci↵. We assume they can be described by their first and second moments.
2. The species dynamics Ni(

P
↵ ci↵R↵ �mi) in eqs. (4.18) are expressed as a factor

graph. 3. Add the ”Cavity” species 0 as the perturbation. 4. Sum the resource
abundance perturbations from the ”Cavity” species 0 at steady state and update the
species abundance distribution to reflect the new steady state. 5. Employing the central
limit theorem and the non-negativity constraint, the species distribution is expressed
as a truncated normal distribution. 6. Repeat Step 2-4 for the resources. 7. The
resource distribution is also expressed as a truncated normal distribution. 8. The
self-consistency equations are obtained from the species and resource distributions.

This equation was first derived in [Bun17, BBC18b] using the cavity method, replica

method and random matrix theory. Alternatively, it can be understood by solving the

self-consistency equation for the susceptibility ⌫:

⌫ =
1

2�2
(1�

p
1� 4⇢�N�2, (4.17)

which has no real solution when 4⇢�N�2 > 1 for ⇢ = 1. This criteria also corresponds

the point where the minimum eigenvalue �min first crosses zero. This suggests the

susceptibility in the cavity equations have a deep connections with the spectrum of the

random matrix describing interactions. This connections was developed in [CMIM19].

Finally, we note that for ⇢ < 1, we need to analyze the susceptibility in a complex plane.

For brevity, we will not discuss these results here.
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4.2 Cavity method for MacArthur’s consumer-resource model

The MacArthur consumer resource dynamics is described with eq. (4.18) and eq. (4.19),

dNi

dt
= Ni(

X

�

ci�R� �mi), (4.18)

dR↵

dt
= R↵(K↵ �R↵ �

X

j

Njcj↵) (4.19)

This model can also be analyzed using the cavity method and in this section, we closely

follow the derivation in [ABM18b]

As shown in Fig. 4.4: step 1, consumer preference ci↵ are random variables drawn from

a Gaussian distribution with mean µ/M and variance �2
c/M . It is helpful to decompose

the consumer preference into an average and fluctuating component: ci↵ = µ/M+�cdi↵,

where the fluctuating part di↵ obeys

hdi↵i = 0 (4.20)

hdi↵dj�i =
�ij�↵�
M

. (4.21)

We also assume that both the carrying capacity K↵ and the minimum maintenance cost

mi are independent Gaussian random variables with mean and covariance given by

hK↵i = K (4.22)

Cov(K↵,K�) = �↵��
2
K (4.23)

hmii = m (4.24)

Cov(mi,mj) = �ij�
2
m (4.25)

Let hRi = 1
M

P
� R� and hNi = 1

S

P
j Nj be the average resource and average species

abundance, respectively. With all these defined, we can re-write eq. (4.18) and eq.

(4.19) as
dNi

dt
= Ni(µ hRi �m+

X

�

�cdi�R� � �mi) (4.26)

dR↵

dt
= R↵(K+�K↵�R↵��

�1µ hNi�
X

j

�cdj↵Nj) (4.27)

where �K↵ = K↵�K, �mi = mi�m and � = M/S. The basic idea of cavity method is

to relate an ecosystem with M + 1 resources (variables) and S + 1 species to that with

M resources and S species. In Fig. 4.4: step 2, we can express eq. (4.27) as a bipartite

factor graph model for visualization. At step 3, we add a “cavity” species N0 and a
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“cavity” resource R0 into the ecosystem,

dN0

dt
= N0(µ hRi �m+

X

�

�cd0�R� � �m0) (4.28)

dR0

dt
= R0(K+�K0�R0��

�1µ hNi�
X

j

�cdj0Nj) (4.29)

Adding new species and resource will perturb the original steady state. To characterize

the perturbations, we introduce the following susceptibility matrices:

�R
↵� =

@R̄↵

@K�
, �N

i↵ = �
@N̄i

@K↵
, (4.30)

⌫R↵i =
@R̄↵

@mi
, ⌫Nij =

@N̄i

@mj
. (4.31)

We can express the steady-state species and resource abundances in the (S + 1,M + 1)

system with a first-order Taylor expansion around the (S,M) values. Because the mean

part of the consumer resources, µ
M ⇠ O( 1

M ), are much smaller than the fluctuation term,

�cdi0 ⇠ O( 1p
M
), we can neglect the means and consider the perturbations due to the

fluctuating components of the consumer preferences �cdi0R0 in eq. (4.27) and �cd0↵N0

in eq. (4.26) to mi, and K↵, respectively.

Let us denote the species and resource abundances before adding the new species and

resources by Ni/0 and R↵/0 respectively, From the definition of the susceptibilities, we

can relate the species and resources abundances after the perturbation (Ni and R↵) to

the abundances before the perturbation (Ni/0 and R↵/0) through the expressions:

N̄i = N̄i/0 � �c
X

�/0

�N
i�d0�N̄0 � �c

X

j/0

⌫Nij dj0R̄0 (4.32)

R̄↵ = R̄↵/0 � �c
X

�/0

�R
↵�d0�N̄0 � �c

X

j/0

⌫R↵jdj0R̄0 (4.33)

Note
P

j/0 and
P

�/0 mean the sum excludes the new species 0 and the new resource

0. The next step is to plug eq. (4.32) and eq. (4.33) into eq. (4.28) and eq. (4.29) and

solve for the steady-state value of N0 and R0.
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4.2.1 Self-consistency equations for species

For the new “cavity” species N0, the steady equation takes the form

0 = N̄0(µ hRi�m� �m0��
2
c N̄0

X

↵/0,�/0

�R
↵�d0↵d0� (4.34)

��2
c R̄0

X

�/0,j/0

⌫R�jd0�d0j+
X

�/0

�cd0�R̄�/0+�cd00R̄0)

Notice that each of the sums in this equation is the sum over a large number of weak

correlated random variables, and can therefore be well approximated by Gaussian ran-

dom variables for large enough M and S. Using Eq. 4.20, we can calculate the sum of

the random variables in the thermodynamic limit:

X

�/0,j/0

⌫R�jd0�d0j =
1

M

X

�/0,j/0

⌫R�j�j0��0 = 0 (4.35)

X

↵/0,�/0

�R
↵�d0↵d0� =

1

M

X

↵/0,�/0

�R
↵��↵� = � (4.36)

where � = 1
M

P
↵/0,�/0 �

R
↵��↵� = 1

MTr(�R
↵�) is the average susceptibility. Using these

observations about above sums, we obtain

0 = N̄0(µ hRi �m� �2
c�N̄0 +

X

�/0

�cd0�R̄�/0

+ �cd00R̄0 � �m0) +O(M�1/2), (4.37)

Employing the Central Limit Theorem, we introduce an auxiliary Gaussian variable zN

with zero mean and unit variance and rewrite this as

X

�/0

�cd0�R̄�/0 + �cd0�R̄0 � �m0 = zN
p
�2
cqR + �2

m,

where qR is the second moment of the resource distribution,

qR =
⌦
R2

↵

↵
=

1

M

X

�

R2
� .

We can solve eq. (4.37) in terms of the quantities just defined:

µ hRi �m� �2
c�N̄0 +

p
�2
cqR + �2

mzN  0 (4.38)
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Inverting this equation one gets the steady state of species

N̄0 = max

 
0,

µ hRi �m+
p
�2
cqR + �2

mzN
�2
c�

!
(4.39)

which is a truncated Gaussian.

Combining eq. (4.39) and eq. (4.11), we can easily write down the self-consistency

equations for the fraction of non-zero species as well as the moments of their abundances

at the steady state:

�N =
S⇤

S
= w0

 
µ hRi �mp
�2
cqR + �2

m

!
(4.40)

hNi =

 p
�2
cqR + �2

m

�2
c�

!
w1(

µ hRi �mp
�2
cqR + �2

m

) (4.41)

qN =

 p
�2
cqR + �2

m

�2
c�

!2

w2(
µ hRi �mp
�2
cqR + �2

m

) (4.42)

4.2.2 Self-consistency equations for resource

We now derive the equations for the steady-state of the resource dynamics. Inserting

eq. (4.33) into eq. (4.29) gives:

0 = R̄0(K�R0 � ��1µ hNi+�2
c N̄0

X

�/0,j/0

�N
j�dj0d0� (4.43)

+�2
c R̄0

X

i/0,j/0

⌫Nij d0id0j�
X

j/0

�cdj0N̄j/0��cd00N̄0 +�K0)

where � = S
M . We can also define the trace of the species susceptibility

⌫ =
1

S

X

i/0,j/0

⌫Nij �ij =
1

S
Tr(⌫Nij )

. Using the properties of di↵, i.e. eq. (4.20) and eq. (4.21), and following steps analogous

to the derivation of eq. (4.36) and eq. (4.35), we get

X

j/0

�cdj0N̄j/0��cd00N̄0 +�K0 = zR

q
�2
c�

�1qN + �2
K ,

where qN =
⌦
N2

i

↵
= 1

S

P
j N

2
j and we have introduced an auxiliary Gaussian variable

zR with zero mean and unit variance. Plugging these expressions into Eq. 4.43 and

solving for R0 shows that the resource abundance distribution is also truncated gaussian
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distribution of the form:

R0 = max

✓
0,

K � ��1µ hNi+ zR
1� ��1�2

c⌫

◆
(4.44)

By analogy with the LV equations, We can easily write down the self-consistency equa-

tions for the fraction of non-zero resources as well as the moments of their abundances

at the steady state:

�R=
M⇤

M
= w0(

� ��1µ hNi

�zR
) (4.45)

hRi=

0

@

q
�2
c�

�1qN + �2
K

1� ��1�2
c⌫

1

Aw1(
K � ��1µ hNiq
�2
c�

�1qN+�2
K

) (4.46)

qR=

0

@

q
�2
c�

�1qN + �2
K

1� ��1�2
c⌫

1

A

2

w2(
K � ��1µ hNiq
�2
c�

�1qN+�2
K

) (4.47)

The susceptibilities are given by averaging ⌫Nii and �R
↵↵,

� =

⌧
@R↵

@K↵

�
=

⌧
@R0

@K0

�
=

�R

1� ��1�2
c⌫

, (4.48)

⌫ =

⌧
@Ni

@mi

�
=

⌧
@N0

@m0

�
= �

�N

�2
c�

(4.49)

Solving above two equations yields

� = �R � ��1�N , ⌫ = �
1

�2
c

�N

�R � ��1�N
. (4.50)

4.2.3 Comparison with numerics

Fig. 4.5 shows a comparison between the cavity solution and 1000 independent numerical

simulations for various ecosystem properties such as the fraction of surviving species

S⇤/S, the fraction of surviving resources M⇤/M , and the first and second moment of the

species and resource distributions. As can be seen in the figure, our analytic expressions

agree remarkably well over a large range of �c. As a further check on our analytic

solution, we ran simulations where the ci↵ were drawn from di↵erent distributions. One

pathology of choosing ci↵ from a Gaussian distribution is that when �c is large, many of

consumption coe�cients are negative. To test whether our cavity solution still describes

ecosystems when ci↵ are strictly positive, we compare our cavity solution to simulations

where the ci↵ are drawn from a binomial or uniform distribution in Fig. 4.6. As before,

there is remarkable agreement between theoretical predictions and numerical simulations
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Figure 4.5: Comparison between cavity solutions (see main text for definition) and
simulations for the fraction of surviving species �N = S⇤

S , the fraction of surviving

species �R = M⇤

M and the first and second moments of the species and resources dis-
tributions as a function of �c. The error bar shows the standard deviation from 100
numerical simulations with M = S = 100 µ = 1., K = 1., �K = 0.1, m = 0.1, �m=0.01.
Simulations were run using the CVXPY package [AVDB18].

in most of the range. Note that for the binomial distribution, if p is too small, the matrix

become sparse and Gaussian distribution is not a good approximation and our cavity

equations are less accurate.

4.2.4 Susceptibilities and Marchenko–Pastur distribution

A remarkable feature of the cavity solution is that we can directly relate the suscepti-

bilities defined in eq. (4.30) and eq. (4.30) to results in Random Matrix (RMT) theory

Recall, that these four susceptibility matrices that measure how the steady-state re-

source and species abundances respond to changes in the resource supply and species

death(growth) rates. In fact, it turns out this relationship between susceptibilities and

RMT is quite general and suggests a deep connection between RMT and phase transi-

tions.
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Uniform distribution Binomial distribution

Figure 4.6: Comparison between cavity solutions and simulations for strictly positive
distributions. The parameters are the same as Fig. 4.2 except ci↵ is sampled from uni-
form distribution between 0 and b, and binomial distribution with nonzero probability
p.

In what follows, we restrict the susceptibility matrices to surviving species and resources.

The reason for this is that for the extinct species and resources, by definition the suscep-

tibilities are zero. To proceed, we derive explicit equation satisfied by our four suscep-

tibility matrices. Our starting point are the steady-state equations (Eq. 4.18) Eq. 4.19)

for MacArthur’s consumer-resource model:

0 = Ni(
X

↵

ci↵R↵ �mi), (4.51)

0 = R↵(K↵ �R↵ �
X

j

Njcj↵) (4.52)

. Di↵erentiating these equations with respect to K� and mj yields the relations

0 =
X

↵2M⇤

ci↵�
R
↵� , �↵� = �R

↵� +
X

j2S⇤

�N
j�cj↵

�ij =
X

↵2M⇤

ci↵⌫
R
↵j , 0 = ⌫R↵i +

X

j2S⇤

⌫Nji cj↵. (4.53)

where M⇤ and S⇤ denote the sets of surviving resources and species, respectively. These

two equations can be written as single matrix equation for block matrices:

 
c 0

1 cT

! 
⌫R �R

⌫N �N

!
= 1 (4.54)
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To solve this equation, we define a S⇤
⇥ S⇤ matrix: Aij =

P
↵2M⇤ ci↵c̄T↵j . A straightfor-

ward calculation yields

�R
↵� = �↵� �

X

i2S⇤

X

j2S⇤

cT↵iA
�1
ij cj� (4.55)

�N
i↵ =

X

j2S⇤

A�1
ij cj� , ⌫R↵i =

X

j2S⇤

cT↵jA
�1
ji (4.56)

⌫Nij = �A�1
ij , i, j 2 S⇤ and ↵,� 2M⇤ (4.57)

Since the consumer preferences ci↵ are random matrices, this suggests that we should be

able to derive susceptibilities in cavity methods with RandomMatrix Theory (RMT). We

now show that this is indeed the case. Our starting point are the average susceptibilities

which are defined as:

� =
1

M

X

↵2M⇤

�R
↵↵, ⌫ =

1

S

X

i2S⇤

⌫Nii .

From the cavity calculations, we only care about �R
↵� and ⌫Nij , because the other suscep-

tibilities are lower order in 1/M . We can combine with (4.56) to obtain

� =
1

M
Tr(�↵�)�

1

M
Tr

0

@
X

i2S⇤

X

j2S⇤

C̄T
↵iA

�1
ij C̄j�

1

A

=
M⇤

M
�

1

M
Tr

0

@
X

i2S⇤

X

j2S⇤

A�1
ij C̄j�C̄

T
�h

1

A

=
M⇤

M
�

S⇤

M
= �R � ��1�N (4.58)

Aij is the outer product of a random matrix c with itself, i.e., a Wishart matrix. The

underlying reason for this is the bipartite nature of the consumer resource models re-

sulting from the presence of two types of degrees of freedom: resources and species

[RCKT08, RCKT08, AF19, AABF19]. Random Wishart matrices are well-known to

follow a di↵erent eigenvalue distribution, the Marchenko-Pastur law[MP67b] given by

⇢(x) =
1

2⇡�2
c cx

p
(b� x)(x� a) +⇥(c� 1)(1� c�1)�(x) (4.59)

where c = S⇤

M⇤ and ⇥(x) represents the Heaviside step function. Since S⇤ < M⇤ is always

true, the second term can be ignored. Aij =
P

↵2S⇤ C̄i↵C̄T
↵j takes the form of a Wishart

Matrix. We will exploit this to calculate � and ⌫. Notice,

⌫ = = �
1

S
Tr(A�1

ij ) = �
1

S

S⇤X

i=1

��1
i (4.60)
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where �i is the eigenvalue of Aij .

Substituting equation (4.59) into the expression for ⌫ and replacing the sum with an

integral yields:

⌫ = �
S⇤

S

Z b

a

1

x
⇢(x)dx = �

S⇤

S

a+ b� 2
p
ab

4�2
cy
p
ab

= �
1

�2
c

�N

�R � ��1�N
(4.61)

The second line of equation (4.61) is obtained by transferring the integral function to a

complex analytic function and applying the residue theorem.



Chapter 5

When will complex ecosystems

behave like random systems?

In 1972, Robert May triggered a worldwide research program studying ecological com-

munities using random matrix theory. Yet, it remains unclear if and when we can treat

real communities as random ecosystems. In Chapter 2, we have shown that such models,

initialized with random parameters, can predict lab experiments on complex microbial

communities [GI83, MCM20] and reproduce large-scale ecological patterns observed in

field surveys, including the Earth and Human Microbiome Projects [MCM20]. This sug-

gests that the large-scale, reproducible patterns we see across Microbiomes are emergent

features of random ecosystems.

Yet, it remains unclear why random ecosystems can accurately describe real ecological

communities. To answer these questions, in this paper we exploit ideas from random

matrix theory and statistical physics to analyze generalized consumer-resource models

in spirit of May’s original analysis. We show that the macroscopic ecological properties

of diverse ecosystems can be described using random ecosystems, much like thermody-

namic quantities like pressure and average energy of the ideal gas can be described by

considering particles to be random and independent.

51
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Figure 5.1: Random interactions destabilize an ecosystem of specialist con-
sumers. (A) Left: an ecosystem with system size M = 5 starts with specialists
consuming only one type of resource, resulting in a consumer preference matrix B = 1.
Right: o↵-target consumption coe�cients C ⇠ N ( µ

M , �cp
M
) are sampled from a Gaus-

sian distribution, resulting in an overall consumer preference matrix C̄ = B+C. (B)
Fraction of surviving species S⇤/M vs. �c, numerically computed using M = 100 for an
ecosystem described by Eq. 5.2, along with the corresponding results for a completely
random ecosystem with B = 0. The error bar shows ±1 standard deviation from 10000
independent realizations. Also shown are examples of the matrices C̄ employed in the
simulations. (C) Heatmap for the identity matrix plus a gaussian random matrix with
�c = 1 for two system sizes: M = 100 and M = 500.

5.1 Models

To explore these ideas, we devised a more concrete version of May’s original thought

experiment describing an ecosystem consisting of S non-interacting species where in-

teractions are gradually turned on. May’s original argument only considered the lo-

cal dynamics near a pre-specified equilibrium point that eventually becomes unsta-

ble. Since we are interested in exploring what happens in consumer resource models,

we must make additional modeling assumptions to arrive at a complete set of non-

linear dynamics. We focus on numerous variants of the Consumer Resource Model

(CRM)[ML67a], including di↵erent choices of resource dynamics, consumer preferences,

as well as more dramatic variants such as the Microbial Consumer Resource Model

introduced in [GLB+18, MCGM20, MCGM20].

The original MacArthur Consumer Resource Model [ML67a] consists of S species or

consumers with abundances Ni (i = 1...S) that can consume one of M substitutable

resources with abundances R↵ (↵ = 1...M), whose dynamics are described by the equa-

tions

8
<

:

dNi
dt = Ni(

P
� C̄i�R� �mi)

dR↵
dt = R↵(K↵ �R↵ �

P
j NjC̄j↵).

(5.1)

The consumption rate of species i for resource ↵ is encoded by the entry C̄i↵ in the

S ⇥M consumer preference matrix C̄, K↵ is the carrying capacity of resource ↵, and
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mi is a maintenance energy that encodes the minimum amount of energy that a species

i must harvest from the environment in order to survive. When the system is in the

steady state, some species and resources can vanish. We denote the numbers of surviving

species and resources by S⇤ and M⇤, respectively, and in general at steady state we will

have S⇤
 S and M⇤

 M . For this reason, we refer to this model as the CRM with

resource depletion and consider its e↵ects analytically and numerically in later sections.

In the beginning, we focus primarily on a popular variant of the original CRM introduced

by Tilman with slightly di↵erent resource dynamics[Til82b]:

8
<

:

dNi
dt = Ni(

P
� C̄i�R� �mi)

dR↵
dt = K↵ �R↵ �

P
j NjC̄j↵.

(5.2)

The main di↵erence between this model variant and the original CRM is that consumers

can no longer deplete a resource (i.e. M⇤ = M). This makes this models significantly

easier to analyze (especially within the context of Random Matrix Theory) and leads

to much simpler analytic expressions. For this reason, we largely focus on this model

without resource depletion. However, we note that a major drawback of this model is

that it can lead to unphysical, negative resource concentrations and hence is physically

flawed. Despite this limitation, the CRM without resource depletion captures almost

all the qualitative behaviors present in more complicated and physically realistic CRMs

(though there are some subtle but important di↵erences discussed below).

Both the models in Eq. 5.1 and Eq. 5.2 make very specific assumptions about re-

source dynamics (i.e. that resources are themselves self-replicating entities that can

be described by logistic growth in the absence of consumers). To check the general-

ity of our results, we also numerically analyzed generalizations of the CRM including

linear resource dynamics where resources are supplied externally, and a model of micro-

bial ecology with trophic feedbacks where organisms can feed each other via metabolic

byproducts [GLB+18, MICG+19, MCM20, MCGM20]. Furthermore, for simplicity, in

most of this work we assume that S = M . However, we have numerically checked that

our results are robust to breaking on this assumption.

In CRMs, the identity of each species is specified by its consumption preferences. In real

ecosystems, it is well established that organisms can exhibit strong consumer preferences

for particular resources. However, recent work has shown that consumer resource models

with random consumer preferences can reproduce experimental observations in field sur-

veys and laboratory experiments [GLB+18, MCM20]. To understand this phenomena,

we asked how adding noise to consumer preferences changes macroscopic ecosystem level

properties like diversity and average productivity. To do so, we considered a thought
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Gaussian Noise

Binary Noise

(B)

(C)

(D)

Uniform Noise

(A)

Figure 5.2: Community properties for structured and random ecosystems.
(A): Examples of designed interactions Top: the identity matrix; Middle: a Gaussian-
type circulant matrix; Bottom: a block matrix (see Methods for details). Simulations
of designed and random ecosystems where the random component of the the consumer
preferences C are sampled from a (B) Gaussian distribution N (0, �cp

M
), (C) Uniform

Distribution: U(0, b) or a (D): Binomial distribution: Bernoulli(pc). The plots show
the fraction of surviving species S⇤/M , mean species abundance hNi, and second mo-
ment of the species abundances

⌦
N2
↵
for designed and purely random ecosystems the

number of non-specific consumer preferences is increased.

experiment where we started with non-interacting species where each species consumes

its own resource, and then added “noise” to the consumer resource preferences.

A set of non-interacting species can be constructed by engineering each species to con-

sume a di↵erent resource type, with no overlap between consumption preferences. For

example, one can imagine designing strains of E. coli where each strain expresses trans-

porters only for a single carbon source with all other transporters edited out of the

genome: i.e a strain that can only transport lactose, another strain that can only trans-

port sucrose, etc. An ecosystem with such consumer preference structure is shown in

Figure 5.1(A). In such an experiment, horizontal gene transfer would eventually begin

distributing transporter genes from one strain to another, so a realistic model would

have to allow for some amount of unintended, “o↵-target” resource consumption. In

line with May, we can model the consumer preferences C̄i↵ of species i for resource ↵

in such an ecosystem as the sum of the identity matrix 1 and a random component Ci↵
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with variance �2 that encodes non-specific preferences (see Figure 5.1A right). In other

words, the full consumer matrix can be written as C̄ = I+C.

5.2 Phase transition to random ecosystems

Figure 5.1(B) shows how the number of surviving species at steady-state as one adds

more and more non-specific resource preferences to an ecosystem initially composed

of non-interacting species. Just as in May’s analysis, the appropriate measure of the

importance of the random component is the root-mean-squared o↵-target consumption

�c =
p

M�2 (recall M = S). This scaling reflects the fact that two consumer matrices

C̄ with the same �c but di↵erent system sizes M can have very di↵erent amounts of

absolute noise as shown Figure 5.1(C), but exhibit almost identical community-level

properties (with all di↵erences coming from finite size e↵ects). Figure 5.1(B) shows the

fraction of surviving species S⇤/M in the ecosystem as a function of �c. At small values

of �c, all the species survive and S⇤ = S. As high as �c = 0.7, almost all of the original

species are still present in the community. But between �c = 0.7 and �c = 1, there is

a sharp transition in community structure, which results in about half of the original

species becoming extinct.

Remarkably, the fraction of surviving species converges to the same value as for a com-

pletely random consumer preference matrix and remains finite as �c ! 1 [SCG+18].

This means that ecosystems with an arbitrarily large number of species can be stably

formed by considering a su�ciently large initial ecosystem. We also examined two other

community-level properties: the mean species abundance hNi (i.e. the average produc-

tivity), and the second moment of the population size hN2
i, which includes information

about the distribution of population sizes of various species. Figure 5.2 shows that both

of these quantities are also well-approximated by the random consumer preference ma-

trix for �c > 1. These numerical predictions are in excellent agreement with analytic

predictions derived in the S ! 1 limit derived in Section 5.3 using the cavity method

[Bun17, ABM18b].

This convergence to random ecosystem behavior is quite robust, and holds for other

choices of designed consumer preferences beyond the identity matrix considered above.

Figure 5.2 shows numerical simulations of the diversity S⇤/M , average productivity

hNi, and second moment of the species abundances hN2
i as a function of the noise �c

for two other choices of designed consumer preference matrices: a block structure with

pre-defined groups of species exhibiting strong intra-group competition and a unimodal

structure where each species is more likely to consume resources similar to its preferred

resource. Once again, we see that the ecosystem quickly transitions to a behavior where
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these macroscopic properties are indistinguishable from those of a random ecosystem.

The primary e↵ect of the choice of consumer preference matrix is to adjust the threshold

value of �c where the transition to typicality takes place. In all cases, we find that the

random behavior takes over when the average total o↵-target consumption capacity over

all M resource types becomes greater than the consumption of the primary resource in

the original designed ecosystem in the absence of noise, the same as May’s stability

criteria [May72].

The character of the self-organized state is also robust to changes in the sampling scheme

for the random component of the consumer preferences. Gaussian noise in consumer

preferences allows the clearest comparison to May’s result but also sometimes results

in non-physical negative values for consumer preferences. We therefore tested two sam-

pling schemes that always produce positive values for consumer preferences: uniformly

sampling the random component of preferences Ci↵ in an interval from 0 to b, and bi-

nary sampling where Ci↵ = 1 with probability pc and zero otherwise. Changing b or

pc a↵ects both the mean and the variance of the random components of the consumer

preferences simultaneously making it di�cult to directly compare to the Gaussian case.

Nonetheless, as can be seen in the Figure 5.2, the qualitative behaviors is identical to the

Gaussian case, with macroscopic ecological properties becoming indistinguishable from

those of a fully random ecosystem when the average o↵-target resource consumption

comparable to the the consumption of the designed resources.

5.2.1 Sensitivity to perturbations and the transition to typicality

To better understand why mass extinctions happen at �⇤
c ⇠ 1 and allow for comparison

with May’s original analysis, we calculated an e↵ective species-species competition ma-

trix Aij between species for an ecosystem whose dynamics are governed by Eq. 5.2. We

exploited the observation by MacArthur and others that if resource abundances always

remain close to their steady state values, the steady-states of the CRM coincide with

those of an e↵ective generalized Lotka-Volterra model of the form

dNi

dt
= Ni

0

@
X

↵2M
Ci↵K↵ �mi �

X

j

AijNj

1

A , (5.3)

with the species-species interaction matrix given by

Aij =
X

↵2M
C̄i↵C̄

T
↵j (5.4)
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(B)

(A) Consumer-Resource Model Lotka–Volterra  Model

(D)

(C)

Figure 5.3: E↵ect of random interactions on ecosystem sensitivity. (A): The
bipartite interactions C̄i↵ in MacArthur’s consumer-resource model can be mapped to
pairwise competition coe�cients Aij in generalized Lotka-Volterra equations through
Aij =

P
↵2M C̄i↵C̄T

↵j . (B) Spectra of Aij at di↵erent �c for C̄ = 1 + C, where C is
a random matrix with i.i.d entries drawn from a normal distribution with mean zero
and standard deviation �c. The red solid line is the Marchenko-Pastur distribution.
(C): Comparison between numerical simulations and analytic results for the minimum
eigenvalue of A at di↵erent �c. (D): Comparison between numerical simulations and
analytic solutions for the mean sensitivity ⌫ of steady-state population sizes to changes
in species growth rates.

(see Figure 5.3(A) for details). This matrix is related to May’s community matrix

governing stability J discussed in the introduction through the relation Jij = �N̄iAij ,

where N̄i is the steady-state abundance of species i. For symmetric interaction matrices

of the form in Eq. 5.4, it is possible to prove that the largest eigenvalue �max of J

reaches zero from below only when the smallest eigenvalue �min of A reaches zero from

above (see Appendix A).

As shown in Figure 5.1(B), the behavior broadly falls into one of three di↵erent regimes

depending on the amount of noise introduced in the consumer preferences: a low-noise

regime when �c ⌧ 1, a cross-over regime when 0 ⌧ �c  1, and a high-noise regime

when �c > 1. Figure 5.3(B) shows how the eigenvalue spectrum of the corresponding

Lotka-Volterra interaction matrix A change as �c increases.

Low-noise regime (�c ⌧ 1): In the low-noise regime, the engineered structure in
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the consumer preference controls large scale ecological properties. Furthermore, the

eigenvalue spectrum of the LV-interaction matrix A is centered around 1 reflecting

the fact there is very little competition between species (i.e. species still occupy largely

independent niches). For this reason, in this regime all the initial species in the ecosystem

survive to steady-state so that S⇤/M = 1.

Crossover regime (0 ⌧ �c  1): With increasing �c, the eigenvalues due the noise

component in A repel each other like in the Coulomb gas and the spectrum spreads out

[Dys62]. �min decreases until it reaches the threshold of stability �min
⇠= 0 at �⇤

c ⇡ 1.

Note that �min is close to 0 but not exactly at 0 because the steady-state of the CRM is

alway stable [Che90b]. In this regime even a small environmental perturbations or small

amounts of demographic noise can result in species extinctions [DB20]. This is closely

related to the divergence of structural stability when �min ⇠ 0[RSB14]. In Section 5.3 we

show analytically using the Cavity method [Bun17, ABM18b] that in the limit M !1,

�min is approaches 0 from above when �⇤
c = 1. At �c ⇠ 1 the engineered structure

and noise have comparable amplitudes. For the case where the consumer preferences

are chose to be binary noise, this threshold corresponds to a critical noise level pc ⇠
1
M ,

meaning on average there is one random nonzero element in the row besides the diagonal

one. More generally, our numerics suggest that the threshold to typicality occurs in a

wide variety of models when the expected o↵-target resource consumption rates become

comparable to the the consumption rate for the designed resources.

Noise-dominated regime (�c > 1) In this regime, we observe two new phenomena

that were not accessible in May’s original framework. First, the spectrum of the species-

species interaction matrix Aij approaches the Marchenko-Pastur law [MP67b],

⇢(x)= 1
2⇡�2

ccx

p
(b� x)(x� a)+⇥(c� 1)(1� c�1)�(x) (5.5)

where a = �2
c (1�

p
c)2, b = �2

c (1 +
p
c)2, c = S⇤/M and ⇥(x) represents the Heaviside

step function. This di↵ers from May’s analysis where the spectrum of the interaction

network follows Girko’s Circular law [RCKT08, AF19, AABF19]. The reason for this

di↵erence is that species-species interaction matrix obtained from the CRM is the outer

product of a random matrix C̄ with itself (i.e., a Wishart matrix, see Eq. 5.4), reflecting

the fact that the CRM has two di↵erent kinds of degrees of freedom: resources and

species. The Marchenko-Pastur law is the distribution we would expect for an ecosystem

with completely random consumer preferences [MP67b]. This helps explain our earlier

observations that community-level observables of ecosystems are indistinguishable from

the purely random ecosystems when �c is su�ciently large (see Figure 5.3(B)).

Secondly, as �c increases past 1 and ecosystem properties become typical, the resulting

ecosystems once again become insensitive to external perturbation [DB20]. To see this,
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we note that we can measure sensitivity to perturbations by examining the minimum

eigenvalue of the interaction matrix Aij , with larger �min meaning decreased sensitivity

to perturbations (see Appendix A.1). The minimum eigenvalue in the Marchenko-Pastur

Distribution is located at

�min = �2
c (1�

p
S⇤/M)2. (5.6)

As one increases �c, S⇤/M ! 1/2 from above since there is increases competition be-

tween species for shared resources. Consequently, �min is always be much larger than

zero once ecosystems crossover to their typical behavior.

The above analysis suggests that �min is an important property that can be used to

characterize the three regimes seen in Figure 5.3(C). In the low-noise regime, species-

species interactions are weak and �min ⇡ 1, whereas in the high-noise regime �min =

�2
c (1 �

p
S⇤/M)2. The calculation of �min in Regime B is challenging because of the

mixture between the engineered structure and noise. However, we can use techniques

from RMT for wireless communication (i.e information-plus-noise models) to analytically

estimate �min [CD11, LV+11]. The results are shown in the red scatter points in Figure

5.3(D) (see Appendix 5.4.3). As discussed above, �min approaches zero as �c approaches

one.

The spectrum of A also contains quantitative information about the sensitivity of the

ecosystem in the Cavity method. Specifically, as shown in Section 5.3, we can define a

susceptibility ⌫ that measures the average response of the steady-state population size

N̄i to perturbing of the species maintenance cost mi (see Eq. 5.2). We further show

that ⌫ is directly related to the the sum of the inverse eigenvalues of Aij through the

expression

⌫ =
1

M

X

i

(1/�i) =
1

M
tr(A�1). (5.7)

Figure 5.3(D) shows that this quantity is initially constant as �c is increased from 0,

then reaches the maximum value at �c = 1, and finally rapidly decreases to near zero.

In Section 5.3 we provide analytical calculations based on the cavity method confirming

these numerical results.

Note that our results are not restricted to Gaussian noise but also apply to the other

cases where the noise in consumer preferences is binary or uniform. This is because

the central limit theorem guarantees that the statistics of eigenvalues of large random

matrices converges to the statistics in Gaussian random matrices for many biologically

plausible choices of consumer preferences.
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Figure 5.4: E↵ect of resource extinction on an ecosystem. A schematic for the
consumer preference matrix with ((A)) and ((B))without resource extinction for spe-
cialist consumers that each eat independent resources. The left schematic corresponds
to the initial consumer matrix, and the right schematic to the consumer matrix after
species and resource extinctions. Notice that resource extinctions can result in singu-
lar consumer matrices (C) Spectra of Aij at �c = 0.3 with consumer matrices chosen
as in Figure 5.3 with (left) and without resource extinction (right). The zero modes
are marked with a red ellipse. (D) the mean sensitivity ⌫ of steady-state at di↵erent
�c. The dashed lines in (D) are cavity solutions. The scatter points are results from
numerical simulations. See Section 5.3 for detailed calculations.

5.2.2 E↵ect of resource depletion

Thus far we have focused on a CRM without resource extinctions specified by Eqs. 5.2.

As discussed extensively in Section 5.3, if we instead allow for resource extinction (Eqs.

5.1), somewhat surprisingly, our cavity method predicts a first-order phase transition

to typicality rather than a cross-over as is the case without resource extinction. The

signature of such a first order transition is the divergence of the susceptibility matrix ⌫

discussed above. Figure 5.4 shows ⌫ with and without resource extinction, numerically

confirming the existence of this first order transition. This first order transition is also

reflected in the spectrum of the interaction matrix A through the the appearance of zero

eigenvalue modes for CRMs when resources can go extinct.

The existence of zero modes can be understood by noting that resource extinction and

species extinction correspond to the column and row deletion in the consumption matrix

(shown in Figure 5.4(A)). Such deletions can change the engineered component of the

e↵ective consumer preferences for surviving species and resources, resulting in large

fluctuations in the interaction matrix A. In the presence of these large fluctuations, the

interaction matrix no longer self-averages, giving rise to the observed first-order phase

transition. This same mechanism also leads to a first-order phase transition to typical
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behavior when the engineered portion of the consumer resources is block diagonal, even

in the absence of resource extinctions (see Figure 5.4).

5.3 Cavity solution

When the designed component of the consumer preferences is the identity (i.e B = 1,

the e↵ect of random o↵-target consumption on system-scale properties can be computed

analytically in the M,S ! 1 limit using the cavity method introduced in Chapter 4.

The cavity calculation is straightforward but tedious. For this reason, it is helpful to

introduce the notation as before:

•
M⇤

M = �R, hRi =
1
M

P
� R� and qR = 1

M

P
� R

2
� =

⌦
R2
↵
, where M⇤ is the number

of surviving resources.

•
S⇤

S = �N , hNi = 1
S

P
j Nj and qN = 1

S

P
j N

2
j =

⌦
N2
↵
, where S⇤ is the number of

surviving species.

• Ci↵ ⌘
µ
M +�cdi↵ assuming hdi↵i = 0, hdi↵dj�i =

�ij�↵�

M . with hci↵i =
µ
M , hci↵cj�i =

�2
c

M �ij�↵� + µ2

M2 ⇡
�2
c

M �ij�↵� .

• K↵ = K + �K↵ with hK↵i =
1
M

P
� K� = K, h�K↵�K�i = �↵��2

K .

• mi = m+ �mi with hmii = m, h�mi�mji = �ij�2
m.

• � = M
S and for the identity matrix � = 1.

Following similar steps as in Chapter 4 and [ABM18b], we perturb the ecosystem with

a new species and resource N0 and R0. Ignoring O(1/M) terms yields the following

equations:

dNi

dt
= Ni

2

4Ri�m+
X

�

(
µ

M
+ �cdi�)R� + (

µ

M
+�cdi0)R0��mi

3

5 (5.8)

dR↵

dt
= R↵

2

4K+�K↵�R↵ �N↵�
X

j

(
µ

M
+�cdj↵)Nj � (

µ

M
+�cd0↵)N0

3

5 (5.9)

dN0

dt
= N0

2

4R0 �m+
X

�

(
µ

M
+�cdj↵)R���m0

3

5 (5.10)

dR0

dt
= R0

2

4K + �K0 �R0 �N0 �
X

j

(
µ

S
+ �cdj0)Nj

3

5 (5.11)
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Denote by N̄↵/0, R̄↵/0 and N̄i, R̄↵ the equilibrium values of the species and resources

before and after adding the newcomers, respectively. These can be related to each other

using the susceptibilities defined above:

N̄i = N̄i/0 � �c
X

j

⌫Nij dj0R0 � �c
X

�

�N
i�d0�N0 (5.12)

R̄↵ = R̄↵/0 � �c
X

i

⌫R↵idi0R0 � �c
X

�

�R
↵�d0�N0 (5.13)

In what follows we assume Replica Symmetry. In this case, the sums in the equations

above can be approximated as Gaussian random variables. For this reason, it is helpful

to introduce new auxiliary random variables:

zN =
X

�

�cR̄�/0d0� � �m0 (5.14)

zR =
X

j

�cN̄j/0dj0 � �K0 (5.15)

where hzN i = 0, �zN =
p
�2
cqR + �2

m and hzRi = 0, �zR =
q
�2
cqN + �2

K .

Case 1: both R0 and N0 are positive. Following calculations analogous to [ABM18b]

and noting that � = M
S = 1 yields:

R̄0 = max


0,

�2
c�(K � µ hNi+ zR)� µ hRi+m� zN

(1� �2
c⌫)�

2
c�+ 1

�
(5.16)

N̄0 = max


0,

(1� �2
c⌫)(µ hRi �m+ zN ) +K � µ hNi+ zR

(1� �2
c⌫)�

2
c�+ 1

�
(5.17)

Case 2: either R0 or N0 is zero. We get exactly the same expression as the random

ecosystem we derived in [ABM18b].

R̄0 = 0, N̄0 =
µ hRi �m+ zN

�2
c�

or, N̄0 = 0, R̄0 =
K � µ hNi+ zR

1� �2
c⌫

(5.18)

Case 3: both R0 and N0 are zero, namely,

R̄0 = 0 and N̄0 = 0. (5.19)
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Combining the cases above, the steady state solution is a Gaussian mixture depending

on the positivity of R0 and N0.

R̄0 = ⇥(R0)⇥(N0)
�2
c�(K � µ hNi+ zR)� µ hRi+m� zN

(1� �2
c⌫)�

2
c�+ 1

+⇥(R0)(1�⇥(N0))
K � µ hNi+ zR

1� �2
c⌫

(5.20)

N̄0 = ⇥(N0)⇥(R0)
(1� �2

c⌫)(µ hRi �m+ zN ) +K � µ hNi+ zR
(1� �2

c⌫)�
2
c�+ 1

+⇥(N0)(1�⇥(R0))
µ hRi �m+ zN

�2
c�

(5.21)

Cavity equations for the susceptibilities can be obtained directly by di↵erentiating these

equations:

⌫ =
1

M

X

i

⌫Nii =
@
⌦
N̄0
↵

@m
= �

�N�R(1� �2
c⌫)

(1� �2
c⌫)�

2
c�+ 1

�
�N (1� �R)

�2
c�

(5.22)

� =
1

M

X

↵

�R
↵↵ =

@
⌦
R̄0
↵

@K
=

�N�R�2
c�

(1� �2
c⌫)�

2
c�+ 1

+
(1� �N )�R

1� �2
c⌫

(5.23)

5.3.1 With resource depletion

Two solutions are found by solving eq. (5.22) and eq. (5.23):

�R � �N = 0, � = 0, ⌫ =
1

�2
c � 1

(5.24)

�R � �N > 0, � = �R � �N ,

⌫ =
1� 2�N�2

c + �R�2
c �

q
1 + 2(1� 2�N )�R�2

c + �2
R�

4
c

2�4
c (�R � �N )

.

(5.25)

5.3.2 Without resource depletion

In this case, the resource never vanishes so that we can fix �R = 1 and solve eq. (5.22)

and eq. (5.23). Two solutions are found:

1� �N = 0, � = 0, ⌫ =
1

�2
c � 1

(5.26)

1� �N > 0, � = 1� �N , ⌫ =
1� 2�N�2

c + �2
c �

p
1 + 2�2

c � 4�N�2
c + �4

c

2�4
c (�1 + �N )

. (5.27)
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MacArthur's consumer-resource model 
with resource depletion

MacArthur's consumer-resource model 
without resource depletion

(A) (B)

Figure 5.5: Comparison between numerical simulations(scatter points) and cavity
solutions(solid lines) for � at di↵erent �c for di↵erent cases. (A) CRM without resource
depletion, eqs. (5.2). (B) CRMwith resource depletion, eqs. (5.1). Note S⇤ andM⇤ are
obtained from the numerical simulations, although in principle they could be obtained
by solving the cavity equations directly.

Above two solutions are continuous at the transition point: � = 0 i.e. �N = 1. Assume

there is a small perturbation near the transition: �N = 1 � ✏ and ✏ ⌧ 1 and ⌫ in eq.

(5.27) can be expanded around ✏. It is easy to check the ⌫ in eq. (5.27) has the same

expression as eq. (5.26) at the first order of ✏. Therefore, only one solution exists:

� = 1� �N , ⌫ =
1� 2�N�2

c + �2
c �

p
1 + 2�2

c � 4�N�2
c + �4

c

2�4
c (�1 + �N )

(5.28)

The comparison between cavity solutions and numerical simulations for � and ⌫ are

given in Figure 5.5 and Figure 5.4 respectively.

5.3.3 Without resource depletion and species extinction

In this case, both the resource and the species never vanish so that we can fix �R = 1

and �N = 1. Solving eq. (5.22) and eq. (5.23), only one solution is found:

� = 0, ⌫ =
1

�2
c � 1

. (5.29)

5.3.4 Behavior in Three Regimes

To understand these solutions and behaviors better, it is helpful to consider three

regimes: Regime A where � = �R � �N = 0, Regime B where � becomes nonzero

and species start to extinct, and Regime C where �c � 1 and it becomes a random

ecosystem.
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In Regime B, resource depletion has a significant e↵ect on the system’s feasibility, shown

in Figure 5.4. With resource depletion, equation (5.25) shows there is a sudden change

for the linear response function ⌫ from Regime A: � = 0 to Regime B � 6= 0. As

⌫ ⇠ 1
�R��N

, even a slightly decrease of the number of surviving species will induce a

huge perturbation to the ecosystem, corresponding to a phase transition between Regime

A and Regime B at �⇤
c ⇠ 0.2.

Without resource depletion, equation (5.28) shows the linear response function ⌫ is

continuous from Regime A to Regime B. There is a crossover instead of a phase transition

there. The peak for the crossover is a finite value and can be calculated by taking the

derivative of equation (5.28) over �c, ignoring the correlation between �c and �N . It

happens approximately at �⇤
c =

p
4�N � 2 ⇠ 1.04, where �N = 0.77 can be obtained

from numerical simulation. The explanation for the di↵erence from random matrix

theory are provided in the main text and also the spectrums in Figure 5.3 and Figure

5.4.

Without resource and species depletion, as shown in equation (5.29), ⌫ diverges at

�⇤
c = 1, corresponding to �min reaching exactly zero. This result is also consistent with

equation (5.44), predicted by random matrix theory, which ignores the e↵ect of row or

column deletions in the interaction matrix. This tells there do not exists any feasible

solutions for the coexistence of M species and M resources. Therefore species must go

extinct before �⇤
c = 1.

In Regime C, further increasing of �c after �c > 1, the �4
c term in the square root becomes

dominating and the the susceptibility ⌫ behaves like a random ecosystem quickly, which

explains the dramatic drop of the species packing shown in Figure 5.1. It indicates the

ecosystem tends to a self-organized random state.

5.3.5 Solutions in Regime A and C

In Regime A(�c ⌧ 1), for eqs. (5.1) with resource depletion, the solutions for the

steady-states become,

R0 = max [0,m� zN ] , N0 = max [0,K + zR] . (5.30)

For eqs. (5.2) without resource depletion, the solutions for the steady-states become,

R0 = m� zN , N0 = max [0,K + zR] . (5.31)
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For ecosystems without resource and species extinction, the solutions for the steady-

states become,

R0 = m� zN , N0 = K + zR. (5.32)

For Regime C (�c � 1), for eqs. (5.1) with resource depletion, the solutions for the

steady-states become,

R0 = max


0,

K � µ hNi+ zR
1� �2

c⌫

�
, N0 = max


0,

µ hRi �m+ zN
�2
c�

�
, (5.33)

in agreement with the equations obtained in [ABM18b] for purely random interactions.

For equations. (5.2) without resource depletion, the solutions for the steady-states

become,

R0 =
K � µ hNi+ zR

1� �2
c⌫

, N0 = max


0,

µ hRi �m+ zN
�2
c�

�
. (5.34)

For ecosystems without resource and species extinction, the solutions for the steady-

states become,

R0 =
K � µ hNi+ zR

1� �2
c⌫

, N0 =
µ hRi �m+ zN

�2
c�

. (5.35)

5.4 Correspondence between RMT and cavity solution

Our numerical simulations show that after the transition, our ecosystems are well de-

scribed by purely random interactions. This suggests that we should be able to derive

our cavity results using Random Matrix Theory (RMT). We now show that this is indeed

the case. Our starting point are the average susceptibilities which are defined as:

� =
1

M

X

↵2M
�R
↵↵ =

1

M

X

↵2M⇤

�R
↵↵ (5.36)

⌫ =
1

S

X

i2S
⌫Nii =

1

S

X

i2S⇤

⌫Nii . (5.37)

From the cavity calculations, we only care about �R
↵� and ⌫Nij , because the other suscep-

tibilities are lower order in 1/M .
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We can combine these equations with (4.56) and (4.57) to obtain

� =
1

M

X

↵2M⇤

�R
↵↵ =

1

M
Tr(�R

↵�) (5.38)

=
1

M
Tr(�↵�)�

1

M
Tr

0

@
X

i2S⇤

X

j2S⇤

C̄T
↵iA

�1
ij C̄j�

1

A

=
M⇤

M
�

1

M
Tr

0

@
X

i2S⇤

X

j2S⇤

A�1
ij C̄j�C̄

T
�h

1

A

=
M⇤

M
�

S⇤

M
= �R � ��1�N (5.39)

We now show that the cavity solutions are consistent with results from RMT using

equations (4.56) and(4.57) in Regime A and Regime C described in the main text.

5.4.1 Regime A: C̄ = 1

This regime happens when �c ⌧ 1. Substituting, C̄ = 1 into equations (4.56) and (4.57)

yields

� = 0, ⌫ = �1. (5.40)

This is consistent with the cavity solution equation (5.24) with �c = 0 since in this case

S⇤ = S = M .

5.4.2 Regime C: C̄i↵ i.i.d. N (0, �c/
p
M)

In this regime, �c � 1. In this case, Aij =
P

↵2S⇤ C̄i↵C̄T
↵j takes the form of a Wishart

Matrix. We will exploit this to calculate � and ⌫. Notice,

⌫ =
1

S

X

i2S⇤

⌫Nii = �
1

S
Tr(A�1

ij ) = �
1

S

S⇤X

i=1

��1
i (5.41)

where �i is the eigenvalue of Aij . From the Marchenko-Pastur law [MP67b], we know

that the eigenvalues of a random Wishart matrix obey the Marchenko-Pastur distribu-

tion. Substituting equation (5.6) into the expression for ⌫ and replacing the sum with
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an integral yields:

⌫ = �
S⇤

S

Z b

a

1

x
⇢(x)dx (5.42)

= �
S⇤

S

a+ b� 2
p
ab

4�2
cy
p
ab

= �
1

�2
c

�N

�R � ��1�N

The second line of equation (5.42) is obtained by transferring the integral function to a

complex analytic function and applying the residue theorem. This result is the same as

the cavity solution equation (5.25) when �c � 1.

5.4.3 Regime B using the Stieltjes transformation

In Regime B, it hard to estimate the minimum eigenvalue. We can use Stieltjes trans-

formation of information-plus-noise-type matrices which are well studied in wireless

communications[DS07, CD11, LV+11], where B represents the information encoded in

the signal and C is the noise in wireless communications. In this case, we have

C̄i↵ = 1+ Ci↵, Ci↵ i.i.d. N (0,�c/
p

M).

Aij =
X

↵2M⇤

C̄i↵C̄
T
↵j =

X

↵2M⇤

Ci↵C
T
↵j + Ci↵ + CT

↵i + 1 (5.43)

Using Theorem 1.1 in [DS07][DS07], the Stieltjes transform m(z) of Aij satisfies

�4
czm

3
� 2�2

czm+ (�2
c + z � 1)m� 1 = 0 (5.44)

The asymptotic spectrum of Aij can be obtained by m(z), the solution of equation (5.44)

with

⇢(x) = lim
"!0+

m(x� i")�m(x+ i")

2i⇡
(5.45)

The result is shown in Figure 5.6. The minimum eigenvalue reaches 0 nearly at �⇤
c = 1,

as predicted by the cavity solution.
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Figure 5.6: The asymptotic spectrum of Aij for di↵erent values of �c by solving
equation (5.45) numerically.

5.5 Summary

It is common practice in theoretical ecology to model ecosystems using random matrices.

Yet it remains unclear if and when we can treat real communities as random ecosys-

tems. Here, we investigated this question by generalizing May’s analysis to consumer

resource models and asking when the macroscopic, community level properties can be

accurately predicted using random parameters. We found that introducing even modest

amount of stochasticity into consumer preferences ensures that the macroscopic proper-

ties of diverse ecosystems will be indistinguishable from those of a completely random

ecosystem.

We confirmed our analytic calculations using numerical simulations on CRMs with dif-

ferent types of resource dynamics and di↵erent classes of non-specific interactions. We

also showed that despite the fact that random ecosystems can make accurate predic-

tions about macroscopic properties like the average diversity or productivity, they will

in general fail to capture species level details. This phenomena is well understood in the

context of statistical physics where it is possible to predict thermodynamic quantities

such as pressure and temperature even though one cannot accurately predict microstates.

These observations may help explain the surprising success of consumer resource models

with random parameters in predicting the behavior of microbial ecosystems in the lab

and natural environments [GLB+18, MCM20]. They also suggest that maybe possible

to predict macroscopic ecosystem level properties like diversity or total biomass even

when ecosystems are poorly characterized or have lots of missing data.
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The foregoing analysis has several other interesting implications. First, it suggests that

bottom-up engineering of complex ecosystems may be very di�cult. As the number

of components increases, small uncertainties in each of the interaction parameters may

eventually overwhelm the designed interactions, and destabilize the intended steady

state. Instead, such system are much more likely end up in a typical state which our

theory suggests is much more stable than the intended designed state as ecosystems

become more diverse.

Our work also suggests that in ecosystems well described by consumer resource mod-

els, crossing the May transition generically gives rise to typical random ecosystems

rather than a marginal stable phase as was found in a recent analysis of the Generalized

Lotka-Volterra model [BBC18b]. For this reason, even when the cumulative parame-

ter uncertainties preclude a priori prediction of the detailed structure of the new state,

methods from statistical physics and Random Matrix Theory can be employed to pre-

dict system-level properties [BABL18, SCG+18]. For these reasons, we feel that further

development of these methods are likely to play an important role in enabling top-down

control of ecosystems and may help to identify assembly rules for microbial communities

with many species [FHG17]

In this Letter, we only consider white noise, which is independently and identically

added to all interaction components. In the future, it will be interesting to ask how

other specialized noises, resulting from demographic stochasticity, phenotypic variation,

can a↵ect our results. Based on our experience, we expect that, even in these more

complicated ecosystems, our conclusion will hold quite in the thermodynamics limit

generically. But much more work needs to be done to confirm if this is really the case.
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E↵ects of Resource Dynamics

Few works recognize the importance of resource dynamics in shaping ecosystems. In

theoretical ecology, often, it is assumed that all resources are the same. In contrast, we

show that it is really important to also think about the dynamics of the resources if we

really want to understand how much biodiversity an ecosystem can support. The linear

resource dynamics we consider here are especially important in the realm of microbial

ecosystems (Microbiomes). Understanding why the microbiomes we observe as so di-

verse is a fundamental question in biology. Our work can help design experiments to

systematically understand how resource dynamics a↵ects species coexistence patterns,

and we are setting up collaborations to try to understand this better.

6.1 Model

Here we consider General consumer resource models (CRMs) describing the ecological

dynamics of S species of consumers Ni (i = 1, 2, . . . S) that can consume M distinct

resources R↵ (↵ = 1, 2, . . . ,M). The rate at which species Ni consumes and depletes

resource R� is encoded in a matrix of consumer preferences Ci� . In order to survive,

species have a minimum maintenance cost mi. Equivalently, mi can also be thought

of as the death rate of species i in the absence of resources. These dynamics can be

described using a coupled set of M + S ordinary di↵erential equations of the form

8
>>><

>>>:

dNi
dt = Ni

P
� Ci�R� �Nimi

dR↵
dt = h↵(R↵)�

P
j NjCj↵R↵,

(6.1)

71
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Figure 6.1: Schematic description for two types of resources. (a) Self-renewing re-
sources (e.g. plants), which are replenished through organic reproduction; (b) Ex-
ternally supplied resources (e.g. nutrients that sustain gut microbiota), which are
replenished by a constant flux from some external source, and diluted at a constant
rate; (c) The supply rate as a function of resource abundance for both choices, with
 = !↵ = K↵ = 1.

where h↵(R↵) a function that describes the dynamics of the resources in the absence of

any consumers (see Fig. 6.1).

For self-renewing resources (e.g. plants, animals), the dynamics can be described using

logistic growth of the form

h↵(R↵) = R↵(↵ �R↵), (6.2)

with  the carrying capacity. While such resource dynamics is reasonable for biotic

resources, abiotic resources such as minerals and small molecules cannot self-replicate

and are usually supplied externally to the ecosystem ( Fig. 6.1(b)). A common way to

model this scenario is by using linearized resource dynamics of the form

h↵(R↵) = K↵ � !↵R↵. (6.3)

Fig. 6.1(c) shows a plot of these two choices. Notice that the two resource dynamics

behave very di↵erently at low resource levels. The self-renewing resources can go extinct



Chapter 6. Species Packing 73

and eventually disappear from the ecosystem while this is not true of externally supplied

resources.

Recent research has shown some unexpected and interesting non-generic phenomena

can appear in GCRMs in the presence of additional constraints on parameter values.

A common choice of such constraints is the imposition of a “metabolic budget” on the

consumer preference matrix [PTW17, LLL+19] tying the maintenance cost mi to the

total consumption capacity
P

� Ci� [TM17, AF19]. These metabolic tradeo↵s can be

readily incorporated into the cavity calculations and have significant impacts on species

packing as will be discussed below.

6.2 Cavity solution

.

..
.
.. .

..
.
.. .

..
.
..

2. Factor graph representation 
for species dynamics

3. Add “Cavity” species 0 4. Sum the influences from “cavity” species to the 
resources and update the species distribution

Thermodynamics Limit

1. Initial parameter information

5. Estimate the species distribution
with central limit theorem

Use the linear response relation and the 
non-negativity constraint 

.

..

6. Repeat the same process for resources 7. Estimate the resource distribution
with central limit theorem

8. Derive self-consistency equations from the 
species and resource distributions

Use the linear response relation and the 
non-negativity constraint 

Truncated normal distributionTruncated normal distribution

.

..

Figure 6.2: Schematic outlining steps in cavity solution. 1. The initial parameter
information consists of the probability distributions for the mechanistic parameters:
K↵, mi and Ci↵. We assume they can be described by their first and second moments.
2. The species dynamics Ni(

P
↵ Ci↵R↵ �mi) in eqs. (6.4) are expressed as a factor

graph. 3. Add the ”Cavity” species 0 as the perturbation. 4. Sum the resource
abundance perturbations from the ”Cavity” species 0 at steady state and update the
species abundance distribution to reflect the new steady state. 5. Employing the
central limit theorem, the backreaction contribution from the ”cavity” species 0 and the
non-negativity constraint, the species distribution is expressed as a truncated normal
distribution. 6. Repeat Step 2-4 for the resources. 7. The resource distribution is the
ratio distribution from the ratio of two normal variables K↵ and !↵ +

P
i NiCi↵. 8.

The self-consistency equations are obtained from the species and resource distributions.
Note that ��1�2

c⌫ hRi in the dominator of hRi is from the correlation between Ni and
Ci↵ in

P
i NiCi↵.
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6.2.1 Model setup

In this section, we derive the cavity solution to the linear resource dynamics (eq. (6.1).

8
>>>><

>>>>:

dNi
dt = Ni

⇣P
� Ci�R� �mi

⌘

dR↵
dt = K↵ � !↵R↵ �

P
j NjCj↵R↵

(6.4)

Note that here we follow closely our derivation in [ABM18b, MCWMI19]. The main

di↵erence is that here we consider linear resource dynamics, which as we will see below,

makes the problem much more technically challenging.

Consumer preference Ci↵ are random variables drawn from a Gaussian distribution with

mean µ/M and variance �2
c/M . They can be deposed into Ci↵ = µ/M + �cdi↵, where

the fluctuating part di↵ obeys

hdi↵i = 0 (6.5)

hdi↵dj�i =
�ij�↵�
M

. (6.6)

We also assume that both the carrying capacity K↵ and the minimum maintenance cost

mi are independent Gaussian random variables with mean and covariance given by

hK↵i = K (6.7)

Cov(K↵,K�) = �↵��
2
K (6.8)

hmii = m (6.9)

Cov(mi,mj) = �ij�
2
m (6.10)

Let hRi = 1
M

P
� R� and hNi = 1

S

P
j Nj be the average resource and average species

abundance, respectively. With all these defined, we can re-write eqs. (6.4) as

dNi

dt
= Ni

8
<

:µ hRi �m+
X

�

�cdi�R� � �mi

9
=

; (6.11)

dR↵

dt
= K + �K↵ �

2

4!↵ + ��1µ hNi+
X

j

�cdj↵Nj

3

5R↵ (6.12)

where �K↵ = K↵�K, �mi = mi�m and � = M/S. As noted in the main text, the basic

idea of cavity method is to relate an ecosystem with M + 1 resources (variables) and
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S+1 species (inequality constraints) to that with M resources and S species. Following

eq. (6.11) and eq. (6.12), one can write down the ecological model for the (M +1, S+1)

system where resource R0 and species N0 are introduced to the (M,S) system as:

dN0

dt
= N0

8
<

:µ hRi�m+
X

�

�cd0�R���m0

9
=

; (6.13)

dR0

dt
= K+�K0 �

2

4!0 + ��1µ hNi+
X

j

�cdj0Nj

3

5R0 (6.14)

6.2.2 Perturbations in cavity solution

Following the same procedure as in [ABM18b], we introduce the following susceptibili-

ties:

�R
↵� = �

@R̄↵

@!�
(6.15)

�N
i↵ = �

@N̄i

@!↵
(6.16)

⌫R↵i =
@R̄↵

@mi
(6.17)

⌫Nij =
@N̄i

@mj
(6.18)

where we denote X̄ as the steady-state value of X. Recall that the goal is to derive

a set of self-consistency equations that relates the ecological system characterized by

M +1 resources (variables) and S+1 species (constraints) to that with the new species

and new resources removed: (S + 1,M + 1) ! (S,M). To simplify notation, let X̄\0

denote the steady-state value of quantity X in the absence of the new resource and new

species. Since the introduction of a new species and resource represents only a small

(order 1/M) perturbation to the original ecological system, we can express the steady-

state species and resource abundances in the (S + 1,M + 1) system with a first-order

Taylor expansion around the (S,M) values. We note that the new terms �cdi0R0 in Eq.

eq. (6.12) and �cd0↵N0 in eq. (6.11) can be treated as perturbations to mi, and K↵,

respectively, yielding:

N̄i = N̄i/0 � �c
X

�/0

�N
i�d0�N̄0 � �c

X

j/0

⌫Nij dj0R̄0 (6.19)

R̄↵ = R̄↵/0 � �c
X

�/0

�R
↵�d0�N̄0 � �c

X

j/0

⌫R↵jdj0R̄0 (6.20)
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Note
P

j/0 and
P

�/0 mean the sum excludes the new species 0 and the new resource

0. The next step is to plug eq. (6.19) and eq. (6.20) into eq. (6.13) and eq. (6.14) and

solve for the steady-state value of N0 and R0.

6.2.3 Self-consistency equations for species

For the new cavity species, the steady equation takes the form

0 = N̄0[µ hRi �m� �2
c N̄0

X

↵/0,�/0

�R
↵�d0↵d0� � �2

c R̄0

X

�/0,j/0

⌫R�jd0�d0j

+
X

�/0

�cd0�R̄�/0 + �cd00R̄0 � �m0]
(6.21)

Notice that each of the sums in this equation is the sum over a large number of weak cor-

related random variables, and can therefore be well approximated by Gaussian random

variables for large enough M and S. We can calculate the sum of the random variables:

X

�/0,j/0

⌫R�jd0�d0j =
1

M

X

�/0,j/0

⌫R�j�j0��0 = 0 (6.22)

X

↵/0,�/0

�R
↵�d0↵d0� =

1

M

X

↵/0,�/0

�R
↵��↵� =

1

M

X

↵

�R
↵↵ =

1

M
Tr(�R

↵�) = � (6.23)

where � is the average susceptibility. Using these observations about above sums, we

obtain

0 = N̄0

2

4µ hRi �m� �2
c�N̄0 +

X

�/0

�cd0�R̄�/0 + �cd00R̄0 � �m0

3

5+O(M�1/2), (6.24)

Employing the Central Limit Theorem, we introduce an auxiliary Gaussian variable zN

with zero mean and unit variance and rewrite this as

X

�/0

�cd0�R̄�/0 + �cd0�R̄0 � �m0 = zN
p
�2
cqR + �2

m, (6.25)

where qR is the second moment of the resource distribution,

qR =
1

M

X

�

R2
� .
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We can solve eq. (6.24) in terms of the quantities just defined:

µ hRi �m� �2
c�N̄0 +

p
�2
cqR + �2

mzN  0 (6.26)

Inverting this equation one gets the steady state of species

N̄0 = max

"
0,

µ hRi �m+
p
�2
cqR + �2

mzN
�2
c�

#
(6.27)

which is a truncated Gaussian.

Let y = max
�
0, ab +

c
bz
�
, with z being a Gaussian random variable with zero mean and

unit variance. Then its j-th moment is given by

⌦
yj
↵

=
1
p
2⇡

Z 1

�a
c

e�
x2

2

⇣c
b
x+

a

b

⌘j
dx (6.28)

=
⇣c
b

⌘j 1
p
2⇡

Z 1

�a
c

e�
x2

2

⇣
x+

a

c

⌘j
dx (6.29)

=
⇣c
b

⌘j
wj(

a

c
) (6.30)

here we define wj(
a
c ) =

1p
2⇡

R1
�a

c
e�

x2

2
�
x+ a

c

�j
dx

With this we can easily write down the self-consistency equations for the fraction of

non-zero species and resources as well as the moments of their abundances at the steady

state:

�N =
S⇤

S
= w0

 
µ hRi �mp
�2
cqR + �2

m

!
(6.31)

hNi =
1

S

X

j

Nj =

 p
�2
cqR + �2

m

�2
c�

!
w1(

µ hRi �mp
�2
cqR + �2

m

) (6.32)

qN =
1

S

X

j

N2
j =

 p
�2
cqR + �2

m

�2
c�

!2

w2(
µ hRi �mp
�2
cqR + �2

m

) (6.33)

Note that S⇤ is the number of surviving species at the steady state.
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6.2.4 Self-consistency equations for resources

We now derive the equations for the steady-state of the resource dynamics. Inserting

eq. (6.20) into eq. (6.14) gives:

0=K+�K0 � R̄0[! + ��1µ hNi��2
c N̄0

X

�/0,j/0

�N
j�dj0d0�

��2
c R̄0

X

i/0,j/0

⌫Nij d0id0j+
X

j/0

�cdj0N̄j/0+�cd00N̄0+�!0]
(6.34)

We can simplify the sums by averaging over the random variables:

X

�/0,j/0

�N
j�dj0d0� =

1

M

X

�/0,j/0

�N
j��j0��0 = 0 (6.35)

X

i/0,j/0

⌫Nij d0id0j =
1

M

X

i/0,j/0

⌫Nij �ij =
1

M

X

i

⌫Nii =
1

M
Tr(⌫Nij ) = ��1⌫ (6.36)

where ⌫ is the average susceptibility. Finally, note that we can write

�!0 +
X

j

�cdj0Nj = zR
p
��1�2

cqN + �2
!, (6.37)

where we have introduced another auxiliary Gaussian variable zR with zero mean and

unit variance and qN is the second moment of the resource distribution defined in eq.

(6.58), Using these observations, we obtain a quadratic expression for the resource.

K + �K0 � (!0 + ��1µ hNi+
p

��1�2
cqN + �2

!zR)R̄0 + ��1�2
c⌫R̄

2
0 = 0 (6.38)

6.2.4.1 Cavity solution: without backreaction

As discussed in the main text, we cannot solve the full resource equations exactly. For

this reason, we perform an expansion, as a start, we calculate this equation by setting

⌫ = 0 in the resource equation. This is equivalent in the TAP language of ignoring the

backreaction term.

Under this assumption, the quadratic equation for the resource, simply becomes a linear

equation that can be re-arranged to give

R̄↵ =
K + �K↵

! + ��1µ hNi+ zR
p
��1�2

cqN + �2
!

(6.39)
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Assuming the fluctuations in the denominator is small, i.e.
p
��1�2

cqN + �2
! ⌧ ! +

��1µ hNi, we can do a first-order Taylor expansion around the mean value and also

ignore the coupling term between �K↵ and zR:

R̄↵ =
K + �K↵

! + ��1µ hNi
�

K
p
��1�2

cqN + �2
!

(! + ��1µ hNi)2
zR (6.40)

With all these approximations, we get the first two moments of the steady-state resource

abundance distribution:

hRi =
K

! + ��1µ hNi
(6.41)

qR = hRi2 +
�2
K

(! + ��1µ hNi)2
+

K2(��1�2
cqN + �2

!)

(! + ��1µ hNi)4
(6.42)

The susceptibility is given by:

� = �

⌧
@R̄↵

@w↵

�
=

*
K↵

(!↵ +
P

j cj↵N̄j)2
+

2K
p
��1�2

cqN + �2
!

(! + ��1µ hNi)3
zR

+

=
K

(! + ��1µ hNi)2

Combined with self-consistency equations for species, we get the full set of :

�N = w0

 
µ hRi �mp
�2
cqR + �2

m

!
, � =

K

(! + ��1µ hNi)2
(6.43)

hNi =

 p
�2
cqR + �2

m

�2
c�

!
w1(

µ hRi �mp
�2
cqR + �2

m

), hRi =
K

! + ��1µ hNi
(6.44)

qN =

 p
�2
cqR + �2

m

�2
c�

!2

w2(
µ hRi �mp
�2
cqR + �2

m

), (6.45)

qR = hRi2 +
�2
K

(! + ��1µ hNi)2
+

K2(��1�2
cqN + �2

!)

(! + ��1µ hNi)4
. (6.46)

6.2.4.2 Cavity solution: with backreaction correction

We start again with the full resource equation:

K + �K0 � (!0 + ��1µ hNi+
p

��1�2
cqN + �2

!zR)R̄0 + ��1�2
c⌫R̄

2
0 = 0 (6.47)

Since R0 > 0 and ⌫ < 0, the solution of eq. (6.38) gives:
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R0 =
! + ��1µ hNi+

p
��1�2

cqN + �2
!zR

2��1�2
c⌫

�

q
(! + ��1µ hNi+

p
��1�2

cqN + �2
!zR)

2 � 4��1⌫�2
c (K + �K0)

2��1�2
c⌫

(6.48)

For the 1st order expansion, we assume 4��1⌫�2
c �K0+2

p
��1�2

cqN + �2
!zR+(��1�2

cqN+

�2
!)z

2
R ⌧ (! + ��1µ hNi)2 � 4��1⌫�2

cK and do a 1st order expansion around the mean

of the form:

q
(! + ��1µ hNi+

p
��1�2

cqN + �2
!zR)

2 � 4��1⌫�2
c (K + �K0)

=
p
(! + ��1µ hNi)2 � 4��1⌫�2

cK

+
(��1�2

cqN + �2
!)z

2
R + 2(! + ��1µ hNi)

p
��1�2

cqN + �2
!zR � 4��1⌫�2

c �K0

2
p
(! + ��1µ hNi)2 � 4��1⌫�2

cK

Using these expressions, the moments of their abundances at steady state can be calcu-

lated yielding:

hRi =
! + ��1µ hNi

2��1�2
c⌫

�

p
(! + ��1µ hNi)2 � 4��1⌫�2

cK

2��1�2
c⌫

�
��1�2

cqN + �2
!

4��1�2
c⌫
p
(! + ��1µ hNi)2 � 4��1⌫�2

cK

(6.49)

qR = hRi2 +
(��1�2

cqN + �2
!)

2 + 8(��1⌫�2
c�K)2

2(2��1�2
c⌫)

2[(! + ��1µ hNi)2 � 4��1⌫�2
cK]

(6.50)

+
(��1�2

cqN + �2
!)[
p
(! + ��1µ hNi)2 � 4��1⌫�2

cK � (! + ��1µ hNi)]2

(2��1�2
c⌫)

2[(! + ��1µ hNi)2 � 4��1⌫�2
cK]

From eq. (6.48),

@R0

@!
=

1

2��1�2
c⌫

(
1�

!+��1µhNi+
p

��1�2
cqN+�2

!zRq
(!+��1µhNi+

p
��1�2

cqN+�2
!zR)2�4��1⌫�2

c (K+�K0)

)
(6.51)

The term inside the bracket can be expanded as:

! + ��1µ hNi+
p
��1�2

cqN + �2
!zRq

(! + ��1µ hNi+
p
��1�2

cqN + �2
!zR)

2 � 4��1⌫�2
c (K + �K0)

(6.52)

⇡
!+��1µhNi+

p
��1�2

cqN+�2
!zRp

(!+��1µhNi)2�4��1⌫�2
cK


1�

(��1�2
cqN+�2

!)z
2
R+2(!+��1µhNi)

p
��1�2

cqN+�2
!zR�4��1⌫�2

c�K0

2(!+��1µhNi)2�4��1⌫�2
cK

�
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The susceptibilities are given by averaging eq. (6.51)

� = �

⌧
@R

@!

�
(6.53)

=�
1

2��1⌫�2
c
{1� !+��1µhNi

p
(!+��1µhNi)2�4��1⌫�2

cK
+ 3(��1�2

cqN+�2
!)(!+��1µhNi)

2[(!+��1µhNi)2�4��1⌫�2
cK]3/2

} (6.54)

⌫ =

⌧
@N

@m

�
= �

�N

�2
c�

(6.55)

Combined with self-consistency equations for species, get the full set of 1st order self-

consistency equations:

�N = w0

 
µ hRi �mp
�2
cqR + �2

m

!
(6.56)

hNi =

 p
�2
cqR + �2

m

�2
c�

!
w1(

µ hRi �mp
�2
cqR + �2

m

) (6.57)

qN =

 p
�2
cqR + �2

m

�2
c�

!2

w2(
µ hRi �mp
�2
cqR + �2

m

) (6.58)

hRi = !+��1µhNi
2��1�2

c⌫
�

p
(!+��1µhNi)2�4��1⌫�2

cK
2��1�2

c⌫
�

��1�2
cqN+�2

!

4��1�2
c⌫
p

(!+��1µhNi)2�4��1⌫�2
cK

(6.59)

qR = hRi2 + (��1�2
cqN+�2

!)
2+8(��1⌫�2

c�K)2

2(2��1�2
c⌫)

2[(!+��1µhNi)2�4��1⌫�2
cK]

+
(��1�2

cqN+�2
!)[
p

(!+��1µhNi)2�4��1⌫�2
cK�(!+��1µhNi)]2

(2��1�2
c⌫)

2[(!+��1µhNi)2�4��1⌫�2
cK] (6.60)

� = �
1

2��1⌫�2
c

⇢
1� !+��1µhNi
p

(!+��1µhNi)2�4��1⌫�2
cK

+ 3(��1�2
cqN+�2

!)(!+��1µhNi)
2[(!+��1µhNi)2�4��1⌫�2

cK]3/2

�
(6.61)

⌫ = �
�N

�2
c�

(6.62)

6.2.5 Comparison between with and without backreaction

We can reduce the cavity solution with backreaction to the simpler one when �c is large.

In fact all the complexity of cavity solution with backreaction comes from the expression

for eq. (6.48):

R0 =
!+��1µhNi+

p
��1�2

cqN+�2
!zR

2��1�2
c⌫

�

q
(!+��1µhNi+

p
��1�2

cqN+�2
!zR)2�4��1⌫�2

c (K+�K0)

2��1�2
c⌫
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(b) Bernoulli distribution (c) Uniform distribution(a) Gaussian distribution

Figure 6.3: Comparison of numerics and cavity solutions with and without the back-
reaction term as a function of �c. �N = S⇤

S is the fraction of surviving species.
hNi ,

⌦
N2
↵
, hRi and

⌦
R2
↵
are the first and second moments of the species and resources

distribution respectively. The simulations details can be found at the Appendix B.2.
C is sampled either from a Gaussian, Bernoulli, or uniform distribution as indicated.

However, if we assume (! + ��1µ hNi +
p
��1�2

cqN + �2
!zR)

2
� �4��1⌫�2

c (K + �K0),

we can expand the second term following
p
1� x ⇡ 1� x

2 �
x2

8 +O(x3).

R0 =
K+�K0

!+��1µhNi+
p

��1�2
cqN+�2

!zR
+ ��1�2

c⌫(K+�K0)2

(!+��1µhNi+
p

��1�2
cqN+�2

!zR)3
(6.63)

The first term of above equation is the cavity solution without backreaction.

6.2.6 Comparing the cavity solutions to numerical simulations

We show a comparison between theoretical and numerical results for di↵erent choices

of how to sample the consumption matrix in Fig. 6.5 and Fig. 6.3. These figures

show that the cavity solution with backreaction performs better for the Gaussian and

Bernoulli cases. However, in the uniform case, the cavity solution without backreaction

matches with numerical simulations perfectly, while the cavity solution with backreaction

performs worse than without backreaction. In the section 6.2.5, we have shown the cavity

solution with backreaction can be reduced to the cavity solution without backreaction

and hence should be a more robust solution. So why does it perform badly in the uniform

case? The reason is that in the uniform case µ = Mb/2� 1 when the system size M is

large, leading to |�| ⇠ 1
(!+��1µhNi)2 ⌧ 1. From eqs. (6.57, 6.58), we see that both hNi

and
⌦
N2
↵
depends on 1

� � 1 and the numerical solver becomes unstable.

6.3 An upper bound for species packing

By analyzing the susceptibilities in the full Cavity solutions, an upper bound for species

packing can be derived for both resource dynamics in GCRMs. The derivations can also
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be extended to the case where metabolic tradeo↵s impose hard or soft constraints on

the parameter values.

6.3.1 Externally supplied resource dynamics

The response functions � and ⌫ can be written as:

� = �
1

2��1�2
c⌫

(
1�

*
!+��1µhNi+

p
��1�2

cqN+�2
!zRq

(!+��1µhNi+
p

��1�2
cqN+�2

!zR)2�4��1⌫�2
c (K+�K0)

+)
(6.64)

⌫ = �
�N

�2
c�

(6.65)

Substituting eq. (6.65) into eq. (6.64) and rearranging yields

��1�N =
1

2

(
1�

*
!+��1µhNi+

p
��1�2

cqN+�2
!zRq

(!+��1µhNi+
p

��1�2
cqN+�2

!zR)2�4��1⌫�2
c (K+�K0)

+)
. (6.66)

The numerator of the term in angle brackets is the total depletion rate for a given

resource when it is first added to the system. Depletion rates are always positive in this

model, so the right-hand side is always less than 1/2. Noticing � = M
S , �N = S⇤/S,

� > 0, we immediately obtain an upper bound on S⇤

M :

1

2
>

S⇤

M
. (6.67)

6.3.2 Self-renewing(MacArthur’s) resource dynamics

Using the analytical expressions �, ⌫ and self-consistent equations in ref. [CMIM19], we

can derive the following expressions:

hNi =

 p
�2
cqR + �2

m

�2
c (�R � ��1�N )

!
w1

 
µ hRi �mp
�2
cqR + �2

m

!
, (6.68)

hRi =

0

@

q
��1�2

cqN + �2
K

�R(�R � ��1�N )�1

1

Aw1

0

@ � ��1µ hNiq
��1�2

cqN + �2
K

1

A . (6.69)

To derive bounds, we consider various limits of these expressions. First, consider the

case were we put many species S !1 into the ecosystem with fixed number of resources

M , (i.e � = M
S ! 0). In order to keep hNi positive, we must have �R � ��1�N > 0,

giving an upper bound:

1 �
M⇤

M
>

S⇤

M
(6.70)
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6.3.3 Externally supplied resources with metabolic tradeo↵s

Here we consider two kinds of constraints on the parameters, encoding metabolic trade-

o↵s. In the first, the maintenance cost mi = m is the same for all species, and the sum

of the consumption preferences is constrained to equal some fixed “enzyme budget” E

that is nearly the same for all species:

X

↵

Ci↵ = E + �Ei (6.71)

where �Ei is a small random variable with mean zero and variance �2
E . A hard constraint

can be generated by taking �E = 0.

The second kind of constraint does not make any assumptions about Ci↵, but assigns a

cost m̃ to every unit of consumption capacity, so that

mi = (1 + ✏i)m̃
X

↵

Ci↵ + �mi (6.72)

where ✏i and �mi are small random variables with mean zero and variances �2
✏ and �2

m,

respectively. A hard constraint can be generated by taking �✏ = �m = 0.

In the simplest way of setting up the first constraint, the equilibrium equations actually

reduce to the same form as the second. Specifically, one usually generates a consumer

preference matrix satisfying the constraint by first generating an i.i.d. matrix C̃i↵, and

then setting Ci↵ = (E + �Ei)C̃i↵/
P

� C̃i� . The resulting dynamics can be written as:

dNi

dt
= Ni

"
X

↵

(E + �Ei)
C̃i↵P
� C̃i�

R↵ �mi

#
(6.73)

=
Ni(E + �Ei)P

� C̃i�

"
X

↵

C̃i↵R↵ �m

P
� C̃i�

E + �Ei

#
. (6.74)

Dropping the tilde’s, we can write the equilibrium condition in the same form that

results from the second kind of constraint:

0 = Ni{
X

↵

Ci↵[R↵ � (1 + ✏i)m̃]� �mi} (6.75)
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with

m̃ =
m

E
(6.76)

✏i = �
�Ei

E
(6.77)

�mi = 0. (6.78)

Inspection of Equation 6.75 immediately reveals an important novelty: now when we

add a new resource as part of the cavity protocol, the perturbation to the growth rate

can either be positive or negative, depending on the sign of [R↵� (1+ ✏i)m̃]. This turns

out to be the crucial factor that prevents the proof of the S⇤/M < 1/2 bound from going

through, regardless of the size of �✏ or �m.

Following the same steps as above, we arrive at the following set of equilibrium conditions

for the new species N0 and resource R0:

0 = N̄0
⇥
µhRi � µm̃+ �NzN � �2

c�N̄0
⇤

(6.79)

0 = K + �K0 � (! + ��1µhNi+ �RzR + ��1�2
c⌫m̃)R̄0 + ��1�2

c⌫R̄
2
0 (6.80)

where

�2
N = �2

m + �2
c [qR � 2m̃hRi+ m̃2(1 + �2

✏ )] (6.81)

�2
R = �2

! + ��1�2
cqN + ��2�4

c⌫
2m̃2�2

✏ . (6.82)

These are nearly identical to the equations we had before. The two key changes are the

presence of a term with a negative sign inside the coe�cient �N of the random variable

zN , and the ��1�2
c⌫m̃ term inside the parentheses in the equation for the resources.

We can now proceed in the same way as before, solving for N̄0 and R̄0 and taking

derivatives to compute the susceptibilities. We find:

� = �
1

2��1�2
c⌫

⇢
1�

⌧
!+��1µhNi+�RzR+��1�2

c⌫m̃p
(!+��1µhNi+�RzR+��1�2

c⌫m̃)2�4��1�2
c⌫(K+�K0)

��
(6.83)

⌫ = �
�N

�2
c�

(6.84)

This is almost the same as the expression in Equation (6.64) obtained in the absence

of constraints, except for the extra term ��1�2
c⌫m̃ in the numerator and denominator.

This term is significant because ⌫ is a negative number, and if its absolute value is large

enough, it can make the whole term in angle brackets negative. Inserting the second



Chapter 6. Species Packing 86

equation into the first, we obtain a formula for S⇤/M :

S⇤

M
= ��1�N = 1

2

⇢
1�

⌧
!+��1µhNi+�RzR+��1�2

c⌫m̃p
(!+��1µhNi+�RzR+��1�2

c⌫m̃)2�4��1�2
c⌫(K+�K0)

��
(6.85)

The term in brackets can now be negative, but is always greater than -1. We thus obtain

the bound:

S⇤

M
< 1. (6.86)

The term approaches -1 in the limit ⌫ ! �1, which is the same limit required to

saturate the bound in the model with self-renewing resources. As in that case, the limit

cannot actually be achieved, because ⌫ ! �1 implies �! 0 (Equation (6.84)), and �

appears in the denominator of the final expression for N̄0 (Equation (6.27)), while the

numerator always remains finite.

The only way to achieve the limit S⇤

M = 1 is to make the numerator vanish in the same

way as the denominator, which can only happen in the presence of hard constraints

�m = �✏ = 0. In this case, it is easy to see that setting R↵ = m̃ for all ↵ and � !

0, ⌫ ! �1 solves both the steady state equations, regardless of the value of Ñ0. In

Equation (6.79) for Ñ0, the mean and the fluctuating part inside the brackets both

vanish individually (µhRi � µm̃ = 0, �N = 0), and the back-reaction term also vanishes

(�2
c�N̄0 = 0), leaving the equation trivially satisfied. In Equation (6.80) only the terms

with ⌫ are significant in this limit, and they cancel each other perfectly. This is the

“shielded phase” discussed in [TM17].

Note also that if we take the � ! 0, ⌫ ! �1 limit first, before performing any

substitutions, Equations (6.83) and (6.84) are satisfied independently of the choice of �N .

This means that ��1�N = S⇤/M can be greater than 1, as observed in the simulations

of [PTW17].

6.3.4 Numerical evidence

We show a comparison between the cavity solution and numerical results in Fig. 6.6 and

Fig. 6.4 for three di↵erent distributions of the consumption matrix C. For the Gaussian

and Bernoulli distributions, S⇤

M can reach the upper bound we derived for two di↵erent

resource dynamics. For externally supplied resource dynamics, S⇤

M never exceeds 0.5.

For the uniform case, since the fluctuation of consumption matrix is small, the niche

overlap is large and there is fierce competitions among species and theses ecosystems

live very far from the upper bounds we derive. However, even for the uniform case, the
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 Bernoulli distribution

 Uniform distribution

(a)

(b)

self-renewing externally supplied

externally suppliedself-renewing

Figure 6.4: Comparison of species packing S⇤

M for di↵erent distributions of consump-
tion matrices C with self-renewing and externally-supplied resource dynamics. The
simulations represent averages from 1000 independent realizations with the system size
M = 100, S = 500 and parameters at the Appendix B.2.

species packing fraction is significantly larger for self-renewing resource dynamics than

externally supplied resource dynamics.

6.4 Results

In Chapter 4, we derived a mean-field cavity solution for steady-state dynamics of the

the GCRM with self-renewing resource dynamics in the high-dimensional limit where

the number of resources and species in the regional species pool is large (S,M �

1)[ABM18b, MCWMI19, CMIM19]. The overall procedure for deriving the cavity equa-

tions for GCRM with externally supplied resource is similar to that for GCRMs with

self-renewing resources and is shown in Fig. 6.2. We assume the K↵ and mi are in-

dependent random normal variables with means K and m and variances �2
K and �2

m,

respectively. We also assume !↵ are independent normal variables with mean ! and

variance �2
!. The elements of the consumption matrix Ci↵ are drawn independently
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from a normal distribution with mean µ/M and variance �2
c/M . This scaling with M is

necessary to guarantee that hNi, hRi do not vanish when S,M � 1 with M/S = � fixed.

Later, we will consider a slightly modified scenario where the maintenance costs are cor-

related with the consumption matrix in order to implement the metabolic trade-o↵s

discussed above.

The basic idea behind the cavity method is to derive self-consistency equations relating

an ecosystem with M resources and S species to an ecosystem with M + 1 resources

and S + 1 resources. This is done by adding a new ”cavity” species 0 and a new

”cavity” resource 0 to the original ecosystem. When S,M � 1, the e↵ect of the new

cavity species/resource is small and can be treated using perturbation theory. The

cavity solution further exploits the fact that since the Ci↵ are random variables, when

M � 1 the sum
P

↵Ci↵R↵ will be well described by a by a normal distribution with

mean µ hRi and variance �2
cqR where qR =

⌦
R2
↵
= 1/M

P
↵R

2
↵ (see Appendix for

details). Combining this with the non-negativity constraint, the species distribution can

be expressed as a truncated normal distribution,

N̄ = max

"
0,

µ hRi �m+
p
�2
cqR + �2

mzN
�2
c�

#
(6.87)

where � = �
D
@R̄↵
@!↵

E
= �M�1P

↵
@R̄↵
@!↵

and zN is a standard normal variable. This

equation describes GCRMs with both externally supplied and self-renewing resource

dynamics [ABM18b].

The steady-state cavity equations for externally supplied resources are significantly more

complicated and technically di�cult to work with than the corresponding equations for

self-renewing resources. To see this, notice that the steady-state abundance of resource

↵ can be found by plugging in Eq. 6.3 into Eq 6.1 and setting the left hand side to zero

to get

R̄↵ = K↵/(!↵ +
X

j

N̄jCj↵) =
K↵

!e↵
↵

, (6.88)

where we have defined !e↵
↵ = !↵ +

P
j N̄jCj↵. When S � 1, both the denominator !e↵

↵

and the numerator K↵ can be modeled by independent normal random variables. This

implies that the the steady-state resource abundance is described by a ratio of normal

variables (i.e. the Normal Ratio Distribution) instead of a truncated Gaussian as in the

self-renewing case [M+06]. At large �c, this makes solving the cavity equations analyti-

cally intractable. Luckily, if the variance of the denominator !e↵
↵ is small compared with

the mean – which is true when �c not too large – we can still obtain an approximate

replica-symmetric solution by expanding in powers of the standard deviation over the

mean of !e↵
↵ (see Appendix). We consider expansions to the cavity solutions where the
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Figure 6.5: Comparison between cavity solutions (see main text for definition) and
simulations for the fraction of surviving species �N = S⇤

S and the first and second
moments of the species and resources distributions as a function of �c. The error bar
shows the standard deviation from 1000 numerical simulations with M = S = 100 and
all other parameters are defined in the Appendix B.2. Simulations were run using the
CVXPY package [AVDB18].

denominator in Eq. 6.88 is expanded to 1st order. In general, the backreaction cor-

rection is quite involved since resources and species form loopy interactions resulting

in non-trivial correlation between Ci↵ and Ni that must be properly accounted for (see

Appendix6.2.5).

6.4.1 Comparison with numerics

The full derivation of 1st order expansions of the mean-field equations are given in the

Appendix. The resulting self-consistency equations can be solved numerically in Mathe-

matica. Fig. 6.5 shows a comparison between the cavity solution and 1000 independent

numerical simulations for various ecosystem properties such as the fraction of surviving

species S⇤/S and the first and second moment of the species and resource distributions

(simulation details are in the Appendix B.2). As can be seen in the figure, our analytic

expressions agree remarkably well over a large range of �c. However, at very large �c

(not shown), the cavity solutions start deviating from the numerical simulations because
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the Ratio Normal Distribution can no longer be described using the 1st order expansion

to the full cavity equations.

As a further check on our analytic solution, we ran simulations where the Ci↵ were drawn

from di↵erent distributions. One pathology of choosing Ci↵ from a Gaussian distribution

is that when �c is large, many of consumption coe�cients are negative. To test whether

our cavity solution still describes ecosystems when Ci↵ are strictly positive, we compare

our cavity solution to simulations where the Ci↵ are drawn from a Bernoulli or uniform

distribution. As before, there is remarkable agreement between analytics and numerics

(see Fig. 6.3)

6.4.2 Species packing without metabolic tradeo↵s

The essential ingredients needed to derive species packing bounds for GCRMS are the

cavity equations for the average local susceptibilities ⌫ =
D

@N̄i
@mi

E
= S�1P

j
@N̄i
@mi

and

� =
D

@R̄↵
@X↵

E
= M�1 @R̄↵

@X↵
, with X↵ = K↵ for externally supplied resources and X↵ = �!↵

for self-renewing resources. These two susceptibilities measure how the mean species

abundance and mean resource abundance respond to changes in the species death rate

and the resource supply/depletion rate, respectively. They play an essential role in

the cavity equation and can be used for distinguishing di↵erent phases in complex

systems[RMS15, CMIM19].

For the self-renewing case, the susceptibilities �s and ⌫s are given by eq. (59, 60) in

[MCWMI19]

⌫s = �
�N

�2
c�s

, �s =
�R

1� ��1�2
c⌫s

, (6.89)

and can be reduced to �s = �R � ��1�N , where �R = M⇤/M , with M⇤ equal to the

number of non-extinct resources in the ecosystem. In order to guarantee the positivity

of hNi, we must have �s = �R � ��1�N > 0, resulting in an upper bound

1 �
M⇤

M
>

S⇤

M
(6.90)

which states that the number of surviving resources must be smaller than the number

of surviving species.

For the externally supplied case, the corresponding equations take the form

⌫ = �
�N

�2
c�

,� = �
1

2��1⌫�2
c
(1� h...i), (6.91)
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self-renewing external-supplied(a) (b)

Figure 6.6: Comparison of the species packing ratioS⇤

M at various �c and K for
self-renewing and externally supplied resource dynamics. The simulations represent
averages from 1000 independent realizations with the system size M = 100, S = 500
(parameters in Appendix B.2).

where the full expression of h...i can be found in eq. (6.64) in the appendix. For our

purposes, the most important property is that in the absence of metabolic tradeo↵s, the

expression h...i is always positive. Combining this observation with the equations above

gives the upper bound
1

2
>

S⇤

M
= �N��1. (6.92)

Thus, for externally supplied resources, at most half of all potential niches are occupied.

Fig. 6.6 shows numerical simulations confirming the species packing bound for various

choices of K and �c.

6.4.3 Species packing with metabolic tradeo↵s

We also find that metabolic tradeo↵s modify the cavity equations in such a way that

the expression in brackets h...i in Equation (6.91) can become negative (see Appendix).

However, it still remains greater than -1, allowing us to derive a species packing bound

of the form S⇤ < M even in the presence of soft metabolic constraints. In Figure 6.7, we

simulated various ecosystems where the maintenance costs of species were chosen to obey

metabolic tradeo↵s of the formmi =
P

↵Ci↵+�mi, where �mi are i.i.d. normal variables

with variance �2
m. Note that a larger �m corresponds to ecosystems with softer metabolic

constraints. We found that when �m/�c > 1, these ecosystems obey the 1/2 species

packing bound derived above. This can also be analytically shown using the modified

cavity equations derived in the appendix. Finally, we show in the appendix that when

the metabolic tradeo↵s take the form of hard constraints on the consumer preferences

as in [AF19, TM17, PTW17, LLL+19], the cavity equations allow for interesting non-

generic behavior with S⇤
� M , consistent with these previous works. Importantly, we
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Figure 6.7: Species packing bounds in the presence of metabolic tradeo↵s. (a) The
species packing ratio S⇤/M as a function of �m/�c, where �m is the standard deviation
of the �mi and �c/

p
M is the standard deviation of Ci↵. Simulations are for binary

consumer preference matrix Ci↵ drawn from a Bernoulli distribution with probability p.
(b) mi versus

P
↵ Ci↵ for p = 0.1 and �m/�c = 10�0.5 See Appendix for all parameters.

find that even modest modifications of the tradeo↵ equation mi /
P

↵Ci↵ results in

ecosystems that satisfy the 1/2 species packing bound.

6.4.4 Classifying ecosystems using species packing

Recently, it has become clear that there is a deep relationship between ecosystem

and constraint satisfaction problems [MCWMI19, MICM20, TM17, AF19]. In partic-

ular, each species can be thought of as a constraint on possible resource abundances

[MCWMI19, MICM20]. Inspired by jamming [LN10] , this suggests that we can sepa-

rate ecosystems into qualitatively distinct classes depending on whether the competitive

exclusion bound is saturated. We designate ecosystems where S⇤
! M (like GCRMs

with self-renewing resources) as isostatic species packings, and ecosystems where the

upper bound Smax on the number of surviving species is strictly less than the number

of resources S⇤ < Smax < M (like GCRMs with externally supplied resources with-

out metabolic tradeo↵s) as hypostatic species packings. Ecosystems with S⇤
� M (like

GCRMs with hard metabolic constraints) are designated as non-generic species pack-

ings because of the presence of a macroscopic number of additional hards constraints

(i.e. the number of additional constraints that are imposed scales with S and M in

the limit S,M ! 1). This basic schema suggests a way of refining the competitive

exclusion principle and may help shed light on controversies surrounding the validity of

basic species packing bounds.
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6.5 Discussion

In this Chapter, we examine the e↵ect of resource dynamics on community structure

and large-scale ecosystem level properties. To do so, we analyzed generalized Consumer

Resource Models (GCRMs) with two di↵erent resource dynamics: externally supplied

resources that are supplied and degraded at a constant rate and self-replicating resources

whose behavior in the absence of consumers is well described by a logistic growth law.

Using a new cavity solution for GCRMs with externally supplied resources and a pre-

viously found cavity solution of the GCRM with self-renewing resources, we show that

the community structure is fundamentally altered by the choice of resource dynamics.

In particular, for externally supplied resources, we find that species generically can only

occupy half of all available niches whereas for self-renewing resources all environmental

niches can be filled. We confirm this surprising bound using numerical simulations.

These results show how resource dynamics, which are neglected in commonly used Lotka-

Volterra models, can fundamentally alter the properties of ecosystems. Much work still

needs to be done to see if and how our results must be modified to account for other

ecological processes such as demographic stochasticity, spatial structure, and microbe-

specific interactions such as cross-feeding [GLB+18, MICG+19]. It will also be necessary

to move beyond steady-states and consider the dynamical properties of these ecosys-

tems. More generally, it will be interesting to further explore the idea that we can

classify ecosystems based on species-packing properties and see if such a schema can

help us better understand the origins of the incredible diversity we observe in real-world

ecosystems.



Chapter 7

Summary and future directions

Nature has revealed an astounding degree of phylogenetic and physiological diversity

in microbial communities. The recent advances in DNA sequencing technologies have

resulted in the generation of large amounts of microbial data. The ability to measure

microbial community species abundances with high resolution has opened a precision

era in microbial ecology. Understanding such a large amount of microbial data chal-

lenges current theories and analytical approaches. Historically, theoretical ecologists

have devoted considerable e↵ort to analyze ecosystems consisting of a few species. How-

ever, analytical approaches and theoretical insights derived from small ecosystems may

not scale up to large ecosystems. On the other hand, most ecological data are high

dimensional, involving hundreds of species across di↵erent habitats. A huge number of

combinations of states must be considered, and the use of exhaustive search strategies

to exactly determine interactions among species is no longer feasible, i.e., the curse of

dimensionality [Ric57].

As we all know, statistical mechanics has allowed us to quantitatively describe col-

lective phenomena in solids and plasma, large-scale structures in astrophysics, and

understand how collective behaviors emerge from the interaction of many individual

components[Ma18]. In the past few years, I have built a theoretical framework with sta-

tistical mechanics, inspired by spin-glass theory, to understand community structures

and coexistence patterns in complex ecosystems. I have also developed computational

tools to model microbial ecosystems and analyze high-dimensional microbial data.

7.1 Spin Glasses and Ecology

My Ph.D. thesis work mainly focused on using the cavity method, to answer funda-

mental questions in ecology. The basic idea behind the cavity method is to derive

94



Chapter 7. Summary and future directions 95

self-consistency equations by relating an ecosystem with S species / M resources to an-

other ecosystem with S+1 species / M+1 resources at the thermodynamic limit. When

S,M ! 1, there is no di↵erence between statistical observables computed in both

disorder systems. Adding a new ”cavity” species/resource 0 to the original ecosystem

results in a perturbation to the original equilibrium state. We can derive a couple of

self-consistency equations by relating the original state to the perturbed state.

In [CMIM19], we explored the e↵ects of noise on diverse communities with designed

structures. This problem can be traced to Robert May’s pioneer work in 1972 about

the stability of large complex ecosystems [May72]. Using the circular law of large ran-

dom matrices derived by Giniber [Gin65], May showed that species can have unbounded

growth when the amplitude of the noise is compatible with the intra-specific interactions.

In May’s model, all ecosystem properties are encoded in the species-species interaction

matrix. A major limitation of these models is that they neglect resources, making it dif-

ficult to understand how ecosystem properties depend on both the external environment

and species consumer preferences.

Our work focused on MacArthur’s Consumer Resource Model (CRM) where species are

modeled as consumers that can consume resources [ML67a]. The bipartite nature of the

CRM, from the presence of two types of degrees of freedom: resources and species, results

in a Wishart matrix [RCKT08]. Random Wishart matrices are well-known to follow the

Marchenko-Pastur law [MP67b]. The designed structure with noise in ecology can be

classified as a class of ”signal + noise” problems, which can be described in the framework

of spiked random matrix models [BS06]. We showed that there is a threshold value for

the strength of specific interactions over the amplitude of noise s, similar to the signal-

to-noise ratio, below which, ecological properties of communities are indistinguishable

from purely disorder ecosystems.

In addition to its theoretical significance, our results also yield interesting biological

implications. First, it suggests that bottom-up engineering of complex ecosystems

may be very di�cult. As the number of components increases, small uncertainties

in each of the interaction parameters may eventually overwhelm the designed interac-

tions, and destabilize the intended steady state. Instead, such system are much more

likely end up in a typical state, which our theory suggests is much more stable than

the intended designed state as ecosystems become more diverse. Second, our results

may also help explain the surprising success of consumer-resource models with random

parameters in predicting the behavior of microbial ecosystems in the lab and natural

environments [GLB+18, MCM20]. They also suggest the possibility of predicting macro-

scopic ecosystem-level properties like diversity or total biomass even when ecosystems

are poorly characterized or have lots of missing data.
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In [CMIM20], we developed cavity method to calculate the capacity of random ecosys-

tems under various biological constraints. The competitive exclusion principle asserts

that coexisting species must occupy distinct ecological niches (i.e., the number of surviv-

ing species can not exceed the number of resources) [MA77]. While recent study shows

strict metabolic trade-o↵ can result in the coexistence of infinity number of species with

only few numbers of resources provided [TPMW17]. Our work resolves these controver-

sies by showing that generically, the competitive exclusion principle holds and that one

needs very fine-tuned and strict metabolic tradeo↵s to violate this principle. Another

major contribution of the work is to show that dynamics of resources in an ecosystem

can qualitatively change the number of species that can survive in an ecosystem: for

resources that are self-renewing (can reproduce) the number of species that survive in

an ecosystem can approach the number of resources; in contrast, if resources that are

externally supplied, the number of species that can survive is bounded by one-half the

number of resources in the environment. Thus, in this latter case, the competitive ex-

clusion bound is never saturated. Besides the ecological significance of our results, the

problem we solved is equivalent to a machine learning problem: how many random

linear constraints are active in optimizing quadratic and Kullback-Leibler(KL) diver-

gence objective functions. Our result shows the number of active constraints in the

KL-divergence case is only equal to half of the number in the quadratic case.

Cavity method we used is still in the replica-symmetry (unique attractor) regime. [BBC18b]

and [Bun17] show, in simple Lotka-Volterra models, the replica-symmetry-breaking phe-

nomenon emerges and there is the phase transition from unique to multiple attractor

phase. In the multiple-attractor phase, the dynamics system is marginally stable and

highly sensitive to initial conditions, similar to the de Almeida-Thouless line in spin glass

theories [dAT78] and chaotic behavior in random one-layer neural networks [SCS88].

However, our replica symmetric cavity method fails in the multiple-attractor phase and

it becomes tedious to consider multiple-attractor corrections. In the future, I am very

interested in expanding our theoretical framework to the multiple equilibria regime. I

feel this can serve as a sca↵old to understand how living organisms perform complex

behaviors, such as assemble patterns in microbial communities [MICG+19], or even un-

derstand mixed selectivity in neuron science [RBW+13].

In summary, we have developed sophisticated theories about complex ecosystems. I

believe our methodology is not limited to ecology. I want to apply and generalize these

statistical-physics approaches to study other biological systems, including quality control

in protein synthesis, single-cell transcriptional dynamics, gene regulation in cell divisions,

and e↵ects of drug combinations.
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7.2 Inferences in Ecology

In additional to purely theoretical projects, I am also interested in developing infer-

ence tools to analyze high-dimensional microbial data. There are natural connections

between statistical mechanics and inference. The cavity method is equivalent to belief

propagation (BP) algorithms used in optimization and machine learning. In particu-

lar, the cavity equations can be naturally thought of as a message-passing algorithm

for performing inference on graphical models [YFW01]. BP has been widely applied to

solving inference problems in many scientific fields, including protein structure[CFF+18],

Boltzmann machines [WT03], random K-SAT [MPZ02], compressed sensing [KMS+12]

and other combinatorial optimization problems [ZK16]. The last section shows after

specifying the interaction components, the cavity method is successful in predicting co-

existence patterns, especially abundance distributions, and identifying assembly rules

for microbial communities. However, we can also invert this logic, and ask if we can use

these methods to infer interactions from microbial population abundance data.

Aside from the intrinsically high dimensional nature of microbial abundance data, this

inference task is challenging for several additional reasons. First, empirical biological

networks show that the interacting components in ecosystems are often are sparse and

structured [All20], making it di�cult to use mean-field approximations. Second, biologi-

cal measurement is always accompanied by noise, especially when using high throughput

single-cell technologies [ABBR18]. It is essential to filter noise before inferring meaning-

ful signals. Third, sequencing data are inherently relative. The relative abundances can

be perfectly negatively correlated, even though the correlation of their absolute values

is not related [PGB11].

Several generative model-based frameworks have been proposed to address above issues

partially [FMW17, YSL+19]. After specifying the mathematical model of dynamical

biological processes, model parameters are determined by minimizing the loss function

between model predictions and experimental data with gradient descent. As a result,

the choice of mathematical model is a critical component of any inference procedure.

However, most mathematical models used for inference only consider pairwise interac-

tions. As ecosystems gets large, the number of parameters grow rapidly, especially if

high-order terms are needed. As a result, the inference model becomes too complex

and it is di�cult to avoid overfitting. To circumnavigate these problems, I would like

to use functional structures of microbial communities to reduce model complexity while

still allowing for computationally feasible inference methods. For example, we devel-

oped classic MacArthur consumer-resource model including crossfeeding interactions,

whose metabolic interaction components result from biochemical pathways and can be

estimated from flux balance analysis [MICG+19].
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I also would like to improve mean-field inference approaches for understanding deep

neural networks (DNN). Mean-field approximation assumes a unimodal prior distribu-

tion, and thus never works for multi-modal posterior distributions accurately, a scenario

which is likely to be common in high-dimensional biological systems. DNNs are well-

suited to learning functional approximation of high-dimensional data. Thus, we can

use DNN as a more expressive ansatz replacing the Bethe approximation in mean-field

theories (MFT). For example, graph neural network (GNN) employ the message-passing

algorithm and DNN to estimate the node representation from its neighbors. Because

the setup of MFT varies in di↵erent models, the structure of the corresponding GNNs

should also be changed when solving di↵erent problems. One promising direction is to

combine GNNs with statistical-physics-inspired approaches, such as belief propagation,

survey propagation, to solve random K-SAT and other related problems. I believe this

direction can lead to novel inference algorithms for biological data analysis.



Appendix A

Basic material on Lotka-Volterra

model

Lotka-Volterra equations are foundational phenomenological; here we collect basic math-

ematical facts useful for analyzing such equations for stability and dynamics. Lotka-

Volterra dynamics with S species is described by equation A.1.

dNi

dt
= Ni(ri �

X

i 6=j

AijNj), i = 1, 2, . . . S (A.1)

A.1 A proxy for the Jacobian

A common question is to understand the local stability of fixed points of this equation,

i.e., if the ecosystem will return to the same fixed point after a small perturbation of

population abundance Ni.

A direct approach to local is to compute the fixed point of the above equations N̄ =

A�1r, expand to linear order about that fixed point N = N̄ + �N and thus determine

the Jacobian about that fixed point, Jij = N̄iAij . The fixed point is stable if all the

eigenvalues of Jij are negative.

However, such a criterion is not convenient since it involves computing the fixed point

abundances N̄ . Thus some e↵ort has been expended in finding a simpler stability crite-

rion in terms of the competition matrix Aij , instead of examining the actual Jacobian

Jij = N̄iAij .

One such simple su�cient condition for stability is that A + AT be negative definite.

This simple rule can be derived using results on D-stability[KB12]: A real square matrix
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A is said to be D-stable if the matrix DA is negative definite for every choice of a

positive diagonal matrix D. A su�cient condition for D-stability is that A + AT is

negative definite(using lemma 2.1.4 in [KB12]). Thus, if the Lotka-Volterra competition

matrix A is such that A+AT is negative definite, we can conclude immediately that A

is D-stable and hence J = N̄A is negative definite, assuming all steady state abundances

N̄ are non-negative.

We present an alternative proof of this su�cient condition, i.e., if A + AT is negative

definite, for any N̄ with all Ni > 0, N̄iAij is also negative definite.

M = N̄1/2(N̄1/2AN̄1/2))N̄�1/2 (A.2)

where N̄1/2 is the diagonal matrix whose entries are the square roots of the population

sizes. This equation says that M is similar to W ⌘ N̄1/2AN̄1/2, which implies that

they share the same eigenvalues. Since W and A are both symmetric matrices, their

eigenvalues are all real, and the positivity of all the eigenvalues is equivalent to the

negative-definiteness of the matrix.

Now we note that W is negative definite if and only if A is negative definite. For if A

is negative definite, then xTAx < 0 for all column vectors x 6= 0, including the column

vector x = N̄1/2y for any column vector y 6= 0. But this implies that yT N̄1/2AN̄1/2y <

0 for all y 6= 0, i.e., that W is positive definite. Conversely, if W is positive definite,

then yT N̄1/2AN̄1/2y > 0 for all y 6= 0, including y = N̄�1/2x for any x 6= 0. But this

implies that xTAx < 0 for all x 6= 0, i.e., that A is negative definite. We conclude that

the eigenvalues of W are all negative if and only if the eigenvalues of A are all negative.

While this stability result in terms of Aij alone is convenient, note that the stability of

A + AT is not a necessary condition for stability of the Lotka-Volterra equation. That

is, J = N̄A can be stable even if A+AT has positive eigenvalues. As a simple example,

consider A =
�
2 �2/c
c �1

�
for su�ciently large c. The eigenvalues of A and A + AT are

all positive, indicating instability; indeed, the positive self-interaction of species 1 also

suggests instability. However, the steady state abundances of this matrix are .. . Hence

A generates stable LV dynamics at one of the fixed points, even though A + AT has

negative eigenvalues.

Further discussions about D-stability and its application in ecology can be found in

[SCG+18].



Chapter 7. Summary and future directions 101

A.2 Structural stability

A related question to stability is the robustness of a stable fixed point to perturbations

in parameters such ri, Aij , e.g., due to environmental perturbations. Structural stability

is one such measure of such robustness to changes in the carrying capacity values ri. We

first define a fixed point N̄ to be ‘feasible’ if all S species in the ecosystem can coexist,

i.e., N̄i =
P

j A
�1
ij rj > 0.

Structural stability is then defined as the fractional volume ⌦ of all (normalized) vectors

ri such that N̄i =
P

j A
�1
ij rj > 0 :

⌦ =
2S
R1
�1⇧S

i=1dri�(||r||� 1)⇧S
h=1⇥(

P
j A

�1
hj rj)R1

�1⇧idri�(||r||� 1)
. (A.3)

The factor 2S is for normalization as ⌦ = 1 when all o↵-diagonal elements of A are zero,

i.e., there is no interaction between species. The structural stability ⌦ has a natural

geometric explanation that it is a high-dimensional solid angle for a convex cone defined

by
n
r 2 RS

|
P

j A
�1
hj rj > 0

o
[GS10].

Precise estimation of the integral eq. (A.3) can only be done for a ecosystem consisting

of few species. For complex random ecosystems, it can be estimated approximately with

mean field theories. Technical details can be found in [GAS+17]. For consumer-resource

dynamics, the mathematical expression for ⇥ is di↵erent and can be found in [BO18].

Note that structural stability is defined in terms of positive steady state N̄i In local

stability analysis, a feasible fixed point must be assumed before adding the perturba-

tions. In the structural stability calculation, A is invertible and for an ecosystem lying

exactly on May’s stability criteria, A is not invertible. We can see there is a close con-

nection between stability and feasibility and it need to carefully address their relations

in theoretical analysis. Further discussion can be found in [RSB14, DVR+18].



Appendix B

Simulation details

B.1 Chapter 5

All simulations are done with the CVXPY package[AVDB18] in PYTHON 3. All codes

are available on GitHub at https://github.com/Emergent-Behaviors-in-Biology/

typical-random-ecosystems.

B.1.1 Parameters

• Figure 5.1(B), 5.2(B), 5.3(C, D): the consumer matrix C is sampled from the

Gaussian distribution N ( µ
M , �cp

M
). S = 100, M = 100, µ = 0, K = 1, �K = 0.1

, m = 0.1, �m = 0.01, and each data point is averaged from 5000 independent

realizations. The model is simulated with eqs. (5.2).

• Figure 5.2(C): the consumer matrix C is sampled from the uniform distribution

U(0, b). S = 100, M = 100, µ = 0, K = 1, �K = 0.1 , m = 0.1, �m = 0.01,

and each data point is averaged from 5000 independent realizations. The model is

described by eqs. (5.2).

• Figure 5.2(D): the consumer matrix C is sampled from the Bernoulli distribution

Bernoulli(pc). S = 100, M = 100, µ = 0, K = 1, �K = 0.1 , m = 0.1, �m = 0.01,

and each data point is averaged from 5000 independent realizations. The model is

described by eqs. (5.2).

• Figure 5.3(B): the simulation is the same as Fig. 5.2(B). Each spectrum is drawn

from 10000 independent realizations.

• Figure 5.4: the consumer matrix C is sampled from the Gaussian distribution

N ( µ
M , �cp

M
). S = 100, M = 100, µ = 0, K = 1, �K = 0.1 , m = 0.1, �m = 0.01.
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The model without resource depletion simulated with eqs. (5.2), and each data

point is averaged from 5000 independent realizations.. The model with resource

depletion is simulated with eqs. (5.1), and each data point is averaged from 4000

independent realizations. Each spectrum is drawn from 1 independent realizations

for S = 500.

• Figure B.1 : the simulation is the same as Fig. 5.2(B). Each histogram is drawn

from 10000 independent realizations.

B.1.2 Distinction between extinct and surviving species

Figure B.1: Species abundance N in equilibrium at di↵erent �c. The simulation
details can be found at Appendix B.1.

In the main text, we show that the value of species packing S⇤

M in Fig. 5.1 and Fig.

5.2. However, in numerical simulations, even for the extinct species, the abundance is

never exactly equal 0 due to numerical errors. As a result, we must choose a threshold

to distinguish extinct and surviving species in order to calculate S⇤. Since we are using

the equivalence with convex optimization to solve the generalized consumer-resource

models[MICM20, MCWMI19], we can easily choose a reasonable threshold (e.g. 10�10

for both species since the surviving species are well separated in two peaks (see Fig.

B.1).

B.2 Chapter 6

All simulations are done with the CVXPY package[AVDB18] in PYTHON 3. All codes

are available on GitHub at https://github.com/Emergent-Behaviors-in-Biology/

species-packing-bound.
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B.2.1 Parameters

• Fig. 6.5: the consumer matrix C is sampled from the Gaussian distribution

N ( µ
M , �cp

M
). S = 100, M = 100, µ = 1, K = 1, �K = 0.1 , m = 1, �m = 0.1,

! = 1, �! = 0 and each data point is averaged from 1000 independent realizations.

We only provide the cavity solution with backreaction here.

• Fig. 6.6 and Fig. B.2: the consumer matrix C is sampled from the Gaussian

distribution N ( µ
M , �cp

M
). S = 500, M = 100, µ = 1, � = 0.1 , m = 1, �m = 0.1,

! = 1, �! = 0 for externally supplied resource dynamics and S = 500, M = 100,

µ = 1, � = 0.1 , m = 1, �m = 0.1, ⌧ = 1, �⌧ = 0 for the self-renewing one. Each

data point is averaged from 1000 independent realizations. For Fig. B.2 , K = 10.

• Fig. 6.7: the consumer matrix C is sampled from the Bernoulli distribution

Bernoulli(p) and p are fixed to 0.1, 0.2 and 0.1. mi follows metabolic trade-

o↵s Eq. (6.72) with �✏ = 0, m̃ = 1. We also set S = 500, M = 100, K = 10,

�K = 0.1. Each data point is averaged from 100 independent realizations.

• Fig. 6.3(a): the simulation is the same as Fig. 6.5. We show both the cavity

solutions with and without reaction here.

• Fig. 6.3(b): the consumer matrix C is sampled from the Bernoulli distribution

Bernoulli(p). S = 100, M = 100, K = 1, �K = 0.1 , m = 1, �m = 0.1, ! = 1,

�! = 0 and each data point is averaged from 1000 independent realizations. The

cavity solution is obtained by approximating the Bernoulli distribution to the

corresponding Gaussian distribution i.e. µ = pM , �c =
p
Mp(1� p)

• Fig. 6.3(c): the consumer matrix C is sampled from the uniform distribution

U(0, b). S = 100, M = 100, K = 1, �K = 0.1 , m = 1, �m = 0.1, ! = 1, �! = 0

and each data point is averaged from 1000 independent realizations. The cavity so-

lution is obtained by approximating the uniform distribution to the corresponding

Gaussian distribution, i.e. µ = bM/2, �c = b
p
M/12.

• Fig. 6.4(a): the consumer matrix C is sampled from the Bernoulli distribution

Bernoulli(p). S = 500, M = 100, K = 1, �K = 0.1 , m = 1, �m = 0.1, ! = 1,

�! = 0 and each data point is averaged from 1000 independent realizations. The

cavity solution is obtained by approximating the Bernoulli distribution to the

corresponding Gaussian distribution i.e. µ = pM , �c =
p
Mp(1� p)

• Fig. 6.4(b): the consumer matrix C is sampled from the uniform distribution

U(0, b). S = 500, M = 100, K = 1, �K = 0.1 , m = 1, �m = 0.1, ! = 1, �! = 0
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(a) (b) (c)

Figure B.2: Species abundance N in equilibrium at di↵erent �c for externally sup-
plied resource dynamics at K = 10. The simulations parameters can be found at the
Appendix: B.2.

and each data point is averaged from 1000 independent realizations. The cavity so-

lution is obtained by approximating the uniform distribution to the corresponding

Gaussian distribution, i.e. µ = bM/2, �c = b
p
M/12.

B.2.2 Distinction between extinct and surviving species

In the main text, we show that the value of species packing S⇤

M for the externally supplied

resources must be smaller than 0.5. However, in numerical simulations, even for the

extinct species the abundance is never exactly equal 0 due to numerical errors. As a

result, we must choose a threshold to distinguish extinct and surviving species in order

to calculate S⇤. Since we are using the equivalence with convex optimization to solve

the generalized consumer-resource models[MCWMI19, MICM20], we can easily choose

a reasonable threshold (e.g. 10�2 in Fig. B.2) since the extinct and surviving species

are well separated in two peaks (see Fig. B.2).
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Identifying feasible operating regimes for early T-cell recognition: The speed, energy,
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Available energy fluxes drive a phase transition in the diversity, stability, and functional

structure of microbial communities, Robert Marsland III, W Cui, Joshua Goldford,

Alvaro Sanchez, Kirill Korolev, Pankaj Mehta. PLoS Comput Biol 15.2 (2019): e1006793

(Chapter 1).

Constrained optimization as ecological dynamics with applications to random quadratic

programming in high dimensions, Pankaj Mehta, W Cui, Ching-Hao Wang, Robert
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A minimal model for microbial biodiversity can reproduce experimentally observed eco-
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(Chapter 2).

The Community Simulator: A Python package for microbial ecology, Robert Marsland
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(Chapter 2).
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[SCG+18] Carlos A Serván, José A Capitán, Jacopo Grilli, Kent E Morrison, and Ste-

fano Allesina. Coexistence of many species in random ecosystems. Nature

ecology & evolution, 2(8):1237–1242, 2018.

[SCS88] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos

in random neural networks. Physical review letters, 61(3):259, 1988.

[SWGV14] Antoine-Emmanuel Saliba, Alexander J Westermann, Stanislaw A Gorski,

and Jörg Vogel. Single-cell rna-seq: advances and future challenges. Nu-

cleic acids research, 42(14):8845–8860, 2014.

[Tao12] Terence Tao. Topics in random matrix theory, volume 132. American

Mathematical Soc., 2012.

[Til82a] David Tilman. Resource competition and community structure, volume 17.

Princeton University Press, 1982.

[Til82b] David Tilman. Resource Competition and Community Structure. Prince-

ton University Press, Princeton, NJ, 1982.

[TM17] Mikhail Tikhonov and Remi Monasson. Collective phase in resource

competition in a highly diverse ecosystem. Physical Review Letters,

118(4):048103, 2017.

[TPMW17] Thibaud Taillefumier, Anna Posfai, Yigal Meir, and Ned S. Wingreen.

Microbial consortia at steady supply. eLife, 6:e22644, 2017.

[TSM+17] Luke R. Thompson, Jon G. Sanders, Daniel McDonald, Amnon Amir,

Joshua Ladau, Kenneth J. Locey, Robert J. Prill, Anupriya Tripathi,

Sean M. Gibbons, Gail Ackermann, Jose A. Navas-Molina, Stefan Janssen,

Evguenia Kopylova, Yoshiki Vázquez-Baeza, Antonio González, James T.

Morton, Siavash Mirarab, Zhenjiang Zech Xu, Lingjing Jiang, Mo-

hamed F. Haroon, Jad Kanbar, Qiyun Zhu, Se Jin Song, Tomasz Kosci-

olek, Nicholas A. Bokulich, Joshua Lefler, Colin J. Brislawn, Gregory

Humphrey, Sarah M. Owens, Jarrad Hampton-Marcell, Donna Berg-

Lyons, Valerie McKenzie, Noah Fierer, Jed A. Fuhrman, Aaron Clauset,



Bibliography 117

Rick L. Stevens, Ashley Shade, Katherine S. Pollard, Kelly D. Good-

win, Janet K. Jansson, Jack A. Gilbert, Rob Knight, and Earth Micro-

biome Project Consortium. A communal catalogue reveals Earth’s multi-

scale microbial diversity. Nature, 551:457, 2017.

[WAP+16] Stefanie Widder, Rosalind J Allen, Thomas Pfei↵er, Thomas P Curtis,

Carsten Wiuf, William T Sloan, Otto X Cordero, Sam P Brown, Babak

Momeni, Wenying Shou, Helen Kettle, Harry J Flint, Andreas F Haas,
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