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ORIGINAL ARTICLE
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Rehabilitation, Groningen, The Netherlands

ABSTRACT
Aim: In this narrative review the potential and importance of handcycling are evaluated. Four conceptual
models form the framework for this review; (1) the International Classification of Functioning, Disability
and Health; (2) the Stress-Strain-Capacity model; (3) the Human-Activity-Assistive Technology model; and
(4) the power balance model for cyclic exercise.
Methods: Based on international handcycle experience in (scientific) research and practice, evidence-
based benefits of handcycling and optimization of handcycle settings are presented and discussed for
rehabilitation, daily life and recreational sports.
Results: As the load can be distributed over the full 360

�
cycle in handcycling, peak stresses in the shoul-

der joint and upper body muscles reduce. Moreover, by handcycling regularly, the physical capacity can
be improved. The potential of handcycling as an exercise mode for a healthy lifestyle should be recog-
nized and advocated much more widely in rehabilitation and adapted sports practice.
The interface between handcycle and its user should be optimized by choosing a suitable person-specific
handcycle, but mainly by optimizing the handcycle dimensions to one’s needs and desires. These dimen-
sions can influence efficient handcycle use and potentially improve both endurance and speed of
handcycling.
Conclusion: To optimize performance in rehabilitation, daily life and recreational sports, continued and
more systematic research is required.

� IMPLICATIONS FOR REHABILITATION
� Handcycling allows users to travel farther distances at higher speeds and to train outdoors. It should

be recognized as an alternative exercise modality for daily outdoor use, also already in early rehabili-
tation, while it contributes to a healthy lifestyle.

� To individualize handcycle performance, the user-handcycle (assistive device) interface as well as the
vehicle mechanics should be optimized to minimize external power and reduce friction, so that the
upper body capacity can be efficiently used.

� To optimize handcycling individual performance, both the physiological and biomechanical aspects
of handcycling should be considered when monitoring or testing handcycle exercise.
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Introduction

People with lower-limb impairments depend on other forms of
ambulation than walking for all their mobility and physical activ-
ity. If the upper body can still be physically active, the manual
handrim wheelchair is the most common form of wheeled mobil-
ity [1–3]. An alternative way of outdoor wheeled mobility to cover

longer distances is the handcycle [4–6]. Handcycles exist in a
number of different forms, for example as an attachable unit to a
wheelchair (with/without power assist) or as a fixed-frame tricycle
with a number of different body positions and often with a range
of gear settings (Figure 1). The size of the tricycle or any other
handcycle makes functional handcycling most suitable as an
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outdoor activity, obviously including indoor race tracks and/
or gymnasia.

Individuals with lower limb impairments have a high risk of
obesity with the consequent risk for cardiovascular disease, due
to inactivity and a subsequent negative impact on the energy bal-
ance, i.e., using less energy than taking in [9–14]. Regular handcy-
cling may help preserve fitness and health, as well as upperbody
function [15–23]. In addition, handcycling evolved into specialized
sports disciplines under the umbrella of the UCI (Union Cycliste
Internationale), and its popularity today is expressed in elite com-
petitions at the Paralympics since 2004 [24–26] and numerous
races and events worldwide [27,28].

To optimize handcycling for rehabilitation, daily living or recre-
ational sports even further, there is a need to balance the compo-
nents of the individual, environment and assistive device. The
current narrative review intends to provide a base of knowledge
for today’s handcycling practice and presents starting points for
continued handcycling research. Four inter-connected models
form the conceptual framework throughout this narrative review,
in which we attempt to draw the state-of-the-art in the scientific
literature on handcycling.

The first framework, which is commonly used in the context of
rehabilitation, preventive medicine and health care is the
International Classification of Functioning, Disability and Health
(ICF) of the World Health Organization (Figure 2(a)) [29]. It is
deemed appropriate as a communication tool among policy mak-
ers, countries, health care disciplines and professionals as well as
a tool to set goals in both (individual) rehabilitation practice and
sciences. Secondly, from an occupational health and preventive
medicine perspective of the individual, the Stress-Strain-Capacity
(SSC) model of van Dijk et al. [31] has been suggested instrumen-
tal (Figure 2(b)). In health, physical, cognitive and/or mental stres-
sors of work or daily life lead to physiological, mechanical and/or
mental strains in the human system within the individual capacity
boundaries. In upper body cyclic exercise, stressors may easily
exceed individual capacity which may impact functioning as well
as health. Thirdly, a more ergonomically-oriented framework for
assistive technology design and fitting has been advised by Cook
and Hussey: the Human-Activity-Assistive Technology - the HAAT-
model (Figure 2(c)) [32]. In handcycling, the model potentially

focuses on the optimal interaction among assistive device, individ-
ual and/or environment considering the cyclic propulsion task
ahead. Lastly, to help understand and study upper body cyclic
exercise in a more biophysical context, the power balance model
for cyclic exercise was shown to be useful (Figure 2(d)). It was ini-
tially developed for speed skating and swimming by van Ingen
Schenau [35,36]. Later, it was applied to handrim propulsion by
van der Woude [37–39], in wheelchair court sports by Mason [40]
and in handcycling by a number of research groups [33,34,41–43].

Based on these conceptual models the current review explores
the physiological, biomechanical, ergonomic and technical details
of handcycling and its potential to promote functioning, health
and participation, as well as handcycle performance in recre-
ational sports. The following overarching questions will be
addressed in this narrative review:
1. What are the potential benefits of handcycling in rehabilita-

tion, daily living and recreational sports and how can they
be evaluated?

2. Which factors should be considered for optimizing individual
handcycle performance and how can they be evaluated?

Methods

In this narrative review, the international literature on handcycling
and relevant wheeled mobility was summarized in a collaborative
effort of a team of international experts in the field of handcy-
cling and wheelchair research, both in rehabilitation and adapted
sports practice. Given the available literature, no explicit exclusion
criteria were used for this narrative review. Available studies were
critically assessed at any instance.

Results

Potential benefits of handcycling in rehabilitation, daily living
and recreational sports

Following the ICF model of the WHO [29], independent mobility
is one of the main goals of rehabilitation of patients who are
wheelchair bound. The functionality of the assistive device out-
doors not only depends on the skills of the user or mechanical
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characteristics, it also highly depends on the environmental condi-
tions; i.e., availability of (level) sidewalks, with curbs or steep sec-
tions [29]. Power-support systems may be a solution in
challenging terrain [44], but a disadvantage may be (battery)
costs, weight and thus their even larger difficulty to transport e.g.,
in a car [45]. Moreover, a transfer into a car is probably one of
the most strenuous activities for the upper extremities [46].
Handcycling as an alternative for outdoor mobility should be
explored as it may contribute to a healthy lifestyle. In addition,
with an attachable unit, no transfers between propulsion modal-
ities are needed.

Health benefits
Physiological and biomechanical strain. In handcycling, the full
360�, i.e., 100% of the movement cycle can be used [5,47–53],
potentially employing most of the body musculature. The body
muscles are alternatingly active throughout the 360� cycle during
push and pull phases of handcycling and the task load is spread
over time and larger alternating muscle groups [54], reducing
local and overall peak loads [55]. One approach to assess the risk
for overuse injuries is to analyze the force acting within the joint

or the strain on the muscles that are stabilizing the joint. Both
the forces as well as the strain can be calculated by inverse
dynamics and with the aid of a biomechanical model, based on
three-dimensional anatomical information, like the Delft Shoulder
and Elbow Model (DSEM) [55–58]. With respect to the shoulder
overuse injury, which is a common problem in wheelchair users,
higher mean and especially higher peak glenohumeral joint forces
point to a higher risk for injuries [59]. Additionally, high strain on
the rotator cuff muscles can lead to fatigue which can result in
less ability to stabilize the shoulder joint and can therefore
increase the risk for shoulder injury. With use of the DSEM, hand-
cycling is found to be less straining for the shoulder joint when
directly compared to handrim wheelchair propulsion [55]. The
mean glenohumeral contact force during handcycling at 55W is
45% of the body weight, whereas this is 75% during wheelchair
propulsion at the same intensity level. The peak glenohumeral
contact force at this intensity is about 100% of the body weight
for handcycling, whilst this is 195% for wheelchair propulsion [55].
Consequently, the risk of overuse injuries associated with the
repetitive nature of propulsion is lower in daily outdoor handcycle
use compared to outdoor wheelchair use. In addition, handcycling
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has a mechanical efficiency of 10–17% at submaximal level, while
this is only 5–10% during handrim wheelchair propulsion
[4,55,60,61]. Therefore, a switch to outdoor handcycling could be
beneficial to reduce physiological and biomechanical strain
of ambulation.

Active lifestyle. Inactivity is a potential risk in wheelchair users, as
they generally show low activity levels throughout the day [9,62].
Promoting an active lifestyle within the early rehabilitation pro-
cess, e.g., by handcycling, can help increase physical activity after
discharge [63]. Handcycling can be physiologically taxing when
negotiating high speeds and/or power outputs. Nevertheless,
given its physiological and biomechanical benefits, handcycling is
also suitable as a safe training mode to regain and maintain fit-
ness [7,62,64–72]. It is also possible to safely train patients who
have a very low physical capacity for instance due to a high cer-
vical spinal cord lesion [73–75] or because they are at the early
start of rehabilitation [6,67,76,77]. Especially for those who are
undertrained or those with a relatively high body mass in relation
to their available active arm muscle mass, arm crank ergometers
can be useful to be able to start training at a very low power out-
put level [74,75].

Handcycling is essentially an outdoor activity and allows to
commute and/or exercise outdoors, even simultaneously.
Exercising in the green and natural environment has shown to
have a larger effect on mood, self-esteem, blood pressure, ten-
sion, anger, confusion and depression compared to exercising in a
plain laboratory environment [78–80]. Exercise in the free leads to
the perception of higher energy levels and positive feelings [80].

Effects of exercising. Having a closer look on typical physiological
markers predicting handcycling performance such as peak power
and maximal lactate steady-state power as used in able-bodied
sports seems obvious. Although not fully applicable, the general
training guidelines, prescribed by the American College of Sports
Medicine (ACSM) can be used as a starting point for developing
training guidelines more specific for upper body exercise
[15,17,61,66]. The recommendation for persons with chronic dis-
eases and disabilities is to exercise three to five times a week, for
20–60min, at an intensity of 40–70% of the heart rate reserve
(HRR%) [17].

The ergometer is often used in combination with physiological
measurements and training protocols (Table 1). To evaluate upper
body anaerobic exercise characteristics an all-out sprint effort
(e.g., a Wingate test protocol or isokinetic sprint testing) has
shown to be useful [86–88]. The isokinetic sprint test protocol
ranging 15–20 s duration has been employed recently by Zeller
et al. [87] and Kouwijzer et al. [88] to evaluate sprint performance
within handcycling. It is performed in a similar manner to testing
able-bodied persons on a bicycle as the participant is instructed
to maintain a maximal pace against a certain resistance load,
mostly scaled to their body weight for the duration of the trial. In
this way, peak, minimum and mean (anaerobic) power output
and rate of fatigue can be determined [86,89]. In combination
with an incremental step protocol a cardiopulmonary exercise test
(CPET) can measure (aerobic) physiological values at peak power
output [43,51,52,60,61,65,67,70,71,90–109]. It is important to indi-
vidualize the graded exercise tests to gain the true peak values in
individuals (with spinal cord injury) [110]. Thus, peak values of
(an)aerobic upper body performance and the CPET-based ventila-
tory thresholds can be determined, from which a personalized

training scheme (i.e., load, frequency, duration) can be set in
rehabilitation and (recreational) sports [61,72,98,111].

Amongst others, Valent et al. [67,76,81] have investigated the
effects of handcycle training on physical capacity. Within a group
of persons with paraplegia and tetraplegia, they found that only
the persons with paraplegia significantly improve their peak VO2
(þ29%), peak power output (þ42%) and muscle strength (e.g.,
þ30% elbow extension) on a handrim wheelchair exercise test.
The participants handcycled at least once a week within their clin-
ical rehabilitation (average period of six months), however, were
not following a specific training program. After the first year after
discharge, no further significant improvements were found [67].
Also, the effects of an additional structured training program
within early clinical rehabilitation in the Netherlands was investi-
gated in persons with spinal cord injury below the level of C5.
Wheelchair capacity and muscle strength of a handcycling group
were compared to a control group, who only following the regu-
lar rehabilitation program. The handcycle group trained in an
add-on handcycle with synchronous setting (for 35–45min twice
a week) on top of their rehabilitation program and performed an
extra test for handcycle capacity. No significant effect of an add-
itional synchronous handcycling training over regular rehabilita-
tion program was found for wheelchair capacity (peak power
output and peakVO2). However, for the handcycling group,
improvements of muscle strength and handcycle capacity in
terms of peak power output (þ22%) were found [81]. In a third
study, in which persons with tetraplegia followed a structured
handcycling training two years after their injury occurred, handcy-
cling seems to improve physical capacity. After 24 training ses-
sions of 35–45min at 60–80 HRR%, spread over 8–12weeks, an
increase of 8.7% in peakVO2 and 20.2% in peak power output
was found [76].

Since 2013 the HandBikeBattle (HBB), a yearly handcycle event
in which participants complete a 20.2 km mountain time-trial
(with ±900m elevation), is held in Austria [112]. All participants
are screened and train in self-organizing teams of their rehabilita-
tion center for a period of 4–5months prior to the HBB event.
Data from this project showed that self-regulated handcycle train-
ing over a period of five months can increase peak power output
(þ17%), peak oxygen uptake (þ7%), peak ventilation (þ9%) and
reduce fat mass index (�6.3%), BMI (�2%) and waist circumfer-
ence (�4%) [65,83,113,114].

To understand, individualize and optimize upper body training
further, different training programs must be evaluated in a diverse
and large population of wheelchair users, as they may respond
differently to training than able-bodied persons would.

Factors for optimizing individual handcycle performance

Vehicle mechanics
Handcycling, either in rehabilitation, daily living or recreational
sports, is a form of upper body exercise that leads to ambulation
over a given distance and at a given speed. The individual produ-
ces upper body muscle work (En) that is transferred through a kin-
etic chain of upper body segments and muscles to the
handlebars and cranks of the handcycle. The mechanical work
that needs to be produced is to counteract the external power
losses (Pext), due to drag or friction forces that impact the hand-
cycle-user combination (Figure 2(c,d)) [33,34]. To evaluate the
handcycle performance and with the ambulant technology that is
available for bicycling today, it is possible to measure the external
power output. External power output is dynamically measured

4 C. KRAAIJENBRINK ET AL.
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with strain gauge-based technologies at the crank, at the pedals
or in the front wheel hub. The measurements are often combined
with heart rate for a holistic approach. Each of these technologies
was tested for reliability and have high degrees of ecological val-
idity in cycling, and potentially in handcycling [90,103,115,116].
They can indeed reliably measure power output both in and out-
doors, in training, racing or sports conditions, at both the lower
and high-end of the performance spectrum and even at low lev-
els of power output and speed [91,109,117–119].

In Equation (1) the power balance in cyclic actions in general,
hence including handcycling, is presented [35].

Pext ðWÞ ¼ F
*

drag � v
* ¼ ðF* roll þ F

*

int þ F
*

air þ F
*

incl þm � a* Þ � v*
(1)

The drag consists of rolling (Froll), internal (Fint) and air friction
(Fair). When propelling up a slope an additional drag force is
needed to overcome gravity (Fincl), however when propelling
downslope, work is returned to the handcycle-user combination.
When accelerating, an additional term is to be produced, namely
mass times acceleration (m�a).

Rolling friction. Influencing factors of rolling resistance are in gen-
eral similar to those for bicycles or wheelchairs [37,120–124]. Tire
characteristics and pressure can substantially contribute to the
rolling friction, therefore it is important inflate the tires on a regu-
lar basis. Also wheel size and alignment are critical keys in rolling
friction, where a larger wheel will reduce the resistance. The
weight of the device as well as of the user is other factor that will
contribute to the resistance. In sports, where speed is important,
a lightweight tricycle is the best option. However, in daily use,
robustness is also important and one might choose for a heavier,
but sturdier version.

Using either drag tests on special drums or on a treadmill on
the one hand, using over ground coast down tests on the other,
rolling friction coefficients for handcycle wheels can be estimated
(0.003–0.017) [109,122,125]. In those drag tests, the person is inert
and not actively propelling the vehicle, thereby excluding the
internal friction and the task dynamics from the measurements.
Due to the low force magnitude and its multifactorial nature,
even under standardized treadmill conditions, consistent out-
comes are not self-evident [125]. Nevertheless, the outcomes of
such drag tests are used in research to individualize the resistance
during exercise [109,122].

Internal friction. Internal friction is defined by the chain friction,
the chain wheel characteristics, and gear characteristics and

settings, the quality and the maintenance there-off. The chain,
chain wheel, and gears in a handcycle are equal to bicycle materi-
als, therefore, similar frictional losses are expected for both types
of cycles. The internal frictional losses were estimated to be
around 5% of the rolling resistance in chain driven bicycles [124].
Estimated transmission losses can be as low as 2–3% and up to
15% and higher, with lower values for derailleur transmissions as
opposed to built-in variable gear hubs [124]. A derailleur gear has
lower internal friction, whereas a hub gear is more robust. The
choice of material is dependent on the task, sport versus com-
muting, or the environment in which one uses the handcycle
(Figure 2). Either way, maintenance is a critical factor to internal
friction and rider safety, therefore e.g., regular greasing or ten-
sioning of the chain is necessary, apart from checks on brake
technology and visibility.

Air friction. Both rolling and internal friction forces are assumed
to be independent of speed. Air drag, however, is highly speed
dependent and will rapidly exceed rolling drag at higher velocities
[126–129]. Drag characteristics can be measured in wind tunnel
tests, but also modelled and optimized in respect to handcycle
types and settings [130]. To reduce the air friction, the frontal/lat-
eral drag area should be reduced, which is dependent on factors
like seat type and inclination, wheel type and configuration. For
instance, Mannion et al. [128] found that a handcycle with a time
trial set-up with disc wheels has a slightly higher frontal drag
area, but a substantial lower lateral drag area, when compared to
a handcycle road set-up with spokes. The choice of material is
again dependent on the task ahead or the speed one needs
to reach.

Upper body capacity
To overcome these external power losses, the handcycle user
needs to produce upper body internal work (En). During submaxi-
mal steady state exercise, the gross mechanical efficiency (GME),
the ratio between the external power output (Pext) and the
energy cost (or upper body capacity, En), can be considered for
optimizing the handcycle performance from an exercise physi-
ology perspective [131,132]. When measuring propulsion tech-
nique characteristics, these can be linked to both mechanics and
physiology. GME can be used to evaluate efficiency of different
modes of upper body exercise, of different interface settings, as
well as effects of motor learning or training during a submaximal
steady state exercise [39,41,43,100,109,111,133–139]. Obviously,
GME is also affected by individual functionality, technique, skill

Backrest angle

Crank position

Crank length

Wheel type/size

Crank width

Handle angle

Gears
Crank mode

Side view Rear view

Figure 3. Overview of potential adjustments/configurations of a fixed frame handcycle.
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and talent as well as the environment (see ICF, SSC and HAAT
models [29,31,32]).

Over the past 50 years our understanding of upper body physi-
ology has substantially improved through the lab-based work on
arm crank exercise (ACE) of colleagues as Glaser [140–142], Sawka
[92,95,143–148], Franklin [149,150], Pandolf [151,152], Hjeltnes
[153–158] and Frauendorf [159–161]. They were also among the
first to recognize the importance of understanding upper body
work capacity and its physiology in the context of fitness and
conditioning in rehabilitation practice, as is expressed in different
handbooks for physiology in special populations and rehabilita-
tion [16–19,26,162,163].

Handcycle types and settings
Besides our understanding of upper body physiology, the hand-
cycle itself has also changed since the 1950s, when handcycles
were basically converted bicycles with an asynchronous crank set-
ting. Nowadays, the vast majority of the handcycles have a syn-
chronous crank propulsion mode, have different gears and cranks,
are light-weight and are often tuned to the task and the individ-
ual [5]. This provides a wide range of different handcycle systems
and settings, from daily use attach-units to fixed frame recumbent
high performance sports handcycles, some with aerodynamic light
weight carbon fiber frames and highly tuned to the individual
athlete (Figure 1).

Attach-unit handcycle. The attach-unit (or add-on) handcycle
offers outdoor mobility for wheelchair users by simply attaching a
crank system in front of their own handrim wheelchair, therefore,
no strenuous transfer from one to another wheelchair is needed.
In addition, the handcycle user does not need to make another
transfer, when going inside, as the user still sits in his own wheel-
chair after detaching the crank set. In comparison with the han-
drim wheelchair, the attach-unit makes it easier to access difficult
terrain and attain higher velocities that are comparable to cycling,
up to 25 km/h [6]. In combination with quad grips and hub-based
gears, the handcycle is a good option for outdoors, also for those
with a poor hand function.

Handcycle settings. Different handcycle setups are in use, depend-
ing on the user’s disability, the topography of the hometown or
cycling course and the purpose of handcycling. There are many
factors of the handcycle setup which can improve performance,
comfort or prevent the risk for overuse, such as: body position,
placement of the crank (distance and height), crank length and
width, handgrip type and angle, gear setting, wheel camber and
materials (Figure 3). Most studies concentrate on the improve-
ment of performance and studied the effect of a change in hand-
cycle setup on mechanical efficiency and maximal (aerobic or
sprint) power or speed production in different populations, rang-
ing from able-bodied participants to elite athletes (Table 2).
However, so far, there are no clear evidence-based guidelines on
how to individually adjust the handcycle best to its user.

Synchronous versus asynchronous. Synchronous handcycling was
shown to be more efficient and leading to higher peak power
output compared to asynchronous handcycling [41,100,109,
164,165]. It is assumed that greater energetic cost of asynchron-
ous handcycling is associated to the need for increased muscular
work in the upper extremities and trunk to stabilize the steering
direction of the front wheel, whilst producing propulsion power.
In contrast to handcycling, asynchronous arm cranking seems to
be more efficient than synchronous [137,172–174]. In arm

cranking steering is not possible, removing the need for the sta-
bility of the steering wheel. This seems to support the hypothesis
that due to stabilization of the crank system asynchronous hand-
cycling is less efficient than synchronous. So far, no detailed anal-
yses are available to test this hypothesis. Yet, based on current
research [41,47,100,109,164,165], we would recommend a syn-
chronous crank mode for any form of handcycling.

Gearing/cadence. One of the benefits of handcycling is in the
availability and use of (a wide variation and task-specific) gears.
Gearboxes can vary in number among as less as three up to in
the twenties. Using different combinations of chain wheels help
to optimize towards the environmental conditions or individual
work capacity even further, also in people with poor arm/hand
function. At submaximal exercise levels, different gears or caden-
ces lead to different levels of GME and physical strain at the same
power output [42,100,111,136,166,167]. This indicates a (muscle
contraction) speed and force dependency that potentially affects
the overall cost of coasting as well as the force effectiveness.
Gearbox range settings are extremely critical in mountainous envi-
ronments for any handcyclist [104]. Based on current literature, a
cadence of around 50–60 rpm is recommended at submaximal
level [42,100,111,165,175].

Crank length. The role of crank length is also an aspect of setting
with a possible mechanical advantage. For synchronous arm crank
ergometry it was found that able-bodied participants could reach
a higher peak power output (þ12%) when the crank length
increased from ±139mm (19% of the arm length) to ±190mm
(26% of the arm length). With this increase in crank length, the
optimal cadence decreases and the optimal handle speed
increases [169]. In a case study, in which an elite handcyclist per-
formed tests in his own race handcycle, which was connected to
a cycle ergotrainer, muscle activation in different settings was
measured. It could be shown that muscle activity could be
reduced by increasing the crank length from 160mm to 175mm,
for performance at 130, 160, and 190W [176]. When considering
mechanical efficiency for athletes in a recumbent sports hand-
cycle, a crank length of 180mm will lead to higher values com-
pared to a length of 220mm. For an intensity level of 90W, it was
shown that when one handcycles with a 180mm long crank at
85 rpm, a relative increase of 19% was present over handcycling
with a 220mm long crank at 70 rpm [136]. Commercially available
cranks range from 150 to 220mm in length. As a preference
towards a crank length of 175–190mm is seen [136,169,176], we
advise to keep the crank length around those values in combin-
ation with a sufficiently accommodating gear set in the context of
the user and environment.

Positioning cranks/handles. Especially for recreational handcycle
users, to whom maximal performance is not the main goal, an
optimal handcycle-user interface should not only strive to
improve performance but also contribute to lowering the risk for
overuse injuries, sliding in the seat, and instability. High upper
extremity ranges of motion and reaching the limits of joint excur-
sions are considered as risk factors for repetitive strain inju-
ries [177].

The height of the crank axis is one of the settings that might
contribute to this strain. When comparing the crank axis height at
shoulder level with a crank axis height of shoulder level – 15% of
the arm length, no effects on mechanical efficiency or shoulder
load could be found in synchronous handcycle ergometry in a
group of wheelchair users with spinal cord injury [139]. Within an
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experimental set-up a crank axis height at acromion/shoulder
level is often used or recommended [43,133,177]. In practice,
however, an even lower setting is used; the crank axis height at
mid-sternum is often seen, especially with “bullhorn”
cranks [75,76,81].

Also, the distance of the crank axis to the shoulder was investi-
gated for both an arm crank ergometer and a recumbent hand-
cycle attached to an ergometer. In submaximal synchronous arm
cranking, an elbow angle of 30�, with 0� being full extension,
resulted in a small, but significant increase for mechanical

Table 2. Overview of research on handcycle dimensions.

First author (year)

Participants

Experimental Set-up
Handcycle

Dimensions Tested Outcome measuresN (m/f) Disability

Abel (2003) [164] 35 (27/8) 24 SCI
3 spina bifida
5 amputation

2 IET
HCþ Ergometer

Propulsion
mode; Cadence

VO2, HR, LA

Abel (2015) [94] 21 (15/6) None 3 IET
HCþ Ergometer

Grip angle PO, VO2, HR, LA

Arnet (2014) [139] 13 (9/4) SCI Submaximal
HCþ Tacx
DSEM

Crank position; Backrest PO, GME, Shoulder load

Bafghi (2008) [41] 9 (9/0) None Submaximal
Treadmill

Propulsion
mode; Cadence

PO, GME, FEF, VO2,
VCO2, VE, HR,
LPD, EMG

Dallmeijer (2004) [165] 13 (13/0) None Submaximal
Treadmill

Propulsion
mode; Cadence

GME,VO2, VE, HR

Faupin (2006) [166] 8 (4/4) None 8s sprint
HCþ Ergometer

Cadence CF, V, RoM

Faupin (2008) [167] 10 (6/4) None 8s sprint
HCþ Ergometer

Cadence; Backrest CF, V, RoM

Faupin (2011) [168] 7 (?) None Submaximal
HCþ Ergometer

Propulsion mode;
Backrest;

Kneeling position

FEF, Force components,
Torque, RoM

Goosey-Tolfrey (2007) [137] 13 (13/0) Wheelchair users
Athletes

Submaximal
Ergometer

Propulsion mode GME, NE, WE, VO2, VE,
HR, LA

Goosey-Tolfrey (2008) [136] 8 (8/0) Wheelchair users
Athletes

Submaximal
HCþ Tacx

Cadence; Crank length VO2, VE, RER, HR,
LA, RPE

Kouwijzer (2018) [88] 10 (7/3) None HCþ Ergometer Arm powered vs Arm
trunk powered;
Foot support

PO, VO2, HR

Kraaijenbrink (2017) [42] 12 (12/0) None Submaximal
Treadmill

Cadence PO, CF, GME, FEF, Force
components, VO2,
HR, RPE

Kr€amer (2009) [53] 21 (16/5) None Ergometer Handle angle Work
Kr€amer (2009) [169] 25 (18/7) None Ergometer Cadence; Crank length;

Crank width
PO, CF

Litzenberger (2015) [170] 1 (1/0) Athlete HCþ Tacx Seating position; Crank
height; Crank length

PO, EMG

Stone (2019) [50] 15 (13/2) 9 SCI
3 amputation
2 cerebral palsy
1 fibromyalgia

IET
HCþ Ergometer

Crank position PO, CF, Kinematics, VO2,
HR, RPE

van der Woude (2000) [100] 12 (12/0) None IET
Treadmill

Propulsion
mode; Cadence

PO, GME, VO2, VCO2, VE,
BF, VT, RER,
%HRR, LPD

van der Woude (2008) [109] 9 (9/0) None IET
Treadmill

Propulsion mode;
Cadence; Slope

PO, GME, VO2, VCO2, VE,
RER, HR

van Drongelen (2009) [133] 12 (6/6) None Ergometer Crank height; Crank to
shoulder distance

PO, GME, VO2, VE, RER,
HR, RPE, LPD

Vegter (2019) [49] 12 (12/0) None Submaximal
HCþ Ergometer

Crank position PO, GME, Torque, Work,
Kinematics, VO2, HR

Verellen (2004) [111] 9 (9/0) SCI IET
Ergometer

Cadence PO, VO2, VE, RER, HR

Verellen (2012) [43] 12 (12/0) None Ergometer Cadence; Arm powered
vs Arm
trunk powered

PO, CF, GME, VO2, VE,
RER, HR, LA

Weissland (1997) [171] 12 (12/0) None IET
Ergometer

Cadence PO, CF, VO2, VE, RER, HR

Zeller (2015) [87] 11 (11/0) None IET
Sprint
HCþ Ergometer

Chain wheel
(non-circular)

PO, CF, GME, NE, VO2,
RER, EE, HR, LA, RPE

SCI: spinal cord injury; IET: Incremental Exercise Test; HC: handcycle; DSEM: Delft Shoulder and Elbow Model; PO: power output; CF: cycle frequency; GME: gross
mechanical efficiency; NE: net efficiency; WE: work efficiency; FEF: fraction of effective force; V: velocity; RoM: range of motion; VO2: oxygen uptake; VCO2: carbon
dioxide output; VE: ventilation; BF: breathing frequency; VT: tidal volume; RER: respiratory exchange ratio; EE: energy expenditure; HR: heart rate; %HRR: percentage
of heart rate reserve; LA: lactate; RPE: rate of perceived exertion; LPD: local perceived discomfort; EMG: electromyography.

8 C. KRAAIJENBRINK ET AL.



efficiency (þ0.02%), oxygen uptake (þ0.03%) and ventilation
(þ0.05%) over 15�, as was found for both male and female able-
bodied participants [133]. When handcycling in a recumbent pos-
ition at a mean of 61.5W with 69 rpm, no effects of crank axis dis-
tance (elbow angle 15� vs 30�) on mechanical efficiency or
shoulder load were found for wheelchair dependent persons with
spinal cord injury [139]. In addition, with able-bodied male partici-
pants, four different crank positions (94–97–100–103% of arm
length) were tested in a recumbent position, under the submaxi-
mal conditions of 30 and 60W with 70 rpm. As the distance of
crank axis to shoulder increased, the elbow extended and the
shoulder protracted. The work load is more evenly distributed in
a closer crank position (94%), at which the speed fluctuations in
the cycle are reduced. Mechanical efficiency, oxygen uptake and
heart rate did not change across crank positions [49]. In a similar
study, performed with trained handcyclists however, the same
four crank positions were investigated at 50 and 70% of their
peak power output [50]. Results showed that the upper limb kine-
matics differ between crank positions. In addition, at 70% of the
peak power output, the oxygen consumption is more favorable
for a crank position 97 or 100% of the arm length, compared to
the 94 and 103% [50].

Within sports, the sitting position is dependent on the classifi-
cation system, in the lower classes (H1–4), i.e., for athletes with
less lower limb and trunk function, a recumbent position is man-
datory. In the highest class (H5), where the athlete has no restric-
tions in balance and trunk strength, the kneeling position is
optional [178]. The recumbent position allows an arm powered
(AP) propulsion, as the kneeling position allows for an arm trunk
powered (ATP) propulsion (Figure 1). Peak power output was
found to be higher for ATP, resulting in a higher physiological
strain. Therefore, the gross mechanical efficiency is slightly higher
during AP [43].

Different handlebar angulation, crank width as well as chain
ring forms have also been experimented with [87,179]. The hand-
grips should be fixed to the crank with a 30� angle (pronation of
the forearm) to optimize power generation during sub-maximal
handcycling [53]. Additionally, Faupin et al. [177], modelled differ-
ent crank positions, based on 3D kinematic measurements, in
order to find the risk factors for repetitive strain injuries. They
suggested that the distance between the handgrips should match
shoulder width to minimize this kind of injury.

Backrest. With respect to the glenohumeral contact force and the
muscle force of the infraspinatus and supraspinatus, a more
upright backrest (60�) causes less load on the shoulder than a
more reclined backrest (15�, 30� or 45�) [139]. For daily use, a
more upright backrest might be recommendable.

However, to reduce air friction, a more reclined backrest is rec-
ommended in sports. Without backrest it is possible to cycle at
higher velocities than with a backrest inclination of 65� or 45�

[167]. This last recommendation only applies for persons with
good trunk stability. Persons with high level spinal cord injury
(e.g., tetraplegia or a high-level paraplegia above T6) are unable
to follow this recommendation.

Limitations in the evaluation of handcycle performance

Ergometer
Arm crank ergometry tests functional capacity and allows for the
analysis of a handcyclist’s physiology without the influence of
bike set-up on their data. This can help monitor physiological pro-
gress over time. It can also prove useful when comparing

experienced athletes with athletes who are new to the sport.
Additionally, with a custom made ergometer e.g., developed by
Kr€amer et al. [180], different handcycle crank and handlebar set-
tings could be tested, adding a different level of performance
testing over commercially available ergometers. However, as in
able-bodied sport, the choice of the ergometer used for physio-
logical testing can influence the results. As arm cranking is insuffi-
ciently specific to other modes of wheeled mobility, arm crank
exercise testing in itself is not a valid alternative to evaluate effi-
ciency and/or peak or submaximal power capacity
[55,60,134,146,181]. Also, when using ergometers that fix the front
(steering) wheel in a stable manner, the internal validity of the
experiment can be questionable. As mentioned above, the possi-
bility to steer comes with the need to stabilize the system. With
an ergometer, this effort is often cancelled out. In addition, com-
mercially available ergometers often have an asynchronous crank
mode, whereas a synchronous mode is mostly seen in handcy-
cling. For those studying handcycling, there are important meth-
odological approaches to consider.

Participants
Many of the studies done in handcycling and discussed in this
review concerns able-bodied male participants. This is a poor rep-
resentation of handcycle users, as the population of individuals
relying on their upper body for exercise is quite diverse.

Firstly, the female population is underrepresented in the
research. For instance, for wheelchair propulsion, a difference
between the sexes was found in able-bodied participants.
Chaikhot et al. [182] investigated 30 females and 30 males and
found a lower gross mechanical efficiency, lower comfortable pro-
pulsion speed, higher local perceived exertion and higher push
percentage for females compared to males. In addition, Kr€amer
et al. [53] found a difference between sexes in handcycling tech-
nique, whereas female participants tend to pull for propulsion,
male push and pull. This, however, was found by accident as only
three females and 12 males were tested with another aim than
comparing sexes. Therefore, this should be interpreted with cau-
tion. These studies show that a difference between sexes might
be present, even though it was not explicitly investigated for
handcycling.

Secondly, the (level of) impairment will probably influence the
physiological and biomechanical responses. Overall, more research
with actual handcyclists, both in rehabilitation and sports setting,
of both sexes should be stimulated.

Conclusion

Since “exercise is medicine” is an important message, it is critical
that for persons reliant on upper body exercise that suitable exer-
cise modalities are available. This review has indicated that hand-
cycling is an appropriate exercise modality that can be used in
(early) rehabilitation, for daily outdoor ambulation and recre-
ational sports. It has been demonstrated to be feasible and easily
accessible in a variety of settings and various tests can be admin-
istered. Thus, its potential should be recognized and advocated
much more widely in rehabilitation and adapted sports. To opti-
mize performance in rehabilitation, recreation and sports, a bio-
physical approach should be applied, optimizing both the
(mechanical) interface and upper body work capacity. Continued
and more systematic research is required to further stimulate
handcycle use.
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