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Abstract 

In this thesis we investigate the geometric and algorithmic aspects of the random-cluster 

model, a correlated bond percolation model of great importance in the feld of mathemat-

ics and statistical mechanics. We focus on the computational and statistical eÿciency of 

the single-bond or heat-bath Markov chain for the random-cluster model and develop algo-

rithmic techniques that allow for an improvement from a previously known polynomial to 

a poly-logarithmic runtime scaling of updates for general graphs. The interplay between 

the (critical) cluster structure of the random-cluster model and algorithmic, as well as 

statistical, eÿciencies is considered, leading to new exact identities. A complementary 

analysis of certain fragility properties of the Fortuin-Kasteleyn clusters provides new 

insights into fragmentation phenomena, culminating in a revised scaling relation for a 

related fragmentation power law exponent, previously only shown for the marginal bond 

percolation case. By utilising the established structural results, a dynamic fragmentation 

process is studied that allows for an extraction of characteristics of the equilibrium cluster 

structure by a careful analysis of the limiting fragments, as well as the entire evolution of 

the fragmentation process. 

Besides focussing on structural and computational aspects, in this dissertation we also 

analyse the eÿciency of the coupling from the past perfect sampling algorithm for the 

random-cluster model via large-scale numerical simulations. Two key results are the par-

ticular, close to optimal, eÿciency in the o�-critical setting and the intriguing observation 

of its superiority compared to the alternative Chayes-Machta-Swendsen-Wang approach 

in three dimensions. Governed by a random runtime, the eÿciency of the coupling 

from the past algorithm depends crucially on the fuctuations of the runtime. In this 

connection a compelling appearance of universal Gumbel fuctuations in the distribution 

of the runtime of the coupling from the past algorithm is established, both at and o� 
criticality. Fluctuations at a tricritical point and at a discontinuous phase transition are 

shown to deviate from this Gumbel law. The above fndings in two and three dimensions 

are supported by a rigorous analysis of certain aspects of the algorithm in one dimension, 

including a proof of the limiting Gumbel law. 
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Chapter 1 

Introduction 

The simple but powerful idea of utilising a random walk on large combinatorial or sample 

spaces as a specifc type of computational simulation has changed physics and related 

felds over the last few decades. It is safe to say that computational simulation is now 

established as the third cornerstone of science, complementing theory and experiment. 

Theoretically and experimentally intractable problems can often be eÿciently approxi-

mated using computational methods, new theoretical ideas can be tested in a computer 

simulation and certain features of experiments can be modelled and reproduced with a 

computer model. A prominent computational method, the Markov chain Monte Carlo 

(MCMC) simulation, has emerged as one of the most versatile and widely-used simulation 

method in condensed matter physics. It has in particular become an indispensable tool 

for the theory of critical phenomena, the study of continuous phase transitions, and 

contributed signifcantly to the advancement of the feld [1]. 

The use of the MCMC method naturally introduces a dynamical dimension into the 

problem, because one implicitly relies on the Ergodic Theorem for Markov chains [2], that 

is the equivalence of time and spatial averages. In other words averaging a measured 

quantity along the trajectory of the Markov chain approximates the correctly weighted 

spatial average in the state space under study. It has been realised early that the structural 

complexity of critical phenomena infuences the dynamical scales of the utilised Markov 

chain in the MCMC method [3], in form of slow relaxation and the expansion of temporal 

correlations. This is a potential bottleneck for the applicability of the MCMC method and 

is commonly known as critical slowing-down [1]. In particular, it is expected that at a 

continuous phase transition the inherent (Markov chain) time scales show a power law 

scaling in the volume or size parameter of the system, and therefore impede the study of 

large problem instances, that are needed to approximate properties of the thermodynamic 

limit. For instance, a particularly severe critical slowing-down occurs for localised spin 

fip dynamics for the Ising or Potts model [4] in statistical physics where the dynamical 

critical exponent is z ≈ 2 and even larger in the presence of a conserved quantity such as 

the magnetisation. The intuition behind this slowing-down is the di�usive nature of the 
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Chapter 1. Introduction 

localised changes made by the Markov chain which need to propagate on all length scales 

of the system. 

A drastic improvement of the critical slowing-down e�ect for the Potts model was achieved 

by the invention of the Swendsen-Wang dynamics [5], and later generalised to a larger class 

of graphical models by Chayes and Machta [6, 7]. The crucial idea in these approaches is 

to loosen the restriction to localised updates and revert to large scale alterations of the 

spin confguration, which are particularly eÿcient at criticality due to the existence of 

large scale structures found there. 

The Swendsen-Wang and Chayes-Machta dynamics rely essentially on a graphical repre-

sentation of the Potts model known as the random-cluster model. The random-cluster 

model was introduced in 1969 by Fortuin and Kasteleyn who studied this model in a series 

of papers [8, 9, 10]. It is a correlated bond percolation model or in other words a family of 

probability mass functions defned on the space of spanning sub-graphs Ω = {A|A ⊆ E}
of a graph G = (V ,E), where V and E are the sets of vertices and edges, respectively. We 

denote by n and m the number of vertices and edges in G, respectively. The model has 

two parameters 0 ≤ p ≤ 1 and q > 0, referred to as the bond density and cluster weight, 

respectively. The probability assigned to a specifc spanning sub-graph (V ,A) equals 

K(A) K(A) |A|q p|A|(1− p)m−|A| q v
πp,q(A) = = , (1.0.1)

Zp,q Z̃v,q 

where v = p/(1 − p) and K(A) is the number of connected components in the spanning 

sub-graph (V ,A) (counting isolated vertices), and | · | denotes the set cardinality, that is |A|
is the number of edges in A. The normalisation constants Zp,q and Z̃p,q = Zp,q/(1− p)m are 

also called partition functions. As shown by Swendsen and Wang in [5] and formalised 

and extended by Edwards and Sokal in [11], one obtains a random-cluster confguration 

from a Potts spin confguration by frst adding edges between interacting vertices with 

the same spin, and then sparsifying this graph by randomly and independently removing 

edges with probability e−β , where β is the inverse temperature of the Potts model1. Con-

versely, one obtains a Potts spin confguration from a random-cluster confguration by 

assigning to each connected component in the random-cluster confguration a randomly 

and independently chosen spin. Yet, being defned for general positive real cluster weights, 

the random-cluster model goes beyond the Potts model as well as the bond percolation 

model and is rather a continuous family of graphical models. It has played a major role 

in the study of the geometry of the critical phase, see for example [12, 13, 14, 15], and 

has recently emerged in the rigorous study of two dimensional critical phenomena via its 

connection to Schramm-Loewner evolution (SLE) [16, 17, 18, 19]. 

In 1982, 5 years before Swendsen and Wang published their seminal paper [5] in 1987, 

Mark Sweeny published his results [20] on a study of the Metropolis dynamics for the 

random-cluster model. In contrast to the Swendsen-Wang and Chayes-Machta approaches, 

1Here we assume that all spins have the same interaction strength which we set to 1. 
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this Markov chain again operates with local updates, however uses the random-cluster 

rather then the spin representation. Remarkably, Sweeny fnds that his simulation results 

in two dimensions are not a�ected by any critical slowing-down. 25 years later Deng et al. 

systematically studied in [21] the dynamical critical behaviour of the Sweeny dynamics in 

two and three dimensions and discovered the surprising result that the involved dynamical 

critical exponents for the Sweeny dynamics are even slightly smaller than for the Chayes-

Machta dynamics. Furthermore, they found the remarkable phenomenon of critical 

speeding-up. This corresponds to the observation that certain non-local observables can 

exhibit a fast decorrelation below the scale of sweeps, in the sense that the involved 

dynamical critical exponent is negative. 

The price one has to pay for this improved statistical eÿciency is a possible algorithmic 

slowing-down. As pointed out frst by Sweeny, a connectivity check is needed in order 

to calculate the required transition probability, checking whether the proposed update 

changes the cluster structure. This introduces a non-local aspect into the dynamics, albeit 

any two subsequent confgurations in the Markov chain sequence di�er at most by one 

edge. Sweeny considered the two dimensional square lattice in [20] and utilised planarity 

and the medial loop representation [22] of a random-cluster confguration. He represented 

the loop confguration in a adapted skip-list data structure, which allowed him to perform 

a confguration update with worst case computational e�ort logarithmic in the number 

of vertices. It is clear that this loop construction has limited applicability in higher 

dimensions and it is therefore desirable to fnd more versatile algorithmic solutions to the 

inherent connectivity problem in the Sweeny dynamics. This algorithmic perspective on 

the single-bond Markov chain approach to the random-cluster model is one of the main 

themes of this thesis. 

We present a study of algorithmic solutions to the connectivity problem in the single-bond 

chain, or Sweeny dynamics, and investigate the strong interplay between the cluster 

structure and algorithmic and statistical eÿciencies. In particular in Chapter 4 we 

embark on a study of various algorithmic solutions to the connectivity problem. We 

start with a simple traversal based breadth-frst-search method and discuss its potential 

bottlenecks. We make the intriguing observation that the expected running time per 

update step exhibits a power law scaling in the system size, where the exponent is clearly 

relatable to standard equilibrium critical exponents for the random-cluster model [15]. 

The appearance of such a power law scaling in the running time of update operations 

introduces the algorithmic analogue to the statistical critical slowing-down, which we 

therefore simply refer to as computational critical slowing-down. In order to reduce this 

computational critical slowing-down we consider improved algorithmic techniques in the 

subsequent sections of Chapter 4. These approaches are based on an interleaved variant 

of the breadth-frst search in combination with the well known union-fnd data structure, 

successfully utilised for bond percolation in [23]. Albeit the running time exponents can 

indeed signifcantly be reduced, we still fnd a polynomial running time scaling. In other 

words none of the approaches is capable of suppressing the computational slowing-down 

3 

http:configuration.He


Chapter 1. Introduction 

completely. To overcome the computational critical slowing-down ultimately we therefore 

utilise a recent fully dynamic poly-logarithmic dynamic connectivity algorithm [24] that, 

as the name suggests, supports all required operations with a computational e�ort poly-

logarithmic in the system size. We carefully discuss its application to the Sweeny dynamics 

and moreover fnd that the rather complex structure of the algorithm can be drastically 

simplifed and adjusted to the particular setting of critical random-cluster models. This 

allows us to achieve a signifcant reduction in memory consumption, while practically 

even improving the running time of the original connectivity algorithm. Equipped with 

the poly-logarithmic computational complexity we then compare the Chayes-Machta and 

Sweeny approaches using a combined computational and statistical eÿciency measure. 

An analysis of the algorithmic eÿciency of a connectivity algorithm for the Sweeny 

dynamics leads to the study of certain structural fragmentation properties of the random-

cluster model. We therefore devote Chapter 5 to the study of fragmentation of Fortuin-

Kasteleyn clusters. In particular, we consider the probability of splitting a cluster into two 

parts upon removal of a randomly chosen edge. This naturally leads to the study of bridges 

and non-bridges in the stationary random-cluster model, which we analyse by examining 

their respective densities. We derive an exact identity that relates these to the overall 

density of edges which is valid for any graph and any choice of p and q. We derive our 

bridge-edge identity by utilising a random-cluster model variant of the Russo-Margulis 

formula, originally developed for independent bond percolation [25, 26, 27], which is of 

independent interest. Now, this exact identity then allows us to derive the asymptotic 
√ √

densities for the square lattice at the critical point psd(q) = q/(1 + q) [28] by exploiting 

duality. In particular we fnd the simple and concise formulas for the asymptotic density 

of bridges and non-bridges: 

√ 
1 q
√ and √ .

2(1 + q) 2(1 + q)

Beyond that, we also use the bridge-edge identity for a non-asymptotic analysis and derive 

fnite-size corrections to the asymptotic densities, and relate various previously seemingly 

unrelated quantities in the literature. Moreover we study the scale of fuctuations in the 

number of bridges by applying the Russo-Margulis method to the variance in the number 

of bridges. This allows us to reveal an interesting and unexpected fnite size scaling for 

the critical q < 1 random-cluster model in two dimensions. 

In addition to the analysis of bridges and non-bridges, we also consider the size distribu-

tions of the two fragment clusters obtained by a removal of a randomly chosen bridge. 

This has a clear relevance for traversal based implementations of Sweeny’s algorithm, as 

it determines the running time of, say, a breadth-frst search, following the removal of a 

bridge. The key quantity for our study is the break-up kernel bs0 |s which is the probability 

that, given a fragmentation of a cluster consisting of s vertices, one of the daughter clusters 

consists of s0 vertices. We show that the following scaling ansatz, originally introduced for 

critical bond percolation [11], holds to high precision also for the fragmentation of critical 
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Fortuin-Kasteleyn clusters in the thermodynamic limit 

bs0 |s ∼ s −φF (s 0/s). 

Additionally, we derive and confrm the following novel scaling relation between the 

fragmentation exponent φ [11] and standard fractal dimensions: 

dRφ = 2 − ,
dF 

where dR and dF are the red bond and cluster fractal dimension, respectively. Remarkably, 

it turns out that a previously assumed scaling relation due to Edwards et al. [11, 29, 30] 

for bond percolation, does not naturally extend to the random-cluster model, but is rather 

a marginal case of our derived scaling relation. 

Besides edge-induced fragmentation we also consider the interesting problem of vertex 

fragmentation. In contrast to the binary nature of edge fragmentation, vertex fragmen-

tation allows for higher order fragmentation events. We analyse related asymptotic and 

fnite-size quantities such as the density of the di�erent types of cut vertices, and consider 

a partial extension of the bridge-edge identity to cut vertices. 

While chapter 5 is entirely concerned with fragmentation properties in equilibrium, we 

consider in Chapter 7 a non-equilibrium process of repeated or iterated fragmentation 

of critical Fortuin-Kasteleyn clusters. To this end, we introduce a cut-o� that suppresses 

the fragmentation of clusters below a minimal size. In particular, we study the cut-o� 
dependence of the distribution of “stable” fragments which reveals footprints of the 

equilibrium cluster structure, an observation of obvious practical relevance. Moreover we 

fnd numerical evidence in favour of a recursive applicability of the equilibrium break-up 

kernel bs0 |s, beyond the one-step equilibrium fragmentation. This is one of the standard 

assumptions in rate equation approaches to fragmentation, which are mean-feld models 

that describe the time evolution of the fragment size distribution in a fragmentation 

process. Our numerical fndings suggest that certain features of the iterated fragmentation 

of fractal random structures are describable by rate equation approaches. 

Insight into the fragmentation process can also be obtained by analysing the splitting 

tree associated to a fragmentation process, which encodes the genealogy of fragments. By 

carefully analysing particular morphological properties of the splitting tree of the iterated 

fragmentation process of fractal random structures we can in fact extract certain stationary 

properties of the fragmented object. We further establish interesting similarities between 

the iterated fragmentation process and the so called beta splitting model [31], which is a 

perfectly recursive mean-feld fragmentation model. 

The random-cluster model is also amenable to a particular type of exact or perfect sam-

pling algorithms, both for 0 < q < 1 [32], and for q ≥ 1, the latter known as the “coupling 

from the past algorithm” [33] due to Propp & Wilson. Unfortunately this sampling method 
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Chapter 1. Introduction 

for the random-cluster model seems to have been unnoticed in the statistical physics liter-

ature, probably due to algorithmic complications described above. Having an eÿcient 

poly-logarithmic connectivity algorithm at our disposal we report in Chapter 6 on a study 

of the eÿciency of the coupling from the past algorithm in two and three dimensions. 

This perfect sampling algorithm is crucially based on the heat-bath version of the Sweeny 

dynamics and we describe this connection in detail. We consider the two dimensional 

square lattice as well as the simple cubic lattice and study the random running time τ 

it takes for the algorithm to produce a (independent) perfect sample. We examine both 

o�-critical and on-critical settings. The analysis of certain statistical measures of τ allows 

us to infer connected statistical eÿciency statements for the underlying Sweeny Markov 

chain. Likewise, we fnd a strong interplay between τ and the cluster structure. The two 

salient features that emerge from our analysis are the close to optimal eÿciency for o� 
critical settings and the appearance of Gumbel fuctuations in the coupling time τ , both 

o� and at criticality. The observation regarding the distribution of the coupling time τ 

appears to be universal and holds, in an appropriate rescaling, asymptotically in two and 

three dimensions, irrespective of the cluster weight and bond density, as long as the model 

does not undergo a discontinuous phase transition. In the latter setting we have strong 

indications for the appearance of Frèchet fuctuations. We complete our analysis by a 

rigorous treatment of the coupling process in one dimension on the cycle graph. In this 

setting we are in particular able to prove two salient features found in higher dimensions. 

Besides that we also prove a number of intuitive facts related to the Sweeny dynamics. 

We establish a duality result for relaxation times [34] and we show that the Metropolis 

and heat-bath variants are in the same dynamical universality class. Furthermore we 

prove the useful fact that for monotone Markov chains such as the heat-bath chain for 

the random-cluster model or the Glauber dynamics for the Ising model one can explicitly 

construct observables that probe the slowest mode. In the case of the random-cluster 

model this can be achieved by using the observable that counts the number of open edges, 

whereas for the Ising Glauber dynamics it is naturally the magnetisation. We believe that 

the rigorous establishment of this result can be of interest for a future (rigorous) analysis 

of the relaxation or mixing of the heat-bath chain. 

The thesis is organised as follows. In Chapter 2 we review the Markov chain Monte 

Carlo method with particular emphasis on the random-cluster model and prove some 

important related aspects. Chapter 3 develops the algorithmic background needed for 

the subsequent analysis of the computational and statistical eÿciency of the Sweeny 

dynamics in Chapter 4. Chapter 5 describes our results relating to the fragmentation of 

Fortuin-Kasteleyn clusters, Chapter 6 describes our fndings on the coupling from the past 

algorithm and Chapter 7 discusses the non-equilibrium fragmentation process. Finally in 

Chapter 8 we conclude and discuss open questions and possible future projects. 
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Chapter 2 

Markov Chain Monte Carlo for the 

random-cluster model 

In this chapter we discuss the Markov chain Monte Carlo method in general and then 

focus on two particular algorithms for the random-cluster model. We briefy describe 

the computational complexity of calculating the corresponding partition function and 

proceed with the introduction of the probably two most important aspects of Markov 

chains, that is the relaxation towards the unique stationary distribution and correlations 

in Markov chains. We then focus on the heat-bath Markov chain for the random-cluster 

model, where we establish an interesting duality result between heat-bath chains for dual 

bond densities and derive the Li-Sokal bound. We then briefy describe the alternative 

Chayes-Machta-Swendsen-Wang MCMC algorithm. Finally we elaborate on a recently 

established connection between the latter and heat-bath algorithm and show why recent 

comparison results between the two do not provide a conclusive statement about which 

method is more eÿcient in practise. 

2.1 Computational complexity of the random-cluster model 

and Markov chain Monte Carlo 

In order to understand why numerical approaches, such as the Markov Chain Monte 
Carlo (MCMC) method, are needed to investigate the random-cluster model on non-

trivial graphs, we will briefy (and informally) discuss the computational complexity of 

computing the partition function Zp,q of the random-cluster model with parameters p,q > 

0. Recall that, Zp,q is formally defned as a sum of 2m terms corresponding to all spanning 
k(A) |A|(1 − p)m−|A|sub-graphs of the graph G = (V ,E) with m edges, each of the form q p . 

Any such term can clearly be calculated in time polynomial in max{m,n}. However the 

vast amount of possible confgurations casts an exact calculation of Zp,q in most cases 

intractable in polynomial time. Strong evidence in favour of this expectation comes from 

rigorous results on the computational complexity of computing the Tutte polynomial [35]. 
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Chapter 2. Markov Chain Monte Carlo for the random-cluster model 

To see this, note that the partition function of the random-cluster model is actually a 

specifc evaluation of the Tutte polynomial T (x,y) for the graph G, defned as X 
T (x,y) = (x − 1)r(E)−r(A)(y − 1)|A|−r(A), (2.1.1) 

A⊆E 

where r(A) = n − k(A) is the rank of the spanning sub-graph (V ,A). It is not hard to see 

that indeed for a connected graph G, i.e. k(E) = 1, one has !n−1 ! 
1 p q(1− p) 1 

Zp,q = T G;1 + , . (2.1.2) 
q 1− p p 1− p 

The authors of Ref. [35] show that the Tutte polynomial for a fnite graph G belongs to the 

class of #P-hard computational problems for all points in the complex (x,y)-plane, except 

for a specifc family of points, for which the exact calculation of the Tutte polynomial can 

be done in polynomial time. Applied to the random-cluster model partition function with 

p,q > 0 one fnds that for the following special choices of p and q the exact computation of 

Zp,q can be done with polynomial computational e�ort for any fnite graph G: 

• q = 1 and 0 ≤ p ≤ 1: Independent bond percolation on G. The partition function is 

trivial. 

• p,q → 0 such that q/p → 0: Number of spanning trees of G (Kirchho�’s matrix tree 

theorem [36]) 

Additionally, for the class of bipartite planar graphs it was also shown that q = 2, that is 

the Ising model, has polynomial complexity [37, 35]. Note that for other points one can, 

in a strict sense, not rule out the existence of polynomial time algorithms, however, the 

existence of such a polynomial time algorithm would yield polynomial time algorithms 

for any other algorithm in the class #P, which in particular includes such notoriously 

intractable problems as counting truth assignments for a Boolean formula in conjunctive 

normal form, also known as #SAT, or counting the number of Hamiltonian paths in a 

graph. It is therefore very plausible that the exact computation of Zp,q is intractable 

except for very special choices of G or p and q. Further, the intractability of computing 

Zp,q extends directly to the probability distribution πp,q on Ω = {A|A ⊆ G}. In order to 

estimate expectations of observables or sample from the desired probability distribution 

one can thus not expect to rely on exact computations involving Zp,q. Remarkably, in some 

cases one can sample exactly from a desired probability distribution without having to 

perform exact calculations involving the partition function. We will describe a numerical 

and rigorous analysis of such an approach in the case of the random-cluster model in 

chapter 6. Yet, even in the situations where such methods are not available one can utilise 

approximation schemes of which the Markov chain Monte Carlo method is probably the 

most versatile approach. 
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2.1. Computational complexity of the random-cluster model and MCMC 

2.1.1 The Markov chain Monte Carlo method 

In this thesis we almost exclusively focus on the versatile approximation method known 

as Markov Chain Monte Carlo (MCMC). The basic idea is to construct a sequence of random 

variables with a certain memoryless property, that has a limiting stationary distribution 

which equals the desired probability distribution. We start with general considerations 

regarding Markov chains. 

Let Ω be a fnite space and X = (X0,X1, . . . ) a sequence of random variables in Ω. The 

sequence X is a Markov chain with state space Ω and transition matrix P if for all x,y ∈ Ω, Tt−1all t ≥ 1, and all events Ht−1 = s=0{Xs = xs} satisfying P [Ht−1 ∩ {Xt = x}] > 0, we have 

P [Xt+1 = y|Ht−1 ∩ {Xt = x}] = P [Xt+1 = y|Xt = x] = P (x,y). (2.1.3) 

In words, the distribution of Xt+1 only depends on the value of the sequence attained at 

time t, and in particular any dependence on the sequence at times before t is “lost”. We P 
note that P is necessarily stochastic, that is we have for any x ∈ Ω, y∈Ω P (x,y) = 1. 

The transition matrix P of a fnite Markov chain is called irreducible, if for any x,y ∈ Ωh i 
there exists an integer tx,y such that P Xtx,y 

= y|X0 = x = P tx,y (x,y) > 0. The period of a 

state x is defned to be the greatest common divisor of the integers in {t ≥ 1 : P t(x,x) > 0}. 
Notice that it is possible to show, see e.g. Lemma 1.6 in [2], that if P is irreducible then all 

states in Ω must have the same period. Markov chains for which all states have period 

1 are referred to as being aperiodic. We can now state the three fundamental theorems 

underlying the Markov chain Monte Carlo method: 

Theorem 2.1.1. (See [2]). A fnite Markov chain with irreducible transition matrix P has a 
unique stationary distribution π on Ω such that π = πP and π(x) > 0 for all x ∈ Ω. 

While the previous theorem assures the existence of a unique stationary distribution, 

the next theorem, commonly known as Convergence Theorem, states that if the chain is 

irreducible and aperiodic, then P t(x, ·) converges to its unique stationary distribution π 

for any x ∈ Ω: 

Theorem 2.1.2. (See [2]). For a fnite Markov chain with irreducible and aperiodic transition 
matrix P with stationary distribution π one has for any x,y ∈ Ω 

lim P t(x,y) = π(y). (2.1.4)
t→∞ 

P 
In what follows we write Eµ[f ] = x∈Ω µ(x)f (x) for any real-valued function (observable) 

f and probability distribution µ on Ω. Moreover when we are concerned with a Markov 

chain (Xt)t≥0 we write Pµ[·] for the probability of the event ·, when X0 has law µ. Now, the 

Ergodic Theorem intuitively states that “time averages equal space averages” for irreducible 

Markov chains: 
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Chapter 2. Markov Chain Monte Carlo for the random-cluster model 

Theorem 2.1.3. (See [2]). Let f be an observable defned on Ω. If (Xt)t≥0 is an irreducible 
Markov chain, then for any starting distribution µ on Ω, ⎡ ⎤ 

T −1X1
Pµ 

⎢⎢⎢⎢⎢⎣ lim f (Xs) = Eπ(f ) 
⎥⎥⎥⎥⎥⎦ = 1. (2.1.5)

T →∞ T 
s=0 

The MCMC method now exploits the above statements and usually works as follows. We 

are given a distribution π we want to sample from, but the sample space is too large to 

do so or π itself cannot be computed eÿciently. In order to sample from π construct 

an irreducible and aperiodic Markov chain, let it run “long enough” to come “close to 

stationarity” and start to use “enough” samples, e.g. for estimating Eπ[f ]. It is clear from 

the above Theorems that if we could wait infnitely long, then this method would be 

equivalent to sampling from π (Theorem 2.1.2) or calculating Eπ[f ] exactly (Theorem 

2.1.3). Finding answers to what precisely “long enough” and “close to stationarity” means 

is the study of the speed of convergence for Markov chains or commonly known as 

Markov chain mixing [2]. However, before we discuss related concepts, let us consider the 

question what “enough” samples means under the assumption that the chain is stationary, 

i.e. P[X0 = x] = π(x). Suppose further we want to estimate the expectation of an observable 

f . A natural estimator is 
T −1X1 

YT ≡ f (Xs), T > 0, (2.1.6)
T 

s=0 

and it is clear that Eπ[YT ] = Eπ[f ], in other words YT is unbiased. In order to study the 

fuctuations of YT around Eπ[f ] we can apply Chebyshev’s inequality [38], that is we have 

for any η > 0: � � Var[YT ]P |YT − Eπ[f ]| > η ≤ (2.1.7)
η2 

Thus in order to study the likelihood of such deviations one needs Var[YT ], which can be 

shown, [39], to be equal to: 

T −1X � �1
Var[YT ] = T − |k| Cf (k). (2.1.8)

T 2 
k=−(T −1) 

Here for each integer k, Cf (k) is the covariance of f (Xt) and f (Xt+k ) for the stationaryP∞Markov chain under study. Now under the assumption that convergesk=−∞ Cf (k)

absolutely, which is often the case as many Markov chains have an approximate asymptotic 

exponential decay for Cf (k) (see section 4.3.1 for a particular example), one can show by 

means of the dominated convergence theorem [39] that limT →∞ T Var[YT ] = 2τint,f Varπ[f ] 

and hence 
2

Var[YT ] ∼ τint,f Varπ[f ]. (2.1.9)
T 
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The quantity τint,f above is the integrated autocorrelation time of f and equals 

∞X1 
τint,f ≡ + ρf (k), (2.1.10)

2
k=1 

and ρf (k) = Cf (k)/ Varπ[f ] is the normalised autocorrelation time at time-lag k. We note that 
1when the sequence (Xt)t≥0 is independent, one has τint,f = 2 for any f , for which (2.1.9) 

and (2.1.7) imply the well-known weak law of larger numbers [2]. We remark that for 

the particular case of (reversible) heat-bath Markov chains, considered in this thesis, we 

can do an explicit calculation for Var[Yt] which is based on the spectral representation 

for reversible Markov chains (see next section). In particular, it can be verifed that one P|Ω| 2λkhas the spectral expansion Cf (k) = , where 0 ≤ λi ≤ 1 is the i’th eigenvalue (the i=2 ci i 

lower bound does not hold in general for reversible chains, however it holds for the class 

of heat-bath chains as described below) and ci ∈ R (depending also on f ). This clearly 

implies Cf (k) ≥ 0, and we therefore obtain the following bound 

T −1 ∞X X X1
Var[YT ] = (T − |k|)Cf (k) ≤ Cf (k) = Cf (0) + 2 Cf (k) ≡ 2τint,f Varπ[f ]. 

T 2 
k=−(T −1) k=−∞ k≥1 

Therefore, for heat-bath chains, which applies to the Sweeny dynamics considered in this 

thesis, one has under the above assumptions � � 2Varπ[f ]τint,fP |YT − Eπ[f ]| > η ≤ , (2.1.11)
T η2 

where for reversible Markov chains only asymptotic equivalence to the upper bound holds. 

Now in order to assure that the likelihood of such a deviation does not exceed � > 0 one 

would need a sample of length at least 2Varπ[f ]τint,f /(�η2), which makes it essential to 

obtain a precise understanding of τint,f and how it depends on the size of the state space. 

Note that also the size dependence of Varπ[f ] plays an important role. However, because 

it is relevant in both the uncorrelated and correlated setting, it is not a particular issue of 

MCMC methods. Further support for the importance of τint,f comes from a central limit 

theorem for reversible stationary Markov chains, generalising the theorem for sequences 

of i.i.d. random variables. More precisely one has the following asymptotic law due to 

Kipnis and Varadhan [40] (see also [41]): 

Theorem 2.1.4. (Kipnis & Varadhan, 1986) For a stationary, irreducible and reversible Markov P∞chain for which v2 ≡ k=−∞ Cf (k) < ∞ one has for T →∞ 

√ D
T (YT − Eπ[f ])→N (0,v2), 

D
where → denotes convergence in distribution and N (0,v2) is a normal random variable with 

2mean 0 and variance v . 
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Recalling that v2 ∼ 2τint,f Varπ[f ], we conclude with the important result that τint,f is 

required to obtain error bars for the estimator YT of Eπ[f ] used in MCMC. 

It is clear that for the above to be valid, we need stationarity. However, as indicated before, 

in practise one can not run a Markov chain forever and stationarity is therefore merely 

an approximation. It is therefore necessary to study the bias induced by sampling from 

the chain after a fnite period. This leads us directly to the question of the meaning of 

closeness to stationarity. In order to defne what is close we need a notion of distance 

between two probability distributions on the same state space. A widely used metric is 

the total variation distance [2]. Let µ and ν be two probability distributions on Ω, then the 

total variation distance between µ and ν is defned to be the worst case absolute di�erence 

the two distributions µ and ν assign to any event F ⊂ Ω, that is 

�µ − ν 
������� ���� ���� ≡ max 

T V F⊂Ω 
|µ(F)− ν(F)|. (2.1.12) 

���� ���� ��������We note that if < �, then the two distributions cannot di�er more than � at any µ − ν 
T V 

x ∈ Ω. The total variation distance has alternative defnitions [2] of which the following is 

of particular use [2] (because of its explicit nature): ��������µ − ν 
���� ���� 1 X 

|µ(x)− ν(x)|. (2.1.13)= 
T V 2 

x∈Ω 

This is a direct consequence of the fact that the event F0 that maximises |µ(F) − ν(F)| is 
given by F0 = {x ∈ Ω : µ(x) ≥ ν(x)}. Furthermore note that µ(F0) − ν(F0) = ν(F0c) − µ(F0c), 

where F0c = Ω \ F0 (the complement of F0), hence we have by (2.1.12) ���� ���� �������� = 
T V 

µ(F0)− ν(F0),µ − ν 

= ν(F0c)− µ(F0c), 
1 � � 
µ(F0)− ν(F0) + ν(F0c)− µ(F0c)= ,

2 X X1 1
[µ(x)− ν(x)] + 

2 
[ν(x)− µ(x)] ,= 

2 
x∈F0 x∈F0c ���X 

µ(x)− ν(x) 
��� . 1 

= 
2 
x∈Ω 

To give an example on how sensitive the total variation distance is to the di�erence between 

the two probability distributions, let us consider the following example. Suppose we want 

to generate samples from the independent bond percolation model on a graph (V ,E) with 

m edges and parameter p. It is not hard to see that the corresponding distribution µ on 

Ω = {A : A ⊆ E} is µ(A) = p|A|(1−p)m−|A|. Suppose we generate a sample A with distribution 

µ, by independently removing edges from E with probability 1 −p. However our computer ���� ���� �������� code has a faw or bug and never deletes edge f ∈ E. The corresponding distribution is 

ν(A) = 1{f ∈A}p|A|−1(1− p)m−|A|. The total variation distance µ − ν 
T V 

now certainly fulfls 

12 



the following: 

2.1. Computational complexity of the random-cluster model and MCMC 

1 X�������� µ − ν 
���� ���� |µ(A)− ν(A)|,= 
T V 2 

A⊆E 

1 X 
≥ µ(A),

2 
A⊆E: 
f <A 

1 
πp,q=1[f < A],= 

2
1− p

= .
2 

Which in particular holds for m →∞, thus the total variation distance remains fnite even 

if the edge f intuitively contributes a vanishing fraction when m →∞. Equipped with 

this notion of distance one can now formalise the notation of “a Markov chain is close 

to its stationary distribution”, by using the total variation distance between P t(x, 

P t(x,

·) and �������� ���� ����π which we write as dx(t) ·)− π . Given a starting state x ∈ Ω one defnes the = 
T V 

mixing time of state x by 

(x)
tmix(�) = min{t : dx(t) ≤ �} � > 0, 

(x)i.e. tmix(�) is the frst time P t(x, ·) and π come within � in total variation distance. We 
(x)note that it is possible to show that dx(t + 1) ≤ dx(t), that is increasing t beyond tmix(�) 

can only bring the chain closer to π, c.f. e.g. [2]. Now, the mixing time of a Markov chain 
(x)is the maximal mixing time over all starting states in Ω, i.e. tmix(�) ≡ maxx∈Ω tmix. We 

follow a standard convention [2] and write tmix ≡ tmix(1/4). Note, that once tmix is known 

one can push the total variation further down to any � < 1/4 because one has generically 

that tmix(�) ≤ blog2 �
−1ctmix, c.f. e.g. [2]. In typical settings in physics, e.g., in the study 

of critical phenomena in statistical physics, one is interested in the size dependence of 

expectations of certain observables. In situations where this is approximated by utilising 

the MCMC method, it is thus crucial to understand (at least heuristically or numerically) 

how tmix depends on the size of system under study, as we consider a sequence of Markov 

chains with increasing state spaces. For instance, for the random-cluster model on a graph 

G we know that |Ω| = 2m, hence in order for the MCMC to be an eÿcient method to use 

we demand that the mixing time is polynomial in m, or alternatively poly-logarithmic in 

the size of the state space. This coincides with the widely used notion of rapidly mixing 
Markov chains. The mathematical study of mixing times is a beautiful and young theory 

which has seen signifcant progress in recent years [2, 42]. 

2.1.2 Reversible Markov chains 

A particular important class of Markov Chains, mainly due to their rich mathematical 

structure outlined below, are reversible Markov chains, defned by the following detailed 
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balance equations: 
π(x)P (x,y) = π(y)P (y,x) for all x,y ∈ Ω. (2.1.14) 

More precisely a Markov chain with transition matrix P that fulfls the detailed balance 

equations (2.1.14) with respect to π is called reversible and it follows immediately that π 

is a stationary distribution of P X X 
π(x)P (x,y) = π(y) P (y,x) = π(y). 

x∈Ω x∈Ω 

We emphasise that (2.1.14) are only suÿcient conditions for π to be the stationary distri-

bution of P and we do not claim that a probability distribution π, that fulfls the detailed 

balance equations with respect to a transition matrix P , is unique. The reason for the 

prominence of reversible Markov chains, in particular in the MCMC setting, is two-fold. 

First of all the detailed balance equations (2.1.14) provide an easy way to assure that a 

desired probability distribution π is a stationary distribution of P and we only need to 

be able to determine ratios π(x)/π(y), which in particular avoids the need of calculating 

the intractable partition function (normalisation constant). Often one actually starts 

with π and constructs P such that (2.1.14) are fulflled with additional considerations 

regarding irreducibility. Second of all, reversible Markov chains have a beautiful, well 

established, mathematical structure which is based on the observation that one can fnd a 

spectral representation of P . We briefy review the important facts and refer the reader 

for more details to e.g. [2]. To start with, reversibility of P implies that the matrix A p p
defned via A(x,y) ≡ π(x)P (x,y)/ π(y) is symmetric. This in turn allows us to apply 

the spectral theorem for symmetric matrices [43]. Hence we can conclude that the inner 

product space (R|Ω|,h·, ·i) has an orthonormal basis of eigenvectors1 of A, {φj }
|
j
Ω

=1
| with real P 

eigenvalues λj . Here h·, ·i is the standard inner product given by hf , gi = x∈Ω f (x)g(x). 

By defnition, orthonormality of φi,φj is equivalent to hφi,φj i = δi,j , where δi,j = 1 if i = j
√ 

and 0 otherwise. Further, it is not hard to see that π is an eigenfunction of A with corre-
√ 

sponding eigenvalue 1, thus we set φ1 = π which clearly has λ1 = 1. Now the spectral P|Ω|decomposition allows us to write any function f :Ω → R as f (x) = j=1hf ,φj iφj (x). With 

Dπ being the diagonal matrix that has 
√ 
π along its diagonal, we have A = DπP D−1. It is π 

easy to verify that fj = D−1φj is an eigenvector of P with eigenvalue λj for 1 ≤ j ≤ |Ω|:π � � 
P fj = P Dπ 

−1φj = Dπ 
−1 DπP Dπ 

−1 φj = Dπ 
−1Aφj = λjDπ 

−1φj = λjfj . 

The eigenvectors fi , fj can also be shown to be orthonormal with respect to a modifed P 
inner product hf , giπ = x∈Ω f (x)π(x)g(x). Now orthonormality of {fi }j

|Ω
=1
| follows from: 

δij = hφi,φj i = hDπfi,Dπfj i = hfi , fj iπ. 

1We use the term eigenvectors and eigenfunctions synonymously. This is because any vector in the inner 
product space (R|Ω|,h·, ·i) can be thought of as a mapping/function from Ω to R. 
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We conclude that the eigenvectors of a reversible transition matrix P yield an orthonormal 

basis for the inner product space (R|Ω|,h·, ·iπ). It is then in particular possible to decompose 

P t(x,y) as [2] 
|Ω|

P t(x,y) = π(y) + fj (x)fj (y)π(y)λtj ∀x,y ∈ Ω, 
j=2 

where we have used that f1 = Dπ 
−1φ1 = 1 (the constant vector with elements 1). Now, in 

order for P t(x,y)→ π(y), it suÿces that |λj | < 1 for j ≥ 2. Indeed it can be shown that for 

irreducible and aperiodic transition matrices P , all eigenvalues are in magnitude not larger 

than 1, −1 is not an eigenvalue and the vector space of eigenfunctions corresponding to 

eigenvalue 1 is the one-dimensional space generated by 1 [2]. Whence we can label the 

eigenvalues of an irreducible, aperiodic and reversible transition matrix P in decreasing 

order: 

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| > −1. 

X 

With λ∗ ≡ max{|λ2|, |λ|Ω||} we defne the absolute spectral gap by γ∗ ≡ 1− λ∗. Similarly the 

spectral gap γ is defned by γ ≡ 1− λ2. The relaxation time trel of a reversible Markov chain 

with absolute spectral gap γ∗ is defned to be trel ≡ γ−1. It turns out that the relaxation∗ 
time trel and the mixing time tmix(�) provide the correct notion of what it means to “wait 

suÿcient long” and collect “enough samples”, in the sense of the following non-asymptotic 

generalisation of the Ergodic theorem 2.1.3 

Theorem 2.1.5. (Theorem 12.19 in [2].) Let (Xt) be a reversible Markov chain. If r ≥ tmix(�/2) 

and t ≥ [4Varπ [f ] /(η2�)]trel, then for any state x ∈ Ω and any function f :Ω → R, ������
������

⎡ ⎤ Xt−1

t 
s=0 

1
Px f (Xr+s)− Eπ [f ] ≥ η ≤ �. 

⎢⎢⎢⎢⎢⎣ ⎥⎥⎥⎥⎥⎦� � 
We underline that Theorem 2.1.5 does not need irreducibility or aperiodicity. Further, 

compare this result to our previous inequality (2.1.11), which assumed stationarity. The 

current result relaxes this assumption and merely demands an “equilibration” phase of 

length at least tmix(�/2). Another particular point concerns the relation of τint,f and trel, 

the latter being manifestly independent of f , and we expect trel to be an upper bound for 

any τint,f . In order to render this more precisely we need to introduce another important 

quantity. The exponential autocorrelation time of a real-valued function f on the state 

space Ω is defned by, [39]: 

k 
τexp,f ≡ limsup � � . 

− log |Cf (k)|k→∞ 

��The intuition behind this defnition is that one anticipates that Cf (k) often roughly decays 

like exp −k/τexp,f for large k, which we will explicitly verify in the setting of the heat-bath 

chain for independent bond percolation in section 4.3.1. The exponential autocorrelation 

time of a Markov chain is defned to be the supremum over all real-valued functions on 
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Ω, i.e. 

τexp ≡ sup τexp,f , 
f 

hence it is an upper bound for τexp,f of any f and characterises the slowest time scale. 

Now we can relate τexp to trel in particular for reversible, irreducible and aperiodic 

chains. In order to see this, note that it can be shown that (c.f. e.g. Section 9.2.3. in 

[39]) exp(−1/τexp) equals the largest eigenvalue, in magnitude, of Q ≡ P − Π, where 

Π is the matrix in which all rows equal to π. It is not hard to see that any constant 

function is in the kernel of Q. Now we know that the set of eigenfunctions of P forms 

an orthonormal basis of the inner product space (R|Ω|,h·, ·iπ). So any function (vector) f P|Ω|in that space can be expanded in terms of the eigenfunctions fj , f = j=1 ajfj . Because 

f1 = (1, · · · ,1)T we have hf1, f iπ = Eπ[f ] thus orthogonality of fi , fj for any i , j is equivalent 

to Eπ[fi ] = Πfi = (0, · · · , 0)T for i > 1. Hence we have that Q equals P for any function with 

zero projection on f1 and any function parallel to f1 (thus corresponding to eigenvalue 

1) is in the kernel of Q. It follows that the spectrum of Q is given by the spectrum of P 

without the largest eigenvalue λ1 = 1. For that reason it follows that for any reversible 

and irreducible fnite Markov chain we have: 

1− τexpλ∗ = e . 

In order to relate τexp we make use of the following standard bounds for the logarithm, 

which follow from the Taylor expansion of log(1 + x), and are valid whenever |x| ≤ 1, c.f. 

[38]: 
x ≤ log(1 + x) ≤ x. 

1 + x 

Setting x = −γ∗ yields 

trel − 1 ≤ τexp ≤ trel. 

The last step is necessary to relate τintf and trel is an inequality between τexp and τint,f . 

In order to obtain such an inequality we note that it is possible to relate a modifed 

exponential autocorrelation time τ̃exp, which is defned via λ2 instead of λ∗, (c.f. e.g. 

Section 9.2.3. in [39]), to τint,f via: � � 
τint,f ≤ τ̃exp 1 +O(1/τ̃exp) . (2.1.15) 

Where in general one has τ̃exp , τexp. However, for the particular class of heat-bath chains 

it was recently2 established that the corresponding transition matrix has no negative 

eigenvalues [45]. Hence there is no di�erence between the two quantities and we can 

conclude 

τint,f ≤ trel (1 +O(1/trel)) (2.1.16) 

Hence we established that the relaxation time trel provides a safe upper bound for any 

integrated autocorrelation time. The question of how far the integrated autocorrelation 

2Apparently A. D. Sokal was aware of the fact in 1996, as can be seen in [44] footnote 38. 
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time is apart from the actual upper bound is non-trivial and depends on the properties 

of f . In fact in this thesis, in particular in section 4.4, we show that certain, “slow”, 

observables actually attain the upper bound. On the other hand, we also observe the 

phenomenon of critical-speeding up, as discussed in 4.3, which e�ectively “projects” 

quantities away from the slowest “mode” in the system. It is also important to note that 

the relaxation and exponential autocorrelation time can be related to the mixing time. 

In particular, as shown for instance in [2], one can relate both quantities for reversible, 

irreducible and aperiodic chains: �� 1
(trel − 1)log ≤ tmix(�) ≤ log 

2� 

! 
1 

trel,πmin� 
(2.1.17) 

where πmin ≡ minx∈Ω π(x). A key point to note is the presence of the factor log1/πmin 

which can be large, thus worsening the tightness of the bounds. We note that tmix and trel 

are a priori two di�erent quantities and there is no generally applicable argument show-

ing their equivalence, hence it is not surprising that such comparison inequalities leave 

some scope. Let us come back to the Ergodic Theorem, which in particular required an 

equilibration phase of length at least tmix(�/2) to assure that the likelihood of a deviation 

of more than η does not exceed �. We can now use (2.1.17) and express this in terms of 

τexp and conclude that an equilibration length of log(2/(�πmin))(τexp + 1) steps is enough 

to ensure the desired quality. 

Before we proceed we remark that often one has no theoretical (rigorous) arguments 

for either τexp, trel and tmix and thus the relevant notions of relaxation and correlations 

have to be heuristically/numerically explored. In the case for the heat-bath chain for the 

random-cluster model there is only very restricted theoretical knowledge and we will 

devote part of this thesis to the numerical and analytical investigation of related relaxation 

and correlation questions and in particular investigate whether τexp or equivalently trel is 

far o� tmix and how close τint,f is to τexp for a class of functions f of general interest in 

the study of critical phenomena. We emphasise that our primary interest lies in critical 

phenomena and properties of the heat-bath chain close to a second order, continuous, 

phase transition. 

Let us now introduce the heat-bath chain for the random-cluster model in some detail, 

which is the only chain on which we focus analytically3 in this thesis. This is mainly due 

to its more amenable mathematical structure as compared to the Metropolis chain (mono-

tonicity for instance), however we provide in chapter 4 relevant comparison statements 

that allow us to translate relevant properties of the heat-bath chain to the Metropolis 

chain. 

3On a frst view a seemingly conficting fact is that numerically we consider the Metropolis chain. This 
was simply intended to complement the study Deng et al. in [21]. Our analytical study succeeded the 
computational part. 
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Chapter 2. Markov Chain Monte Carlo for the random-cluster model 

2.2 Heat-bath Markov chain for the random-cluster model (or 

Sweeny’s algorithm) 

The heat-bath Markov chain (or Glauber dynamics or Gibbs sampler [27, 2]) is a versatile 

MCMC algorithm. It provides a general recipe to construct a reversible Markov chain for 

state spaces Ω of a certain structure: Suppose S and V are two fnite sets and Ω ⊆ SV . 

One can think of a confguration as an assignment of a value in S to any element of V . 

Examples of models that posses such a structure are the Ising and Potts model as well as 

proper colourings or anti-ferromagnetic models. To see that the confguration space of the 

random-cluster model has this structure recall that πp,q assigns positive probability to 

elements in {A : A ⊆ E}, where as usual G = (V ,E) is a fnite graph. Any element A ∈ Ω can 

thus be uniquely mapped to a {0,1} valued vector, indexed by the edges in E, such that for 

e ∈ E the corresponding element is 1 if and only if e ∈ A. Equivalently one can view the 

state space as the m-dimensional hypercube {0,1}m, where m is the number of edges in G. 

In what follows we refer to the value e attained in {0,1} as the state of e in confguration A 

and denote it by A(e). 

Now the heat-bath Markov chain chooses an edge e ∈ E uniformly at random and then 

updates the state of e according to the stationary distribution of e, conditioned on the 

state of all other edges. More precisely for A ∈ Ω defne 

� 
ΩA,e ≡ A0 ∈ Ω : A0(f ) = A(e) ∀f ∈ E \ {e} , 

which is the set of confgurations that di�er from A at most in the state of e. With the � � P 
standard notation πp,q S ≡ x∈S πp,q(x) for any S ⊆ Ω, we defne for e ∈ E 

(A0)
Pe(A,A

0) = 
πp,q

1{A0∈ΩA,e}, (2.2.1)
πp,q(ΩA,e)

where 1{A0∈ΩA,e} equals 1 if A0 ∈ ΩA,e and 0 otherwise. An important point to highlight 

is that the ratio πp,q(A0)/πp,q(ΩA,e) does not depend on Zp,q and hence avoids the com-

putational challenge related to the calculation of Zp,q outlined at the beginning of this 

chapter. Another crucial observation is that Pe is reversible with respect to πp,q for any e. 

This follows from the fact that if A0 ∈ ΩA,e then ΩA,e = ΩA0 ,e. However it is not hard to see 

that for fxed e the Markov chain described by Pe is not irreducible (the chain can only 

alternate between the two confgurations in ΩA,e for a fxed A and e). To cure this and 

establish irreducibility one can, among other possibilities, use a sequence of randomly 

selected edges performing an update prescribed by Pe for each of them. In this case we 

obtain the following transition matrix P : X 
P (A,A0) =

1 
Pe(A,A

0) (2.2.2) 
m 

e∈E 
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2.2. Heat-bath Markov chain for the random-cluster model 

Note that reversibility of Pe naturally extends to the reversibility of P . To show that P 

is irreducible, we fx two confgurations A,A0 ∈ E and write S = A4A0 for the symmetric 

di�erence between A and A0, that is all edges either in A or in A0, but not in both. Choose 

an arbitrary order of edges in S and denote the i’th edge by ei for 1 ≤ i ≤ |S |. Then consider 

the following sequence of confgurations: �� 
A → A4{e1} → A4{e1} 4{e2} → · · · → A4S ≡ A0 

The last step follows from the fact that the symmetric di�erence is commutative and 

associative. Defne recursively Ai = Ai−14{ei } for i ≥ 1 and A0 = A. We then have Ai ∈ 

ΩAi−1,ei and hence, by (2.2.1), P (Ai−1,Ai ) > 0 for i ≥ 1. Now the sequence {A0,A1, · · · ,A|S |}
has probability (conditioned on the chain starting in A0) 

|S |

Pei (Ai−1,Ai ) > 0, 
i=1 

Y 
which shows that for t = |S | ≤ m one has P t(A,A0) > 0. It follows that P is irreducible. Last 

but not least, the fact that P (A,A) > 0 for any A ∈ Ω demands that 1 ∈ {t ≥ 1 : P t(A,A)}
which in turn shows that the period of A is 1 and hence P is aperiodic. 

Lemma 2.2.1. The heat-bath Markov chain for the random-cluster model with parameters 
p,q > 0 on a fnite graph is reversible, irreducible and aperiodic. � 

In order to derive an explicit expression for (2.2.1) we observe that ΩA,e = {Ae,Ae}, where 

we defned Ae ≡ A \ {e} and Ae ≡ A ∪ {e}, of which one necessarily equals A. Now for two 

confgurations A ∈ Ω and B ∈ ΩA,e we have 

πp,q(B) qk(B)v |B| 

πp,q(ΩA,e)
= 

qk(Ae)v |Ae | + qk(Ae)v |Ae | 
, 

k(B)−k(Ae) |B|−|Ae |q v
= ,

k(Ae)−k(Ae)q v + 1 

= 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 
k(B)−k(Be )q v if e ∈ B,

qk(B)−k(Be )v+1 
k(Be )−k(B)q v1− if e < B. 

qk(Be )−k(B)v+1 

Hence not so surprisingly, Pe(A,B) depends on whether e ∈ B or e < B. However, as 

opposed to the Metropolis chain, there is no dependence on whether e ∈ A or not. The 

most important point to observe is that and how the transition matrix depends on the 

importance of e for the connected component structure in B. More precisely, note that one 

clearly has 0 ≤ k(Ae)− k(Ae) ≤ 1. We call an edge e ∈ E for which k(Ae)− k(Ae) = 1 pivotal 
to (or for) A and non-pivotal otherwise. Note that this defnition does not depend on 

whether e ∈ A or not; It depends on Ae or (equivalently Ae) in a non-local way: In contrast 

to other heat-bath chains, such as for the Ising model or proper colourings, the heat-bath 

chain transition matrix Pe does not depend on a local and fxed set of other variables on 
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edges or vertices, but depends explicitly on the connectivity structure of A. This property 

makes the algorithm special and so eÿcient in many cases, and on the other hand also 

notoriously hard to analyse. Moreover, if e ∈ A we call the edge a bridge and non-bridge 
otherwise. We illustrate the defnitions in Figure 2.1. 

Figure 2.1: A spanning sub-graph A of the 6× 6 grid with pivotal edges in red and non-pivotal 
edges in blue. Moreover open edges (e ∈ A) are drawn with solid and closed edges 
(e < A) with dashed lines. Hence solid red lines correspond to bridges and solid blue 
lines to non-bridges. 

With these defnitions we can henceforth write the transition matrix in (2.2.1) as ⎧ 
a(A;e) if e ∈ B,⎪⎪⎪⎪⎪⎪

Pe(A,B) = ⎨1− a(A;e) if e < B, (2.2.3)⎪⎪⎪⎪⎪⎪⎩0 otherwise, 

where we have defned ⎧ ⎪⎪⎪p̃(p,q) ≡ p if e is pivotal to A,⎨ p+(1−p)qa(A;e) = (2.2.4)⎪⎪⎪p otherwise.⎩ 
The quantity p̃(p,q) is less than p for q > 1, equals p for q = 1 and is larger than p for q < 1. 

This means that the heat-bath dynamics for q > 1 has a tendency towards non-pivotal 

edges, i.e. the probability of inserting an edge at a given step is larger for non-pivotal 

edges than for pivotal edges. This refects the intuition that the random-cluster model 

favours confgurations with a higher number of connected components for q > 1 than for 

q ≤ 1. Note that for q < 1 the opposite behaviour applies. 

Before we proceed with the discussion of general probabilistic and analytic aspects of the 

heat-bath chain for the random-cluster model, we pause to discuss the computational 
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obstacle entailed by the unequal weighting of pivotal and non-pivotal edges. Suppose 

the current confguration is A. In order to decide whether a given edge e should be 

inserted into the next confguration B, we need to determine whether e is pivotal to A 

or equivalently B. Pivotality, by defnition, states that the number of clusters changes 

upon deletion/insertion of e from/into A. This property is however not local, in the sense 

that it depends on the connectivity structure of the graph. In order to decide whether 

e is pivotal to A, it is suÿcient to determine if the vertices incident to e, say x and y, 

are connected in Ae. In this case it follows that the number of components does not 

change upon inserting or deleting e into/from A; there is at least one alternative path in 

Ae that connects x and y and does not use e. Alternatively one can consider Ae and check 

if it contains a cycle to which e belongs. Both methods, however, demand a non-local 

analysis of a confguration. This becomes a severe complication for confgurations with 

macroscopic components (of order n, the number of vertices). Such a large component, 

often called giant component, occurs in particular for simulations where the equilibrium 

random cluster model possesses a second order phase transition [46]. For instance for the 

random-cluster model on hypercubic lattices Zd with periodic boundary conditions it is L 

expected [15] that the average cluster size diverges as ≈ Lγ/ν and the size of the largest 

component as ≈ Ld−β/ν . We will devote chapter 4 to a careful analysis of this phenomenon 

and algorithmic methods, presented in the next chapter 3, to improve this computational 
slowing down to an e�ective logarithmic slowing down. These algorithmic observations 

underline the importance of a sensible defnition of a time scale taking into account the 

computational complexity of a single Markov step. We will have more to say about this in 

chapter 4, where we present results on a numerical analysis of such a generalised eÿciency 

measure. 

Coming back to the analytic study of the heat-bath chain, we now discuss a duality result 

in two dimensions, which, roughly, links the statistical eÿciency of the heat-bath chain in 

the low-temperature to the high-temperature regime. 

2.3 Duality 

In this section we show how the concept of duality in graph theory can be used to 

derive a relationship between relaxation times of heat-bath chains on dual graphs with 

corresponding dual bond densities. We then apply this idea in particular to the graph 

Z2 embedded into the torus, which is the most relevant graph to this thesis. This in turn 

allows us to establish a strong relationship between sub-critical, that is p < psd(q), and 

super-critical, i.e. p > psd(q), mixing times4. 

Let G be a fnite graph embedded into a surface. Defne the dual graph G? = (V ?,E? ) as 

follows: Place dual vertices on the faces in the embedding of G, and for each edge e ∈ E 

add a dual edge to E? for all pairs of dual vertices corresponding to two faces bordered by 

e. Let Ω be the power set of E and Ω? the corresponding power set of E? (here we associate 

4The author found out about the equivalent result in [34], after the result for Z2 was established. L 

L 
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a spanning sub-graph with its edge set). We construct the usual bijection D between Ω 

and Ω? by the following rule: For any A ⊆ E the associated dual confguration A? consists 

of dual edges in E? whose corresponding edge in E is not in A. In other words an edge e is 

open in A if and only if its dual edge e? is closed in A? . We write A? = D(A). Furthermore, 

it will turn out to be convenient to explicitly highlight the p and q dependence of the 

heat-bath transition matrix in (2.2.2) and denote it by Pp,q. 

The starting point is the observation that once an embedding for the graph G is fxed, it is 

possible to construct a Markov chain for the dual graph G? on Ω? , based on the heat-bath 

chain for G on Ω. This is achieved by mapping the confgurations of the heat-bath chain 

on Ω via D to confgurations in Ω? , that is to their respective dual confgurations. In other 

words we consider the sequence of dual confgurations of confgurations in the original 

Markov chain sequence. Clearly, the constructed stochastic process is Markovian and 

its corresponding transition matrix P ? is related to transition matrix Pp,q of the primal p,q 

heat-bath chain. Now, if X0,X1 denote two consecutive states of the heat-bath chain on Ω 

and Y0,Y1 the corresponding states of the induced chain on Ω? , then we clearly have for 

any A,B ∈ Ω? : 

P ? (A,B) ≡ P [Y1 = B|Y0 = A] ,p,q h i 
= P X1 = B? |X0 = A? , 

= Pp,q(A
?,B? ). 

This defnes the transition matrix P ? of the heat-bath-induced Markov chain on Ω? .p,q 

Moreover based on the above result we can show the intuitive fact that P ? and Pp,q have p,q 

the same spectrum. Suppose f : Ω → R|Ω| is an eigenfunction of Pp,q with eigenvalue λ, 

then f ? ≡ f ◦ D−1 :Ω? → R|Ω| is an eigenfunction of P ? with the same eigenvalue. To see p,q 

this note that we have for any A ∈ Ω? : 

X X 
P ? 
p,q(A,B)f ? (B) = Pp,q(A

?,B?)f (B? ), 
B∈Ω? B∈Ω? X 

= Pp,q(A
?,B)f (B), 

B∈Ω 

= λf (A? ), 

= λf ? (A). 

In the second step we used the fact that Ω? is in one-one correspondence with Ω. Now, we 

know by Lemma 2.2.1 that Pp,q is reversible, irreducible and aperiodic. These properties 

transfer also to P ? , which hence together with the above spectral observation implies that p,q

π? is the unique stationary distribution of P ? on Ω? . So far this holds for any pair of p,q p,q 

dual graphs constructed from an embedding into a surface. Random-cluster models on 

planar graphs have a special property in that one has, exploiting Euler’s formula for planar 

graphs [47] (see also section 5.2.3), that P ? is itself a random-cluster model heat-bath p,q 
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chain on Ω? with parameters p? (p,q) and q, and moreover we have π? (A) (A)p,q = πp? (p,q),q

where 
(1− p)q

p? (p,q) ≡ . (2.3.1)
(1− p)q + p 

We note that here πp? (p,q),q has to be interpreted as the random-cluster model probability 

distribution of the dual graph G? . See Figure 2.2 for plots of p? for various values of q. 

p
? 
(p
,q

) 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

q = 0.5 
q = 1.0 
q = 2.0 
q = 4.0 

0.0 0.2 0.4 0.6 0.8 1.0 
p 

Figure 2.2: Dual bond density p? (p,q) for 4 representative values of q in [0,4]. The straight 
line for q = 1 corresponds to p? (p,1) = 1 −p. For values of q < 1 one has p? (p,q) < p 
and for q > 1 p? (p,q) > p. The self-dual point psd(q) = 

√ 
q/(1 +

√ 
q) is the fx-point 

?of p for fxed q. This is indicated by the horizontal and vertical lines, which 
correspond to the values of psd(q). 

In words, the dual model of a random-cluster model with parameters p,q on a planar 

graph G, is a random-cluster model with parameters p? (p,q),q on G? . It is well known 

that the graph Z2 is not planar. However, having genus 1, it can be embedded into the L 

torus. This embedding has the nice property that (Z2)? = Z2, i.e. Z2 is self-dual when L L L 

embedded into the torus. In this case one has the modifed Euler formula [28] for any 

A ∈ Ω: 

K(A) = |V | − |A| +F(A)− 1 + δ(A), 

where δ(A) ∈ {0,1, 2} depends on the homotopy classes of cycles in the confguration A, 

as defned in [28], where the case δ(A) evaluates to 0 if and only if the induced spanning 

sub-graph (V ,A) is planar. However, for the following discussion we do not need the 

precise defnition of δ and we only need the fact that it is bounded (for more on cycles on 

the torus consider section 5.3). It is possible to show, see for example [28], that for A ∈ Ω? 
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one has: 
π? (A? ),p,q(A) ≡ πp,q

K(A? )=
1 
q p|A

? |(1− p)m−|A
? |,

Zp,q 

= 
Z
1 

p,q 
qF(A)pm−|A|(1− p)|A|, 

1−δ(A)−n p
? (p,q)|A|(1− p? (p,q))m−|A|qk(A) 

= q . 
Zp,q 

Here we used that the number of components in (V ?,A? ) equals the number of faces h i 
of (V ,A), as well as p? (p,q)p/ (1− p? (p,q))(1 − p) = q. Further it can be verifed that, 

assuming q ≥ 1, that for any A ∈ Ω? : 

q (A) ≤ π? (A) ≤ q (A). (2.3.2)−2πp? (p,q),q p,q
2πp? (p,q),q

Note, by reversing the direction of the inequalities in (2.3.2), the above holds for q < 1. In 

what follows we focus on q ≥ 1, as the adaption to q < 1 is straightforward. In other words, 

the inequalities (2.3.2) show that π? has the same order of magnitude as πp? (p,q),q. This p,q 

also allows us to show that also the spectral gaps of P ? and Pp? (p,q),q must have the same p,q 

order of magnitude, using a standard comparison result for reversible Markov chains, 

see for instance Lemma 13.22 in [2]. Now, in order to apply this comparison technique 

we need to introduce the Dirichlet form. More precisely the Dirichlet form of a reversible 

transition matrix P with stationary distribution π is defned for functions f and g on Ω by 

E(f , g) ≡ h(1 − P )f , giπ. (2.3.3) 

We need in particular to consider E(f ) defned by 

1 X � �2E(f ) ≡ f (A)− f (A0) π(A)P (A,A0). (2.3.4)
2 
A,A0∈Ω 

It is possible to show, c.f. e.g. Lemma 13.11 in [2], that E(f ) = E(f , f ). Now, Lemma 13.22 

in [2] applied to our setting states that, if the Dirichlet forms E? (f ) of the pair (P ? ,π? )p,q p,q

and E(f ) of (Pp? (p,q),q,πp? (p,q),q) fulfl the following inequality for an α > 0 and any f : 

E? (f ) ≤ αE(f ) 

then � � " 
πp? (p,q),q(A)

# � � 
γ P ? ≤ max αγ ,p,q Pp? (p,q),q

π?A∈Ω? 
p,q(A) � � � � 

where γ P ? ,γ are the spectral gaps of the transition matrices P ? and Pp? (p,q),q,p,q Pp? (p,q),q p,q 

respectively. This immediately yields an analogous result for the corresponding relaxation 
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� � � � 
P ?times trel p,q and trel Pp? (p,q),q : � � � � ⎡ 

π? (A) 
⎤ 

trel Pp? (p,q),q p,q
trel p,q ⎦P ? ≥ 

⎢⎢⎢⎢⎣min 
⎥⎥⎥⎥

α A∈Ω πp? (p,q),q(A) 

It remains to be proven that the above conditions of Lemma 13.22 have been fulflled. We 

start by writing both Dirichlet forms for arbitrary function f X 
2E? (f ) = [f (A)− f (B)]2π? (A)P ? (A,B),p,q p,q

A,B∈Ω? 
|A4B|=1X 

2E(f ) = [f (A)− f (B)]2πp? (p,q),q(A)Pp? (p,q),q(A,B). 
A,B∈Ω? 
|A4B|=1 

Note that 4 denotes the symmetric di�erence, which restricts the sum only to pairs of 

confgurations A,B, which di�er in only one edge. It is easy to see by employing (2.2.1) 

that these are the only pairs which contribute to the sum. In the following we indeed 

show that π? (A) ≤ c(p,q)πp? (p,q),q(A) for any A as well as P ? (A,B) ≤ c0(p,q)Pp? (p,q),q(A,B)p,q p,q

for any pair A,B ∈ Ω which di�er in only one edge, i.e. |A4B| = 1. The frst inequality 

follows with c(p,q) = q2 from (2.3.2). For the second inequality note that it follows from 

(2.2.1) that for any A,A0 ∈ Ω with |A4A0 | = 1 : 

P ? (A,B) = Pp,q(A
?,B? )p,q

(B? )1 πp,q
= 

m πp,q(A? ) +πp,q(B? )
, 

≤ 
1 q2πp? (p,q),q(B) 

m q−2πp? (p,q),q(A) + q−2πp? (p,q),q(B) 

= q4Pp? (p,q),q(A,B). 

In the second step we used that there is only one term contributing to (2.2.2) for |A4B| = 1, 

namely the one corresponding to the edge in which A and B di�er. This yields also 

c0(p,q) = q4 and therefore establishes the above conditions for α = q6 , which in turn 

implies � � ⎡ ⎤ 
π?� � trel Pp? (p,q),q (A)

P ? ≥ ⎣min (2.3.5)trel p,q 
⎢⎢⎢⎢ p,q ⎥⎥⎥⎥6 ⎦q A∈Ω? πp? (p,q),q(A) 

Now fnally inequality (2.3.2) allows us further to bound π? (A)/πp? (p,q),q(A) from belowp,q

by q−2 so that we conclude � � � � trel Pp? (p,q),q
P ? ≥ . (2.3.6)trel p,q 8q� � � � 

Note that trel P
? , thus inequality (2.3.6) therefore bounds the relaxation timep,q = trel Pp,q 

of a heat-bath chain with parameters p,q from below by the relaxation time of a heat-bath 

chain with parameters p? (p,q). The last point to consider is that the duality identity� � 
?p p? (p,q),q = p yields inequality (2.3.6) with p replaced by p? and vice versa. Thus we 

25 

http:fulfilled.We


Chapter 2. Markov Chain Monte Carlo for the random-cluster model 

obtain the key result: � � � � � � 
8

trel Pp? (p,q),q 
q trel Pp? (p,q),q ≥ trel Pp,q ≥ 

q
(2.3.7)8 

This result shows that for fxed q the relaxation of heat-bath chains for Z2 with bond L 

densities p and p? (p,q) have the same order of magnitude, or equivalently we have � � � � 
τexp Pp? (p,q),q � τexp Pp,q . This result suggests that the non-planarity of Z2 does not cause L 

a too severe e�ect deviation from the “perfect” relaxation duality for planar graphs; Here � � � � 
by “perfect” we mean that trel Pp,q = trel Pp? (p,q),q , however this has to be interpreted as 

an equality of relaxation times for the heat-bath chains on the primal and dual graph 

(which not necessarily equal) with respective bond densities p and p? (p,q). Moreover, the 

self-dual point psd(q) is known to be the critical point on the square lattice for q ≥ 1 [28]. 

To appreciate the result 2.3.7 on Z2 consider the case q = 2, which corresponds to the Ising L 

model. For the (Spin-)Glauber dynamics for the Ising model, which directly works on 

the space {−1,1}|V |, it is rigorously established [48], that for a fnite L × L sub-box in Z2 

with arbitrary boundary conditions the mixing time is constant for β < βc, polynomial √ 
in L for β = βc and exponential in L for β > βc, where βc = log(1 + 2)/2. This clearly 

does not show any mixing time symmetry between sub- and super-critical values of β. 

We emphasise, that similar arguments as above can be used to relate spectral gaps of 

relaxation times for heat-bath chains on general pairs of dual graphs, which however only 

in the special case of self-duality turn out to be equal. 

2.4 Li-Sokal bound for Sweeny’s algorithm 

The previously introduced Dirichlet form is of further use in this section, where we 

establish the so-called Li-Sokal bound. This is a lower bound for the relaxation time (or 

exponential autocorrelation time) of the heat-bath chain for the random-cluster model as 

well as for autocorrelation times of “energylike” observables. It was originally established 

by Li and Sokal for the Swendsen-Wang dynamics in [49]. However the authors mention 

that the same lower bound applies to the heat-bath chain for the random-cluster model 

(without proof). Here we provide the derivation for completeness. The starting point is 

the Min-Max-Theorem which provides a variational characterisation of eigenvalues of 

Hermitian matrices. Applied to the spectral gap γ of a reversible transition matrix P with 

stationary distribution π it reads (c.f. Lemma 13.12 in [2]) 

E(f )
γ = min (2.4.1) 

f ∈R|Ω| Varπ(f ) 
Varπ (f ),0 

where E(f ) is the Dirichlet form of the pair (P ,π). The above expression allows us to 

bound γ from above 
E(f )

γ ≤ (2.4.2)
Varπ(f ) 
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for any f ∈ R|Ω| with Varπ(f ) , 0. Recall, that E(f ) is equal to X 
E(f ) ≡ 

1
[f (A)− f (B)]2π(A)P (A,B). (2.4.3)

2 
A,B∈Ω 

Now, for the heat-bath chain for the random-cluster model with transition matrix Pp,q 

we have that that Pp,q(A,B) = 0 for any A,B ∈ Ω which di�er in more than one edge 

(|A4B| > 1). In particular, when we choose the function f to be the number of edges in 

A, i.e. f (A) = N (A) = #{edges in A} = |A|, we clearly have that for any pair A,B such that 

Pp,q(A,B) , 0: 

[N (A)− N (B)]2 ≤ 1. (2.4.4) 

Hence we obtain for the Dirichlet form Ep,q(N ) of N for the pair (Pp,q,πp,q): X1Ep,q(N ) ≡ 
2

[N (A)− N (B)]2πp,q(A)Pp,q(A,B) 
A,B∈Ω X 

=
1 

[N (A)− N (B)]2πp,q(A)Pp,q(A,B)
2 

A,B∈Ω 
|A4B|≤1 X1≤ πp,q(A)Pp,q(A,B)

2 
A,B∈Ω 
|x4y|≤1 

1 
= 

2 

We conclude therefore with � � 
trel Pp,q ≥ 2Varp,q(N ). (2.4.5) 

The intuition behind the Li-Sokal bound and similar Min-Max-Theorem based arguments 

for Markov chains goes as follows. Because the chain is restricted to localised modifcations 

of the confguration, that is single edge updates, it can only make unit steps in N -space. 

We can roughly visualise the corresponding process in N -space as a simple random walk 

with unit steps. In order for the chain to relax, it must at least “di�use” through the region 

of N -space covered by the majority of probability mass of the distribution of N , which in q
turn is roughly Varp,q(N ) wide. Using the well known relationship between the squared 

displacement and the number of steps (elapsed time) for a simple random walk, we expect q 2 
that this takes roughly time Varp,q(N ) = Varp,q(N ). Moreover it is generally expected 

(conjectured) that at a second order phase transition, for a large hypercubic lattice with 

linear dimension L in d dimensions, one has Varpc(q),q(N )/Ld ≈ Lα/ν [50] which implies, 

assuming the typical scaling form τexp ∼ Lzexp ( here τexp is measured in sweeps that is dLd 

steps): 
α 

zexp ≥ . (2.4.6)
ν 

In two dimensions, in particular for the graph Z2, we can utilise Coulomb gas arguments L

[51] which show that the width of the distribution of N is of order Ld for q < 2 that 

is Varpsd(q),q(N )/Ld → const in the sense that α/ν above is negative (for q = 1 we have 
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α/ν = −1/2 in two dimensions). The N -space di�usion argument does therefore not 

enforce a critical slowing down, which together with the intuition (which in some sense 

will be made rigorous in section 4.4) that the number of edges has the slowest dynamical 

scale suggests the absence of slowing down at all. Note that as a reference we can consider 

the case of independent bond percolation q = 1 for which Varp,1[N ] � Ld . As we will see in 

the subsequent parts of this thesis the regime 1 ≤ q < 2 in two dimensions is particularly 

intriguing from a dynamical point of view. We devote chapter 4 to an in-depth analysis of 

the dynamical critical behaviour of the heat-bath chain and confrm the Li-Sokal bound, 

which remarkably in some cases turns out to be surprisingly sharp. 

Lastly, let us show how the Li-Sokal bound also applies to the integrated autocorrelation 

time of the observable N [44]. First note that we have the following spectral expansion of 

ρg (k) for arbitrary function f and k ≥ 1: 

P|Ω| 2ĝ λkCg (k) j=2 j j
ρg (k) = = .

Varp,q[g] P|Ω| 2ĝj=2 j 

Where ĝj ≡ Ep,q[gfj ], the projection onto the j’th eigenfunction of Pp,q. Now recall that the 

heat-bath chain has no negative eigenvalues, hence we can apply Jensen’s inequality and 

fnd 

ρg (k) ≥ ρg (1)k. 

This implies the following inequality for the integrated autocorrelation time of g: ⎛ ⎞ ⎛ ⎞ 
1 X 1 X 1 1 1 1 + ρg (1)

τint,g = + 
⎜⎜⎜⎜⎜ ρg (k) 

⎟⎟⎟⎟⎟ ≥ + 
⎜⎜⎜⎜⎜ ρg (1)k 

⎟⎟⎟⎟⎟ = − = .
2 ⎝ ⎠ 2 ⎝ ⎠ 1− ρg (1) 2 2 1− ρg (1)

k≥1 k≥1 

Additionally one can easily verify that 

Ep,q(g)
1− ρg (1) = .

Varp,q[g]

We obtain therefore 
Varp,q[g] 1 

τint,g ≥ − .
Ep,q(g) 2

Applying this to g = N allows us to use the same arguments as above and obtain the 

equivalent Li-Sokal bound for τint,N : 

1 
τint,N ≥ 2Varp,q[N ]− .

2

In the next section we discuss a di�erent MCMC approach for the random-cluster model 

when q ≥ 1, due to Chayes, Machta, Swendsen and Wang. 
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2.5 Chayes-Machta-Swendsen-Wang chain and its relation to 

the Sweeny dynamics 

The idea of Swendsen and Wang [5], which was later generalised by Chayes and Machta 

[6, 7], is to introduce auxilary spin (colour) variables and consider a Markov chain on 

the larger joint space of colour and bond variables. The chain is iterated by alternately 

updating the colour and bond degrees of freedom in a specifc way, precisely incorporating 

the cluster weighting. The Chayes-Machta chain, in its simplest form [50] iterates from 

one random-cluster confguration A to the next by the following steps: 

1. Activate each component in (V ,A) with probability 1/q. 

2. Remain all inactive components unchanged. 

3. Do independent bond percolation with parameter p on the active vertex induced 

sub-graph of G. 

It can be verifed that this dynamics is in fact reversible with respect to πp,q [7] whenever 

q ≥ 1 and is also irreducible. It follows that for any initial confguration, the Chayes-

Machta chain converges to its unique stationary distribution πp,q. The closely related 

Swendsen-Wang dynamics, originally considered as a Markov chain for the Potts model, 

and hence defned only for integer q operates as follows: 

1. Assign each component in (V ,A) independently one spin chosen uniformly at ran-

dom among the q di�erent spins. 

2. For each spin induced sub-graph of G do independent bond percolation with proba-

bility p. 

The Swendsen-Wang and Chayes-Machta dynamics can also be shown to be governed by 

the Li-Sokal bound [49] and hence are not a priori free of any critical slowing-down. We 

will compare the eÿciencies of the Sweeny and Chayes-Machta-Swendsen-Wang approach 

in chapter 4. The Chayes-Machta and heat-bath chains seem to be two a priori unrelated 

Markov chains for the random-cluster model. However, it is possible to fnd a common 

mathematical structure and relate their relaxation times, as frst shown in [34] for the 

Swendsen-Wang chain and recently generalised to the Chayes-Machta chain in [52]. To 
(CM) (HB)start with, let t and t be the relaxation times of the Chayes-Machta and heat-bath rel rel 

chain, respectively for an arbitrary value of p and q ≥ 1, and fx any fnite graph. Then 

they key result, as stated in Claim 5.4 in [52], reads: 

q2 t
(HB) 

(HB) (CM) relt ≥ t ≥ . (2.5.1)rel relp + (q − 1)p 8m log(m)

Firstly, note that the frst bound is in a certain sense trivial, as it compares one step of the 

heat-bath algorithm, which consists of one edge update, to a complete colour-bond cycle 
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in the Chayes-Machta chain. The second bound is more interesting, because it restricts 

how far the Chayes-Machta chain can be more eÿcient than the heat-bath chain. 

Here we adopt the natural convention of one “sweep”, that is m edge updates in the 
(HB) (CM) heat-bath algorithm, and therefore compare t /m to t . There are two scenarios rel rel 

consistent with the right bound in (2.5.1). 

1. The Chayes-Machta algorithm is (statistically) more eÿcient than the heat-bath 
(CM) (HB)sweep approach, that is t ≤ t /m. However, in this case the bound in (2.5.1)rel rel 

states that the former can at most by a factor proportional to log(m) be faster than 

the latter. On the level of dynamical critical exponents, we would need to conclude 
(CM) (HB)that zexp = zexp . 

2. Heat-bath sweeps are more eÿcient than the Chayes-Machta approach, that is 
(CM) (HB)
t ≥ t /m.rel rel 

The marginal case happens, for instance, in the simplest case of bond percolation q = 1, 

where one can verify that the Chayes-Machta chain coincides with a sequential bond 
(CM) (HB)percolation algorithm, which has t = 1, whereas on the other hand t = m, as shown rel rel 

in section 4.3.1. Our numerical study presented in chapter 4, also appeared in [53], as 

well as the earlier (and independent) study in [21], fnd numerically for two and three 
(HB) (CM) dimensions that, at criticality, zexp < zexp , thus supporting the second scenario. However, 

there is also another notable aspect which makes the heat-bath chain even more e�ective 

in particular situations. This is the phenomenon of critical speeding-up, described in 

detail in section 4.3 and frst observed in the random-cluster model setting in [21]. Briefy 

summarised, it describes the observation that certain global observables, say f , have 

integrated autocorrelation time that is dominated by m, in other words τint,f /m → 0 for 

m → ∞. Therefore, in a setting where one is merely interested in sampling from the 

distribution of f , one can e�ectively sample on a smaller scale than sweeps. In fact, we 

often fnd a stronger notion of critical speeding up, that is τint,f ≈ m1−c, where c > 0. It is 

clear that Chayes-Machta algorithm is insensitive to any (critical) speeding-up e�ect, as 

the natural intrinsic time scale is one sequential sweep. 

Lastly, as we already pointed out earlier, any eÿciency statement or comparison of Markov 

chains has to consider, both the relaxation time and the computational complexity of a 

single step. The algorithmic aspects of the Chayes-Machta algorithm are straightforward: 

One colour-bond cycle can be done with O(m) worst-case computational e�ort utilising, 

e.g., an union-fnd data structure or a depth- or breadth-frst search based connected 

component identifcation. On the other hand we devote the next chapter to a detailed 

study of algorithmic solutions to the required pivotality determination in the heat-bath 

chain for the random-cluster model. Once the necessary algorithmic tools are set up, we 

embark in chapter 4 on a numerical study of both computational and statistical eÿciency 

of Sweeny’s algorithm, which concludes with the analysis of a joint eÿciency measure. 
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Chapter 3 

Graph algorithms for the random-

cluster model 

The eÿciency of the Sweeny dynamics (both heat-bath and Metropolis) does not solely 

depend on statistical properties of the underlying Markov chain, but depends also cru-

cially on the computational complexity of the underlying connectivity algorithm. We 

therefore discuss and collect in this chapter the theoretical background for the various 

approaches used in our eÿciency analysis of the Sweeny dynamics in Chapter 4. This 

includes (partially) dynamic connectivity algorithms based on depth- and breadth-frst 

searches, union-fnd data structures as well as poly-logarithmic fully-dynamic connectiv-

ity algorithms. Thus in this sense this chapter complements the previous Chapter 2 by the 

consideration of the computational complexity of a single heat-bath step. Further, for our 

analysis of static fragmentation properties in Chapter 5 we need somewhat specialised, at 

least in the physics-literature, algorithms, such as an algorithm for the identifcation of 

bridges and cut vertices [54], which we briefy describe. One reason for the need of an 

alternative method is that previous related studies [55, 56] were based on a “home-made” 

bridge identifcation algorithm tailored to Z2 and planar graphs. This clearly has limited L 

applicability in higher dimensions, let alone for its potential worse-than-linear expected 

running time of the identifcation of all bridges. 

3.1 Why do we need connectivity algorithms? 

It comes not as a surprise that in a computational study of the random-cluster model 

graph algorithms play an important role. Our main application of graph algorithms lies in 

the implementation of Markov chain Monte Carlo algorithms. To illustrate this consider 

the heat-bath chain for the random-cluster model on a fnite graph G = (V ,E), introduced 

in the previous chapter. Recall that this Markov chain iterates from a confguration A to B 

by the following steps: 
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• Choose e ∈ E uniformly at random. 

• Set B = A ∪ {e} ≡ Ae with probability a(A;e) and B = A \ {e} ≡ Ae otherwise. 

The crucial observation is that a relates to the graph structure of A in a non-local way: 

a(A;e) ≡ 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 
p if e is pivotal to A,p+(1−p)q (3.1.1) 

p otherwise. 

As explained in the previous chapter, to determine whether a given edge is pivotal to a 

confguration is a non-local operation. Here by non-local we mean that, unlike other heat-

bath chains for which the calculation of a only depends on a (typically) small and fxed1 

set of variables, a depends explicitly on structural non-local properties of A. This poses a 

particular problem at a point of a second order phase transition, where one observes that 

the average size of A increases with a power in the number of vertices or linear dimension 

of the lattice [46, 15]. 

Now suppose we have a graph algorithm that answers connectivity queries, i.e., it de-

termines if two vertices x and y, not necessarily neighbours, are connected. We can 
A

abstract the algorithm into the function C(A;x,y) which equals 1 if x ↔ y and 0 otherwise. 
A

Here x ↔ y denotes the event that x is connected to y by a path of open edges in (V ,A). 

Equipped with C we can re-formulate the defnition of a in (3.1.1) for e = (x,y): 

a(A;e) = 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 
p if C(Ae;x,y) , C(Ae;x,y),p+(1−p)q 

p otherwise. 

Note that necessarily one of the two confgurations Ae and Ae equals A. So it follows 

that the determination of the insertion probability a can be achieved by one call to a 

connectivity algorithm. It is therefore desirable, especially having second order phase 

transitions in mind, to fnd eÿcient connectivity algorithms [53, 57, 15, 21, 20]. 

Note that graph algorithms, not particularly connectivity algorithms, can be broadly 

classifed into dynamic and static algorithms. As the names suggest, static algorithms work 

with a time independent graph. Here one has an initial construction phase of the graph 

followed by a sequence of non-manipulative operations such as connectivity or shortest 

path queries. The ultimate goal of such algorithms is to minimize the computational 

cost for the non-manipulative operations and not so much on the construction phase. 

Between static and fully dynamic algorithms there are also partially dynamic algorithms. 

A prominent example is the disjoint-set data structure or union-fnd data structure, described 

below. It turns out that such a union-fnd data structure belongs actually to the class of 

incrementally partially dynamic graph algorithms. Translated to the graph-theoretic setting 

1Consider the heat-bath chain for the Ising model on a graph with maximal degree Δ. Any vertex chosen 
to be updated has at most Δ neighbours and hence it is a-priori clear how many other vertices have to be 
considered to calculate the transition probability. 
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this means it allows not only for non-manipulative connectivity- or cluster-size-queries 

but also for the insertion of edges. A recent application of this data structure to the study 

of site- and bond-percolation can be found in [23]. Moreover we will show in Chapter 4 

how this data structure can be combined with graph-traversal algorithms to yield a fully 

dynamic connectivity algorithm, which allows for both dynamic insertions and deletions 

(however with polynomial running time). Note that opposed to the incremental partial 

dynamic graph algorithms there exist also decremental algorithms, see for instance the 

recent work [58] for an application of the union-fnd data structure to a decremental 

connectivity algorithm for planar graphs. The two probably most famous connectivity 

algorithms are the depth-frst search (DFS) and breadth-frst search (BFS). Both algorithms 

explicitly traverse the graph to answer queries and will be described in the section. 

Moreover they are not only of practical relevance but also theoretically very interesting. 

In particular, we will describe a recent algorithm [54] in section 3.6 that exploits the DFS 

to identify (all) bridges and cut vertices in a graph in linear time. 

3.2 Graph traversals 

The depth-frst search or short DFS supports the exhaustive traversal of a connected 

graph, both directed and undirected, and belongs to the class of backtracking algorithms. 

Backtracking here is related to the inherent property of following a branch of the graph 

as long as possible, that is until a dead-end or a previously visited vertex is encountered. 

Before we go into the details of this algorithm we would like to mention a few general 

aspects related to its applicability. First of all the restriction to connected graphs can be 

loosened to graphs consisting of multiple connected components. One simply applies the 

DFS algorithm to all such components. Secondly in the case where G is not connected, 

and hence the answer to the question if two vertices x and y are connected is not (by 

defnition) immediate clear, one can use the DFS to obtain an answer to a connectivity 

query. Here one could start an exhaustive DFS in the component of vertex x, denoted Cx, 

and keep track of all visited vertices. Once Cx is determined one can simply use 

G
y ∈ Cx ⇔ x ←→ y. (3.2.1) 

to answer connectivity queries. This is actually the defnition of the connected component 
G

of x, in other words Cx ≡ {y|y ∈ V ,x ←→ y}. In practical terms, however, one would use a 

slight modifcation of the DFS algorithm which directly terminates with a positive answer 

as soon as the target vertex y has been visited. This saves the overhead of maintaining 

a list of explored vertices and more importantly usually terminates before the whole 

component Cx is exhausted. Besides being used for connectivity related problems the 

DFS has also important theoretical applications such as for planarity testing, 2-vertex and 

2-edge-connectivity or the identifcation of bridges and cut vertices. The latter application 

will be of importance to the fragmentation studies of the random-cluster model in Chapter 
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5. Furthermore, DFS has also recently been used to provide a simple proof of the phase 

transition in the random graph model of Erdás & Rényi [59]. 

The DFS algorithm is best described by actual computer code, so below we show pseudo 

code for the recursive variant of the DFS algorithm [47]: The recursive formulation nicely 

Algorithm 1 Recursive depth frst search 

function DFS(v) 
if v unvisited then 

mark v as visited 
for all (v,w) ∈ E do 

DFS(w) 
end for 

end if 
end function 

refects the “follow a branch as long as possible and backtrack” idea underlying the DFS. 

A call to DFS starting at vertex v will, assuming v has not been visited before, mark v as 

visited and continue with a call to the DFS on the frst neighbour w encountered. This 

recursion continues until a vertex is encountered that has already been visited. Note that 

this does not necessarily correspond to the existence of a cycle in the graph. To see this 

suppose the graph is a tree, hence has no cycles, and the order edges are iterated is from 

left to right in a planar embedding. In this case the DFS will initially follow the left-most 

branch until it reaches a leaf `. The next call to DFS(`) then will mark ` as visited and 

iterate through all of its edges. Suppose p is the direct ancestor of ` in the tree and hence 

has been visited before ` in the depth-frst search. In other words ` has been reached 

through the edge (p,`). Now because G is a tree and ` a leaf it follows that the edge 

iteration in DFS(`) only consists of (`,p) and hence is followed by a call DFS(p) which itself 

does not execute any loop because p has already been visited. At this step in the program 

fow the algorithm continues with the edge iteration in the call to DFS(p) and will explore 

possibly other sub-branches. 

It is standard to show that the DFS algorithm is a valid (exhaustive) graph traversal 

algorithm for connected G and moreover works in linear time. Instead of proving this we 

introduce a generalised graph traversal algorithm which includes the DFS as a special 

case. We then show that this general graph traversal algorithm works in linear time and is 

exhaustive. Besides being interesting in its own right, the analysis of the more general 

algorithm also implies that the breadth-frst search algorithm, another well known graph 

traversal algorithm, is a valid graph traversal algorithm. Our treatment closely resembles 

[60]. 

The frst step in generalising the DFS is an iterative formulation of the algorithm which 

rests upon the concept of a stack. A stack is a so-called Last-In-First-Out (LIFO) data 

structure and typically provides two functions Push and Pop. The former will put a new 
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element into the stack and the latter returns (and removes) the last element inserted via 

Push. 

Algorithm 2 Iterative depth frst search 

function DFS(v) 
Push(v) 
while stack is non-empty do 

v ← Pop 
if v unvisited then 

mark v as visited 
for all (v,w) ∈ E do 

Push(w) 
end for 

end if 
end while 

end function 

It follows from the LIFO property of the stack that both, the iterative and recursive, 

variants describe exactly the same algorithm. The key observation that leads to a generali-

sation of Algorithm 2 is that the order of elements returned by the data structure, accessed 

and manipulated via Push and Pop, is not relevant for the algorithm to be correct and 

linear time. The important property is that each vertex is exactly visited once. This, as will 

be shown below, ensures that the algorithm is both exhaustive and works in linear time. 

The LIFO nature of the stack used in the DFS merely facilitates the depth-frst heuristic. 

Instead one could use a First-In-First-Out (FIFO) data structure, that is push still inserts 

an element but Pop returns and removes the frst element inserted. Such data structures 

are naturally called queues [61], where Pop and Push are usually termed Dequeue and 

Enqueue, respectively. Using a queue instead of a stack transforms the DFS into a breadth-

frst search or BFS. As the name suggests the BFS explores frst all neighbours of a given 

vertex and then continues with the next-nearest neighbours and so forth. This follows 

naturally from the FIFO property, which will return vertices added to the data structure 

chronologically. Hence there is no possibility to follow one branch without extending all 

other branches too. In Figure 3.1 we show an example which compares the depth- and 

breadth-frst search tree for the grid graph, a subset of the infnite square lattice Z2. 

More generally now assume instead of a stack or queue we allow for a generic data 

structure, which we call bag [60]. The bag provides two functions Get and Give, the 

pendants to the stack methods Pop and Push, respectively2. Beyond that we make no 

further assumption, that is the order in how elements from the bag are returned can be 

arbitrary and even random. Now, equipped with even such a universal bag we show below 

that Algorithm 3 is visits all vertices in time linear in the number of edges and vertices. 

2In a strict sense one would need another function IsEmpty to check whether the bag is empty. However 
we assume that the function GET is implemented such that it returns a unique element, say NULL, whenever 
the bag is empty. 
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Figure 3.1: The 5× 5 grid graph in the left panel and one of its depth-frst-search trees rooted 
at the highlighted vertex is shown in the central panel. The rightmost panel shows 
one breadth-frst-search tree rooted at the same highlighted vertex. The qualitative 
di�erence between both trees is also evident, i.e. the DFS-tree is usually deep and 
has a small branching structure whereas the BFS tree is often characterised by a 
wide branching structure. Moreover note that for a connected graph both the depth-
and breadth-frst-tree are spanning-trees. 

Algorithm 3 Generic traversal algorithm 

function TRAVERSAL(v) 
Give(v) 
while bag is non-empty do 

v ← Get 
if v unvisited then 

mark v as visited 
for all (v,w) ∈ E do 

Give(w) 
end for 

end if 
end while 

end function 

Lemma 3.2.1. Let G be a fnite connected graph. The generic traversal algorithm defned in 
Algorithm 3 visits every vertex of G exactly once. 

Proof. It is clear that TRAVERSAL visits every vertex at most once. To show that every 

vertex is visited at least once suppose vertex x ∈ V has not been visited after TRAVERSAL 

terminates. Furthermore let v ∈ V be the vertex passed to TRAVERSAL. Note that because v 

is the very frst vertex put into the bag, and a priori not visited, it will always be returned 

by the bag directly afterwards and hence marked as visited. Now, from the defnition of 

TRAVERSAL it follows that an unvisited vertex must be surrounded by unvisited neighbours. 

This is because any visited neighbour w must have iterated over the edge (w,x) connecting 

it to x. In this case x would have been inserted into the bag. However the algorithm can 

not terminate before all elements have been removed from the bag. This in particular also 
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applies to x which then would be marked visited. This contradicts the initial assumption. 

Thus any neighbour of x must be unvisited too and we can inductively iterate this to 

vertex v, with which TRAVERSAL started (this is always possible because G is connected 

and hence there exists at least one path between any two vertices in G). This contradicts 

the assumption. Therefore any vertex in G has been visited at least once. � 

With the knowledge that every vertex must be visited exactly once we can conclude that 

the inner loop in Algorithm 3 is executed exactly |V | times. The number of iterations in 

the inner loop for vertex v is exactly deg(v), the degree of vertex v. If we use an adjacency 

list to represent the graph we can assume that every inner-loop iteration incurs a constant P 
computational e�ort. Note that for any undirected graph one has 2|E| = v∈V deg(v). If 

moreover both GIVE and GET functions of the bag data structure also work in constant 

time it follows that the running time of TRAVERSAL is O(|E|), because for any connected 

graph one has |E| ≥ |V | − 1. 

Corollary 3.2.2. The generic traversal algorithm 3 as well as the depth- and breadth-frst 
search return an answer to a connectivity query in O(|E|) worst case running time. 

3.3 Amortised computational complexity 

In the Sweeny MCMC setting based on the Sweeny dynamics for the random-cluster 

model one performs a long sequence of operations such as insertions and deletions of 

edges interleaved with connectivity queries. Having a worst-case bound for each of the 

elementary operations is of course always desirable but in practise a bound on the running 

time of the overall sequence is often as useful. This idea is formalised in the theory of 

amortised computational complexity [62] and has been very powerful in the analysis of 

several important algorithms [63, 64]. In contrast to the worst-case analysis, the amortised 

analysis considers the running time of entire sequences of operations. In particular, when 

the worst-case scenario is suÿciently rare, the amortised view yields naturally improved 

bounds. Additionally, focusing on bounds for entire sequences of operations often fa-

cilitates the design of eÿcient algorithms. This is because one has the freedom to use 

computationally expensive parts in the sequence to reduce the cost of future operations 

and spread (amortise) the cost of expensive operations in a sequence onto a priori cheaper 

ones. The previously introduced depth- or breadth-frst search based connectivity algo-

rithm does not exploit this idea; any connectivity query implies a traversal of part of the 

graph but beyond the search for an answer to the current connectivity query no optimisa-

tion for future operations is done. To illustrate this consider the following example. 

Suppose the sequence of operations consists of a construction phase where two compo-

nents, each of size O(n) are constructed. Assume furthermore the cost of this phase isO(n). 

Then in a sequence of length O(n2) alternately an edge e connecting both components is 

inserted and deleted. Any time the edge e is deleted a traversal of part of the graph is 

necessary, which imposes a cost of O(n) for any such deletion. Thus the sequence of all 
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operations takes O(n3) computational e�ort. 

In the aggregate analysis [62], a particular form of the amortised analysis, one distributes 

the overall cost T (`) of a sequence of length ` equally on all operations, which translates 

into an amortised bound T (`)/` for any operation in the sequence. Applied to previous 

example this yields an amortised cost of O(n) for any operation in the sequence. This in 

particular coincides with the worst-case bound of the depth frst search, established above. 

Both, the union-fnd data structure and the poly-logarithmic fully dynamic connectivity 

algorithm described below exploit in one or the other form the idea of amortisation and 

the corresponding running time bounds are amortised. 

3.4 The union-fnd data structure 

Any incremental dynamic connectivity algorithm can be cast into a problem of maintaining 

disjoint sets under set unions. For this problem the union-fnd data structure supports 

all necessary operations. There exists various favours of the union-fnd data structure 

with di�erent worst-case or amortised worst-case bounds. It turns out that one particular 

version, described below, supports all operations in “almost” constant time. This is a 

very strong result, especially having in mind that in our typical applications the size of 

components in a graph can scale as a power of the total number of vertices. 

The main observation required to view the incremental connectivity problem as a disjoint 

set problem is that connectivity in a graph G = (V ,E) naturally induces an equivalence 

relation on the set of vertices V . The induced equivalence classes, corresponding to 

connected components in G, partitions V . Moreover the insertion of edges and vertices 

can also be formulated in a set-theoretic way. Firstly, inserting a new vertex v into the 

graph introduces a new singleton equivalence class. Secondly the insertion of an edge 

e = (x,y) with x,y ∈ V can merge two equivalence classes, which happens precisely when 

x and y are not connected in the graph without e, in other words x and y are members of 

two disjoint equivalence classes Cx and Cy . In this case e becomes a bridge in the modifed 

graph (V ,E + e). All previously mentioned set operations are supported by the union-fnd 

data structure3. In what follows we use the set-theoretic notation to describe the data 

structure and call the elements of any set objects and denote by n the number of objects. 

Furthermore for an object x we denote by Ax the set containing it. 

The union-fnd data structure chooses for any set A an unique representative object 

ρ(A) ∈ A, which is used to identify the set A. Now the creation of a singleton set is 

supported by Makeset(x), which hence creates the new set {x} together with its obvious 

representative object x, i.e. ρ({x}) = x. For any x ∈ A the function Find(x) returns ρ(Ax), 

the unique representative object of Ax. Finally Union(x,y) replaces the two disjoint sets 

Ax,Ay by their union Ax ∪ Ay and chooses a new representative object ρ(Ax ∪ Ay ). 

A natural way to represent a set A is to use a rooted tree TA, where each vertex in TA 

3We speak about the union-fnd data structure as an abstract algorithm independent of the actual imple-
mentation favour. 
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corresponds to a unique object in A and in particular ρ(A) is represented by the root of 

TA. Hence the collection of disjoint sets corresponds to a rooted forest. Based on this 

representation it is straightforward to implement the above functions. Makeset(x) simply 

creates a tree consisting of a single vertex, Find(x) traverses the tree up the root and 

returns it. We remark that on a technical level the tree can be stored as a pointer-based 

data structure, where we store for any object x a pointer to the direct ancestor of x in 

the TAx 
. Union(x,y) redirects the parent pointer of the root of TAx 

to the root of TAy 
. This 

choice of merging the rooted trees of TAx 
and TAy 

is by no means the only one. It turns 

out that this particular choice has both amortised and worst-case cost of magnitude n for 

Find. This is because the running time of Find clearly depends on the maximal depth of 

the representing tree and it is not hard to construct a sequence yielding a chain like tree 

representation. A straightforward improvement considers the depth of both trees and 

makes the shallower one the child of the deeper one. To do so we need to augment the 

data structure by a depth variable associated to any vertex. Here the depth of a vertex x is 

the maximal graph theoretic distance to any leaf in the sub-tree rooted at x. Now given 

this depth information Union always redirects the shallower tree to the deeper one by 

comparing the depth of the roots of both trees. Intuitively this keeps the trees balanced 

and in the following Lemma 3.4.1 we show that this union by depth heuristic reduces the 

worst-case time of Union and Find to Θ(logn): 

Lemma 3.4.1. [60]. The union-fnd data structure in a pointer based tree representation with 
union by depth heuristic runs Find and Union in Θ(logn) worst-case. Makeset runs in Θ(1) 

worst-case. 

Proof. The running time of Union is dominated by Find, because Union(x,y) needs to 

determine the representative objects of the sets corresponding to x and y. Once these are 

known Union uses O(1) to redirect one pointer and possibly updates the depth of the root 

in the former larger tree. We will show that for a representative object ρ(A) whose vertex 

has depth d in TA the number of objects in A is at least 2d . On the other hand a given 

set can at most contain n objects, as this is the maximal number of vertices. This directly 

implies that the maximal depth is Θ(log(n)). It remains to show the relationship between 

the depth of ρ(A)’s vertex and the size of A. We prove this by induction on the depth 

d. The base case d = 0 is obviously true, because only trees corresponding to singleton 

sets have a root with depth 0. Now the depth of the vertex corresponding to ρ(A), the 

root of TA, can only increase, by one, when it merges with another tree of same depth. 

Suppose the depth of both trees is d − 1. By the inductive hypothesis we have that both 

trees contain each at least 2d−1 objects. Thus the new tree contains at least 2d−1 +2d−1 = 2d 

vertices. Successive unions with trees of smaller depth do only increase the size, which 

does not violate the statement. � 

This logarithmic time bound is not the best possible. A signifcant improvement is based 

on another observation. To determine the representative element of the set Ax, containing 
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object x, Find(x) traverses, starting from the vertex of x, the tree TAx 
up until it reaches 

its root. It is obvious that at the time Find(x) reaches the root of TAx 
, i.e. determines 

ρ(Ax), one actually determines simultaneously the answer to Find(y) for any object y 

whose corresponding vertex is an ancestor of x’s vertex in TAx 
= TAy 

. It causes a constant 

additional overhead per step to redirect the parent pointer of any such y directly to 

ρ(Ax). This heuristic is called path-compression, due to the contraction or compression of 

possibly long tree paths into paths of length 1. Note when combined with the union by 

depth heuristic the depth variable looses its meaning. However the relationship shown in 

Lemma 3.4.1 is still true when the same rule to update the depth variable is used, i.e. only 

when two trees with same depth are linked does the depth of one of the two increase by 

one. To avoid confusion the name depth is usually replaced by rank [65] and the union by 

depth heuristics becomes the union by rank heuristic. The path-compression heuristic, 

completely in the spirit of amortisation, uses the computational e�ort in Find operations 

to speed up future Find operations. Intuitively, one expects that this heuristic improves 

the amortised cost of Find and hence also Union operations. Indeed, it can be shown that 

the combination of the path-compression and union by rank heuristics yields the optimal 

amortised union-fnd data structure: 

Theorem 3.4.2. [65]. For any k ∈ N the running time of m Union and Find operations in a uni-
verse of n objects with path-compression and union by rank heuristic is O(km + 2nJk(dlog2ne)). 

The integer functions Jk are defned as J0(r) = d(r − 1)/2e and recursively for k > 0 ⎧ ⎪⎪⎪⎨Jk−1(r) if Jk−1(r) ≤ 1,
Jk (r) = (3.4.1)⎪⎪⎪⎩1 + Jk(dlog2(Jk−1(r))e) if Jk−1(r) > 1. 

We emphasise that Theorem 3.4.2 is valid for any k ∈ N hence there are infnitely many 

choices to bound the running time. The functions Jk(r) for fxed k ≥ 1 are extremely 

slowly increasing in r (even for small k). For example it is easy to verify that for r < 100 

both J1(r) and J2(r) do not exceed 2. Now this allows to cover values of n < 2100 ≈ 1030 

in Theorem 3.4.2. To eliminate the dependence on k an optimal balance between the 

term km, obviously increasing with k, and 2nJk(dlog2ne)), which can be easily shown to 

decrease with k, is found by the choice k = αs(m,n), where 

αS (m,n) ≡ min{k ∈ N|Jk(dlog2ne)) ≤ 1 +m/n}. (3.4.2) 

In this particular choice we obtain a O(n +mαs(m,n)) bound in Theorem 3.4.2. Note that 

the linear term in n can be attributed to n Makeset invocations, necessary to create the 

data structure. It follows that in the aggregate analysis Makeset, Find and Union have 

amortised O(αs(m,n)) running time. We stated above that the union-fnd data structure 

with path-compression and union by rank heuristics is optimal. It was indeed shown by 
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Tarjan, for a certain pointer-based model of computation, in [64] that the upper bound 

above is tight.4. 

The union-fnd data structure has applications beyond the incremental connectivity 

algorithm. In fact it is possibly to use the union-fnd data structure eÿciently in a 

decremental connectivity algorithm for planar graphs as shown recently in [58]. In the 

next subsection we mention another, novel, application of the union-fnd data structure 

to the analysis of the loop structure in the medial graph of a planar graph. We will utilise 

this algorithm for the study of fragmentation of Fortuin-Kasteleyn clusters in Chapter 5, 

where fnite-size e�ects can be understood by studying a classifcation of edges based on 

the medial graph construction. 

3.4.1 An eÿcient loop confguration algorithm 

In this section we defne the loop confguration associated to a graph and then provide 

an eÿcient data structure that allows us to check if two loop segments, the fundamental 

building blocks in the loop confguration, belong to the same loop. For most applications 

in the theory of critical phenomena the typical length of loops diverges with the linear 

dimension of the system [15]. Hence the analysis based on a naive traversal becomes 

ineÿcient. The data structure we provide benefts from the quasi constant running-time 

of the union-fnd data structure, described before, and solves the computational problem 

eÿciently. We remark that this algorithm only works eÿciently in an incremental or 

static setting. We will use this algorithm for our analysis of fragility properties of Fortuin-

Kasteleyn cluster in section 5. 

To start with, fx a planar5 graph G = (V ,E) together with a planar embedding. Now the 

medial graph M(G) = (V ,E) of G is constructed as follows. For any edge e ∈ E there exists 

a vertex ê ∈ V . For any face in the embedding of G we traverse the edges surrounding it in 

an arbitrary consecutive order, and any consecutive pair of edges e1, e2 ∈ E corresponds to 

an edge ( ê1, ê2) ∈ E. Note that it is crucial to include the outer, infnite face, too. Moreover, 

edges in E that touch only one face correspond to loops in M(G). Furthermore M(G) can 

contain multiple edges albeit G is a simple graph. Last but not least it is not hard to see 

that any vertex in V has degree 4 (counting loops twice). In the left panel of Figure 3.2 

we provide an example of the construction. Note that the medial graph of Z2 is itself 

Z2 tilted by π/4. Now instead of providing a formal description of the construction of 

the loop-confguration L(G) of G, we revert to Figure 3.2, which shows how L(G) can be 

obtained from M(G). In what follows we describe the construction of the data structure 

in the case of the square lattice (or grid graph) with the canonical planar embedding. The 

4Tarjan uses the inverse Ackermann function αT (m,n) instead of αS (m,n). However, as mentioned in [65], 
their di�erence is minor and one can show that they asymptotically equivalent. 

5A geometric dual as well as the associated medial graph can also be constructed in the more general 
setting of a cellularly embedded graph [66] such as Z2, the square lattice with periodic boundary conditions L
embedded on the torus. However, for the sake of clarity we present the concept in the setting of planar 
graphs. 
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Figure 3.2: The left panel shows a spanning subgraph of the 3× 3 grid graph (in blue) together 
with its medial graph. The right panel shows the corresponding loop confguration 
(in red). 

data structure assigns four auxiliary vertices, called strokes, to any vertex in G. This is 

illustrated in Figure 3.3. The strokes for each vertex are denoted by 1,2,3,4. Now consider 

a fxed stroke such as for example stroke 2 of vertex x. Depending on the status of edge 

(x,y), stroke 2 of x either connects to stroke 1 of vertex y or two stroke 3 of vertex x. These 

two options are mutually exclusive; consider the left and right panel of Figure 3.3. Similar 

constructions apply for stroke 2 of vertex x when considering the edge leading upwards 

from x. An analogous construction can obviously be done for any stroke in the graph. The 

important observation is that this operation is completely local. Changing the viewpoint 

from strokes to edges, we note that the occupation of a given edge in G infuences not only 

one but actually four strokes. Thus alternatively one can iterate over all edges of G and 

wire the strokes involved correspondingly. An example for an horizontal edge, denoted by 

(x,y), is shown in Figure 3.3. Now it is not hard to see that this wiring of strokes precisely 

1 2
34
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x y
1 2

34
1

34
2
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Figure 3.3: Illustration of the wiring of strokes in the construction of the loop confguration 
data structure. 

recovers the loop confguration L(G) and in particular allows us to check if two loop arcs, 

corresponding to a given edge in G, belong to the same loop in L(G). For instance, to 

check whether the two loop segments associated to edge (x,y) belong to the same loop 

in L(G) it suÿces to check if one of either the strokes 1 of y or 2 of x is connected to at 

least one stroke of either 3 of x or 4 of y. All the operations described above, the wiring of 

strokes, and the determination of the loop a given stroke belongs to ft into the framework 

of incremental dynamic connectivity algorithms. Indeed, the involved operations are 

precisely the ones supported by an union-fnd data structure. This in particular allows 

us to perform all required operations with quasi constant (in the spirit of Theorem 3.4.2) 

running time and in particular avoids the traversal of possibly long loops in L(G). 
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An immediate application of our loop confguration algorithm is the identifcation of 

bridges and non-bridges in planar graphs. Recall, any non-bridge must reside in at least 

one cycle and in any planar embedding cycles enclose faces, which in turns implies 

that the two loop-segments of a non-bridge must be in two di�erent loops [55]. Hence 

to determine if edge e = (x,y) ∈ E is a non-bridge it suÿces to check whether the two 

associated loop segments are in two di�erent loops in L(G), which can be performed 

eÿciently with the above union-fnd based data structure. A complication occurs in the 

case G is not planar, such as for instance for Z2, where this equivalence does not hold L

[55]. We have more to say about this observation and its impact on fnite-size corrections 

for the density of bridges, at criticality, in Chapter 5. In order to avoid a case-by-case 

consideration for the identifcation of bridges in graphs, we review in section 3.6 a recent 

algorithm [54] that provides a universal method to detect all bridges in a graph in linear 

time. 

Before we proceed with the next section we remark that the data structure used by Mark 

Sweeny in his paper [20] is also based on the medial graph construction. He represents 

the loop confguration in a tailored skip list data structure which allows him to perform 

all operations with worst case computational e�ort log(n). This therefore provides a fully 

dynamic version of our medial graph algorithm, however with a worse running time 

bound. For our applications, where we generated a large number of Fortuin-Kasteleyn 

confgurations in advance which where then later analysed in a “static setting”, we clearly 

beneft from the union-fnd approach. 

3.5 Poly-logarithmic fully dynamic connectivity algorithm 

The poly-logarithmic deterministic fully dynamic connectivity algorithm of [24, 57] follows 

the idea of utilising expensive operations to reduce the cost of some future operations and 

achieves the following amortised complexity: 

Theorem 3.5.1. (Theorem 3 in [24]). Given a graph G with m edges and n vertices, 
there exists a deterministic fully dynamic algorithm that answers connectivity queries in 
O(log(n)/ log(log(n))) time worst-case, and uses O(log(n)2) amortised time per insert or 
delete. 

This algorithm (and similar variants of it [67]) consist of the following ingredients, de-

scribed in more detail below: 

• Spanning forest: For each connected component in the graph maintain a tree. 

Insertions and deletions of edges are translated into amalgamations and splits of 

trees. 

• Euler-tour representation: An eÿcient data structure that allows to perform the 

necessary tree operations with O(log(n)) computational cost. 
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• Edge level hierarchy: Implements the idea of using expensive operations to cheapen 

similar future operations. 

We now explain the details of the algorithm and prove Theorem 3.5.1. For a given graph 

G = (V ,E) a spanning forest is a subgraph F = (V ,E) with E ⊆ E and the property that for 

any pair x,y ∈ V which is connected in G, there exists exactly one path that connects x 

and y in F . Hence F must be a forest, i.e. a component of G corresponds to a tree in F . 

A spanning forest is in general clearly not unique, yet once fxed it introduces a natural 

partition of the edges in E into tree (edges in E) and non-tree edges (not in E), see also 

Figure 3.4. 

f

e

Figure 3.4: A graph (left panel) together with one of its spanning forest (only red edges) shown 
in the right panel. Non-tree edges correspond to the the additional green edges in 
the right panel. The labeled non-tree edge f in the right panel is a replacement edge 
for the tree edge e. 

It follows directly from the defnition of a spanning forest that connectivity queries in 

G and F are equivalent. Moreover the insertion of edges into G can also be translated 

straightforwardly into modifcation of F as follows. Suppose we want to extend G by 

one edge e = (x,y). If x and y are not connected in G (equivalently in F ) we know that 

two components in G will merge. This must also be the case for the two trees in F 

corresponding to x and y. Thus we simply link the two trees with e. This preserves the 

spanning forest property, i.e. (V , E + e) is still a spanning forest of (V ,E + e). In case x 

and y are already connected before e is added to G we can not add e to F because this 

will violate the cycle-free property. However we still have that F is a spanning forest of 

(V ,E + e). 

To support the deletions of edges with the desired computational eÿciency, the data 

structure needs further modifcation. Here only the deletion of non-tree edges can be 

performed without further complication. Deleting a non-tree edge, that is e ∈ E −E, does 

not demand any modifcation of F but still preserves the spanning forest property. The 

complication happens when a tree edge is deleted. Temporarily the tree T containing x 

and y in F splits into two trees Tx and Ty . However it is not a priori clear if the component 
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containing x and y in G also splits, viz. there can be a non-tree edge f = (u,v) with u ∈ Tx 

and v ∈ Ty that holds the component in G together. Thus the forest F must not split but 

rather needs to be replaced by (V ,E4{e, f }). For an example see the right panel of Figure 

3.4. Note that obviously any replacement edge in a undirected graph G must have its two 

incident vertices in Tx and Ty . This in particular allows us to only consider the smaller of 

the two trees. Thus when the trees are stored in data structures that support augmentation 

it suÿces to scan the set of non-tree edges incident to the smaller tree. 

Before we proceed with the discussion of the edge level hierarchy we briefy discuss the 

Euler-tour representation of a tree and how it can be used to devise a data structure 

that provides all required operations for the manipulations of the spanning forest in the 

poly-logarithmic connectivity algorithm. 
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Figure 3.5: The left panel shows a tree together with a possible Euler tour. The sequence of 
vertices corresponds to the visits of vertices in order dictated by the arrow. The red 
vertices are the representative vertices, one for each vertex. The center and right 
panel show the two trees, obtained from the left tree by the removal of edge (a,b), 
together with each one of their Euler tours. 

As the name suggests the Euler-tour data structure rests upon the concept of an Eulerian 

cycle. An Eulerian cycle is a trail in a graph that visits every edge exactly once and which 

starts and ends at the same vertex. A trail is a walk in which all edges are distinct and 

a walk in turn is a sequence of vertices and edges, where each edge’s endpoints are the 

preceding and following vertices in the sequence. The following is a standard result [47] 

going partially back to Euler, which we state without proof: 

Theorem 3.5.2. (Theorem 6.1 in [47]). An undirected (multi-)graph G has an Eulerian cycle 
if and only if it is connected and all vertices have even degree. 

In order to represent each tree of a spanning forest by an Eulerian cycle we need, by 

Theorem 3.5.2, that all vertices in a given tree have even degree. Clearly this can not be 

true in general. However we modify the tree such that we replace any edge by two copies 

of it. This casts the tree to a multi-graph and ensures the existence of an Eulerian cycle. 

The left panel in Figure 3.5 illustrates this and shows one way a tree can be stored as a 
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ordered sequence of vertices. The crucial point is that the amalgamation of two trees in the 

forest or the split of one tree into two can be done by at most 2 splits and 2 concatenations 

of the original Euler tours [24], as illustrated in Figure 3.5. In order to support the 

concatenation and split of Euler tours in worst-case O(log(n)) the sequence of vertices 

can be represented by a balanced search tree [61]. In our studies we used a self-adjusting 

binary search tree [63] which performs all the desired operations in amortised O(log(n)). 

Another important observation is that in order to store the incident non-tree edges for 

any tree in the spanning forest we designate one occurrence of any vertex as a so called 

representative vertex which stores an adjacency list of incident non-tree edges. Moreover 

we adjust the balanced search tree representation such that iterating from one non-tree 

edge to the next incurs O(log(n)) computational e�ort [24]. Note that this improves over 

a traversal based search (DFS or BFS) for a replacement edge, which have O(n) worst case 

computational e�ort to iterate from one non-tree edge to the next. We omit the technical 

details and refer the reader to [24]. 

To summarise, an augmented Euler-Tour representation of a spanning forest supports the 

following operations with O(log(n)) amortised computational e�ort: 

• Insertion of edges 

• Deletion of non-tree edges. 

• Connectivity queries. 

• Augmentation by “additional” edges not composing the forest (non-tree edges). 

• Iteration from one non-tree edge to the next. 

Yet there is one obstacle with the data structure presented so far in case of the deletion of 

tree edges. As elaborated above, a tree edge deletion can lead to the loss of the spanning 

property of the spanning forest used to represent the graph, in other words it is possible 

that there is a (former) non-tree edge that acts as a replacement edge in G. Hence it is 

necessary to start a search for such a replacement edge. Before we show how to do this in a 

way that guarantees the above complexity, note that for applications where the underlying 

graph is a tree, the Euler-Tour representation clearly yields a fully dynamic (worst-case) 

O(log(n)) connectivity algorithm. This in particular can be interesting for simulations of 

the spanning forest model, which was shown to undergo a geometric (“ferromagnetic”) 

phase-transition in dimensions three and above [68], as oposed to the two-dimensional 

case which only shows a “zero-temperature” transition in the spanning-tree limit. 

What remains to show is how the above representation can be extended to yield the 

desired amortised poly-logarithmic fully dynamic connectivity algorithm. It is clear 

that a potential bottleneck is the search for replacement edges. It is easy to construct 

a sequence of operations (see example above) that considers a non-tree edge too often 

to be able to allocate only O(log(n)2) to the insertion and deletion of that non-tree edge. 

Recall that Theorem 3.5.1 states that the cost of insertions and deletions is amortised 
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O(log(n)2) and ultimately any sequence of operations only consists of insertions, deletions 

and connectivity queries. So any cost incurred by considering a non-tree edge as a 

possible replacement edge for a previously deleted tree edge has to be carried by the above 

operations. 

The key observation that leads to the desired result is that any non-tree edge that we 

consider as not suitable during the search for a replacement edge must have both incident 

vertices in the tree we currently scan for replacement edges. Now, because we can easily 

augment the Euler-tour data structure to store the number of vertices in it, we can always 

choose the smaller tree as the one to operate on. This implies that any time we consider a 

non-tree edge as not suitable, we can (at least) half the number of tree edges in the current 

spanning forest that could consider the current non-tree edge in a future deletion call 

as a possible replacement edge. Therefore, we would ideally need a method to hide the 

non-tree edge from all other tree edges that are not part of the smaller tree. If this hiding 

mechanism can be iterated further it is not hard to see that a given non-tree edge can be 

at most considered dlog(n)e times as a replacement edge. 

To accommodate a systematic replacement edge search based on this observation an 

edge-level hierarchy is introduced. More precisely let ` max = blog(n)c and associate to any 

edge e ∈ E a level `(e) ∈ {0,1, . . . , ` max}. For each 0 ≤ i ≤ ` max let Fi denote the sub-forest of 

F induced by edges of level at least i, hence 

⊆ · · · ⊆ F1 ⊆ F0 = F . (3.5.1)F` max 

Now we assume the graph starts with no edges, that is the construction phase of the 

graph is included in the amortisation argument. The insertion of an edge e = (x,y) always 

happens at level 0. If x and y are already connected in level 0 then e becomes a non-

tree edge, otherwise a tree edge. As described above this can be done with O(log(n)) 

computational e�ort as well as the deletion of a non-tree edge. 

When deleting a tree edge e = (x,y) in level i we frst cut all trees in levels less/equal i. 

Then we start the search for a replacement edge as follows. Suppose the tree in level i 
(i) (i)containing x and y is split by the deletion of e into Tx and Ty in level i. Let T (i) be the 

smaller of the two. Because of the hierarchy such a cut has to happen also in all levels 

below i. Now starting in level i we insert one copy of each tree edge in T (i) into level i + 1 

(if it exists). Once this is done we iterate over all non-tree edges incident to T (i). Let f be 
(i) (i)such a non-tree edge. If f is not suitable, i.e. does not reconnect Tx and Ty , we remove 

it from level i and insert it into level i + 1. In case f is a replacement edge we insert it as a 
(j) (j)tree edge in levels at most i, thus merging all Tx , Ty with j ≤ i, and terminate. However, 

if the search at level i does not yield a replacement edge we continue the same procedure, 

including the lifting of tree edges, at the next lower level i − 1. Once level 0 is reached 

without fnding a suitable replacement edge, the search terminates. 

To summarise, it is precisely the idea of hiding non-trees from tree edges or vertices 

from which we know that the non-tree edges are not suitable for, what is achieved by 

the level-hierarchy and the upward drift of unsuitable non-tree edges. By frst moving 
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the smaller tree one level up and then successively lifting non-suitable non-tree edges 

we reduce the circle of vertices/tree edges that will consider those non-tree edges as 

replacement candidates in later stages of the sequence of operations under consideration. 

This is precisely the idea of using computationally expensive parts to cheapen future 

operations, mentioned in the section on the amortised computational complexity. 

Let us now conduct the amortised analysis of the above connectivity algorithm. Firstly, 

recall that the overall computational cost of a sequence of operations, consisting of 

insertions, deletions and connectivity queries, can be either attributed to the manipulation 

of Euler-Tour data structures or the search for replacement edges. Consider frst the 

insertion of an edge, which either requests to link or to augment two Euler-Tour data 

structures, corresponding to the case of inserting a tree or non-tree edge, respectively. In 

both cases the direct cost is at most O(log(n)), purely arising from the representation of the 

Euler-Tour data structure as a balanced binary search tree. Furthermore, any connectivity 

query has the same computational complexity dominated by the maximal depth of the 

balanced binary search tree representing a given Euler-Tour. It therefore remains to show 

that the computational cost of deletion operations can be amortised accordingly. 

In the case of deletions it helps to distinguish the two cases of tree and non-tree edges. 

Firstly, suppose the edge to delete is a non-tree edge. In this case the immediate required 

computational cost is O(log(n)), as two Euler-Tour data structures need to be modifed. 

Here it is important to recall that a given non-tree edge resides only in two Euler-Tour 

data structures in its corresponding level, as opposed to tree edges, for which there are 

precisely ` + 1 replicas, if the level of it is `. To summarise the computational complexity 

so far, each of the previous operations “carried” a computational cost logarithmic in n, 

the number of vertices. 

The most expensive case is clearly the deletion of tree edges, because of the involved 

search for replacement edges, the cuts of up to log(n) Euler-Tours and the lifting of tree 

and non-tree edges in the level hierarchy. However, we have the freedom to attribute 

part of the cost to insertions and connectivity queries. Firstly, the cut of Euler-Tours in at 

most ` max + 1 levels incurs a computational cost of order log(n)2. We attribute this cost 

directly to the deletion of that particular edge. Secondly, in the sub-sequent methodical 

search for replacement edges in the level hierarchy, we frst increase the level of all tree 

edges of the smaller of the two trees formely connected by the deleted tree edge. This 

means that we need to insert all such tree edges to the forest in the next higher level. On 

a frst view this seems to be a bottleneck. However, one can easily verify that the level 

of an edge can never decrease, hence the involved cost of lifting tree edges in the level 

hierarchy is O(log(n)2) per tree edge. We attribute this cost to insertions, which then 

casts the amortised cost of a single insertion to O(log(n)2). Considering non-tree edges, 

we have, as already mentioned before, that a given non-tree edge can only be touched 

O(log(n)) times, after which it resides in level ` max. Each time it is touched, meaning it 

is considered as a possible replacement edge, we have a cost of O(log(n)) for removing 

it from the current tree and augmenting the corresponding tree in the next higher level. 
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Additionally, note that while iterating from one (non-)tree edge to the next (non-)tree 

edge we have to spent at most O(log(n)) each time. We can easily add this to the cost for 

lifting a (non-)tree edge and still remain with the O(log(n)2) cost for insertions as before. 

Lastly, note that is also possible for a non-tree edge to become a tree edge, precisely in case 

it was found to be a suitable replacement edge for a previously deleted tree edge. Once 

such a replacement edge is found, we link all the trees below and in the current level, 

this incurs a computational cost of O(log(n)2). However, in the subsequent sequence of 

operations we clearly have that the previous arguments used for tree edges still describe 

an upper bound on the computational cost involved. We can therefore conclude with the 

claimed poly-logarithmic amortised running times for all operations. We refer the reader 

to [24] for more details. � 

The probability mass function of the random-cluster model πp,q can naturally be formu-

lated in terms of the numbers of non-tree and tree edges. To this end, note that the number 

of edges in any spanning forest (equivalently the number of tree edges) of (V ,A) is equal 

to t(A) ≡ n − k(A), and hence the number of non-tree edges equals c(A) = |A| − n + k(A), 

where c(A) is the circuit rank of (V ,A) [69]. We therefore have for πp,q: !t(A) !|A|
|A| k(A) c(A) v c(A) v 

πp,q(A) ∝ v q = v ∝ q . 
q q 

For the particular case of the random-cluster model on the square lattice we have that 
√ 

v = q is the critical manifold [28] and we hence obtain 

!t(A)√ c(A) 1∝ q √ .πpsd(q),q q 

Thus in the two dimensional critical setting we see that the random-cluster model favours 

(disfavours) data structure layouts that augment the Euler-tour spanning forest by non-tree 

edges when q ≥ 1 (q < 1). 

3.6 Bridge and cut vertex identifcation 

The depth-frst search has found applications as part of various more complex algorithms, 

e.g. [70, 71]. One particular example is the identifcation of bridges and cut vertices in 

linear time as presented in [72]. A simplifed algorithm to identify cut vertices and bridges, 

still based on the DFS, was recently presented in [54]. Before we present the algorithm 

[54], we need two more DFS related concepts. The frst is the so-called depth-frst search 

index (DFI), which encodes the order in which vertices were visited in the DFS, thus 

DFI(v) is intuitively the time when vertex v was visited in the DFS. Note that DFI can 

obviously be used to relabel the vertices in G. The second concept is the one termed 

back-edge. A back-edge is an edge in G but not in T , where T denotes DFS tree. It is the 

analogue of the non-tree edge in the poly-logarithmic dynamic connectivity algorithm 
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above. As already stated, it immediately follows that a connected graph G with n and m 

edges has precisely m − n + 1 back-edges. For an illustration of the two concepts consider 

Figure 3.6. 

Now, let G be a simple and connected graph with n vertices and m edges. The frst step is 

to run an exhaustive depth frst search and extract the corresponding DFS tree together 

with the DFI order. Let T denote the DFS tree and suppose that all tree edges are directed 

towards the root of T (denoted r). All remaining edges are now back-edges and are added 

to T as directed edges oriented away from r. See Figure 3.6 for an illustration, where 

r = f0. 

g

a b c

d e f

h i

f0

a8

b7

c6 e1

d2

g3

h4

i5

Figure 3.6: A spanning sub-graph of the 3×3 grid (left panel) and one of its DFS-trees, together 
with all back-edges (right panel). The subscript in the DFS tree denotes the DFI. 

The next step is the construction of a chain decomposition6 of the set of edges. A chain can 

be either a cycle or a path. The chain decomposition consists of the edges in all chains and 

is constructed as follows. To start with, all vertices are marked unvisited. Then vertices 

are visited in increasing DFI order. Let v be the current vertex. Mark v visited if not 

already. Any back-edge b incident to v is traversed and vertices in the directed cycle, b 

belongs to, are visited (and marked visited) until an already visited vertex is encountered. 

All edges traversed are now associated with the current chain. It is not hard to see that 

the complete chain decomposition can be constructed in linear time. Moreover if the frst 

vertex (in DFI order) is incident to a back-edge, then the corresponding chain is always a 

cycle. This is because any vertex encountered during the traversal of the directed cycle is 

unvisited. For example the chain decomposition of the example depicted in Figure 3.6 

consists of two chains: 

C1 = {(f , i), (i,h), (h,g), (g,d), (d,e), (e, f )}, 

C2 = {(e,h)}. 

6The term decomposition is misleading here. Strictly speaking, the collection of chains does only de-
compose (partition) the set of edges of G when G is 2-edge-connected, as shown in [54]. However when 
we consider the chain decomposition as a composition of the vertex set of the graph then it is a proper 
decomposition. This was in fact done in [54]. 
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Here, C1 is a cycle and C2 a path. Note that it is not necessary that all edges are covered 

by the chain-decomposition, and the above construction is completely suÿcient for the 

purpose of identifying bridges and cut vertices. Indeed, a bridge is an edge that is not 

part of any chain. This clearly can be exploited to detect bridges, simply by checking for a 

membership in any chain decomposition: 

Lemma 3.6.1. (Lemma 5 in [54].) Let C be a chain decomposition of a simple connected graph 
G. An edge e in G is a bridge if and only if e is not in any chain in C. 

Proof. If e is a bridge it can not be in any cycle [54], thus there can not be any chain e 

belongs to. When e is an edge that is not in any chain, then e must be an edge in T . Denote 

by x the vertex incident to e that is farther away from r and let T (x) be the sub-tree rooted 

at x. Any back-edge with one vertex incident to T (x) must also have the second incident 

to T (x), because otherwise e would be in a chain. In other words back-edges incident to 

T (x) must not be originated at a ancestor of x if e is not in any chain. It follows that when 

e is removed, all vertices in T (x) are disconnected from r, which, by defnition, implies 

that e is a bridge. � 

As we also study some aspects of vertex fragmentation in Chapter 5, we need a method 

to identify whether a given vertex is a cut vertex. A cut vertex, similarly to a bridge, is 

a vertex that increases the number of connected components upon deletion. A subtle 

point with that defnition is that vertices with degree 1 are not covered by this defnition. 

However, later we will loosen this restriction and refer to such vertices as fragmenting 
vertices. In the left panel of Figure 3.6 vertex a is a fragmenting but not a cut vertex. It 

follows that any vertex incident to a bridge and with degree at least 2, is a cut vertex. 

However, not all cut vertices correspond to bridges, an essential observation for the vertex 

fragmentation discussed in 5. Intuitively speaking, a vertex v that is not incident to a 

bridge and has degree at least 2, is a cut vertex when at least two cycles overlap at v and 

nowhere else. Now, the analogue to Lemma 3.6.1 reads (without proof): 

Lemma 3.6.2. (Lemma 6 in [54].) Let C be a chain decomposition of a simple connected graph 
G with minimal degree 2. A vertex v in G is a cut vertex if and only if v is either incident to a 
bridge or v is the frst vertex of a cycle in C −C1, where C1 is the frst chain in the decomposition. 
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Chapter 4 

Computational and statistical analy-

sis of Sweeny’s algorithm 

This chapter is devoted to a study of the heat-bath and Meropolis Markov chain Monte 

Carlo algorithm for the random-cluster model, commonly known as Sweeny’s algorithm 

[20]. In the following, we refer to the heat-bath and Metropolis algorithm in the random-

cluster model setting simply as variants of Sweeny’s algorithm. In the frst part of this 

chapter we address the question of an eÿcient implementation of Sweeny’s algorithm, a 

non-trivial problem due to the global nature of the required connectivity information. We 

utilise the algorithmic and graph-theoretic concepts discussed in Chapter 3, and adjust 

the standard approaches to the particular structure of the random-cluster model near 

criticality. In fact our computational analysis reveals a strong and intriguing connection 

between structural properties of the random-cluster model and the computational eÿ-

ciency of Sweeny’s algorithm. In the second part of this chapter we embark on a study 

of the statistical properties of Sweeny’s algorithm, in particular its dynamical critical 

behaviour. In fact one of the distinct features of the Markov chain is the phenomenon 

of critical speeding-up. This phenomenon corresponds to the decorrelation of specifc 

“global” observables, that is the corresponding integrated autocorrelation times have nega-

tive dynamical critical exponents. We present a corresponding numerical study in two 

dimensions, establishing new rigorous results for monotone Markov chains, which are of 

independent interest. We then continue with an analysis of a joint eÿciency measure, that 

considers both the statistical and computational results established in this section. This 

will provide a meaningful way to compare Sweeny’s approach to the alternative Chayes-

Machta-Swendsen-Wang chain. Finally, we present two optimisations of the standard 

approaches tailored to the structure of random-cluster models at criticality. 
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Chapter 4. Computational and statistical analysis of Sweeny’s algorithm 

4.1 General considerations and the di�erence between heat-

bath and Metropolis variants of Sweeny’s algorithm 

The eÿciency of the local-bond approach for the random-cluster model, in heat-bath or 

Metropolis variant, to which we refer in what follows simply as Sweeny’s algorithm or 

Sweeny’s chain [20], relies on the availability of eÿcient algorithmic solutions to deter-

mine the pivotality of edges. As shown in the previous chapter, this can be solved by a 

connectivity algorithm. One such connectivity algorithm is based on the breadth-frst 

search, that has worst-case and amortised computational complexity, which is linear in 

the number of vertices and edges. 

Yet, what we have not taken into account, so far, is the fact that the underlying cluster 

structure is actually random! This suggests a probabilistic analysis of running times [73] 

of the involved connectivity algorithms. In this section we will in particular provide nu-

merical evidence and scaling arguments that show that an adapted breadth- or depth-frst 

search based implementation has expected running time that is sub-linear in the volume, 

i.e. in the number of edges or vertices. To be specifc, we consider in this section the 

stationary Sweeny chain on the square lattice with periodic boundary conditions Z2. The L

main reason for considering Z2 is the rich interplay between rigorous mathematics, math-L 

ematical physics and exact statistical mechanics [28, 27, 74, 22, 51] for two dimensional 

critical phenomena, which in particular yields exact values for various critical exponents 

[51] for the random-cluster model on Z2. Further, the exact solution for the Ising case L

(q = 2), due to Onsager, and various exact results for fnite lattices [75] provide a solid 

testing ground for devising new computational approaches in the random-cluster model. 

Additionally, there are many open questions related to the random-cluster model even 

under such mild circumstances as planarity, (self-)duality and regularity, as given for Z2. 

In the subsequent chapters we investigate a few of such open geometric questions. We 

remark that the arguments established in this section are expected to extend naturally to 

other graphs such as Zd with d ≥ 2 with appropriate replacements, e.g., critical exponents. L 

4.1.1 Avoiding cluster-traversals 

Before we investigate the interplay between the (random) cluster structure and the running 

time of various implementations of Sweeny’s algorithm, we elaborate on an optimisation 

that, in many cases allows to avoid expensive cluster traversal with an asymptotically 

non-vanishing probability. 

To start, consider the heat-bath version of Sweeny’s algorithm and recall, (2.2.4), that in 

order to iterate the chain from confguration At to At+1, an edge e is chosen uniformly 

at random, and inserted into the next confguration At+1 with probability a(At;e) equal 

to p̃ ≡ p/(p + (1− p)q) when e is pivotal to At, and p otherwise. The main computational 

obstacle stems from the determination of e’s pivotality to At. Assume a(At;e) is determined, 

then one usually uses a uniform random number U in [0,1] and sets At+1 = At ∪ {e} if 
U ≤ a(At), and = At \ {e} otherwise. Note that the status of e is reseted and not At+1 
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‘fipped” or reversed as in the Metropolis variant. Clearly, one has P[U ≤ a(At)] = a(At), 

which together with the fact that a(At) is two-valued, means e is open in At+1, whenever 

U ≤ min { ̃ p,p}, it is p,p}, regardless of the pivotality of e. Similarly, whenever U > max { ̃
clear that e < At+1 is independent of At. To be specifc, let us consider the case q ≥ 1, 

where one has p̃ ≡ p/(p + (1− p)q) ≤ p, and it follows that, given edge e, only in a fraction 

P[p < U ˜ ≤ p] = p − p̃ of all cases, one needs to determine the pivotality of e. 

We show in Figure 4.1 how the di�erence p − p̃ varies with p for some values of q. Trivially, 
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Figure 4.1: The di�erence of the insertion probability of non-pivotal edges and pivotal edges, 
i.e. p − p̃. Or, equivalently, the probability of the necessity of analysing the cluster 
structure in the heat-bath dynamics. The solid black line corresponds to the line 
(psd(q),psd(q)− p̃(psd(q),q)) and therefore shows the critical di�erence of p and p̃
as the cluster weight q is varied. 

for q = 1 one has p = p̃, hence, as expected, there is no dependence of p(At) on the cluster 

structure, i.e. the heat-bath chain performs independent bond percolation. Figure 4.1 also 

shows that the maximum of p − p̃, for fxed q, is reached at the self-dual point psd(q). We 

stress that this result is independent of the particular graph. Further, it is known that 

psd(q) is precisely the critical point of the random-cluster model on Z2 [28] for q ≥ 1. Thus L 

in addition to the intricate cluster structure at the critical point, that as we show below, 

causes a computational critical slowing down, we have that the heat-bath chain is most 

ineÿcient in avoiding expensive cluster analysis whenever p = psd(q). We can precisely 

evaluate the di�erence along p = psd(q) and obtain 

√ 
q − 1 

psd(q)− p̃(psd(q),q) = √ ,
1 + q 

which is valid for q ≥ 1, where the di�erence is further increasing with q, translating 

into an increasing probability of the need to determine whether e is pivotal. For the sake 
√ √

of completeness, one obtains psd(q) − p̃(psd(q),q) = (1 − q)/(1 + q) for q < 1 which is 
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decreasing with q. We show the corresponding self-dual di�erence for q ∈ [0,4] in Figure 

4.2. 

Alternatively, one can consider the Metropolis variant of Sweeny’s algorithm, which in 
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Figure 4.2: Probability of a cluster structure dependent update step for the heat-bath and 
Metropolis variants of Sweeny’s algorithm. The data (dots) corresponds to the 
ratio of running times of an interleaved breadth-frst search Sweeny algorithm 
exploiting the unconditional acceptance, to the corresponding running time of the 
same variant of Sweeny’s algorithm without this optimisation. 

the simplest form, chooses an edge e ∈ E uniformly at random and proposes a “fip” of the 

status of e, i.e. At → At+1 = At − e when e ∈ At, or At → At+1 + e when e < At. The proposed 

fip is accepted with probability 

min {v |At+1−At |qk(At+1)−k(At )}, 

√
where v = p/(1− p). Considering p = psd(q), that is v = q, we obtain that the Metropolis 

√ √
algorithm avoids the determination of Δk with probability min {1/ q, q}. Note that 

the Metropolis version of Sweeny’s algorithm can only avoid determining Δk by an 

unconditional acceptance, opposed to the heat-bath version, which benefts from both 

unconditional rejections and acceptances. The corresponding q dependence is also shown 

in Figure 4.2. We conclude that at the self-dual point, the heat-bath chain is more eÿcient 

than the Metropolis chain, in avoiding cluster structure traversals. On the other hand, 

we remark that this is not the only eÿciency measure. Another perspective arises from 

comparison inequalities between autocorrelation times of the heat-bath and Metropolis 

algorithm, which we evaluate here at the self-dual point. 
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4.1.2 Comparison of autocorrelation times between heat-bath and 

Metropolis 

To start with, one can easily verify that the transition matrix PHB(A,B) of the heat-bath 

chain and PM(A,B) of the Metropolis algorithm obey the following inequalities for any 

A , B whenever p = psd(q) and q ≥ 1: 

1 
√ PM(A,B) ≤ PHB(A,B) ≤ PM(A,B).

1 + q 

This intuitively means that the Metropolis algorithm is more mobile than the heat-bath 

chain at the self-dual point, i.e. given a state A the Metropolis version of Sweeny’s 

algorithm has higher probability to move to any B , A than the heat-bath variant. To 

make this statement precise, note that in [76] (Theorems A.2-A.3) it was shown that for 

two Markov chains on the same state space Ω, described by transition matrices P ,P 0 , 

which are reversible with respect to the same stationary distribution, and for which 

P (A,B) ≥ αP 0(A,B) holds for α > 0 and any A,B ∈ Ω such that A , B, one has, for any � � 
observable f :Ω → R, τint,f (P ) + 1/2 ≤ α−1 τint,f (P 0) + 1/2 . Applied to the Metropolis and 

heat-bath chain for the random-cluster model we immediately obtain � �� � � � � �√ 1 
τint,f PM ≤ τint,f PHB ≤ (1 + q) τint,f PM + . (4.1.1)

2 

√ √
We emphasise, that this is only valid for the choice p = psd = q/(1 + q) and q ≥ 1, that 

is the critical point of the random-cluster model on Z2. Other values of p need separate 

consideration. However, because our main interest lies in dynamical critical behaviour, 

the above statements suÿce for the subsequent treatment. The result (4.1.1) states that 

autocorrelation times for any observable f in the Metropolis or heat-bath variant of 

Sweeny’s algorithm are of the same order of magnitude at criticality. 

We can extend the comparison also to the exponential autocorrelation time, where we 

can for instance use a comparison technique [2] for reversible Markov chains, which we 

already utilised in section 2.3 to establish the duality result for the heat-bath chain on Z2 
L. 

In general, under the same conditions on the two transition matrices P and P 0, one can 

indeed show that τexp(P 0) ≥ ατexp(P ) + 1. This allows us to conclude that 

� � � � � �1 
τexp PHB + 1 ≥ τexp PM ≥ √ τexp PHB − 1.

1 + q 

Which is the analogue statement to (4.1.1). Thus we have shown that, both the heat-bath 

and the Metropolis version of Sweeny’s algorithm, belong to the same dynamic universality 

class [3], i.e. both share the same dynamical critical exponent. 
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4.2 Computational eÿciency of Sweeny’s algorithm 

Let us now return to the actual analysis of running times of the variety of computational 

approaches outlined in chapter 3. In what follows we only consider the critical point. The 

reason for this is two-fold. Firstly, our target is the design of an eÿcient MCMC method 

to investigate critical phenomena in the random-cluster model, and ultimately show that 

it is possible to “beat” the alternative Swendsen-Wang-Chayes-Machta approach under 

certain circumstances. Secondly, the fractal structure of the critical random-cluster model 

on Z2 casts the study of the self-dual point into the most complicated and interesting L 

scenario, in particular with regard to the interplay between algorithmic properties and 

the geometric structure. On the other hand, for o�-critical values of p, we expect no real 

computational complication. As for sub-critical values, one has exponential decay of 

correlations [27] (fnite correlation length) and hence at most logarithmically large compo-

nents. In the super-critical regime, macroscopically large components exists, consisting of 

many (overlapping) cycles, such that the breadth-frst search algorithm typically extends 

only across a few shells until it fnds an alternative path. 

4.2.1 Sequential breadth-frst search 

We frst consider a plain breadth-frst search implementation of Sweeny’s algorithm, in 

what follows also called sequential breadth-frst search approach (SBFS). This variant is 

the conceptually simplest approach described in this thesis. This is because, in addition 

to the actual breadth-frst search traversal related queue data structure, one only needs 

to maintain a data structure that allows a check whether a given edge is active. Due to 

the sparseness of Z2 (or in general Zd ) we have chosen the adjacency-list representation, L L

which achieves the basic manipulation operations of insertion and deletion of edges with 

constant computational e�ort. Now, in order to determine whether an (randomly chosen) 

edge e = (x,y) is pivotal to the current confguration At, we remove e from At temporarily 

(if e ∈ At) and perform a BFS starting at x. As shown in the previous chapter, whenever 

y is encountered during the traversal, we can conclude that e is not pivotal to At. Now, 

without further assumptions, we need to conclude that this algorithm has worst-case 

running time per operation that scales linear with the volume Ld . 

However, in a probabilistic setting, given here for the random-cluster model, it turns out 

that a worst-case running time bound is often too pessimistic and crude. For instance, it is 

well known that at criticality in a large but fnite box with linear dimension L, the expected 

size of the component a randomly chosen edge belongs to scales with Lγ/ν [15, 46]. 

The following arguments show that the expected running time of the sequential breadth-

frst search approach to Sweeny’s algorithm has the same asymptotic Lγ/ν scaling as the 

typical cluster size. 

Consider frst the insertion of an edge e = (x,y), which additionally we assume to be 

closed in the current confguration At, in other words e < At. The imposed breadth-frst 

search traversal, that determines whether e is pivotal to At, chooses one site, say x, to 
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start the BFS. Crucially, as we will show in section 5.2, one has for the critical model 

on Z2, asymptotically, a fraction 
√ 
q/[2(1 + 

√ 
q)] of disconnected nearest-neighbour pairs 

(or candidate bridges). Clearly, for such instances the BFS traversal terminates without 

fnding a path between x and y. This in turn, combined with a constant fraction of such 

candidate bridges, implies a constant probability of a BFS traversal of asymptotic cost 

proportional to Lγ/ν . Hence the insertion of candidate-bridges contributes Lγ/ν to the 

overall expected running time of the SBFS implementation of Sweeny’s algorithm. 

The same asymptotic scaling holds for the removal of bridges. Firstly, note that one has 
√

an asymptotically constant fraction 1/[2(1 + q)] of bridges. Secondly, we will show in 

Chapter 5, a bridge removal typically creates two very unbalanced clusters (fragments), 

of which the larger is typically of size Lγ/ν and the smaller of size LdF −x2 � Lγ/ν , see 

also [15]. Because, in this version of the SBFS it is a priori not clear which of the two 

vertices belongs to the smaller cluster, we have to conclude that the deletion of bridges 

also contributes Lγ/ν to the expected running time. We confrmed the Lγ/ν scaling for 

operations (insertions and deletions) on pivotal edges by numerically estimating the 

expected number of vertices visited by the breadth-frst search. Furthermore, we ftted a 
(e)power-law (in L) with exponent ySBFS to the data using the method of least squares ftting. 

We summarise the extracted values in table 4.1. The numerical results are statistically 
(e)consistent with ySBFS = γ/ν, except for q = 3,4, where the deviation becomes signifcant, 

however we attribute this to unconsidered corrections and the non-asymptotic nature of 

our numerical analysis. 

It remains to analyse operations on non-pivotal edges, i.e. the removal of non-bridges 

and insertion of candidate-non-bridges. We frst note that, as for the bridges and 

candidate-bridges, the corresponding densities of non-bridges and candidate-non-bridges 
√ √ √ 

are q/[2(1 + q)] and 1/[2(1 + q)], respectively. In order to obtain the leading size 

dependence of the running times for operations on non-pivotal edges, we need to consider 

how the breadth-frst search iterates. As discussed in Chapter 3, the breadth-frst search 

explores (incident) vertices sequentially corresponding to their graph-distance. For in-

stance, starting at a vertex x, at frst all vertices that are incident to x, are considered. Once 

the current, so called BFS “shell”, is exhausted, the search continues with neighbours of 

neighbours of x, until the cluster is exhausted. It is not hard to see, that the path between 

any two vertices in the corresponding BFS tree is always a shortest path. Applied to 

the (attempted) insertion of an edge e = (x,y) into a confguration At, where x and y are 

already connected, this means that the BFS, starting either at x or y, extends over s(x,y;At) 

BFS shells, where s(x,y;At) is the shortest path distance between the two vertices x and 

y in At. As shown by Grassberger [77, 78], for bond percolation1, the probability that 

two nearby points on the lattice are connected by a shortest path of length `, has large ` 

1We expect the results to naturally extend to the random-cluster model with appropriate replacements in 
the exponents. 
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asymptotics p(`) ≈ l−ψ` L(`/Ldmin), where 

2β g1ψ` = 1 + + . 
νdmin dmin 

Here, dmin is the shortest-path fractal dimension [79] and g1 is the scaling exponent related 

to the density of growth sites [78]. Zi� [80] demonstrated that g1 = x2 − 2β/ν, where x2 is 

the two-arm scaling exponent [81, 82]. Hence ψ` = 1 + x2/dmin. As a result, the average 

length of the shortest path between nearby points exhibits system-size scaling according 

to 

h`i ≈ Ldmin−x2 . (4.2.1) 

Now, in order to obtain the leading scaling of the number of vertices visited by a breadth-

frst search on critical percolation clusters, we need a relationship between the number of 

BFS-shells and the number of vertices within it. The number of sites touched by a BFS 

from i to j separated by a shortest path of length ` is expected to be `d̂ , where d̂ = dF/dmin 

is known as the spreading dimension [79]. Here, dF = d − β/ν denotes the fractal dimension 

of the percolating cluster. Hence, the average number of sites touched by the BFS for an 

internal edge is 

h`d̂i ≈ LdF −x2 . (4.2.2) 

Note that, while dF and x2 are exactly known [51, 46], this is not the case for dmin [15, 83]. 

This scaling result suggests that the expected running time for the insertion of candidate-

non-bridges scales as LdF −x2 . Further, in case e = (x,y) is a non-bridge, one removes e from 

the current confguration and performs an analogous BFS, as for the candidate-non-bridge 

case. It is not diÿcult to see that the leading running time scaling is also LdF −x2 which 

eventually lets us conclude that the insertion and deletion of pivotal edges scales, in 

expectation and to leading order, as Lγ/ν , whereas non-pivotal edges allow for a typical 

running time of LdF −x2 � Lγ/ν . 

Table 4.1 confrms our theoretical arguments. Firstly, it shows our estimates for the 
(i)(i)exponent ySBFS in a power law scaling LySBFS of the expected number of vertices visited 

by the BFS for update-operations on non-pivotal edges. Secondly, note that because both 

pivotal and non-pivotal edges contribute in average a fraction 1/2 of all edges2, we have 

that for suÿciently large L, the Lγ/ν scaling, stemming from pivotal operations, dominates 

the overall expected running time of update operations, denoted by t̄. In other words we 

have for the sequential BFS implementation of Sweeny’s algorithm the following scaling: 

t ≈ Lγ/ν ¯ . 

We tested the scaling relation for t̄ for some values of q, shown in table 4.1, by ftting 

a power-law to the system size dependent average running time at the corresponding 

self-dual point. We denote the involved exponent by κ, that is t̄ ≈ Lκ. More precisely, the 

√ √ √2Indeed, one has q/[2(1 + q)] + 1/[2(1 + q)] = 1/2, which is precisely the asymptotic density of pivotal 
(non-pivotal) edges for the self-dual random-cluster model on Z2 in the limit L →∞.L 
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corresponding exponents are shown in table 4.1 in the column for κSBFS. The values seem 

to deviate from γ/ν, however we emphasise that the average running time t̄ is a mixture 

of two power-law contributions with exponents dF − x2 and γ/ν. Moreover, we observe 

that the exponent is closer to γ/ν than to dF − x2 in the entire regime of cluster weights 

considered. We explain the deviations precisely due to this mixture, and still expect the 

exponent γ/ν to distinguish itself for larger system sizes than considered here. In Figure 

4.3 we show exact values of γ/ν and dF − x2 derived from the Coulomb gas formulation 

of critical two-dimensional random-cluster models [51]. We therefore conclude, that the 
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Figure 4.3: Exact values for γ/ν, df − x2 and α/ν for the two-dimensional critical random-
cluster model as predicted by Coulomb gas arguments. Observe the signifcant 
variation of dF − x2 as compared to γ/ν.[51]. 

sequential breadth-frst search implementation of Sweeny’s algorithm, albeit being simple 

and having a small additional data structure overhead, has expected running time almost 

linear in the volume. This introduces a drastic computational slowing down retarding any 

improvement in the dynamical critical behaviour of Sweeny’s algorithm as compared to 

other Markov chains for the random-cluster model. 

4.2.2 Interleaved breadth-frst search 

A simple and elegant trick to weaken or reduce the computational slowing down was frst 

introduced in [15], and rests upon the observation that the cluster structure at criticality 

is fractal and one typically expects very unequal cluster sizes following the removal 

of a bridge, corresponding to Lγ/ν � LdF −x2 (consider Figure 4.3). For a more detailed 

discussion of this observation and related fragmentation phenomena we refer to Chapter 

5. The main obstacle with the plain BFS approach is that a priori one cannot do better 

than choosing the larger of the two clusters attached to two neighbouring (disconnected) 
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Table 4.1: Run-time scaling exponents in two dimensions for the SBFS, IBFS and the UF 
implementation. The scaling exponents γ/ν and dF − x2 are shown for reference and 
comparison. The y exponents correspond to scaling ≈ Ly of the number of vertices 
touched in a sequential (SBFS) and interleaved (IBFS) breadth-frst cluster traversal 
for internal or non-pivotal (i) and external or pivotal (e) edges, respectively. 

(i) (e) (i) (e)
q y y y y dF − x2 γ/ν κSBFS κIBFS κUF IBFS IBFS SBFS SBFS 

0.0005 1.81(1) 1.18(3) 1.54(6) 1.25(1) 1.24(1) 1.25(1) 1.99(1) 1.23407 1.99296 
0.005 1.80(2) 1.14(2) 1.70(6) 1.22(1) 1.21(1) 1.22(1) 1.98(1) 1.20021 1.97823 
0.05 1.74(1) 1.02(3) 1.77(4) 1.10(1) 1.11(1) 1.11(1) 1.93(1) 1.09783 1.93580 
0.1 1.72(1) 0.97(2) 1.78(3) 1.05(1) 1.05(1) 1.06(1) 1.91(1) 1.03881 1.91284 
0.5 1.65(2) 0.71(3) 1.77(2) 0.82(1) 0.82(1) 0.82(1) 1.83(1) 0.80768 1.83449 
0.7 1.63(2) 0.69(4) 1.77(4) 0.75(2) 0.76(1) 0.76(2) 1.81(1) 0.73541 1.81407 
1 0 0 1.74(2) 0.66(1) 0.67(1) 0.67(1) 1.79(1) 0.64583 1.79167 

1.5 1.56(2) 0.43(2) 1.71(3) 0.55(2) 0.56(1) 0.57(2) 1.75(1) 0.52298 1.76644 
2 1.57(2) 0.35(3) 1.68(3) 0.46(2) 0.47(2) 0.48(3) 1.73(1) 0.41667 1.75000 
3 1.52(4) 0.19(1) 1.67(2) 0.32(3) 0.30(4) 0.35(3) 1.69(2) 0.21667 1.73333 
4 1.42(4) 0.13(2) 1.64(7) 0.22(11) 0.23(1) 0.26(1) 1.68(1) -0.12500 1.75000 

vertices, with probability 1/2. Therefore the running time is ruled by the typical cluster 

size Lγ/ν . 

Now, by starting two simultaneous breadth-frst searches at the two vertices incident to a 

randomly chosen edge, one can reduce the expected running time to a scaling LdF −x2 . To 

start with, consider the removal of a bridge or the insertion of a candidate-bridge. Now, 

both cases revert to two simultaneous BFS to determine if the inspected edge is pivotal. In 

the former case one temporarily erases the bridge before the two BFS are started. Denote 

the edge by e = (x,y). As soon as one of the two BFS traversals is exhausted, which is 

clearly the one operating on the smaller cluster, one can conclude that vertex x and y 

are not connected, hence e is pivotal (bridge in the former and candidate-bridge in the 

latter case) to the original confguration. As mentioned earlier, both cases contribute a 

constant fraction of operations, which in turn implies that the insertion and deletion of 

pivotal edges has LdF −x2 contribution to the expected running time of the simultaneous 

BFS variant of Sweeny’s algorithm. 

We remark that one can either use true (trivial) parallelisation or interleave the two 

breadth-frst searches sequentially. In both cases, the system size scaling is LdF −x2 , but the 

interleaved approach is (assuming perfect parallelisation) by a factor of two slower than 

the parallelised version. In what follows we only consider the interleaved variant, and 

abbreviate it by IBFS. 

We confrmed the outlined improved run-time scaling for operations on pivotal edges 

numerically, and show in table 4.1 our numerical results, extracted from power-law fts 

to the estimated expected number of vertices visited by the two interleaved breadth-frst 

searches in case of a deletion or insertion of a pivotal edge. The corresponding exponent 
(e)is denoted by y Further, Figure 4.4 shows a graphical confrmation of the scaling IBFS. 

(e)prediction yIBFS = df − x2, for three values of q. 
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Figure 4.4: Expected number of vertices E[Cmin,2] in the smaller of two adjacent clusters, as 
visited in a 2D simulation using IBFS for operations on pivotal edges. The lines 

(e)
show fts of the power-law form Cmin,2 = ALyIBFS to the data. 

Due to the fact that the IBFS approach has no additional data structure to maintain 

during edge updates, it is perfectly capable of exploiting the unconditional acceptance of 

update-steps, discussed in the beginning of this chapter. We numerically compared the 

running time of the IBFS algorithm using unconditional acceptances whenever possible, 

to the IBFS algorithm without such optimisation. In Figure 4.1 we show the ratio of the 

expected running times per operation of the optimised version to the plain IBFS version. 

The data clearly supports the theoretical arguments that showed that in a fraction of 
√ √

min {1/ q, q} of all cases, one can unconditionally accept a proposed deletion/insertion 

of edge in the Metropolis chain. 

The running time for the removal or insertion of a non-pivotal edge has the same asymp-

totic expected scaling LdF −x2 as can be seen by the following scaling argument [15]: The 

running time is proportional to the number of sites visited until the two breadth frst 

searches merge. If we denote the number of vertices visited by one of the BFS searches 

until the two BFS merge by B, we have P[B ≥ s] ≈ p2(s1/dF ), where p2(R) is the probabil-

ity that there are at least two distinct clusters emanating in an annulus from the inner 

boundary of radius O(1) to the outer boundary of radius R, which has large R asymptotics 
−x2/dFp2(R) ≈ R−x2 [15]. We therefore expect Pq[B ≥ s] ≈ s and hence Eq[B] ≈ LdF −x2 . The 

argument simply states that when it takes each of the two BFS roughly s vertices until 

they merge, then we can construct an annulus centred around the two starting vertices 

with approximate outer radius s1/dF , inside which the two clusters are disconnected. This 

in turn implies a scaling 

t̄ ≈ LdF −x2 , 
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for the interleaved breadth-frst search Sweeny implementation. To confrm our argu-

ments, we show in table 4.1 the numerically extracted e�ective exponent κIBFS, which, 

apart from deviations for large q, attributed to strong fnite size corrections, are consistent 

with κIBFS ≈ dF − x2. In Figure 4.5 we compare the average running time per operation, 

for the critical q = 0.005 case, of, among others, the SBFS and IBFS implementations. It 

clearly emerges that the interleaved is superior over the sequential breadth-frst imple-

mentation. However, in both cases t̄ su�ers from computational slowing down, i.e. the 

size dependence is still in form of a power-law in L. 
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Figure 4.5: Run-time per edge operation of simulations of the q = 0.005 square-lattice RCM 
and Sweeny’s algorithm employing the SBFS, IBFS, UF and DC connectivity 
implementations, respectively. 

4.2.3 Union-fnd data structure and interleaved breadth-frst search 

The union-fnd data structure, formally introduced in Chapter 3, is an incremental data 

structure that has no capability to support simultaneously the deletion and insertion 

of edges with the same, for all practical problem instances, constant computational 

e�ort. However, we have combined it with the interleaved breadth-frst search approach, 

with the hope to reduce the system-size scaling of t̄ further below LdF −x2 . Our initial 

intuition was that the pseudo-constant computational complexity of inserting edges and 

connectivity queries in the union-fnd data structure pushes the overall scaling of t̄ further 

down as compared to the plain interleaved approach. Unfortunately, we overlooked a 

crucial aspect. The problem occurs during the re-building phase of the union-fnd data 

structure following a bridge deletion. To understand this, consider the deletion of a bridge 

e = (x,y). Removing e splits, by defnition, the connected component C, to which x,y 

belong, into two components Cx and Cy . This demands that the tree in the union-fnd 

data structure, representing the connected component C, needs to be split, such that 

the resulting two trees correctly encode the graph connectivity. Cutting (and linking) 
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of trees can be done with logarithmic computational e�ort, e.g. with the Euler-tour 

representation, or the recent DFS-Tour tree representation [84]. Ideally, one would cut the 

tree at a position that corresponds uniquely to e, and the resulting two trees correspond 

to the connected components, induced by the original bridge-removal in the represented 

graph. However, the path-compression heuristics, underlying the optimal union-fnd 

algorithm data structure, destroys any structural information in the tree and merely 

encodes the equivalence classes corresponding to connected components. For instance, 

an edge between two nodes in the union-fnd tree does not necessarily correspond to 

an edge in the actual represented graph. In fact, typically most of all vertices are direct 

descendants of the unique representative element of the connected component. 

Thus, in order to rebuild the union-fnd data structure, we have to re-analyse the cluster 

structure by means of a graph traversal that determines for all vertices, previously part 

of C, whether they belong to Cx or Cy , and construct the corresponding UF-tree. Note, 

there is no signifcant di�erence here between the sequential and interleaved BFS traversal 

approach, in the sense that both of them show the same asymptotic size scaling of the 

expected running time devoted to this re-building process: In both cases all vertices 

of a randomly chosen component have to be visited, and one can not beneft from the 

diversity in cluster sizes attached to nearby vertices. Therefore, one again obtains the Lγ/ν 

contribution to t̄ for the deletion of bridges. 

Now considering the di�erent variants of the union-fnd data structure, one realises that 

it is possible to dispense the path-compression heuristics; This worsens the amortised 

cost of connectivity and union operations to a logarithm in L, as shown in Lemma 3.4.1. 

However, a moment of thought shows that it is now necessary to cut the representing tree 

in both cases, the deletion of a bridge and non-bridge (in this case the tree is later merged 

again by a replacement edge). However, the required graph-traversal can now exploit 

the fact that nearby clusters are typically very unequal in size, and hence circumvent 

the Lγ/ν scaling. Overall, one obtains in such an approach a contribution asymptotically 

proportional to LdF −x2 for the removal of edges, and log(L) for the insertion of edges. 

In fact, this version brings us closer to the dynamic connectivity approach, which solves 

the overall problem with poly-logarithmic computational e�ort. We therefore did not 

consider this modifed union-fnd approach further. Yet, it is an interesting aspect to 

consider for a future study, possibly in combination with a study of related phenomena in 

three dimensions. 

Returning to the path-compression based union-fnd data structure, observe that when 

deleting a non-bridge, one clearly benefts from the interleaved BFS, as no rebuild of the 

union-fnd data structure is necessary. Recall, that the running time bound for the union-

fnd data structure with path compression and union-by-rank heuristics is amortised. 

Introducing Lγ/ν -expensive operations to rebuild the data structure, clearly destroys 

any amortisation argument. In order to confrm these heuristic scaling arguments we 

numerically estimated the typical running time t̄ for the hybrid union-fnd and interleaved 
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BFS approach. In fgure 4.5 we compare the average running time of the hybrid union-

fnd variant to all other alternatives for q = 0.005. Besides indicating that the asymptotic 

scaling of the sequential BFS and union-fnd approach are equivalent, Figure 4.5 reveals 

that the involved constants are largest for the union-fnd approach. We attribute this to the 

additional overhead imposed by maintaining the union-fnd data structure. Furthermore, 

we obtained a more quantitative measure of the system size scaling of t̄ by ftting our 

numerical estimates to a power law in L with exponent κUF. The corresponding estimates 

for some values of q are summarised in table 4.1. Similar to the SBFS implementation, we 

do not exactly recover the predicted γ/ν exponent, but an e�ective intermediate exponent. 

It is also interesting to consider how the computational eÿciency of the UF variant varies 

with q (at criticality). Figure 4.6 reveals that the involved amplitudes decrease with q. We 

attribute this to the decreasing density of bridges with increasing cluster weight, which 

makes bridge removals less likely. 
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Figure 4.6: Cluster-weight dependence of the mean running time per operation for the UF 
Sweeny algorithm for two characteristic system sizes. 

4.2.4 Computational eÿciency of heat-bath and Metropolis variants 

An interesting question is in how far the computational eÿciency is infuenced by the 

actual variant of Sweeny’s algorithm, i.e. do we expect a di�erence between Metropolis 

and heat-bath variant of Sweeny’s algorithm? The preceding discussion was general 

enough such that we can conclude that the corresponding leading asymptotic scaling is 

in both cases Lγ/ν , due to the argument relying on the interplay between the union-fnd 

data structure rebuild, based on a breadth-frst search traversal, and the fractal cluster 

structure. However both implementations di�er in how the di�erent contributions to the 

running time t̄ are balanced. Let us frst consider the Metropolis case. The following is 

not meant to be an exact fnite-size expression for t̄, but is intended to summarise in a 
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concise way the di�erent running time contributions, � �√ √ 
t̄ ” ∼ ” P[e ∈ B] c1 min {1, q}Lγ/ν + c2(1− min {1, q})LdF −x2 

+ P[e ∈ C]c3L
dF −x2 +P[e < A]c4L

0 � �1 √ √∼ √ c1 min {1, q}Lγ/ν + c2(1− min {1, q})LdF −x2 

2(1 + q)
√ 

c3 q 
LdF −x2 + 

c4L0+ √
2(1 + q) 2 ⎛ � � ⎞√ ! √ √ 

Lγ/ν c1 min {1, q} c2 1− min {1, q} + c3 q 
+LdF −x2= √ √

2(1 + q) 

⎜⎜⎜⎜⎜⎜⎝ 2(1 + q) 

⎟⎟⎟⎟⎟⎟⎠ 
+ 

c4L0 . (4.2.3)
2

Here c1, c2, c3, c4 are appropriate q dependent constants. We used the exact asymptotic 

results for the density of bridges, candidate-bridges, non-bridges and candidate-non-

bridges, which we discuss in Chapter 5. Moreover, we assume that the UF Sweeny 

algorithm is implemented in such a way that in case of an attempted removal of an edge, 

the breadth-frst search carries a random bit indicating whether the removal of a bridge 

would be rejected. This allows the BFS to terminate whenever the smaller cluster is 

exhausted instead of exhausting both clusters, which then will be re-joined due to the 

rejection of the bridge-removal. The corresponding expression for the heat-bath variant of 

Sweeny’s algorithm can also be directly obtained and reads ⎛ √ ⎞√ √ √ + qc3c1 q/(1 + q)
! 

1+
c2 
q c4Lγ/ν +LdF −x2t̄ ” ∼ ” √ 

⎜⎜⎜⎜⎜ √ 
⎟⎟⎟⎟⎟+ L0 , (4.2.4)

2(1 + q) ⎝ 2(1 + q) ⎠ 2

Furthermore, we show in Figure 4.7 the amplitude for the Lγ/ν term (in units of c1) for 

both Metropolis and heat-bath. One can directly observe that the heat-bath chain avoids 

operations Lγ/ν in average more often than the Metropolis variant and is thus, from a 

purely computational point of view, the preferred option. 

We further note that the optimisation trick, outlined at the beginning of this chapter, does 

not further reduce the amplitude in front of the Lγ/ν term for the Metropolis algorithm. 
√ √

This is because, albeit the acceptance of an edge removal can be done in min { q,1/ q}
of all cases without determining whether the edge is a bridge or non-bridge, one still 

needs to re-build the union-fnd data structure following a bridge-removal. Thus in 

both cases unconditional and conditional acceptance of a deletion of a bridge, we have 
√ √ 

c1L
γ/ν computational e�ort. This happens in precisely a fraction min {1, q}/[2(1 + q)] 

of all cases, where the numerator is the acceptance probability of a bridge removal, the 

denominator the (asymptotic) density of bridges at the self-dual point. On the other hand, 

the heat-bath variant can gain from this optimisation trick, due to the unconditional 
√

rejection, which happens in a fraction 1 − psd(q) = 1/(1 + q) of all cases. We omit the 

corresponding extension of (4.2.4). We note that, all Sweeny implementations in this 

section use the Metropolis scheme. 
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Figure 4.7: Likelihood of an Lγ/ν operation (assuming c1 = 1) for the Metropolis and heat-bath 
UF Sweeny algorithm. Note that the corresponding expressions for Metropolis and 
heat-bath are given by (4.2.3) and (4.2.4), respectively. 

4.2.5 Dynamic connectivity algorithm 

The idea of maintaining a collection of trees, that represents the current spanning sub-

graph (spanning forest) forms the basis of recent fully dynamic connectivity algorithms 

such as [24, 67, 85]. We described in Chapter 3 a slight modifcation of the particular 

poly-logarithmic fully dynamic connectivity algorithm presented in [24]. In what follows 

we refer to this algorithm as DC-algorithm. The property that makes the algorithm 

interesting for our MCMC application is Theorem 3.5.1, stating that any insertion and 

deletion operation, as well as connectivity query, can be done with O((log(L))2) amortised 

computational complexity. This clearly outperforms any of the previously mentioned 

traversal based variants and reduces the computational slowing down to a poly-logarithm 

in the system size. Before we numerically investigate how the DC-algorithm performs, 

we remark that albeit the bound is amortised poly-logarithmic, the involved constants 

might be very large ( any O statement is strictly speaking only valid for a suÿciently large 

system size). Secondly, due to the maintenance of O(log(L)) levels, one expects a large 

memory footprint, which might hinder reaching system sizes for which the asymptotic 

poly-logarithmic dependence becomes signifcantly visible. 

Firstly, consider for the last time Figure 4.5, which compares the DC-algorithm variant to 

all other traversal-based implementations of Sweeny’s algorithm for the particular choice 

q = 0.005. For this choice of parameters, the DC-algorithm is the fastest approach to 

simulate Sweeny’s algorithm. Whereas one clearly recognises a power-law scaling for the 

UF, SBFS and IBFS implementation, one cannot see such linearity in the log-log plot for 

the DC-algorithm. The kink for system-sizes around 102 is caused by caching e�ects, i.e. 

for the system sizes in the frst regime most of the data structures can be eÿciently cached 

Metropolis Heat-bath 

0 1 2 3 4 
q 
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on the system used for the running time estimation. However, for larger system sizes this 

optimisation does not work and longer memory access times are imposed, resulting in a 

change of constants. 

Secondly, in Figure 4.8 we show the mean running time t̄ for the DC-algorithm for various 

values of q covering the range from tree-like confgurations, q = 0.0005, over percolation, 

q = 1, to more “compact” clusters for the Ising q = 2 or q = 3. As Figure 4.8 reveals, the 

overall running time increases with decreasing q. We know that for q > 1 there are more 

non-bridges than for q < 1, and hence the DC-algorithm can exploit the level-hierarchy 

slightly better for large q, i.e. distributing non-tree edges over several levels enhances 

the amortisation of replacement-edge searches. However, the edge-level hierarchy is, for 

practical purposes, too “heavy” in the regime q < 1, as we will show in the section devoted 

to algorithmic optimisations. In order to obtain a quantitative estimate for the constants 
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0 

Figure 4.8: Average run-time t̄ for several values of q and L for the Sweeny update using a 
dynamic connectivity (DC) algorithm based on splay trees. The lines are only visual 
aid. 

involved in t̄ we ftted the functional form 

t̄(L) = a log2L + b logL + c 

to the data. We made the observation that the estimates for c were consistent with 0, such 

that we fxed c = 0 for the subsequent analysis. Somewhat surprisingly, our fts yield 

b < 0; we interpret this as a result of the presence of correction terms and the amortized 

nature of the run-time bounds leading to the asymptotic scaling only being visible for 

very large system sizes. Similar observations have been reported for general sets of inputs 

in Ref. [67]. Considering the ratio a/b, we fnd that its modulus increases with q, yielding 

a value of about 0.3 for q = 0.0005 and about 0.71 for q = 2. This corresponds to the 

increasing fraction of non-tree edges for increasing q, resulting in an increase of traversals 

t̄
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of the edge level hierarchy with the associated O(log2L) complexity. Irrespective of this, 

as a consequence of the larger number of cluster-splitting operations, the total run-time is 

found to be largest for small q, as can be seen in Figure 4.8. 

One main obstacle with the DC algorithm is the involved space complexity. The algorithm 

maintains log(n) instances of the graph, however with hierarchically distributed edges. 

This large memory consumption hindered us from reaching larger system sizes and 

exploring the asymptotics further. More precisely, on the system environment used for 

the analysis, a problem instance corresponding to the simulation of the critical point 

on Z2 
1024 consumed 3.5GB of memory, whereas the other implementations had memory 

consumptions in the MB regime, c.f. [57] for more details. 

4.3 Dynamical critical behaviour 

Our previous discussion considered computational aspects of Sweeny’s algorithm, which 

turned out to be a non-trivial problem and demonstrated a rich interplay between geo-

metric properties and computational slowing down. Yet, one of the main motivations in 

studying algorithmic aspects of Sweeny’s algorithm is its very interesting and under some 

circumstances peculiar dynamical critical behaviour. In this section we elaborate on cer-

tain related aspects of its dynamical critical behaviour, both in Metropolis and heat-bath 

variant. However, as already outlined, both the heat-bath and Metropolis version of the 

Sweeny dynamics are in the same dynamic universality class. We remark that the study 

[21] of Deng et al. considers the heat-bath dynamics, whereas our numerical study in [53] 

is concerned with the Metropolis version. 

Markov chain Monte-Carlo methods close to a critical point su�er in many instances from 

critical slowing-down: the intrinsic time scales, such as autocorrelation times τexp, τint,f for 

an observable f , or even tmix [86], show power laws in the system size. One expects for 

second order phase transitions a scaling of the form ≈ Lz, where z > 0 is an appropriate 

dynamical critical exponent [44]. In this section we adopt the standard and defne time 

scales in units of a sweep, that is m elementary Markov steps compose one elementary 

sweep. As described in section 2.4, the Li-Sokal bound for the Sweeny dynamics estab-

lishes a rigorous lower bound on the exponential autocorrelation time τexp as well as for 

the integrated autocorrelation time of energy-like observables such as, the density of open 

edges, denoted by N . In the setting of this chapter, it roughly states (ignoring possible 

multiplicative corrections) that 

α 
zexp ≥ zexp,N ≥ zint,N ≥ 

ν
. (4.3.1) 

This establishes a theoretical connection between a divergent (normalised) heat-capacity, 

a property of stationary model, and slow stationary dynamics, a dynamical property of 

the Markov chain. Remarkably, for the random-cluster model in two dimensions and in 

particular for Z2, one can even obtain exact, though not rigorously established, expressions 

for the ratio α/ν by exploiting the corresponding Coulomb-gas formulation [51]. For a 
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graphical illustration consider Figure 4.3. More quantitatively, we remark that α/ν ≤ 0 

for q ≤ 2, [51]. Thus from a theoretical point of view, there is no enforced critical slowing 

down q ≤ 2. To emphasise this, we can contrast this with the spin heat-bath algorithm for 

the Ising model, where one has the analogue to the Li-Sokal bound for the magnetisation 

M: zint,M ≥ γ/ν = 2 − η at criticality, where η = 0.25 for the Ising model on Z2 [51]. 

Hence the theoretical restrictions are more severe and impose a drastic computational 

slowing down. Numerical results are even more “drastic“ and suggest zint,M > 2 or in 

fact zint,M = 2.172(6) [87]. Therefore, having a rather weak theoretical constraint for the 

Sweeny dynamics it is not a-priori clear whether and in how far the dynamics su�ers from 

critical slowing-down (at least for q ≤ 2). 

Indeed, in [21, 53] it was shown that for certain “global” observables one has a negative 

dynamical critical exponent for the corresponding integrated autocorrelation time, a 

phenomenon termed critical speeding-up in [21], notationally opposed to the typical 

critical slowing down. Note that critical slowing down and critical speeding up can 

however coexists, as pointed out in [21]. This is because critical slowing-down refers to the 

slowest mode, whereas critical speeding-up describes the e�ect that certain observables 

suppress projections onto slow modes with a shift towards faster modes with increasing 

system size. 

For instance, the observables considered in [53] are C1, the number of vertices in the 

largest connected component, and S2, the second cluster-size moment, i.e. the sum over 

the squares of cluster sizes [50]. These quantities arise naturally in the Fortuin-Kasteleyn 

or random-cluster model representation of standard statistical physics quantities such as 

the susceptibility or magnetisation. 

Here we show in Figure 4.9 the estimated normalised autocorrelation time ρC1
(t), where 

we used the standard cut-o� based estimation procedure, described in e.g. [44]. Firstly, 

note that the time t in this plot is measured in units of L single steps, that is 2L of 

such single-steps, in other words t = 2L, correspond to one sweep. Secondly, as can 

be clearly seen in the fgure, the correlations decay3 completely before the frst sweep, 

except for q = 2, where apparently the critical speeding-up e�ect disappears. One reason 

for this could be the marginality of q = 2, where α/ν = 0 in the sense of a logarithmic 

divergence of the normalised heat capacity, see Chapter 5. Furthermore, recall that 

α/ν < 0 for q < 2 as well as α/ν > 0 for q > 2). The speeding-up for q < 2 refects itself 

also in the system-size scaling of τint,C1 
(now measured again in sweeps), as shown in 

Figure 4.10. A completely analogous behaviour was observed for the second-cluster size 

moment observable S2, which can be linked to the susceptibility of the corresponding 

Potts model whenever q ∈ {2,3, . . . } [57, 50]. In table 4.2 we summarise the corresponding 

dynamical exponents for all values of q considered. Remarkably, as frst noted in [21], 

where comparable, the exponents for S2 and C1 (and N ) are smaller for Sweeny dynamics 

than for the Swendsen-Wang-Chayes-Machta algorithm [88]. Furthermore the critical 

speeding-up phenomenon is necessarily absent for the Swendsen-Wang-Chayes-Machta 

3Here we mean by decay, that the normalised autocorrelation function is below 1/e. 
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Figure 4.9: Estimated normalised autocorrelation function for the observable measuring the 
size of the largest connected component, measured in units of L MC-steps. The 
horizontal line shows the value of 1/e. 

dynamics. This is not surprising, as the intrinsic time scale in the latter dynamics consists 

of one combined (sequential) colour-bond update. We emphasise however, that the 

computational complexity of both approaches di�er signifcantly and as we will show 

below, a combined eÿciency measure has to be considered in order to conduct meaningful 

comparisons. However, before doing so, let us consider the bond-density, which turns out 

to be a very good probe for the slowness of the stationary dynamics. We emphasise, that 

the Li-Sokal bound in the form (4.3.1) does not apply to global observables such as C1 or 

S2, thus in this case there are no apparent non-trivial theoretical restrictions. 

In contrast, the bond-density N is ruled by the Li-Sokal bound, which forbids critical 

speeding-up for q ≥ 2 but leaves in principle the freedom for a negative dynamical critical 

exponents for q < 2. However our subsequent analysis of the case q = 1 shows that 

critical speeding-up is absent for N hence it is plausible that this is also the case for 

q ≥ 1. Still, in the absence of (rigorous) theoretical arguments, it is therefore interesting 

to investigate whether a similar speeding-up e�ect happens in this regime as for C1 and 

S2. The numerical studies [21, 53] showed that this is not the case and one merely has 

zint,N = 0 for q < 2, possibly also valid for q = 2, however with logarithmic divergence in L 

[21]. In order to understand what causes this slow relaxation it is illuminating to calculate 

τint,N exactly for q = 1. 

4.3.1 Exact calculations for percolation 

The solvability of the case q = 1 stems from the independence of edge updates or equiva-

lently from the factorisation of the probability distribution over independent Bernoulli 

trials with parameter p. For the time being, denote the transition matrix of the heat-bath 
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Figure 4.10: Integrated autocorrelation time of the C1 observable for Sweeny-Metropolis dy-
namics. The negative slope for q < 2 in the log-log plots indicates zint,C1 

< 0, see 
text below. The solid lines corrspond to least squares fts. 

q zint,S2 
zint,C1 

zint,N 
SWz [88]int,S2 

α/ν 

0.0005 -1.12(1) -1.11(1) 0.01(1) − -1.958 
0.005 -1.09(1) -1.09(1) 0.01(1) − -1.868 
0.05 -1.04(1) -1.05(2) 0.01(1) − -1.601 
0.2 -0.86(1) -0.88(1) -0.01(1) − -1.247 
0.5 -0.63(1) -0.64(2) 0.00(1) − -0.878 
1.0 -0.33(1) -0.35(1) 0.00(1) 0 -0.500 
1.5 -0.11(2) -0.11(2) 0.06(2) 0 -0.227 
2.0 0.03(3) 0.02(3) 0.13(2) 0.14(1) 0.000 
3.0 0.44(4) 0.43(4) 0.45(4) 0.49(1) 0.400 
4.0 0.75(6) 0.73(10) 0.73(6) 0.93(2) 1.000 

Table 4.2: Estimated dynamical critical exponents zint,O for the two-dimensional RCM at 
SWcriticality and O = S2,C1,N for a range of q values. The values shown for z forint,S2 

the Swendsen-Wang-Chayes-Machta algorithm are actually related to the nearest-
neighbour connectivity observable E0, but it was reported in Refs. [88, 50] that 
the observables E0 , N and S2 share the same dynamical critical exponent for this 
algorithm. 

chain with parameters 0 < p < 1 and q = 1 by P , the probability measure over Ωm by 

Pp, and the corresponding expectation by Ep[·]. Furthermore we adopt the standard 

notation and write [m] for the set of integers {1,2, . . . ,m}, where m is the number of edges 

of the underlying graph. Moreover, the analysis is somewhat more convenient when 

we consider the state space as the hypercube Ωm = {0, 1}m together with the convention 

that E = {e1, e2, . . . , em}. This is no restriction as clearly any confguration x ∈ Ωm, can be 

uniquely related to a sub-set of edges (or spanning sub-graph) via the prescription xi = 1 

if and only if edge ei is open. In order to derive a set of eigenfunctions of P , recall that we 
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P 
can write P = 1/m i∈[m] Pi , where 

Pp[y] � � 
Pi (x, y) = 1{y∈Ωx,i } � � = Pp x|y ∈ Ωx,i x,y ∈ Ωm,Pp Ωx,i 

where we used the notation introduced in section 2.2, that is Ωx,i is the set of confgurations 

that agrees with x at all coordinates, except possibly i. We therefore obtain the useful 

relation for any observable f :Ωm → R: 

(Pif )(x) = Ep[f |Ωx,i ] = Ep[f |{xj }{j,i}], 

that is the expectation of f under the condition that all edges besides ei have status (open 

or closed) as specifed by x. Now, consider for i ∈ [m] 

xi − p
χi (x) ≡ χ{i}(x) ≡ p . (4.3.2) 

p(1− p) 

One can easily verify that Piχj = 1{i,j}χj for i, j ∈ [m], that is χj is an eigenfunction of Pi 
with eigenvalue 1{i,j}. Hence we have � �1 

P χj = 1− χj. m Q
We can furthermore generalise and defne χS ≡ i∈S χ{i} for S ⊆ [m] with the convention 

χ∅ ≡ 1, and obtain, ! 
|S |

P χS = 1− χS. m 

We conclude that {χS }{S⊆[m]} is a set of eigenfunctions of P . In fact, this set of functions is � � 
a orthogonal and normal (orthonormal) basis of the inner product space RΩm,h·, ·ip , i.e., 

one can additionally verify that hχS,χT ip ≡ Ep[χSχT ] = 1{S=T }. This in particular allows 

us to expand any function f :Ωm → R: X 
f = χSf̂ (S), (4.3.3) 

S⊆[m] 

where f̂ (S) ≡ Ep[f χS ] is known as a Fourier-Walsh coeÿcient, c.f. [89, 90]. Note that in 

what follows we suppress the p dependence. Indeed, the particular choice of {χS }{S⊆[m]} is 

closely related to the discrete Fourier analysis on the hypercube. For instance, we have P 
E[f 2] = S⊆[m] f̂ (S)2, E[f ] = f̂ (∅) as well as X 

Var[f ] = E[f 2]− E[f ]2 = f̂ (S)2 , (4.3.4) 
S⊆[m],S,∅ 

which is known as Parseval’s theorem. One can also express the autocorrelation function 

at time lag t ≥ 1 in terms of the Fourier-Walsh coeÿcients, or equivalently in terms of the 
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energy spectrum of the function f : 

Cf (t) = h(I− Π)f , P k (I− Π)f i 

= hf , (P − Π)|t|f i !tX |S |
= 1− f̂ (S)2 , (4.3.5) 

m 
S⊆[m],S,∅ 

m !tX k 
= Ef (k) 1− , 

m 
k=1 

where I is the identity matrix and we used (I −Π)2 = (I −Π) as well as ΠP = P Π = Π. Recall 

that (Πf )(x) = E[f ] for all x, hence Π is the orthogonal projection in (R|Ω|,h·, ·ip) onto the 

constant functions and consequently I − Π the orthogonal projection in the same inner 

product space onto the orthogonal complement of constant functions, which correspond 

to functions f that have E[f ] = 0. Moreover, we defned the energy spectrum Ef , following 

[90], by X 
Ef (k) ≡ f̂ (S)2 , k ∈ [m]. 

S⊆[m],|S |=k 

We remark that the above expression for Cf (t) reduces to Parseval’s theorem for t = 0. 

Finally, we can express the integrated autocorrelation time τint,f of a function f in terms 

of the Fourier-Walsh coeÿcients or equivalently the energy spectrum: 

X1 ∞ Cf (t) 
=τint,f +

2 Cf (0)
t=1 
∞ m !t1 XX Ef (k) k 

= + P 1− ,m2
t=1 k=1 `=1 Ef (`) m 

= 
mX ∞X1 Ef (k)

+ Pm2 `=1 Ef (`)k=1 t=1 

!t
k

1− , 
m 

= 
mX � �1 Ef (k) m 

+ P − 1m2 k`=1 Ef (`)k=1 

= 
mX 

m 
k=1 

! 
Ef (k) 1 1 P − .m k 2`=1 Ef (`) 

Let us now illustrate how the above spectral-formalism can be applied to the number Pmof open edges, N (x) = i=1 xi . Besides being an illustrative example, it also provides us 

with an understanding why τint,N = τexp,N = τexp. To begin with, we need to determine 

the Fourier-Walsh coeÿcients N̂ (S): 

mX p
N̂ (S) = E[xiχS ] = 1{|S |=1} p(1− p) + pm1{S=∅}. 

i=1 
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This immediately yields 

m

N = pm + p(1− p) χ{i}, 
i=1 

Varp[N ] = mp(1− p), 

p X 

EN (k) = 1{k=1}mp(1− p), � �t1 −t/τexpρN (t) = 1− = e , 
m 
1 

τint,N = m − .
2

A few comments are in order. Firstly, the expectation is trivially E[N ] = pm, and the 

variance follows also directly from the independence of the model. Secondly, the energy 

spectrum is localised on k = 1, which is precisely on eigenfunctions of the form χ{i} and 

corresponds to the second largest eigenvalue, and hence to τexp. A direct consequence is 

that the normalised autocorrelation function ρN (t) is a pure exponential with “scale” τexp. 

This in turn implies that τint,N ∼ τexp,N = τexp. In general, we expect an observable with an 

energy spectrum strongly localised on small values of k around k = 1, to have a normalised 

autocorrelation function very close to a pure exponential and an integrated autocorrelation 

time approximately equal to the corresponding exponential autocorrelation time. Lastly, 

we emphasise that this result is independent of p. When we consider p = 1/2 and Z2 
L, 

we can equivalently summarise the above in terms of the associated dynamical critical 

exponents 

zexp,N = zint,N = zexp = 0. (4.3.6) 

Now returning to q > 1, it seems plausible to expect that the correlations have to be at least 

as large as for q = 1 (the contrary seems unphysical). Hence, one naturally generalises that 

one has zexp,N , zint,N ≥ 0 for q ≥ 1. 

Furthermore, our observation that N is a “good” probe for the slowest mode when q = 1, 

should also generalise to q > 1, albeit not necessarily as “perfect” as for q = 1. Indeed, 

the authors of [21] numerically studied the Sweeny dynamics on Z2 for q , 1, and found L 

in particular for all values of q studied in the regime (0,3.5] that the autocorrelation 

function is very close to a pure exponential, and conclude that zintN ≈ zexp (the former 

statement was also observed by us in [53] for the Metropolis dynamics and additionally 

for q = 4). Moreover, it is conceivable that at least in the regime 1 < q < 2 (on Z2) the L

eigenvalue spectrum is only weakly perturbed from the case q = 1, possibly only causing 

poly-logarithmic deviations in the spectrum. However, albeit being physically plausible, 

to our knowledge there has been no rigorous underpinning of similar observations, to 

date. 

Here we establish a new rigorous result and prove that τexp,N = τexp for the heat-bath 

chain for the random-cluster model in the regime q ≥ 1. In fact we prove a more general 

statement that extends to monotone heat-bath chains such as the Glauber dynamics for 

the Ising model [48]. We note already here, that the regime q < 1 seems notoriously 
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hard to treat analytically/rigorously. This mainly follows from the non-validity of the 

Fortuin-Kasteleyn-Ginibre (FKG) inequality. Further, it is conjectured that certain aspects 

in the regime q < 1 show negative association, opposed to the positive association property, 

which is closely related to the FKG inequality [27, 91]. However, the numerical studies 

[21, 53] indicate that zint,N = 0 also for q < 1. 

4.4 Projection Lemma and proof of τexp,N = τexp for the heat-

bath chain for q ≥ 1. 

In this section we prove that the bond-density observable N is indeed a good probe for 

the slowest mode of the heat-bath chain, i.e. we show that N has positive projection 

onto an increasing eigenfunction corresponding to the second-largest eigenvalue, of the 

transition matrix P of the heat-bath chain, for q ≥ 1. We actually prove the slightly more 

general statement for strictly increasing functions. By projection, we refer, as in (4.3.5), to 

a spectral expansion of the normalised autocorrelation function, that is one has 

|Ω|X Ep,q[N fj ]2 

λtρN (t) = j , (4.4.1)P|Ω|
j=2 k=2 Ep,q[N fk]2 

where Ep,q[·] denotes the expectation with respect to the (stationary) random-cluster model 

measure for bond-density p, cluster weight q, and in this section {fj }
|
j
Ω

=1
| is a complete and 

orthonormal set of eigenfunctions of the transition matrix of the corresponding heat-bath 

chain. Furthermore, the eigenfunctions are sorted in decreasing order with respect to 

their eigenvalues4 {λj }
|Ω|
j=1. 

Before we prove our Projection Lemma, recall that function f : Ω → R is increasing, 

if f (A) ≤ f (B) whenever A ⊆ B. Analogously, we call a function strictly increasing if 

f (A) < f (B) whenever A ⊂ B. In order to prove the desired Projection Lemma we need 

a result originally used in [92] for the Ising heat-bath dynamics, which states that the 

second largest eigenvalue has an increasing eigenfunction for q ≥ 1. The generalisation to 

the heat-bath dynamics for the monotone random-cluster model (q ≥ 1) is straightforward, 

however we provide the details of the proof for completeness. 

Lemma 4.4.1. (Peres in [92], Lemma 3). The second largest eigenvalue λ2 of the transition 
matrix P of the heat-bath chain for random-cluster model on a fnite graph with cluster weight 
q ≥ 1 and bond-density 0 ≤ p ≤ 1 has an increasing eigenfunction. 

Proof. Firstly, we need the result that when f is increasing then P f is also increasing. To 

show this, note for A ⊆ B we have � � X 
P f (A) = P (A, C)f (C) 

C∈Ω 

−1/τj4In what follows we sometimes use the parametrisation λj = e . Recall, it can be shown that all 
eigenvalues of heat-bath chains are non-negative, c.f. [45]. 
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= EP (A,·)[f ] 

≤ EP (B,·)[f ]� � 
= P f (B). 

The inequality EP (A,·)[f ] ≤ EP (B,·)[f ] for any increasing function f can be easily shown via a 

coupling [27]. The monotonicity for q ≥ 1 allows for the construction of a coupling (C1,C2) 

of P (A, ·) and P (B, ·) for any A ⊆ B such that P[C1 ≤ C2] = 1, i.e. it preserves the order 

between A and B, see for instance [27]. Denote the corresponding probability measure of 

(C1,C2) by QA;B(C1,C2). We therefore obtain X 
EP (A,·)[f ] = P (A,C)f (C) 

C∈Ω ⎛ ⎞ X X 
= 

⎜⎜⎜⎜⎜⎝ QA;B(C,D) 
⎟⎟⎟⎟⎟⎠f (C) 

C∈Ω D∈ΩX 
= QA;B(C,D)f (C) 

C,D∈Ω: 
C⊆DX 

≤ QA;B(C,D)f (D) 
C,D∈Ω: 
C⊆D ⎛ ⎞ X X 

= f (D) 
⎜⎜⎜⎜⎜⎝ QA;B(C,D) 

⎟⎟⎟⎟⎟⎠ 
D∈Ω C∈Ω 

= EP (B,·)[f ]. 

The above demonstrates that P f is increasing whenever f is increasing, for q ≥ 1. Now, 

let f be any increasing function with Ep,q[f ] = 0. Furthermore, recall that our spectral P|Ω|discussion in Chapter 2 showed that we can write f = j=2 qjfj , where qj ≡ Ep,q[fjf ] is the 

projection of f onto the j’th eigenfunction fj (this is valid for any function f :Ω → R, and 

not restricted to increasing functions). Iterating this yields 

|Ω| !t |Ω|
1 X λj X 
λt 
P tf = qj fj → g ≡ qjfj 1{λj =λ2}, (4.4.2)

λ22 j=2 j=2 

for t →∞, where we explicitly used that the heat-bath chain for the random-cluster model 

has no non-negative eigenvalues, hence 1 ≥ λj/λ2 ≥ 0 for j ≥ 2, c.f. [45] or Chapter 2. The 

crucial point is that because f increasing implies P f increasing, one also has, by induction, 

that P tf is increasing for t ≥ 1, which in particular also holds in the limit t →∞, thus 

g is increasing. Now the limit P tf being a linear combination of eigenfunctions with 

corresponding eigenvalue λ2, implies that it is also an eigenfunction of eigenvalue λ2, 

as long as g is not zero. This can be assured by choosing f non-orthogonal to at least 

one eigenfunction of λ2. To see that it is indeed possible to fnd such an increasing� � 
function f , consider f = f2 +C N − Ep,q[N ] , where N is the number of open edges, i.e. P 
N (A) = e∈E 1{e∈A} for A ⊆ E. It is clear that Ep,q[f ] = 0 and q2 , 0, because the fj ’s are an 
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4.4. Projection Lemma and proof of τexp,N = τexp for the heat-bath chain for q ≥ 1. 

orthonormal basis in the inner product space (R|Ω|,h·, ·ip,q). Additionally we claim that we 

can fnd C > 0 suÿciently large, such that f is increasing, independent of whether f2 is 

increasing or not. To begin with, defne 

Δ ≡ Δf ≡ min f2(B)− f2(A), 
A,B∈Ω,A⊂B 

and consider frst the case Δ ≥ 0 with arbitrary A,B ∈ Ω such that A ⊂ B: ⎛ ⎞ X 
f (B)− f (A) = f2(B)− f2(A) +C 

⎜⎜⎜⎜⎜ 1{e∈B} − 1{e∈A} 
⎟⎟⎟⎟⎟ ≥ Δ +C > 0,⎝ ⎠ 

e∈E 

which is valid for any C > 0. The frst inequality follows from the defnition of Δ and P 
the fact that 1{e∈·} is a strictly increasing function, that is it di�ers by at least 1 fore 

any A ⊂ B. For the case Δ < 0, we choose C > −Δ > 0, and conclude likewise that f is 

increasing. � 

The next Lemma states our main result, which is based on ideas of [92]: 

Lemma 4.4.2. (Projection Lemma). Let P be the transition matrix of the heat-bath Markov 
chain for the random-cluster model on a fnite graph with 0 ≤ p ≤ 1 and q ≥ 1, and let g be an 
increasing eigenfunction corresponding to the second largest eigenvalue. Then for any strictly 
increasing function f 

Ep,q[f g] > 0. 

Proof. To start with, we note that if f is strictly increasing and g is increasing, one has 

for some α > 0 suÿciently small, that also f − αg is strictly increasing. To see this, note� � 
that for fnite Ω, one can simply choose α > 0 such that f (B)− f (A) > α g(B)− g(A) for all 

A,B ∈ Ω such that A ⊂ B, see also [92]. 

Additionally we need the Fortuin-Kasteleyn-Ginibre (FKG) inequality [27]: It is well 

known that for q ≥ 1 the random-cluster model the FKG inequality holds, stating that 

for two increasing functions f , g one has Ep,q[f g] ≥ Ep,q[f ]Ep,q[g]. The proof of the above 

Lemma yields a construction of g which in particular shows that Ep,q[g] = 0, which in turn 

implies 

Ep,q[(f − αg)g] ≥ Ep,q[f − αg]Ep,q[g] 

Ep,q[f g]− αEp,q[g2] ≥ Ep,q[f ]Ep,q[g]− αEp,q[g]2 

Ep,q[f g]− αEp,q[g 2] ≥ 0 

which further implies 

Ep,q[f g] ≥ Ep,q[g 2]α > 0, P 2note Ep,q[g2] = j Ep,q1{λj =λ2}q > 0, as it projects on at least one (normalised) eigenfunc-j 

tion of eigenvalue λ2, by construction. � 
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Chapter 4. Computational and statistical analysis of Sweeny’s algorithm 

This clearly applies to the bond-density N , being manifestly strictly increasing. This 

allows us to show that the (normalised) autocorrelation function of N is for large t 

equivalent to a constant times e −t/τexp , more precisely: 

Corollary 4.4.3. The normalised autocorrelation function for the bond-density N has the 
following asymptotics 

−t/τexpρN (t) ∼ W2(N )e for t →∞, 

where W2(N ) > 0 is a constant. 

Further, 

τexp,N = τexp. 

Proof. Denote by B = {fj }
|
j
Ω

=1
| the above orthonormal eigenbasis of P . Pick an eigenfunction 

of B that corresponds to the second-largest eigenvalue λ2 and for which g has non-zero 

projection, denote it by fk (hence qk > 0). Write J ≡ [m] \ {k}, where m is the number 

of edges in Gq, as well as S2 ≡ {i ∈ [m] : λi = λ2} and construct B0 ≡ {fj |j ∈ J } ∪ {g̃}, 

where g̃ = g/ Ep,q[g2]. Now, one can verify that B0 is a normalised eigenbasis of P (not 

necessarily orthogonal), hence we have X 
N = Ep,q[g̃N ]g̃ + Ep,q[fj N ]fj . 

j∈J 

Recall that we have for t ≥ 1 

CN (t) hN , (P − Π)tNip,q
ρN (t) = = (4.4.3)

Varp,q[N ] hN , (I− Π)Nip,q 

Furthermore one has X 
hN , (P − Π)tNip,q = λt 2 Ep,q[g̃N ]2 + λtj Ep,q[fj N ]2 . 

j∈J \{1}X 
hN , (I− Π)Nip,q = Ep,q[g̃N ]2 + Ep,q[fj N ]2 . 

j∈J \{1} 

−t/τj −t/τexpNow, inserting this into (4.4.3) and using λj = e and λ2 = e we obtain 

−t/τexp + 
P −t/τje eEp,q[g̃N ]2 j∈J \{1} Ep,q[fj N ]2

ρN (t) = P (4.4.4)
Ep,q[g̃N ]2 + j∈J \{1} Ep,q[fj N ]2 ⎛ P ⎞ 
Ep,q[g̃N ]2 + j∈S2\{k} Ep,q[fj N ]2 

−t/τexp∼ e
⎜⎜⎜⎜ P ⎟⎟⎟⎟⎠ ,⎝Ep,q[g̃N ]2 + j∈J \{1} Ep,q[fj N ]2 

where the term in the parenthesis equals W2(N ), which is positive because all terms are 

non-negative and at least Ep,q[g̃N ] is positive, by the Projection Lemma. The second part 
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follows directly from (4.4.4) in combination with the standard relation, c.f. [44], 

t 
τexp,N = limsup . 

t→∞ − log |ρN (t)|

� 

As mentioned previously, this result was implicitly assumed in [15, 53], but albeit being 

a plausible assumption has to our knowledge not been proven so far. In [15] it was 

actually observed that τint,N ∼ τexp,N and hence τintN ∼ τexp, which is supported by the 

observation that the normalised autocorrelation function of N is very close to a pure 

exponential. This suggests that the projections on eigenfunctions with smaller eigenvalue, 

or equivalently, smaller exponential autocorrelation time, are strongly suppressed in 

comparison to the projection on eigenfunctions with exponential autocorrelation time 

τexp. Further support for this picture comes from the preceding exact analysis of the 

percolation case, q = 1, which concluded with (4.3.6). Thus for the case q = 1 one has that 

ρN (t) is precisely a pure exponential. We believe this is an interesting theoretical problem 

with practical impact and we intend to approach it in a future project. 

We remark that the above arguments are not restricted to the monotone random-cluster 

model, but can naturally be extended to monotone heat-bath chains, for instance the 

heat-bath chain for the ferromagnetic Ising model (with and without magnetic feld). PnHere the magnetisation M = i=1 σi/n can be used as the strictly increasing function, 

hence τexp,M = τexp. We conclude the discussion on the dynamical critical behaviour 

of Sweeny’s algorithm with Figure 4.11, which summarises all our zint estimates of ob-

servables S2,C1,N for some representative values of q in the entire second-order regime 

0 < q < 4. The sharpness of Li-Sokal’s bound for q ≥ 1 is clearly distinctive, where the 

apparent violation for q = 4 is a consequence of a combination of imposing a power-law on 

the numerical data and known multiplicative logarithmic corrections for q = 4 (at least for 

stationary quantities). A similar “violation” was observed in [93, 94] for Swendsen-Wang 

dynamics. 

4.5 Overall eÿciency 

The preceding discussion shows that from a purely statistical point of view, i.e. con-

sidering correlations of certain standard observables, Sweeny’s algorithm seems slightly 

more favourable than the Swendsen-Wang-Chayes-Machta approach. However, because 

an elementary update-step in the Sweeny dynamics has computational complexity that 

increases, in one or the other form, with the system size, it is not enough to compare m 

Sweeny steps, or one sweep, to one complete Chayes-Machta iteration (activating con-

nected components with subsequent percolation on the active-vertex-induced spanning 

sub-graph.) Instead, one should consider a measure that quantifes, say, autocorrelation 

times measured in computer time. This will give MCMC practitioners a way of judging 

which method produces statistically-independent samples of the desired observable f 
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Figure 4.11: Dynamical critical exponents for the integrated autocorrelation time of observables 
S2,C1,N together with the exact value of α/ν, corresponding to the Li-Sokal 
bound for the Sweeny dynamics. Both, the vertical and horizontal gray line, are 
only meant to be a visual aid. 

in shorter time. A reasonable eÿciency-measure was analysed by us for the Sweeny 

dynamics (in Metropolis variant) in [53], where we considered, for a given observable f , 

Tf ≡ τint,f t, ¯ (4.5.1) 

which is the integrated autocorrelation time of f in units of computing time on a specifc 

system. Now the (asymptotically) smaller critical correlations for the Sweeny dynamics 

on Z2 will only extend to Tf when the computational e�ort scales suÿciently weak L 

with L. In particular, the poly-logarithmic fully dynamic connectivity algorithm yields, 

for suÿciently large L, a running time dependence of L that is weak enough to extend 

the better dynamical critical behaviour to the overall eÿciency measure. However, the 

involved constants might forbid the visibility of this e�ect for practical system sizes. To 

check whether such a practical limitation actually occurs, we estimated T and summarised 

the results in Figure 4.12. Here we show the ratio of Tf for Sweeny dynamics to Tf for 

Swendsen-Wang-Chayes-Machta (SWCM) dynamics, for the observables N and S2. The 

reason for the decision to consider ratios, is that we expect specifc system dependencies 

of the computing device, used to perform the test, to be asymptotically insignifcant, when 

considering ratios. This follows from the expectation that the involved constants might 

cancel or at least become asymptotically irrelevant when considering ratios of running 

times. A few comments to Figure 4.12 are in order. Firstly, as expected, the union-fnd 

approach does not yield a more eÿcient variant than the SWCM algorithm for any value of 

q considered. Secondly, the involved constants in the DC implementation seem to be too 

large to observe an decrease of the ratio with L, which should, at least from a theoretical 

(asymptotic) point of view, be the case for all choices of q considered. Finally and most 
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surprisingly, the interleaved breadth-frst search seems to be the most eÿcient Sweeny 

variant for q = 1,2,3,4 and shows even an actual decrease of the ratio for q = 4, where 

the exponent dF − x2 = −1/8 < 0, thus the expected computational e�ort saturates to a 

constant thus becoming, in average, asymptotically equivalent to the SWCM approach. 

Actually, we have dF − x2 ≤ 0 for q ' 3.84, however the di�erence between dynamical 

critical exponents for the relevant observables in Sweeny and SWCM dynamics are too 

small to see this e�ect clearly. 
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Figure 4.12: E�ective run-times T according to Eq. (4.5.1) for the di�erent implementations 
relative to the time TSW of the Swendsen-Wang algorithm. Dashed lines correspond 
to the running time to generate an independent sample of the observable N and 
dotted lines to samples of S2. 

4.6 Algorithmic optimisations at criticality 

In this section we describe two heuristic optimisations that turned out to be particularly 

benefcial for simulating critical models. However, we stress, that neither improves any 

asymptotic running time scaling, that is the leading size dependence remains in both 

instances the same. Nevertheless, we show how the involved constants, both regarding 

to space and time complexity, can be reduced. This in turn allows one to advance to 

larger system sizes, previously hindered by memory or running time restrictions. We will 

use the optimisations in this section in a future study of the Sweeny dynamics in three 

dimensions. Further, we remark that the results are preliminary and a detailed study will 

be presented elsewhere. 
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Chapter 4. Computational and statistical analysis of Sweeny’s algorithm 

4.6.1 Cluster identifers and interleaved breadth-frst search 

We frst consider the hybrid union-fnd and interleaved breadth-frst search approach, 

which su�ered from the need of rebuilds of the tree-data structure representing the 

connected components in the union-fnd data structure. We provided scaling arguments 

that showed that at the self-dual point the bridge-deletion operation has a typical running 

time of order Lγ/ν . This destroys asymptotically the improved LdF −x2 running time scaling 

of all other operations. In order to circumvent this obstacle, we replace the union-fnd 

data structure by a data structure, say an array, that assigns a cluster-identifer (CI) to 

any vertex. Further, we assume the availability of a data structure that is capable of 

returning the cluster mass, associated to a given CI, in constant time. It is easy to see, that 

connectivity queries can be answered by comparing CI’s, that is two vertices are connected 

if and only if their CI’s equal. Thus in case of edge-insertions, we can eÿciently, without 

any data structure modifcation, decide whether the edge is pivotal or not. However, in 

case we decided to insert the edge, which we assume to be also pivotal, that is it merges two 

clusters, we need to update the CI data structure. More precisely, the components, now 

joined by the inserted bridge, have di�ering CI’s. Due to the fact that we can determine the 

cluster mass of a given CI in constant time, we can directly, and only, start an exhaustive 

breadth-frst search at the vertex incident to the smaller cluster that sets the CI’s of all 

vertices encountered to the CI of the larger cluster. Additionaly, we need to update 

appropriately the data structure mapping CI’s to cluster masses. This can be easily done 

with constant computational e�ort. 

Now, compared to the union-fnd data structure, we deteriorated the running time of 

insertions, however compared to the pure interleaved breadth-frst search variant, we 

frstly, improved the determination of the type of an edge to a constant running time 

which previously demanded a interleaved breadth-frst search. Secondly, we halved the 

running time of any BFS involved, because we did not need an interleaved approach for 

this to work. Yet, the main advantage comes into the play, when considering deletions. As 

for the union-fnd approach, we perform two simultaneous breadth-frst searches in order 

to decide whether the edge under consideration is pivotal to the current confguration 

or not. Both BFS’s terminate as soon as their shells overlap, or the smaller is exhausted. 

In addition to that, both BFS’s maintain a list of visited vertices. In the case one BFS 

terminates without “touching” the other, we conclude that the edge we try to remove is 

pivotal. In case this deletion is accepted, we simply iterate over all vertices in the list 

collected by the BFS corresponding to the smaller cluster and assign to each of the vertices 

the new CI of the newly created cluster. Of course, we also need to update the cluster 

masses associated to the old CI and add an entry for the newly created CI. This method 

takes, in both cases, deletion of a bridge and non-bridge, typically LdF −x2 running time, 

and is thus perfectly exploits the fractal cluster structure. 

We conclude that the above interleaved BFS in combination with cluster-identifers has 

typically running time per operation t̄ ≈ LdF −x2 . In Figure 4.13 we show results from a 
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4.6. Algorithmic optimisations at criticality 

numerical comparison of t̄ for both, the optimised and plain, versions in 2D. We obtain 

roughly a factor of two improvement when using the optimised version. 
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Figure 4.13: Comparison of expected running times per operation between the cluster-id opti-
mised and plain interleaved breadth-frst search variants of Sweeny’s algorithm. 
The running time was averaged over 104 steps, and an appropriate relaxation 
phase was discarded. The parameters p and q were fxed to the self-dual point, and 
the underlying graph is Z2. Note that the measurements were done on a di�erent L
system than the previous running time analysis. Thus the overall constants might 
have changed and a direct comparison to the other results is not possible. The 
lines are only for visual aid. 

We can also roughly quantify how the di�erent runtime contributions contribute to t̄ at 

the self-dual point, on Z2, in other words we have for suÿciently large LL

t̄ ” ≈ ” P[e ∈ B]c1L
dF −x2 +P[e ∈ C]c2L

dF −x2 

c1+ P[e ∈ B̄] LdF −x2 +P[e ∈ C̄]c3L
0 

2 √ ! 
3c1 c2 q c3LdF −x2 + L0∼ + √ √ .
4 2(1 + q) 2(1 + q)

A few comments are in order: The frst term, corresponding to e ∈ B, has no dependence 

on whether the deletion is accepted or not, because in both cases we terminate whenever 

the smaller cluster is exhausted, and both BFS’s collected a list of visited vertices, which 

has to be emptied in any case (deletion or not). The non-bridge term (e ∈ C) has a 

di�erent constant c2, which corresponds to the case where two interleaved BFS’s merge, 

which indeed has LdF −x2 scaling but not necessarily the same constant. The third term, 
¯corresponding to candidate-bridges (e ∈ B), has a factor of c1/2, as only one exhaustive 

BFS on the smaller cluster is needed, opposed to the case e ∈ B. Finally, the case of 
¯candidate-non-bridges, e ∈ C can be done with constant computational e�ort, as the query 

is constant and inserting e does not need any change in the cluster id data structure. 
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We also performed a numerical check of the running time improvement in 3D at the 

estimated location of a second-order phase transition. More precisely we considered 

bond-percolation (q = 1) with bond-density p = 0.24881182, recently estimated in [95]. 

Additionally we analysed q = 2.2 with p = 0.4677, corresponding to a second-order phase 

transition in 3D [96]. Figure 4.14 shows the corresponding numerical comparison. As for 

the 2D case these results indicate a speed-up of a factor of roughly 2, which is remarkable 

keeping in mind the simplicity of the approach. 
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Figure 4.14: Expected running time comparison for the BFS implementation, with and without 
cluster-id data structure. The underlying graph is Z3 and the value of p, for the L 
two choices of q, was fxed to the corresponding conjectured (estimated) location 
of a second-order phase transition. See main text. 

4.6.2 One-level dynamic connectivity algorithm 

Next, we consider the dynamic-connectivity algorithm approach to Sweeny’s algorithm. 

From the general discussion in section 3.5 it is clear that the level hierarchy is essential 

in that it precisely assures that a given edge does not carry too much computational cost 

when amortising the cost of the entire operation sequence. However, having a memory 

requirement that, in addition to the typical linear scaling in the volume (number of edges), 

increases logarithmically with the volume, clearly complicates the advance towards large 

system sizes, in practise L ≥ 2048. 

Now, one might wonder whether the fractal structure of critical Fortuin-Kasteleyn cluster 

is dense enough for the connectivity algorithm to be able to hierarchically distribute the 

connected components over the entire O(log(n)) levels. Recall that, following the deletion 

of a tree edge, all tree edges incident to the smaller of the two (temporarily) di�erent trees 

are also added to the next higher level. This intuitively moves edges in denser regions to 

higher levels. Additionally we fnd that typically the smaller fragment has asymptotically 

a vanishing fraction of the original cluster mass. 
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We therefore studied how edges are typically distributed over the level hierarchy and fnd 

that for all system sizes considered here (L ≤ 1024), that the majority of all edges resides 

in levels weakly increasing with the number of vertices. We hence set the number of levels 

to 1, that is the algorithm operates completely without the edge level hierarchy. We show 

in Figure 4.15 a running time comparison between the “one-level” heuristic and standard 

version of the DC algorithm. 

Remarkably, our numerical results confrm that for all three test cases, corresponding to 

the regimes q < 1 and q > 1 as well as the marginal case q = 1, the heuristics is useful and 

eÿcient, that is it speeds up the algorithm at least by a factor of 2. We emphasise that 

this comes in addition to the reduction of the space complexity, i.e. the one-level version 

maintains only one instance of the data structure and not log(n). However, we are not able 

to exclude the possibility that the optimised variant still has a worse than poly-logarithmic 

computational complexity in the setting of critical random-cluster models. In other words, 

it is also conceivable that the overall e�ect of operating with only one level is a drastic 

reduction of the involved constants in addition to a possibly polynomial computational 

complexity. We therefore revert fnal conclusions to a more careful (analytical) future 

study in the mean-feld setting, that is for the random-cluster model on the complete 

graph [97]. 
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Figure 4.15: Running time comparison of the DC implementation with and without the “one-
level” heuristics. 

Our study of algorithmic optimisations revealed a further interesting structural property 

of critical random-cluster models (presumably also beyond Z2) and concerns the number L

of non-tree edges in the smaller of two disconnected clusters, attached to two neighbouring 

vertices. One reason for considering this quantity is the di�erence in approaches to 

fnding a reconnecting edge between a BFS or DFS approach and the DC algorithm. We 

already mentioned that the DC algorithm can iterate between non-tree edges with at most 
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logarithmic (in n) computational e�ort, independent of their graph-theoretic distance 

in the actual spanning sub-graph. On the other hand, we do not have this guarantee 

in traversal based methods, which in the worst-case need to iterate over a huge part of 

the edges belonging to the cluster. Now, following a cluster break-up, the fragments are 

typically very unequal in size, in other words the mass of the smaller cluster is strongly 

suppressed with respect to the mass of the larger cluster. A natural question concerns 

the non-tree edges in the smaller fragment. Intuitively, we expect this to be very likely a 

branch or dangling end [55] with few cycles. In such cases the DC algorithm setup would 

clearly beneft, even without the level hierarchy, as it can eÿciently iterate over those few 

non-tree edges with logarithmic cost, whereas the BFS method in average will still need 

time linear in the smaller fragment size, i.e. LdF −x2 . In order to confrm this geometric 

picture, we estimated the expected number of non-tree edges incident to the smaller of 

the two clusters attached to two neighbouring vertices. More precisely, let T (A) be the 

number of tree-edges of A and T (A) the number of non-tree edges, thus T (A) + T (A) = |A|
as well as |C(A)| ≥ T (A) (recall that C(A) ⊆ A is the set of non-bridges in A). We note that 

T (A) = n − K(A) and T (A) = |A| − n +K(A), where T is also known as the circuit rank or 

cyclomatic number of A [69]. Further, we naturally extend T ,T to connected components 

in (V ,A), that is we write T (C),T (C) for the number of tree and non-tree edges in the 

connected component C of the spanning sub-graph (V ,A), respectively. Now, for two 

disconnected vertices x,y ∈ V in (A,V ), such that (x,y) ∈ E, we estimated X � �1 
Θ ≡ 1x=yT Cargmin{|Cx |,|Cy |} , (4.6.1) 

m 
(x,y)∈E 

where Cargmin{|Cx |,|Cy |} is the smaller of the two components Cx and Cy , i.e. Θ is an improved 

estimator for the number of non-tree edges in the smaller of two clusters attached to two 

neighbouring, disconnected, vertices. In Figure 4.16 we show our numerical estimates 

of the size dependence of E[Θ] (the expectation for the self-dual random-cluster model 

on Z2 with cluster weight q). Indeed, as expected, the number of non-tree edges, albeit L 

increasing with L, is very small, less than 10 in expectation, for system sizes up to L = 1024. 

Note for decreasing q the expected number of non-tree edges in the smaller component 

becomes larger. On a frst view this seems paradox having in mind the smaller number 

of non-bridges for small q. Yet one needs to remember that the expected size of the 

smaller of two neighbouring vertices, ruled by a dF − x2 scaling, becomes actually larger 

with decreasing q, because dF − x2 is increasing with decreasing cluster weight. However, 

we expect the relative density of non-tree edges to decrease with q. Indeed, consider 

Figure 4.17 which shows the ratio of expected number of non-tree edges to the expected 

number of vertices in the smaller cluster, and confrms the expected decrease with q. 

The ratio further approaches a constant, consistent with a LdF −x2 scaling of E[Θ], that is 

E[θ] ≈ LdF −x2 , however with a strongly suppressed constant compared to E[Cmin,2] [15]. 

We will conduct a careful analysis of the optimised DC and BFS approach in detail 

elsewhere, and report on a preliminary result. The general picture that emerges is that 
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the optimised DC variant is superior for q < 2, whereas for q ≈ 2 the two variants become 

comparable and for q beyond 2 the traversal based method becomes more eÿcient. The 

reason for this transition is so far not clear to us, and we hope that in a “simplifed” setting, 

such as e.g. the complete graph, the analysis becomes more transparent. 
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Figure 4.16: Expected number of non-tree edges in the smaller cluster, E[Θ], for three charac-
teristic values of q. Remarkably, there are only a few non-tree edges, supporting 
the picture of smaller fragments being almost-trees. 
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Figure 4.17: Ratio of expected number of non-tree edges and the expected number of vertices in 
the smaller cluster. Note that expected total number of edges in the smaller cluster 
equals E[Cmin,2 − 1] +E[Θ]. 
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Chapter 5 

Fragmentation of Fortuin-Kasteleyn 

clusters 

We have seen in chapters 2 and 4 how stationary structural properties of the random-

cluster model, such as the density of bridges, the typical fragment size, induced by the 

removal of a bridge, or the specifc heat of the Potts model, crucially infuence, both, 

stationary dynamical and computational eÿciencies. For instance, the Li-Sokal bound 

relates specifc-heat divergences to the critical slowing-down of energy-like observables 

which in turn lifts the lower bound of the overall exponential autocorrelation time. On the 

computational side we have seen that the exponent dF − x2 determines the leading system 

size scaling of optimised traversal based algorithms. We hence investigate in this chapter 

related structural properties and derive a new1 relationship between the (expected) bridge-

and edge-density for the random-cluster model on any graph. We discuss in detail both 

asymptotic and size dependent e�ects and establish some interesting generic symmetries 

of the random-cluster model, which we in turn exploit to relate previously unrelated 

quantities. Moreover we study the fuctuations in the number of bridges by means of 

the variance, and reveal a surprising fnite size scaling for two dimensional critical anti-

monotone (q < 1) random-cluster models, as a consequence of the interplay between 

bridges and non-bridges. We continue with a detailed analysis of one-step, or stationary, 

fragmentation e�ects, both for edge and vertex fragmentation, which provides a crucial 

foundation for the analysis of dynamic or iterated fragmentation in Chapter 7. Further, 

the results in this chapter are also of independent interest, as in many cases our results do 

not only extend previous studies, but also provide an alternative explanation for various 

observed phenomena, such as the absence of fnite-size corrections of particular quantities 

in the percolation model. 

1Note added in proof: The author found out about the work [98], which contains implicitly the bridge-
edge identity, however derived by di�erent means. 
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Chapter 5. Fragmentation of Fortuin-Kasteleyn clusters 

5.1 Bridge-edge identity 

We derive the relationship between the density of bridges and edges by utilising a powerful 

tool, independently discovered by G. Margulis and L. Russo, and commonly referred to 

as Russo-Margulis formula. As the formula is rather unknown in the statistical physics 

community, and also, as we believe, of use in other studies, we frst devote some time to 

deriving it. The Russo-Margulis formula has been useful analytical tool in the study of 

“threshold phenomena”. Such phenomena, besides their apparent connection to phase 

transitions in physics, occur in general in many probabilistic models reaching from pure 

probability theory, over computer science, to seemingly unrelated felds as economics and 

political sciences [99]. In essence, a threshold phenomenon occurs when the probability 

of an event changes from being close to 0 to close to 1 in a very narrow window. The 

probably most popular example is the phase transition of the bond percolation model on 

the square lattice Z2 for pc = 1/2. Here one has exponentially decaying correlations for any 

p < 1/2 and for p > 1/2 the confguration percolates, that is P[0 ↔∞] ≥ (p − pc)/[p(1− pc)]. 

See [100] for a particular short and elegant proof of this sharp threshold result (which 

also utilises explicitly the Russo-Margulis formula). Furthermore an adapted variant of 

the Russo-Margulis formula has played an important role in the recent rigorous study 

of the random-cluster model phase-transition on Z2 [28]. Here the authors proved the 
√ √

long-standing (well supported) conjecture that the self-dual point psd(q) = q/(1 + q) is 

indeed the critical point for the random-cluster model on the square-lattice for q ≥ 1. 

Yet, our application of Russo’s formula is more moderate and not directly related to a 

threshold phenomenon, as we use it merely to extract the desired relationship between 

the expected densities of bridges and edges in the random-cluster model. We frst derive 

Russo’s Formula in the setting of independent bond-percolation on a fnite graphG = (V ,E) 

with m ≡ |E| and show then how it can also be applied to the random-cluster model. The 

following derivation of the Russo-Margulis formula resembles [25]. To start with, we need 

some notation. Firstly, write E = {e1, e2, . . . , em} and denote by Pp[·],Ep[·] the probability 

measure and expectation, respectively, of the bond-percolation model with parameter 

p. In the following we will also consider a percolation model where each edge ej has a 

designated “activation” probability pj , and we write p for corresponding m-dimensional 

vector. Now, the Russo-Margulis formula states that for any function X :Ω → R, Xd 
Ep[X] = Ep[δeX], (5.1.1)

dp 
e∈E 

where (δeX)(A) ≡ X(Ae)− X(Ae) for A ∈ Ω is called the derivative of X at e and we defne 

Ae ≡ A ∪{e} and Ae ≡ A \ {e}. Further, Ep[δeX] is called the infuence of e on X [25, 27]. The 

idea of the proof of (5.1.1) is the construction of a coupling of two percolation models 

with parameters p and q, where qi = pi for all i , j and qj = pj + � with � ≥ 0. This 

defnes the two percolation models on a joint probability space, which in turn allows us 

to consider the di�erence of X, evaluated at the two corresponding random-percolation 
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confgurations, as one random variable. Then we analyse its expectation and use linearity 

of the expectation to obtain the di�erence between expectations of X for the two models 

associated to p and q. Finally, we take the limit � → 0, which yields, in the marginal 

case pj = p for all j, the desired derivative. Now, to start with, we construct the desired 

coupling based on a collection of m independently and identically distributed uniform 

random numbers in [0,1], denoted by U1,U2, . . . ,Um. For a given instance of uniform 

random numbers construct 

Ap = {ej |1 ≤ j ≤ m,Uj ≤ pj }, 

Aq = {ej |1 ≤ j ≤ m,Uj ≤ qj }. 

It is easy to see that both random sets Ap and Aq, in isolation, have precisely the desired 

Pp and Pq laws. Yet, due to the shared underlying uniform random numbers, they exist 

on the same probability space. Hence we have constructed a coupling of Pp and Pq This 

in particular allows us to analyse the random di�erence X(Aq)− X(Ap) on one probability 

space. Now, one has by the coupling property and linearity of the expectation 

E[X(Aq)− X(Ap)] = Eq[X]− Ep[X]. 

Now the crucial observation is that in the coupling, by construction of q, X(Aq)− X(Ap) 

can only be non-zero when pj < Uj ≤ qj ≡ pj + �. Thus we have h i h i h i 
E X(Aq)− X(Ap) = E X(Aq)− X(Ap)|Uj ∈ (pj ,qj ] P Uj ∈ (pj ,qj ] h i h i 

+ E X(Aq)− X(Ap)|Uj < (pj ,qj ] P Uj < (pj ,qj ] h i 
= �E X(Aq)− X(Ap)|Uj ∈ (pj ,qj ] � � � �� � ���� 
= � E X (Aq)ej − E X (Ap)ej n h i h io 
= � Eq X(Aej ) − Ep X(Aej ) 

Thus we obtain 
∂ Eq[X]− Ep[X]

Ep[X] = lim = Ep[δej X]. (5.1.2)
∂pj �→0 � 

Then, fnally setting pj = p for 1 ≤ j ≤ m we obtain, by means of the chain-rule, the Russo-

Margulis formula (5.1.1). We remark, that relation (5.1.2) is of use in its own right, such 

as for applications to the “anisotropic” or quenched disorder version of the percolation 

model, and with modifcations also for corresponding random-cluster models. 

Before we proceed with the derivation of the announced bridge-edge formula for the 

random-cluster model let us consider two general observations. Firstly, the derivative of X 

at e is defned in terms of Ae and Ae, one of which necessarily equals A. For the following 

discussion it turns out to be more convenient to eliminate one of the two in favour of A 
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itself. To do so note X 
Ep[δeX] = Pp[A] {X(Ae)− X(Ae)} , 

A⊆EX X 
= Pp[A] {X(A)− X(Ae)} + Pp[A] {X(Ae)− X(Ae)} , 

A⊆E: A⊆E: 
e∈A e<A X 1− p X 

= Pp[A] {X(A)− X(Ae)} + Pp[A] {X(A)− X(Ae)} , p
A⊆E: A⊆E: 
e∈A e∈A X1 

= Pp[A] {X(A)− X(Ae)} . (5.1.3) 
p 

A⊆E: 
e∈A 

The second general aspect we mention is how one can derive a Russo-Margulis-like 

formula for the random-cluster model. Firstly let us generalise and write Pp,q[·] and Ep,q[·] 
for the probability law and expectation in the random-cluster model with cluster weight q 

and bond-density p. Clearly we have 

Ep[qKX]
Ep,q[X] = ,

Ep[qK ] 

and hence any expectation in the random-cluster model can be expressed in terms of 

expectations in the percolation model (with q = 1). It follows, that we can apply (5.1.1), 

i.e. 
d dEp[qKX] Ep[qK ]∂ dp dp Ep,q[X] = − Ep,q[X] . (5.1.4)

∂p Ep[qK ] Ep[qK ] 

thus we see that we generically need d/dpEp[qK ], which is related to the expected number 

of bridges, which follows from X h i 
K(Ae)Ep[δeqK ] =

1 
Pp[A] qK(A) − q , 

p 
A⊆E: 
e∈A 

1− q X 
= Pp[A]qK(A)1{e∈B(A)}, p 

A⊆E: 
e∈A 

1− q
= Ep[qK ]Pp,q[e ∈ B]. (5.1.5) 

p 

Here B(A) denotes the set of edges in A that are bridges in (V ,A), in other words e ∈ A is a 

bridge if and only if K(A) = K(Ae)− 1. Therefore (5.1.4) becomes 

d Ep[qKX]∂ dp q − 1
Ep,q[X] = + Ep,q[X]Ep,q[|B|]. ∂p Ep[qK ] p 

The derivative in the frst term can be re-written XX n od 1 K(Ae) 
dp 

Ep[qKX] = 
p 

Pp[A] X(A)qK(A) − X(Ae)q , 
e∈E A⊆E: 

e∈A 
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X X1 
= [A]qK(A) {X(A)− qX(Ae)}p 

Pp
e∈E A⊆E: 

e∈B(A) X X1 
+ Pp[A]qK(A) {X(A)− X(Ae)} . p 

e∈E A⊆E: 
e∈C(A) 

Here we split the sum into two contributions, corresponding to either e ∈ B(A) or e ∈ C(A), 

where the latter is the set of non-bridges that is A \ B(A) or equivalently edges in A that 

leave K invariant upon removal, i.e. e ∈ A such that K(A)− K(Ae) = 0. We remark, that 

alternatively one has [27] 

∂ 1
Ep,q[X] = Covp,q[N,X]. 

∂p p(1− p)

In order to derive the bridge-edge formula note that (5.1.5) implies 

∂ Zp,q 
Zp,q = (1− q)Ep,q[|B|], (5.1.6)

∂p p 

where we introduced the partition function of the random-cluster model Zp,q ≡ Ep[qK ]. 

On the other hand it is straightforward to show, by explicit di�erentiation, that ! 
∂ 
Zp,q ∂p 

= 
Zp,q 

p 

[N ]− mpEp,q
1− p 

. (5.1.7) 

Finally, by equating (5.1.6) and (5.1.7) we obtain for q , 1 

Ep,q[B] = 
Ep,q[N ]− p 

.
(1− p)(1 − q)

(5.1.8) 

Here we defned the density of bridges B = |B|/m. In order to obtain an expression for the 

bridge-density for q = 1 in a general setting we can to take the limit q → 1 in (5.1.8) 

1 p − Ep,q[N ]
lim Ep,q[B] = lim 
q→1 1− p q→1 q − 1 

1 ∂ 
= − lim Ep,q[N ]

1− p q→1 ∂q 
1 

= Covp[K,N ]. (5.1.9) 
p − 1

A few comments are in order; The second equality follows from the fact that Ep,q[N ]→ p 

for q → 1, followed by applying L’Hôpital’s rule. The last step follows from the generic 

identity ∂/∂qEp,q[X] = Covp,q[K,X]/q for any random variable X :Ω → R, c.f. e.g. [27] or 

by explicit di�erentiation. Both, identity (5.1.8) and (5.1.9), are valid for any value of p 

and any (fnite) graph. We also remark that the idea of using the Russo-Margulis formula 

to establish a connection to the density of bridges has already been mentioned in [101], 

however with a di�erent application in mind and solely restricted to the framework of 
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Chapter 5. Fragmentation of Fortuin-Kasteleyn clusters 

bond percolation, without mentioning the link to the covariance for percolation and the 

generalisation to the random-cluster model. 

It is of course also possible to obtain an analogous expression for the expected density of 

non-bridges Ep,q[C], to this end note Ep,q[N ] = Ep,q[B] +Ep,q[C] and therefore h i 
p + p(q − 1)− q Ep,q[N ]

Ep,q[C] = . (5.1.10)
(1− p)(1 − q) 

Before we consider special instances of (5.1.8) and (5.1.10), for which we evaluate, both 

exactly and numerically, we elaborate on two general, and often useful, observations. 

Firstly, there is an upper threshold, or bound, for the density of bridges, valid on any 

graph whenever q ≥ 1. This follows from the following general comparison inequality 

for the random-cluster model with q ≥ 1, for any increasing2 function f : Ω → R, c.f. 

[102, 27]: 
0 

0Ep,q[f ] ≥ Ep0 ,q0 [f ] if q ≥ q ,q ≥ 1,
p 

≥ 
p

. 
q(1− p) q0(1− p0)

For the particular choice q0 = 1, q ≥ 1 and p0 = p̃(p,q) = p/[(1 − p)q + p] one can verify the 

above conditions, and hence with f = N (which is clearly increasing) we obtain 

Ep,q[N ] ≥ Ep̃(p,q),1[N ] = p̃(p,q), 

whence with (5.1.1) we obtain the desired upper bound for Ep,q[B]: 

p − Ep,q[N ]
Ep,q[B] = ,

(1− p)(q − 1)
p − p̃(p,q)

≤ ,
(1− p)(q − 1)

= p̃(p,q). (5.1.11) 

The above choice of p̃(p,q) might seem somewhat arbitrary, however as we will see in 

Chapter 6, where we discuss perfect sampling for the random-cluster model by means 

of the coupling from the past algorithm, the percolation model with p̃(p,q) provides a 

natural “lower” reference model for the random-cluster model with p,q. 

The second observation we make is related to the expected relative densities, i.e. Ep,q[B/N ] 

which measures the mean fraction of bridges among all open edges. More precisely, let us 

consider Pp,q[e ∈ B|e ∈ N ], that is the probability that e is a bridge, given e is open (active). 

Thus this conditional probability formalises the idea of a relative density of bridges (for 

transitive graphs). Due to the hierarchy between open edges and bridges, that is e is a 

bridge ⇒ e is open (in other words B(A) ⊆ A), we have 

Pp,q[e ∈ B,e ∈ A]
Pp,q[e ∈ B|e ∈ A] = ,

Pp,q[e ∈ N ] 

2 Recall f is increasing if f (A) ≤ f (B) whenever A ⊆ B. 
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Pp,q[e ∈ B] 
= Pp,q[e ∈ A|e ∈ B] ,

Pp,q[e ∈ A]

Pp,q[e ∈ B] 
= .

Pp,q[e ∈ A]

Thus, it suÿces to consider ratio of expected bridge- to expected edge density. Further the 

argument clearly applies as well to non-bridges. For instance for transitive graphs, such 

as Z2, we have 
p1− Ep,q[N ]

Pp,q [e ∈ B|e ∈ A] = .
(1− p)(1 − q)

After these general observations, we now proceed with the confrmation and analysis of 

the above theoretical predictions in various instances of the random-cluster model. 

5.2 Exact asymptotic densities for the square lattice 

5.2.1 Complete solution for the Ising model 

The Ising model corresponds to the choice of q = 2 in the random-cluster model and plays 

a special role, as it allows for an exact calculation of its normalised partition function (or 

free energy) on Z2 [22], as well as for various fnite and semi-infnite geometries, see for 

instance [75] for a method to calculate the free energy for Z2. This evaluation is validL

for the entire temperature regime, and is consistent with the complexity results for the 

Tutte polynomial, outlined in Chapter 2, i.e. the polynomial time solvability for bipartite 

planar graphs whenever q = 2. It therefore provides an intriguing test case to study the 

variation of the above quantities with p, which in turn provides further insight into the 

change of the cluster structure with p. In what follows we concern ourselves with the 

infnite case on Z2, and in order to establish a link to the random-cluster model we exploit 

the relationship between the internal energy of the Ising model, at inverse temperature 

β ≥ 0 and coupling J ≥ 0, denoted by u(β,J), and the edge-density of the corresponding 

random-cluster model, i.e. 

Ep,2[N ] = [1− u(− log(1− p),1/2)]
p 

(5.2.1)
2 

where we explicitly assumed that the graph is Z2. This identity can be derived by means of 

the Edwards-Sokal coupling [11] between the Potts model and the random-cluster model, 

and the equivalence between 2-state Potts and Ising model. For the internal energy one 

obtains, c.f. e.g [22], ⎧ ⎫ 
Z π 

⎪⎪⎪⎪⎪⎪⎪⎪ � � 2 

⎪⎪⎪⎪⎪⎪⎪⎪1 ⎨ 2 1 ⎬ 
u(β,1/2) = − coth β 1 + 2tanh2β − 1 s dt ," #2 π 0 4/ sinh2 β 

⎪⎪⎪⎪⎪⎪⎪⎪ 1− sin2 t 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ ⎭(1+1/ sinh2 β)2 
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which has to be evaluated with the parametrisation β = β(p) = − log(1− p) in order to 

calculate Ep,2[N ] using (5.2.1). We show in Figure 5.1 the expected edge-, bridge- and 

non-bridge densities derived from the above expressions. First, let us consider the 
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Figure 5.1: Exact densities of edges, bridges and non-bridges for the q = 2 random-cluster 
model on Z2. The solid grey vertical lines indicate the location of the critical point √ √ 

2/(1 + 2). 

absolute densities, where we observe that for small values of p, both the bridge- and 

edge-density are very well described by p̃(p,2). This is easily explained by considering 

the heat-bath dynamics for the random-cluster model, in particular (2.2.4), where 

the value p̃(p,q) is precisely the corresponding insertion probability of pivotal edges 

(bridges). Clearly, for suÿciently low values of p, a typical confguration consists of small 

components with very few and short cycles. We remark, that the random-cluster model 

with parameters p and q on a forest (or tree) is equivalent to percolation with parameter 

p̃(p,q). In contrast, for values of p close to 1, where most of the edges are part of cycles, 

the cluster-weight does not have a very strong infuence, and edges, mostly non-bridges, 

increase in expectation roughly linearly with p. This can, again, be explained in terms 

of the heat-bath dynamics, which operates on non-pivotal edges with parameter p. 

Independently of the particular value of p, the results shown in Figure 5.1 are consistent 

with the upper bound (5.1.11). Equivalently, Ep,2[N ] is entirely bounded from below by 

p̃(p,2). Further, the relative densities, shown in the inset of Figure 5.1, nicely refect how 

active edges are more and more deposited in cycles. Interestingly, the expected density of 

bridges shows a maximum at a value of p smaller than psd(2). There is also an analytical 

result of relevance to the density of bridges, which originates in a singularity of the second 

β derivative of the free energy density of the Ising model. More precisely it can be shown, 

[22], that the normalised free energy f has a singular contribution fs ≈ (β − βc)2 log(β − βc). 

Which in turn implies that the frst thermal derivative of the internal energy, related to 

the second thermal derivative of f , diverges logarithmically for β → βc (from below), 
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i.e. we have ∂βu ≈ log(β − βc) and hence by means of (5.2.1) also a singularity of the p 

derivative of Ep,2[N ] at p = psd(2). We will have more to say when we discuss the fnite 

size e�ects in the critical random-cluster model in section 5.3. We analysed numerically 
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Figure 5.2: Estimated densities of bridges for the random-cluster model on Z2 
64 for some values 

of q. The solid blue lines shows the exact solution of Figure 5.1, and the dashed lines 
show the respective p̃ curve. Lastly, the solid vertical lines locate the corresponding 
self-dual points. 

the p-dependence of Ep,q[B] for some other values of q for Z2, in order to check whether L

the above characteristics extend naturally beyond q = 2. As shown in Figure 5.2, the 

maximum of Ep,q[B] is located at a value below the corresponding self-dual bond density, 

and the slope at psd appears to become steeper with increasing q. In order to understand 

better what happens at the self-dual point, let us fx p = psd(q) and consider the self-dual 

bridge- and non-bridge density, denoted by Eq [B],Eq [C].[B] ≡ Epsd(q),q [C] ≡ Epsd(q),q

5.2.2 Critical densities for general cluster weights 

A frst natural question relates to the asymptotic values of Eq[B] and Eq[C] for L →∞. If 

we ignore the boundary conditions and consider the infnite square lattice Z2, which is 

self-dual and planar (in contrast to Z2 which is not planar), then, by self-duality, one has L √ √Eq[N ] = 1/2. Hence we can insert this together with p = psd(q) = q/(1 + q) into (5.1.8) 

and (5.1.10) to obtain 

1
Eq[B] = √ ,

2(1 + q)

√ 
q

Eq[C] = � � .√
2 1 + q 

(5.2.2) 

See also Figure 5.3, which compares these exact values to extrapolated values from a 

careful fnite size scaling analysis, described below. In fact, equations (5.2.2) can be 
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Figure 5.3: Critical bridge- and non-bridge density. The circles correspond to the asymptotic 
densities extracted from the fnite-size analysis described in section 5.3. Squares 
show the numerical estimates for a fnite L = 32 system. The solid lines depict the 
exact expressions in (5.2.2). The size dependent deviations, in paticular for “large” 
q motivate a careful analysis of the involved fnite size corrections. 

written in terms of psd(q) and Eq[N ], as � � 
Eq[B] = 1− psd(q) Eq[N ], Eq[C] = psd(q)Eq[N ]. 

The above expressions allow us interpret psd(q) as the expected fraction of non-bridges 

among all active (occupied) edges. Clearly, the remaining fraction 1 −psd(q) of active edges 

have to be bridges, i.e. the discussion on relative densities implies Pq[e ∈ B|e ∈ A] = 1−psd(q) 

and similarly Pq[e ∈ C|e ∈ A] = psd(q). As psd(q) is increasing with q, this implies that 

non-bridges become more and more likely among active edges. Further, an immediate 

consequence of (5.2.2) is that Eq[B],Eq[C]→ 1/4 for q → 1, which recovers a result recently 

shown in [55]. The result 

1
P1[e ∈ B|e ∈ A] = P1[e ∈ C|e ∈ A] = ,

2

refects nicely the fact that the case q = 1 occupies edges independently, and for the choice 

p = 1/2 there is no bias towards either bridges or non-bridges. However, in contrast to 

the case q = 2, we are not able to obtain a general p-dependent solution for Ep,1[B] on Z2. 

Interestingly, we can establish a symmetry of Ep,1[B] for Z2, imposed by self-duality and 

planarity. 
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5.2.3 Symmetry for the bridge density for percolation 

In order to establish the desired result we remark that, based on (5.1.5), one can show 

d 1
Ep,1[k] = − Ep,1[B], (5.2.3)

dp p 

where we defned k = K/m. Now, Euler’s formula for any fnite planar graph (V ,A) states 

[27] 

K(A) = |V | − |A| +F(A)− 1, (5.2.4) 

where F(A) is the number of faces in any planar embedding of (V ,A). It is further well 

known, see for instance [27], that 

F(A? ) = K(A). (5.2.5) 

Here A? is the dual confguration of A. Now, dividing both sides of (5.2.4) by m and taking 

expectation Ep,1[·] we obtain with |V | = n 

n Ep,1[F] 1
Ep,1[k] = − p + − , (5.2.6) 

m m m 

when we take the limit m →∞ and, informally, assume the above holds in the limit also 

for Z2, we obtain by duality and (5.2.3): 

1
Ep,1[k] = E1

? 
−p,1[k] +

2
− p. (5.2.7) 

Here we used the identity (5.2.5) and E? 
1−p,1 is the expectation of the percolation model 

with bond density 1 − p on the dual graph G? . Now in combination with the self-duality 

of Z2 (it is isomorphic to its dual) and the duality of measures, i.e. P1,p[A] = P1,1−p[A? ] for 

any A ⊆ E, a consequence of the duality of the percolation measures for q = 1 whenever 

p? (p,1) = 1 − p, we obtain the result. Lastly, by di�erentiating both sites of (5.2.7) with 

respect to p we obtain by means of (5.2.5) (discarding the q dependence): 

Ep[B] = p − 
1− 
p

p 
E1−p[B]. (5.2.8) 

When we evaluate the above for p = 1/2 we obtain the asymptotic result E1/2[B] = 1/4, as 

mentioned before. What (5.2.8) states is that, due to duality, one only needs to consider 

Ep[B] for p ∈ [0,1/2] or p ∈ [1/2,1], and can recover the alternative interval. 
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5.3 Finite-size e�ects 

5.3.1 Percolation and pseudo-bridges 

In the preceding sections we considered the asymptotic behaviour for the square lattice, 

but it is also intriguing to analyse the non-asymptotic or fnite case, which we do here by 

considering Z2, the L × L square lattice with periodic boundary conditions. A related non-L

asymptotic study was recently presented by Xu et al. in [55] for critical bond percolation on 

Z2. There the authors investigated a partition of edges induced by a natural medial graph3 
L

property. More precisely, the authors divided open edges into two classes, corresponding 

to whether the two medial graph loop segments (or loop arcs) associated to a given edge 

belong to the same loop, or two di�erent loops. We denote the corresponding densities by 

Ep[` 1] and Ep[` 2], respectively. We can also provide an alternative defnition based on an 

application of the Russo-Margulis formula (5.1.1) to the expected number of loops on the 

medial graph, denoted by Ep[NL]: 

X1 d 1
Ep[NL] = Ep[δeNL], 

m dp m 
e∈E 

1 X 1 X 
Pp[A] {NL(A)− NL(Ae)} ,= 

m p
e∈E A⊆E: 

e∈A ��1 
Ep[` 1]− Ep[` 2]= . 

p 

In words, edges contributing to ` 2, in what follows referred to as type-2 edges, are edges 

that, upon removal, merge two previously disconnected loops and hence decrease the 

overall number of loops by one. Equivalently, type-1 edges increase the number of loops by 

one upon removal. The authors of [55] established rigorously that for the marginal case 

q = 1 and p = 1/2, one obtains for any L, 

1
E1/2[` 1] = E1/2[` 2] = . (5.3.1)

4

We emphasise, that both quantities therefore show no fnite-size corrections. This in 

particular implies (the to our knowledge so far unknown result) that the expected number 

of loops in the medial graph is extremal at criticality, that is we have uniformly in L ����� = 0. 
d 
Ep[NL]

dp p=1/2 

Further, for planar graphs, it is straightforward to verify that a type-2 edge decreases the 

number of faces upon removal by one, whereas type-1 edges leave the number of faces 

invariant upon removal: We have Euler’s formula (5.2.4) and one has for an edge e ∈ A: 

K(A)− K(Ae) = [|V | − |A| +F(A)− 1]− [|V | − |Ae| +F(Ae)− 1] = F(A)− F(Ae)− 1, (5.3.2) 

3For a defnition of the medial graph and a related eÿcient algorithm see section 3.4.1. 
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5.3. Finite-size e�ects 

in other words K(A) = K(Ae) if and only if F(A) , F(Ae), see also [55]. Moreover an edge is 

a bridge if and only if it is a type-1-edge and a non-bridge, if and only if it is of type 2. 

This follows from an alternative Euler relation involving the number of loops [22, 20]: 

|A| + 2K(A) = |V | +NL(A), 

which leads to the equivalence between type-1 and type-2 edges and bridges and non-

bridges, respectively for planar graphs: 

1 
K(A)− K(Ae) = [NL(A)− NL(Ae)− 1] ,

2

where we assumed w.l.o.g. e ∈ A. However the graph Z2 is not planar and, more impor-L 

tantly, the set of non-planar spanning sub-graphs in the associated confguration space 

Ω has, asymptotically in the continuum limit, non-vanishing probability at criticality, 

[103, 104, 105]. Such non-planar confgurations must in particular contain at least one 

cluster that includes a non-trivial cycle that wraps around both main directions of the 

torus simulatenously. In order to defne precisely a non-trivial cycle, we use the defnition 

of Zd provided in [106], i.e. Zd is the graph with vertex set corresponding to [0,L)d , in L L 

other words we identify the vertices of Zd with d-tuples (x1,x2, . . . ,xd ) where 0 ≤ xj < L.L 

Two vertices in Zd are neighbours, or adjacent, if they are equal in all coordinates but one, L 

in which they are adjacent in the (one-dimensional) cycle graph on L vertices, denoted by 

CL. Now, a non-trivial cycle in Zd is a cycle with the property, that the projection along at L 

least one coordinate (direction) induces CL. In other words it is possible to fnd a specifc 

coordinate, that when considered in isolation, is CL. For the case d = 2 considered here, 

one has clearly only two coordinates. In what follows we consider d = 2 until otherwise 

stated. We denote by a cross cluster a connected component that contains a non-trivial 

cycle which wraps around both directions and has the topology as shown in the right 

panel in Figure 5.4. Note that a cross cluster is not the only way a cluster can wrap around 

the torus simultaneously in both directions, as illustrated in the left panel of Figure 5.4. 

Clearly the topology of the two clusters are di�erent. We refer to clusters of the topology 

shown in the left panel of Figure 5.4 as winding clusters, that is a winding cluster is a 

connected component that includes a non-trivial cycle that wraps around both directions 

but is not a cross cluster. Observe that the existence of one cross cluster implies the 

absence of any other cluster that induces a non-trivial cycle of any type. The probability 

of a cross cluster is known in the continuum limit, thanks to the (conjectured) conformal 

invariance of critical bond percolation in two dimensions. Zi� et al. [103] give a closed 

form expression, based on earlier work of Pinson [104], that evaluates to 0.309526275 . . . 

for the probability of a cross cluster for critical bond percolation on Z2 in the limit L →∞.L 

For practical purposes, one can use the deviation from the Euler formula (5.2.4) to test 

for a cross cluster [103, 28], in other words the spanning sub-graph (V ,A) contains one 

cross cluster if and only if F(A)− K(A) + |V | − |A| − 1 equals −2, and at least one winding 

cluster exists whenever the expression evaluates to −1. Now in [55] it was argued that a 
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Figure 5.4: Illustration of a winding cluster (left panel) and a cross cluster (right panel). The 
solid black line corresponds to open edges, the two remaining colours red and blue 
represent the loops in the medial graph. Observe that in both examples all edges are 
non-bridges. In the winding cluster no pseudo-bridges can exists as both loop arcs 
of a given non-bridge belong to two di�erent loops. On the other hand for the cross 
cluster in the right panel we fnd that all non-bridges have both of its loop arcs in 
the medial graph in the same loop. 

cluster that induces a non-trivial cycle in both coordinates can contain non-bridges that 

violate the “planar identity” (5.3.2) stating that type-1 edges equal bridges. This occurs 

precisely for non-bridges that have both of its associated loop-arcs in the medial graph in 

the same loop. In fact a careful observation (using the illustrations in Figure 5.4) shows 

that such non-bridges can only exist on a cross cluster. More precisely, following the 

terminology of [55], we call such non-bridges pseudo-bridges. An important observation is 

that a pseudo-bridge is a non-bridge on a cross cluster with the distinguishing property 

that it is pivotal to the existence of the cross cluster. In other words, let χ(A) be the 

indicator function of the event that the confguration A contains a cross cluster. Then 

e ∈ E is a pseudo-bridge if and only if e ∈ A and χ(A) , χ(Ae). One can verify that this 

happens precisely for non-bridges on a cross-cluster for which not more than one cycle 

“overlaps“ at it (for an illustration see Figure 5.5 or Figure 1 in [55]). Summarising the 

previous arguments we have: 

1 
= P1/2[e ∈ L1],

4 
= P1/2[e ∈ L1, e ∈ B] +P1/2[e ∈ L1, e ∈ C], 

= P1/2[e ∈ L1|e ∈ B]P1/2[e ∈ B] +P1/2[e ∈ L1, e ∈ C], 

= P1/2[e ∈ B] +P1/2[e ∈ L1, e ∈ C], 
1 

= P1/2[e ∈ B] + P1/2[e ∈ Pχ].
2
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5.3. Finite-size e�ects 

where L1(A),L2(A) are the sets of type-1 and type-2 edges in A, respectively and Pχ(A) is 

the set of edges that are pivotal to the event χ in A. Hence rearranging yields 

1 1
P1/2[e ∈ B] = − P1/2[e ∈ Pχ], (5.3.3)

4 2
1 1

P1/2[e ∈ C] = + P1/2[e ∈ Pχ]. (5.3.4)
4 2

Note that P1/2[e ∈ Pχ] is in fact equal to the infuence of e on χ, that is E1/2[δeχ], as 

defned in section 5.1, a consequence of the monotonicity and Boolean nature of χ. 

Before we provide scaling arguments for the form of P1/2[e ∈ Pχ] we recall the numerical 

results found by Xu et al. in [55] for the density of bridges and non-bridges, which due 

to translational invariance equal the likelihood of an edge to be a bridge or non-bridge, 

respectively. The authors fnd that the di�erence E1/2[` 1]−E1/2[B] vanishes with increasing 

L to leading order as L−x2 , where x2 = 5/4 is the two-arm exponent for critical percolation 

on the square lattice. This exponent is defned in terms of the large R asymptotics of the 

probability of the existence of two distinct clusters in an annulus of inner radius O(1) and 

outer radius R [74]. In other words the inner boundary of the annulus is connected to the 

outer boundary by two distinct clusters. Coming back to the density of (non-) bridges, the 

numerical fndings of Xu et al. suggest, due to the absence of fnite-size corrections of the 

expected type-1 and type-2 densities, that we have the following asymptotics: 

P1/2[e ∈ B] = E1/2[B] ∼ 
1 − cL−x2 (5.3.5)
4
1

P1/2[e ∈ C] = E1/2[C] ∼ 
4

+ cL−x2 , (5.3.6) 

where c > 0 [55] because of pseudo-bridges. Moreover, the constraint E1/2[B + C] = 1/2, 

demands the use of the same constant c in both expressions. Comparing this to our above 

calculations, this suggests 

P1/2[e ∈ Pχ] ≈ L−x2 . 

We will now provide scaling arguments which establish a link between the two-arm event 

above and the probability of an edge being pivotal for a cross cluster event, which in turn 

explains the appearance of the two-arm exponent as a fnite-size correction exponent 

for the density of bridges for critical bond percolation on Z2. The arguments are based L

on rigorous results and ideas of [107] for left-to-right crossings in the planar case of a 

L × L box (without periodic boundary conditions). Consider Figure 5.5 which shows a 

cross cluster and a construction of a particular arm event: There exists four paths in 

an annulus with inner radius O(1) and outer radius L/2, of alternating dual and primal 

type, emanating from the inner to the outer boundary. This event in an annulus of the 

above specifcation centred at a particular edge happens in particular when the edge is 

pivotal for a cross cluster4. The probability of such a four-arm event is (expected to be) 

asymptotically equivalent to CL−5/4. Note that Xu et al. actually state that the relevant 

4Strictly speaking this only shows that Pp[e ∈ Pχ] ≤ α4(L/2) where α4(L/2) is the probability of the above 
four arm event in an annulus of inner radius O(1) and outer radius L/2. Unfortunately we are not able to 
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exponent is the two arm exponent of the existence of at least two clusters in an annulus. 

However it can be verifed that the above four arm event of alternating primal and dual 

paths is close to the event that there are two distinct (primal) clusters within the annulus, 

touching the two boundaries [74]. This then explain the appearance of the exponent −5/4 

above in the fnite size correction for the density of bridges for critical percolation on Z2 
L. 

Figure 5.5: A sketch of a cross cluster on Z2. The solid black lines are open edges composing L
the cross cluster, that induces two non-trivial cycles along both main directions. 
The dashed red line is a path in the dual graph, and the yellow annulus “around” 
a particular pseudo-bridge is used for the four arm event of alternating dual and 
primal paths. 

We remark that for q = 1 in any dimension, it is well known that x2 = d − 1/ν [55, 56, 109, 

110], hence the above expressions can also be written in terms of d − 1/ν using the thermal 

exponent 1/ν. However, this is only true for q = 1, and is therefore not clear what happens 

for q , 1, i.e. has the bridge-density leading fnite-size correction of −x2 or 1/ν − d? Before 

we answer this question, we briefy elaborate on an interesting link to the work [111], 

where the authors use scaling arguments and a numerical analysis to show that for critical 

percolation on Z2 and Z3 one has at the corresponding critical bond-density pcL L 

Covpc [KN ] ≈ −d1 + d2L
1/ν−d, (5.3.7) 

where d1,d2 > 0 and d is the spatial dimension. Now, by (5.1.9), the above covariance 

equals, up to a factor of −2, the critical bridge density for bond-percolation, valid on 

any graph and any value of p. For the case d = 2, and hence pc = 1/2, we thus have that 

d1 = 1/8 and 2d2 = c > 0. This is in line to the numerical results reported in [111]5. Besides 

show the corresponding lower bound, which probably can be derived by means of the “separation of arms” 
technique [108]. 

5We remark that Deng et al. used a normalisation by the number of vertices, hence the results di�er by a 
factor of d = 2 here. More precisely the authors show that the d1 = −1/4, which with our normalisation by the 
number of edges corresponds to d1 = −1/8. 
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confrming previous results, our work provides a novel geometric interpretation of the 

observed fnite size corrections of the covariance (5.3.7). 

5.3.2 Beyond q = 1 percolation 

Let us now investigate the size dependence of Eq[B] and Eq[C] for general values of 

q ∈ [0,4]. The absence of fnite-size corrections for E1[` 1] and E1[` 2] seems rather special 

and unlikely to extend to q , 1. Indeed the proof of the corresponding “Loop Duality 

Lemma” in [55] explicitly used the fact that p = 1/2 and q = 1, by utilising the duality of 

the random-cluster model probability distribution for Z2 and q = 1 with p = 1/2, i.e. one L 

has for a confguration A, and the corresponding dual confguration A? , P1/2[A] = P1/2[A? ]. 

In order to get a better understanding of the size dependencies, we estimated Eq[` 1] and 

Eq[` 2] for a large selection of q in the entire interval [0,4], with increasing system size L. 

In what follows we consider only Eq[` 1], as the results for Eq[` 2] are completely analogous. 

Firstly, we ftted a fnite scaling ansatz Eq[` 1] = c + aL−e1 + bL−e2 to our Monte-Carlo 

estimates for Eq[` 1] using the method of least squares ftting. The resulting estimates are 
√

consistent with c = 1/[2(1 + q)] and e1 = 2 − 1/ν as well as e2 = x2. Thus, we continued 

by fxing c,e1, e2 to the corresponding exact values, and ftted the data again, hence this 

time with only a and b being free parameters. We remark that this has the advantage that 

our ftting function now depends only linearly on the ftting parameters a and b, which 

we expect to yield a better numerical stability of the ftting procedure. Indeed, the fts 

were good with respect to the standard goodness of ft heuristics [112], even including the 

smallest system sizes L = 4,8,16,32, strongly suggesting the following asymptotics 

Eq[` 1] ∼ 
1 
√ + aL1/ν−d + bL−x2 . (5.3.8)

2(1 + q)

In Table 5.1 we show some of the estimates of a and b together with goodness of ft 

characteristics and Figure 5.6 shows our numerical data for q = 2 together with the best 

ft. 

We fnd for all values of q analysed, that a < 0 and b > 0, with the obvious constraint that 

a + b = 0 for q = 1. This in turn, in combination with −x2 = 1/ν − 2, explains the absence 

of fnite-size corrections for q = 1 as a cancelling of amplitudes in the random-cluster 

model, and hence recovers the size-independent result (5.3.1). Further, it is known that 

for q → 0 with p = psd(q), one recovers the uniform spanning tree model, for which clearly 

no pseudo-bridges exists, and hence one has 

1 1 
L−2Eq[` 1]→ − , (5.3.9)

2 2

which is in agreement with (5.3.8), due to 1/ν → 0 for q → 0, and the numerical obser-

vation that a → −1/2 and b → 0 for q → 0, as it clearly emerges from the data listed in 

Table 5.1. We remark that the ft estimates for q close to one need to be treated with 
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E
[`

 1 ]
 

E[` 1] ∼ 
1 

2(1 + 
√ 
q)

+ aL1/ν−d + bL−x2 

a = −0.218 ± 0.003 b = 0.393 ± 0.007 

100 101 102 103 104 

L 

0.208 

0.206 

0.204 

0.202 

0.200 

0.198 

Figure 5.6: Estimated size dependence of E2[` 1] together with the best ft to the fnite-scaling 
ansatz outlined in the text. All the data points starting from L = 4 were used in 
the ft and yielded χ2/Npdf = 0.5554, where Npdf = 14, is the number of degrees of 
freedom. The horizontal line corresponds to the density of bridges of Z2 in (5.2.2). 

caution, as here the two exponents 1/ν − 2 and −x2 become very close, and hence it is 

numerically very diÿcult to distinguish the two contributions and the corresponding 

constants a,b. However, outside a suitable “safety”-window around q = 1, it appears that 

both a,b are increasing with q. The validity of (5.3.8) can be even further supported, by 

separately analysing the size-dependencies of Eq[` 1 −B] and Eq[B]. Firstly, we considered 

the di�erence Eq[` 1 − B] and fnd, as for q = 1, that the di�erence vanishes, in leading 

order, with the exponent −x2, i.e. 

Eq[` 1 −B] ∼ b0L−x2 . (5.3.10) 

This was already mentioned in [55], however based on preliminary results. We show in 

Figure 5.7 the numerically extracted exponent of an e�ective power law decay (in L) of 

Eq[` 1 −B], and the results clearly confrm the claim (5.3.10). Additionally, we fnd that 

the involved constant b0 in (5.3.8) is numerically consistent, within statistical accuracy, 

with b0 = b. This suggests that the aL1/ν−d term in (5.3.8) is, in leading order, cancelled 

out in the di�erence Eq[` 1 −B], which in turn indicates that 

Eq[B] ∼ 
1 
√ + aL1/ν−d, (5.3.11)

2(1 + q)

where we emphasise that the constant a < 0 is the same as in (5.3.8). Indeed, we fnd, by a 

careful fnite-size analysis of our Monte-Carlo data for Eq[B], that the leading fnite size 

correction is proportional to L1/ν−d . We summarise in Figure 5.7, the extracted exponents, 

and compare them to corresponding exact Coulomb gas values for 1/ν − d. Our analysis 
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q a b χ2/Npdf Lmin Q 

3.5 −0.1410(7) 0.504(7) 1.0354 4 0.4135 
3.5 −0.1405(8) 0.49(2) 0.9722 8 0.4730 
3.5 −0.1406(9) 0.50(4) 1.0155 16 0.4270 
3.5 −0.140(1) 0.4(1) 1.1116 32 0.3514 
2 −0.218(3) 0.393(7) 0.5554 4 0.9007 
2 −0.219(3) 0.40(1) 0.6303 8 0.8183 
2 −0.219(4) 0.40(2) 0.7086 16 0.7173 
2 −0.218(6) 0.38(4) 0.85043 32 0.5580 

1.25 
1.25 
1.25 
1.25 
0.9 
0.9 
0.9 
0.9 

−0.27(1) 
−0.26(2) 
−0.25(3) 
−0.31(4) 
−0.21(3) 
−0.22(5) 
−0.23(7) 
−0.3(1) 

0.32(2) 
0.31(3) 
0.30(4) 
0.41(7) 
0.19(3) 
0.20(4) 
0.21(6) 
0.2(9) 

0.8451 
0.9229 
0.8482 
0.4951 
0.4983 
0.5010 
0.5237 
0.6113 

4 
8 
16 
32 
4 
8 
16 
32 

0.6199 
0.9229 
0.5819 
0.8607 
0.9356 
0.9155 
0.8748 
0.7692 

0.5 
0.5 
0.5 
0.5 
0.05 
0.05 
0.05 
0.05 

−0.336(8) 
−0.32(1) 
−0.32(2) 
−0.33(4) 
−0.429(6) 
−0.41(1) 
−0.43(3) 
−0.43(7) 

0.192(4) 
0.188(5) 
0.188(7) 
0.190(9) 
0.033(1) 
0.033(1) 
0.033(1) 
0.033(1) 

1.0286 
1.0466 
1.2546 
1.5533 
0.7662 
0.6955 
0.6882 
0.8571 

4 
8 
16 
32 
4 
8 
16 
32 

0.4203 
0.4019 
0.2502 
0.1332 
0.7073 
0.7575 
0.7365 
0.5522 

0.005 −0.466(5) 0.0040(4) 0.9548 4 0.4979 
0.005 −0.49(1) 0.0045(5) 0.6865 8 0.7663 
0.005 −0.49(3) 0.0046(6) 0.6857 16 0.7389 
0.005 −0.38(8) 0.0041(7) 0.5806 32 0.7948 

Table 5.1: Estimates of the parameters a and b in the fnite-size scaling ansatz of the density of 
type-1 edges, (5.3.8), obtained from least-square fts. The value Q is the “confdence-
level”, i.e. the probability that χ2 would exceed the observed value, assuming that 
the underlying statistical model is correct. 

suggests therefore that both Eq[` 1] and Eq[B] contain a term aL1/ν−d suppressing the 

density with respect to the limiting value (5.2.2), however in addition to that, Eq[` 1] is 

ruled by another e�ect yielding an overestimation of bL−x2 of the density for fnite lattices. 

Now precisely for q = 1, it happens that these e�ects cancel in Eq[` 1], which in turn 

becomes size independent, however the global q-dependent picture actually suggests that 

the leading fnite-size correction of the critical bridge density for percolation is actually 

thermal. In the remaining part of this section we show how the bridge-identity (5.1.8) 

imposes that the fnite-size corrections for q , 1 must be, in leading order, described by 

L1/ν−d . To start with, we note that the generalisation of (5.2.1) to the q-state Potts model is 

well known and reads [50, 11] � � 
Ep,q[N ] = 

mp
uq − log(1− p) , (5.3.12) 

n 
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Figure 5.7: Comparison of numerically extracted exponents of the leading fnite-size correction 
for the density of bridges and pseudo-bridges. The solid lines show the exact 
Coulomb-gas value. The deviations for values of q around 4 are caused by strong 
sub-leading fnite size corrections, which can not be incorporated into a stable ft. 

� � 
where uq β is the internal energy of the q-state Potts model with inverse temperature β 

[50, 44], and as before, m and n are the number of edges and vertices, respectively. The 

fnite-size scaling for standard observables such as uq(β) close to a point of a second-
√

order phase transition, is well established, c.f. [113]. We note that βc = log(1 + q) for 

the Potts model on Z2. Now, in the vicinity of βc, the fnite size corrections for uq(βc) 

can be extracted from a scaling ansatz for the normalised dimensionless free-energy 

f = − logZP (β,q)/(βn). More generally, for a system without surfaces, such as Z2, the L

singular part fs of f as a function of the thermal feld t = β − βc, the ordering feld h, the 

leading irrelevant feld v, and the systems size L, is expected to be of the following form 

[113] � � 
fs(t,h,L) = L−dF tL1/ν ,hLd−β/ν ,vL−θ/ν . (5.3.13) 

The internal energy uq(βc) can be expressed in terms of the frst derivative of f with 

respect to t, evaluated at t = h = 0. Furthermore it is plausible to assume [93, 113] that the 

non-singular part of f has no size-dependence and directly yields the value obtained in 

the infnite-volume limit. These observations allow us to conclude that, to leading order in 

L, the size dependent deviations of Eq[N ] from its asymptotic value 1/2 are ruled by the 

exponent 1/ν − d, which in turn implies, by (5.1.8), that the expression (5.3.11) is indeed 

the right asymptotic form for Z2 at the self-dual point. We remark that, frstly the above L 

arguments naturally extend to higher dimensions and other graphs, as we confrm below 

for Z3. Secondly, in a strict sense, assuming the correctness of the scaling ansatz (5.3.13),L

the above arguments are only valid for integer q. However it is plausible to assume the 

validity of the above arguments for q ∈ (0,4]. A further direct consequence of (5.3.13) is 

that the p-derivative of Ep,q[B] has a contribution proportional to Lα/ν , which implies a 

Pseudo-bridges: x2 
Bridges: 2 − 1/ν 

0 1 2 3 4 
q 
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singularity for q ≥ 2, as already outlined in the discussion of the Ising case; consider also 

Figure 4.3. 

So far we have only considered the density of bridges, and completely ignored non-bridges. 

This is reasonable as no new e�ects appear and the involved fnite-size exponents are 

the same. However, what changes are of course the constants a,b. In particular, we fnd, 

due to pseudo-bridges, an underestimation of Eq[C] by Eq[` 2] and the fnite non-bridge 

density approaches the asymptotic result from above. 

5.3.3 Three dimensions 

We also investigated the three dimensional case Z3, in order to confrm the validity L

of the above arguments. In contrast to the two-dimensional case, we have no exact 

expressions for the standard critical exponents nor do we know the exact asymptotic 

densities. We therefore need to revert to appropriate numerical studies in the literature. 

Let us frst consider critical bond percolation on Z3. One recent numerical determination L

is pc(1) = 0.24881182(10) [95]. We fxed the bond-density at this value and estimated the 

density of bridges for system sizes up to L = 256, and show in Figure 5.8 the corresponding 

data together with a ft to the basic fnite-size scaling ansatz 

Epc (q)[B] = c + aL−e. (5.3.14) 

We extract ν via ν = 1/(3 + e). Our numerical value of ν = 0.87(1) is in good agreement 

with the recent literature estimates ν = 0.8764(12) [95] and ν = 0.8751(11) [114]. Further 

we can also compare to the covariance study of Deng et al. [111], which concluded 

Covpc(1)[K,N/L3]→−0.4783(2) which compares very well with our estimate Epc(1)[B]→ 

0.212177(3) which in turn implies Covpc [K,N/L
3] = 3Epc [B](pc − 1) →−0.478155(1). For 

the cluster-weight q = 1.5 we are not aware of any published values for pc(1.5) to date, but 

Deng et al. fnd [96] that pc(1.5) = 0.311574973(43). In the same work the authors also 

estimate 1/ν = 1.34 ± 0.01 ± 0.02, where the frst error bar represents statistical errors and 

the second error bar systematic errors due to neglected terms in the fnite-size scaling 

analysis. This result is consistent with our estimate 1/ν = 3 + e = 1.32(5). Moreover we 

estimate Epc(1.5)[B]→ 0.19789(2), which as expected, is smaller than the corresponding 

bridge density for percolation. Lastly, we also considered the cluster-weight q = 0.5, for 

which, to our knowledge, no literature values are known. We emphasise that the purpose 

of the present study is not a high precision estimation of critical exponents and asymptotic 

densities, but merely seeks to confrm the validity of the above theoretical arguments. 

We estimated the location of the phase-transition, which is supposed to be of second 

order or continuous [88], by conducting an appropriate Binder-cumulant study, to be 

pc(0.5) = 0.154(1) and extract ν = 1.19(14) as well as Epc(0.5)[B]→ 0.231(1). 
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Figure 5.8: Size dependencies of bridge densities for the random-cluster model on Z3 withL 
q = 0.5,1,1.5 at the respective predicted location pc(0.5) of a second order phase 
transition. The solid lines show the corresponding best fnite size ansatz (5.3.14). 

5.4 Bridges and their relation to other quantities 

So far our analysis has focused on open (active) edges, that is bridges and non-bridges. 

Somewhat surprising, the analysis of closed (inactive) edges turns out to be very interesting 

too, in that it allows us to link several previously unrelated quantities, studied in the 

literature, to the density of bridges. This provides a unifed framework for the analysis 

for, e.g., fnite size corrections and, in particular, yields a geometric interpretation of 

those. Moreover, the study of closed edges provides a probe of the cluster structure. 

For instance, a large density of candidate-non-bridges suggests that clusters are more 

likely to self-entangle than to overlap with other clusters. On the other hand, a large 

candidate-bridge density indicates that clusters are typically disconnected, and closed 

edges are mostly inter cluster links. 

Now, in order to analyse the density of candidate-(non-)bridges, let us consider a given 

closed edge e = (x,y), that is e is not part of the current spanning sub-graph. Clearly 

we have that when x is not connected to y by a path of open edges, in what follows 

abbreviated by x = y, then by inserting e, we merge two previously disconnected clusters. 

Thus we conclude that a candidate-bridge is nothing else than a pair of disconnected 

neighbouring6 vertices. This observation allows us to write down the following, almost 

trivial but useful, identity for arbitrary e = (x,y) ∈ E: 

Pp,q[e ∈ B] = Pp,q[x = y] = 1 − Pp,q[x ↔ y]. (5.4.1) 

6A pair of vertices x,y is neighbouring if and only if (x,y) ∈ E. 

E
 p c

 (q
),q

 [B
] 

q = 1 q = 1.5 q = 0.5 
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5.4. Bridges and their relation to other quantities 

We remark that for integer q one can relate (5.4.1) to h1{σx }iq;− log(1−p), where h·iq;β is=σy 

the expectation of the Potts model with q states and inverse temperature β and σx,σy ∈ 

{0,1, . . . , q − 1}. This follows from ! 
1 1h1{σx }iq;− log(1−p) = + 1− Pp,q[x ↔ y]=σy q q 

which can be easily verifed by utilising the Edwards-Sokal coupling [11]. We therefore 

obtain 
1− h1{σx =σy }iq;− log(1−p)

Pp,q[e ∈ B] = . (5.4.2)
1− 1 

q 

Remarkably, it is possible to relate Pp,q[x = y] to Pp,q[(x,y) ∈ B], the probability that 

e = (x,y) is a bridge. This follows from a natural bijection between the set of confgurations 

contributing to the events {x = y} and {e ∈ B}. More precisely let 

Ωx,y ≡ {A ⊆ E|x = y in (V ,A)} , (5.4.3) 

Ωe ≡ {A ⊆ E|e ∈ B(A)} , (5.4.4) 

where x,y ∈ V and e ∈ E. Now simply consider the mapping between Ωx,y and Ω(x,y) for 

x,y ∈ V such that (x,y) ∈ E 

A ∈ Ωx,y 7→ Ae ∈ Ω(x,y). (5.4.5) 

We recall that Ae ≡ A + {e}. Now by the nature of the probability measure of the random-

cluster model one has 

Pp,q[A] = 
Z
1 

p,q 
qK(A)p|A|(1− p)m−|A|, 

1 |Ae |−1(1− p)m−(|Ae |−1)K(Ae)+1= q p ,
Zp,q 

q(1− p)
= Pp,q[Ae]. (5.4.6) 

p 

valid for any A ∈ Ωx,y with e = (x,y). This in turn allows us to conclude X 
Pp,q[x = y] = Pp,q[A]1{x=y}(A), 

A⊆EX 
= Pp,q[A], 
A∈Ωx,y 

q(1− p) X 
= 

p 
Pp,q[Ae], 

A∈Ωx,y 

q(1− p) X 
= Pp,q[A], 

p 
A∈Ω(x,y) 

q(1− p) X 
= Pp,q[A]1{e∈B(A)}, p 

A⊆E 
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q(1− p)
= Pp,q[e ∈ B]. (5.4.7) 

p 

q(1−p)The above shows that Pp,q[e ∈ B] = Pp,q[e ∈ B], and therefore, using (5.1.8), we obtain p 

the general result ! 
q Ep,q[N ]

Ep,q[B] = − 1 . (5.4.8)
1− q p 

This has direct consequences. Firstly, the fnite size corrections of Ep,q[B] are completely 

determined by the ones of Ep,q[B]. Secondly, the same conclusion applies to Ep,q[C], due to 

Ep,q[C] = 1 − Ep,q[N ]− Ep,q[B]. 

Lastly, one can infer from (5.2.2) the corresponding asymptotic values for the square 

lattice: √ 
q 1

Eq[B] = , Eq[C] = √ . (5.4.9)
2(1 + √1 ) 2(1 + q)

q 

We pause to note that these results, together with the bridge and non-bridge results 

(5.2.2), have a very intuitive basis. Firstly, we remark that the density of both, open and 

closed, edges are, asymptotically, independent of q for Z2, and equal to 1/2. Thus we can 

equivalently study the relative densities of B,C,B and C, which equal 1 − psd(q), psd(q), 

psd(q) and 1− psd(q), respectively. Now, by increasing q, open edges are typically more 

and more likely to be non-bridges in the same manner as closed edges become more and 

more likely candidate-bridges. This clearly implies the opposite e�ect for bridges and 

candidate-non-bridges. Thus, by increasing q, the overlap between clusters is increased, 

which relates to a larger number of candidate-bridges. In other words, the increase of q 

strengthens the connection within clusters, at the “cost” of increasing overlaps between 

clusters (increasing the (relative) density of candidate-bridges). This refects the interplay 

of K and |A| in the probability weight of A, equal to qK+|A|/2, for psd(q). In order to increase 

the weight, either K needs to be increased, going typically along with a decrease of |A|, 
or |A| increases, possibly decreasing K . However increasing |A| by relocating bridges to 

positions of candidate-non-bridges, one can increase K by conserving |A|. Increasing q 

enforces this particular relocating e�ect more and more. 

The connection between bridge-density and connectivity further allows us to recover a 

recent result of Hu et al., [114], where the authors determine that for L →∞ on Z2 
L one 

has, due to translational invariance, for any (x,y) ∈ E Pq[x ↔ y]→ 3/4. Recall, the authors 

of [55] established that the asymptotic bridge density for critical percolation on Z2 is 

1/4 (or consider (5.2.2)). This is clearly consistent with (5.4.7). Moreover in [114] it was 

shown that for the random-cluster model on Z2, with integer q ≥ 1, one has: L

√
2 + q

Pq[x ↔ y]→ � � for L →∞ (5.4.10)√
2 1 + q 

L 
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for arbitrary (x,y) ∈ E. It is straightforward to confrm that this result can be derived from 

(5.4.8) and (5.4.9). 

As another application of (5.4.7) we can derive the expected bridge-density for the random-

cluster model on the cycle graph with n vertices, denoted by Cn. Here, one can show, after 

some straightforward algebra [69] (see also the Appendix B), that 

p̃(p,q)n − p̃(p,q)n−1 − p̃(p,q) + 1 
Pp,q[x = y] = → 1− p̃(p,q) (5.4.11)

1 + (q − 1)p̃(p,q)n 

for n →∞ and any pair x,y of neighbouring vertices. We therefore obtain for Cn in the 

limit n →∞: 
p

P[e ∈ B]→ p̃(p,q) = . 
p + (1− p)q 

This refects the intuition that for n → ∞ the cycle graph becomes e�ectively a path 

and thus a tree, for which all edges are bridges. Recall, that the random-cluster model 

on a tree with parameters p and q is equivalent to independent bond percolation with 

parameter p̃(p,q). Further the above limit matches the upper bound (5.1.11). Moreover, 

the asymptotic value is approached, for any choice of p and q, from below. This refects 

the intuition that the fnite cycle is more strongly connected than the infnite one, because 

it can still “sense” the topology of the cycle. However for n → ∞ the infuence of the 

boundary condition becomes irrelevant when concerned with the density of bridges. This 

is also consistent with what we observed for Z2 in particular (5.3.11). Now, in order to L 

see that the asymptotic bridge-density is approached from below for Cn, it is helpful to 

distinguish the two cases q ≥ 1 and q < 1. Showing the claim for q ≥ 1 is straightforward 

and we omit the details. For the case q < 1 we note that one can re-write (5.4.11) as h ih i 
1− p̃(p,q) p̃(p,q)− p̃(p,q)n 

Pp,q[x = y] = ,
(q − 1)p̃(p,q)n + p̃(p,q) 

which in turn with 0 ≤ p̃(p,q)− p̃(p,q)n ≤ 1 and (q − 1)p̃(p,q)n + p̃(p,q) ≥ p̃(p,q)− p̃(p,q)n ≥ 0 

yields 

Pp,q[x = y] ≤ 1− p̃(p,q) 

and hence eventually h i 
Pp,q[e ∈ B] = 

p 
Pp,q[x = y] = 

p 
1− p̃(p,q) ≤ p̃(p,q). 

q(1− p) q(1− p) 

5.5 Bridge fuctuations 

In combination with results from the Coulomb gas and the solution of the critical Potts 

model in two dimensions, the bridge-edge formula (5.1.8) provides a rather complete 

understanding of the expected behaviour of the critical bridge density. Additionally, 

higher moments of the bridge distribution can be discussed with similar techniques 

(however with more involved combinatorial/geometric interpretations of the involved 
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terms) as we will show now for the example of the variance. This allows us to study the 

scale of fuctuations in |B|. Somewhat naively, knowing that the frst moments of the 

bridge- and edge- distribution are linearly related, one might expect that the variance 

Varp,q[|B|] is governed by the fuctuations of N . Going further, one might then anticipate 

in this case that the critical variance would follow Varq[|B|]/m ≈ Lα/ν , which in turn would 

imply a divergence with L for q ≥ 2 and a “saturation” to a constant for q < 2 [15]. However, 

as we will show now the story is not quite as simple. 

To work out the scale of fuctuations in the number of bridges |B|, we apply the Russo-

Margulis formula to the second derivative of the partition function Zp,q, which we then in 

turn equate with the expression one obtains by explicit di�erentiation. To start, with we 

have, using (5.1.6), 

Zp,q 
! 

1− q 1− q h i 
∂2Zp,q = (1 − q)∂p Ep,q[|B|] = −Zp,q Ep,q [|B|] + ∂pEp q

K |B| .p 2p p p 

Let us now focus on the second term: h i X h � �i1− q 1− q
∂pEp q

K |B| = Ep δe q
K 1{f ∈B} , p p 

e,f ∈E X X h i 
K(Ae=

1− q 
Pp[A] qK(A)1{f ∈B(A)} − q )1{f ∈B(Ae)} . (5.5.1)2p

e,f ∈E A⊆E: 
e∈A 

Here we used the fact that the derivative δe for e ∈ E considered as an operator from 

R|Ω| → R|Ω| is linear. We can split the inner sum into two sums corresponding to e ∈ B(A) 

and e ∈ C(A), of which we consider the former frst X X h i1− q 
Pp[A] 1{e=f }q

K(A)1{f ∈B(A)} +1{e,f }q
K(A)(1− q)1{f ∈B(A)} .2p

e,f ∈E A⊆E: 
e∈B(A) 

A few comments are in order. If e = f , we clearly have that e = f < B(Ae), hence we recover 

the expected bridge density. For e , f it is important to observe that removing a bridge e 

cannot infuence the pivotality of an occupied edge f , in particular when f ∈ B(A) then 

also f ∈ B(Ae), whenever e is a bridge in A. The above can therefore be re-written as 

X1− q (1− q)2 
Zp,qEp,q [|B|] + Zp,q Pp,q[e ∈ B,f ∈ B].2 2p p

e,f ∈E 

For the non-bridge contribution to the inner sum in (5.5.1) note that only summands 

with e , f contribute, because otherwise if e ∈ C(A) then trivially f = e < B(A), B(Ae). 

Furthermore, if e , f such that e ∈ C(A) and f ∈ B(A) then we have also a vanishing 

contribution because deleting a non-bridge cannot change the fact that f is a bridge. Thus, 

there can only be a contribution for a confguration A such that e ∈ C(A) and f ∈ C(A) 

as well as both edges are in one cycle and deleting e will destroy the cycle and hence 

cast f into a bridge in Ae. Moreover, both edges e and f must only be in one “linearly 

116 

http:di�erentiation.To


5.5. Bridge fuctuations 

independent” cycle (imagine two clusters glued together in parallel by the edges e and f , 
A

hence in particular there are no additional links between the two clusters). Write e ⇔ f 

for the above event involving edge e and f . We obtain for the second term: 

1− q X 
−Zp,q Pp,q [e ⇔ f ] .2p

e,f ∈E 

We therefore obtain eventually for ∂2 
pZp,q: ⎛ ⎞ 

1− q X X 
∂2 
pZp,q = Zp,q 2 

⎜⎜⎜⎜⎜⎜(1− q) Pp,q[e ∈ B,f ∈ B]− Pp,q[e ⇔ f ] 
⎟⎟⎟⎟⎟⎟ , p ⎝ ⎠

e,f ∈E e,f ∈E ⎛ ⎞ 
1− q X 

= Zp,q (1− q)Varp,q[|B|] + (1− q)Ep,q[|B|]2 − (1− q)Ep,q[|B|]− Pp,q[e ⇔ f ] . 
p2 ⎝⎜⎜⎜⎜⎜⎜ ⎠⎟⎟⎟⎟⎟⎟

e,f ∈E 

On the other hand one can show by explicit di�erentiation and after some straightforward 

but tedious algebra that: 

2 +m21 Ep,q[N ] (2p − 1− 2pm)− mp p2 + Varp,q[N ] +Ep,q[N ]2 

∂2 = pZp,qZp,q p2(1− p)2 

Equating both expressions for ∂2 
pZp,q with subsequent rearranging yields 

Ep,q[N ] (2p − 1− 2pm)− mp2 + Varp,q[N ] + 
� 
Ep,q[N ]− mp 

�2
+ 2mpEp,q[N ]

Varp,q[|B|] = 
(1− q)2(1− p)2 X1− Ep,q[|B|]2 +Ep,q[|B|] + Pp,q[e ⇔ f ]

1− q 
e,f ∈E 

This can be further simplifed by using the bridge edge identity (5.1.8), which leads to 

Varp,q[|B|] Ep,q[N ] (2p − 1)− p2 + Varp,q[N ]/m 1 1 X 
= +Ep,q[B] + Pp,q[e ⇔ f ]. 

m (1− q)2(1− p)2 1− q m 
e,f ∈E 

(5.5.2) 

We emphasise that (5.5.2) is an exact result valid for any p and q as well as any graph, thus 

it has the same range of applicability as the bridge-edge identity (5.1.8). Furthermore, we 

remark that for e = (u,v) and f = (x,y) we have by a bijection argument, similar to the 

one used in Sec. 5.4 to derive the relationship between the bridge density and nearest 

neighbour connectivity: � � p2 1
Pp,q[e ⇔ f ] = 1− Pp,q[(u,v)! (x,y)] . 

(1− p)2 q 

Here 1 − Pp,q[(u,v) ! (x,y)] for (u,v), (x,y) ∈ E is the probability that the two nearest 

neighbour pairs belong to two di�erent clusters, such that the two distinct clusters each 

contain one vertex from {u,v} and one vertex from {x,y} (see Fig. 1(c) in Ref. [110]). In what 
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follows we focus on the self-dual line for the RC model on Z2 and study the continuum L 

limit. As shown by Vasseur et al. [110] one has for two pairs of neighbouring vertices (u,v) 

and (x,y) at distance r the following asymptotics for large r: 

−2x2(q)1− Pq[(u,v)! (x,y)] ∼ A(q)r . 

This follows from the construction of a four-leg watermelon event, due to the four hulls 

propagating from the neighbourhood of (u,v) to the neighbourhood of (x,y), which are 

associated to the two clusters involved. We hence expect the following asymptotic behavior � �X X1 
Pq[e ⇔ f ] =

1 
1− Pq[(u,v)! (x,y)] , 

m m 
e,f ∈E (u,v),(x,y)∈E Z L 

≈ A(q) 
2

dr2πrr−2x2(q), 
1 

= α(q)L2−2x2(q) + β(q), (5.5.3) 

where α(q) and β(q) are two q dependent constants. 

Inspecting the form (5.5.2), we hence see that the normalised variance of the bridge 

density has two contributions, one proportional to the normalised variance of the number 

of edges that scales as Lα/ν at criticality, and another term related to the above mentioned 

watermelon event with scaling proportional to L2−2x2 . Whenever Lα/ν is the dominant 

contribution, the situation hence follows the naive expectation outlined above. Inspection 

of the Coulomb gas values of the exponents shows that this is the case for q ≥ 1. For 

q > 2, this leads to a divergence of Varp,q[|B|]/m. For q < 1, however, the leading term is 

proportional to L2−2x2 . Remarkably, our result7 shows that for � √ � 
q < q̃ = 4cos2 π/ 3 = 0.2315891 · · · 

the normalised variance of |B| becomes unbounded, that is it diverges with the exponent 

2− 2x2. We emphasise that this is not only quantitatively di�erent from what the heat-

capacity based arguments would predict (α/ν , 2− 2x2), but also a qualitatively di�erent 

result. The situation is summarised in the lines of Fig. 5.9 showing the Coulomb gas values 

of α/ν and 2−2x2. We also analysed the variance of the bridge density numerically. The ft 

functions and resulting parameters are summarised in Table 5.2, and the corresponding 

parameter estimates are indicated by the symbols in Fig. 5.9. Clearly, we fnd excellent 

agreement with the predictions from Eq. (5.5.2) discussed above. For the marginal 

value q̃ = 0.2315891 · · · we expect a logarithmic divergence, and we indeed fnd the 

corresponding form to yield the best ft to our simulation data. 

7This value q̃ follows from the condition that x2(q̃) = 1. Using x2 = g/2− (g − 4)2/(8g) [15] where g is the √ 
Coulomb gas coupling, we fnd that this happens for g̃ = ±4/ 3. Thus taking only the positive solution we 

√ √ 
fnd, because of q = 2 + 2cos(gπ/2), that the solution is q̃ = 2 + 2cos(2π/ 3) = 4cos(π/ 3)

2
. 
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Figure 5.9: The exponents α/ν and 2− 2x2 appearing in the system size scaling of Varq[|B|]/m 
at criticality. The lines show the exact values following from the Coulomb gas 
mapping. The symbols denote our numerical estimates from ftting to the variance 
of the bridge density, cf. the data collected in Table 5.2. 

It remains to discuss the percolation case q = 1 where the bridge-edge identity (5.1.8) 

becomes singular and the above derivation hence needs to be revisited. Here we derive the 

singular behaviour based on another bijection argument that allows us to harness recent 

results on logarithmic observables emerging from a careful analysis of the appropriate 

logarithmic conformal feld theory description of critical percolation [110, 114]. Before 

we do so, note that in order to extract the asymptotic scaling of the variance it suÿces 

to study the covariance ηe,f ≡ Pp,q[e ∈ B,f ∈ B] − Pp,q[e ∈ B]Pp,q[f ∈ B], which relates to 

Varp,q[|B|] via the well known identity X 
Varp,q[|B|] = ηe,f . 

e,f ∈E 

To start with, recall that we consider critical bond percolation on Z2, i.e. q = 1 and p = 1/2L

and write P[·] for P1/2,1[·]. Furthermore, note that Z2 is a transitive graph, and hence none L 

of the following events depend on the explicit edge or vertex, used in the arguments. Now, 

fx two edges e = (x1, y1), f = (x2, y2) that are distance r � L apart. Consider the event 

{e ∈ B ∧ f ∈ B}. All confgurations contributing to this event can be further sub-divided 

into two events, depending on whether e and f belong to the same connected component 

in (V ,A) or not. Denote the two events byΩ1 and Ω2, respectively. Choose a confguration 

A that belongs to Ω2, i.e. the two edges e and f are bridges in (V ,A) and belong to two 

di�erent connected components. The crucial point is that we can relate A one-to-one to 

A − {e, f }, a confguration where x1, y1,x2, y2 belong to four di�erent clusters. Denote all 

confgurations in which the four vertices belong to four di�erent components by Ω̃2 (thish i
˜is a event). Due to the choice of q = 1 and p = 1/2 we have that P [Ω2] = P Ω2 . Let us now 
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q Exponent (C) χ2 
pdf Lmin Model α/ν 2− 2x2 

0.0005 0.462(16) 1.01 12 A +BLC −1.9576 0.4752 

0.005 0.422(3) 1.15 4 A +BLC −1.8679 0.4222 

0.05 0.258(5) 0.58 16 A +BLC −1.6005 0.2599 

0.1 0.164(4) 0.76 8 A +BLC −1.4492 0.1648 

0.231589 − 1.01 8 A +B log(L) −1.1962 0 

0.5 −0.217(51) 1.4 12 A +BLC +DLα/ν −0.8778 −0.2191 

1 −0.496(21) 0.7 6 A +BLC [1 +D log(L)] −0.5 −0.5 

1.5 −0.218(15) 1.05 4 A +BLC +DL2−2x2 −0.2266 −0.7205 

2.5 0.202(14) 0.94 48 A +BLC 0.2036 −1.1052 

3 0.398(3) 1.14 6 A +BLC 0.4 −1.3 

Table 5.2: Numerical results for the leading exponent in the fnite-size scaling of Varq[|B|]. 
The two rightmost columns show the exact values obtained from the Coulomb gas 
mapping. For the two cluster weights q = 1.5 and q = 0.5 we also performed a ft to 
the form A +BLC , which yielded slightly worse results, due to the proximity of the 
two (negative) exponents. In all cases the quality-of-ft Q was at least 5%. 

consider the event Ω1, i.e. the set of confgurations for which e and f belong to the same 

component and both e and f are bridges. Now, because both edges are pivotal we can 

relate any such confguration A ∈ Ω1 one-to-one to a confguration where x1 and y1 as well 

as x2 and y2 are disconnected, and for which x1, y1,x2, y2 belong to three di�erent clusters, 

of which one cluster contains one vertex of {x1, y1} and one vertex of {x2, y2}. Denote the 
˜corresponding event Ω1. Note that any confguration A ∈ Ω1, where e and f are bridges 

belonging to the same cluster, must yield 3 disconnected clusters in A0 = A − {e, f }. This 

is because the alternative case of 2 disconnected clusters in A0 would imply that e and fh i
˜are in a cycle in A, which is obviously a contradiction. As before we have P [Ω1] = P Ω1 . h i h i 

Finally, the probabilities P Ω̃1 and P Ω̃2 were studied8 in [110] in the framework of a 

corresponding logarithmic conformal feld theory. We note that in the continuum limit 

both probabilities P [Ω1] and P [Ω2] only depend, to leading order, on r. Now because we 

have P [e ∈ B,f ∈ B] = P [Ω1] +P [Ω2] we obtain by falling back to [110]: 

Var1/2,1[|B|]
ηe,f ∼ (a + b log(r))r−2x2 ⇒ ∼ (a0 + b0 log(L))L2−2x2 , (5.5.4) 

m 

where x2 = 5/4, the two-arm exponent for critical percolation, and a,b,a0 ,b0 are constants. 

Our numerical analysis confrmed this scaling, as shown in Table 5.2 and Figure 5.9. Thus 

considering the variance of bridges for critical percolation yields yet another manifestation 

of the underlying logarithmic conformal feld theory [110]. 

Lastly, it is an interesting open problem to check whether the observation that the q < 1 

regime is governed by an exponent di�erent from the α/ν heat-capacity value extends 

8Vasseur et al. denote P[Ω̃1] by P1(r) and P[Ω̃2] by P0(r). 
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to higher dimensions, i.e. is this a inherent property of the q < 1 random-cluster model 

or rather a pecularity of (short-range) two dimensional systems, to which the above 

arguments naturally extend by means of universality9. 

5.6 Fragment sizes 

In this section we focus on criticality and investigate how a cluster fragments upon deletion 

of a bridge, that is we study the statistics of the fragment size distribution associated to 

the deletion of a bridge. Such fragmentation phenomena were analysed for critical bond 

percolation in e.g. [29, 115, 30], and for continuum percolation clusters in [116]. Here 

we go beyond uncorrelated bond-percolation and study, for the critical random-cluster 

model, the size of the fragments formed by the removal of a bridge. More precisely we 

study the statistics of the quantity De(A), defned as the size of the smaller of the two 

clusters formed by the removal of edge e, in case it is a bridge, and 0 otherwise, i.e: 

De(A) ≡ 1{A∈Ωe} min {Cx(Ae),Cy (Ae)}, 

where Ωe is defned in (5.4.4) as the set of confgurations for which e is a bridge, and Cx(A) 

generically denotes the size of the connected component in the graph (V ,A), to which 

vertex x belongs. Our frst step was to investigate the expectation Eq[De], which can also 

be written as 

Eq[De(A)] = Pq[e ∈ B]Eq[min {Cx(Ae),Cy (Ae)}|e ∈ B], 

that is we consider a conditional expectation, where we condition on e being a bridge. 

Further, because we used Monte-Carlo simulations to estimate the above expectation, we 

exploited the translational invariance of Z2 to improve the estimates. More specifcally, we L P1have that Eq[De] is independent of e and hence equal to Eq[D], where D(·) = e∈E De(·). m 

The fractal, self-similar, structure at criticality suggests that this quantity scales as a power 

law in L, the linear dimension, i.e. we expect, in leading order, Eq[D] ≈ Ly , with a yet to be 

determined exponent y. We remark that y is however constrained by y ≤ γ/ν. This follows 

from the observation, that the expected cluster size scales at criticality, for a system with 

linear dimension L, as Lγ/ν , c.f. e.g. [46, 15, 26]. Moreover, as already discussed in Chapter 

4, this γ/ν scaling causes a drastic computational slowing down of, both, the sequential 

breadth/depth-frist search and interleaved breadth/depth-frst-search-union-fnd based 

implementations of Sweeny’s algorithm. 

To start with, we ftted various scaling ansätze to our estimates for Eq[D], in order to 

extract the leading size dependence. We fnd that the best ft results were obtained by 

ftting a simple power law, Ly , to the data, with an appropriate lower system size cut-o�, 

to account for possible unconsidered corrections. Interestingly, our data is completely 

consistent with y = dF − x2, which involves the cluster fractal dimension and the two-arm 

9We expect the value of q̃ or its mere existence ( ̃q > 0) to be a dimensionality dependent question, which of 
course also deserves a further study. 

121 



Chapter 5. Fragmentation of Fortuin-Kasteleyn clusters 

exponent. For both, dF and x2, one has exact expressions [51], to which we compare our 

numerical estimates for y in Figure 5.10. The occurrence of the combination dF − x2 for 

y 
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q 

Figure 5.10: Extracted exponents for Eq[D], the expected smaller fragment size. The numerical 
estimates are compared to the predicted values for dF − x2 from Coulomb gas 
arguments. 

the smaller fragment size, closely resembles the fnite-size dependence of the quantity 

Cmin;e, studied in [15], and which is defned by 

Cmin;e(A) ≡ 1{A∈Ωx,y } min {Cx(A),Cy (A)}, (5.6.1) 

where e = (x,y) ∈ E and Ωx,y , defned in (5.4.3), is the set of confgurations for which vertex 

x and y are disconnected. The authors of [15] provided scaling arguments, supported by ex-P 
tensive simulations, that show that Eq[Cmin] ≈ LdF −x2 , where Cmin(A) = e∈E Cmin;e(A)/m. 

The identical scaling of quantities is not a coincidence, as we can show that both D and 

Cmin have, up to a q and p dependent factor, the same expectation for any p and q. The 

reasoning is completely analogous to the observations that led to (5.4.7). In order to show 

this, note that we have Cmin;e(A) = De(A + e) for any e = (x,y) ∈ E and A ∈ Ωx,y . Further we 

have relation (5.4.6) for our choice of A and x,y, such that we can conclude 

q(1− p)
Ep,q[Cmin] = Ep,q[D]. (5.6.2) 

p 

Being valid for all values of p and q, it holds in particular also at the critical point 

psd(q), and hence supports our numerical data that shows Eq[D] ≈ LdF −x2 . We emphasise 

that dF − x2 < γ/ν and hence LdF −x2 � Lγ/ν . This suggests that the removal of a bridge 

predominantly creates very unequally sized fragments. 
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5.6.1 Scaling relations for the fragmentation break-up kernel 

In order to understand the suppression of the smaller fragment size better, we analysed 

the probability of separating a cluster of mass s0 from a cluster of mass s upon removal of 

a bridge, denoted by bs0 |s. This quantity was already analysed for critical bond-percolation 

in references [29, 115], where the authors, based on exact results in one dimension and for 

the Bethe lattice as well as exact enumeration methods and extensive simulation, proposed 

the following scaling form: !0s s 
bs0 |s ∼ s−φG , , (5.6.3) 

s LdF 

where various scaling relations for φ have been proposed, e.g. ⎧ 
2− σ [115, 29], ⎪⎪⎪⎪⎪⎪ � �⎨

φ = 1 + dH − 1 [117],ν dF⎪⎪⎪⎪⎪⎪τ + σ − dH⎩ 
dF 

[118], 

where σ is the crossover exponent of the cluster-size distribution [46] and dH the hull 

fractal dimension [119]. The authors of [30] performed an extensive numerical analysis of 

fragmentation of percolation clusters for dimensions two to nine, and conclude that the 

original Edwards et al. relation [115] 

1 
φ = 2− σ = 2− , (5.6.4)

νdF 

describes the data best. We remark that (5.6.4) is based on the implicit assumption that 
λa cluster of mass s has typically a constant density of bridges, that is one has as ≈ s , 

with λ = 1, where as is the expected number of bridges on a cluster with masses s. 

Indeed, we recently showed in our letter [120], based on the bridge-edge formula (5.1.8) 

in combination with scaling-arguments, that λ = 1 is the only consistent possibility for 

the random-cluster model on any (fnite) graph. 

The (critical) random-cluster model setting provides us with another non-trivial testing 

ground of the validity of (5.6.4) (with suitable replacements of ν and dF by q-dependent 

expression). Yet, somewhat surprisingly, our numerical analysis shows a deviation of 

(5.6.4) for q , 1. In what follows we will resolve this and derive the generically valid 

scaling-relation (5.6.9) forφ, which, in particular, reduces to (5.6.4) for q = 1. To start with, 

we, again, exploit the connection between Cmin,e and De. The authors of [15] analysed, 

in addition to moments of Cmin,e, also P[Cmin,e = s0], the probability that Cmin,e(A) = s , 

which due to translational invariance, does not depend on the particular edge e ∈ E, and 

we simply write Cmin in what follows. The authors proposed the following scaling form, 

at criticality, for large but fnite box, with dimension L: !0s
P[Cmin = s0] ∼ s0−ψCmin F 

LdF 
. (5.6.5) 

0 
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Further clever scaling arguments, supported by a careful numerical analysis, led the 
x2authors to the conclusion that ψCmin 

= dF 
+ 1. We remark that this relation for ψCmin 

is 

consistent with Ep,q[Cmin] ≈ LdF −x2 . Now, with identity (5.4.7) in mind, it is not hard to see 

that P[Cmin = s0] must be related to the probability that De(A) = s0, where e is an arbitrary 

edge in E. Indeed, we can show that valid for any transitive graph one must have, 

q(1− p)
P[Cmin = s 0] = P[D = s 0], (5.6.6) 

q 

which is the analogue of (5.6.2), now only on the level of distributions, and clearly more 

general than a relation for the frst moment. Moreover we have, now for L →∞, and any 

e = (x,y) ∈ E: 

∞X 
P[D = s 0] = Pq[De(A) = s 0 ,Cx = s] 

s=2s0 
∞X 

= Pq[De(A) = s 0 |Cx = s]Pq[Cx = s] 
s=2s0 
∞X 

1−τ≈ ds0 |ss
2s0 Z ∞ !0s≈ ds s1−τ−φH , 
2s0 s 
02−τ−φ≈ s (5.6.7) 

A few comments are in order. Firstly, the sum starts from 2s0, because in order to produce 

a smaller fragment of size s0, the “mother” cluster must have size at least 2s0. Secondly, we 

used the standard scaling ansatz Pq[Cx = s] ≈ s1−τ , c.f. e.g. [15, 26]. Thirdly, we replaced 

ds0 |s, the probability of a smaller fragment of size s0 induced by a bridge-removal on a 

cluster of size s, by the scaling form, resembling (5.6.3), ds0 |s ∼ s−φH(s0/s). As we will show 

now, this form is a direct consequence of the scaling form (5.6.3). 

Assume both s0 and s are continuous and the random variable s0 has probability density 

function bs0 |s = s−φG(s0/s) for any s ≥ s0. Now, clearly the fragmentation of a mother cluster 

with mass s results in two daughter fragments with masses s0 and s − s0 (assuming no mass 

loss). Defne M = min{s0 , s − s0} and note that for m ≤ s/2: 

P[M ≥ m] = P[s0 ≥ m,s − s0 ≥ m], 

= P[m ≤ s0 ≤ s − m], Z s−m 
−φ= s ds0G(s0/s), 

m 

= −s−φ+1Ĝ(m/s). (5.6.8) 
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R 1−x
For the last step we defned Ĝ(x) = − dyG(y). It follows that we obtain for the proba-

x 

bility density function dm|s of M, using a standard relation, c.f. e.g. [91]: 

d 
dm|s = − P[M ≥ m],

dm 
= s −φH(m/s), 

with H(x) = −d/dxĜ(x), which shows the claim. Now, the intended scaling relation of 

φ follows directly by combining (5.6.5) and (5.6.7) in combination with the standard 

relation τ = 1 + d/dF , c.f. e.g. [46, 15]: 

d − x2 dRφ = 2 − = 2 − . (5.6.9)
dF dF 

We can also directly estimate φ from the system size scaling of Eq[D], because it is possible 

to derive a fnite-size scaling relation for Eq[D] without referring to bs0 |s or ds0 |s, that is in 

the scaling framework of e.g. [15], we obtain 

Eq[D] ≈ Ly, (5.6.10) 

with y = (3 − d/dF − φ), which allows us to extract φ by studying the size dependence 

of the numerically determined expected daughter cluster size Eq[D]. In Figure 5.11 

we compare our estimates for φ to the exact value predicted by (5.6.9), obtained from 

Coulomb-gas expressions for dF and x2 [15]. Our data is in perfect agreement with the 

φ
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Figure 5.11: Extracted exponent φ for the conditional break-up probabilities bs0 |s and ds0 |s. The 
solid lines correspond to the scaling relations (5.6.4) and (5.6.9), where the latter 
is clearly supported by our data. 

scaling relationship (5.6.9). Furthermore in the special case of q → 0, on the square lattice, 

the exact value of φ is known to be 11/8 [121], which follows directly from (5.6.9) and 
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dF → d = 2 and x2 → 3/4 for q → 0. For comparison, (5.6.4) states φ → 2, because of 

1/ν → 0 for q → 0. This clearly contradicts [121]. As stated earlier, our result (5.6.9) 

recovers the q = 1 result (5.6.4) due to the following observation. It is well known, 

[12, 109, 15], that the two-arm exponent x2 equals the scaling dimension of the red bonds, 

that is dR = d − x2, and one has for critical percolation, in any dimension, 

1 1 
x2 = d − ⇔ dR = . (5.6.11)

ν ν 

This allows us to recover (5.6.4) from (5.6.9) for q → 1. We emphasise that (5.6.11) is 

not valid for general values of q , 1, and hence both expressions (5.6.4) and (5.6.9) yield 

di�erent exponents for for q , 1. 
1/dFTo gain some intuition for the scaling relation (5.6.9) it is useful to realise that s is in 

leading order the linear dimension of a percolation cluster of mass s. Furthermore, for a 

cluster of dimension ` one has, in average, roughly a number of `dR red bonds. Therefore 
dR/dFs is the typical number of red bonds on a percolation cluster of mass s. It is well known 

that that the red bonds are precisely the bridges that infuence the cluster structure on a 

large scale [12]. This suggests that albeit there are bridges with a “small” impact on the 

cluster structure, they have no relevance for the exponent φ. The ratio dR/dF in a certain 
dR/dF ssense is an entropic factor in ds0 |s ∼ s −2H(s0/s). The remaining exponent −2 in the 

power law in s corresponds, in a perfectly recursive mean feld model of fragmentation, 

described in section 7.2.1, to a totally biased fragmentation or the surface erosion of 

completely dense objects. 

As it is evident from (5.6.3), the distribution of daughter fragments bs0 |s is not solely 

characterised by φ but also depends on the ratio s0/s of fragment (daughter) to mother 

cluster mass. This dependence is encoded into the function G, which we now briefy 

analyse. The strong suppression of the average daughter cluster size relative to the size 

of the mother cluster suggests that fragmentation events are typically “abrasive” [120], 

which indicates that G(x) should be minimised around x = 1/2. We remark that the 

binary nature of bridge induced fragmentations enforces the symmetry G(x) = G(1 − x) 

[29]. Thus, it is suÿcient to consider the interval [0,1/2]. In a previous study, concerned 

solely with critical percolation (q = 1), in [29], the authors fnd that G(x) indeed encodes 

fragmentation of an abrasive nature. To understand how, and whether, the variation of 

q changes this e�ect, we numerically analysed bs0 |s and hence inferred characteristics of 

G(x). Figure 5.12 shows the rescaled break-up kernel bs0 |s for a system with L = 1024 and 

di�erent values of q. For a given value of q, several regimes of mother cluster sizes s are 

shown in Figure 5.12. As for the q = 1 case, the data collapses, for fxed q, approximately 

to one master curve, which by (5.6.3) coincides with G(x). We directly observe that the 

creation of daughter cluster sizes comparable to the original mother cluster mass, x ≈ 1/2, 

is suppressed in comparison to the production of unequally sized fragments, x ≈ 0 (or 

x ≈ 1). We remark that the plot, due to the log-scale in the horizontal direction, does 

not appear symmetric. Further, the abrasive nature, in other words the suppression of 

balanced fragmentations, becomes more pronounced for smaller cluster weights q. The 
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authors of [115] proposed a connection between the deepness of G(x) and the branches, 

mainly based on the characteristics of G(x) for the z-coordinated Bethe tree, for which an 

exact solution exists. More precisely the model shows a deepening of G with increasing 

coordination number, which in turn is equivalent to an increased branching. This picture 

is supported by our numerical data that shows a deepening of the minimum of G with 

decreasing q. A consequence of the analysis of vertex fragmentation in the next section 

is that higher order fragmentation events become less and less likely. This suggests a 

reduced branching e�ect for increasing q, as long as p = psd(q). Unfortunately, we do not 

understand whether the branching argument is actually the only reason for the decreased 

likelihood of equally sized fragmentation events, with decreasing q, or if there are other 

e�ect causing it. 

106 
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Figure 5.12: Rescaled fragment size distribution for di�erent mother cluster sizes s, correspond-
ing to di�erent symbols. The data for fxed q clearly support the scaling ansatz 
(5.6.3). Assuming the validity of (5.6.3) the curves approach the scaling function 
G.. 

5.7 Vertex fragmentation 

A graph can be fragmented by removing a single edge, which happens precisely whenever 

the edge is a bridge. The above analysis of edge-fragmentation was substantially facilitated 

by the formulation of the random-cluster model as a correlated bond-percolation model, 

that is the fragmentation acts on the elementary degrees of freedom of the model. Yet, it 

is apparent that the removal of edges is not the only way a graph can fragment, as, for 

instance, the removal of a single vertex can also lead to a fragmentation. We therefore 

close this chapter with an analysis of certain aspects of vertex induced fragmentation. Let 

us mention already now, that we have (so far) not achieved a similar analytical clarity as 

for the bridge analysis, which is due to the bond formulation of the random-cluster model. 

s φ
b s
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We therefore revert (mainly) to a purely numerical analysis, based on a sample generation 

by the Sweeny and Chayes-Machta-Swendsen-Wang algorithm followed by an algorithmic 

analysis using the cut vertex/bridge-detection algorithm presented in section 3.6. 

To start with, we precisely defne the vertices under study and adopt to this end graph 

theoretic terminology, see e.g. [47]. Formally, a cut vertex or articulation point is a vertex 

that upon removal increases the number of connected components. Clearly, any vertex 

that is incident to a bridge and has degree of at least 2 is a cut vertex. In addition to 

bridge-induced cut vertices, one can also have cut vertices not incident to any bridge, but 

at which two or more cycles overlap (and the cycles share no edge and vertex anywhere 

else). For an illustration consider Figure 5.13, where vertices e, f are bridge-induced 

cut vertices, and vertex c is a cycle-induced cut vertex. Further, we refer to a vertex 

incident with degree 1, as dangling vertex. Note that any vertex with degree 1 must be 

incident to a bridge. Considering again Figure 5.13, we have that only vertex g is dangling. 

Lastly, we refer to a vertex that is either a dangling or a cut vertex, as a fragmenting 
vertex. In Figure 5.14 we show the asymptotic densities10 of cut and fragmenting vertices, 

a 

c 

b 

e 
d 

g 

f 

Figure 5.13: Illustration of the cut vertex and fragmenting vertex defnition. Vertices c,e, f 
are cut vertices, and g is a dangling vertex. Further, vertices e and f are bridge-
induced cut vertices. 

obtained from a fnite-size scaling analysis as described below. Analogous to our results 

for the bridge density, we observe that the density of both, cut or fragmenting vertices, 

is asymptotically constant. Indeed, because any bridge yields at least one fragmenting 

vertex, and we already established that the density of bridges is asymptotically constant, 

it follows in turn that the density of fragmenting vertices must also be asymptotically 

non-vanishing. Clearly, the di�erence of fragmenting and cut vertex densities corresponds 

to the density of dangling vertices, that is vertices with degree 1. For instance, for q = 1 it 

is easy to show that the density of dangling vertices must be constant, because one has, 

10Here we normalise by the total number of vertices, e.g. n = Ld for ZdL. 
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fxing p = 1/2 and G = Z2, that a vertex has degree 0, 1, 2, 3, 4 with probability 1/16, L

1/4, 3/8, 1/4, 1/16, respectively. Thus by translational invariance, this shows that, for 

any L, the density of dangling vertices is 1/4 for q = 1, at criticality. The same qualitative 

statement holds, albeit with di�erent asymptotic constants and the existence of fnite-size 

corrections, for q , 1 and p , 1/2, as we will show below. In other words, a constant 

fraction of all vertices is dangling. Our results are also consistent with exact results 

available for the spanning tree limit [121], where the authors, exploiting an equivalence 

to the Abelian sandpile model, show that the fraction of vertices with degree 1 equals 

f1 = (1 − 2/π)8/π2 ≈ 0.29454. Any spanning tree has, by defnition, the property that it 

contains all vertices (connected/spanning), and contains no cycles (tree). Thus all vertices 

with degree larger than one are bridge-induced cut vertices. This in turn implies that the 

fraction of cut vertices is asymptotically equal to � �8 2
1− f1 = 1 − 1− ≈ 0.705455,

π2 π 

which is highlighted by the dashed line in Figure 5.14. Unfortunately we have not been 

able to obtain an exact expression for q > 0. Our analysis of the size dependent corrections 
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Figure 5.14: Asymptotic density of fragmenting- and cut vertices. The horizontal dashed line 
shows the exact value of the cut vertex density for the spanning tree model. 

of the cut and fragmenting vertex densities at the self-dual point revealed the interesting 

observation that again the exponent 1/ν − d describes the leading fnite size correction 

of both densities. In Figure 5.15 we show the estimated exponents, together with the 

conjectured exact value. The previous discussion showed that the density of cut vertices 

consists of two contributions, namely bridge- and cycle-induced cut vertices. Now, we 

know that the leading fnite size correction of the bridge density is L1/ν−2. Thus this 

picture suggests that the main e�ect is captured in the size-dependence of the bridge-

density, and no other dominant size-dependent e�ect appears in the density of dangling 
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Figure 5.15: Leading fnite size correction exponent for the density of cut- and fragmenting 
vertices. 
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vertices. 

Let us now have a closer look and sub-divide the density of fragmenting vertices according 

to the following natural classifcation. To this end, note that in contrast to the edge case 

one is for the square lattice not restricted to binary break-up events, but rather has the 

possibility of single, binary, ternary and quaternary break-ups upon removal of a cut 

vertex. In general we say that a vertex is a type-` cut vertex when, upon removal, ` 

daughter clusters (counting isolated vertices) replace the former mother cluster to which 

v belonged. We emphasise that not only all edges incident to v are removed but also v 

itself. Correspondingly, we call a break-up event `-ary if it is induced by the removal of a 

type-` cut vertex. Note that type-1 cut vertices are necessarily dangling vertices. Clearly, 

when one goes beyond Z2, to graphs with maximum degree Δ ≥ 1, one has 1 ≤ ` ≤ Δ.L

However, as before, we focus in the following discussion on Z2, and have Δ = 4. Now, we L

subdivide fragmenting vertices into four categories, corresponding to the degree of the 

break-up event. For a given confguration A, denote the set of type-` cut vertices by F` 
and write f` = |F` |/L2. We performed another fnite-size scaling analysis, and extracted 

the leading exponent as well as the asymptotic densities. We observe that all densities 

have unsurprisingly a non-vanishing asymptotic mean fraction, as shown in Figure 5.16. 

As a reference, we can again use spanning tree results [121], 

8 36 48 
f2 = − + ≈ 0.44699,

π π2 π3 

16 48 48 
f3 = 2− + − ≈ 0.22239,

π π2 π3 

f4 = 1− f1 − f2 − f3 ≈ 0.03608, 
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5.7. Vertex fragmentation 

where f2, f3, f4 are the (expected) densities of vertices with degree 2, 3,4, respectively, and 

hence for the uniform spanning tree model, equal precisely the density of binary, ternary 

and quaternary fragmenting-vertices. The corresponding values are clearly recovered by 

our numerical results for q = 0. Further it emerges from Figure 5.16, that the correspond-

ing densities for q > 0 are below the q → limit and decrease with increasing q. Recall 

that the uniform spanning tree q → 0 limit has the constraint that all vertices have to be 

connected, and changing q to a non-zero value, whilst remaining on the critical manifold 

psd(q), relaxes this connectedness constraint. Moreover, the bridge density decreases also 

0.4 

0.3 

0.2 

0.1 

0.0 

Figure 5.16: Asymptotic densities of the di�erent fragmenting-vertex classes, extracted from a 
fnite-size scaling ansatz of the form A +BL−C . For the corresponding value of C 
see Figure 5.17. The solid horizontal lines correspond to the known exact densities 
for the uniform-spanning tree model the square-lattice, following [121]. 

with q, c.f. (5.2.2), implying a decrease of the density of bridge-induced cut vertices. The 

second feature we want to point out, is that the binary “branch” is dominating, which 

resembles the break-up induced by the removal of bridges. However, we remark that a bi-

nary cut vertex does not necessarily correspond to the removal of a bridge, as for instance 

one could have a vertex with degree 4, where the incident vertices are divided into two 

cycles, overlapping precisely at the corresponding cut vertex, which in turn is clearly a 

cycle-induced cut vertex. In general, the binary branch has the highest diversity, with cut 

vertices of degrees 2 to 4. For comparison, quaternary cut vertices uniquely correspond 

to vertices with degree 4, incident to 4 bridges, and ternary cut vertices have only two 

di�erent possibilities (up to permutations of the vertices). Interestingly, the second largest 

contribution comes from dangling vertices. The more interesting observation, however, 

is that all four di�erent fragmenting-vertex classes share the same fnite-size correction 

exponent 1/ν − d exponent, as summarised in Figure 5.17. The only, somewhat artifcial, 

exception happens for q = 1, were we already showed, that the density of vertices of degree 

1 has no fnite-size corrections. This in turn implies that fragmenting vertices correspond-

ing to single-break-up events, have also no size-dependent corrections. However, it is 
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Chapter 5. Fragmentation of Fortuin-Kasteleyn clusters 

plausible to assume, that this is a consequence of a vanishing amplitude, B → 0, in front 

of the corresponding L1/ν−d term, for q = 1. 
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Figure 5.17: Leading fnite size correction exponent for each of the four fragmenting-vertex 
classes, extracted from a fnite-size scaling ansatz of the form A +BL−C . The solid 
line corresponds to the Coulomb-gas value of 1/ν − d, [51]. 

5.7.1 Joint infuence of multiple edges and cut vertices 

In the remaining part of this section we provide theoretical arguments for the generic 

L1/ν−d leading correction for all cut vertex type average densities. Our argument adopts 

some ideas used in the derivation of the bridge-edge identity (5.1.8) in section 5.1. Let 

us for the moment consider the simplest case q = 1. The Russo-Margulis formula (5.1.1) 

expressed the p-derivative of Ep[X] in terms of the expectation of δeX(A) = X(Ae)− X(Ae). 

Further (5.1.3) allows us to consider instead only the di�erence X(A) − X(Ae). A direct 

consequence, easily verifed and related to (5.2.3), is Pp[e ∈ B]/p = Ep[K(Ae)− K(A)]. This 

merely refects the defnition of a bridge, in other words e is a bridge in (V ,A) if and only 

if K(Ae)− K(A) = 1. Equivalently, we have seen that a cut vertex v is defned as a vertex for 

which 

K(A)− K(AEv 
) + 1 < 0. 

A few comments are in order. Firstly we naturally generalised Ae ≡ A − {e} to AE0 ≡ A − E0 

for any E0 ⊆ E. Secondly we denote by Ev the set of edges incident to vertex v. Thirdly, the 

increment of 1 incorporates the removal of vertex v in addition to all edges in Ev . In other 

words the number of components in the graph (Vv,AEv 
) by removing v together with all 

edges in Ev has one component less than the graph (V ,AEv 
), obtained by removing only 

all edges in Ev . 
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5.7. Vertex fragmentation 

Analogous to the analysis of bridges this naturally leads to the question whether h i 
Ep K(A)− K(AEv 

) + 1 (5.7.1) 

can be related to the probability that v is a cut vertex. Unfortunately, this is not the case 

due to the di�erent types of cut vertices, however we have 

Δ Δh i X X 
Ep K(A)− K(AEv 

) + 1 = − (` − 1)Pp[v ∈ F`] = − (` − 1)Ep[f`], (5.7.2) 
l=2 `=2 

which involves the mean densities (probabilities) of the di�erent types of cut vertices. 

Further, it is reasonable to assume that at the location of a critical point, say p = 1/2 on Z2 
L, 

one has, by means of universality, that Ep=1/2[K(A)−K(AE0 )] is insensitive (when concerned 

with scaling exponents) to whether E0 is a singleton, e.g. E0 = {e} or E0 = Ev whenever 

the graph has only short-range bonds. This in particular is a valid assumption for ZdL. 
Thus it is reasonable to assume that the leading fnite size scaling exponent in (5.7.1) is 

inherited from Pp=1/2[e ∈ B], which in turn has leading correction proportional to L1/ν−d . 

Further expression (5.7.2) relates this correction to the corrections of the (weighted) sum 

of Ep=1/2[f`] for 2 ≤ ` ≤ Δ, whose coeÿcients have all the same sign. Finally, when we 

deem an artifcial cancellation of the amplitudes of Ep=1/2[f`] in the above sum as unlikely, 

it follows that each of the separate densities inherit the 1/ν − d exponent from Pp=1/2[f`]. 

Now, we also briefy remark how the argument generalises to q , 1. Firstly the analogue 

to (5.7.2) reads 
Δh i X� � 

)+1 `−1Ep q
K(A) − qK(AEv = Zp,q 1− q Ep,q[f`]. (5.7.3) 

`=2 

On the other hand we clearly have (5.1.6) which, is equivalent to 

Ep[qK(A) − qK(Ae)] = Zp,q(1− q)Pp,q[e ∈ B]. 

Now we can apply the same reasonable universality arguments (assumptions) as before 

and conclude that 

[f`] ≈ c1 + c2L
1/ν−dEq . 

It is an interesting open question whether the above ideas can be further exploited or 

made exact, and if it is possible to extract the asymptotic densities Eq[f`] based on duality 

results. 

Lastly, there is an interesting adaption of the bridge-edge formula (5.1.8) to the site-

random-cluster model [27] recently studied in [122]. This is a natural adaption of the 

bond random-cluster model. More precisely, confgurations correspond to subsets of 

vertices, and the associated sub-graphs are constructed by adding all edges between 

open vertices (vertices in the confguration). One then weights each confguration with a 

Bernoulli factor with parameter p, that is each open vertex contributes p, and each closed 

vertex 1− p to the weight of the confguration. Additionally, each confguration has an 
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additional cluster weight, as in the bond-random cluster model. Arguments completely 

analogous to the bond-case can be used to derive the following relation 

ΔX� �(s) `−1 (s)Ep,q[V ] = p + (1− p) 1− q Ep,q[f`], 
`=2 

where the (s) stands for the site-random-cluster model, and V is the density (with respect 

to n) of occupied vertices. 
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Chapter 6 

Eÿciency of the coupling from the 

past algorithm for the random-

cluster model 

In this chapter we describe a numerical analysis of the coupling from the past (CFTP) 

algorithm applied to the monotone1 (q ≥ 1) random-cluster model in two and three 

dimensions which is complemented by a rigorous analysis in one dimension. The reason 

for studying the CFTP algorithm for the random-cluster model is two-fold. Firstly, the 

approach provides a perfect-sampling algorithm, that is it is capable of producing samples 

drawn precisely from the random-cluster model probability measure πp,q that are assured 

to be free of any initialisation bias. Additionally, samples generated by this method 

can be guaranteed to be independent. In this sense the CFTP algorithm circumvents 

both potential issues of correlation and relaxation, that normally a�ect MCMC methods. 

Secondly, certain eÿciency characteristics of the CFTP algorithm, such as the expected 

running time, are closely related to statistical eÿciency measures of the heat-bath chain, 

for instance in the form of the corresponding exponential autocorrelation time τexp. We 

have seen in chapter 4 that the dynamical critical behaviour of Sweeny’s algorithm (in both 

its heat-bath and Metropolis favours) showed interesting and peculiar characteristics, 

e.g., a speeding up e�ect or the possible complete absence of critical slowing down for 

q < 2. Most of these aspects are not yet, or at most partially heuristically, understood 

and hence by studying the eÿciency of the CFTP algorithm one can, for instance, obtain 

upper bounds for the exponential autocorrelation time. We remark that this is usually 

done by estimating the autocorrelation times of a carefully chosen representative set of 

observables, which one believes to cover all dynamic scales. Combined with heuristic 

arguments one can then often derive estimates for τexp. Yet, in many cases there is no 

absolute confdence that the considered set of observables projects onto the slowest mode. 

1For q < 1 the random-cluster model is in fact anti-monotone (which is not to be confused with negative 
association), for which one also has an exact sampling algorithm [32]. We will conduct a practical eÿciency 
study elsewhere. 
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Chapter 6. Eÿciency of the CFTP algorithm for the random-cluster model 

There are excellent resources in the literature that explain the basic and more detailed 

aspects of coupling from the past, such as [33, 2, 27, 123, 124]. We will therefore introduce 

the basic ideas rather briefy and tailor the exposition to the random-cluster model, see 

also in particular [124]. 

6.1 Introduction and theoretical background 

The coupling from the past algorithm, presented by Jimm Propp and David Wilson in 

[33] is probably best described in terms of the random mapping representation of a Markov 

chain (more precisely its transition matrix) [2]. This representation emerges naturally in 

the algorithmic study of Markov chains, where the corresponding algorithmic procedure 

is fed with a stream of random numbers, based on which the next state is chosen. In other 

words the random mapping representation refects the idea of considering a Markov chain 

as an iterated decomposition of random maps from and to the state space. More precisely, 

given a transition matrix P (A,B) of a Markov chain on a state-space Ω, one can always [2] 

fnd f :Ω × Λ → Ω such that 

P[f (A,R) = B] = P (A,B), (6.1.1) 

where A,B ∈ Ω and R is an appropriate Λ-valued random number. Here Λ is often the 

unit-interval [0,1] but can also me more general the sample space of a random vector, 

as we will see below in case of the heat-bath chain. Intuitively, given f , the current 

confguration A and a random variable or vector R, we can iterate the chain one step 

in a truthful way, that is the corresponding one-step distribution is described by P (A, ·). 
Moreover, one can then also compose several independent random maps, which in turn 

allows one to construct the sequence An = f (An−1,Rn) with A0 = A and n ≥ 1, which is fed 

with a sequence (R1,R2, · · · ) of independent Λ-valued random numbers. It is not hard to 

see that the sequence {An}n≥1 is a Markov chain with transition matrix P and initial state 

A [2], which is successively updated by f and the underlying stream of random variables. 

In what follows we write fn(·) ≡ f (·,Rn) for n ≥ 1. Furthermore in order to denote the 

composition of a consecutive sequence of f 0s we write for t ≥ 1n 

Ft 
↑ ≡ ft ◦ ft−1 ◦ · · · ◦ f2 ◦ f1 (6.1.2) 

Ft 
↓ ≡ f1 ◦ f2 ◦ · · · ◦ ft−1 ◦ ft. (6.1.3) h i 

It is now straightforward to show that P Ft 
↑(A) = B = P t(A,B) for any t > 0 and A,B ∈ Ω. 

We remark further that also the order of the fi ’s above does not matter in the following 

sense h i h i 
P F↑(A) = B = P Ft 

↓(A) = B valid for any t > 0 and A,B ∈ Ω. (6.1.4)t 

At this point it might seem somewhat artifcial to emphasise the di�erence between the 

two compositions ↑ and ↓, however as we will see in a moment, it is the most important 
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observation underlying the coupling from the past algorithm by Propp & Wilson. The 

reason for this di�erence is that the ↑-scheme does not guarantee that the output state 

follows the stationary distribution. We will show this precisely below. The above mapping 

view point also explains the notion of “coupling from the past”: In order to iterate the 

mapping one step further in the ↓ scheme, one needs to prepend the new one-step mapping 

to the previous composition. Equivalently, one has to start at an earlier time in the past 

and evaluate the output at the present. Before we proceed, let us consider as an explicit 

example the heat-bath chain for the random-cluster model with cluster weight q and 

bond-density p, on a graph G = (V ,E). The corresponding random variable R is actually 

a tuple or vector (u,e), where u is an uniform random number in [0,1], and e is chosen 

uniformly in E (hence Λ = [0,1]× E). Let us denote by A ⊆ E the current confguration. 

Now, in line with (2.2.3), one can choose the mapping ⎧ ⎪⎪⎪⎨ ⎪⎪⎪� � 
≡ 

Ae if u ≤ a(A;e),
f A, (u,e) (6.1.5) ⎩Ae if u > a(A;e), 

where a(A;e), defned in (2.2.4), is clearly a deterministic function of A and e. Recall, we 

have shown in Lemma (2.2.1) that the heat-bath chain for the random-cluster model is 

ergodic (aperiodic and irreducible). Hence we have, by means of the convergence Theorem 

(2.1.2), the following asymptotic results h hi i 
F↓ 
t F↑ 

tlim P 
t→∞ 

(A) = B = lim P 
t→∞ 

(A) = B = π(B). (6.1.6) 

Here the frst equality follows from (6.1.4), and the above is valid for all A,B (we sup-

pressed the p,q-dependence on both sides). This states the fact that, in this random-map 

setting, the sequence of random maps {fi }{i≥1}, induced by the independent random-

sequence {(ui, ei )}{i≥1}, has the property that the distribution of the value of F↑ and F↓ 
t t 

becomes closer and closer to π for suÿciently large t. Furthermore the mapping looses 

asymptotically any dependence on the actual point in Ω for which the mapping is eval-

uated. This suggests that the random maps F↑ ∞ are actually constant, with the∞, F↓ 

corresponding asymptotic value having distribution precisely equal to π. This has a nice 

intuitive basis, as it roughly means that the Markov chain (iteration of random-maps) has 

forgotten any dependence on the initial confguration or distribution/confguration. Let 

us consider this possible constancy of the two iterated mappings ↑ and ↓ more carefully. 

To start with defne the following two random random times τ↑, τ↓ as n o 
τ↑ ≡ inf t ≥ 1 : Fn 
τ↓ ≡ inf t ≥ 1 : F

↑ 
t 

↓ 
t 

is constant , (6.1.7) o 
is constant . (6.1.8) 

The frst crucial observation is that both τ↑ and τ↓ have the same distribution. This follows 

from the fact that the probability that F↓(·) is not constant, equals the probability thatt 

F↑(·) is not constant. The two events correspond to τ↓ > t and τ↑ > t, hence we havet t 
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h i h i 
P τ↓ > t = P τ↑ > t , [33]. When the di�erence between τ↑ and τ↓ does not matter, we 

simply write τ in what follows. More importantly, it turns out that in many cases τ is fnite 

almost surely, that is the mappings F↑ and F↓ become, with probability one, constant after t t 

a fnite time. We postpone the proof of this statement for the choice of f specifed in (6.1.5) 

for a moment. Further note that the study of τ is closely related to the mathematical 

concept of coupling of probability distributions or Markov chains, see for instance [2]; we 

already encountered the coupling idea in the derivation of the Russo-Margulis formula in 

section 5.1. 

Now, the original idea of Propp & Wilson is to operate in the ↓-scheme, that is successively 

construct F↓ for increasing values of t until constancy is achieved. How can constancy t 

of F↓ be determined? In order to see this note the random map representation allows for t 

a clear separation of the randomness, the stream of random numbers, from the actual 

algorithmic procedure f . In fact one can consider multiple starting states and iterate them 

“simultaneously”, based on the same underlying stream of random numbers. Moreover one 

can, at least theoretically, simultaneously iterate all |Ω| random-maps (for fxed random 

number stream), that start in all possible states of Ω. Hence by simultaneously iterating 

all Ω confgurations based on the same composition of random maps one can check for 

constancy. In practise this means one uses the same random numbers for all trajectories, 

which in fact implements what is known as a grand-coupling [2] of the corresponding 

Markov chain. Now having understood how in principle constancy can be determined, 

one further needs a protocol that describes how the value of t is increased when the 

current map F↓ is not constant. A natural way is simply to increment t by one. However, t 

this can be shown to incur a computational cost roughly proportional to (τ↓)2, whereas 

an almost optimal choice is to double t, in which case the computational load increases 
↓only linearly2 with τ↓ [33]. Care has to be taken in how the composition F is extended by t 

the new random map ft+1. By construction of F↓ one has to prepend the “new” mapping t 
↓ft+1 to the previous composition F of mappings {fi }1≤i≤t. For instance suppose we have t 

determined that F↓ is not constant and decided to continue with t + 1, thus we have to t 

consider 

Ft
↓ 
+1 = f1 ◦ f2 ◦ · · · ◦ ft ◦ ft+1 = Ft 

↓ ◦ ft+1. (6.1.9) 

Practically this means that one has to re-use the random numbers R1,R2, . . . ,Rt, previ-

ously used to construct F↓, also for the corresponding composition from 1 to t in the t 

construction of F↓ We remark that there are alternative exact sampling approaches t+1. 

that avoid the need of re-using random numbers [125], however we focus on the CFTP 

approach as it is probably the conceptually simplest approach (which is still far from 

being completely understood for Z2). A crucial observation is that the output of the L

algorithm that terminates as soon as it encountered that the map F↓ is constant, equals t 

the output of any extended run of the algorithm to times beyond t. This follows from the 

2Here we ignored the computational complexity of each operation. Thus the above is strictly speaking 
measured in units of the computational cost of a single step of the underlying Markov chain. 
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observation that for any A ∈ Ω 

↓ ↓ ↓F = F (ft+1(A)) = F (A), (6.1.10)t+1(A) t t 

by constancy of F↓. As already mentioned before, the ↑-scheme or “coupling to the future” t 

algorithm (or forward coupling) does not guarantee a truthfully distributed output state. 

The obstacle stems from the way the compositions are extended. Here one successively 

builds up F↑ and terminates with t for which F↑ is constant. In this case one has in general t t � � 
Ft
↑ 
+1(A) = ft+1 Ft 

↑(A) , (6.1.11) 

which can (and will in most cases) di�er from F↑(A). Therefore in contrast to the coupling t 

from the past algorithm the forward coupling algorithm does not leave the coalesced state 

invariant. In other words extending the run beyond τ↑ can alter the coalesced state, so it 

is not a priori clear at what time to “pick up” the state. Crucially this ambiguity is absent 

in the coupling from the past algorithm of Propp & Wilson. 

6.1.1 Practical CFTP: Monotonicity 

It is apparent that the idea of iterating all |Ω| confgurations simultaneously is not tractable 

for most of the interesting models, such as the random-cluster model heat-bath chain. 

However in some instances one does not need to consider all confgurations and it suÿces 

to consider only two extremal confgurations. In order to have a notion of extreme 

confgurations, we need a partial order in the state space. Indeed, the state space Ω = 

{A ⊆ E} of the random-cluster model is actually a poset, i.e. has a partial order, which is 

induced by set inclusion: We write A � B whenever A ⊆ B, which can be verifed to be a 

partial order on Ω. Now, for the random-cluster model with q ≥ 1 we can verify that the 

heat-bath dynamics is monotone in the sense that it preserves the partial order, [33, 27]. 

The monotonicity follows from the fact that for two confgurations A � B it holds that any 

edge that is pivotal to B must also be pivotal to A. In other words, adding the remaining 

edges in B \ A to A cannot create any pivotal edges. Note that pivotality, as opposed to 

being a bridge, is independent of the actual occupation of the edge under consideration. 

Specifcally, using the random-map representation monotonicity means 

A � B ⇒ f (A, (u,e)) � f (B, (u,e)) (6.1.12) 

for any value of u ∈ [0,1] and e ∈ E. This can be iterated to yield A � B ⇒ F↓(A) � F↓(B)t t 

for any t ≥ 1, provided the same sequence of random numbers is used (the same holds 

with ↑). It is evident that this partial order has clearly two extreme elements ∅ and E. 

Now, in the monotone setting it is straightforward to determine whether coalescence (F↓ ist 

constant) has happened: Simply check whether F↓(∅) = F↓(E). Before we proceed with our t t 

analysis, we provide the remaining proof that the coupling from the past algorithm indeed 

produces bias-free samples from π. We do not claim novelty of the proof, and the standard 
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references mentioned above contain proofs, however mostly with the aim of maintaining 

generality. Yet, we still believe studying the proof promotes the understanding of the 

algorithm and more importantly, we made an attempt to construct the proof with an 

emphasis on the di�erence between the forward coupling and coupling from the past 

variants. 

6.1.2 Proof of correctness of CFTP for the random-cluster model with q ≥ 1 

For the following arguments we need another notation, generalising the composition Ft 
↓ . 

We defne defne for k ≤ l 

Fl
k = fk ◦ fk+1 ◦ · · · ◦ fl−1 ◦ fl , (6.1.13) 

which is the composition of random maps fk to fl , and we have F↓ = F1, as well as Ft = ft.t t t 

Further we write |Ft | for the cardinality of the image of Ft , i.e. for the number of di�erent k k

output states, more precisely |Ft | ≡ |{Ft (A) : A ∈ Ω}|. We therefore have that |Ft | = 1k k k

corresponds to the case that Ft is a constant map. Now comes the main argument: We k 

know that the heat-bath chain is irreducible and aperiodic, which allows us to fnd an 

integer L such that P L(A,B) ≥ � > 0 for any pair of states A,B ∈ Ω. In words, there is a 

non-vanishing probability for an L-step transition between any two states. Moreover in 

the particular case when F1 maps all states to state E we clearly have that F1 is a constant L L 

map (coalescence occurred). Now, the event that E is the F1-image of all states happens in L

particular when F1(∅) = E, which is a direct consequence of the monotonicity of the chain L 

whenever q ≥ 1. Whence by ergodicity we have that P[F1(∅) = E] ≥ � and therefore L ihihih 

���������������

� ≤ P F1(∅) = E ≤ P F1(A) = E ∀A ∈ Ω ≤ P |F1| = 1 . (6.1.14)L L L 

Let us remark that by construction of the coupling from the past algorithm, we have 

that the same statement actually applies to FkL+1 for any k ≥ 1. Moreover the events (k+1)L 

|FkL+1 | = 1 (or > 1) for di�erent values of k are mutually independent, as the constancy of (k+1)L

any such mapping depends on disjoint and independent sets of random numbers. Because 
↓ ↓constancy of either FkL+1 or F implies constancy of F we have (k+1)L kL (k+1)L 

� = 1 � = 1 � = 1 
����� � � �� � � 

P ≤ P∨ .�FkL+1 
(k+1)L �F↓ 

(k+1)L�F↓ 
kL ����������������F↓ 

kL FkL+1 
(k+1)LIt follows by De Morgan’s laws and independence of the events > 1 and > 1 

that � � �� � 
∧ 

���� �� � � � ���������� � > 1 

We therefore obtain �
P ≤ P = P P .�FkL+1 

(k+1)L �FkL+1 
(k+1)L�F↓ 

(k+1)L �F↓ 
kL �F↓ 

kL 

���� > 1 

(k+1)L 

���� > 1 

> 1 ≤ (1− �)P 

������������ � > 1 � > 1 

> 1 , (6.1.15) 
����P F

���� � � ���� ���� � 
↓ ↓FkL 
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which by induction (over k) leads to �� � � � > 1 

This result is clearly not so surprising in light of ergodicity of the underlying chain. 

However we remark that it has an important theoretical consequence: For any choice of 

δ > 0, we can fnd a corresponding value of k(δ), such that the probability of τ↓ exceeding 

k(δ)L is not larger than δ. From a practical point of view, we remark operating with the 

doubling protocol, i.e. the algorithm operates with times Ti = 2i−1 for i ≥ 1, will in general 

not directly “hit” τ . However, it can be easily verifed that we can fnd also a i(δ) such that 

the probability of not coalescing before/equal Ti(δ), is not larger than δ. Now, we have that 

���

the following implication is true 

���

τ↓ ≤ Ti ⇒ F↓ (A) = F↓ (A) ∀A ∈ Ω, (6.1.17)
τ↓ Ti 

which entails by contraposition and (6.1.16) that for any A ∈ Ω 

τ↓ > kL P = P ≤ (1− �)k . (6.1.16)�F↓ 
kL 

h 
P F↓ (A) , F↓ (A)

τ↓ Ti(δ)

i 
≤ δ. (6.1.18) 

We emphasise that this logical implication is the crucial di�erence between the coupling 

from the past algorithm and a forward coupling scheme. In other words we do not have 

that generically the images of any A in F↑ and F↑ equal whenever Ti ≥ τ↑ . The last 
τ↑ Ti 

argument we need for the proof is the convergence theorem (2.1.2) in a somewhat more 

general form, as given for instance in [2]. The basic statement, adapted to our notation, 

states that for an ergodic chain we can fnd 0 < α < 1 and C > 0 such that �������� P 
h 
F↓ 
t (A) = · 

i 
− π 

���� ���� ≤ Cαt . (6.1.19)max 
A∈Ω T V 

It can be verifed that this in particular implies the convergence statement in (2.1.2). 

Moreover it allows us (theoretically) to choose a t(δ) such that the above total variation 

distance does not exceed δ. We now have all the necessary pieces to conclude the proof. 

In what follows we show that for any error margin η > 0 we impose, the coupling from 

the past algorithm will produce an output state that has distribution closer to π than η. 

More precisely, we have for any A,B ∈ Ω and any η > 0 ����P 
h 
F↓ 
τ (A) = B 

i 
− π(B) 

���� ≤ η, (6.1.20) 

which is equivalent (c.f. [123]) to P[Fτ 
↓(A) = B] = π(B) for all A,B ∈ Ω. We achieve this 

by bounding the total variation distance between the law of F↓ (A) and π for any A. To 
τ↓ 

start with, let η = 2δ and choose j(δ) = max {i(δ),dlog(t(δ))/ log(2)e}. Recall that the total 

variation distance is the maximal absolute di�erence of probabilities the two distributions 

can assign to any event. This in particular applies also to a particular elementary outcome 
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B. We conclude h ↓ i � 
↓ = · 

�������� ���� ↓ 
�������� ���� ���� ih�������� ↓ = · = · 

���� ���� ����
Tj(δ)

≤ P F
τ
↓
↓ (A) , F↓ (A) +CαTj(δ)Tj(δ)

≤ δ + δ ≤ η, 

which establishes the claim. Here we used the triangle inequality for the total variation 

distance, which allows us to use the convergence result (6.1.19) and (6.1.18). The latter 

is utilised by bounding the total variation distance between the distributions of F↓ (A)
τ↓ 

��� 

and F↓ (A) in terms of the natural coupling of the two using the same stream of random Tj(δ)
numbers (see [2] for bounding the total variation distance using the coupling method). 

We note that (6.1.16) can also be used to actually prove that P[τ↓ < ∞] = 1, that is the 

� 

algorithm terminates almost surely. The argument uses the fact that the coupling from the 

past algorithm is ruled by a 0 − 1 law [123], which states that P[τ↓ < ∞] must be either 

0 or 1, that is the algorithm either terminates almost surely, or does almost surely run 

forever. However as we have established that P[τ↓ < ∞] > 0, we must have almost surely 

τ↓ < ∞. Likewise, this applies also to τ↑, i.e. coalescence will in both cases almost surely 

happen. We will have more to stay about the actual distribution of τ↑ (τ↓) in section 3. 

After these general, somewhat theoretical but revealing, considerations we can now 

formulate the heat-bath chain induced coupling from the past algorithm for the random-

cluster model as shown in Algorithm 4. A few comments are in line. Firstly, note that we 

assume the availability of a routine RAND(t) that returns the t’th pair of (pseudo)-random 

numbers. In particular, for fxed t, successive calls to RAND(t) (within one invocation of 

CFT P _HB) must return the same tuple (ut,et), which itself is random and independent 

of all other tuples returned by RAN D. Secondly, we invoked routine a(X,e), already 

defned in (2.2.4), returns, depending on the pivotality of edge e in X, either p̃ or p. This 

implicitly assumes the availability of a sub-routine to determine this pivotality, which can 

be provided by any of the methods described in chapter 3. Lastly, we used the particular 

doubling-protocol mentioned above. 

Before we proceed with the presentation of our results, let us remark that the coupling 

from the past procedure has the following important property 

↓ ↓ ↓ ↓Ft (E) ⊆ Ft0 (E) and Ft0 (∅) ⊆ Ft (∅) (6.1.21) 

whenever t0 ≤ t. This intuitively means that extending the run can at most push the 

iterated state of E further down, and at the same time can, if at all, only elevate the 

corresponding image of ∅. Thus the fnal output confguration is more and more revealed 

as t is increased. This is precisely shown in Figure 6.1 for the evolution of the top 

confguration E. 

P (A) P (A) = · − P (A) P (A)− π ≤ − πF F F F+
τ↓ τ↓ Tj(δ)T V T V T V � 
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Algorithm 4 Coupling from the past algorithm for the random-cluster model 

function CFTP_HB 
t ← 1 
while X , Y do 

X,Y ← ∅,E 
t0 ← t 
while t0 > 0 do 

ut0 , et0 ← RAND(t0) 
if ut0 ≤ a(X,et0 ) then 

X ← Xet0 

else 
X ← Xet0 

end if 
if ut0 ≤ a(Y , et0 ) then 

Y ← Y et0 

else 
Y ← Yet0 

end if 
t0 ← t0 − 1 

end while 
t ← 2t 

end while 
return X 

end function 

6.2 Expected coupling time 

The eÿciency of the coupling from the past algorithm depends on the statistics of τ , the 

random time at which all coupled trajectories coalesce. One reason for that follows from 

the fact that τ and the fnal output state are not independent and one will introduce 

a bias by systematically suppressing longer runs [126]. We remark that there exist al-

ternative perfect sampling approaches commonly referred to as “interruptible” perfect 

sampling algorithms, such as [126], that allow for such “user impatience” or running time 

constraints. On the other hand we have seen in the previous section that we have the 

almost sure guarantee that the algorithm will terminate. We have already remarked that 

the perfect sampling capability of the coupling from the past algorithm is not the only 

reason of our study, because the time of coalescence τ allows us to study the relaxation 

and stationary correlations of the underlying heat-bath chain. For instance, consider the 

following standard relation [2]: �������� P t(A, ·)− π 
���� ����max ≤ P[τ > t], (6.2.1)

A∈Ω T V 

which relates the tail of the distribution of τ to the total variation distance of the time 

dependent law of the Markov chain from the stationary distribution. In words, the more 

likely it is that at a given time t a grand-coupling coalesces, equivalently F↓ is a constant t 

map, the smaller is the initialisation bias. It is evident that this inequality is closely related 
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F ↓
2 (E) F ↓

64 (E)

F ↓
512(E) F ↓

2048(E)

Figure 6.1: Snapshots of the iterated value of F↓(E) for some values of t, as produced by a t 
coupling from the past run for q = 4 and p = psd(4) = 2/3. The black lines in each 
confguration show the edges that are part of the fnal constant output state Fτ 

↓(E), 
whereas the grey lines correspond to the remaining edges in F↓(E) ( For a similar t 
Figure consider also [124], Fig. 7.2.). 

to the mixing time (see chapter 2), and in fact provides the basis of many works that 

use coupling to bound the mixing time [2]. Practically, it is somewhat easier to estimate 

the expectation E[τ] than the tail of the distribution of the coupling time τ . Now, using 

a probability tail bound known as Markov’s inequality [38] we can indeed obtain the 

following relationship valid for any positive integer t: 

E[τ]
P[τ > t] ≤ . (6.2.2)

t 

This allows us to bound the mixing time tmix from above by E[τ]: � � � � �� tmix tmixE[τ] ≥ P τ > ,
2 2� � �� tmix tmix≥ P τ > 

2 2 
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�� �� tmix tmix≥ max dA2 A∈Ω 2 
tmix≥ .
8 

The frst inequality is a direct consequence of (6.2.2), the third follows from (6.2.1), and 

the last follows from the fact that tmix is defned as the frst time t such that dA(t) ≤ 1/4 for ���� ���� �������� all A ∈ Ω, hence for any time earlier tmix there must be at least one A such that dA ≥ 1/4. 

Recall that we use the defnition, introduced in chapter 2, dA(t) ≡ P t(A, ·) − π = 
T V P ���P t(A,B)− π(B) 

���1 . From a practical point of view we would also like to know how 2 B∈Ω 

much larger E[τ] can be. In [33] Propp & Wilson indeed show that the mixing time tmix 

yields an upper bound for E[τ], that is E[τ] ≤ 2tmix(1 + log(m)), which we tailored to the 

random-cluster model on a graph with m edges. We conclude 

tmix ≤ E[τ] ≤ 2tmix (1 + log(m)) .
8 

Because we can relate the mixing time to the relaxation time or exponential autocorrelation 

time it is not surprising that we can also relate E[τ] to τexp using precisely (2.1.17) and 

(2.1.16) to obtain ! 
τexp − 1 

8 

�� 4 
(log(m) + 1)log(2) ≤ E[τ] ≤ 2 τexp + 1 log 

πmin 

ihWe further need a lower bound for πmin for the random-cluster model, which is straight-
m 
q−n for forward (but probably far from optimal), and follows from πp,q(A) ≥ p(1 − p) 

q ≥ 1. We therefore obtain for the heat-bath chain of the random-cluster model with 

bond-density p and cluster weight q ≥ 1 on a graph with m edges and n vertices: !!− 1 n/m 
log(2) ≤ E[τ] ≤ 2 τexp + 1 log(4) +m log 

q
(log(m) + 1) . (6.2.3) 

��τexp 

8 p(1− p) 

For the regular graphs we are interested in, we have in particular that n/m is constant (e.g. 

2 for Z2). Here we can therefore equivalently use the O-notation and concisely conclude L

τexp ≤ O(E[τ]) and E[τ] ≤ O(τexpm log(m)). (6.2.4) 

Let us interpret the above result, as it provides the basis for the conclusions we make 

at a later stage. The frst bound allows us to obtain an upper bound for the exponential 

autocorrelation time, that is the slowest mode of the chain. For instance, our Projection 

Lemma in section 4.4 shows that this is relevant for the correlations in the time series of 

the bond-variable N , an important quantity (in particular for chapter 5). In particular, 

this also applies at the location of a second order phase transition. Here in the study of 

(dynamical) critical phenomena one is particularly interested in determining dynamical 

critical exponents, such as zexp in an expected power law scaling τexp ≈ Lzexp . Similarly we 
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also expected a power law scaling for E[τ], that is 

E[τ]/Ld ≈ Lw, 

where we defned the (Propp-) Wilson exponent w. Due to (6.2.4) we have the constrain 

that zexp cannot exceed w and w ≤ d + zexp, where d is the dimensionality of the system, 

such as in Zd . Thus by analysing the expected running time of the coupling from the past L

algorithm we can obtain a safe time scale on which all observables relax. Additionally 

the second bound in (6.2.3) quantifes that E[τ] can not be larger than roughly m log(m) 

times the exponential autocorrelation time. A factor of m log(m) is in principle enough 

for establishing the rapid-mixing property, let alone for the purpose of obtaining upper 

bounds of τexp. However for the practical question, whether the coupling from the past 

algorithm is signifcantly more ineÿcient than a standard MCMC approach using the 

heat-bath chain (ignoring the residual bias in the latter), a factor of m log(m) matters. We 

will therefore devote the rest of this section to analyse the expected coupling time, frstly 

for the o�-critical random-cluster model on Zd for d = 2,3, and secondly for the self-dual L 

point, that is at criticality. 

6.2.1 O� criticality 

Recall that we established that one has the freedom to study either τ↓ or τ↑ when con-

cerned solely with the statistics of the time of coalescence. We decided to implement 
↑the forward coupling (corresponding to F ) and hence determined τ↑. This decision was t 

simply made because of the smaller computational overhead in the forward coupling. 

Before we present our numerical results we pause and describe briefy how this ran-

domised algorithm operates in practise. This will at the same time provide us with an 

intuition for the mechanism responsible for a possible slowing down. As outlined in the 

previous sections, the two coupled Markov chains Vt ≡ F↑(∅) and Λt ≡ F↑(E), starting t t 

in confguration ∅ and E, respectively, use the same stream of random numbers. This 

has the consequence that both chains operate at any given step, say t, on the same edge e 

(which of course varies with t). Note that, strictly speaking, the heat-bath chain does not 

attempt to “fip” the status of e, but assigns an independent status to e. The probability 

of e being open or closed in the subsequent confguration depends only on the pivotality 

of the edge in the current confguration, i.e., it equals p̃(p,q) for pivotal edges and p 

for non-pivotal edges. However this means that the two coupled chains might di�er 

in the subsequent confguration at edge e, in spite of the fact that both chains update 

the same edge. Compare this to the case q = 1, where p̃(p,1) = p. Therefore for q = 1 

both confgurations agree at e after time t. In contrast for q , 1 there is a non-vanishing 

probability that e ∈ Λt+1 but e < Vt+1. This event happens with probability not larger than 

p − p̃(p,q). Strictly speaking, it happens precisely with probability p − p̃(p,q) when e is 

pivotal in Vt but not pivotal in Λt, and with probability 0 otherwise. It is apparent, that 

for small values of t, Vt is still very close to ∅ and Λt does not di�er much from E. This 
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suggests that for suÿciently small times a chosen edge e has di�ering pivotality in Vt and 

Λt. Hence the two confgurations disagree at e with probability p − p̃(p,q) from time t + 1 

on, until (at least) the next time e is selected. This happens in average after m steps. Now, 

for later times the two chains might di�er signifcantly from their initial confguration, 

which might change the cycle structure signifcantly, e.g. the confguration Λt might be 

suÿciently sparse due to a low bond density p, such that the two confgurations Vt and Λt 
are structurally enforced to agree at e in many instances. It therefore crucially depends on 

the structural evolution of the two confgurations, whether the coupling time is extremely 

delayed, refecting a slowing down, or close to optimal (to be specifed below). 

Let us now consider the case where the stationary model is away from a critical point. 

In Figure 6.2 we show our estimates for E[τ]/m, both for the graph Z2 and Z3 at someL L 

o�-critical values of p for several cluster weights q. Recall that for Z2 the critical point 

is precisely psd(q), which implies that the bond-density is sub-critical (p < psd(q)) for 

both cluster weights shown. We remark that an estimation of super-critical values in 2D 

would yield qualitatively the same result, as the duality result for the heat-bath chain, in 

particular inequalities (2.3.7), entails that the expected coupling time for pairs (p,p? (p,q)) 

are tied together. In 3D for the graph Z3 we have numerical estimates of the location of the L 

critical point (see section 5.3), which implies that the bond-density p = 0.6 is super-critical 

for both cluster weights q = 1.5 and q = 2.2. The pair p = 0.2 and q = 1.5 is sub-critical. 

Overall our o�-critical results, both in 2D and 3D, suggest that coupling happens on 

average after a number of sweeps (m steps) increasing with roughly logarithmically with 

the number of edges m. This resembles what is known rigorously for percolation (q = 1), 

where the dependence on the pivotality of an edge is lost (p = p̃(p,1)) and hence the 

coupling time τ is equal to the random variable T , counting the number of steps until 

each edge in E is selected (collected) at least once (when edges are selected uniformly 

at random in E, with replacement). The study of T is related to a well known problem 

in probability theory [91, 127, 38] which is commonly known as the coupon collector’s 
problem. A standard result states that the expectation of T is “almost” linear in the number 

of edges, in the following sense 

mX � �1 1 
m log(m) ≤ E[T ] = m = m log(m) +mγ + + o(1) ≤ m log(m) + 1 , (6.2.5)

k 2
k=1 

where the last term o(1) vanishes for m → ∞, and γ = 0.5772156649 . . . is the Euler-

Mascheroni constant. The corresponding exact value is depicted by the solid black line 

in Figure 6.2. It appears that E[τ] and E[T ] di�er, in leading order, by a constant factor. 

Indeed consider the inset of Figure 6.2, which shows the size dependence of E[τ]/E[T ] of 

the corresponding values in the main Figure. Albeit a weak size dependence is still visible, 

it is conceivable that we have indeed E[τ] ∼ C(p,q)E[T ], where C(p,q) ≥ 1, also depending 

on the dimensionality, or simply E[τ] ≈ E[T ]. Support for this conjecture comes from our 

rigorous analysis of the coupling process in one dimension, that is for ZL. One particular 

result of analysis is stated in section 6.4 in form of Lemma 6.4.5 which proves asymptotic 
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Figure 6.2: Estimated mean coupling time E[τ] per edge, for o� critical random-cluster models 
in 2D and 3D with varying cluster weights and bond-densities. Note the log-scale 
in the horizontal direction, such that a straight line indicates E[τ]/m ≈ C log(m) 
with C > 0 being a constant. This clearly resembles the exact result for q = 1 
(coupon collector’s problem [38]). The inset shows the ratio E[τ]/E[T ]. 

equivalence, that is 

E[τ] ∼ E[T ]. 

Note that, the random-cluster model on ZL (the L-cycle) is exactly solvable and is in 

particular o�-critical for any value of q > 0 and p < 1, see Appendix B for details. Our 

results suggest that the dominant e�ect for q > 1 away from a critical point remains the 

coupon collector mechanism, and the introduction of a cluster weight introduces merely a 

change in the overall time scale. 

Partial couplings 

In order to gain more insight into the coupling process we introduce the concept of partial 
couplings, for which we need some further notation and concepts. Recall that we write 

Λt ≡ F↑(E) and Vt ≡ F↑(∅) for the states of the two coupled chains at time t, starting in Et t 

and ∅ at time 0, respectively. Further defne St ≡ Λt − Vt, that is the set of edges that are in 

Λt but not in Vt. We clearly have S0 = E and Sτ↑ = ∅. Therefore we can alternatively defne 

τ↑ by τ↑ ≡ inf{t > 0 : St = ∅}. Because St cannot be empty before all edges are visited at 

least once we have that τ ≥ T , which yields E[τ] ≥ E[T ] ∼ m log(m). We defne the local 
coupling time at edge e by 

τ↑ ≡ sup {t ≥ 0 : e ∈ St} + 1, (6.2.6)e 

which is the frst time the two chains agree ultimately at e, and we have that τe 
↑ ≤ τ↑ for 

any e ∈ E, or τ↑ = max{τe ↑ : e ∈ E}. We order the edges corresponding to their value τe 
↑ , 

i.e., we write τ↑ for k’th smallest local coupling time (τm 
↑ = τ↑). It follows that the two k 
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confgurations Λt and Vt agree (ultimately) on at least k edges when τ↑ ≤ t. We therefore k 

term τ↑ the degree k partial coupling. Equivalently, we have: k 

τ↑ ≤ t ⇒ |St | ≤ m − k. (6.2.7)k 

We emphasise that the reverse implication |St | ≤ m − k ⇒ τ↑ ≤ t is not true. This is because k 

an edge that is not part of St might become a member at a later stage, due to the two 

confgurations disagreeing at e caused by a di�ering cycle structure. We remark that this 

obstacle can be avoided when considering partial couplings in the backward coupling, 
↓ ↓ ↓where one can analogously defne τ ≡ inf {t > 0 : e < St} with St ≡ F (E) − F (∅) and we e t t 

↓ ↓further defne τ analogously. Here one has τ ≤ t ⇔ |St | ≤ m − k, because it follows k k 

from (6.1.21) that if e < St then in fact e < St0 for any t0 ≥ t. In other words once the two 

confgurations agree at e in the forward coupling they will do so for all subsequent times. 

Lastly, let us remark that conceptually the quantities τe 
↑ depend on the complete evolution 

of the coupling process until overall coalescence has occurred. On the other hand in order 

to determine τe 
↓ it suÿces to wait for the two confgurations to agree at e. 

In practise we determined the value τe 
↑ by associating a time variable to e, which is initially 

set to 0. In case e is selected at time t, we set the corresponding time variable to t only 
when the outcome of the update at time t is that the two confgurations agree at edge e 

and the time variable was set to the value 0 before the current update. In case the two 

confgurations disagree at e after the update, we reset the time variable to 0. It is now 

straightforward to confrm that upon termination of the forward coupling algorithm, the 

time variable of edge e precisely stores τe 
↑ . 

Let us now come back to the forward coupling and use the analysis of the partial couplings 

to investigate how eÿcient the coupling process works at di�erent stages, corresponding 

to di�erent degrees k of partial couplings. Note, that as a lower reference we can again 

consider the case q = 1, so let Tk ≡ τ↑ in case of q = 1. One can verify that Tk − Tk−1 is a k 

geometric random variable with mean m/(m − k + 1) for k > 1, and that T1 ≡ 1, so that we 

conclude 

X X Xk k 1 m 1
E[Tk] = 1 + E[T` − T`−1] = 1 + m = m = m(Hm − Hm−k), m − ̀  + 1 ` 

`=2 `=2 `=m−k+1 Pkwhere Hk = `=1 1/` is the k’th harmonic number. In order to achieve a local coupling at e 

one needs that e is visited at least once and therefore one has E[Tk] ≤ E[τk]. We show in 

Figure 6.3 the ratio E[τk]/E[Tk ] for some representative o� critical choices of p and q. The 

most distinguished feature is that ratio decreases with k. This can be explained in terms 

of a certain “recycling” mechanism: Consider frst the coupon collector process and how 

it advances from a degree k partial coupling (k edges collected) to a degree k + 1 partial 

coupling (k +1 edges collected). We have already seen that Tk+1 − Tk is a geometric random 

variable with mean m/(m − k + 1), which corresponds to a phase of re-visiting an expected 

number of m/(m − k + 1) previously visited edges. Now suppose that at a given instance 

149 

http:E[�k].We
http:harmonicnumber.In
http:currentupdate.In
http:structure.We


Chapter 6. Eÿciency of the CFTP algorithm for the random-cluster model 
E
[τ
k 
]/

E
[T
k 
] 

the coupon collector process has visited k edges and is in the process of collecting the k +1 

edge, however the coupling process has only achieved a degree-k0 partial coupling with 

k0 < k. It is clear that it possible that some of the edges not-yet coupled are re-visited. If 

additionally the cluster structure in the two confgurations Vt and Λt is locally suÿciently 

similar, such that edges are both typically pivotal (or non-pivotal), then it is conceivable 

that the coupling process can re-use this sequence of re-visits to advance to a degree 

k0 + 1 coupling. In particular at late stages, where k is close to m, where re-visit sequences 

become typically comparable in length to m, one expect this re-cycling or “catching-up” 

process to be most eÿcient. This is precisely what we observe in Figure 6.3. We note that 

a closer inspection reveals that the fnal ratio decreases slowly with increasing system 

size, consistent with what is shown in Figure 6.2. Furthermore, it appears that the size 

dependence in the remaining regime for values of k/m is comparably weaker than the fnal 

size dependence. It is intriguing to study the partial coupling concepts in more detail, 

which we plan to pursue in a future study for the complete graph. 
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Figure 6.3: Ratio of expected coupling time to expected coupon collector time for (q = 2,p = 0.2) 
and (q = 8,p = 0.3), corresponding to the left and right Figure, respectively. 

6.2.2 At criticality 

Let us frst consider again the square lattice Z2 where we fx the bond density to the L 

corresponding critical value of Z2, that is to p = psd(q) = 
√ 
q/(1 + 

√ 
q). Recall that we 

only consider q ≥ 1 due to lack of monotonicity of the heat-bath chain for q < 1. There 

are two qualitatively di�erent regimes corresponding to frst and second order phase 

transitions. For instance it is rigorously known [128] that for Z2 the phase transition is 

continuous or second order for 1 ≤ q ≤ 4 and expected to be discontinuous or frst order 

for q > 4 [22]. In particular at the location of a frst-order phase transition we expect the 

coupling time to be exponential in L due to the coexistence of ordered and disordered 

phases. Strictly speaking the disordered and ordered phase refer to the Potts model: In 

the ordered phase (β > βc(q)) one of the q spins dominates and in the disordered phase 

all q-di�erent spins appear roughly with the same frequency. Furthermore the overall 

probability mass is roughly equally distributed among the two phases. However the 

Edwards-Sokal coupling allows us to relate the two coexisting phases to random-cluster 
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phases. Roughly, there is a coexistence between confgurations consisting of typically 

very small (roughly logarithmically large) components, and confgurations containing 

one macroscopic giant component among many very small components. Crucially, there 

exists an exponentially large probabilistic “barrier” that separates confgurations from 

one phase to its complement, that is confgurations outside the phase. Moreover it is 

plausible that in the coupling from the past algorithm the confguration Λt starting in 

E will very likely be “trapped” in confgurations corresponding to the ordered phase, 

and hence produce a giant component. On the other hand the confguration Vt starting 

from ∅ will very likely remain in confgurations part of the disordered phase. The two 

trajectories are hence separated by an exponentially large probabilistic barrier, as they 

belong to the two phases which a separated by exponentially suppressed regions in phase 

space. This then yields a exponentially large coupling time. It is apparent that such an 

exponential computational complexity impeded a study of the size dependence of the 

expected coupling time numerically. Apart from that, we remark that in such situations, 

one would, probably, revert to other well established alternative and heuristically more ef-

fcient, though not “perfect”, simulation methods, such as for instance the multi-canonical 

algorithm [129, 130] or Wang-Landau sampling [131]; for a general introduction see also 

[1]. 

On the other hand we analysed the second order regime extensively. The analysis in 

the previous section showed that the size dependence of the expected coupling time is 

likely ruled by the coupon collector mechanism and any cluster weight induced delay 

causes, asymptotically, at most a change in the overall constant. Yet we do not expect 

this to be the case at criticality. One reason for this is that our numerical analysis of 

the exponential autocorrelation time in chapter 4 supported a power law scaling in L. 

By the nature of the phase transition we expect likewise that E[τ] ≈ Lw, where w is the 

Propp-Wilson exponent, that clearly depends on q. Furthermore we have w ≥ zexp as a 

consequence of (6.2.3). Additionally there is also a theoretical argument, independent of 

our numerical observations: The Li-Sokal bound, discussed in section 2.4, demands that 

τexp ≥ 2Var[N ] + 1 and hence, by (6.2.3), the same slowing down mechanism applies to h i 
E τ : 

log(2) 
E[τ] ≥ (2Var[N ]− 1) . (6.2.8)

8 

This enforces a critical slowing down for q ≥ 2 in case of Z2 [the case q = 2 has α/ν = 0L 

with Var[N ]/L2 ≈ C log(L)] [22]. 

To start with, we numerically estimated E[τ] based on at least 104 independent samples 

for each choice of q considered. Firstly, consider the size dependence of E[τ] in Figure 

6.4. We extracted the (e�ective) exponent w by ftting two standard power law model 

functions ALw and ALw + B to our estimates for E[τ]/m. However without having an 

appropriate scaling theory for the expected coupling time we were not able to predict 

a generic ansatz with anticipated corrections. Further, it is unclear if the logarithmic 

multiplicative factor present for q = 1 persists for q > 1. Detecting this or distinguishing 

it from a power law with a small exponent is numerically very hard. Thus the extracted 
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Figure 6.4: Mean coupling time for the coupling from the past algorithm for the critical random-
cluster model on Z2 (m = 2L2) for some cluster weights. Note that the line corre-L 
sponding to q = 1 represents the exact value E[T ]/m = Hm ∼ 2log(2L) + γ as in 
(6.2.5). 

Propp-Wilson exponent w has to be interpreted as an e�ective exponent, with possible 

deviations from a true exponent, caused by, e.g., logarithmic corrections. In table 6.1 we 

summarise our fnal estimates for the leading exponent w, chosen to be the model that 

yielded the better goodness of ft.Note that for the system size dependence of E[τ] when q = 1.25 we expect, if at all, a very 

small exponent, which is technically very hard to distinguish from a logarithm, which in 

turn is also a possible scenario consistent with the Li-Sokal bound and hence cannot be 

ruled out. In fact we are not aware of any reason why the possibility E[τ]/m ≈ C log(m)p 

with p ≥ 1 should be excluded when q ≤ 2. 

We also tried to ft a functional form of ALB log(L) + C to the data to probe for the 

possibility of a multiplicative logarithm as for q = 1. We fnd that for cluster weights larger 

than 2 such fts yield good results, which slightly decrease the estimated Propp-Wilson 

exponent. On the other hand for q ≤ 2 we fnd that such a logarithmic ansatz does not 

yield reasonable fts. Yet we decided to use the estimates shown in table 6.1, as they are 

slightly larger and therefore provide a more pessimistic (safer) upper bound for zexp. 

For the tricritical case q = 4 we fnd that the before-mentioned ftting functions do not yield 

any reasonable ft. Motivated by the existence of multiplicative logarithmic corrections for 

the Potts model on the square lattice when q = 4 and βc = log(3), [94], we tried to ft the � �−B 
functional form ALw logL to the data. In contrast to the previous fts, this approach 

yielded a reasonable ft, as shown in table 6.1. We determined the involved exponent B to 

B = 0.6(1). This suggests that the logarithmic corrections found for equilibrium properties 

extend to the expected coupling time. Further it suggests that the Li-Sokal bound becomes 

close to sharp as one approaches q = 4. 

Before we discuss the possible sharpness of the Li-Sokal bound, let us compare our 
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(CM) 
q zint,N α/ν w χ2/NDOF Q Lmin Lmax Model zint,E0 

1.25 − −0.3553 0.013(3) 1.95 0.05 16 2048 A +BLw 0 

1.75 − −0.1093 0.111(2) 0.65 0.59 256 1024 A +BLw 0.06(1) 

2 0(log) 0(log) 0.162(5) 1.10 0.36 64 1024 A +BLw 0.14(1) 

2.5 0.26(1) 0.2036 0.351(1) 1.01 0.42 48 800 A +BLw 0.31(1) 

3 0.45(1) 0.4000 0.509(9) 1.07 0.38 48 800 A +BLw 0.49(1) 

3.5 0.636(2) 0.6101 0.696(1) 1.01 0.38 48 600 ALw 0.69(1)� �−B 
4 0.75(6) 1(log−3/2) 0.98(2) 0.93 0.50 32 1024 ALw logL 0.93(2) 

Table 6.1: Extracted exponent w for a power law system size scaling E[τ]/m ≈ Lw. The model 
estimates shown correspond to the best choice of the ftting model and system size 
constraints Lmin and Lmax. Additionally the dynamical critical exponent for the 
integrated autocorrelation time of the bond density N is also shown as estimated 
in [21] (the value for q = 4 is taken from our work [53] and only seemingly in 
violation with the Li-Sokal bound: We simply did not take into account logarithmic 
corrections in the ftting procedure and enforced a power law, which also yielded a 

(CM) reasonably ft.). The values of z are taken from [88]. int,E0 

estimates for w to known estimates for zexp from [53, 21]. We show in Figure 6.5 some of 

the literature values, together with our estimates for the Propp-Wilson exponent w. We can 

immediately record that the theoretical constraint E[τ]/τexp = O(m log(m)) is too crude, as 

it allows for a di�erence w − zexp up to d = 2. We however observe merely a di�erence less 

than 1/2 in the entire second order phase transition regime. Thus our method together 

with the Li-Sokal bound leaves only an interval for zexp of approximate width not larger 

than 1/2. We therefore conjecture that the heat-bath chain for the random-cluster model 

on Z2 
L at p = psd(q) fulflls 

α α 1≤ zexp ≤ + , 1 ≤ q ≤ 4, (6.2.9)
ν ν 2

where we ignore any poly-logarithmic factors in E[τ] and the frst inequality is of course 

the Li-Sokal bound. The bound (6.2.9) is supposed to be valid for any 1 ≤ q ≤ 4, however it 

appears that the width for possible values of τexp becomes actually smaller as the tricritical 

point is approached (note that our data suggests that the width is maximised for q = 1, 

where we have zexp = 0, w = 0 and α/ν = −1/2). In other words, for q → 4 lower (Li-Sokal) 

and upper (CFTP) bound become very close, which in turn narrows down the interval of 

allowed values for zexp. 

Sharpness of the Li-Sokal bound 

The authors of [21, 53] argued that a conceivable scenario for the critical random-cluster 

model heat-bath dynamics for Z2 is an “almost” sharpness of the Li-Sokal bound for q ≥ 2, L 

in the sense that τexp is by a factor proportional to a poly-logarithm or Lp, with p > 0 
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Figure 6.5: Graphical comparison of critical exponents w, for the expected coupling time, 
and zexp for the random-cluster model heat-bath chain, taken from [53, 21]. For 
comparison, the solid red-line shows the Li-Sokal bound. Compare also to Figure 
4.11. The estimate for zint,N for q = 4 appears to violate the Li-Sokal bound, 
however consider the caption of Table 6.1 for an explanation. 

but small, larger than the variance of N . Now, our results shown in Figure 6.5 and Table 

6.1 suggest that a similar sharpness property appears for the expected coupling time at 

criticality when q = 4. To quantify this let us compare our ft result for E[τ] for q = 4 to the 

corresponding exact leading fnite scaling expressions for the variance of N . To start with, 

note that, in general, one can show, e.g., by means of the Edwards-Sokal coupling [11] 

(see also [50]), that Var[N ] is related to the heat-capacity of the Potts model, whenever 

p = 1− e−β and q ∈ {2,3, . . . }. Specifcally, this relation applied to the critical q = 4 Potts 

model on Z2 implies that L 
Var[N ] � �−3/2 

≈ CL logL (6.2.10)
L2 

where C is a constant, and we ignored further sub-leading logarithmic corrections [94].� �−3/2 
We thus conclude, ignoring constants, that E[τ]/m scales at least as L logL . Now, the � �−B 
numerical observation, that E[τ] is well described by ALw logL , where w is very close, 

possibly equal to 1, and B < 3/2, suggests that the Li-Sokal bound for q = 4 is sharp up to a 

poly-logarithmic factor in L, or possibly a small power in L, which in turn is numerically 

very hard to distinguish from a poly-logarithm. This observation is interesting, both in 

the small-exponent and poly-logarithm scenario, as it narrows down window of possible 

values of τexp, supporting the sharpness of the Li-Sokal bound for q = 4 for the heat-bath 

dynamics on Z2 when p = psd(4). However, at the current stage we have no explanation for L 

this observation but we believe that zexp = α/ν for q = 4 is a conceivable scenario modulo 

poly-logarithms. We remark, that a similar sharpness observation was made in [93] for 

the Swendsen-Wang-Chayes-Machta dynamics for the tri-critical Potts model on Z2 
L. 

That the tricritical point plays a special role with regards to the sharpness of the Li-Sokal 

α/ν 

w(q) 

zint,N (Garoni et al.) 

zint,N (Elci et al.) 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 
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bound can also be seen in Figure 6.6, which shows the ratio E[τ]/ Varp,q[N ]. This method 

has also been used for instance in [88, 21] to probe the sharpness of the Li-Sokal bound 

for τexp. 

60 

50 

40 

30 

20 

10 

Figure 6.6: Ratio of expected coupling time E[τ] to variance of the number of edges Var[N ] at 
criticality. A simple check of the sharpness of the Li-Sokal bound for the coupling 
time. Notice the improvement of the bound for increasing q. 

One can clearly recognize how the Li-Sokal bound becomes better for increasing values of 

q, where the ratio still shows a very weak system size dependence, as described above. It 

is an interesting challenging problem to discover the responsible mechanism, that leads 

to the improvement of the bound as q = 4 is approached in 2D. 

Three dimensions 

So far we have restricted the analysis to the square lattice, but considering the known 

literature values for zexp for the random-cluster model heat-bath chain in 3D presented 

in [21], it appears that the Li-Sokal bound is far from being sharp for Z3. Furthermore, L

if we consider the dynamical critical exponent for q = 2 (Ising) at criticality on Z3 
L, we 

fnd zexp ≈ zint,N = 0.35(1) for the heat-bath chain [21] and zexp ≈ zint,E0 = 0.46(3) for 

the Chayes-Machta-Swendsen-Wang algorithm, which is clearly a considerably larger 

di�erence as observed in 2D for the entire divergent heat-capacity regime (q ≥ 2). This 

suggests that Sweeny’s algorithm becomes even more superior over the Chayes-Machta 

algorithm in 3D. 

Motivated by this observation, we provide results confrming this superiority of the heat-

bath chain assuming a poly-logarithmic dynamic connectivity implementation of the 

Sweeny chain. More precisely we estimated the expected coupling time on Z3 for cluster L 

weights q = 1.5,1.8,2,2.2, at the corresponding anticipated critical bond-densities. Like for 

the 2D case, the estimates are based on 104 independent samples for each cluster weight. 

We considered system sizes up to L = 96 for all cluster weights, except for q = 2.2 where we 
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only studied sizes up to L = 64. Let us start with q = 1.5, for which we set the bond-density 

to pc = 0.31157497 [96]. We fnd that the best ft can be achieved with a functional model 

ALw +B. We correspondingly extract w = 0.05(1). Note, that the corresponding specifc 

heat exponent is estimated to be α/ν = −0.32(4), c.f. [15]. For comparison, a corresponding 

recently estimated dynamical critical exponent for the integrated autocorrelation time of 

the nearest-neighbour connectivity observable E0 in the Chayes-Machta-Swendsen-Wang 

dynamics, short CMSW dynamics, was estimated 0.13(1) [88]. Moreover, the authors 

observe that the corresponding normalised autocorrelation function is very close to a pure 

exponential, which together with the plausible assumption that E0 is not orthogonal to the 

slowest “mode”, suggests that τint,E0 ≈ τexp,E0 ≈ τexp, i.e. zint,E0 roughly equals zexp for the 

CMSW dynamics on Z3. This value is in particular larger than our upper bound for zexpL

for the heat-bath chain obtained from the estimation of E[τ]. 

The results for the next cluster weight q = 1.8 are similar (here we set pc = 0.34096070, 

see [96]), we again obtain the best ft with a functional form ALw + B and determine 

w = 0.18(2), whereas α/ν = −0.15(5), and the CMSW exponent reads 0.29(1). 

For the Ising model, i.e. q = 2, we fnd for pc = 0.35809123, that the data is again best 

described by the same functional form, and extract w = 0.406(6). The estimated value of 

α/ν is 0.174(1) [88], and the corresponding exponent for the CMSW chain was estimated 

zint,E0 = 0.46(3). 

Lastly, the data for q = 2.2, still believed to be a second order phase transition at the 

anticipated critical point pc = 0.37361401, is best described by ALw, and we determine 

w = 0.698(3), whereas α/ν = 0.50(4) [88], and zint,E0 = 0.76(1) [88]. We summarise our 3D 

results in table 6.7. 

q pc w α/ν [88] zint,E0 [88] 

1.5 0.31157497(43) 0.05(1) −0.32(4) 0.13(1) 

1.8 0.34096070(39) 0.18(2) −0.15(5) 0.29(1) 

2.0 0.35809123(4) 0.406(6) 0.174(1) 0.46(3) 

2.2 0.37361401(35) 0.698(3) 0.50(4) 0.76(1) 

Figure 6.7: Estimates for the exponent w in the system-size scaling of the expected coupling 
time E[τ]/m ≈ Lw for the heat-bath chain for the random-cluster model at criticality 
on Z3. The estimates for pc for q = 1.5, q = 1.8 and q = 2.2 have been privately L
communicated to us by Garoni et al. [96]. The critical value pc for q = 2 is taken 
from [132]. 

Therefore our results on the expected coupling time at critcality in three dimensions 

show, using zexp ≤ w, that the Sweeny approach with dynamic connectivity algorithm is 

asymptotically more e�cient than the CMSW approach for 1 < q ≤ 2.2. This motivates a 

more detailed study of the Sweeny dynamics in three dimensions that provides estimates 

for zexp beyond q = 2. 
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We remark that the study of [21] also considered the case q = 0 as well as q = 1, however for 

the former the CMSW does not work and in the percolation case both algorithms become 

equivalent in the sense that CMSW is a sequential sweep of m heat-bath updates. It would 

also be desirable to see whether the Sweeny approach becomes even more superior in 

D > 3, and if so to understand the underlying mechanism. 

6.3 Coupling time distribution 

Let us know investigate the coupling time distribution, that is the probability that the map 

Ft 
↑ (or Ft 

↓) is not constant, which clearly equals, per defnition, P[τ > t]. One reason for 

our interest in the distribution stems from the fact that the expectation provides only very 

loose information on the tail of the distribution. One standard way to obtain a tail-bound 

using only the frst moment (expectation) of the distribution of τ is to exploit the point 

wise inequality 1{τ≥t}t ≤ τ , which after taking expectation on both sides yields 

E[τ]
P[τ ≥ t] ≤ . 

t 

It is clear that without further study Markov’s inequality does not allow for a detailed 

insight into the likelihood of outliers, which can drastically impair the eÿciency in any 

application. In fact even in the case q = 1 where the expectation is known explicitly, it 

turns out that the bound is too loose, as fuctuations typically happen on a smaller scale 

than E[τ]. 

As it is standard for randomised algorithms [38], one needs to understand the likelihood of 

such extreme events and would ideally like to obtain a high probability bound suppressing 

extreme deviations from the mean for increasing system sizes. Beyond this practical 

motivation, we can also gain insight into the coupling process itself and attempt to 

understand previous observations, such as the almost optimal coupling time for o�-

critical random-cluster models. In fact, we will study asymptotic (m →∞) properties of 

the distribution, and therefore need to introduce a normalisation of τ in order to obtain a 

non-degenerate asymptotic distribution. More precisely we consider the probability of 

relative deviations from the expectation E[τ] by studying the re-scaled (or standardised) 

random-variable 
τ − E[τ]

η ≡ p (6.3.1)
Var[τ] 

To start with, we consider the simplest case q = 1, i.e. bond percolation, where, as stated 

above, P[τ > t] = P[T > t] for any t, and T is the coupon collector time. The study of 

deviations of T from its mean is very well understood, both asymptotically, and in the 

fnite case where non-asymptotic concentration results are known [38]. A fundamental 

result concerning the limiting distribution of a slightly di�erent re-scaled coupling time 
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goes back to Erdás & Rényi in 1961 [133]: " # 
T − m log(m)

lim P ≤ x = e −e
−x
. (6.3.2) 

m→∞ m 

The double exponential on the right hand side is the cumulative distribution function of 

the standard Gumbel distribution, one member of the family of generalised extreme value 

(GEV) distributions [134]. Before we derive the corresponding result for η, let us elaborate 

on two aspects. Firstly, the result (6.3.2) can be derived heuristically in a continuous 

time version of the coupon collector problem. Here each coupon is issued at time τi for 

1 ≤ i ≤ m that has distribution � � 
P[τi ≤ t] = 1{t≥0} 1− e−λt , (6.3.3) 

that is an exponential waiting time with rate λ or mean 1/λ. We assume that all waiting 

times τi are identically and independently distributed. Clearly, in order to collect all 

edges we need to wait for the last edge (coupon) to be issued. This casts the study of T 

into an extreme-value problem of the random variable M = max {τi }i≤i≤m: 

P[T ≤ t] = P[M ≤ t], 
mY 

= P[τi ≤ t] 
i=1 � �m−λt= 1{t≥0} 1− e . 

At this point we need to fnd a normalisation such that the distribution of T is non-

degenerate in the limit m → ∞. Similar to the above arguments we obtain for two 

sequences (am)m≥1 and (bm)m≥1 " # � �mT − am −λ(tbm+am)P ≤ t = 1− e . 
bm 

Now, having Euler’s well known limit formula for the exponential in mind, i.e., � �mx xlim 1 + = e , 
m→∞ m 

it is not hard to see that with the choice am = log(m)/λ and bm = 1/λ, we obtain 

lim P[λT − log(m) ≤ t] = e −e
−t
, 

m→∞ 

which coincides with the limit in (6.3.2) for λ = 1. Let us emphasise that the Gumbel 

distribution is recovered independent of the choice of λ > 0. The variation of λ simply 

changes the overall scale and location of the distribution, but the nature of the fuctuations 

is una�ected by the particular choice, as it is the waiting process for the last edge to be 

issued which characterises the fuctuations. For instance, a smaller value of λ corresponds 
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to typically longer waiting times for coupons, which we might imagine could mimic, in a 

very naive approach, the slowing down caused by weak correlations o� criticality. Indeed, 

this expectation is supported by our numerical analysis of the coupling time distribution, 

as described below. 

The second aspect we want to mention is that one can easily derive a non-asymptotic tail 

bound for the distribution of T by means of a union-bound argument [38]: 

P[T > t] = P[∪e∈E {τe > t}], 

≤ mP[τe > t], � �t1 
= m 1− , 

m 
−t/m≤ me . 

Recall, for q = 1 τe is the frst time edge e is visited. For instance, for any � > 0 we can 

choose t = (1 + �)m log(m), such that 

P[T > (1 + �)m log(m)] ≤ m −� = o(1). (6.3.4) 

This result shows that for increasing system size it becomes more and more unlikely 

that T exceeds E[T ] by a multiple of m log(m). In other words fuctuations around the 

mean occur at a smaller scale. We can see that according to (6.3.2) the right scale for 

the fuctuations is indeed m, the number of edges. Yet slightly re-phrased, one can still 

observe fuctuations asymptotically, when measuring T in terms of sweeps (division by m), 

however will suppress fuctuations when measuring in in terms of the intrinsic coupon-

collector scale m log(m). Compare (6.3.4) to what one obtains from Markov’s inequality: 

P[T > (1 + �)m log(m)] ≤ c/(1 + �), where c is a constant. Notably this does not provide 

us with a concentration result stating that with increasing system size deviations on this 

scale become negligible. Finally, let us remark that the same arguments can in principle 

also be applied to the coupling time τ for q > 1, that is 

P[τ > t] ≤ mP[e ∈ St], (6.3.5) 

and note that because e ∈ St ⇒ τe > t we have P[e ∈ St] ≤ P[τe > t]. We remark that in order 

to bound the mixing time, it suÿces to fnd a time t such that P[e ∈ St] or P[τe > t] is less 

or equal 1/(4m) uniformly in e, which then would yield tmix ≤ t. Interestingly, also from 

a practical point of view such a time t is suÿcient to obtain results suppressing large 

deviations with high probability, i.e. knowing that P[τ > t] ≤ 1/4 for a particular choice of 

t, allows one for instance to “boost” this bound and obtain P[τ > t log(m)/ log(4)] ≤ 1/m. 

In fact we have already used this argument to derive (6.1.16). We can apply similar 

≤ 1 karguments to derive P[τ↓ > kt] , provided P[τ↓ > t] ≤ 1/4. In practise however, 4 

without any particular information on the tail of the distribution of τe, this is merely a 

re-formulation of the problem. Yet, it is conceivable that under “mild” conditions such 

as o�-criticality, the tail probability P[τe > t] could be asymptotically equivalent to or 
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bounded by Ce−t/(m+o(m)), where C is again a constant positive constant. 

Now, it remains to show how we can obtain a non-degenerate limiting law for η in case 

of the coupon collector’s problem. Firstly, it is clear that E[η] = 0 as well as Var[η] = 1. 

Thus the corresponding limiting non-degenerate distribution must also fulfl these two 

constraints. Note, that in general the Gumbel distribution has a scale and a location 

parameter, denoted by β > 0 and µ ∈ R, respectively. The particular re-scaling in (6.3.2) 

corresponds to β = 1 and µ = 0, which is commonly known as the standard case. The 

following derivation of the limiting distribution of η closely follows the original ideas of 

Erdás & Rényi in [133] that led in particular to (6.3.2). We remark, that no conceptually 

new ideas are needed to derive the result for η. However, we provide the derivation, 

as it allows us to understand the relevant assumptions underlying it. To start with, let 

ϕm(t) = E[eitη ] (where i is the imaginary unit) be the characteristic function of η, we have ⎛ ⎞ 
− imHmt√ 

Var[T ]ρm 
t 

ϕm(t) = e 
⎜⎜⎜⎜p ⎠⎟⎟⎟⎟ ,⎝ 

Var[T ] 

where ρm(t) is the characteristic function of a sum of m independent geometric random 

variables {δk }m with parameters pk = (m − k + 1)/m. Because we have for a geometrick=1 
it)random variable with parameter p the characteristic function equals peit/(1− (1− p)e

we obtain 

mY eit m−k+1 
mρm(t) = 

1− k−1 itek=1 m 
mY k 

m= 
−it − m−kek=1 m 

1 
= � � ,Qm m −it − 1e + 1k=1 k 

and we obtain after some straightforward algebra 

1 
ϕm(t) = � � , (6.3.6)Q it � it � 

m m −αmk mαme − 1 + 1k=1 e k 

√ 
Var[T ] πhere we defned αm ≡ . We note that αm → √ ≡ α for m →∞, see for instance [38].m 6 

Taking the limit in (6.3.6) we obtain 

1
lim (t) = � � . (6.3.7)ϕm Q∞ itm→∞ 1− itαk

k=1 e αk 

Now, using the product representation of the gamma function [133], the product in (6.3.7) 

can be written in terms the Gamma function, � �it − itγ 

lim ϕm(t) = Γ 1− e α , (6.3.8) 
m→∞ α 
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where γ ≈ 0.5772156649 is the Euler-Mascheroni constant. Lastly, the r.h.s. in (6.3.8) is√ 
the characteristic function of the Gumbel distribution with location parameter −γ 6/π√ 
and scale parameter 6/π, hence we have by Levy’s continuity theorem ⎡ ⎤ 

−x √ −γT − E[T ] π
6−elim P 

⎢⎢⎢⎢p ≤ x 
⎥⎥⎥⎥ = e . (6.3.9) 

m→∞ ⎣ Var[T ] ⎦ 
In general, a Gumbel distribution with location parameter µ and scale parameter β > 0, has 

mean µ + βγ and variance π2β2/6. The particular choice of µ and β above clearly recovers 

the desired result, that the mean is 0 and the variance equals 1. Further, a characteristic of 

the Gumbel distribution is its skewness, that is the right tail is longer and heavier than the 

left. Compare this to, say, a normal distribution where left and right tail are symmetric. 

Needless to say that this asymmetry has a direct infuence on the running time of the 

coupling from the past algorithm for q = 1, as running times exceeding the mean are more 

likely than shorter runs. 

The Gumbel distribution is a ubiquitous distribution, for instance it describes the freezing-

temperature fuctuations in the random-energy model [135], the distribution of pseudo-

critical temperatures in the Edwards-Anderson spin glass model [136] or the distribution 

of the cover time of the simple random-walk on the discrete torus of dimension at least 

three [137], to name just a few. 

The previous derivation of the Gumbel distribution (6.3.2) crucially relied on the fact that 

the coupon collector time can be decomposed as a sum of independent (but not identi-

cally) distributed geometric random-variables. In principle we can make an analogous 

decomposition ansatz for τ , based on the degree k partial-coupling times, more precisely: 

mX 
τ ≡ τm = (τk − τk−1) (6.3.10) 

k=1 

with the convention that τ0 = 0. Thus the problem is equivalent to the study of the sum 

of m terms of the form τk − τk−1. However, the problem is that for q > 1 the terms for 

di�erent values of k’s are not independent. Clearly, when concerned with the task of 

obtaining tail bounds, one can dispose of the requirement of independence, and work in 

the dependent setting such as for example in case of negative dependence or martingales 

[138]. Unfortunately we were not able to cast the study of τ into such a framework. 

Furthermore, let us remark that the idea of using a telescoping sum trick, as in (6.3.10), 

was used in the interesting work [139], that shows how extreme value statistics can be 

formulated as the study of the sum of a particular class of correlated random-variables. 

More importantly, the work [139] shows that under certain conditions a sum of correlated 

random-variables leads to a generalised Gumbel distribution, however without any ap-

parent interpretation in terms of an extreme value problem. Yet, we could not confrm 

the relevant conditions for our problem, as it requires a specifc functional form of the 

joint probability distribution of the terms composing the sum. Beyond that, we actually 

lack any knowledge about the functional form of the marginal distribution of each of the 
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Chapter 6. Eÿciency of the CFTP algorithm for the random-cluster model 

terms in the sum, as well as the corresponding mean. 

We therefore decided to fall back to a numerical analysis of η. This study provides us 

with valuable insight, which may lead to a future rigorous study. In fact we mention 

already here that the numerical observations stimulated our rigorous analysis of the 

asymptotics of the coupling time distribution in the case of the cycle graph in section 6.4. 

Now, let us continue with our numerical results, which are divided into two subsections, 

corresponding to the o�-critical and critical situations, respectively. 

6.3.1 O� critical 

We analysed the coupling time distribution for o�-critical parameter choices in 2D and 

3D by considering the square- and simple cubic lattice with periodic boundary conditions, 

that is Z2 and Z3, respectively. The before-mentioned study of the expected coupling L L

time for o� critical parameters suggests that the fuctuations stem from the underlying 

coupon collector process, and the introduction of a cluster weight merely refects itself 

in a sub-leading change of scale. It is therefore plausible to expect that η follows again 

(6.3.9) asymptotically. 

Indeed, in the left panel of Figure 6.8 we show the empirical distribution of η in two 

dimensions for q = 8 and p = 0.3 < psd(8) in 2D and compare it to the probability density 

function corresponding to (6.3.2), which is shown as the solid green line. The graphical co-

incidence with the asymptotic result in (6.3.9) supports our initial anticipation. Likewise, 

the right panel in Figure (6.8) shows the empirical distribution of η for q = 1.5 and p = 0.2 

in 3D. Recall that one recent [96] estimate for the location of the second order phase 

transition of the random-cluster model on Z3 for q = 1.5 is pc = 0.31157497 ± 0.00000059, 

hence p = 0.2 is clearly sub-critical. In order to obtain a quantitative measure of how well 
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Figure 6.8: Histogram for η for the coupling process on Z2 and Z3, for parameters as specifed L L
in the fgure. The histograms are based on 20000 independent samples in 2D and 
10000 in 3D. Here p(η) denotes the corresponding probability density function of 
η. The solid green line shows the probability density function corresponding to 
(6.3.9). 

the distribution of η is described by (6.3.9), we used the method of maximum likelihood 

estimation [112] to extract the corresponding shape, ξ ∈ R, location, µ ∈ R, and scale, 

σ > 0, parameters of the generalised extreme value (GEV) distribution with cumulative 

p
(η

) 
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distribution function: ⎧ 
−(x−µ)/σ � � ⎪⎪⎪⎪⎨e−e ξ = 0, 

FGEV x;ξ,µ,σ = � �−1/ξ (6.3.11)
− 1+ξ(x−µ)/σ 

⎪⎪⎪⎪⎩e ξ , 0, 

where the support is (−∞,∞) whenever ξ = 0 and [µ − σ/ξ,∞) when ξ > 0, the case ξ < 0 

corresponding to the Weibull distribution, is not relevant to this work. One reason for the 

use of the GEV framework is that it nicely interpolates between the three di�erent families 

of extreme value distributions as ξ is varied. In particular, for ξ = 0 it can be verifed√ 
that FGEV(x;ξ,µ,σ ) describes the Gumbel family. Spefcically, for ξ = 0, µ = −γ 6/π and√ 
σ = 6/π we can actually recover the limiting Gumbel distribution in (6.3.9). However, 

the variation of ξ allows us to quantitatively probe for deviations from the Gumbel 

scenario. From a practical point of view, ξ might fuctuate, simply because of the fact 

that our computational analysis is non-asymptotic and the work with empirical samples. 

Therefore we believe that a shape parameter ξ consistent to 0 supports the asymptotic 

validity of (6.3.9). 

For the particular choice p = 0.3 and q = 8 in 2D, we obtain for L = 128 (corresponding to 

the left panel in Figure 6.8) 

ξ = 0.01(1) µ = −0.45(1) σ = 0.77(1), (6.3.12) 

which is based on 19000 independent samples, and the error bars are obtained by the 

bootstrap re-sampling method [112]. This result indicates that ξ = 0 and is further in 

perfect agreement with the predicted values 

√ √ 
γ 6 6 

µ = − = −0.45005320754 . . . σ = = 0.77969780123 . . . . (6.3.13)
π π 

Completely analogous, when we consider the heat-bath chain on Z3 for q = 1.5,p = 0.2,L 

corresponding to the right panel in Figure 6.8, we obtain 

ξ = 0.01(1) µ = −0.45(2) σ = 0.78(1), (6.3.14) 

which is based on 11000 samples. Additionally, we have also data for the super-critical 

parameter choice q = 2.2 and p = 0.6 in 3D. Here we also obtained 11000 samples and 

estimate µ = −0.45(2), ξ = 0.00(1) and σ = 0.79(1). 

Based on our fndings we are confdent to conjecture that the re-scaled coupling time 

distribution of the heat-bath chain for the random-cluster model on Zd is asymptotically,L 

i.e., for L →∞, equal to the right hand side of (6.3.9), whenever the equilibrium model is 

away from a point where it undergoes a phase transition on Zd . Our observations confrm 

that fuctuations in the coupling time stem asymptotically only from a waiting process 

of localised “defects”, where the scale and centre of the fuctuations are determined by 

the particular o�-critical choice of p and q. In contrast, we have observed a qualitatively 
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di�erent behaviour at the point where the model on the corresponding infnite lattice 

undergoes a continuous phase transition. It is therefore tempting to check whether (6.3.9) 

holds or not. 

6.3.2 At criticality 

Continuous regime 

In the left panel of Figure 6.9 we show the empirical distribution of η for q = 3.5 and 

p = psd(3.5) for the graph Z2 psd(q)800. Recall, that for q ≤ 4 the phase transition at p = 

is continuous. Somewhat surprisingly we fnd again a very good graphical agreement 

with (6.3.9). The same holds for the three dimensional system considered, where we 

set q = 1.5 and p = 0.311575 for Z64
3 , as shown in the right panel of Figure 6.9. These 

observations strongly suggest that a continuous phase transition in the random-cluster 

model is suÿciently “well-behaved” for the dominant e�ect, besides a change in the scale 

and location of fuctuations, to still originate from fuctuations of a waiting-type process 

resembling the mechanism causing fuctuations in the coupon collector’s problem. A more 
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Figure 6.9: Histogram of η for the coupling process on Z2 and Z3, for critical parameters as L L
specifed in the fgure. The histograms are based on 15000 independent samples in 
2D and 10000 in 3D. The solid green line shows the probability density function 
corresponding to (6.3.9). 

quantitative test can again be obtained by means of the maximum-likelihood method 

in combination with a bootstrap error estimation. We actually extended the analysis of 

the distribution of η in two dimensions to cluster weights in the interval (1,4] already 

encountered in the analysis of the system size scaling of E[τ] along the self-dual line. 

In fact we used the same samples underlying the estimation of E[τ]. We fnd generally, 

that for all cluster weights strictly less than 4, the estimates for shape, location and scale 

parameters are consistent with ξ = 0 and the Gumbel distribution (6.3.9). 

We summarise our results in table 6.2. In 3D we fnd, both at the corresponding (estimated) 

critical point for q = 1.5 and q = 2.2, that the resulting estimates are consistent with the 

Gumbel distribution (6.3.9). 

In the marginal case q = 4 and p = psd(4) = 2/3, for which the random-cluster model is 

still continuous, we fnd a peculiar behaviour, as shown in table 6.3. The data suggests a 

p
(η

) 

164 

http:estimation.We


6.3. Coupling time distribution 

q L µ σ ξ Ns 

1.75 1024 −0.45(3) 0.80(2) −0.02(2) 3360 

1.75 512 −0.45(2) 0.79(1) −0.01(2) 9800 

2.00 512 −0.45(2) 0.78(1) 0.00(1) 9000 

2.00 800 −0.45(2) 0.80(1) −0.02(1) 9000 

2.50 512 −0.45(2) 0.79(2) −0.01(1) 9000 

3.00 512 −0.45(2) 0.78(1) 0.01(1) 9000 

3.50 512 −0.46(2) 0.77(1) 0.02(2) 8990 

3.50 800 −0.46(1) 0.77(1) 0.01(1) 15730 

Table 6.2: Shape, location and scale parameter estimates for choices of (q,psd(q) obtained 
from maximum likelihood estimators for the generalised extreme value distribution 
(6.3.11). 

deviation from the q = 1 Gumbel distribution. More precisely, we observe that the location 

parameter tends to settle at a value slightly in the Frèchet regime (ξ > 0). One immediate 

consequence is the smaller support of the Fréchet family, i.e., a Frèchet random variable 

is supported in [µ − σ/ξ,∞), which implies that for suÿciently large L there exists an 

e�ective lower cut-o� for relative deviations from E[τ]. This is an e�ect which is absent in 

the Gumbel family, where η can in principle attain arbitrary small values, as long as this 

value is conform to the trivial cut-o� that τ,T ≥ m. However, based on our numerical data 

we cannot exclude that the observed deviation from (6.3.9) is only a fnite size artifact and 

vanishes for L →∞, for which, strictly speaking, even the rescaled distribution for q = 1 

only reduces to (6.3.9). It appears that q = 4 is in many regards the most challenging case 

in the entire second order critical regime for the square lattice. 

L µ σ ξ Ns 

128 −0.46(2) 0.73(1) 0.05(2) 8990 

256 −0.47(2) 0.71(1) 0.08(2) 9000 

512 −0.47(1) 0.73(1) 0.06(1) 18940 

800 −0.47(1) 0.72(1) 0.07(1) 20000 

1024 −0.47(2) 0.72(1) 0.07(1) 9850 

Table 6.3: Maximum-likelihood estimators for the shape-, location- and scale parameter of the 
generalised extreme value distribution (6.3.11) for di�erent system sizes and fxed 
q = 4 and p = psd(4) = 2/4. 
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Discontinuous regime 

Even more severe becomes the deviation from the Gumbel distribution for q > 4 along the 

self-dual line, where the phase transition is believed to be discontinuous and the expected 

coupling time should hence be exponential in L. We generated 10000 samples of the 

coupling time for the choice q = 5 and p = psd(5) on Z256, which is a comparably weak 

frst order phase transition. We obtained the following GEV parameter: 

ξ = 0.19(2) µ = −0.49(2) σ = 0.62(1). (6.3.15) 

The histogram together with the GEV probability density function corresponding to the 

parameters (6.3.15) is shown in Figure 6.10. This is strong evidence for the validity of 

the Fréchet distribution with corresponding shape parameter. Further, notice that, in 

comparison to q = 4, the shape parameter ξ increased and the scale parameter decreased. 

This e�ectively increases the lower bound of the support of the Fréchet distribution and 

hence worsens the fuctuations around the mean, as running times below the mean become 

more unlikely (suppressed). The astronomically large time scales involved in the coupling 

p
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Figure 6.10: Histogram for η for the heat-bath chain on Z2 
256, with q = 5 and p = psd(5) based 

on 10000 samples. The red solid curve is the density function corresponding to 
(6.3.9) and the green corresponds to a generalised extreme value distribution with 
shape, location and scale parameters estimated as described in the text. 

process at the location of a frst order phase transition, make it nearly impossible to reach 

larger system sizes and collect suÿcient statistics. However, the Frèchet scenario for 

frst order and possibly tri-critical (marginal) phase transitions seems plausible. It is an 

interesting and challenging problem to fnd out whether and under which circumstances 

the Frèchet distribution describes the distribution of η asymptotically. We hope that this 

frst numerical observation motivates a (rigorous) study of related phenomena. 
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6.3.3 Other models and localisation 

We also studied the coupling time of the Glauber dynamics, or spin-fip heat-bath dynam-

ics, for the Ising model on Z2. In case of the Ising model one can utilise a deep relationship L

between spatial and temporal mixing. More precisely, the Ising model (without magnetic 

feld) on a fnite box of square lattice with arbitrary boundary conditions is known to √ 
have the strong spatial mixing property [140] for 0 ≤ β < βc = log(1 + 2)/2. This property, 

very roughly, states that the infuence (measured in variation distance) of a change in 

the boundary condition at a vertex v, on the probability of an event in a distant region, 

decays exponentially with the distance between the region and v. Now, remarkably strong 

spatial mixing can be shown to imply rapid mixing for the Glauber dynamics on amenable 

graphs, see for instance [141] for a probabilistic proof. In fact the arguments of [141] can 

be used to show that the two coupled Ising-Glauber Markov chains, either in the forward 

or backward coupling, will very likely agree at any fxed vertex at times larger or equal 

Cn log(n)2 (for some constant C and where n is the number of vertices in the box). More 

precisely for such times the probability of disagreement at a fxed vertex is not larger than 

1/4n, independent of the boundary condition (spin assignments at the boundary of the 

box). Clearly, this allows us, together with the above union-bound argument, to establish 

rapid mixing and desired tail bounds. For a detailed and more formal treatment we refer 

the reader to [141]. 

The reason why we mention this argument is simply that it formalises the idea of locality 

in correlated systems and shows that this can in some instances indeed be enough to es-

tablish rapid mixing. Now, if we dare to conjecture, one might say that such a localisation, 

or a weaker notion of it as outlined below, must be a necessary condition for Gumbel-type 

fuctuations in the coupling time distribution. One is tempted to generalise the ideas of 

[141] to the heat-bath chain for the random-cluster model. However, to our knowledge it 

is not established that the random-cluster model on Z2 possesses the strong spatial mixing 

property. On the other hand, a di�erent, weaker, notion of spatial mixing can be shown 

to hold under certain conditions for the random-cluster model on Z2 with q ≥ 1 [142]. 

Remarkably, only in conjunction with very recent results [28] it is possible to confrm 
√ √

that this weaker notion of spatial mixing holds precisely for p < psd(q) = q/(1 + q) and 

correspondingly, by duality, also for p > psd(q) (whenever q ≥ 1). For the critical point it 

was recently established in [128] that whenever 1 ≤ q ≤ 4 one has polynomial ratio weak 
mixing which does not any more provide exponential decay but a polynomial decay. We 

will pursue in a future study the question whether such weaker notions of spatial mixing 

are suÿcient to establish the rapid mixing property. 

Lastly, coming back to the spin heat-bath chain for the Ising model, note that since the 

recent work [48] it is now rigorously established that the coupling from the past algorithm 

for the Ising model (in spin formulation) on a fnite box of the square lattice with arbitrary 

boundary conditions has expected running time at most polynomial in the volume for any 

temperature β ≤ βc, that is in particular including criticality. However, the precise value of 

the exponent at criticality is not established rigorously. 
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Our numerical analysis of the coupling time distribution for the Ising model shows very √ 
good agreement with the Gumbel law (6.3.9) whenever β < βc = log(1 + 2)/2, and hence 

precisely where the strong spatial mixing holds. On the other hand, for β = βc we fnd 

that the limiting distribution seems to fall into the Frèchet class. This is possibly related 

to the sharpness of the phase transition (from a dynamical point of view), as it is known 

that for β > βc the mixing is at least exponential in L. For more details we refer to [143]. 

Moreover, we analysed the “single-bond chain”, a Markov chain on the random-cluster 

model state space, that naturally appears in the study of the Chayes-Machta algorithm 

[144]. We fnd a completely analogous behaviour to the heat-bath chain for the random-

cluster model, i.e., the histogram for η is best described by the Gumbel law (6.3.9) when-

ever p , psd(q) for all q ≥ 1 and for p = psd(q) as long as 1 ≤ q < 4. Again, we refer the 

interested reader for more details to [143]. Finally, let us remark that the Gumbel dis-

tribution was also found in the coupling time distribution of a Markov chain on sets of 

two-dimensional random rhombus tilings [145]. 

6.4 Rigorous results in one dimension 

In this section we rigorously establish that the asymptotic distribution of a properly 

rescaled coupling time in case of the cycle graph on m vertices (m-cycle or Zm) converges 

to the standard Gumbel distribution in (6.3.2). This is possibly the most basic case to 

analyse which does not correspond to a Bernoulli measure over edges, like for instance for 

forests and trees. 

Before we dive into the details let us frst derive a straightforward upper bound for the 

expected coupling time. The crucial observation is that we can bound τ by the running 

time τ̃ of a simplifed random process, which operates as follows. Run the coupling 

process until all edges have been visited at least once, that is up to time T1, where T1 is 

the corresponding coupon collector’s time. In what follows we call the interval [1,T1] 

the (frst) coupon collector epoch. Clearly, any edge e has a time L(e) for which it was 

visited last in the frst coupon collector epoch. Let e ∗ be the edge with the smallest such 

time, i.e., the edge that was visited last before all other edges. The important point to � i 
realise is that in L(e ∗) + 1,T1 each of the remaining edges in E \ {e ∗} is assured to be 

∗visited at least once, while the status e in the two coupled chains remains unchanged. 

Note that if e ∗ was removed in the top confguration at instance L(e ∗) (and hence also in 

the bottom confguration by monotonicity), all remaining edges will be pivotal in both 

coupled confgurations upon their last visit in the frst coupon collector epoch, whence 

coalescence happens at time T1 and the modifed algorithm terminates at time T1. 
∗If instead e was not removed from the top confguration at time L(e ∗), we extend the 

algorithm for another coupon collector epoch, that is from (T1,T1 + T2]. Here we check 
∗ ∗again whether e was removed at instance L(e ∗), where both e and L(e ∗) both are now 

defned with respect to the second coupon collector epoch. We continue for additional 
∗coupon collector epochs until e is removed at the corresponding instance L(e ∗) in one 
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epoch. Denote the (random-) number of such epochs by N . 

Now, note that we can couple the original coupling process with this modifed process, 

such that with probability one we have τ ≤ τ̃ . This simply refects the fact that the 

modifed algorithm will never terminate before the coupling process. Moreover, it is not 

hard to see that N is dominated by a geometric random variable with mean 1/(1 − p): 

The removal of e ∗ happens with probability at least 1 − p (remember p̃(p,q) ≤ p for q ≥ 1). 

Finally, defne 
N̂X 

τ̂ ≡ Ti, 
i=1 

where Ti are independent coupon collector times and N̂ is a geometric random-variable 

with mean 1/(1− p). The above arguments now allows us conclude 

P[τ > t] ≤ P[ ˜ τ > t]τ > t] ≤ P[ ˆ (6.4.1) 

P 
and hence we can use Wald’s equation as well as E[Y ] = t≥0P[Y > t], which is valid for 

any non-negative integer-valued random-variable Y , to derive the desired upper bound 

for E[τ] X X E[T ] m log(m)
E[τ] = P[τ > t] ≤ P[ ˆ = E[τ̂] = ∼τ > t] .

1− p 1− p
t≥0 t≥0 

This shows that E[τ] � E[T ], that is the expected coupling time is of the same order of 

magnitude as the coupon collector time. 

In order to derive the Gumbel law for the coupling time distribution, the above construc-

tion is however too wasteful, in that another epoch is used in case e ∗ is not removed. In 

fact, as we will see below, we can indeed allow for e ∗ not to be removed at L(e ∗) as long as 

we assure that e ∗ is pivotal in the top confguration at L(e ∗). This together with a careful 

analysis of a short (as specifed below) sequence of subsequent updates will be enough 

to show that coupling happens very likely (with high probability) at the end of the frst 

coupon collector epoch. In order to precisely state the result and provide a proof, we 

frstly need to formalise the quantity L(e) and introduce some further notation. Firstly, let 

us denote the edge selection process by E ≡ {Et : t ≥ 1}, where the Et’s are identically and 

independently distributed with marginal distribution P[Et = e] = 1/m. Given E we defne 

Rt ≡ {e : Eu = e for some u ≤ t} , (6.4.2) 

that is Rt is the set of distinct edges visited by the process E up to time t. We clearly have 

T = inf {t > 0 : |Rt | = m}. Further, the times Le, from above, can be formally defned as 

L(e) ≡ sup {t ≤ T : Et = e}. (6.4.3) 

We order the L(e) from the smallest to largest, and denote them by Li for 1 ≤ i ≤ m. The 

crucial observation we made is that by the time the frst edge is visited last within the frst 
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coupon collector epoch, with high probability, more than log(log(m)) distinct edges have 

already been visited: 

Theorem 6.4.1. �� � � �� 
P ��RL1 

�� ≤ log log(m) = o(1). (6.4.4) 

We postpone the proof of Theorem 6.4.1 to sub-section 6.4.1, and show frst how it leads 

to the fact that with high probability τ does not exceed T , and hence with high probability 

τ = T , more precisely 

Theorem 6.4.2. h i 
lim P τ = T = 1. 
m→∞ 

Proof. We frst recall a standard concentration result for a binomial random variable X, 

commonly known as Cherno�-Hoe�ding bound, c.f. e.g. [138], that states: h i 
− �

2 
2 E[X]P X ≤ (1− �)E[X] ≤ e � ∈ (0,1). 

Now, for a binomial random-variable X with parameters (1 − p) and m the above implies 

that we can choose any β ∈ (0,1) such that we can fnd a γ ∈ [0,1) for which the following 

holds: h i 
P X ≤ β(1− p)m ≤ e−γm . 

Simply observe that E[X] = (1 − p)m and set � = 1 − β together with γ = (1 − β)2(1− p)/2. 

Let e ∗ be the edge selected at time L1, i.e. e ∗ ≡ EL1
. � �

Defne am = log(log(m)) and denote by P1
(1) < P 2

(1) < . . . < P (1) the last visit of am of the am 

edges belonging to the set RL1
\{e ∗} before time L1. Note that |RL1

| > am implies |RL1
| ≥ am +1, 

because both |RL1
| and am are integers. Hence there are at least am distinct edges in RL1

\{e ∗}. 
At each of these times we fip a coin and say that the edge is removed if the coin shows 

head. The probability that the coin shows head is at least (1 − p). Note that if the coin is 

head, the removal happens in both chains (again by monotonicity). 

Defne the event A1 that at least β(1− p)am edges are removed before time L1. The event 
−γamA1 holds with probability at least 1 − e conditioned on the event that |RL1

| > am. This 

follows from the Cherno�-Hoe�ding bound above. Moreover the edge visited by the 
(1) (1)process E at time P is not visited by E at times contained in the interval (P ,L1]. Notice i i 

that if at least β(1 − p)am ≥ 2 edges are removed before time L1, then all of edges are 

pivotal for the top confguration at time L1. Hence in particular by the time L1, the edge 

e ∗ ≡ EL1 
is pivotal to both confgurations, w.h.p.. If at time L1 the edge e ∗ is removed, then 

the coupling will happen at T . In fact, if e ∗ is removed, as it is pivotal, it is removed for 

both chains. Moreover, e ∗ is not visited again in the interval (L1,T ], while all the other 

edges are visited during this interval at least once. Hence, all of the edges visited in (L1,T ] 

are pivotal two both confgurations upon each visit. 

If L1 is not removed we focus on L2. Set A0 = {|RL1
| > am}. Condition on the event A1 ∩ A0, 

that is the existence of at least β(1− p)am edges that are removed by time L1. In order for 
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� �
the edge visited at time L2 to be not pivotal, the process must visit at least β(1− p)am of 

the edges which were removed by time L1 and must add back each of them. We denote by � �(1)Ac 2 a larger event, defned on A1∩A0, as follows. On A1, fx a set of am ≡ β(1− p)am edges 
(2) (2) (2)that are deleted by time L1 and denote it by B2. As before, we defne P1 < P 2 . . . < P |B2| 

as 

the last visits of edges in B2 before time L2. For each element in B2, if it is not visited in 

(L1,L2), we fip a biased auxiliary coin, that shows head with probability 1− p, (which is 

independent of anything else, i.e. is an extra coin) for this edge. These auxiliary coins do 

not a�ect the behaviour of the two coupled chains, i.e., are not used to upgrade the status 

of these processes. We apply the following colouring. 

• If an edge in B2 is visited in the interval (L1,L2) and is removed at its last visit in 

this interval, then colour it red; 

• If an edge in B2 is not visited in the interval (L1,L2) and the auxiliary coin shows 

head, then colour it red; 

• Do not colour it otherwise. 

All the red edges are removed edges by time L2 (fipping another coin for edges that are 

not visited again in (L1,L2) does not change the fact that they had been removed by the 

time L1 and hence remain removed up to time L2). We defne Ac 2 as the event that there 
(1)are at most β(1− p)am red edges. Notice that h i h i h i 

P A2 ∩ A1 | A0 = P A2 | A1 ∩ A0 P A1 | A0 � �� � 
−γbβ(1−p)amc −γam≥ 1− e 1− e� �� � 
−γ[β(1−p) log(log(m))−β(1−p)−1] −γ[log(log(m))−1]≥ 1− e 1− e

� �
We emphasise that on A2 ∩ A1 ∩ A0 there are at least β(1− p) β(1− p)am removed edges 

at time L2. On A2 ∩ A1 ∩ A0, if the edge EL2 
is removed, as it is not visited again in the 

interval (L2,T ], while all the other edges (with the exception of e ∗) are visited during this 

interval. The two coupled chains already agree on e ∗ as at time L1 this edge was pivotal. 

Moreover all other edges are pivotal edges when visited in (L2,T ], and hence a coupling 

happens at time T . 

Next A3 is defned on the event A2∩A1∩A0 as follows. We reset the colour of the edges, so j k 
(2) (1)that are all uncoloured. On A2∩A1∩A0 fx a set B3 of am ≡ β(1− p)am of removed edges. 

Colour the vertices using the method described above (the auxiliary trials are assumed to 
(2)be independent of anything else). Defne A3 the event that there are at least β(1− p)am 

red edges. Notice that 

2 � � 2Y (j) Y� � 
−γam −γβj (1−p)j log(log(m))+γφ(∞)P[A3 ∩ A2 ∩ A1 | A0] ≥ 1− e ≥ 1− e

j=0 j=0 
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Note that it is easy to verify that a(j) ≥ βj (1 − p)j log(log(m)) − φ(j) for j ∈ N with the m 
(0) Pjconvention that am ≡ am, where we set φ(j) ≡ k=0 β

k(1− p)k, with φ(j) ≤ φ(∞) = 1/(1− 

(1 − p)β). If A3 ∩ A2 ∩ A1 holds and the edge E(L3) is removed, then a coupling time 

happened before or at time T , for the same reason explained above. We proceed in the � � Tbmsame fashion for bm ≡ log(log(am)) steps. We say that the algorithm works if j=1 Aj 
holds and at least one of the Lj results in a removal of the relative edge. If the algorithm 

works then the coupling happens at T . The probability that this algorithm works, given 

A0, is at least 
bm−1Y � � 

bm ) −γ(1−p)jβj log(log(m))(1− p 1− Ke , (6.4.5) 
j=0 

γφ(∞)where K = e = eγ/(1−(1−p)β). Next we prove that the quantity in (6.4.5) converges to 1 

as m →∞. In fact 

bm−1Y � � � �bm−1−γ(1−p)jβj log(log(m)) −γ(1−p)bm−1βbm−1 log(log(m))1− Ke ≥ 1− Ke = 1 − o(1), 
j=1 � �

where we used the fact that bm = log(log(am)) . 

This fact, together with the fact that A0 holds w.h.p. proves that the coupling time will 

happen, w.h.p., at T . 

� 

Corollary 6.4.3. ! 
lim P 

τ − m log(m)
≤ x 

−x−e= e . 
m→∞ m 

Proof. ! ! ! 
lim P 
m→∞ 

τ − m log(m) 
m 

≤ x = lim P 
m→∞ 

T − m log(m) 
m 

≤ x,T = τ = lim P 
m→∞ 

T − m log(m) 
m 

≤ x 
−x−e= e , 

where in the last step we used the classical result that the coupon collector time, properly 

rescaled, converges in distribution to a Gumbel distribution [133]. � 

In fact Theorem 6.4.2 allows us to invoke standard concentration results for the coupon-

collector time T , due to the simple observation 

P[τ > t] = P[τ > t,τ > T ] +P[τ > t,τ = T ] ≤ o(1) + P[T > t]. (6.4.6) 

Furthermore, recall the union-bound argument that led to (6.3.4), which states that for 

any � > 0 one has 

P[T > (1 + �)m log(m)] ≤ m−�. (6.4.7) 
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Combining this with (6.4.6) we obtain 

P[τ > (1 + �)m log(m)] = o(1). (6.4.8) 

Note that because m log(m) ≤ mHm = E[T ] ≤ E[τ] for any positive integer m, we have also 

P[τ > (1 + �)E[τ]] = o(1). 

This concentration result stating that deviations of the order of magnitude of E[τ] from 

E[τ] itself become suppressed for increasing system size, together with the generic fact 

that E[τ] ≥ E[T ] suggest that an asymptotic equivalence between E[T ] and E[τ] might 

hold. And indeed, we can use the concentration result (6.4.8) to infer the asymptotics of 

E[τ]. The argument crucially relies on the following Lemma: 

Lemma 6.4.4. (Propp & Wilson [33]) For the coupling time τ and a positive integer t we have 

P[τ ≤ t] ≤ 
t
. (6.4.9)

E[τ]

In some sense this is the reverse of Markov’s inequality. However it relies crucially on 

the sub-multiplicativity property of τ , that is we have for two non-negative integers t1, t2 

P[τ > t1 + t2] ≤ P[τ > t1]P[τ > t2], which follows from the same arguments that led to 

(6.1.15). 

Proof. For a fxed integer t > 0 defne � = P[τ > t], assume � < 1 and observe 

∞ t−1 ∞ t−1 ∞X XX XX X t
E[τ] = P[τ > k] = P[τ > `t + k] ≤ P[τ > `t] ≤ t �` = .

1− � 
k>0 `=0 k=0 `=0 k=0 `=0 

By defnition we have 1− � = P[τ ≤ t], which proves the claim. Note that in case � = 1, we 

do not have that the sum above converges. However the bound (6.4.9) is trivially valid as 

we have in such cases P[τ ≤ t] = 0. � 

We emphasise, Equipped with this information we are now ready to establish the following 

result: 

Lemma 6.4.5. The expected coupling time E[τ] on the m-cycle is asymptotically equivalent to 
the expected coupon collector time E[T ], i.e., 

E[τ]
lim = 1, (6.4.10) 
m→∞ E[T ]

or simply E[τ] ∼ E[T ]. 

Proof. For any 1 > � > 0 let t = (1 + �/3)m log(m). Due to (6.4.7) we have that P[τ ≤ t]→ 1 

for m →∞. Formally, this means that we can fnd an integer M� such that for any m ≥ M� 
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we have 1/P[τ ≤ t] ≤ 1 + �/3. We therefore have for any m ≥ M�: 

�E[τ] (1 + 3
� )m log(m) 1 + � � � �2 � �−1 ≤ −1 ≤ 3 −1 ≤ (1+ )(1+ )−1 ≤ 1+2 + −1 ≤ 2 + = �,

E[T ] E[T ]P[τ ≤ t] P[τ ≤ t] 3 3 3 9 3 3 

where we used E[T ] ≥ m log(m), see for instance Exercise 2.4 in [2]. This proves the 

asymptotic equivalence of E[τ] and E[T ]. � 

Further, we remark that we have not been able to establish (6.3.9) for the m-cycle. 

However, our numerical investigation supports the claim that (6.3.9) is also valid for the 

m-cycle. 

6.4.1 Proof of Theorem (6.4.1) 

We now provide the remaining proof of Theorem 6.4.1. Before going into the details let 

us describe the intuition of the proof. The frst step is to assure that w.h.p. all of the frst � �
log(log(m)) (distinct) edges encountered by the edge selection process are suÿciently 

often revisited, more precisely are visited more than c log(m) times (for small enough c), 

by the coupon collector time T . We then can in particular assume that the edge EL1 
(the� �

edge frst visited last in the frst coupon collector epoch) is among the frst log(log(m))

distinct edges encountered by the process, because it is easy to see that in the alternative 

case the claim holds trivially. Consequently, by the time L1 the edge EL1 
is visited more 

than c log(m) times, w.h.p.. However, on the other hand it is intuitive that in order for 

the process to achieve such a large number of hits to edge EL1
, a suÿciently large amount 

of time (visits to other edges) must have elapsed. Indeed, we prove that in such cases at 

time L1 a number of distinct edges is visited by the process that in particular exceeds the 

considered threshold of am with high probability. 

Proof. Recall, we need to prove that by time L1, with high probability, more than 

log(log(m)) di�erent edges have been visited by the process E = {Et, t ≥ 1}, equivalently h� � i 
P ��RL1 

�� ≤ log(log(m)) = o(1). (6.4.11) 

� �
Now, recall that am = log(log(m)) and denote by e1 the frst edge to be visited by E and 

ei the i-th distinct edge visited by E. Set Si (t) = |{k : k ≤ t,Ek = ei }|. To prove (6.4.11), we 

frst prove that for all small enough constants c ⎡ ⎤ am � �[
lim P 

⎢⎢⎢⎢⎢⎣ Si (T ) ≤ c log(m) 
⎥⎥⎥⎥⎥⎦ = 0. (6.4.12) 

m→∞ 
i=1 
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We use a union-bound to prove the above, and hence frst prove that for fxed integer � �
i ≤ am ≡ log(log((m))) , for all small enough c n p o 

P[Si (T ) ≤ c log(m)] ≤ K1 exp −K2 log(m) . (6.4.13) 

Let Tk the frst time the process R = {Rt, t ≥ 1} has cardinality k, that is the hitting time of 

ek . Defne, for k ≥ 1 + am, the random variable 

Tk −1X 
Y (i)(k) ≡ 1{Ej =ei }. 

j=Tk−1+1 

Note that because k ≥ 1 + am we have that k − 1 ≥ am and hence any edge ei with i ≤ am has 

been visited at least once by the time Tk−1 + 1. Therefore 

mX 
Y (i)(k) 

k=am+1 

counts visits to edge ei starting after the frst am edges have been explored by Et, and 

hence is a lower bound for the overall number of visits to edge ei . Further, note that the 

random variables Y (i)(k) have di�erent distributions for di�erent values of k, but they are 

independent. Next, we use the usual Cherno� bound (which we derive, for completeness) 

to prove that, for all θ < 0, we have ⎡ ⎤ 
mX 

P[Si (T ) ≤ c log(m)] ≤ P Y (i)(k) ≤ c log(m) 
⎢⎢⎢⎢⎢⎢ ⎥⎥⎥⎥⎥⎥⎣ ⎦ 
k=am+1 ⎧ ⎫ X ⎡ ⎤⎪⎪⎪ m ⎪⎪⎪⎨ ⎬≤ P exp θ Y (i)(k) ≥ exp {θc log(m)} 
⎢⎢⎢⎢⎢⎢ ⎥⎥⎥⎥⎥⎥⎣ ⎪⎪⎪ ⎪⎪⎪ ⎦⎩ ⎭k=am+1 ⎧ ⎫ X ⎡ ⎤ 
−θc log(m)E ⎨⎪⎪⎪ m ⎬⎪⎪⎪≤ e 

⎢⎢⎢⎢⎢⎢exp θ Y (i)(k) 
⎥⎥⎥⎥⎥⎥⎣ ⎪⎪⎪ ⎪⎪⎪⎦⎩ ⎭k=am+1 ⎧ ⎫ 

m� X ��⎪⎪⎪ � ⎪⎪⎪⎨ E[eθY(i)(k)] ⎬ = exp − θc log(m)− log .⎪⎪⎪ ⎪⎪⎪⎩ ⎭k=am+1 

In the second step it was crucial that θ < 0. The third step follows from Markov’s inequality 

and the last from the independence of the Y (i)(k)’s. 

Observe that conditioned on Tk − Tk−1 = t the distribution of Y (i)(k) for i ≤ k − 1 is Binomial 

with parameters 1/(k − 1) and t − 1. We therefore obtain " � � � � �# 
θY(i)(k) θY(i)(k)�E e = E E e ��Tk − Tk−1 = t , 
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"� #�t−11θ 1 
= E e + 1− . (6.4.14)

k − 1 k − 1 

The inner conditional expectation is in fact the moment generating function of a binomial 

with parameters 1/(k − 1) and t − 1. For the outer expectation recall that t = Tk − Tk−1 is 

distributed as a geometric random variable with average m/(m−k +1). We therefore obtain !� � 
θY(i)(k) 1 m − k + 1

E e = � � 
1 1 k−11− eθ + 1− m 
k−1 k−1 m 

1 
= 

1 + 1−eθ 

m−k+1 

Hence !m � � �� X θX m
θY(i)(k) 1− e

log E e = − log 1+ 
m − k + 1 

k=am+1 k=am+1 p
We choose θ = −1/ log(m). Recall that for any pair of sequences bm and cm, we denote by 

bm ∼ cm the relation bm/cm → 1 as m →∞. Next, we show that for large m 

m !X θ p1− e
log 1+ ∼ log(m). (6.4.15) 

m − k + 1 
k=am+1 � � 

In fact, as eθ − 1 → 0 as m →∞ for our choice of θ, we have ! 
1− eθ 1− eθ 

log 1+ ∼ , 
m − k + 1 m − k + 1

1 1∼ p . 
log(m)m − k + 1

In the frst step, we used log(1 + xm) ∼ xm, whenever xm is a sequence satisfying xm → 0 as p
m →∞. The second step follows from, 1-eθ ∼ θ = 1/ log(m). By taking the sum over k 

and using the fact that 

mX 1 ∼ log(m − log(log(m))) ∼ log(m), 
m − k + 1 

k=am+1 p
we have (6.4.15). Notice that cθ log(m) becomes −c log(m), yielding (6.4.13) for all c 

small enough. Hence ⎡ ⎤ am � �[ n p o 
P 
⎢⎢⎢⎢⎢⎣ Si (T ) ≤ c log(m) 

⎥⎥⎥⎥⎥⎦ ≤ log(log(m))K1 exp −K2 log(m) = o(1) (6.4.16) 
i=1 

176 



 

6.4. Rigorous results in one dimension 

yielding (6.4.12). Let us briefy explain the role of c and the appearance of the constants 

K1 and K2. Note that strictly speaking, we have only shown that ⎧ ⎫⎡ ⎤ am � � √ X[ θ 
P 
⎢⎢⎢⎢⎢⎣ Si (T ) ≤ c log(m) 

⎥⎥⎥⎥⎥⎦ ≤ log(log(m))ec log(m) exp 
⎪⎪⎪⎨− 

m

log 1+ 
1− e

!⎬⎪⎪⎪
.⎪⎪⎪ m − k + 1 ⎪⎪⎪⎩ ⎭i=1 k=am+1 

However, because we have (6.4.15), we can invoke Lemma C.0.1 proven in Appendix C, 

and obtain for some K1 ≥ 1 and K2 ∈ (0,1) that the above is bounded by: 

√ 
(c−K2) log(m)K1 log(log(m))e , 

which for c < K2 yields the result. 

Let us now continue and show how the fact that the frst am distinct edges encountered by� �
the process E, will, with high probability, each be visited at least c log(m) + 1 times by 

the time T , can be used to prove that (6.4.11) holds. 

Firstly, when the edge EL1 
does not belong to the frst am di�erent edges explored by the � � 

process E, or in other words in case of the event EL1 
< RTam 

, we have |RL1
| > log(log(m))

and hence |RL1
| > log(log(m)). Therefore (6.4.11) would follow in this case directly. Hence, 

in order to prove (6.4.11), it suÿces to prove that h i 
P |RL1

| ≤ log(log(m)),EL1 
∈ RTam 

= o(1). 

Furthermore, because of (6.4.16), it is actually enough to prove that ⎡ ⎤ am\n o 
P 
⎢⎢⎢⎢⎢|RL1

| ≤ log(log(m)), EL1 
∈ RTam 

, Si (T ) > c log(m) 
⎥⎥⎥⎥⎥ = o(1). (6.4.17)⎣ ⎦ 

i=1 

� �
Let I be the frst time an edge is visited by the process E exactly c log(m) + 1 times. We 

prove that 

P [|RI | ≤ am] = o(1) (6.4.18) 

In fact, on the event {|RI | ≤ am} at most am edges are visited by the process E by time I . � �
Hence, if we denote by Ik , the frst time ek is visited exactly c log(m) + 1 times, we have 

that I ≤ Ik , for all k. Hence ⎡ ⎤ am am[ X h i⎢⎢⎢⎢⎢ ⎥⎥⎥⎥⎥P [|RI | ≤ am] ≤ P |RIk | ≤ am ≤ P |RIk | ≤ am . (6.4.19)⎣ ⎦ 
k=1 k=1 

Next, we provide an upper bound for each of the following probabilities h i 
P |RIk | ≤ am , k ≤ am. 

Notice that is suÿces to bound the lower tail of Δk = Ik − Tk as we have � � � �
P [Ik − c log(m) − 1 ≤ γ1m] ≤ P [Δk − c log(m) ≤ γ1m]. Furthermore as Δk is a negative 
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� �
binomial with parameters ( c log(m) ,1/m), it follows from standard (lower) tail bounds 

for sums of geometric random variables, see e.g. [146], that there exist γ0,γ1,γ2 > 0, with 

γ1 < c,such that � � −γ2 log(m)P [Δk − c log(m) ≤ γ1m] ≤ γ0e . (6.4.20) 

We remark that this bound is far from being sharp, however completely suÿcient for our � � 
purposes. Notice that Ik − c log(m) −1 counts the number of times the process, during the � �
time interval N∩[1, Ik ] visits an edge di�erent from ek . Given that {Ik − c log(m) −1 > γ1m}, 
the probability that process E visits less than am di�erent edges is less than ⎡ ⎤ amh i X 

P Tam+1 > γ1m = P 
⎢⎢⎢⎢⎢⎣ (Ti+1 − Ti ) > γ1m 

⎥⎥⎥⎥⎥⎦ ≤ γ3e−γ4m, (6.4.21) 
i=1 

for some γ3,γ4 > 0. This follows again from the fact that we consider a sum of (inde-

pendent) geometric random variables with di�erent parameters (1− i/m), and we utilize 

standard bounds for the upper tail of such a sum, see e.g. [146]. Combining this fact with 

(6.4.20), we have by the law of total probability h i 
−γ2 log(m) +γ3e−γ4mP |RIk | ≤ am ≤ γ0e . 

This, together with (6.4.19), yields (6.4.18). 

It is clear that Se ∗ (T ) = Se ∗ (L1), as by defnition L1 is the time of the last visit to edge e ∗ up to 

time T . Notice thatRk is a non-decreasing process in k, and on the event {Se ∗ (L1) > c log(m)} 
we have I ≤ L1, because in this case edge e ∗ is one candidate of an edge that is visited at � �
least c log(m) +1 times, so I cannot exceed L1. Hence the event which appears in (6.4.17) 

is a subset of the event h i 
P |RL1

| ≤ am,EL1 
∈ RTam 

,Se ∗ (L1) > c log(m) ≤ P [|RI | ≤ am,Se ∗ (L1) > c log(m)] ≤ P [|RI | ≤ am] = o(1) 

proving (6.4.11). 

� 

In this chapter we have provided numerical evidence, heuristic arguments and rigorous 

results that strongly suggest that the coupling process is very eÿcient in the sense that 

E[τ] ≈ m log(m) (or possibly a poly-logarithmic factor), whenever the random-cluster 

model is not at a location of a phase-transition (in the thermodynamic limit). 

Furthermore, the closeness to the uncorrelated case q = 1 holds not only on the level of 

the frst moment E[τ], but also for the nature of the asymptotic fuctuations, as probed by 

the distribution of η. p
Our surprising observation is that the limiting distribution of η = (τ − E[τ])/ Var[τ] is 

the Gumbel distribution (6.3.9), not only o� criticality, but also at the point where the 

model undergoes a continuous phase transition in the thermodynamic limit. In contrast, 

the expected coupling time for continuous phase transitions is expected to possess a 
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power law system size scaling, which is clearly far o� the optimal poly-logarithmic scaling 

observed o� criticality (when measured in sweeps). 

Lastly, we have seen that the nature of the phase transition refects itself in the type of 

limiting distribution, as a discontinuous phase transition showed a clear deviation from 

the Gumbel class towards to the Frèchet family. It is an interesting question whether this 

sensitivity of the fuctuations of τ can be used to detect the nature of the phase-transition 

in situations where the precise location of a crossover from a continuous do discontinuous 

phase transition is not known. 
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Chapter 7 

Iterated fragmentation with cut-o� 

In this section we present a, mostly phenomenological, study of iterated, repeated or dy-
namic fragmentation of fractal random structures, in form of critical Fortuin-Kasteleyn 

clusters. The aim of this chapter is mainly to present a novel computational fragmen-

tation study and stimulate future research in this feld, as many aspects of associated 

non-equilibrium phenomena remain unexplained or poorly understood. Specifcally, we 

consider the continued (random) removal of edges or bonds from fractal random struc-

tures. In general, dynamical (stochastic) fragmentation processes play a fundamental role 

in science and engineering and have a variety of applications on di�erent length and time 

scales, ranging from geology [147] over fracture of (brittle) solids [148] to the break-up 

of nuclei [149]. Part of the results presented in this chapter have recently appeared in 

letter form in [120]. We discuss various numerical methods to infer information about the 

fragmented object from a study of certain characteristics of the fragments produced in 

the dynamical process. 

7.1 Stable fragment size distribution 

The break-up kernel bs0 |s analysed in chapter 5 is a key quantity for the equilibrium 

fragmentation, that is it characterises single break-up events in equilibrium. The kernel 

bs0 |s encodes aspects of the equilibrium cluster structure and is therefore a priori, without 

further justifcation, only relevant for “one-step” fragmentation processes that stay close 

to equilibrium. However, the self-similar structure of critical Fortuin-Kasteleyn clusters 

suggests a “recursive” applicability of bs0 |s. In fact the main motivation of our study is 

to understand to which extent the break-up kernel bs0 |s, or some of its characteristics, 

in particular the break-up or fragmentation exponent φ, are relevant for the process of 

iterated fragmentation of fractal (self-similar) random structures. The study of fragment 

size distributions is a ubiquitous method to probe the structure of materials or the nature 

of the fragmentation process [150] and has apparent practical applications in engineering 

such as in milling [120]. A connected, and from a physics-point-of-view probably the 

most interesting, question is whether a power law size dependence can be observed in 
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the fnal distribution of fragments. The appearance of power laws in the size distribution 

of fragments and related scale-independent properties of fragmentation is a universal 

phenomenon in nature, see for instance [151, 152, 153, 154]. 

The main scenario we consider is the following setup. Starting with an initial bond 

confguration, chosen to be a critical equilibrium Fortuin-Kasteleyn confguration, edges 

are removed uniformly at random, or associated with an intrinsic removal rate in a 

continuous time setting. Firstly, notice that this process has a unique absorbing state in 

the sense that at some (random1) time, when all bonds are removed, all clusters have unit 

size, corresponding to isolated vertices. Here and in what follows we refer to the number 

of vertices in a fragment or cluster as its mass or size. This, in contrast to other defnitions, 

such as in [29], ensures mass conservation in a bond-fragmentation process. In order 

to obtain a non-degenerate fnal distribution, we will introduce a cut-o� mechanism, in 

the spirit of the “one-dimensional” studies in [155] and [156]. The cut-o� infuences 

the fragmentation process in the following way: Clusters are distinguished into stable 
and unstable fragments, where initially all fragments are unstable: Unstable fragments 

continue to fragment by random-edge removals, as before. More precisely, the next bond 

to be removed is chosen uniformly among all bonds that are part of unstable fragments. 

If the removal of a bond induces a fragmentation event, then any of the two “daughter” 

fragments with mass s ≤ sc becomes stable, and will not undergo further fragmentation. 

Clearly we recover the unrestricted fragmentation process for sc = 1, which ultimately 

leads to a degenerate fragment size distribution concentrated on mass 1. 

Here we consider the square lattice as the base graph on which the Fortuin-Kasteleyn 

confgurations “live”. We emphasise that this choice introduces the possibility of cycles or 

multiple connections holding together clusters, a completely new aspect in the study of 

dynamic fragmentation, absent in previous one-dimensional studies such as for instance 

[155, 157] as well as in cycle-free bond-structures (trees or forests) such as recently 

studied in [158]. Cycles allow us to account for a possible material resistance against 

failures of bonds, which in the random setting, that is starting from a Fortuin-Kasteleyn 

confguration, can even be spatially varying: Recall, that any non-bridge resides in at least 

one cycle and hence the corresponding cluster is resistant against break-ups upon the 

removal of a non-bridge. Furthermore, we have seen in section 5.2.2 that the variation 

of the cluster weight parameter q together with psd(q) has a direct infuence on the 

overall cohesion (bridge-density), while at the same time preserving self-similarity (with 

varying exponents). Contrast this to a variation of the bond-density in the Bernoulli bond 

percolation model, which does not allow for a continuous family of self-similar models 

for fxed graph G as p is varied. 

In the following we consider the limiting distribution of stable fragments, defned by: 

hNsc (s,∞)i 
nsc (s,∞) ≡ Psc 

, (7.1.1)
(s,∞)is=1hNsc 

1The randomness stems from the randomness in the initial confguration. For fxed initial confguration it 
is easy to verify that this time is deterministic. 
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7.1. Stable fragment size distribution 

where hNsc (s,∞)i is the expected number of stable fragments after the process terminated, 

and the expectation exhausts both all possible and correctly weighted initial Fortuin-

Kasteleyn confgurations, and any evolution of the fragmentation process. As already 

mentioned, here we restrict the analysis to the fnal (t →∞) cluster size distribution. In 

general, one can also consider the fnite time analogue nsc (s, t), which allows to study the 

full time dependence of the fragmentation process with cut-o�. We will pursue a time 

dependent analysis, both for stable and unstable fragment distributions, in a future study. 

Yet, as it turns out, the fnal distribution nsc (s,∞) shows very interesting features, and is 

interesting in its own right. 

The probably most striking feature is the existence of an approximate power law scaling 

in s. In Figure 7.1 we show the numerically estimated cluster size distribution nsc (s,∞), 

obtained from an iterated fragmentation starting from critical Fortuin-Kasteleyn confg-

urations. Here we consider cluster weights q = 0, that is uniform spanning trees, bond 

percolation q = 1 , and q = 2,3, corresponding to the Fortuin-Kasteleyn cluster for the 

Ising and 3-state Potts model, respectively. 

More precisely, the initial confguration was restricted to the largest component in the 

respective critical confguration on the square lattice. This was simply done to avoid a 

mixing of the stable fragment size distribution with the equilibrium cluster size distribu-

tion (with the Fisher exponent τ , see section 5.6.1 and [46]). For each value of q we used 

40000 di�erent starting confgurations, and the lattice size was set to 256 × 256. Before we 
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Figure 7.1: Final fragment size distribution nsc (·,∞) of stable fragments for q = 0 (uniform 
spanning trees) and q = 1,2, 3, with a fxed cut-o� equal to 8192. The linear 
dimension of the underlying square lattice was set to L = 256. 

. 

n
s c

(s
,∞
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extract the corresponding exponent, let us consider the cut-o� dependence of nsc (s,∞). 

For instance, it is clear that in the limit of large sc we ultimately recover the fragment size 

distribution kernel bs0 |s for the equilibrium model, as only a few fragmentation events can 

happen before all fragments become stable. Now, consider Figure 7.2, which shows the 
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fnal stable fragment distribution for the critical percolation case for various cut-o�s. It is 

apparent that a power law scaling persists upon variation of sc, however with a possible 

change in the relevant exponent. Indeed, in Figure 7.4 we show the cut-o� dependence of 
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Figure 7.2: Fragment size distribution nsc (s,∞) for critical percolation on the 256 × 256 square 
lattice for various cut-o�s. The inset shows a scaling “collapse” confrming the 
scaling ansatz (7.1.2). 

. 

a numerically extracted e�ective exponent χ assuming asymptotic scaling of the form 

−χ nsc (s,∞) ∼ s for sc, s →∞. 

We analysed the cluster weights already shown in Figure 7.1. More precisely we initially 

used a rather simplistic method to extract χ by ftting a simple power law to the empirical 

distribution. As expected, one observes a variation of χ with sc, however consistent with 

χ → φ when sc/L2 → 1, as indicated by the solid horizontal lines in Figure 7.4. The 

variation of χ with sc is not surprising, when taking into account the simplicity of the 

numerical method used to determine the exponent. In fact, a closer analysis suggests 

that the extracted exponent χ is indeed only e�ective, in the sense that it appears to be 

distorted by an unconsidered cut-o� dependence. Rather, we fnd that our data for the 

stable fragment size distribution nsc (s;∞) is very well described by the following scaling 

form  ! 
nsc (s,∞) ∼ s −φF s

,
sc , (7.1.2) 

sc LdF 

valid for a large but fnite system with linear dimension L, at criticality, in the limit of 

large s and sc. Here the scaling function F precisely describes the variation of the power 

law regime with sc and accounts for deviations of the exponent when sc/LdF � 1. In the 

thermodynamic limit, we expect that the dependence on sc is only via the ratio s/sc. For 

a graphical confrmation of the scaling relation (7.1.2) consider the inset of Figure 7.2, 
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7.1. Stable fragment size distribution 

which shows a scaling collapse according to (7.1.2) for fxed system size L. 

In order to have a more quantitative check of (7.1.2), we considered the cut-o� dependence 

of the mean stable fragment size f̄ , defned as the frst moment of nsc (s,∞), that is: 

scX 
f̄  ≡ nsc (s,∞)s. 

s=1 

As a direct consequence of (7.1.2) for suÿciently large volumes the mean stable fragment 

size f̄  should have large sc asymptotics 

dR/dFf̄  ≈ sc . 

Indeed, we show the cut-o� dependence of f̄ for two cluster weights in Figure 7.3. Using 
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Figure 7.3: Cut-o� dependence of the mean stable fragment size f̄  for the iterated fragmentation 
starting from a giant component at criticality in the random-cluster model on Z2 

L 
for cluster weights q = 1 and q = 2. The solid lines correspond to the best least 

χsquares fts of the functional form f̄ = A +Bsc to the data. The numerical results 
dR/dFclearly support the scaling f̄  ≈ sc . 

the least squares ftting method with various standard power law model functions, such 
χ χ as f̄ = A + Bsc and A + Bsc (1 + 1/sc), we fnd generally that the former describes our 

data for f̄  best when discarding data points for small cut-o�s. In particular for critical 

percolation, we estimate χ = 0.40(1), where the error-bar corresponds to a systematic error 

accounting for not considered corrections. The exact value of dR/dF = 1/(νdF ) for q = 1 in 

two dimensions is 36/91 = 0.395604. We therefore fnd good agreement with (7.1.2) and 

further support for the related conjecture that χ = φ. 

It is also helpful to consider the situation where q , 1 and seek for a confrmation of 

(7.1.2). We considered the Ising case, that is critical Fortuin-Kasteleyn cluster with q = 2 √ √ 
and p = 2/(1 + 2). Here the exact value of dR/dF is 13/45 = 0.28, c.f. e.g. [15, 21], and 
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we extract χ = 0.28(1), where we discarded data points for cut-o�s below 4096. 

These observations suggest that the cut-o� e�ectively preserves certain equilibrium 
χ
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Figure 7.4: Numerically extracted exponent χ from an imposed power law scaling of nsc (s,∞) 
as the cut-o� is varied. The fgure shows the estimation results for four cluster 
weights, where the solid lines show the corresponding exact value φ = 2 − dR/dF . 
For comparison, the dashed horizontal lines show the value of φ for the same cluster 
weight at the respective critical point in 3D. 

characteristics, such as in particular the exponent φ. Hence the intrinsic existence of a 

cut-o� or the mechanically imposed suppression of fragmentations below a certain cut-o�, 

provides a probe for the initial self-similar cluster structure. On the other hand, the 

scaling function F e�ectively introduces a “smooth” deviation from the initial power 

law scaling of bs0 |s as sc decreases. Nevertheless, we emphasise that more research is 

necessary to understand precisely the conditions of validity of the above scaling ansatz 

and more extensive data is needed to check its validity, in particular for q , 1 critical 

Fortuin-Kasteleyn clusters in two dimensions and beyond. 

7.2 Splitting trees 

A particular insightful point of view on fragmentation processes can be adopted by con-

sidering the naturally associated splitting tree. This is a rooted tree, with the property 

that each node either has two children or none. Splitting events in the fragmentation 

process correspond to vertices in the splitting tree with two children and stable fragments 

are vertices with no children (leafs). Here we adopt standard computer science notation 

[159], and call a vertex with two children internal, and one with 0 children external. Thus 

splitting events correspond to internal vertices and stable fragments to external vertices 
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in the splitting tree. In fact splitting trees are also known as full binary trees2 in the 

computer science literature [159]. 

A similar perspective on fragmentation phenomena has been previously adopted in [160]. 

There the authors use the reverse idea, that is the authors utilise the analogy between 

recursive (continuous) fragmentation processes with a cut-o� constraint and search trees 

in computer science, to derive asymptotic results for height and balance characteristics of 

the associated (search-)trees. Intuitively, a balanced tree corresponds to a fragmentation 

process with a break-up kernel that favours the production of daughter fragments of 

comparable mass. We have seen in the preceding discussion that this is in fact not the 

case for equilibrium fragmentation of Fortuin-Kasteleyn clusters. We therefore expect the 

splitting tree to be highly unbalanced. 

Consider Figure 7.5, which shows several graphical illustrations of splitting trees for iter-

ated fragmentation of the largest component, taken from a critical q = 2 Fortuin-Kasteleyn 

confguration, for di�erent values of the cut-o� sc. Let us start with the cut-o� value 

sc = 512, for which the tree is characterised by a long path with only two sub-branches 

deeper than 1. In other words, the fragmentation process consists mainly of an “erosion” 

of small fragments from the giant component, until the giant component is suÿciently 

small to fall below the cut-o�. Then, lowering the cut-o� to sc = 256 additionally extends 

a few of the sub-branches, corresponding to a further fragmentation of fragments, which 

were stable under the constraint of a larger cut-o�. This observation extends until for 

relatively small cut-o�s, here sc = 64 or sc = 32, many of the sub-branches “grow” and 

become deeper, corresponding to iterated fragmentations of previously stable fragments 

until their mass falls below the cut-o�. This in turn must change the distribution of frag-

ments nsc (s,∞) drastically, as their structure or mass distribution becomes signifcantly 

altered, by continued fragmentations, compared to the equilibrium case. This mechanism 

is “encoded” in the scaling function F , which ultimately accounts for the transition from 

a power law distribution in s to a degenerate distribution concentrated at s = 1 for sc → 1. 

We emphasise, that more research is needed to study the precise form of F . 

With this insight from the splitting tree representation of iterated fragmentation, we can 

now heuristically explain the observed power law in nsc (s,∞) for suÿciently large cut-o�s 

sc. The continued abrasion of the giant component produces, typically, one daughter 

fragment of suÿciently small size to fall below the cut-o� and hence to become stable. 

This in turn provides a mechanism which creates a fngerprint of the equilibrium cluster 

structure in the ensemble of stable fragments. At the same time when a fragmentation 

happens, the overall morphology of the unstable fragment, the giant component, does not 

change drastically by the separation of a, comparably, small fragment. We therefore expect 

that due to this erosion mechanism, the break-up kernel bs0 |s remains applicable beyond a 

single-step fragmentation and acts as the kernel for an (limited) iterated fragmentation. 

2A full binary tree is recursively defned as either a single vertex or two full binary trees joint at a vertex 
by two edges. Thus in a full binary tree each node has either 0 or 2 children. An extended binary tree allows 
also for the possibility of 1 child. 
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sc = 16 sc = 64 

sc = 256 sc = 512 

Figure 7.5: Representation of the splitting tree of an iterated fragmentation for several values 
of cut-o�s, starting from the giant component of a critical Ising q = 2 Fortuin-
Kasteleyn confguration on a 128 × 128 square lattice. The corresponding cut-o� 
values sc are specifed in the sub-captions. 

The above picture of an iterative applicability of bs0 |s can indeed be verifed for the iterated 

fragmentation of critical bond percolation on the infnite d-ary tree. The corresponding 

splitting kernel can be shown to equal (see [161]): 

s + 1 
d−1 Ts0 Ts−s0 bs0 |s = , 

s − 1 Ts 

where � 
1− 1 

�ds ! 
d ds 1 

Ts = 
s s − 1 (d − 1)s−1 , 

1 −3/2∼ √ s . 
π 

Here we used the Stirling approximation [159] and the asymptotics are with respect to 

s →∞. We therefore obtain in the particular case s0 = xs for x ∈ (0,1) fxed and s →∞: 

1 −3/2bs0 |s ∼ √ s x−3/2(1− x)−3/2 . (7.2.1)
π 

This clearly resembles the generic form (5.6.3) and has, expectedly, coinciding exponent 

with the Bethe lattice case [11]. Now, the relevant concept for an recursive applicability of 

the break-up kernel is the recently discussed “randomness-preservation property” [161], 
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which precisely assures that fragments are structurally equivalent to the mother cluster 

and hence bs0 |s is applicable recursively. It is tempting to analyse the infuence of the 

cut-o� in this “simplifed” setting. Unfortunately we have not been able to derive even 

the corresponding expected number of stable fragments of size s, hNsc (s,∞)i. This is 

a stimulating problem, we shall pursue in a future study. Here we provide merely a 

generally valid recursion relation for the quantity hNsc (s, s0)i, where we suppressed the 

asymptotics indicator ∞ and added the dependence on the initial mass of the starting 

fragment s0. Now assuming a perfect recursive applicability of bs0 |s we have 

s0−1X 
hNsc (s, s0)i = bs|s0 + bs0 |s0hNsc (s, s 

0)i, (7.2.2) 
s0 =sc+1 

whenever s0 > sc and s ≤ sc. For instance, in the case of qs0 |s = 1/(s − 1), corresponding to 

the fragmentation of percolation on the trivial one dimensional path graph (1-ary tree) 

with at least s vertices and any bond-density p, we obtain hNsc (s;s0)i = 2s0/(sc(sc + 1)) 

and hence nsc (s;∞) = 1/sc, independent of s0, corresponding to the uniform distribution 

over all sc stable fragment sizes. We can cast this also into the form of the scaling 

ansatz proposed in (7.1.2) with F (s/sc) = s/sc and φ = 1. This is equivalent to dR/dF = 1, 

assuming an object that is everywhere breakable, which is precisely the case for a typical 

cluster for bond percolation with p > 0 on the path graph. Interestingly, it turns out that 

the fragmentation of critical percolation clusters on the d-ary tree as well as the trivial 

example of fragmentation of the path graph, are related to a family of recursively defned 

fragmentation models known as the beta-splitting model, which we describe next. 

7.2.1 Analogy to the beta-splitting model 

It is instructive to consider mathematically amenable models of fragmentation that show 

similar characteristics as these found for the iterated fragmentation of self-similar (ran-

dom) structures. One promising model, or actually family of fragmentation processes, 

is Aldous’ beta-splitting model [31]. This one-parameter family of models was initially 

introduced to construct probability distributions on cladograms or evolutionary trees. It 

utilises the apparent relationship between binary fragmentation and binary trees (splitting 

trees). In somewhat di�erent terms, the beta-splitting model is a one-parameter family 

of probability distributions on the space of full binary trees with a fxed, say s, number 

of external nodes. It is clear that each full binary tree Ts with s external nodes encodes a 

binary fragmentation process terminating with s fragments, thus it is equivalent to what 

we referred to as splitting tree before. 

Now, the beta-splitting model is defned as follows. Fix a number of s (point) “particles”, 

each of unit “mass”, and locate them uniformly at random on the unit interval. Then split 

the unit interval at a position 0 < x < 1, which is given by a random variable with probabil-

ity density function f (x). Now separate the set of particles into two sets, corresponding to 

particles to the left and to the right of x. This clearly introduces a split or fragmentation 
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of the original mass of s particles into a bunch or particle to the left of x, with (random) 

mass s0, and a (right) bunch of mass s − s0. This process is continued for each bunch of 

particles (with appropriate length-rescaling for x) until each bunch or fragment consists 

of one particle (mass 1). To formalise, denote the probability that the left fragment has 

mass s0 by qs0 |s for 1 ≤ s0 < s. For the particular choice of f being the probability density 

function of a beta random variable with parameter −1 < β < ∞ [31], that is 

Γ (2β + 2) 
f (x) = xβ (1− x)β, 0 < x < 1 

Γ 2(β + 1) 

one obtains for 1 ≤ s0 < s: 

1 Γ (β + s0 + 1)Γ (β + s − s0 + 1) 
qs0 |s = , (7.2.3) 

as(β) Γ (s0 + 1)Γ (s − s0 + 1) Ps−1with as(β) such that s0 =1 qs0 |s = 1. Note that qs0 |s is defned as the size of the left fragment 

in the process, so we obtain bs0 |s = qs−s0 |s + qs0 |s = 2qs0 |s, by the left-right symmetry of 

the break-up. One important observation Aldous made in [31] is that, albeit the Beta 

distribution is not a probability distribution in the strict sense for β ≤ −1, the expression 

(7.2.3) is still well defned and in particular a valid (normalisable) probability distribution 

on {1, . . . , s − 1} for −2 < β ≤ −1. However, the analogy to the interval splitting induced 

by a Beta random-variable is lost. Yet in principle, one can still construct a recursive 

interval splitting process by using qs0 |s explicitly. Furthermore, note that in particular for 

−2 < β < −1 and s0 = xs with 0 < x < 1 one obtains the following large s asymptotics 

βbs0 |s ∼ κ−1 xβ (1− x)βs , (7.2.4)β 

with a constant κβ . This clearly resembles the general form of break-up kernels encoun-

tered in section 5.6 for the fragmentation analysis of critical Fortuin-Kasteleyn clusters, 

in particular relation (5.6.3). Moreover for the particular case β = −3/2 we recover, up to a 

constant of proportionality, the same asymptotics as (7.2.1). 

For a given fragmentation process in the beta-splitting model one can now consider 

the associated splitting tree and moreover study its characteristics, such as the typical 

and maximal depth, as β varies. For instance, for β →∞ it is not hard to see that the 

process is a deterministic interval-bisection process, which produces perfectly balanced 

splitting trees. The choice β = −3/2 leads to a uniform distribution on binary trees with 

s external nodes, when started with s particles [31]. One of the remarkable features of 

the beta-splitting model is that it possesses a certain phase transition in the structure of 

the associated splitting tree, as follows. As already outlined, the case β →∞ produces 

perfectly balanced splitting trees. On the other hand, for the case β = −3/2 the analogy 

to the fragmentation of critical percolation clusters on the d-ary tree, in particular the 

observation that a fragmentation typically produces very unbalanced fragments, suggests 

that a splitting tree is typically very unbalanced. Indeed Aldous established corresponding 

balance characteristics for the beta-splitting model in [31]. 
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In order to formalise the notion of balance, we can consider the height statistics of the 

associated splitting tree. More precisely, we defne the depth of an external node in Ts as 

the number of internal nodes along the unique path from it to the root of Ts (including the 

root). Viewed as a fragmentation process, this simply counts the number of fragmentation 

events a given fragment was involved in. Now, following Aldous [31], we defne the height 
of the corresponding splitting tree Ts as the maximal depth over all external vertices. 

Note, that as a measure of balance we can also consider the average depth over all external 

nodes. The phase transition occurs in the expected height, or expected average depth, 

as β is varied. In particular the expected height is logarithmic in s (initial mass) when 

−1 < β ≤ ∞, and asymptotically proportional to s−β−1 when −2 < β < −1. The expected 

maximal depth for the marginal case β = −1 is believed to be of the order log(s)2. Con-

cerning the expected average height the order of magnitude does not change from what is 

known for the expected height, however in contrast to the expected height, the expected 

average height is also known rigorously for β = −1. 

7.2.2 Depth of fragmentation splitting trees 

The fact that the beta-splitting model, being manifestly recursive, shows a power law 

scaling in the height of the associated splitting tree for −2 < β < −1, together with the 

asymptotic equivalence of the β = −3/2 model to the fragmentation of critical percolation 

clusters on the infnite d-ary tree, raises the question whether the iterated fragmentation of 

critical Fortuin-Kasteleyn clusters in general shares some of beta-splitting characteristics. 

Recall that we have established that the exponent φ equals 2 − dR/dF for fragmentation of 

critical Fortuin-Kasteleyn clusters in any dimension. Further, because the red bond fractal 

dimension can not exceed the cluster fractal dimension, we obtain the (trivial) generic 

constraints 1 ≤ φ ≤ 2. This observation leads directly to the regime −2 < β < −1 in the 

beta-splitting model, whose associated splitting trees have expected height increasing 

polynomially with s. A natural generalisation of the s−β−1 scaling of the expected average 

depth and height in the beta-splitting model, to the Fortuin-Kasteleyn scenario, in a box 

with linear dimension L goes as follows. Notice that the fragmentation starts only on the 

largest component, which has typical size LdF in a system, hence, to leading order, we can 
−β−1 φ−1substitute s → LdF in s = s = s1−dR/dF , where we identifed −β = φ. We therefore 

¯obtain, denoting the height and average depth by h and d, respectively: h i 
E [h] ∼ ChL

dF −dR and E d̄ ∼ CdL
dF −dR, (7.2.5) 

where E[·] denotes the corresponding expectation of the iterated fragmentation process, 

including initial conditions, and Ch and Cd are appropriate constants. In order to confrm 

the validity of (7.2.5), we frst determined the depth and average height of the splitting 

trees of 10000 iterated fragmentations with cut-o� sc = 1, starting with the largest compo-

nent of a critical bond-percolation confguration on the square lattice. The exact value of 

dF − dR in this case equals 55/48 = 1.14583 [46]. We fnd that our estimates for E [h] and 
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h ī
E d , shown in Figure 7.6, are best described by a scaling form h i � �

¯E [h] ,E d ∼ ALϕ 1 +CL−D . (7.2.6) 

Specifcally, we extract ϕ = 1.16(1) and ϕ = 1.147(7) for the height and average depth 

statistics, respectively. The values of ϕ are both statistically consistent with ϕ = dF − dR. 

We remark, that the involved correction exponent is comparably large in both cases, 

that is D = 0.70(5) in both cases. As a further check of (7.2.5) we also analysed the 

iterated fragmentation of critical Ising Fortuin-Kasteleyn cluster. Here the estimates are 

again based on 10000 samples, and we again fnd the above scaling form to describe 

our data best. Our estimates read φ = 1.32(2) for the expected height, and φ = 1.31(1) 

for the expected average height. The correction exponent D now di�ers between the 

height and average depth estimates, i.e., D = 0.55(3) for the former, and D = 0.83(7) for 

the latter. Yet, we fnd perfect agreement between the estimated values of ϕ and the 

exact value ϕ = dF − dR = 4/3 = 1.3 [22]. For reference, we show in the inset of Figure 

7.6 the q-dependence of the di�erence dF − dR for the critical random-cluster model in 

two dimensions, as obtained from the corresponding Coulomb gas formulation of two-

dimensional critical random-cluster models [51]. Our analysis of the splitting trees so 
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Figure 7.6: System size dependence of the expected height and average depth of the splitting 
tree associated to the iterated fragmentation of critical Fortuin-Kasteleyn cluster. 
The solid and dashed lines correspond to the best fts to the scaling ansatz (7.2.6). 
The inset shows the exact value of dF − dR for the two dimensional random-cluster 
model at criticality, as q is varied. 

. 

far has only been concerned with an unconstrained iterative fragmentation, that is sc = 1. 

However, it is clear that the splitting tree varies with sc, and so also potentially height 

and depth properties. A preliminary analysis suggests however, that the variation of sc 
in any non-trivial regime has a minor e�ect on the height of the splitting tree (consider 
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Figure 7.5), such that the expected height remains polynomial for a wide range of cut-o�s. 

However we emphasise that more research is needed to understand this quantitatively. We 

therefore suggest that the next step in a subsequent study should consider a non-trivial cut-
¯o� sc > 1, and study the dependence of E[d] and E[h] on sc. Another interesting question is 

whether there exists a (size dependent) cut-o� sc(L), such that the expected height becomes 

poly-logarithmic. Furthermore potentially interesting are statistical quantities beyond 

the expectation, such as the distributional nature of the depth and height of associated 

splitting trees. It is apparent that the study of splitting trees corresponding to iterated 

fragmentation processes raises many questions, and we hope that future studies aim for a 

resolution of some of the posed questions. 

7.3 Rate equation approaches 

Being manifestly dynamic, the analysis of iterated fragmentation leads naturally to so-

called rate-equation approaches to fragmentation, see for instance [162, 163]. Here one 

models the time evolution of a cluster size density u(s, t), that is the density of clusters 

with mass in the interval (s, s + ds), by the following integro-di�erential equation Z Z ∞s∂u(s, t) 0 0 0 0= − u(s, t)c(s, s , t)ds0 + 2 u(s , t)c(s , s, t)ds , (7.3.1)
∂t 0 s 

where c(s, s0 , t) is also called the “splitting kernel” and is the analogue to bs0 |s, however 

now it specifes the rate at which a cluster of size s breaks into two clusters of size s0 and 

s − s0. Typically, one makes a factorisation ansatz c(s, s0 , t) = a(s, t)b(s|s0; t), where a(s, t) is 

the rate at which a cluster of mass s fragments, and b(s0 |s; t) the probability that a cluster 

of mass s splits into fragments of mass s0 and s − s0. Crucial underlying assumptions are 

threefold (in addition to the assumption of a suÿciently large system to justify taking a 

continuum limit): One assumes spatial homogeneity (fragment densities are independent 

of the specifc location), shape independence of the fragmentation mechanism and that 

the break-up is caused by external drive rather than interactions between fragments 

[163]. Now, if we wish to introduce a cut-o� sc, it is useful to distinguish between the 

distribution n(s, t;sc) of stable fragments and u(s, t;sc) of unstable fragments. In this 

setting the rate-equations read [156] Z Z ∞s∂u(s, t;sc) 0 0 0 0= − u(s, t;sc)c(s, s , t)ds
0 + 2 u(s , t;sc)c(s , s, t)ds s > sc, (7.3.2)

∂t Z0 
∞ 

s 

∂n(s, t;sc) = 2 u(s 0 , t;sc)c(s 
0 , s, t)ds 0 s ≤ sc. (7.3.3)

∂t sc 

Firstly, note that the fst equation is analogous to the previous rate equation without 

cut-o�, however only valid for s > sc. Secondly, the two equations are obviously decoupled, 

and it therefore suÿces to solve the rate-equation for u(s, t;sc), which in turn can be 

used to solve for n(s, t;sc), at least in principle. It is possible for a break-up kernel that is 
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time-independent and homogeneous, that is c(λs,λs0) = λα−1c(s, s0) with an α > 0 to show 

that (7.3.1) has a self-similar, or scaling, solution [164, 163], that is � � 
2/αΨ 1/α u(s, t) = t st . (7.3.4) 

Inserting this into (7.3.3) we obtain a formal solution for n(s, t;sc): Z t Z ∞ � � 
0 02/α 0 01/α 0 n(s, t;sc) = 2 c(s , s)t ψ s t ds 0dt . (7.3.5) 

0 sc 

As an example, let us consider the possibly simplest case, following [165, 164], with a 

splitting-kernel c(s, s0) = sα−1 for α > 0. This can be shown to correspond to a system, 

starting with a unit-mass fragment, where each fragment of mass s breaks with a rate 

sα into two fragments sR and (1 −R)s, where R is chosen uniformly at random in the 

unit interval and independent of the break-up of all other fragments. In this case one 

can obtain the explicit expression Ψ (x) = α exp(−xα)/Γ (2/α), which then yields after some 

algebra 
2 1 

n(s; t;sc) = � 
2 
� 2γ(2/α,sαt),c 

Γ scα R x
where γ(s,x) = ts−1e−tdt is the lower incomplete gamma function. Moreover, as can be 0 
easily verifed we have 

2 
n(s;∞;sc) ≡ lim n(s; t;sc) = 2 . t→∞ sc R scOne can further directly verify that 0 sn(s;∞;sc)ds = 1, which is of course mass-

conservation. To summarise, the stable fragment distribution is uniform in (0, sc), a 

direct consequence of the uniformity of the break-up process at each step. Moreover, the 

dependence on α is completely lost when concerned with the asymptotic distribution. 

This is a consequence of the fact that in the particular case of the example above, α is only 

related to the rate at which a cluster of a given mass fragments, which has no relevance 

for the asymptotic analysis. 

The above example is probably the simplest case that supports the intuition that the nature 

of the fragmentation mechanism and hence the actual material structure can be probed 

by considering the distribution of stable fragments. Yet, the uniform case is very special 

and apparently far from the nature of the fragmentation for critical Fortuin-Kasteleyn 

clusters. More generally, it belongs to the class of fragmentation processes with a separable 
splitting kernel, in the sense that c(s, s0) = d(s)e(s0), e.g. d(s) = sα−1 and e(s0) = 1 in the 

uniform example. However, our analysis of the equilibrium fragmentation has shown 
−φthat c(s, s0) = a(s)bs0 |s, where a(s) ∝ s and bs0 |s = s g(s0/s), which therefore is non-separable. 

Yet, the corresponding splitting kernel c(s, s0) is in fact homogeneous with parameter 

1− φ, that is c(λs,λs0) = λ1−φc(s, s0). Recall, that we derived φ = 2 − dR/dF , which implies 

that the corresponding exponent α in the scaling solution (7.3.4) equals dR/dF , the ratio 

of red bond fractal and cluster fractal dimension. For instance, in two-dimensions, we 

can continuously vary dR/dF from 5/4 for q → 0 to 0 for q → 4. However, the analytical 
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analysis of the rate-equation approach with a splitting-kernel of the above form becomes 

considerably more involved due to the ratio-dependence in g(x) which causes the kernel 

to be non-separable. 

Unfortunately, so far we have not been able to construct an appropriate continuum ana-

logue to the above iterated fragmentation of Fortuin-Kasteleyn clusters for the quantity 

g(x). A frst step into this direction could therefore be a careful estimation, or derivation 

in simplifed settings, of the function g(x), which then is fed into the above rate-equation 

formalism. We expect, that the asymptotic distribution of stable fragments should then 

resemble the scaling form (7.1.2), supported by our numerical analysis. 

Lastly, let us mention that the role of cycles in the iterated fragmentation of fractal random 

structures is not yet clear. One possible scenario is that that removal of cycles merely 

introduces a rescaling of time, and is irrelevant for the validity of bs0 |s in the iterated 

fragmentation scenario. It would be interesting to compare the iterated fragmentation of 

fractal random structures as done so far, with the iterated fragmentation of a (uniformly 

at random chosen) spanning tree of the giant component [166]. Such a spanning tree 

provides in some sense a “backbone” of the original giant component, as it the break-up 

kernel bs0 |s remains invariant in equilibrium. However, it is not clear to us how the iterated 

fragmentation interacts with cycles and whether such “universal” aspects as the exponent 

φ remain unchanged between the two variants of iterated fragmentation. 
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Chapter 8 

Conclusion and Outlook 

In this thesis we established novel results for a range of aspects that refects the structural, 

geometric, computational and dynamical variety of the random-cluster model. The 

Sweeny dynamics, being a single-bond update Markov chain, operates suÿciently close to 

the original cluster structure to provide a dynamical and algorithmic perspective on the 

model. The interplay between the dynamical and algorithmic properties of the Sweeny 

dynamics and the equilibrium cluster structure of the random-cluster model is one of 

the salient themes of this thesis. We deepened the understanding of how the cluster 

weight parameter in the random-cluster model infuences the structure of clusters by 

studying their fragility and introduced a natural classifcation of edges, based on their 

relevance for the connectivity structure of clusters. We showed that the cluster weight 

directly a�ects the balance between the di�erent types of edges by deriving an exact 

identity, valid for any graph and any q , 1, that allows us to express the corresponding 

densities of the four classes of edges (which we denoted as bridges, non-bridges, candidate 

bridges and candidate non-bridges, respectively) in terms of the overall density of edges. 

In this framework, our results refect nicely the intrinsic correlations between edges in 

the random-cluster model. Interestingly, in the case q = 1 we were able to relate the 

bridge-density to a previously studied covariance [111]. For the particular case of the 

square lattice we derived, using self-duality, the exact asymptotic densities of the above 

edge types for the critical random-cluster model as a function of q. We determined the 

leading fnite-size corrections and extended our analysis also to the three dimensional 

case, for which we confrmed all our theoretical arguments. 

The studied densities of bridges and non-bridges are also of signifcance for the algorithmic 

eÿciency of the Sweeny dynamics, and we explicitly showed how the runtime scaling of 

the various implementations considered in this thesis depend on the proportions of the 

di�erent types of edges. 

It is interesting to fnd further applications of our bridge-edge identity, possibly in 

the study of random graphs or complex networks, where a particular interest lies in 

resilience properties [167]. From an analytical perspective it would be useful to obtain 

further information on higher moments of the considered densities and study correlations 
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between the types of edges. In fact we have already made some partial progress in the 

bond percolation setting. Based on the results of [110], we are able to derive for two 

arbitrary edges e, f ∈ E at distance r on the square lattice: 

√ 
2 3

P 1
2 ,1

[e ∈ B,f ∈ B]− P 1
2 ,1

[e ∈ B]P 1
2 ,1

[f ∈ B] ≈ log(r)r −2x2 . 
π 

Recall that B is the set of bridges in the spanning sub-graph (V ,A). The corresponding 

details will be presented elsewhere [168]. 

Additionally an interesting quantity to study is what we refer to as the bridge-load. The 

bridge-load of an edge e is defned as the number of nearest neighbour pairs x,y (that is 

(x,y) ∈ E), for which the edge e must be part of any connecting path. It is hence a measure 

of the importance or load of a given bridge. Intuitively, the more nearest neighbour pairs 

rely on a fxed bridge, the larger is the overlap of the two clusters glued together by the 

bridge. It is possible to relate the bridge-load to the frst p-derivative of the bridge density 

for percolation [168]. Studying the bridge-load could therefore be useful to understand 

the variation of the cluster fragility with p. Our results in Chapter 5 showed that the 

maximum of the density of bridges does not coincide with the critical point, but is rather 

located on a smaller bond density pf . It is therefore tempting to fnd the exact value 

of pf (q), say on the square lattice, and understand what distinguishes the point pf (q) 

geometrically. A realistic starting point could be a careful analysis of the case q = 1 on Z2 

as well as the Ising case, possibly utilising Onsager’s exact solution [22] for the Ising case 

on the square lattice. 

The fragility of random sub-graphs of a fxed graph G = (V ,E) can also be studied using 

the following model of bridge-weighted percolation, which we defne by the following 

weight function w on Ω = {A|A ⊆ E}: 

|A|b|B|w(A) = v . 

Here v > 0,b > 0 and clearly for b = 1 we recover the independent bond percolation model 

with the usual parametrisation p = v/(1 + v). For b > 1 (b < 1) the model has a tendency 

to favour (disfavour) bridges. We could not fnd a related study in the literature nor 

relate it to a particular evaluation of the Tutte polynomial [69], however see [169] for the 

di�erent but related “bridge-percolation” model. We believe that it is therefore desirable 

to study the phase diagram of the model and check whether it shares aspects with the 

random-cluster model beyond b = 1. Two immediate related questions pop up: Is it 

possible to determine a critical manifold v(b) as for the random-cluster model in the case 

of the square lattice or planar graphs (using duality)? Does the model have a continuum 

of universality classes upon variation of b and are the universality classes relatable to the 

random-cluster model? 

We extended our study of the fragility of Fortuin-Kasteleyn clusters by an analysis of the 

fragment sizes produced upon a break-up of a cluster. We confrmed a scaling ansatz, 
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originally introduced in the setting of independent bond percolation [115, 29, 30], for the 

break-up kernel bs0 |s and derived the scaling relation φ = 2 − dR/dF between the fragmen-

tation exponent and standard fractal dimensions in the random-cluster model. We fnd 

that the previously assumed scaling relation φ = 2 − 1/(νdF ) due to Edwards et al. [115] 

does not extended to the random-cluster model. In fact our relation for φ reduces to the 

above percolation relation only due to the coincidence of the thermal exponent 1/ν and 

the red bond fractal dimension dR for q = 1 [15]. 

There are a few open questions and interesting generalisations of our study, out of which 

we would like to highlight two. Firstly, the natural degrees of freedom in the Potts model 

are the spins located on vertices and one can therefore also consider the spin clusters, 
consisting of vertices with equal spin and all edges between them. The spin clusters do not 

correspond to the Fortuin-Kasteleyn clusters [170], so it is interesting to study the fragility 

of such spin clusters. These clusters are denser than the Fortuin-Kasteleyn clusters (the 

latter are obtained from the former by removing edges with probability e−β ). Besides 

studying the densities of bridges and other types of edges, one might about the value of 

φ. Does our scaling relation φ = 2 − dR/dF naturally extend to spin clusters, by replacing 

the Fortuin-Kasteleyn fractal dimensions with the spin cluster fractal dimensions [170]? 

Considering the two dimensional case, it is known that dR < 0 for q = 2, 3 and dR = 0 at 

tricriticality q = 4. This suggests that φ > 2 for q = 2,3, which appears somewhat peculiar. 

However, interpreting dR < 0 as “asymptotically there are no red bonds” which means 

there are no bridges that can cause large scale break-ups, we might also conclude that 

e�ectively dR = 0 for q = 2,3 as it is the case for q = 4. Equivalently we could conclude 

φ = 2 for all Potts spin cases. This would then be consistent with the heuristic view 

developed in Chapter 7, stating that the case φ = 2 corresponds to a perfectly dense object 

that only fragments due to minimal surface erosion. Indeed, note that in [171] the authors 

study the fragmentation of Ising spin clusters, and fnd an estimate of φ consistent with 

φ = 2. 

The second interesting generalisation of our results is the determination of the fragmen-

tation exponent φ for vertex fragmentation. We have seen that vertex fragmentation is 

not restricted to binary break-up events but can rather produce higher order break-ups. 

Here one can also study the fragmentation exponent φ(k) for vertex fragmentations that 

produce k fragments. A natural question is whether φ(k) is relatable to the k-arm exponent 

for k ≥ 2. This is a natural generalisation of our result for binary fragmentation, using the 

k-arm exponent [15]. In particular, being true, this would then yield a practical method to 

measure the k-arm exponents, which are of great importance to the mathematical study 

of percolation [26] and the random-cluster model [27, 74]. 

The most striking feature that emerged from our analysis of the iterated cut-o� frag-

mentation process of critical Fortuin-Kasteleyn clusters is the possibility of inferring 

structural characteristics of the fragmented object by carefully considering the produced 

fragments. More precisely, we analysed the size distribution of stable fragments, that is 

clusters suÿciently often broken apart to fall below the cut-o�. In this connection we 
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proposed a scaling ansatz that describes the infuence of the cut-o� on the size distribution. 

Specifcally, we fnd the size distribution to follow a power law with an exponent close to 

the equilibrium fragmentation exponent φ = 2 − dR/dF . In fact our scaling ansatz predicts 

that the power law contribution in the size distribution is indeed ruled by the exponent 

φ but the range of validity of this power law varies with the cut-o�. We confrmed that 

asymptotically only the ratio of stable fragment size to cut-o� is required in a scaling 

function to describe the deviation from a power law with exponent φ. 

We then analysed the splitting tree representing the entire history and genealogy of the 

fragmentation process. Remarkably we found that the morphology of the splitting tree 

can be used to extract the di�erence dF − dR and hence an equilibrium property of the 

fragmented object. This is a rather intriguing observation taking into account that the 

splitting tree is a priori a property of the whole dynamical fragmentation process. We ex-

plained the above observations by a recursive applicability of the break-up kernel bs0 |s, due 

to the self similar structure of critical Fortuin-Kasteleyn clusters (in other words unstable 

fragments closely resemble the structure of the original fragment). This fnding lends 

additional credibility to rate equation approaches [150] as descriptions of the iterated 

fragmentation of random fractal structures. 

It is tempting to understand whether the ubiquitous observation of power laws in size 

distributions of fragmentation process of various kinds found in nature and technology 

can be related to some sort of self-similar cohesive structure in the original fragmented 

object. The insensitivity to microscopic details implied by the universality of critical 

phenomena indicates that our results for dynamic fragmentation should indeed be compa-

rable to experiments. In fact we reported already in our recent letter [120] that one fnds 

experimentally fragmentation exponents spanning a range of around 1.2 to 1.9, which 

are covered by our scaling relation φ = 2 − dR/dF for the critical random-cluster model. 

However a closer analysis and comparison beyond comparing power law exponents is 

needed, which we hope to pursue in a future study. 

So far our study of the fragmentation process was mainly computational and heuristic, 

that is many of the aspects of the fragmentation process remain to be mathematically 

analysed. For instance: What is the precise infuence of the cut-o� on the fragment size 

distribution, what is the functional form of the involved scaling function? Moreover, it is 

desirable to have an exactly solvable fragmentation process at our disposal, for which it is 

possible to show that a power law in the break-up kernel persists in the stable fragment 

size distribution. We plan to analyse the role of the cut-o� in the beta-splitting model 

[31], which we showed to posses surprising similarities with our iterated fragmentation 

process of Fortuin-Kasteleyn clusters. 

The fragmentation properties of the random-cluster model established in this thesis 

are of independent interest, yet we showed that they naturally arise in a study of the 

computational eÿciency of the Sweeny dynamics. For instance, the expected smaller 

fragment size determines the running time of an interleaved breadth-frst search based 

implementation [15] or our cluster identifer based implementation. Albeit the dynamic 
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connectivity algorithm [24] is only provably poly-logarithmic when implemented with 

the full edge level hierarchy, we fnd that the typical smaller fragment size suppression 

at criticality allows for a suÿcient “practical amortisation” of the computational costs 

of expensive operations without the prescribed log(n) level high forest hierarchy. The so 

constructed algorithm is hence a connectivity algorithm that maintains a spanning forest 

of the current confguration based on the Euler-tour data structure and scans the smaller 

tree upon a tree edge removal for a replacement edge. The crucial functionality that boosts 

the replacement edge search is the hierarchical information stored in the Euler-tour data 

structure that allows iterating from one non-tree edge to the next with only logarithmic 

computational e�ort. So far we have however not been able to prove, in a probabilistic 

setting, that the running time is indeed poly-logarithmic at criticality for this one-level 

variant of the connectivity algorithm. Hence it is possible that we are deceived by small 

constants in front of a polynomial LdF −x2 contribution to the running time. 

The combination of the poly-logarithmic dynamic connectivity algorithm with the critical-

speeding up property of the Sweeny dynamics for important non-local quantities makes 

the single-bond dynamics a powerful tool. We compared the Swendsen-Wang dynamics 

for the Potts model to the Sweeny dynamics at criticality on the square lattice, and utilised 

a joint eÿciency measure considering the statistical and computational eÿciency of both 

chains. Albeit it is known [53, 88, 21] that the dynamical critical exponents determined 

in the literature are smaller for the Sweeny dynamics in two and three dimensions, we 

merely fnd in the best case an approximate equivalence of the two methods. Note however, 

that the poly-logarithmic approach in combination with a slightly smaller exponent will 

eventually, for large enough system sizes, become the more eÿcient and hence favourable 

option. Yet, because our joint analysis was conducted (in two dimensions) using the plain 

unoptimised poly-logarithmic connectivity algorithm, whose large memory footprint 

hindered the simulation of large enough system sizes to see the asymptotic running time 

scaling, we believe that using the optimised version will allow us to advance to larger 

system sizes where the superiority of the Sweeny approach becomes distinguished. We 

will pick up this question and a careful study of the three-dimensional case in a future 

study. 

Deng et al. [21] observed numerically that the critical speeding-up e�ect is related to the 

fractal dimension of red bonds and becomes stronger with increasing red bond fractal 

dimension. In the case of the heat-bath chain for bond percolation on the square lattice 

we are able to prove the critical speeding up for the indicator function of certain crossing 

probabilities (with obvious importance for the study and location of phase transitions 

in the percolation model). The arguments crucially rely on recent results on the noise 

sensitivity of Boolean functions and percolation [90], and naturally bring the red bond 

fractal dimension into the discussion, which supports the heuristics of [21]. It is tempting 

to extend the percolation study to the variety of non-Boolean functions considered in 

Refs. [53, 15]. Furthermore we also plan to study the speeding up in more detail in higher 
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dimensions and will present the results together with the rigorous results for the critical 

speeding-up of crossing probabilities in due course. 

Our study of the coupling from the past algorithm for the random-cluster model in two 

and three dimensions revealed that such an exact sampling procedure away from a phase-

transition location in the stationary model is very eÿcient. In other words, the expected 

coupling time E[τ] is essentially numerically not distinguishable, up to a constant, from 

the expected coupon collector time E[T ], the minimal number of steps required to assure 

that each edge is visited at least once in a random hit setting. We supported this picture 

by a rigorous analysis of the coupling process on the cycle graph, which essentially is o�-

critical for all bond densities. Here we showed that the optimal case occurs asymptotically, 

that is E[τ] ∼ E[T ]. 

In two and three dimensions we found at criticality power laws for the expected coupling 

time and determined, numerically, the corresponding Propp-Wilson exponent w. Our 

estimates are surprisingly close to the corresponding values of zexp determined in the 

literature. We showed that this has two immediate consequences. Firstly, in combination 

with the known sharpness of the (lower) Li-Sokal bound in two dimensions we can narrow 

down the allowed values for zexp, as the expected coupling time yields an upper bound 

for zexp. The two bounds become intriguingly close for q → 4, essentially narrowing down 

to zexp = 1 modulo multiplicative corrections for q = 4. Unfortunately, the responsible 

mechanism for this tightening of the lower and upper bounds for q → 4 is not yet identifed 

and remains a challenging open problem. Secondly, the closeness of zexp and w is also of 

practical relevance, as it imposes only a minimal overhead to move from an approximate 

MCMC sampling scheme ruled by zexp to a perfect sampling CFTP scheme ruled by w. 

Our results for the coupling time in three dimensions at criticality showed the surprising 

fact that the Propp-Wilson exponent w is, for all considered cluster weights, in fact smaller 

than the anticipated value zexp for the Chayes-Machta chain [88]. We conclude with the 

appealing fact that, for all studied cluster weights, the coupling from the past algorithm 

in combination with a poly-logarithmic connectivity algorithm is more eÿcient than the 

Chayes-Machta algorithm at criticality in three dimensions when considering the expected 

coupling time as the measure of eÿciency for the former. A further, yet preliminary, study 

shows that the ratio of standard deviation to expectation of the coupling time decreases 

with the system size for all cluster weights considered. This casts the expected coupling 

time to the dominant scale1. Furthermore, knowing that the dynamical critical exponent 

of the Sweeny dynamics can not exceed the Propp-Wilson exponent, this applies naturally 

also to the Sweeny dynamics and hence promotes the use of local algorithms in three 

dimensions. This gives further motivation for a thorough study and comparison of the 

Sweeny and Chayes-Machta dynamics in three dimensions going beyond the analysis of 

[15, 88]. 

1On more mathematical grounds this can be used, utilising Chebyshev’s inequality, to derive a concentra-
tion result for fuctuations around the expectation of the same order of magnitude. 
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The probably most interesting observation with regards to the coupling from the past 

algorithm is the appearance of universal Gumbel fuctuations in the coupling time τ . 

We showed that as long as the model is not close to the location of a discontinuous 

phase transition, the coupling time fuctuations are of Gumbel-type, in the sense that 

the distribution of a rescaled coupling time approaches the distribution of a standard 

Gumbel random variable for increasing system sizes. We provided rigorous support of 

this observation via the convergence of a rescaled coupling time distribution to a Gumbel 

distribution for the coupling process on the cycle graph. Furthermore, at a discontinuous 

phase transition the fuctuations seem to be of the Frèchet type, yet a more detailed 

analysis is needed, which should also consider the tricritical case, for which we could 

not make any conclusive statement. We also found the Gumbel law in the coupling 

distribution for the Ising-spin heat-bath dynamics as long as the model possesses the 

strong spatial mixing property [48, 140], which for the square lattice is equivalent to 

be above the critical temperature. As a future project, we plan to study whether the 

weaker notions of spatial mixing given for the random-cluster model on the square-lattice 

[142, 128, 28] can be related to rapid mixing and Gumbel fuctuations. 

Another promising application of the coupling from the past algorithm is the ferromag-

netic random bond Potts model in the Fortuin-Kasteleyn representation [172, 173, 174]. 

The standard problem which one faces when concerned with dynamics in disordered 

systems is the rugged probability or energy landscape. This introduces many time scales 

into the dynamics and the study of autocorrelation times and hence relaxation times 

become are a priori probabilistic, see for instance [175]. This clearly complicates the study 

of relaxation and correlation, of utmost importance for a thorough application of the 

MCMC method. We have seen that the coupling from the past algorithm self-determines 

the required (random) running time τ to produce an independent sample. Thus, this 

approach can in principle circumvent the problem of determining the autocorrelation 

time in order to guarantee also relaxation. Still, the study of τ in this setting is very 

intriguing in its own right, as the presence of disorder raises many question in particular 

for instances where a frst order phase transition is “softened” to a continuous phase 

transition. Does the Gumbel law persist with disorder, even for instances where the clean 

model would undergo a frst order phase transition? Can we generalise the Propp-Wilson 

inequalities relating the relaxation or autocorrelation time to the expected coupling time 

to the disordered setting? Do we have an analogue of the Li-Sokal bound, that is are 

there rigorous arguments dictating a critical slowing down? Does critical speeding up 

persist? In fact, we started to analyse certain aspects for the particular instance of the 

random bond Potts model with q = 8 and bivariate bond-coupling distribution on the 

square lattice at the respective critical temperature. One of the main open issues we would 

like to address refers to the universality aspects of the model, namely the value of the 

critical exponent ν of the correlation length and its evolution (or not) with the number 

of states q in the originally frst order regime of the model [176, 177, 178, 179, 174, 180]. 

We will present detailed dynamical and static results in the future elsewhere. 
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Appendix A 

Notation 

We use standard O-notation, that is f (n) ≤ O(g(n)) means there exists some constant 

C < ∞ such that f (n) ≤ Cg(n) for any n ≥ 1. Additionally the “small-o” notation is also 

occasionally used in this thesis, that is write f (n) = o(g(n)) when limn→∞ f (n)/g(n) = 0. 

Furthermore, we denote by f (n) � g(n) that f and g have the same order of magnitude, 

that is there exists some constant C < ∞ such that g(n)/C ≤ f (n) ≤ Cg(n) for all n ≥ 1. 

The symbol ∼ denotes asymptotic equivalence, that is f (n) ∼ g(n) if limn→∞ f (n)/g(n) = 1. 

Lastly, we also use what is commonly referred to as “logarithmic equivalence”, that is we 

write f (n) ≈ g(n) whenever limn→∞ logf (n)/ logg(n) = 1. We use this notation in particular 

for quantities with power-laws, for instance for scaling ansätze at criticality, when we do 

not want (or can) consider constants and/or multiplicative “corrections”. 
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Appendix B 

The random-cluster model on the cy-

cle graph 

Let Zn be the n-cycle, hence n corresponds to the number of vertices and edges, respec-

tively. 

B.1 Connectivity function 

Let 0 ≤ i < j < n be two distinct vertices. Our goal is to determine P [i ↔ j], that is the 

probability that i is connected to j. Recap, the partition function of the random-cluster 

model with edge dependent couplings v = (ve)e∈E on a fnite graph G = (V ,E) is given by: X Y 
k(A) ω(e,A)

ZG(v,q) ≡ q ve , 
A⊆E e∈E 

where ω(e,A) = 1 i� e ∈ A and ω(e,A) = 0 otherwise. This can be re-written using the 

circuit rank c(A) and k(A) = c(A) + |V | − |A|: � �X Y 
c(A) ω(e,A) 1−ω(e,A)ZG(v,q) = q ve q . 

A⊆E e∈E 

From now on we set G = Zn. In this case the cycle space is 0 dimensional for any A , E 

and one-dimensional for A = E, hence c(A) = 1 i� A = E and c(A) = 0 otherwise. After 

straightforward algebra we obtain: Y Y 
ZZn 

(v,q) = (q + ve) + (q − 1) ve. 
e∈E e∈E 

Let Pi,j be the set of edges of the clockwise path between i and j and P i,j the one in 

anti-clockwise orientation. Hence we have by the inclusion-exclusion principle: h i h i h i 
P [i ↔ j] = P Pi,j ⊆ A +P P i,j ⊆ A − P {Pi,j ⊆ A} ∧ {P i,j ⊆ A} . 
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h i 
Notice that P {Pi,j ⊆ A} ∧ {P i,j ⊆ A} = P [A = E] and hence 

h i Yq
P {Pi,j ⊆ A} ∧ {P i,j ⊆ A} = ve. ZZn 

(v,q)
e∈E 

Furthermore we have: ⎛ ⎞⎛ ⎞ h i Y Y1 ∂
P Pi,j ⊆ A = 

⎜⎜⎜⎜⎜⎜⎜ ve 

⎟⎟⎟⎟⎟⎟⎟⎜⎜⎜⎜⎜⎜⎜ ⎟⎟⎟⎟⎟⎟⎟ZZn 
(v,q)

ZZn 
(v,q) ⎝ ⎠⎝ ∂ve ⎠ e∈Pi,j e∈Pi,j⎡⎛ ⎞⎛ ⎞ ⎤ Y Y Y1 

= q + ve ve + (q − 1) ve(v,q) ⎣⎢⎢⎢⎢⎢⎢⎢⎝⎜⎜⎜⎜⎜⎜⎜ ⎠⎟⎟⎟⎟⎟⎟⎟⎝⎜⎜⎜⎜⎜⎜⎜ ⎠⎟⎟⎟⎟⎟⎟⎟ ⎦⎥⎥⎥⎥⎥⎥⎥ZZn e∈E−Pi,j e∈Pi,j e∈E h i 
Analogous for P P i,j ⊆ A . Now we let ve = v for all e ∈ E and obtain after some algebra: 

ρj−i + ρnρi−j + (q − 2)ρn 

P [i ↔ j] = ,
1 + (q − 1)ρn 

where we defned 
v 

ρ ≡ ρ(v,q) ≡ < 1. 
q + v 

Notice that ρ = p/(p + (1 − p)q ≡ p̃(p,q) in the alternative parametrisation. Recall that 

p̃(p,q) equals the probability to insert a pivotal edge in the Glauber dynamics for the 

random-cluster model. For v,q > 0 and we obtain for n →∞: 

P [i ↔ j]→ e−|i−j | log(1+ v
q ) 

B.2 Consistency check: Ising model 

Baxter [22] shows that for the Ising model on Zn in the limit n →∞ with inverse tempera-

ture β > 0: 

E[σiσj ] = (tanh(β))j−i , 

where σi,σj ∈ {−1,+1} and i ≤ j. Notice that for v = e2β − 1 one has: 

E[σiσj ] = P [i ↔ j] . 

It is easy to check that the n →∞ limit of P [i ↔ j] for i ≤ j and v = e2β − 1 recovers the 

known result for the Ising model on Zn. 
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Appendix C 

Asymptotic equivalence and bounds 

Here we prove the following, probably well known, result for the sake of completeness: 

Lemma C.0.1. For two positive sequences an,bn such that an ∼ bn, that is an/bn → 1 for 
n →∞, one has that the following implication is true uniformly in n: 

−an −K2bnC ≤ e ⇒∃K1 ≥ 1,K2 ∈ (0,1) such that C ≤ K1e . 

Proof. Recall, the fact that an ∼ bn means that for any � > 0 there exists an integer N� such 

that |an/bn − 1| ≤ � for any n ≥ N�. Thus in particular if we choose any 0 < ρ < 1 we have 

that there is an integer Nρ such that an/bn ≥ ρ whenever n ≥ Nρ (here we used positivity 

of an and bn). Therefore we have for any such n ≥ Nρ: 

−an −bnan/bn −bnρC ≤ e = e ≤ e . 

It remains to prove the implication for n < Nρ. Here we observe 

−an −bnρ bnρ−an −bnC ≤ e = e e ≤ e ρK. n o 
bnρ−anWhere we defned K ≡ maxn<Nρ 
e . Finally, we choose K1 = max {1,K} and K2 = 

ρ. � 
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