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A B S T R A C T 

Ground improvement with the prefabricated vertical drain (PVD) has become widely 

employed for soft ground treatment because of its economical and efficient method. While 

numerous numerical and analytical methods have been derived for PVD however, it is 

still an extensively high demand for a simpler and more accurate method for design steps. 

This paper proposes a method for solving the problem of one-dimensional (1D) 

consolidation with prefabricated vertical drains. The current approach introduces a 1D 

equivalent permeability, increasing linearly with depth to perform the consolidation of 

soft ground improved with PVD. The analytical solutions have been carried out and 

verified by analyses for two cases of one-way drainage and two-way drainage for uniform 

soil layer. The results show that the error of excess pore pressure determined by the 

proposed method is less than that obtained by the simpler method of Chai and smaller than 

10% compared to the theoretical solution. The paper also compares the analytical solution 

with the FEM by ABAQUS software. It is found that the excess pore pressures and 

consolidation degrees obtained by these methods are similar and close to the theory. These 

confirm that the introduced 1D equivalent permeability can be employed to perform the 

consolidation of PVD improvement by analytical and FEM methods. 

1 Introduction 

The analytical solution of the consolidation problem derived by Terzaghi [1] has been widely applied for predicting 

consolidation settlement of constructions without treatment on soft soil. The Terzaghi’s solution was considered as one-
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dimensional (1D) consolidation because it is treated with one vertical drain direction.  To accelerate the consolidation rate, 

some ground improvement techniques could be applied such as sand drains or prefabricated vertical drains (PVDs). Excess 

pore water pressure in the soil treated by these techniques not only dissipates vertically to the layer sand drained blanket but 

also radially to the drain.  There are many kinds of research on characteristics of vertical drains such as [2-14]. On the other 

hand, analytical solutions have been extensively studied by [15-23] where a review of the performance of PVDs, has been 

established and the objective was to improve the performance of the soft ground[24, 25]. However, most of them required 

sophisticated software or computation effort to analysis. 

Moreover, Nguyen et al. [26] and Nghia-Nguyen et al. [23] developed a simple analytical solution and simple discrete 

element model for prefabricated vertical drain with and without vacuum consolidation. Nguyen and Kim [27] developed also 

a numerical solution based on the large theory in order to consider discharge capacity reduction where the obtained results 

were in good agreement with the measured data. furthermore, taking into account the effect of the variability of the soil’s 

parameters on the design of prefabricated vertical drain become an essential aspect of the improvement of the soft ground 

[28]. Ngo et al. [29] Made an important study by proposing a plane strain models based on Indraratna and Redana's methods 

in order to predict the consolidation settlement. Nonetheless, the above solutions can easily be employed in a standard finite 

element (FEM) analysis software for designing of ground improvement projects by vertical drain.  

Meanwhile, Chai [11] introduced a simplified method of model soft ground improved with PVD by substituting a system 

of PVD and soil with equivalent soil, which has an equivalent vertical permeability. The Chai’s approach [11] is mainly used 

in modelling PVD with a finite element method for 1D, 2D or 3D problems. The Chai’s approach is very simple and can be 

easily applied into FEM software for designing. One major issue which is related to the Chai’s approach is the accuracyof 

the solution with the theoretical solution by Carrilo [30]. In the order words, Chai’s approach showed the predicted results 

have certain differences from those of theoretical solution. Inspiration from the issue, this paper introduces a modified method 

which is not only a simple method in 1D but also more accurate than the previous approach by Chai’s method.  The 

verifications were carried out with ABAQUS and theoretical solution to demonstrate the effectiveness of the current 

approach. It is highly promising of wide applications by its simplicity and accuracy of the modified method. 

2 Governing equation 

To derive the governing equation for the 1D consolidation problem, Terzaghi [1] assumed that (a) soil is fully saturated, 

(b) water and soil particles are incompressible, (c) Darcy’s law is valid, (d) strains are small, (e) all compressive strains within 

the soil mass occur in a vertical direction and (f) the coefficient of compressibility is constant. This study also applies those 

assumptions to solve the problem of 1D consolidation with PVD in which the coefficient of equivalent permeability, zk , of 

permeability in the vertical and radial directions (see Fig. 1) is proposed to be linearly increased with depth and determined 

by the following equation: 

 
(1  )z inik k a z 

 (1) 

 

Fig. 1- Model for the modified method 
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l  is the drainage length,  l H for the case of one-way drainage with permeable top boundary and impermeable bottom 

boundary (PTIB), and in 2l H for the case of two-way drainage with permeable top boundary and permeable bottom 

boundary (PTPB). 

The derivation of the differential equation for the pore water dissipation is detailed presented in Appendix A where the 

general equation is: 

 
( , ) ( , )z

v w

ku z t u z t

t z m z

   
  

   
 (2) 

If 
zk is a constant (

z vk k ), the Eq. (2) becomes the governing equation for Terzaghi’s 1D consolidation theory 

 
2

2

( , ) ( , )v

v w

ku z t u z t

t m z

 


 
 (3) 

However, because 
zk   is assuming to be an increased function with depth, we can substitute Eq. (1) into Eq. (2) to obtain 

the governing equation as below: 

 
2

2

( , ) ( , ) ( , )
( 1)ini

v w

ku z t u z t u z t
a za

t m z z

   
   

    

 (4) 

Boundary and initial conditions are as follows: 

1) ( 0, ) 0u z t   (5) 

2) 
( , )

0       ( )
u z t

z l
z


 


 (6) 

3) ( , 0) ou z t u   (7) 

3 Solution 

3.1 Excess pore pressure and average consolidation degree functions 

Excess pore water pressure can be obtained by applying the separation method to the governing equation. 

 ( , ) ( ) ( )u z t Z z T t  (8) 

where ( )Z z is Eigen function of depth and ( )T t is Eigen function of time. 

From the above governing equation, the solution for pore pressure is obtained: 

     1 0 2 0( , ) ( ) ( ) tu z t C J R z C Y R z e      (9) 

where 0J  and 0Y are Bessel functions of zero order of the first and second kind, respectively; 1C  and 2C  are integral 

constants;  is eigenvalue; and 
2

( 1)
( ) 2 v w

ini

az m
R z

a k


  is the function of depth.  

From the boundary condition (5), the integral constant 1C can be expressed in relation with value 2C as following 
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 
 

0

1 2

0

( )

( )

Y R z
C C

J R z




   (10) 

From the boundary condition (6) , the root of  eigenvalues m  of   denoted as m  is derived. 

    
 
 

1

1 0

0

( )
( ) (0) 0

(0)

m

m m

m

J R l
Y R l Y R

J R


 


   (11) 

The general solution of Eq. (8) is rewritten in form of a series with respect to each eigenvalue  

  0

1

( , ) , mt
m m

m

u z t C M z e







     (12) 

where  

    
 
 

 0

0

( )
, ( ) (0) with 0,1

(0)

i m

i m i m m

m

J R z
M z Y R z Y R i

J R


  


    

 (13) 

The initial condition (7) is applied to Eq, (13) to determine the coefficient mC   

  0

1

( ,0) ,m m o

m

u z C M z u




     (14) 

Using Fourier’s sine expansion for function (14), the coefficient mC can be determined as 

 1

2

o
m

u A
C

A
  (15) 

where  

1 0 1

0

, ,

l

ini
m m

v w m

k
A M z dz M l

m
 

 
        

       

       2 2 2

2 0 0 1

0

1
, 1 , ,

l

m m mA M z dz la M z M z
a

                  

Substituting Eq. (15) into Eq. (12) to obtain the function of excess pore pressure with depth 

  1
0

21

( , ) , mt
o m

m

A
u z t u M z e

A








     (16) 

The average excess pore water pressure is calculated as an integral of excess pore water pressure in the whole length. 

 

1
0

210 0

( , ) ,

( )

m

l l

t
m o

m

A
u z t dz M z dz u e

A
u t

l l








  

 

 
 (17) 
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Equation (17) can be simplified by substituting above integration of  0 ,mM z    

 
2
1 0

21

( ) mt

m

A u
u t e

A l








  (18) 

The average consolidation degree is obtained as below 

 
2
1

21

( )
( ) 1 1 mt

o m

Au t
U t e

u A l








     (19) 

3.2 Equivalent consolidation coefficient 

Carrillo’s theoretical solution[30] combined the average degree of consolidation in the vertical direction and horizontal 

direction for the consolidation problem of a vertical drain (Appendix B). The average degree of consolidation is   

 

2

2 2

(2 1) 8

2

2 2
1

8
( ) 1

(2 1)

v h

e

c cm
t

l D

vh

m

e
U t

m







   
   
    



 


  (20) 

where  and v h
v h

v w v w

k k
c c

m m 
  . 

To have approximation in the consolidation rate, both Eqs. (19) and (20) should have the same time ratio. As a result, 

m can be obtained as follows: 

 

2

2 2

(2 1) 8

2

v h
m

e

c cm

l D






   
   

   

 (21) 

The first eigenvalue in equation (21) is the most governing value, therefore 1m   is selected for Eq. (21) 

 
2

1 2 2

8

4

v h

e

c c

l D






 
  
 
 

 or 
2

1 2 2

1 8

4

v h

v w e

k k

m l D




 

 
  

 
 

 (22) 

where 1  is the first eigenvalue.  The value 1  is then substituted to function (11) to determine the equivalent consolidation 

coefficient ( ( 1)z inik k az  ) which has two unknown variants: the initial permeability inik  and increased coefficient a .  To 

solve Eq. (11), one of two variants of  inik  or a is assumed first, and then the remaining value will easily be determined.  It is 

proposed an experience function for determining the initial permeability inik  which has a linear relationship with the drainage 

length both vertical and horizontal direction.  

 
2.5

1 h
ini v

e v

l k
k k

D k

  
   
   

 (23) 

Finally, the increased coefficient a  can be determined by the implicit function (11) and expressed in extended form as 

 
1 1 2

1 1 0 12 2

0 1 2

( 1)
2

( 1)
2 2 0

2

v w

iniv w v w

ini ini v w

ini

al m
J

a kal m m
Y Y

a k a k m
J

a k




 
 




 
 
          

          
 
 

 (24) 
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The increased coefficient, a , is simply figured out by using the subroutine Goal Seek (a trial and error subroutine) in 

Microsoft Excel by following definition (equation 25)  in an optional cell. The first trial value a  should be 1 for faster to 

obtain a final solution.  

 1 2

1 12 2

1 2

( 1)
2 ,1

( 1)
2 ,1 2 ,0

2 ,0

v w

iniv w v w

ini ini v w

ini

al m
BesselJ

a kal m m
BesselY BesselY

a k a k m
BesselJ

a k




 
 




 
 
      

    
        

 
 
 

 (25) 

4  Solution 

4.1 Problem’s description 

Two cases are analyzed to verify the proposed method. They are permeable top and impermeable bottom case (PTIB) 

which is considered as one-way drainage and permeable top and permeable bottom case (PTPB) which is for two-way 

drainage. The PVD distributions and PVD parameters are given in Fig. 2 and Table 1 taken from the example in Chai [11] 

 

Fig. 2 – Theanalysis cases for verified proposed method 

The coefficient of permeability in the vertical direction 0.0981  ( )v v v wk c m m year   and in the horizontal direction 

0.1962 ( )h h v wk c m m year  . These Results of the proposed method will be compared with the results that were obtained 

by Carrillo’s theoretical solution[30]considering both vertical and horizontal consolidation and Chai’s method[11] using the 

free strain assumption. Both theoretical solution and Chai’s method[11] are defined in Appendix C. 

1- Determining the increased coefficient for the one-way drainage (PTIB) with the drainage length 10( )ml H  , and 

the PVD factor 11.426   from Eq.(3B) ,  the first eigenvalue is determined as 1 0.3747  from Eq. (22). The 

initial permeability, inik , is given by Eq. (23) as 0.0312 ( m year ). Substituting both 1 and inik  into Eq. (24) to 

determine the increased coefficient by Microsoft Excel software, a , to be 2.494. Finally, vertical permeability is 

0.0312(2.494 1)zk z   ( m year ). 

2- Determining the increased coefficient for the two-way drainage (PTPB)Similar to the case of (PTIB), For the (PTPB) 

case, 5( )2 ml H  , 10.436  .Similar to the (PTIB) case, 1 0.482  , inik = 0.0216 ( m year ), and a  = 1.202. 

Finally, vertical permeability is 0.0216(1.202 1)zk z   ( m year ). 
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Table 1 – Assumed subsoil and drain parameters 

Subsoil and Drain 

cv(m2/year) 1.0 

ch(m2/year) 2.0 

dw(m) 0.1 

De (m) 2.0 

ds (m) 0.3 

kh/ks 5.0 

qw (m3/year) 100 

mv (m2/kN) 1/1000 

γw (kN/m3) 9.81 

 

4.2 Validation using ABAQUS 

The analytical results are also confirmed by the finite element method (FEM) to verify the proposed method. FEM 

simulations have been conducted by the ABAQUS software. The model includes 80 elements using eight-node biquadratic 

displacement and bilinear pore pressure (CPE8P).  

 

Fig. 3 – (a) ABAQUS model with a coefficient of permeability is constant with depth, (b) ABAQUS model for PTIB, (c) 

ABAQUS model for PTPB 

The applied pressure of P = 100 kPa was applied on soil with thickness, H, of 10m, elastic modulus, E, of 1000 kPa. The 

Poisson’s ratio ν is 0 to creates a nonlateral displacement condition to verify with an analytical solution with the assumption 

of no lateral displacement. Three simulations have been conducted to verify the analytical solution. Case one is the simulation 

for the assumption of constant permeability, zk const , to compare with the Terzaghi’s solution [1] (Fig. 3(a)). Case two 

and three are the simulations with the proposed changing permeability for the (PTIB) and (PTTB) cases as shown in Fig. 3(a) 

and (b), respectively.  zk is calculated for every 0.5 m depth. 
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Fig. 4 – Comparison 1D Terzaghi’s solution and FEM solution 

 

Fig. 5. (a) Comparison of the pore pressure distribution of analytical solution and FEM at U=50% for case PTIB, (b) 

Comparison of the pore pressure distribution of analytical solution and FEM at U=50% for case PTPB 

The results of Case 1 are shown in Fig. 4.  It is seen that the FEM employing the constant permeability provides the 

results similar to the Terzaghi’s 1D solution [1]. It also means that the FEM model is suitable for solving the consolidation 

problem in 1D.  Figure 5 shows a comparison of the excess pore pressures obtained by the analytical solution and FEM 

method for the cases of PTIB and PTPB at the average consolidation degree of 50%. Figure 6 shows a comparison of the 

average consolidation degree obtained by the analytical solution and FEM method for the cases of PTIB and PTPB. 
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Fig. 6 – (a) Comparison consolidation degree of analytical solution and FEM for case PTIB, (b) Comparison 

consolidation degree of analytical solution and FEM for case PTPB 

From the above comparison Figs. 5 and 6, which show that pore pressure and average consolidation degree of both 

methods are very matched. The user can apply FEM commercial software with the modified coefficient of permeability to 

achieve the same results as the present analytical solution. 

4.3 Discussions 

The present solution is compared with the theoretical and Chai’s solution which are detailed in Appendix C. 

(1) PTIB case with 10l H m   and (0 )z H   

 
Fig. 7 – Comparison of Excess pore pressure distribution at consolidation degree U=50% for PTIB 
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For this case, the drainage length 10l H m  , depth (0 )z H  , factor of PVD geometry 11.426  , and the 

equivalent permeability by Chai’ method 0.117evk  . Chai’s solution uses the 1D Terzghi’s solution [1] to determine the 

excess pore pressure and average degree of consolidation. The results of excess pore pressure along the depth at the average 

consolidation at 50% are shown in Fig. 7. 

It is obviously seen that the curve of excess pore pressure obtained by the proposed method is very much closer than the 

curve obtained by Chai’s solution when it is compared to theory. Particularly, at the depth of 10m, the proposed solution 

provides a difference of excess pore pressure just 9% of the theory, while the error by the Chai’s method is 37.5%.  The 

comparison of the average degree of consolidation is shown in Fig. 8. 

 

 
Fig. 8 – (a) Comparison of average degree of consolidation of Chai’s solution and theoretical solution for  PTIB, (b) 

Comparison of average degree of consolidation of the present solution and theoretical solution for  PTIB 
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Fig. 9 – Comparison of excess pore pressure distribution at consolidation degree 50%  for PTPB 

 
Fig. 10 –  (a) Comparison of average degree of consolidation of Chai’s solution [11] and theoretical solution for 

PTPB,(b) Comparison of average degree of consolidation of present solution and theoretical solution for PTPB 
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one very closely and had the maximum error of less than 10% and more accurate than Chai’s approach [11]. The proposed 

method provides the average consolidation degrees almost the same as the theoretical one.  
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Appendix A. Derivation of Eq. (2) 

The continuity equation for one-dimensional flow in the vertical direction is: 

 ( )zv
dx dy dz n dx dy dz

z t

 
      

 
 (A1) 

The Darcy’s Law is applied to the permeability of water 
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k u z t
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  


 (A2) 

where i  is the hydraulic gradient,  zk  is the coefficient of permeability depending on the depth z  , u is excess pore 

water pressure, and z is the depth from the top soil.  

Substituting (A2) to (A1) and expressing the porosity n  in terms of void ratio e , the following equation can be obtained 
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 (A3) 

In simplified analysis, assuming that the volume compression modulus  vm is the same for every state of consolidation 

and the rate of effective pressure change are equal to the rate of excess pore water pressure change, the equation (A3) can be 

rewritten  
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Rearrange equation (A4) 
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Appendix B. Derivation of Eq. (21) 

The average consolidation degree in vertical direction by Terzaghi’s consolidation solutions was 
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The average consolidation degree by horizontal drain of Hansbo’s solution [17]. 
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The value  can be express as 

 
223

ln ln( )
4 3

h h

s w

k l kn
s

s k q
 

 
    

 
 (B3) 

where, e wn D d , eD is the diameter of a unit cell, wd is the diameter of the drain, s ws d d , sd is the diameter of the 

smeared zone, hk  and sk are horizontal hydraulic conductivities of the natural soil and smeared zone, respectively; l is 

drainage length, and 
wq is discharge capacity of PVD. 

Carrillo’s theoretical solution[30] for the average consolidation degree of both vertical and horizontal drain. 

   ( ) 1 1 ( ) 1 ( )vh v hU t U t U t     (B4) 

Substitute equation (B1) and (B2) into equation (B4) 
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Appendix C. Theoretical solution and Chai’s method [11] 

Equation (21) from Carrillo’s theoretical solution [30] can be used for determining the average consolidation degree of 

PVD by the combination of the vertical and horizontal drain. In order hand, the average excess pore water pressure with 

depth of PVD can be determined by the following equations. 
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Substitute (C4), (C3), (C2) and (2B) into (C1) to obtain the average excess pore water pressure with depth of theory 

method 

 

2

2 2

(2 1) 8

2

1

4 (2 1)
( , ) 1 sin

(2 1) 2

v h

e

c cm
tm

l D

o

m z
u z t u e

m l







  
      


  

        


  (C5) 

Chai’s method[11] is utilized for this paper in simplified assumption that the change of the volume compressive 

coefficient ( vm ) during consolidation state are the same in both horizontal and vertical direction. Then the equation  can be 

rewritten under vertical consolidation coefficient vc  and horizontal consolidation coefficient hc  
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vec hg  is the equivalent vertical consolidation coefficient by Chai’s Method [11]. This equivalent coefficient vec  is then 

substituted to Terzaghi’s solutions [1] for  the excess pore water pressure and average consolidation degree. 
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