
 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 8 (2021) 21–30                                21 

  

 

 
* Corresponding author. Tel.: +81 80 9508 0587.  

E-mail address: luusbvl@utc.edu.vn; cuong.lt@ou.edu.vn 
 

e-ISSN: 2170-127X,  

Research Paper 

A Solution of Plane Stress Problem Subjected to Horizontal Shear Force 

by Using Polynomial Airy Stress Function 

Luu Xuan Le a, *, Lam Giang To a, Nghia Trong Nguyen b, Samir Khatir c-a, Samir Tiachacht d, 

Cuong Thanh Le b,* 

a Faculty of Civil Engineering, University of Transport and Communications, Vietnam 

b Faculty of Civil Engineering, Ho Chi Minh City Open University, Vietnam 

c Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Faculty of Engineering and Architecture, 

Ghent University, Belgium 

d Laboratory of Mechanics, Structure and Energetics (LMSE), Mouloud Mammeri University of Tizi-Ouzou, Algeria. 

 

A R T I C L E  I N F O 

Article history : 

Received : 17 September 2020 

Revised : 21 February 2021 

Accepted : 5 May 2021 

 

Keywords: 

Plane stress analysis 

Airy stress function 

Shear stress distribution 

Horizontal shear forces 

 

 

 

 

 

 

 

 

 

 

 

A B S T R A C T 

Many structural analysis problems in civil engineering and mechanical engineering can 

be treated as plane stress and plane strain problems introduced in the theory of elasticity. 

One of the popular analytical methods to tackle plane analysis is to determine Airy stress 

function. In general, the Airy stress function depends on the analyzed domain and the 

applied loads; however, the number of problems that can be solved by employing this 

method is limited because of the formidable challenges of guessing trial function. In many 

cases, the trial Airy stress functions are selected based on the results of a simple beam 

model or experimental results. This paper introduces a solution of the plane stress 

subjected to horizontal shear forces by using a polynomial Airy stress function, in which 

the trail function is predicted from the results of the elementary beam theory of an 

equivalent model. The numerical investigation on stress distributions was presented, and 

it showed that although the internal shear force acting on cross-sections have not appeared, 

shear stress still appeared, and the shear stress diagram had both negative and positive 

areas.  

1 Introduction  

Many problems in elasticity can be reduced from three-dimensional analysis to two-dimensional analysis and generally 

known as the plane theory of elasticity. Plane stress and strain are typical types involved with this plane analysis. The 

structures in practice, such as a thin plate with fillet or with hole subjected to loads acting on the plane of the plate and 
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uniformly distributed over the thickness of the plate, are commonly known as plane stress problems [1]. The solution of plane 

stress analysis in elasticity can be found by satisfying the equation of equilibrium of stress element in conjunction with 

compatibility equation and boundary conditions. In the case of neglecting body forces, these mentioned equations result in a 

single formulation called the biharmonic equation which contains the Airy stress function [2]. In this regard, if the Airy stress 

function is successfully identified satisfying biharmonic equation and boundary conditions, such stress components will be 

easily obtained through the corresponding derivatives of the Airy stress function. There are two types of Airy stress function 

commonly used in practice: polynomial function and trigonometric series. Such problems solved by the Airy stress function 

method have been widely attracted attention in the past. Miki, et al. [3] developed the direct computational implementation 

of Airy stress functions to solve parametric self-supporting surface problems; Various types of self-supporting surfaces, e.g., 

symmetric placement of cutting planes, cutting plane placed on the right or left, were computationally investigated. Radice 

[4] derived a decoupled biharmonic Airy stress function for the solution of stress transfer through the square-end adhesive 

layer and sandwich structure core. The Airy stress function in [4] is set with two terms related to Closed Form High Order 

theory (CFHO) and one term related to Decoupled Biharmonic (DB) model, and the coefficients of the Airy stress function 

are identified on the ground of natural boundary conditions and essential boundary conditions. Without neglecting the body 

forces, Muti and Dokuz [5] employed the Airy stress function to analyse the stress and strain behaviours of some axially 

symmetric structures such as thin rotating circular disk and long rotating cylindrical rod, in which such components 

concerning the body force were presented through potential functions. While the common approach to obtain the coefficients 

of the Airy stress function is based on the satisfaction of boundary conditions, Cavaco, et al. [6] used the radical displacement 

data to extract the Airy stress function’s coefficients. That experimental technique was particularly used for stress analysis 

of the soil-pipe interaction of pipelines. In the aspect of Finite Element Method (FEM) for the stress simulation of structures, 

many types of elements have been successfully developed based on the Airy stress function such as a quadrilateral element 

with eight nodes of 16 degrees of freedom [7] or triangular element [8]. Many other studies concerning elasticity problems 

relied on the Airy stress function approach can be found in [9-13] and [14].  

Although the Airy stress function method is popular in dealing with the plan stress problems of elasticity, the number of 

problems that can be solved by employing this method is sometimes limited because of the formidable challenges of guessing 

trial functions. In many cases, the trial Airy stress functions are selected based on the results of a simple beam model or 

experimental results.  

This paper proposes a solution employing the Airy stress function for a plane stress problem subjected to horizontal shear 

forces. The unknown components of the polynomial Airy stress function are predicted through the observation of the results 

of the elementary beam theory of an equivalent beam model. The results of stress analysis by the Airy stress function coincide 

with those results done by the beam theory. The investigation on stress distributions by a numerical example showed that the 

shear stress flows appear regardless of no shear force acting on the cross-section. 

2 Schematic Diagram and Beam Theory for the Given Problem  

2.1 Schematic diagram and problem statement  

An analytical scheme for a plane stress problem of the Theory of Elastics is systematically shown in Fig. (1). The 

cantilever plate with a rectangular cross-section has length l, height h, and thickness t. The upper and lower edges of the plate 

are subjected to the horizontal shear forces with a constant density of p, which is uniformly distributed over the plate’s 

thickness. The plate is made of the material with Young’s modulus E and Poisson’s ratio . Such fundamental assumptions 

made for elastic analysis consisting of isotropic body, homogeneous and continuous behaviour of material are valid in this 

study.  

The issue is to determine the functions of stress distributions including normal and shear stresses acting on cross-sectional 

areas of the plate. The stress spectrum flows and displacements activated along the plate will also be computed and plotted 

following the developed formulations. As previously mentioned, the estimation of the Airy stress function is paramount 

important but challenging. To facilitate the prediction of unknown components of the polynomial stress function, the 

equivalent beam model is firstly analyzed here, then the trial Airy stress function is formulated based on such observations 

of stress distribution resulted from the beam theory. 
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Fig. 1 – Thin plate subjected to horizontal shear forces. 

2.2 Beam theory for the given problem 

The analysis of an equivalent beam model of the thin plate shown in Fig. 1 yield the internal forces just containing 

bending moment and zero shear force acting on cross-sectional areas. Because there is no resultant shear force that acts over 

the cross-section, it could lead to the qualitative conclusion that there are no transverse shear stress distributions on the beam’s 

cross-section as commonly pointed out in Mechanics of Materials [15, 16]. However, this conclusion is incorrect for this 

given problem, and the below analysis proves that there is an occurrence of shear stresses on the cross-sections of the beam 

regardless of no internal shear force. The distribution of shear stress contains negative and positive areas so that the integration 

of the shear stress diagram along with the section’ height still results in zero internal shear force. The expressions of normal 

stress and shear stress based on the equivalent beam theory are following derived.   

     Normal stress  
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where y  is the perpendicular distance from the neutral axis to the point where the stresses are calculated. 

     Shear stress 

For a rectangular cross-section with a narrow width, the transverse shear stress is reasonably assumed to be uniformly 

distributed across the width. Let consider the equilibrium of a beam element dx taken from two adjacent cross-sections as 

displayed in Fig. 2(a).  

 

Fig. 2 – Beam element for the derivation of shear stress  
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The resultant moments acting on two sides of this element are differed by 
zdM . the normal stress distributions over the 

sectional area of each side caused by bending forces are correspondingly shown with triangle distribution diagrams. To 

evaluate the shear stress, let take an equilibrium of a top portion of the element dx which is sectioned at location y from the 

neutral axis x as depicted in Fig. (2b). This small portion is subjected to the following horizontal force components: normal 

stresses at both sides x, shear stress 
xy , and shear load p .  

Taking the force equilibrium of this small portion in the x-direction gives 

    
/2 /2

1 1

h h
z z z

y y

M M dM
y dA t dx p t dx y dA

I I


   
              

   
 (3) 

 
/2

1

h
z

yx
y

dM
y dA t I p

dx


 
   
 

 (4) 

  
2 3

2

2 4 12
yx

t h t h
p t h y t p

     
            

     

 (5) 

 
2

2

6

2
yx

p p y

h


 
   (6) 

Shear stress 
xy  acting on the cross-section is finally formed as 
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Based on the equivalent beam model, the normal stresses 
x ,

y and shear stress 
xy  are formulated as Eqs. (1), (2) and 

(7), respectively. It is interesting that although the equivalent beam subjected to horizontal shear force as shown in Fig. 1 

triggers zero internal shear force, the transverse shear stress 
xy still exists. The shear stress distributions diagram 

xy plotted 

using Eq. (7) will contain negative and positive areas so that the integration of the shear stress along the beam’ height results 

in zero internal shear force. The solution of stress problems solved through the approach of the Mechanics of Materials to 

the equivalent beam will provide hints for the estimation of the trial Airy stress function in the next section.    

3 A Solution of Plane Stress Problem Using Polynomial Airy Stress Function 

The derivation of fundamental equations of the stress plane problem which are commonly written in the Theory of 

Elasticity will be introduced herein for the completeness of the work. The plane stress solution for the thin plate subjected to 

horizontal shear forces as shown in Fig. 1 is proposed by using the Airy stress method. 

The solution of plane stress analysis in elasticity, in general, involves three equations: Differential equation of 

equilibrium; compatibility equation; and boundary conditions. If the body forces are neglected, these formulations reduce to 

the followings [2] 

        20; 0; ( ) 0
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The common approach to tackle these equations is to introduce a function so-called the Airy stress function ( , )x y . 

This stress function is related to normal and shear stress components as  

        
2 2 2

2 2

( , ) ( , ) ( , )
; ;x y xy
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Substitution of stress components from Eq. (10) into the compatibility equation, Eq. (8c) yields     
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Eq. (11) is called the biharmonic equation. Now, the plane stress problem of structural shifts to find the Airy stress 

function ( , )x y  of equation Eq. (11), and satisfy boundary conditions. After having the Airy stress function, the stress 

components are computed using Eq. 10(a), (b) and (c).       

3.1 Derivation of the normal and shear stress equations 

In order to derive the formulations of stresses acting on cross-sections of the plate, the Airy stress function method is 

applied. The polynomial stress function is selected here because of its convenience and simplicity. As mentioned in the 

preceding section, the formidable challenge of the Airy stress function method is to select a proper trail function. To alleviate 

that the observation made on the stress distribution results obtained by an equivalent beam model will be displayed here to 

provide useful information on the trail Airy stress function ( , )x y . 

Based on the analysis of stress distributions presented in section 2.2, it is clear that the normal stress 
x is linearly 

distributed in the x and y direction; the normal stress y is equal to zero at all points; and, the shear stress xy is the parabolic 

function, distributing over cross-sections. Therefore, the polynomial Airy stress function ( , )x y  of third-degree as shown 

below are rationally selected that satisfies those stress observations.  

          3,x y axy bxy    (12) 

where  a  and b  are unknown coefficients, which are ascertained by satisfying boundary conditions.  

Substitution of Eq. (12) into Eq. (10) gives equations of stresses as 
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Boundary conditions 
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By inserting 
x  and xy from Eqs. (13) and (15) into Eqs. (16) and (17), respectively, constants of the Airy stress function 

can be determined, and the Airy stress function is finally formed as 

          3
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Once the Airy stress function is obtained, the normal and shear stress are deduced using Eqs. (13) - (15) as 
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It is noted that the stress formulations presented herein only become an exact solution if there are transverse shear forces 

with the same parabolic distribution as xy  applied to the free end of the plate, and there are normal forces distributed 

proportionally to y, situated at the fixed support. Without having these two additional force conditions at the free end and 

support, the proposed solution is not perfectly correct for those cross-sections near both ends of the plate; however, the present 

solution is still relatively acceptable for those sections far from both ends, according to Saint-Venant’s principle. For 

verification, the normal and shear stresses of the plan stress problem proposed herein coincide completely with the elementary 

solution of the equivalent beam model.  

3.2 Derivation of displacements  

The displacements of the plate are formulated here according to the stress expressions developed above. The transverse 

and horizontal displacements are denoted as ( , )v x y  and ( , )u x y , respectively. Applying strain-displacement relations in 

combination with Hook’s law gives 
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Integration of Eqs. (22), (23) and (24), together with boundary conditions yield the displacements as   
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in which  2 1G E      characterizing the shear modulus 
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Referring to the Appendix for the detailed derivation of displacements. 

4 Numerical Investigations 

Stress spectrums including normal and shear stress acting on cross-sections of the plate subjected to horizontal shear 

loadings are presented here, in which normal and shear stress flows are calculated using Eq. (19) and (21), respectively. The 

plate as shown in Fig. (1) has properties of l = 400 cm, h = 100 cm, t = 2 cm, E = 2  104 kN/cm2, and µ = 0.3. The uniformly 

distributed shear loading applies to the top and bottom faces of the plate in the horizontal direction with a magnitude p = 1 

kN/cm2. As mentioned in the preceding section, the stress distributions are not variable over the thickness of the plate for the 

plane stress problems, and they are formulations of x and y only. In this investigation, the plate’s thickness t is provided for 

a full description of the plate and implied in the calculation of distributed loadings.  

Fig. 3 shows the distributions of normal stress x acting on all cross-sectional areas along the x-axis. The normal stress 

distribution is proportional to y at each section as shown in Fig. 3(b), and the maximum normal stress of each section occurs 

at location y =  h/2. 

a) b)  

 Fig. 3 – Normal stress with Airy stress function: a) Normal stress spectrum; and, b) Normal stress distribution at x = 

l/2. 

a) b)  

 Fig. 4 – Shear stress with Airy stress function: a) Shear stress spectrum; and, b) Shear stress distribution at x = l/2. 

Fig. 4 displays the shear stress distributions which have an unchanged parabolic shape along the x-direction. The 

maximum shear stress takes place at 2y h   with the value as the same as the horizontal shear force value, 
max

xy p  . The 
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stress diagram, Fig. 4(b) pointed out that the shear stress distributes over the sectional area with both positive and negative 

signs and the integration of xy  along the plate’s height is equal to zero.  

Fig. 5 shows transverse displacement ( , )v x y  of the plate, in which each contour line connects such points on the plate 

with the same displacement values. For cross-sections located at considerable distances from the fixed ends, the 

displacements of all points on that section are equal. For the plate’s sections near fixed support, the different points along the 

section’s height gain different displacement values. This phenomenon appears as the effect of shear stress distributions on 

the deflection of the plate. The section at the fixed end is not completely free to distort, and the forces applied to this section 

are different from those given by Eqs. (19) – (21).  

 
 Fig. 5 – Contour lines of transverse displacements v(x,y) of plate 

 
 Fig. 6 –Contour lines of horizontal displacements u(x,y) of plate 

In a similar manner, Fig. 6 illustrates horizontal displacement u(x,y) of the plate with contour line representations. It 

shows zero displacements at the neutral axis and fixed end section. The maximum horizontal displacements are registered at 

the free end.  

5 Conclusions 

The solution of the plane stress problem by using the polynomial Airy stress function is presented in this paper for a thin 

plate subjected to horizontal shear forces. The structure subjected to horizontal shear loading on the upper and lower edges 

of the plate poses zero resultant internal shear force. Although there is non-existence of internal shear force, the shear stress 

still exists on cross-sections. This finding point is useful for stress analysis of similar structures because the Mechanics and 

Materials commonly point out that if without internal shear force, shear stress will not occur. For the given problem, the 

difficulty in guessing trial Airy stress function is overcome through the observations of stress analysis resulted from an 

equivalent beam model of Mechanics of Materials. The shear stress diagram of the thin plate subjected to horizontal shear 

forces contains negative and positive signs, and the integration of shear stress distribution along with the section’s height is 
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equal to zero. The normal stress is linearly distributed over cross-sectional areas. Transverse displacement of all points on a 

section located at considerable distances from the fixed end are nearly equal, but such sections near the fixed end experience 

the effect of the fixed constraint leading to unequal values of vertical displacement on that section. There is less effect of 

boundary restraint on horizontal displacement at ends than that of transverse displacement. 

Appendix A. Derivation of Displacements 

The derivation of transverse of displacements v(x,y) Eq. (25), and horizontal displacement u(x,y) Eq. (26) are presented 

here. 

Applying Hook’s law: 
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Integration of Eqs. (27a, b) gives 
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Substitution of u(x,y) and v(x,y) from Eq. (28a,b) into Eq. (27c) yields 
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Grouping components of x, and component of y, Eq. (29) leads 
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here  
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Because A(x) and B(y) are functions of x and y only, A(x) and B(y) must be constant of A and B, respectively, to satisfy 

Eq. 30. Thus, 
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Integration of Eq. (32) gives 
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Substitution of f(x) and f(y) into Eq. (28) results in 
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The four constants A, B, C and D appeared in Eqs. (34) and (35) are determined using three conditions of constraint 

together with Eq. (30). Let consider the point K at the centroid of a cross-section at the fixed end. Then u(x,y) = v(x,y) = 0 at 

x = l and y = 0. The third condition is that the element of the axis of the plate is fixed, thus  
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Solving the four above mentioned conditions gives the constants as 
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By inserting A, B, C and D into Eq. (34) and (35), the transverse displacement v(x,y) and horizontal displacement u(x,y) 

are correspondingly derived. 
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