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Abstract 

Photoluminescence, Raman mapping, cathodoluminescence and transmission electron microscopy 

(TEM) have been carried out on a “zebra” diamond, containing both brown and colourless bands. The 

stone was cut into two and one part was given high-pressure high temperature (HPHT) treatment, 

removing the brown colouration. The parts were then cut into (110) sections. In the untreated stone 

the morphology of brown stripes is consistent with that of slip bands formed during plastic 

deformation and Raman mapping shows they are under strong compressive stress. Photoluminescence 

from N3 and H3 centres, as well as lines at 406.3 nm, 491.3 nm and 535.9 nm, are correlated with 

brown bands in the untreated sample, while cathodoluminescence shows that band-A luminescence is 

anticorrelated.  HPHT treatment reduces internal stress, and eliminates or reduces correlated 

luminescence. TEM reveals long straight dislocations and dislocation dipoles in the brown bands, 

consistent with deformation by slip and concurrent intrinsic point defect production, while clear bands 

have curved and tangled dislocation networks. We postulate that vacancies produced by plastic 

deformation aggregate into clusters responsible both for the brown colouration and an increase in 

volume that results in compressive stress. The 535.9 nm line has characteristics of an interstitial-type 

defect and may be formed by the trapping of interstitials generated during plastic deformation. 
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1. Introduction 

Plastic deformation is clearly linked to brown, pink, purple and violet colourations observed in 

diamond[1–3]. Of these colours, brown is the most commonly observed, with up to 98% of all mined 

diamonds containing some brown component to their colouration[4,5]. Colouration in plastically 

deformed type I diamonds tends to be localised within lamellae lying along {111} planes, while in 

type II diamond, the colouration is typically found with uniform distribution throughout the sample, 

although the occasional type IIa pink diamond does show some lamellae[5,6]. Single crystal natural 

stones, with brown lamellae separated by colourless regions are sometimes referred to as “zebra” 

diamonds. These coloured lamellae are consistent with slip bands in the material caused by plastic 

deformation[7], or deformation twins[2,8,9]. The appearance of coloured lamellae within colourless 

material is commonly referred to by gemmologists as “graining” (or specifically “brown-graining and 

pink-graining” in cases where the colouration is well defined)[2,5,9]. Brown colouration is a 

gradually increasing absorption towards shorter (blue) wavelengths[10], while pink colouration is 

caused by two absorption bands centred at 550 nm and 390 nm. Brown and pink colouration has been 

observed in both type I and II diamonds, suggesting no direct correlation with nitrogen content, while 

the lack of any sharp features in the absorption spectra of type IIa diamonds implies that an extended 
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defect is responsible for the absorption. The origin of pink colouration is currently unknown, but has 

been linked to twinning[2,9].  

For ductile deformation of diamond to take place, temperatures > 900°C are generally required[11], 

although deformation can be induced at temperatures as low as 750°C with the use of soft 

indenters[12]. In nature, deformation is thought to occur during the diamond’s residence in the 

mantle[13], where lithospheric diamonds can reside for up to 109 years while experiencing 

temperatures between 900 and 1400°C[14]. Plastic deformation can produce a variety of effects on the 

crystal that might in principle contribute to colouration of a diamond. The primary changes induced 

by plastic deformation are the generation and movement of dislocations within the material and/or the 

formation of deformation twins[2,5,9,15]. As deformation progresses, glide of dislocations causes slip 

bands to appear at the surface, while dislocations within the material rearrange themselves to reduce 

crystal stresses, leading to the formation of distinctive dislocation microstructures and causing work 

hardening of the material[7,16]. Owing to the link between the brown colouration and plastic 

deformation, dislocations were first suggested as a possible origin of the absorption[10]. However, not 

all dislocations were found to generate the necessary electronic states to produce absorption consistent 

with brown colour and the density of sites available to provide these states were found to be too low 

given the typical densities of dislocations[17] – of the order of 109 cm-2 . This indicates that some 

secondary effect is responsible.   

Secondary effects of plastic deformation include the production of intrinsic point defects (both 

interstitials and vacancies) caused by the movement of jogged dislocations. Jogged dislocations are 

readily produced following the interaction of dislocations lying on two different glide planes[18]. The 

jogs have restricted mobility, pinning the dislocation in place, but can move non-conservatively by 

emitting point defects. Plastic deformation caused by an active glide system cutting through a pre-

existing ‘forest’ of dislocations produces many jogged dislocations, and thus high concentrations of 

intrinsic point defects[17,19]. It has been demonstrated that dislocation densities of 109 cm-2 and a 

strain of 1% can produce 1017 – 1019 point defects cm-3 via this mechanism[19]. At the temperatures 

required for plastic deformation of diamond the equilibrium concentration of isolated point defects is 

very low, and they can readily migrate to form more stable complexes. For example, the H3 (N-V-N0) 

centre, formed by the capture of a vacancy at an A-centre, is commonly observed at higher 

concentrations in areas showing evidence of deformation[20–22]. Another possible change induced 

by plastic deformation is the break-up of existing point defect complexes by moving dislocations, 

resulting in the creation of new point defects. For example, dislocation movement through A-centres 

has been proposed as the origin of a series of point defects, such as the “amber” centres and W7/N2 

EPR centres, observed in plastically deformed diamonds[23,24]. 

The current consensus is that vacancy clusters are responsible for brown colouration, based on several 

observations[10]. Positron Annihilation Spectroscopy (PAS) suggests the presence of vacancy 

clusters, roughly spherical in shape and 30-60 vacancies in size, in brown diamond[25–27].  They are 

absent in colourless diamond, and their concentration decreases in the same way as brown colouration 

following high pressure high temperature (HPHT) treatment.[28]  Combined optical excitation 

spectroscopy and PAS, along with DFT calculations, show that these vacancy clusters have an 

absorption spectrum that can account for the brown colour[29–33]. Dangling bonds from sp2 bonded 

carbon on the inner walls of the cluster produce the necessary continuum of levels within the band 

gap. Vacancy cluster concentrations of 1015 cm-3 and monovacancy type defect concentrations of 1018 

cm-3 have been measured in brown diamond by PAS[28], so plastic deformation can fully account for 

the point defect concentrations observed. Atomic resolution imaging of brown type IIa diamond has 

found interstitials absorbed onto the 90° partial dislocation, in both dissociated 60° dislocations and 

faulted dipoles, forming a prismatic dislocation loop. The preferential absorption of interstitials onto 

the dislocations over vacancies is a result of the dislocation bias[34], caused by the stronger 

interaction between the stress fields of the dislocations and the interstitials. Pink diamonds have more 



3 

 

complex behaviour and exhibit photochromism, with the pink colour bleaching to brown under UV 

excitation, reverting back to pink after heating or prolonged white light exposure. Charge transfer 

between multiple trap states may be the cause of the photochromism in pink diamond, with vacancy 

clusters likely to be one of these traps[6,35–37].  

From the above, it is apparent that an improved understanding of the processes occurring during 

plastic deformation can assist in determining the origin of various point defects and deformation-

induced coloration. In this regard, correlative microscopy is increasingly being used to obtain a more 

complete picture of the material properties and processes that have occurred, with the ability to image 

the sample on various length scales and extract more sample information than can be obtained from a 

single technique. In this paper we use photoluminescence (PL) and cathodoluminescence (CL) 

spectroscopy to detail the observed point defect distributions, 2D Raman mapping of crystal stresses, 

and Transmission Electron Microscopy (TEM) to understand the dislocation microstructure.  We 

examine their relationship in a “zebra” diamond, containing both brown and colourless bands.  

2. Methods and Materials 

A banded brown type IIa stone was provided by De Beers, which was sectioned into two pieces. One 

piece was subject to HPHT treatment (2000 °C, 12 hours), while the other remained untreated. 

Subsequently, three thick plates were prepared from the two samples; two treated and one untreated 

plate, which were then thinned, by Element Six Ltd, down to 50 μm thickness. Offcuts from the 

untreated stone were retained for spectroscopic measurements. A summary of the plates is provided in 

Table 1. The plates measured 2 mm × 2 mm × 50 μm in size and the face of each plate was orientated 

close to the [1̅1̅0] direction, with the square edges corresponding to <100> and <110> directions. Off-

cuts were approximately 2 mm × 0.5 mm × 0.5 mm in size. The geographical origin of the original 

sample is unknown. 

Table 1: Zebra diamond samples used in the study and their treatment. 

Sample Name Treatment Measurements Size 

Plate A  2000 °C: 12 hours Optical, PL, CL 2mm × 2mm × 50μm 

Plate B 2000 °C: 12 hours TEM, CL 2mm × 2mm × 50μm 

Plate C  Untreated TEM, CL 2mm × 2mm × 50μm 

Sample D (offcuts) Untreated Optical, PL, CL 2mm × 0.5mm × 0.5mm 

 

FTIR spectroscopy was attempted to map any A (N-N), B (N4V) or B’ (interstitial clusters) centres in 

the samples to assist in the interpretation of the PL maps, however the limited sample thickness 

caused interference effects which prevented meaningful spectra from being obtained. An FTIR 

spectrum of the complete rough stone found no evidence of A, B or C centres, indicating the sample is 

of type IIa, although inhomogeneities in defect concentrations throughout the stone may be present 

and the FTIR spectrum obtained may be unrepresentative of the prepared samples used here. It is also 

widely accepted that the sensitivity limit of FTIR in characterising nitrogen concentrations is 1 ppm, 

and so whilst the stone is classified as IIa, it is plausible a small amount of A or B centres are present 

especially given the presence of nitrogen-related defects in other spectroscopic measurements.  

PL mapping was carried out on a Horiba LabRAM Evolution microscope and spectrometer using a 

488 nm solid state laser, step size of 5 μm, and a Renishaw InVia confocal microscope using a 325 

nm HeCd laser, step size of 7.5 μm, at liquid nitrogen (LN) temperatures. Raman mapping was carried 



4 

 

out on the Horiba LabRAM Evolution microscope and spectrometer using a 660 nm laser, step size 2 

μm, at LN temperatures.  

CL was carried out on a Zeiss Supra 55VP Field Emission Gun (FEG) SEM equipped with a Gatan 

MonoCL3 system. Samples were coated in a thin layer of carbon to neutralise sample charging. 

Panchromatic CL images were obtained using a Variable Pressure Secondary Electron (VPSE) 

detector, which allowed low-magnification images of the entire sample to be taken. In variable 

pressure mode, the VPSE detector detects photons emitted from gas in the chamber, ionised by 

secondary electrons emanating from the sample surface, whereas in high vacuum mode only photons 

generated by CL are detected. This use of the VPSE detector negates the need for a parabolic mirror, 

which only collects photons efficiently from its focal point. CL was carried out at temperatures of 

approx. -140 °C to increase luminescent intensity and line sharpness; imaging was carried out with an 

accelerating voltage of 5 kV, to maximise image resolution, while spectra were taken at 20 – 30 kV to 

maximise signal.  This larger accelerating voltage produces a generation volume larger than that of 

imaging and the spectra obtained probes deeper into the sample. 

The diamond plates B and C were thinned to electron transparency using Ar+ ions in a Gatan 

Precision Ion Polishing System (PIPS). Continuous ion milling was carried out on one side at 5 kV 

with an incident angle of 5° for 3 hours, after which the sample was turned over and milled on the 

other side under the same conditions until a small hole was produced. This gave a large electron-

transparent area, with thicknesses of < 100 nm being achieved near the edge of the hole and < 200 nm 

up to 1-2 μm away. Final polishing of both sides of the specimen, at voltages between 0.5 - 3.5 kV 

and at angles of 3 - 3.5°, was carried out to ensure a clean and flat surface. Conventional TEM 

imaging was carried out using a LaB6 JEOL 2100 Plus HC using an accelerating voltage of 80 and 

200 kV. Bright Field (BF), Dark Field (DF) and Weak Beam Dark Field (WBDF) imaging was 

carried out using a 220 diffraction condition.  

3. Results 

3.1 Optical Imaging of Sample D (untreated) 

Optical images of the untreated sample, Sample D, show the brown colouration is concentrated in 

distinct bands, Figure 1(a). The sample has been cut and polished with the major face aligned to 

(110). The brown bands are orientated at approx. 54° (± 3°) to the (001) face, consistent with the 

intersection of a (1̅11) plane on the (110) face, as expected for slip bands.  We investigate the right-

hand side of the sample in detail and to allow spatial correlation it is helpful to recognise the dark and 

narrow band marked ■ in Fig. 1(a). Birefringence imaging, sensitive to shear strain in the material that 

induces optical anisotropy, is shown in Figure 1(b). This clearly shows the bands and the highly 

strained nature of the diamond. The strain appears to vary across the sample, with a distinct banding 

pattern, where broader bands in the material show a higher order of birefringence at the interfaces. 
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Figure 1: (a) Optical Image of section of Sample D (untreated sample). Brown colouration appears as bands 

running from bottom-left to top-right. (001) and (1̅10) planes highlighted by red and blue respectively. X 

marks approximate location of PL spectra of Figure 3. ■ marks a distinct brown band that is a useful 

reference point.  (b) Imaged with cross polarisers to show birefringence. Brighter material is highly strained. 

 

While birefringence images show shear strain, the first order Raman line can be used to measure 

hydrostatic stress, calculated from the shift Δ in the 1332.5 cm-1 position in unstrained diamond, 

using 𝜎 = Δ/α, where α is the hydrostatic stress gauge factor (approx. 2.9 cm-1/GPa)[38]. Each spectra 

is fitted with a single pseudovoigt line shape, and the resulting maps of the Raman shift and stress are 

shown in Figure 2, as well as the line width. Broadening of the Raman line indicates the presence of 

different hydrostatic stresses in the excitation volume, i.e. the presence of stress gradients, point 

defects or dislocations. We note that despite mounting the sample normal to the objective, the area 

under the Raman peak fit varies across the bands which can be found in Figure S1. 

 

Figure 2: Raman maps using 660 nm laser excitation of Sample D (untreated sample, right side of Figure 1). 

(a) peak position; b) hydrostatic stress; (c) peak width. Brown bands are in compression and colourless bands 

in tension. ■ highlights the same sharp brown band shown in Figure 1. 

 

Comparing the map of hydrostatic stress, Figure 2(b), with Figure 1(a) it is seen that brown bands are 

in compressive stress, particularly the dark brown band ■, while colourless bands are under tension. 

Stresses approaching 300 MPa can be found adjacent to interfaces between bands, with lower stresses 

near the middle of the bands. The interfaces themselves tend to coincide with the plane of zero stress 

that must be present between regions in compression and tension, although the stress gradient is high 

as evidenced by an increased width of the Raman line, Figure 2(c).  Also visible in Figure 2(c) is a 

cellular network of dislocations.  The broadening of the Raman line is consistent with the high stress 

gradients produced by a high density of dislocations. Manual inspection of the fits show the Raman 

line is well characterised by the single pseudovoigt function, indicating the internal stresses are not 

high enough to remove the triple degeneracy of the first order Raman[39].  This network has no 

correlation with the colouration and in fact cuts across both colourless and brown bands in many 

places.  This cellular network may have played the role of forest dislocations[19] for subsequent 

plastic deformation that gave rise to the brown colouration. 
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Figure 3: PL spectra from a brown band in untreated material (sample D) as indicated in Fig. 1a. (a) in the 

range 390 – 500 nm. Zero-phonon lines (ZPL) can be seen at 406.3 nm and 415.4 nm (N3). Spectrum 

obtained using 325 nm laser excitation at LN2 temperatures. Inset, small features between N3 phonon 

sidebands and small peak at 491.3 nm. (b) PL spectrum in the range 495 – 545 nm. Raman line (R) observed 

at 521.9 nm. ZPL observed at 503.2 nm (H3) and 535 nm. Spectrum obtained using 488 nm laser at LN 

temperatures. 

 

PL spectroscopy in the centre of a brown band (position marked in Figure 1) indicates the presence of 

several point defects, Figure 3. As expected for plastically deformed natural diamond, the nitrogen-

related zero-phonon line (ZPL) of both N3 (415.4nm) and H3 (503.2nm) are present, with phonon 

sidebands at 428, 438 and 512, 520, 528 nm respectively.  In addition to the N3 and H3 lines, the first 

order Raman line is present at 521 nm and a strong line can be seen at 535.9 nm whose origin is 

unknown. Weak lines can also be observed at 406.3 nm and 491.3 nm, and even finer features are 

present between the sidebands of the N3 centre at 423 nm, Figure 3(a) inset, although the intensity of 

these features is low and accurate determination of peak wavelength is difficult. Mapping of these 

defects was not possible due to their weak signal. In order to further understand the origin of PL 

features, we performed mapping of the N3, H3 and 535 nm luminescence over the same region as 

shown in Figs. 1 and 2, the results of which are shown in Figure 4. Fitting of the N3, H3 and 535.9 nm 

lines was carried out with a single pseudovoigt peak. Deconvolving the ZPL of the H3 defect by 

fitting two pseudovoigts was attempted, and the results can be seen in the Supplementary Information, 

Figure S3. 
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Figure 4: PL maps of untreated material (sample D).  (a) N3(415.4 nm) peak intensity, (b) H3 integrated 

intensity (500 – 506 nm) and (c) 535.9 nm line intensity. (d) Map of H3 line width, (e) Region shown in (e) 

with numbered pixels across band interface. (f) Map of 535.9nm line width. (g) H3 line at numbered pixels in 

(e) showing the splitting of the peak across the band interface. Increased intensity represents a broader peak. 

Black spots in (b, c) are foreign particles on the surface. Defect lines are unnormalized with respect to the 

Raman line, see discussion. Arrows highlight the band ■. 

 

The distributions of all three strong luminescence centres are correlated with colouration. The N3 

intensity is the least correlated; brown bands appear to have stronger N3 luminescence in general but 

the banded N3 structure only vaguely resembles the stripes of colouration in Fig. 1(a).  There are 

bright and dark patches that are unrelated to the bands and the latter may be due to quenching from 

the cellular dislocation network. The diffuse appearance is partly due to the relatively large step size 

of the scanning laser beam (of 7.5 μm) and the use of interpolation. The H3 intensity map is integrated 

over the spectral window of 500 – 506 nm.  The fitting of the H3 line is complicated by the splitting 

of this peak, as shown in the SI, but broadly agrees with the integrated window.  The intensity of H3 

is ~25% higher in brown vs colourless bands while the 535 nm luminescence shows much higher 

contrast, typically doubled in brown bands.  Quenching of the 535 nm line by the cellular dislocation 

network is clearly visible, while dislocations hardly affect the H3 map. Both H3 and 535 nm lines 

show broadening that matches the stresses observed in the Raman map (Figures 4(d) and 4(f)).  

Further investigation reveals that the broadening at brown/colourless boundaries is seen as splitting of 

the peak into two as shown in Figure 4(e) and (g).  This indicates that the energy of these defects is 

affected by the stress gradient at these interfacial regions. 

In summary for these observations, brown bands have a higher content of H3 and N3 centres, 

associated with nitrogen-vacancy complexes, and an unknown complex luminescing at 535 nm.  

However, the correlation is low for the H3 centre and N3 is only slightly enhanced in brown bands. 



8 

 

Both H3 and 535 nm show broadening/splitting near to boundaries indicating a sensitivity to stress 

and/or strain, but quenching of luminescence by high dislocation densities in the cellular dislocation 

network only affects the 535 nm and N3 lines. 

3.2 Optical Imaging of Plate A (treated) 

Optical imaging of the treated stone, Plate A, shows a marked reduction in the brown colouration, 

Figure 5, although faint bands can still be seen. Birefringence imaging, Figure 5 (b), shows that shear 

strain remains present in the sample, but has become more restricted to interfaces between the 

colourless and formerly brown bands. 

 

Figure 5: (a) Optical image of Plate A (HPHT treated) stone. Banding can still be observed although the 

colouration is substantially reduced. (b) Birefringence image showing some strained regions remain after 

treatment. 

 

Raman mapping confirms that substantial internal stresses are still present in the sample, as shown in 

Figure 6 (note this is area does not correspond to that of Figure 5, although it is in the same 

orientation). Plotted at the same magnitude as Figure 2, it is clear to see a reduction in contrast, 

indicative of a reduction in stress magnitudes. A histogram of stress values from the maps is provided 

in the supplementary information, Figure S2, which confirms a reduction in the magnitudes and 

spread of stresses measured. The standard deviation of stress values have dropped from 92 MPa, in 

the untreated stone, to 52 MPa, in the HPHT treated stone. Stress gradients, as inferred by the width 

of the Raman line (Figure 6c), still exist at interfaces between bands but are now equivalent to, or 

only slightly larger than, those at cellular dislocation networks.  Away from the network of defects, 

stress gradients within the bands are low, producing less than 2 cm-1 of broadening of the Raman line.  

 

Figure 6: (a) Map of Raman peak position in HPHT treated Plate A, (N.B. different area from Figure 5a). (b) 

Map of hydrostatic stress calculated from shift in Raman peak position. (c) Map of Raman peak width. 
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We also observe that PL spectra are changed significantly by HPHT treatment.  Spectra from a region 

that has lost its brown colouration is shown in Figure 7. The 406.3 nm, 491 nm and 535.9 nm lines 

have been completely removed following HPHT treatment. By comparing the H3 (503.2 nm) and N3 

(415.5 nm) ZPL intensities to the first order Raman intensity, we also qualitatively observed a reduced 

intensity when compared to the untreated sample. Maps of the H3 and N3 ZPL intensities can be seen 

in Figure 8. 

 

Figure 7: (a) PL spectrum in the region 390 – 500 nm from a previously brown region in HPHT treated  Plate 

A. The ZPL at 406 nm and 491 nm are absent post HPHT treatment. Spectrum obtained using 325 nm laser at 

LN temp. (b) PL spectrum in the region 495 – 545 nm. A Raman line is observed at 521 nm. The H3 ZPL line 

(503.2 nm) is still present but at lower intensity, while the 535 nm line is completely removed. Spectrum 

obtained using 488 nm laser at LN temp. PL spectra are representative of entire mapped area. 

 

Figure 8: PL maps of HPHT treated material (sample A).  (a) N3 (415.5 nm) and (b) H3 (503.2 nm) peak 

intensity maps. N3 concentrations appear to be larger in areas containing fewer H3 centres. (c) Map of the H3 

line width. 

 

As seen previously in the untreated sample, the distribution of the N3 centre is patchy and while a 

correlation with the banded structure is evident (again, N3 is generally higher in the formerly brown 

bands) the correlation is not as strong as that of the H3 centre, as can be seen in Figures 8 (a) and (b).  

The H3 centre also remains stronger in the formerly brown bands, and is still significant in colourless 

material.  Both H3 and N3 show strong quenching at cellular dislocation networks. No splitting of the 

H3 peak is observed and the width is smaller than in the untreated sample with a maximum FWHM of 

1.6 nm in Figure 8(c) in comparison with 2.2 nm in Figure 4(d), consistent with the lower internal 

stress and strain observed in the Raman map and birefringence image.  
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These results indicate a significant reduction in the density of point defect complexes that 

accompanies the loss of brown colouration with HPHT treatment, as well as lower internal stresses 

and strains.   

3.3 Cathodoluminescence (CL) 

Cathodoluminescence images provide a link between PL maps and TEM images as they give similar 

information to PL but at a resolution limited mainly by the diffusion length of the non-equilibrium 

charge carriers generated in the material by the primary electron beam. Panchromatic CL images of 

Sample D and Plate A are shown in Figure 9.  The banded structure is readily visible for both the 

untreated and treated samples, although in these panchromatic CL images brown, and formerly 

brown, bands have reduced CL intensity whereas in the monochromatic PL maps of Figures 4 and 8 

they have higher H3, N3 and 535 nm line intensities, that is, contrast appears reversed.  Quenching of 

luminescence by the cellular dislocation network, which matches that in PL maps, is also visible.  The 

contrast between the bands in the panchromatic CL images is due to higher intensity of band A 

emission (~400-500 nm) in the colourless bands, as can be seen in the CL spectra of Figure 10. These 

spectra were normalised to be equal at background levels (an emission wavelength of 300 nm) to 

allow quantitative comparison.  In the untreated stone the luminescence appears uniform across the 

brown bands while that from colourless bands is patchy.  Some interfaces between the bands have 

enhanced luminescence.  The difference in Band A emission between colourless and formerly brown 

bands is smaller, but still readily observable after HPHT treatment (Figure 10(b)). However in the 

HPHT treated sample, the lower luminescence is more strongly affected by non-radiative 

recombination at dislocations and is patchy and variable (Figure 9(b)). 

 

Figure 9: Panchromatic CL images obtained using the VPSE detector of (a) Sample D - untreated diamond 

and (b) Plate A – HPHT treated diamond. Brown bands exhibit less luminescence than colourless bands. 

References ■ and X in (a) link these to Figures 1, 2 and 4.   

 

In the CL spectra of both samples, Figure 10, the N3 ZPL (415 nm) and its phonon sidebands can be 

seen on top of Band A emission for both brown and colourless bands. Additional peaks are seen in the 

untreated sample, with lines at 491 nm, 503 nm and 536 nm. The 406 nm line in the untreated sample 

observed by PL is not observed in the CL spectrum and other strong PL lines, H3 (503 nm) and 535 

nm lines are weak.  Conversely, the 491 nm line is much stronger in CL compared to PL.  
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Figure 10: CL spectra of (a) Sample D (untreated) and (b) Plate B (HPHT treated) at LN temperature 

(Normalised at 300 nm). Spectra reveal the presence of the N3 defect at 415 nm, overlaid on the broad peak 

of band A emission in both untreated and treated sample. Second order N3 ZPL can be seen at 831 nm. 

Untreated sample shows additional peaks at 491, 503 and 536 nm in agreement with PL spectra. A small H3 

peak is observed after treatment.  

 

3.4 Transmission Electron Microscopy (TEM) 

Panchromatic CL imaging was used to locate a boundary between a brown and colourless band in 

Plate C after thinning to electron transparency, shown in Figure S4. TEM imaging was then carried 

out across this boundary. The images shown in Figures 11(a, b, c and d) use a g3g 22̅0 weak beam 

dark field (WBDF) imaging condition, in which dislocations appear as bright lines on a dark 

background; part of the cellular network of low angle grain boundaries identified by CL (Figure S4) is 

highlighted in yellow in the TEM image (Figure 11 (a)) to show their relationship. Clear differences 

in the dislocation microstructure of the two bands can be seen, Figure 11(a). In brown material 

(Figure 11(b, c)) large numbers of long, straight dislocations and dislocation dipoles can be observed, 

all with line directions parallel to the axis of the band, i.e. on the (1̅11) plane.  In the colourless band, 

(Figure 11(d)) dislocations form a tangled three-dimensional network with many interactions and 

curved segments. Due to complexity of these networks the dislocation density is difficult to estimate, 

but there is no obvious large difference in dislocation density in the two bands, only the way they are 

structured.  
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Higher magnification images of dislocation dipoles in the brown band are shown in Figure 12.  Figure 

12(a) is again a WBDF image in which dislocations appear as bright lines.  A high density of long 

straight dislocations can be seen lying parallel to the axis of the band, on (1̅11) planes, running 

bottom left to top right, as well as dislocations cutting through their glide plane, running roughly 

horizontally with rather variable line directions in the plane of the TEM specimen, between [1̅10] and 

[2̅21].  These dislocations are not glissile and their variable line direction indicates that they are either 

formed during growth of the crystal or have undergone some climb; in either case they precede the 

arrival of the straight glissile dislocations[40–43].  Figures 12(b) and (c) show the interaction in more 

detail with a pair of bright field TEM images with opposite g-vectors.  The reversal of contrast in 

these images show that many of the straight defects are dipoles.  This contrast reversal is marked by 

black and white bars for a particularly widely-spaced dipole in Figures 12(b) and (c) but can also be 

seen for other defects. 

 

Figure 11: (a) WBDF g3g 22̅0 TEM image of dislocation microstructure across the boundary between a 

brown and colourless band in untreated diamond (Plate C), approximate location highlighted by red dashed 

line. Boxes highlight areas of (b) and (d). Distinctive dislocation network identified by CL is highlighted in 

yellow. (b) Dislocation microstructure within the brown band showing the are predominantly straight 

parallel dislocations and dipoles. (c) Cropped image of area highlighted in (b) showing a dislocation dipole. 

(d) Dislocation microstructure within the colourless band showing a tangled dislocation network. 
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Figure 12: Dislocations and dislocation dipoles in a brown band in untreated diamond (Plate C). (a) WBDF 

TEM image of forest dislocations (roughly horizontal) that have interacted with dislocations gliding on the 

(111) plane, which are straight and run top right to bottom.(b) and (c) A pair of BF TEM images with 

reversed g-vector.  For dipoles, contrast changes from inside to outside, indicated by the black and white 

bands for one dipole with a wide spacing (~30nm) between the dislocations. 

 

After HPHT treatment the general dislocation structure appears unchanged as shown in Figure 13. 

Dislocation dipoles remain in the formerly brown bands and dislocations are still observed in tangles 

in the colourless band.  Since it is not possible to examine any given structure before and after HPHT 

treatment, changes in individual dislocation configurations cannot be determined.   
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4. Discussion 

The optically-active defect distributions observed in this zebra diamond are strongly affected by the 

plastic deformation it has experienced, which is evident in its physical microstructure. Colourless 

bands extend across the whole crystal, while brown bands tend to be wedge-shaped and can terminate 

at a sharp point to bifurcate colourless material.  No twins are observed.  The microstructure is 

consistent with a ductile fcc material that is well into stage II deformation[44], where the majority of 

plastic deformation has taken place in lamellae (slip bands, i.e. the brown bands), with boundaries that 

characteristically lie close to a {111} plane[7,45].  This notion is backed up by the dislocation 

microstructure; those in colourless material are tangled and curved and it is unclear if they are at all 

mobile, while in brown material high densities of straight dislocation dipoles are present, which can 

only have been produced by glide of many dislocations interacting with forest dislocations.  The 

dipoles are primary evidence for the production of high densities of point defects by plastic 

deformation[40], and are formed when a glissile dislocation passes around several forest dislocations 

that cut through its glide plane, process shown in Figure 14.   

 

Figure 13: DF TEM image of dislocation microstructure in HPHT treated diamond (Plate B) across the 

boundary between a formerly brown band (left) and a colourless band (right). White boxes highlight areas of 

(b) and (c). (b) Higher magnification image of dislocation structures in the formerly brown band. (c) Higher 

magnification image of dislocation structures in the colourless band. 
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Figure 14: Formation of dislocation dipoles by the movement of a screw dislocation through a forest of screw 

dislocations. (a) A screw dislocation with Burgers vector b1 moves to the right approaching three forest screw 

dislocations with Burgers vector bf. (b) Each forest dislocation creates a unitary jog on dislocation b1, 

likewise dislocation b1 creates jogs in each forest dislocation. (c) Unitary jogs have combined to form a jog 

with height of three glide planes. (d) Dislocation b1 continues to move to the right, pulling out a dislocation 

dipole with height of three glide planes from the immobile jog. (N.B. Height of dipole is for illustration of the 

mechanism and should not be taken to imply the stability of a dipole with a height of three glide planes. 

 

For each forest dislocation with a screw component, the dislocation is displaced by a lattice 

translation vector, increasing the separation between the two arms and creating a dipole. For dipole 

separation above a critical height (hc) the attractive force between the dislocations is insufficient to 

cause their annihilation and they remain stable in the crystal.  These remnant dipoles can be observed 

in Figures 11, 12 and 13. Dipoles with separation below hc annihilate, releasing interstitials or 

vacancies as they do so.  (Which point defect is produced depends simply upon the sense of the 

displacement of the dislocations forming the dipole.  Estimates suggest that both interstitials and 

vacancies are produced in roughly equal numbers.[19])  The value of hc is not known precisely, but is 

estimated to be a few monolayers; previous studies have found dipoles with separations as small as 12 

monolayers[19,46].  Although annihilated dipoles no longer exist to be seen in TEM images, the 

presence of larger dipoles indicates that the mechanism has been active.  The point defects so 

produced easily migrate at the high temperatures required for plastic deformation[11,14,47] and since 

their equilibrium concentration is very low[19] they aggregate into clusters or are absorbed at sinks 

such as dislocations.  Some point defects may also be released in the initial stages of dislocation glide 

in slip bands, by the disturbance and break up pre-existing point defect complexes.  The point defect 

concentration generated by plastic deformation is large enough to account for all vacancy clusters 

observed in brown diamond[19].  The high flux of point defects, as they diffuse through the material 

before finding a stable location, is also likely to both change existing point defect complexes 

containing impurities such as nitrogen (e.g. by capture of a vacancy V) or enhanced diffusion[47,48].   

These microstructural changes have a strong impact on the luminescence properties of the stone and 

are evident in the PL and CL spectra of the stone before HPHT treatment.  Even though this is 

nominally a type IIa diamond, with no detectable nitrogen signature in FTIR spectra from the rough 

stone, PL spectra from brown bands in the untreated sample are dominated by the zero-phonon line of 

N3 (N3V, 415.4nm) and H3 (usually ascribed to a N-V-N0 defect[49], 503.2nm) as well as the first 

order Raman line at 521.9 nm and a line at 535.9 nm.  Weaker PL lines at 406.3 nm and 491.3 nm are 

also seen in brown stripes of the untreated sample.  Generation of point defects produces a volume 

expansion of the material[50,51] and the compressive stress observed using the Raman line in Figs. 2 

and 6 is thus evidence of point defect production in brown bands.  The amplitude of the Raman line 

also changes between the brown and colourless bands (Figure S2). Typically, PL lines are ratioed with 

respect to the Raman line, as an internal normalisation, removing the influence of laser power and the 

effect of fluctuations from the system[52,53]. Due to the variation in Raman amplitude, which appear 

to be from the sample itself rather than the instrumentation, normalisation of PL lines with respect to 

the Raman line was not carried out. Despite mounting the sample perfectly flat relative to the 

microscope objective, it is not understood why the Raman amplitude changes by correlation of the 
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brown and colourless bands, and so this requires further investigation to understand the underlying 

principles of Raman emission. 

In the untreated sample, N3 PL maps show some correlation with the brown bands while the H3 and 

535.9 nm maps have a perfect correspondence.  All have higher concentration in brown bands with 

reduced intensity at dense dislocation networks for the N3 and 535.9 nm lines.  It has been suggested 

that plastic deformation can break-up B-centres (N4V), thus increasing the concentration of H3, N3 

and single N defects[54].  No line is observed at 496 nm in these samples that would correspond to 

the H4 centre, a defect comprised of 4 nitrogen atoms and 2 vacancies (B-centre + V; N4V2) [55] and 

here implied as a PL proxy for the B-centre. Whilst the H4 centre is not thermally stable above 

1400°C[49] it is also said to be correlated with a line at 490.7 nm which itself is linked to plastic 

deformation[52]. Conversely, the annealing behaviour of the 490.7 nm line does not follow that of 

H4, with it annealing out at higher temperatures[56,57]. As will be discussed, we do observe a line at 

491.3 nm which has some correlation to the brown bands in this material, but it is not clear whether 

this is the same defect as the 490.7 nm line. When considering all of this with the type IIa nature of 

the samples studied here, it is uncertain if any B-centres formed during growth and have then 

subsequently broken up (due to moving dislocations) in order to form the N3 defects observed. 

Ultimately then, we are unable to deduce which mechanism of N3 formation is favoured with these 

type IIa research samples. The route is likely convoluted with multiple mechanisms such as the 

generation of vacancies by plastic deformation and their subsequent capture by nitrogen defects18–20,48, 

interstitial assisted aggregation[48,58], plastic deformation related enhanced nitrogen aggregation[8], 

and any potential B-centre breakdown[54]. To unravel this further, additional correlative microscopy 

and spectral mapping on type Ia material should be considered. 

The H3 line is sometimes present as two peaks.  Whilst the deconvolution of the H3 peak is difficult 

to apply robustly within this dataset, individual spectra in Figure 4(g) show that splitting is strongest 

at the transition from brown to colourless.  Davies et al.[35] showed that the H3 line splits under the 

application of uniaxial stress and the maximum separation observed here of 5 meV suggests a stress 

between 200 and 600 MPa, consistent with the rapidly changing Raman shift at these locations.  

Alternatively, the second peak could be the 3H defect, (ZPL 503.5 nm), associated with self-

interstitials[59].  The 3H defect is stable up to temperatures of 800 °C so could conceivably remain 

stable during plastic deformation at relatively low temperatures[60].  However, since deformation at 

temperatures above 1000 °C is more typical, and stress gradients are clearly present, the stress-

splitting hypothesis is stronger.  Davies et al.[35] also showed that stress reduces H3 line intensity, but 

the observed difference (~25%) between brown and colourless bands would requires stresses >2.5 

GPa. The contrast is thus probably a consequence of the low nitrogen concentration in combination 

with vacancy production in the brown bands, which would allow almost complete conversion of N-N 

to N-V-N at relatively low vacancy concentrations even in colourless material. 

The 535.9 nm line observed here has the strongest intensity variation from brown to colourless bands 

and is probably the same as the line at 535.8 nm commonly observed in Argyle diamonds and some 

brown diamonds.  The origin of this emission is unknown.  It has been observed around inclusions 

and deformation lamellae in milky type IaB diamonds suggesting it is a product of plastic 

deformation,[55] possibly related to the presence of B-centres and other related defects[2,57,61]. Gu 

and Wang[55] found it to be correlated with the H4 line (which, as noted above, is absent in this 

stone).  Uniaxial stress measurements of the 535.8 nm defect indicate it has monoclinic I symmetry 

and movements of the line in response to stresses are small meaning this defect is unlikely to contain 

a vacancy[62].  Thus, the results shown here, and previous studies, suggest the origin is due to point 

defects – in this case self-interstitials, rather than vacancies – and this is again consistent with their 

formation by plastic deformation.  Figure 4(c) shows this line is either quenched, or not present, at the 

cellular dislocation network suggesting that the interstitials are captured by dislocations as seen in our 

previous work[19].   
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The weak 406.3 nm and 491.3 nm lines seen in brown bands here match those seen by Nadolinny et 

al.[63], who observed lines at 406, 491 and 423 nm (the latter also seen in this stone but extremely 

weak).  They correlated these signals with an EPR signal from dangling bonds in the core of 

dislocations[63].  Other observations associate them with nitrogen in brown diamond,[49] and 

Graham and Buseck proposed that their 491.3 nm line was caused by the movement of a dislocation 

through an A-centre, forming a N-C-C-N defect[64].  Another study in agreement is that of Collins & 

Woods who observed a strong 490.7 nm line using CL spectroscopy in brown type Ia diamond, again 

accompanied by a 423 nm line and correlated with slip bands [57,65].  Gaillou et al.[2] observed a 

ZPL at 405.5 nm, proposed to be a strain-modified N3 centre, that may be the same as the 406.3 nm 

observed here. However, the accompanying line at 491 nm that we observe was absent, which could 

simply be because it is very weak, but could indicate that the 405.5 nm defect is a different entity.   

Here, phonon sidebands are obscured by the N3 ZPL and accompanying structures, so a good 

comparison cannot be made.  Nevertheless, these prior observations and our results indicate that the 

406.3, 491.3 and 423 nm lines are due to nitrogen-containing defects, formed or modified by plastic 

deformation or dislocation strain fields.  

In CL spectra from the untreated stone the N3 line and its phonon sidebands are strong and clearly 

visible.  The H3 and 536 nm lines are also present in brown bands, but very weak, while the 491 nm 

line is significantly stronger, illustrating the different selection rules for luminescence from optical 

excitation (PL) and carrier recombination (CL).  However, the spectrum is dominated between 400 

and 500 nm by band-A luminescence.  The origin of this emission is not fully understood, but is 

commonly in observed in both natural diamond and CVD-grown homoepitaxial single crystals and 

polycrystalline material[21,49,66]. It is known to be associated with dislocations and grain 

boundaries[67,68]. CL of other type IIa diamonds has shown that the dislocations themselves appear 

dark, indicating that they are non-radiative recombination centres, while surrounding material 

luminesces strongly[19], suggesting that a point defect atmosphere around dislocations is responsible.  

Interestingly, although deformation is confined to the brown bands the band-A luminescence is in fact 

roughly 30% lower there.  The difference may be related to dislocation density, but it seems more 

probable that the cause is the difference in dislocation microstructure (e.g. straight vs curved 

dislocations, or dislocations vs dislocation dipoles).   

The HPHT treatment almost completely removes brown colouration but the effect on physical 

microstructure is subtle at the length scales examined here.  The natural variation in dislocation 

density and orientation from place to place effectively obscures any change that could be a result of 

the 2000 °C treatment.  As seen in Fig. 13b the applied temperature is insufficient to produce 

annihilation of many dislocation dipoles, although it may be the case that dipoles with the narrowest 

spacings have annihilated.  Certainly, the lack of any gross change in dislocation microstructure 

indicates that HPHT treatment mainly affects point defects, and the significant reduction in 

hydrostatic stress levels measured by the Raman line indicates that many point defects have been 

reincorporated into the lattice.  In PL the strong line at 535.9 nm and the weak lines at 406, 491 and 

423 nm are completely removed as are the equivalent lines in the CL spectra, indicating these point 

defect complexes are broken up by the anneal.  The H3 and N3 lines also decrease in intensity by 

roughly 75%, when comparing their intensity to the first order Raman line, although the relative 

difference between brown and colourless bands does not change significantly.  Since HPHT treatment 

is unlikely to change nitrogen content, it is plausible that this reduction must be the detachment of 

vacancies from these complexes and this agrees with the removal of vacancy clusters responsible for 

brown colouration[10].  These point defects presumably incorporate into the bulk of the crystal by 

mutual annihilation with interstitials or collapse into dislocation loops[17,69]. In CL, although the 

relative intensities of the N3 and band-A luminescence remain unchanged, the difference between the 

brown and colourless band-A intensities is greatly reduced from 30% to 10%, which probably 

indicates some change in dislocation microstructure at a finer scale than that examined here. 



18 

 

5. Conclusion  

Correlative microscopy and spectroscopy has been used to image the point defect distributions and 

dislocation microstructures in a “zebra” diamond containing both brown and colourless bands.  Large 

numbers of dislocation dipoles are observed in the brown bands, indicative of glide and interaction 

with forest dislocations during plastic deformation and the generation of intrinsic point defects.  

Raman maps show brown bands are under compressive stress, while colourless material is in tension. 

Dislocations in colourless material are curved and tangled and the difference in microstructure 

correlates with an increase in Band A emission in CL spectroscopy.  The vacancies generated during 

plastic deformation agglomerate into clusters responsible for the colouration and can also be trapped 

at nitrogen defect complexes, such as the H3 defect found in larger concentrations in the brown bands.  

Weak lines at 406.3 nm and 491.3 nm are observed in brown bands of the untreated sample, matching 

those previously observed in other plastically deformed diamonds[2,63–65].  The defect responsible 

for these lines is unknown.  The intensity of the defect line at 535.9 nm is strongly correlated to brown 

bands, to which we attribute plastic deformation forming an interstitial-type defect. After heat 

treatment three effects are primarily observed; the brown colouration reduces, these three PL lines are 

annealed out, and internal stresses reduce.  
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