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Abstract

This thesis consists of three essays on strategic communication. It deals with the motivations behind

experts’ incentives to transmit information to decision-makers. Large organizations, such as governments and

global corporations, rely on expertise associated with multiple areas of knowledge. The necessary information

is thus provided by many individuals or subunits who, in turn, may be interested in influencing decisions.

Chapter 1 studies the interaction between a decision-maker who needs to take action on correlated issues, and

experts who can communicate through costless, non-verifiable messages. Credible communication depends

on how information relevant to one decision affects other decisions. The paper shows that a specialized

expert can be trusted more than an expert whose knowledge extends to multiple areas. Even if the latter

advises on a single discipline, information from other areas of knowledge may favour his interests, increasing

his incentives to be dishonest. Chapter 2 expands this framework by introducing the strategic allocation

of authority and the acquisition of information. The correlation between decisions affects the extent of

the informational gains from delegation in three significant ways. First, there is a commitment value of

delegation: giving up control over a controversial decision can motivate experts to transmit information

relevant to less controversial decisions. Secondly, delegation hampers incentives to acquire information

because it restricts the expected ‘marginal return’ of being informed. Lastly, restricting an expert’s access to

information he is not expected to communicate enhances his credibility because it reduces incentives to be

dishonest. Chapter 3 studies in more depth the relationship between authority and information acquisition. It

focuses on how much costly information a biased expert acquires. It shows that experts with intermediate

bias acquire more information under centralization than delegation when costs are sufficiently high. In such

cases, the principal prefers to retain decision-making authority.

vi



Chapter 1

Information Aggregation in
Multidimensional Cheap Talk

1.1 Introduction

This paper studies strategic communication in environments with three features: a decision-maker has to

take action in multiple issues, the relevant information is dispersed among many agents, and what is relevant

for one decision also influences other decisions. I analyse how this informational interdependence affects the

decision-maker’s ability to aggregate information. Such interdependence arises in many real-world scenarios

including policy making, product development in multinational corporations, and diplomatic negotiations.

Effective communication poses a challenge because each agent possesses imperfect information that cannot

be transmitted as hard facts. Also, different players usually have conflicting preferences over decisions,

raising the problem of credibility.

Consider energy policy as an example. The main objectives of such policy in most developed countries

are to guarantee stable energy supply, at the minimum possible cost for consumers, and with the minimal

environmental impact. To address these objectives, policy-makers usually implement a combination of policy

instruments, such as financial and fiscal stimulus for projects associated to different sources of energy and

measures to improve consumption efficiency. Now, depending on how each of these instruments addresses

the different policy objectives, information about changes in voters’ policy priorities, or new technologies

associated to the different sources, or the risk of oil price disruptions will require re-calibrations of the

different policy instruments.1 Most of this information, in turn, is generally dispersed among government

agencies, legislative committees, research institutions, and interest groups. Because providing hard evidence

is typically difficult, political actors use their information strategically, taking into account how it will affect

on the different decisions.

1A recent article from ‘The Guardian’ observes that “[s]witching just some of the huge subsidies supporting fossil fuels to
renewables would unleash a runaway clean energy revolution, [...] significantly cutting the carbon emissions that are driving the
climate crisis [...] but could cause short-term price rises and political difficulties, as the benefits of lower costs in the future and
reduced air pollution are less obvious” (Carrington, 2019).
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I construct a model of multidimensional decision-making under informational interdependence. A policy

consists of two decisions and the policy-maker (receiver, she) needs information about two state variables.

The information is related to how each decision addresses the different policy objectives, such that information

about each state influences both decisions.2 Two agents (senders) observe private signals about the states

and send costless, non-verifiable messages to the policy-maker. Incentives for communication depend on

how information affects decisions, and on each sender’s preferences associated to each decision. I assume

linear informational interdependence, which allows me to capture in a parsimonious way the observation that

information about any state affects both decisions. To isolate the effect of interdependence, I also assume

preferences are additively separable on decisions.3

My main result is that an agent’s communication incentives depend on the nature of his information.

Based on the analysis of two different information structures, I characterize two novel effects. First, because

information affects both decisions, communication depends on how the informational interdependence

aggregates decision-specific biases. When each agent observes information associated to one state, the single

determinant of communication is the aggregate conflict of interest with the policy-maker. Because agents’

information refer to different states and these are orthogonal, individual message strategies are independent

of each other. The problem then becomes similar to the uniform-quadratic case in Crawford and Sobel

(1982) with one difference: the conflict of interest aggregates decision-specific biases. I exploit the apparent

simplicity of each senders’ incentive compatibility constraint to characterize informational spillovers.

The second effect arises when each agent observes noisy information about both states. Imperfect

information makes individual message strategies dependent on each other, similar to Morgan and Stocken

(2008) and Galeotti et al. (2013) among others. Now, having information about both states leads to a

credibility loss as compared to having information about only one. To see this note that agents observe

one signal associated to each state (two in total). Because states are orthogonal and each decision depends

on information about both states, some realizations of an agent’s information are be ambiguous—i.e. one

signal suggests a decision has to be adjusted in a particular direction relative to the prior beliefs, while the

other signal suggests the opposite. In such cases, the agent in question has incentives to follow the signal

that favours his own preferences on that decision. This means that revealing information about one state

is incentive compatible for a smaller set of biases as compared to the case in which the agent observes

information about that state only.

I also show that, due to the interaction between effects, the degree of informational interdependence

affects communication in a non-monotonic way. More interdependence means that information about any

state influences both decisions more similarly. Hence, the aggregate conflict of interest between an agent

and the policy-maker puts similar weights on the decision-specific biases. This means that an agent with

2Milgrom (2008) and Dziuda (2011) present a similar interpretation of decision problems defined in terms of multiple ‘issues’
which, in turn, are associated to the information the decision-maker needs—see also Gong and Yang (2018).

3Chapter 9 in Baumgartner and Jones (2009) provides an extensive discussion on how different issue areas are home to different
configuration of policy biases. Returning to the energy policy example, pro-environment groups may have strong preferences for
renewables and against fossil fuels, with little willingness to trade between these. Corporations related to fossil fuels have recently
started to invest in some renewable sources because they consider them as complement of their main business (see, for instance,
Macalister, 2016).
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strong biases in both dimensions fully reveals his information because biases compensate each other. But

more interdependence also means that incentives to manipulate ambiguous information increase, and the

credibility loss becomes more pervasive. As messages involving ambiguous information become less credible,

communication tends to focus on information that reflects the interdependence—that is, signals realizations

leading to decisions being adjusted in the same direction.

Finally, I study the possibility of beneficial congestion. When an agent has imperfect information about

both states, having another agent revealing information to the policy-maker can alleviate his credibility loss.

Suppose that an agent’s preferences are aligned with the policy-maker in the first decision but feature a

large bias in the second. Due to interdependence, the large bias limits his ability to transmit information,

even when it is most relevant to the first decision. Now, suppose a second agent reveals information most

relevant to the second decision. Any information transmitted by the first agent has now a weaker overall

influence on decisions, but much weaker on the second dimension in which his bias is large. Therefore,

effective communication from the first agent will be incentive compatible for a larger set of biases than

without the second agent. Such beneficial congestion can have real-world implications in the composition of

decision-making teams, such as government cabinets, legislative committees, and organization boards.

1.1.1 Related literature

The paper contributes to the theoretical literature on multidimensional cheap talk. When each sender

observes both states perfectly, the receiver can extract all the information by restricting influence to the

dimension of common interests (Battaglini, 2002).4 In other words, the receiver (in equilibrium) can commit

to ignore part of the information each sender provides because it will be provided by the other sender on path.

Levy and Razin (2007) show that the receiver loses such (equilibrium) commitment power when senders are

imperfectly informed and decisions are interdependent. Senders’ incentives thus depend on how information

affects both decisions, which can impede communication when the conflict of interest in one dimension is

sufficiently large. My paper builds on Levy and Razin (2007) and presents a framework to fully characterize

incentives for communication under linear interdependence.

Equilibrium communication in my model shares key elements with prior work on multidimensional

cheap talk. The very notion of aggregate conflict of interest is somewhat similar to ‘mutual discipline’

in Goltsman and Pavlov (2011) since revealing information leads to utility gains in one dimension that

compensate the utility losses in the other (see also Farrell and Gibbons, 1989; Chakraborty and Harbaugh,

2010). In addition, my framework features a class of strategies consisting in full revelation of some signal

realizations and non-influential messages otherwise. A sender fully revealing ambiguous information (and

nothing otherwise) is somewhat equivalent to providing rankings of the different attributes associated to

decisions, as in Chakraborty and Harbaugh (2007).

The paper also contributes to the literature on organizational design. Strategic communication has

important consequences on the organization of legislative institutions (Austen-Smith and Riker, 1987; Austen-

4Battaglini (2004) shows that this results is robust to imperfect signals when states are orthogonal. Ambrus and Takahashi
(2008) show that it is not robust to restricted state spaces for large conflict of interests.
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Smith, 1990), decision-making cabinets (Dewan et al., 2015), and political parties (Dewan and Squintani,

2015). Most of the existing literature restricts attention to uni-dimensional decision problems. My focus on

multidimensional and multi-causal problems is thus a step forward to understand incentives in such complex

environments. A very similar notion of complexity has been used by Baumgartner and Jones (2009) to study

the effects of both problem prioritization and information on agenda setting and institutional evolution.

The notion of interdependent decisions is also important among firms, but the focus of this strand of

literature has been on the trade-off between coordination and adaptation (Alonso et al., 2008; Rantakari,

2008). Incentives for communication in such contexts are characterized by non-separability of preferences

(need for coordination), senders’ informational advantage (need for adaptation), and the difference in issue

salience among players (biases). However, the nature of some firms may lead to different trade-offs. For

instance, product design in multi-product firms relies on consumers’ preferences over different attributes,

with different products having different combinations of those attributes. Such firms face the need to gather

information about consumer preferences, technological innovations, and government regulations related

to each attribute, potentially leading to informational spillovers that will affect the organization of project

development teams.5 My framework captures these issues and can be used to study how organizational

structures respond to the effects of informational interdependence.

The rest of the paper proceeds as follows. Section 1.2 presents the basic set up. In section 1.3 I analyse the

different information structures, and derive the two main effects shaping communication incentives. Section

1.4 provides comparative statics on how interdependence affects equilibrium information transmission, while

section 1.5 presents the result on beneficial congestion. Section 1.6 concludes.

1.2 The Model

1.2.1 Set Up

A receiver has to decide on two issues, y = (y1, y2) ∈ <2, for which she needs information in hands

of two senders. Each decision is affected by two states, θ1, θ2, such that information about any of them

affects both decisions. I represent the (state-dependent) ‘optimal calibration’ of decisions as a vector

δ = (δ1(θ1, θ2), δ2(θ1, θ2)). Player j’s payoff is thus defined in terms of decisions, composite states, and

biases as follows (for j = {R, 1, 2}):

U j(y,bj) = −
(
y1 − δ1(θ1, θ2)− bj1

)2
−
(
y2 − δ2(θ1, θ2)− bj2

)2

The vector bj = (bj1, b
j
2) ∈ <2 represents j’s bias in the two dimensions. I normalize bR = 0, such that

bi represents the conflict of interest between sender i (he) and the receiver (she). Optimal actions depend on

5See, for example, Andersson and Forsgren (2000); Gassmann and von Zedtwitz (1999); Boutellier et al. (2008).
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the realization of states, as follows: δ1

δ2

 ≡
w11 θ1 + w12 θ2

w21 θ1 + w22 θ2


States are uniformly distributed in the unit square, θ1, θ2 ∼ U [0, 1]. This assumption is not without loss

of generality, but is one that has been used extensively in the cheap talk literature (e.g. uniform-quadratic case

in Crawford and Sobel, 1982). The weighting matrix W characterizes the informational interdependence,

where all weights are weakly positive and w11, w22 > 1/2, so that the index corresponding to the state

also reflects which decision that state is more important for. Informational interdependence is thus linear

and information about any state affects decisions in the same direction with respect to the ex-ante optimal

calibration. Note that informational interdependence occurs despite the states are not correlated. It can be

characterized by:6

Corr(δ1, δ2) =
(w11w21 + w12w22)[

(w2
11 + w2

12)(w2
21 + w2

22)
] 1
2

The receiver obtains information through private, cheap talk communication with each sender. Each

sender observes a signal associated to each state, Si = (Si1, S
i
2) ∈ S , with their precision given by σi1 and σi2,

respectively. I analyse two different information structures. In the first, the signal and state spaces coincide,

S = [0, 1]2. Senders are specialists, i.e. each of them observes a perfectly informative signal associated

to a different state and has no information about the other state. Which state each sender specialises on is

common knowledge. This information structure has been used in the organizational economics literature (see

Alonso et al., 2008, 2015; Rantakari, 2008). Section 1.3.1 analyses this case.

Secondly, I analyse the case of senders observing noisy signals about both states. Formally, the signal

space is given by S = {0, 1}2 and the precision of a any given signal is such that Pr(Si1 = 1|θ1) = θ1 and

Pr(Si2 = 1|θ2) = θ2. This information structure is commonly used to study policy debate (see Austen-Smith,

1990; Galeotti et al., 2013; Dewan et al., 2015) in which each legislator has information about the likely effects

of decisions on the constituency he/she represents. I thus refer to senders in this case as local representatives.

1.2.2 Timing

First, senders privately observe their information; secondly, each of them sends a cheap talk message to

the receiver; finally, the receiver chooses y = (y1, y2) and payoffs realize. The message space under each

information structure coincides with the signal space, that is mi ∈M = S .7 I focus on pure-strategy Perfect

Bayesian Equilibria (PBE). Communication incentives will depend on the information each sender has and,

in some cases, on the other sender’s equilibrium message strategy. Denote by mi(Si) ∈ M the message

strategy of sender i, where M ∈ S represents the message space. A PBE of this game is characterized by a

decision vector, y∗, and a collection of message strategies, m∗ = {m1∗,m2∗}, such that:

6Note that the assumptions on W lead to non-negative correlation, which is without loss of generality
7This assumption is without loss since the type of information each sender observes is common knowledge. In the case of binary

signals, any message between 0 and 1 could, in principle, reflect a mixed strategy, but I restrict the analysis to pure strategies

5



• The receiver’s decisions satisfy:

y∗ = WE(θ|m∗)

• Sender i’s message strategy satisfies:

mi∗ (Si) ∈ arg max
mi

{
E
[
−
(
y∗(mi,m−i)−W θ − bi

)′ (
y∗(mi,m−i)−W θ − bi

) ∣∣Si]}

1.3 Equilibrium Analysis

1.3.1 Senders as Specialists

In this section each sender is perfectly informed about one of the states but has no information about the

other beyond the prior. This information structure is commonly used in applications of multidimensional

cheap talk to organizations (Alonso et al., 2008; Rantakari, 2008). I also provides a useful benchmark to

extend Levy and Razin (2007) characterization of informational spillovers and analyse their communication

implications.

Let assume that sender 1 observe a perfectly informative signal about θ1 and sender 2 about θ2. Each

sender’s problem becomes a Crawford-Sobel (CS) problem in which his message affects two decisions

according to the interdependence structure. Following CS, let air̃ denote sender i’s generic ‘boundary type’

θ̃r. Also, let ȳd(air̃, a
i
r̃+1) =

air̃+1−a
i
r̃

2 be the expected action on dimension d = {1, 2} when reporting on the

upper interval, and similarly with respect to air̃−1.

Lemma 1.1. Suppose sender i ∈ {1, 2} observes a perfectly informative signal about θi. Sender i’s

equilibrium message strategy involves noisy messages unless there is no conflict of interest with the receiver.

Moreover, the set of actions induced in equilibrium is finite.

The incentive-compatibility constraint leads to the following arbitrage condition:

air̃+1 = 2air̃ − air̃−1 + 4
(bi1w1r + bi2w2r)

(w2
1r + w2

2r)
(A)

Proof. All proofs can be found in the Appendix.

The corollary below characterizes the more immediate effect of informational interdependence on

communication incentives, which I denote by ‘aggregate conflict of interest’.

Corollary 1.1. Condition (A) coincides with the arbitrage condition in CS when the bias is equal to:

Bi
r ≡

(bi1w1r + bi2w2r)

(w2
1r + w2

2r)

Information about θ1 affects both decisions and the magnitude (and direction) of that influence is given

by w11 and w12. When there is no informational interdependence (w11 = 1 and w12 = 0), communication

is characterized by CS. As long as information about θ1 affects y1 and y2, incentives for communication
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depend on sender i’s biases in both dimensions. Linear interdependence means that the aggregate conflict

of interest is a weighted average of the decision-specific biases. I now proceed to characterize equilibrium

communication.

Proposition 1.1. Suppose sender i ∈ {1, 2} observes a perfectly informative signal about θi. Any equilibrium

message strategy consists of finite partitions of the state space unless Bi
r = 0. Moreover, the intervals are

characterized by:

air̃ = ai1r̃ + 2r̃(r̃ − 1)Bi
i

And the maximum number of intervals is given by:

N(Bi
i) =

⌈
−1

2
+

1

2

(
1 +

2

Bi
i

)1/2
⌉

Proof. Follows from Crawford and Sobel (1982) when b = Bi
r.

Proposition 1.1 characterizes communication for each sender when they are specialists. The expressions

concide with those in Crawford and Sobel (1982) when b = Bi
r. Note that the information at i’s disposal is

orthogonal to that of the other sender and, thus, he cannot infer the message strategy of his counterpart. This

is why i’s message strategy does not depend on the other sender’s strategy.

Maximal Incentives for Communication. In order to get a graphical intuition of communication incent-

ives and informational spillovers, I define the maximal incentives to reveal information which, in turn, is a

function of the interdependence.

Definition 1.1. Let λr ≡
{
z ∈ <2| z′Wr = 0

}
be the locus with slope −w1r

w2r
related to θr. This locus

represents the bias vectors for which incentives to reveal information about θr are maximal.

Note that bi ∈ λi implies that Bi
i = 0, meaning that i fully reveals his information to the receiver.

Definition 1.1 helps characterize the set of bias vectors for which there is information transmission (influential

messages) from any individual sender. Lemma 1.1 and Proposition 1.1 imply that equilibria with influential

messages exist only if Bi
i ≤ 1/4, which can be re-expressed as:

||bi − Projλi(b
i)|| ≤

[
(w1i)

2 + (w2i)
2
] 1
2

4

Here Projλr(b
i) is the projection of i’s bias vector onto the locus λr.8

Figure 1.1 shows the set of bias vectors for which an influential equilibrium exists. Panel (a) illustrates

the case of small interdependence, for which the maximal incentives to reveal information, λ1, are close

to the vertical axis. The small rotation indicates that revealing information about θ1 will mostly influence

y1 but also has a small effect on y2. Therefore, the incentive compatibility constraint weighs the sender’s
8More precisely, the LHS of the expression above constitutes the module of the rejection of bi on λi.
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Figure 1.1: Bias vectors for which an influential equilibrium for Sender 1 exists
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(a) Corr(δ1, δ2) = 0.3
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(b) Corr(δ1, δ2) = 0.8

Notes: Shaded areas indicate bias vectors for which B1 ≤ 1/4, for different levels of interdependence.

biases in both dimensions. Positive correlation means that maximal incentives for communication happens

when biases have different signs. As interdependence increases, maximal incentives take place when biases

are more similar in magnitude, as Panel (b) shows. The overall width of the region for which B1 ≤ 1/4 is

decreasing in interdependence, which reflecting the denominator of Bi
r: as interdependence increases, the

overall influence of each sender is split between two decisions.

Informational Spillovers. Levy and Razin (2007) show how informational spillovers can kill communica-

tion when signals are imperfect. In their argument, a large bias in one dimension is a sufficient condition

for communication breakdown even when preferences of the sender and the receiver are perfectly aligned

in the other dimension. Unlike the Fully Revealing Equilibrium in Battaglini (2002), the receiver loses his

equilibrium commitment power to ignore information across dimensions because senders are imperfectly

informed. Levy and Razin define this communication breakdown as a negative informational spillover. In the

next lemma, I present the possibility of positive informational spillovers. I define these by comparing the

two-dimensional decision problem with two separate unidimensional problems with the same preferences

and information structure.

When senders are specialists, I can define informational spillovers by comparing the two-dimensional

problem with those associated to the decisions for which each sender’s information is more important. The

lemma below characterizes i’s incentives for communication in the one-dimensional problem for which

his information has the highest influence (wdr = wii ≥ 1/2), and determines the necessary conditions for
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negative and positive spillovers.

Lemma 1.2. When sender i = {1, 2} observes θi, the one-dimensional problem associated to decision

d = {1, 2} is characterized by:

Bi
di ≡

bid
wdi

Let j = {1, 2} denote the decision for which sender i’s information is less important (wji < 1/2). A

necessary condition for negative informational spillovers is Bi
ii < Bi

ji; whereas, a necessary condition for

positive informational spillovers is Bi
ii > Bi

ji.

Consider the case of sender 1, who is perfectly informed about θ1. Negative spillovers occur when he

would transmit some information in equilibrium if y1 were decided separately, but the equilibrium of the

two-dimensional problem involves no information transmission. Such harm to communication increases

when b12 is large relative to the influence of θ1 on y2 (w21). Figure 1.2 illustrates these cases with a minus

sign for bias vectors featuring small conflict of interest in the first dimension and large in the second.

Positive spillovers, on the other hand, arise when his incentives to reveal information are stronger in the

two-decision problem as compared to the one-decision problem. This takes place when b12 is small relative

to bi1. As a consequence, ‘adding’ this second decision dilutes the conflict of interest in the first dimension.

Figure 1.2 shows such bias vectors with a plus sign.

1.3.2 Senders as Local Representatives

In this section, I study the case in which each sender observes two noisy signals, one associated to each

state. From a policy-making perspective, such information structure reflects the fact that political actors

(senders) observe information from the constituencies they represent. From an organizational perspective,

the information structure can be interpreted in terms of headquarters seeking local information from geo-

graphically dispersed subsidiaries. Formally, each sender observes one binary signal associated to each state,

{Si1, Si2} ∈ S = {0, 1}2, such that Pr(Si1 = 1) = θ1 and Pr(Si2 = 1) = θ2. Recall that the message and

signal spaces coincide: (mi
1,m

i
2) ∈ M = {0, 1}2. After messages have been sent, the receiver updates

beliefs according to a Beta-binomial process. Let kr ≤ 2 be the number of senders truthfully revealing their

signals and `r the number of those signals that equals 1, where r = {1, 2} indexes the states. Then, the

updated expectation for each state is given by:9

E(θ1|k1, `1) =
(`1 + 1)

(k1 + 2)
E(θ2|k2, `2) =

(`2 + 1)

(k2 + 2)

Let k∗1 and k∗2 denote the number of truthful messages the receiver has in equilibrium; also, let `∗1 and

`∗2 denote the number of “ones” reported in equilibrium. From now on, k and ` (no superscript) denote i’s

9The conditional pdf and the receiver’s posterior on state θr are, respectively:

f(`r|θr, kr) =
kr!

`r!(kr − `r)!
θ`rr (1− θr)kr−`r h(θr|`r, kr) =

(kr + 1)!

`r!(kr − `r)!
θ`rr (1− θr)kr−`r

9



Figure 1.2: Informational Spillovers for Sender 1 – Two decisions vs one-dimensional problem (y1)
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−
B1 ≤ 1/4 (two decisions)
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Note: Corr(δ1, δ2) = 0.8. + (−) indicates positive (negative) Info Spillovers.

conjecture about other senders revealing truthfully and reporting ones on the equilibrium path.10

Because of the possibility of multiple equilibria, I need to specify the selection criterion. As most papers

in the cheap talk literature, I focus on the receiver-optimal equilibrium. This criterion chooses the message

strategy that maximizes the receiver’s ex-ante expected utility. Unlike the analysis in the previous section,

here more messages do not always lead to more information transmitted to the principal. For a given m∗ the

receiver’s equilibrium actions are given by:

y∗1 = w11
(`∗1 + 1)

(k∗1 + 2)
+ w12

(`∗2 + 1)

(k∗2 + 2)
y∗2 = w21

(`∗1 + 1)

(k∗1 + 2)
+ w22

(`∗2 + 1)

(k∗2 + 2)

The above expressions show how a sender’s information, if revealed, affects the receiver’s beliefs and

decisions. Revealing one signal affects decisions according to the importance of the associated state. Just

as in the specialists case, incentives for communication depend on the way the interdependence aggregates

decision-specific biases. But having information about both states makes each sender’s incentives depend on

the information the other sender is expected to reveal in equilibrium.11 Moreover, independence of states can

10Sender i’s conjecture will be correct on path, and whenever his equilibrium message strategy involves revealing the correspond-
ing signal then k∗r = kr + 1, while k∗r = kr otherwise.

11Indeed, this is caused by the fact that both senders observe information about the same states (see Krishna and Morgan, 2001b)
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produce signals that, if fully revealed would move decisions against the informational interdependence. The

possibility of such information raises some additional incentives to deviate for each sender, leading to a loss

of credibility that harms communication. This ‘credibility loss’ is another important effect of informational

interdependence.

In order to build up intuition, I start with sender i’s incentives to reveal one signal only and then derive

incentives for full revelation. Finally, I show that equilibrium communication is not only based on revealing

information on separate dimensions independently. There are equilibrium strategies in which the amount

of information a sender transmits depends on his signals realizations. Proposition 1.2 characterizes the

receiver-optimal communication equilibrium for sender i.

Incentives to reveal one signal only. Revealing any single signal amounts to revealing information about

one state only, which would move both decisions in the same direction due to the positive informational

interdependence.12 As in the previous section, this means that sender i’s incentives depend on the aggregate

conflict of interest. But having information about both states alters these incentives. Because states are

orthogonal, a sender’s information may consist in signals realizations that contradict each other in terms of

policy recommendations. Take, for example, a sender who has positive bias in both dimensions and is expected

to reveal information about θ1 in equilibrium. Because of his biases, incentive compatibility demands that

he is better-off revealing Si1 = 0 than lying about this signal realization. These incentives for truth-telling

are weakened when his other piece of information is Si2 = 1, because it implies adjustments towards i’s

biases on both decisions. The fact that he cannot credibly transmit this piece of favourable information in

the equilibrium under consideration undermines his incentives to reveal Si1 truthfully. Therefore, the very

possibility of such ‘ambiguous information’ harms credibility. Below I present the incentive compatibility

(IC) constraint for this message strategy.

Lemma 1.3. Consider an equilibrium (y∗,m∗) in which {Sir} ∈mi∗. Revealing information about state θr
is incentive compatible for sender i if:

|Bi
r| ≤

1

2

[
1

(kr + 3)
− Cr

(kr̃ + 3)

]
(1.1)

where Cr = (w11w12+w21w22)
(w2

1r+w
2
2r)

∈ [0, 1]; such that when w11 = w22 = w, then C1 = C2 = Corr(δ1, δ2).

Sender i’s incentives to reveal information about θr = {θ1, θ2} depend on the other sender’s strategy for

two reasons. First, information is noisy and this imposes an upper bound on how much ‘additional precision’

sender i can induce by revealing his signal. Since both senders have binary signals, i can predict the marginal

effect of revealing his signal on the corresponding posterior— captured by kr in equation (1.1).13 The first

term in square brackets shows how i’s incentives depend on whether sender j reveals information about the

and that information is noisy (see Austen-Smith, 1993; Galeotti et al., 2013).
12Recall that this stems from the assumptions on W, which are without loss of generality.
13If the other sender is not expected to reveal Sjr on path, the set of possible posteriors is given byE(θr|mi

1 = Si1) = {1/3, 2/3};
while if he is expected to reveal, the set becomes E(θr|mi

1 = Si1,m
j
1 = Sj1) = {1/4, 1/2, 3/4}.
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same state, similar to the unidimensional decision problems in Austen-Smith (1990); Morgan and Stocken

(2008); Galeotti et al. (2013).

The second effect relates to the fact that senders have information about both states. I have already

described how i experiences increased incentives to lie when information about one state is favourable and

that about the other is unfavourable. Recall that, due to positive interdependence, revealing information

about one state moves decisions in the same direction. Ambiguous information hence arises for signal

realizations (Si1, S
i
2) = {(0, 1), (1, 0)}.14 The second term of the right-hand side in expression (1.1) captures

the credibility loss. Note that it is increasing in the informational interdependence, which is captured by Cr
(for given k1 and k2).15

Incentives to reveal both signals. The way in which i’s information affects decisions depends on its

realization. Fully revealing (Si1, S
i
2) = {(0, 0); (1, 1)} moves decisions in the same direction with respect

to the prior, whereas fully revealing (Si1, S
i
2) = {(0, 1); (1, 0)} moves decisions in opposite directions.

Therefore, the set of bi for which revealing both signals is incentive compatible depends on their realizations.

Lemma 1.4. Consider the equilibrium (y∗,m∗) in which {Si1, Si2} ∈ mi∗. Sender i finds full revelation

incentive compatibility if:

• he does not have incentives to lie on any signal individually; that is, for θr = {θ1, θ2}:

|Bi
r| ≤

1

2 (kr + 3)
(1.2)

• he does not have incentives to lie on both signals when Si = {(0, 0); (1, 1)}:

0 ≤ 1

(k1 + 3)

[
1

(k1 + 3)
+

C1

(k2 + 3)
± 2Bi

1

]
+

1

(k2 + 3)

[
1

(k2 + 3)
+

C2

(k1 + 3)
± 2Bi

2

]
(1.3)

• he does not have incentives to lie on both signals when Si = {(0, 1); (1, 0)}:

0 ≤ 1

(k1 + 3)

[
1

(k1 + 3)
− C1

(k2 + 3)
± 2Bi

1

]
+

1

(k2 + 3)

[
1

(k2 + 3)
− C2

(k1 + 3)
∓ 2Bi

2

]
(1.4)

The operators ± in (1.3) mean that the expression must hold when Bi
1 and Bi

2 are both added and when

they are subtracted, keeping their signs. Incentive compatibility thus requires that the RHS is non-negative

in both cases, which in turn indicates the way in which decision-specific biases aggregate. Similarly, the

operators ± and ∓ in (1.4) mean that the expression must hold when Bi
1 is added and Bi

2 subtracted, and

vice-versa. The latter means that this IC constraint is slack when bi1 and bi2 have the same sign, as opposed to

expressions (1.1), (1.2), and (1.3) that are slack when bi1 and bi2 have different signs.
14In section 1.5 I show that for those signals realizations, sender i’s incentives to deviate from fully revealing one of his signals

are lower when j reveals information about the other state in equilibrium.
15Alternatively, note that when Corr(δ1, δ2) = 0, i’s information about θ2 does not affect y1.
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Fully revealing (Si1, S
i
2) = (0, 0) or (Si1, S

i
2) = (1, 1) moves both decisions in the same direction with

respect to the prior. Note that each signal reinforces the influence of the other, which is captured by the

the terms C1 and C2 having the same sign in (1.3). Note also that the expressions within square brackets

correspond to the incentives to reveal each signal individually (equation (1.1)). To see this consider the

case in which i fully reveals both signals and j is expected to reveal information about θ1 only. In this case,

i’s message strategy has a smaller influence on y1 than on y2 because the receiver is expected to be better

informed about θ1 (from j equilibrium message strategy). As a consequence, i’s IC constraints put more

weight on Bi
2 than Bi

1. The following corollary summarizes this intuition:

Corollary 1.2. When sender i reveals both signals, the larger (smaller) k1 relative to k2 the smaller (larger)

the influence on y1 relative to y2.

Incentives to fully reveal signals (Si1, S
i
2) = {(0, 1); (1, 0)} are somewhat different. Not only decisions

moves in different directions, but also the net influence on each decision is smaller than the influence

of revealing any of the signals individually. Moving decisions in opposite directions leads to a different

aggregation of decision-specific biases. As a consequence, the RHS of equation (1.4) is less restrictive when

when Bi
1 and Bi

2 have the same sign. The smaller overall influence makes this IC constraint relatively more

restrictive as compared to the others in Lemma 1.4. Finally, Corollary 1.2 also applies to this IC constraint,

meaning that the relative importance of each piece of information depends on whether the other sender is

revealing the same information or not.

Dimensional non-separable message strategies. The equilibrium characterization in this game is not just

based on communication on separate dimensions independently. In fact, it is possible that senders credibly

transmit information for some signals realizations but not for others. This is the case when, for example,

i’s biases are bi1 > 0 and bi2 < 0, and they are large but similar in magnitude (|bi1| ∼ |bi2|). If such a sender

truthfully announces mi = {(1, 1)}, the receiver should believe him because his utility gains from increasing

y1 compensate the utility losses from decreasing y2. But announcing mi = {{(0, 1)}} or mi = {{(1, 0)}}
does not have the same compensation across dimensions. If these messages were believed, i would always

announce mi = {(1, 0)}, which cannot be an equilibrium. As a result, a sender with such biases fully reveals

signals that coincide and transmits no information when they do not (meaning that he plays the corresponding

babbling strategy). I call such message strategies dimensional non-separable (DNS, henceforth). In Appendix

A1, I show that the only strategies of this class arising in the receiver-optimal equilibrium has the structure of

the example: full revelation for two combinations of signal realizations and babbling for the other two. The

lemma below characterizes communication incentives when the message strategy includes both babbling and

influential messages, for the class of DNS strategies arising in equilibrium:

Lemma 1.5. Consider an equilibrium (y∗,m∗) in which mi∗ includes a babbling strategy and full revelation

of some signal realizations. Then, full revelation is incentive compatible for sender i when:
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• he does not have incentives to lie on both signals when Si = {(0, 0); (1, 1)}:

1

(k1 + 3)

[
1

(k1 + 3)
+

C1

(k2 + 3)
± 4Bi

1

]
+

1

(k2 + 3)

[
1

(k2 + 3)
+

C2

(k1 + 3)
± 4Bi

2

]
≥ 0 (1.5)

• he does not have incentives to lie on both signals when Si = {(0, 1); (1, 0)}:

1

(k1 + 3)

[
1

(k1 + 3)
− C1

(k2 + 3)
± 4Bi

1

]
+

1

(k2 + 3)

[
1

(k2 + 3)
− C2

(k1 + 3)
∓ 4Bi

2

]
≥ 0 (1.6)

The similarities between conditions in Lemmas 1.4 and 1.5 reflect the fact that the influential messages

fully reveal the sender’s information. The main difference between the two is the weight of the aggregate

conflict of interests: DNS message strategies put more weight on Bi
1 and Bi

2, meaning that conditions (1.5)

and (1.6) hold for a smaller set of biases. This is due to the influence of deviations to non-influential messages.

When any of these messages are announced, the receiver does not update decisions. However, if i announces

one of the influential messages, both decisions move away from the prior. This deviation features a lower

overall influence than lying on both signals. Because of this lower influence, non-influential types16 are more

tempted to deviate and, thus, the IC constraints hold for a small set of biases.

I now characterize the receiver-optimal equilibrium of this game.

Proposition 1.2. The receiver-optimal Perfect Bayesian Equilibrium for sender i consists of the following

message strategies:

1. Revealing both signals, if bi satisfies conditions in Lemma 1.4 with respect to both states.

2. Revealing one signal only, if bi satisfies conditions in Lemma 1.3 with respect to one state only and

does not satisfy those in Lemma 1.4.

3. Dimensional non-separable message strategies in the following cases:

(a) Fully revealing (Si1, S
i
2) = {(0, 0); (1, 1)} if bi satisfies condition (1.5) only;

(b) Fully revealing (Si1, S
i
2) = {(0, 1); (1, 0)} if bi satisfies condition (1.6) only.

4. No communication (babbling strategy), if none of the above holds.17

First note that the set of strategies that constitute an equilibrium is a strict subset of the strategy space.

Proposition 1.2 implies that equilibrium communication depends on the profile of biases and the informa-

tional interdependence. The system of beliefs that supports each strategy is characterized in Appendix A1.
16A sender’s type is given by his signals realization. By non-influential type I mean a sender whose signals lead to babbling

message strategies on path.
17Formally, the message strategy in (1) is mi =

{{
(0, 0)

}
;
{

(0, 1)
}

;
{

(1, 0)
}

;
{

(1, 1)
}}

; in (2) when revealing Si1 is

mi =
{{

(0, 0); (0, 1)
}

;
{

(1, 0); (1, 1)
}}

, and when revealing Si2 is mi =
{{

(0, 0); (1, 0)
}

;
{

(0, 1); (1, 1)
}}

; in (3).a is

mi =
{{

(0, 0)
}

;
{

(1, 1)
}

;
{

(0, 1); (1, 0)
}}

, and in (3).b is mi =
{{

(0, 0); (1, 1)
}

;
{

(0, 1)
}

;
{

(1, 0)
}}

; and in (4) is mi ={{
(0, 0); (1, 1); (0, 1); (1, 0)

}}
.
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Intuitively, when the strategy involves some sort of pooling between types (Parts 2 and 3), there are at least

two messages that induce the same actions and, upon hearing any of such messages, the receiver assigns

equal probability to the types involved. Note also that the non-influential messages in DNS strategies provide

no information at all to the receiver. This is due to the fact that the signals realizations involved perfectly

compensate each other (and the receiver puts equal probability on each pair).

The Fully Separating Equilibrium arises only if the aggregate conflict of interest between i and the

receiver is sufficiently small. The shape of the different correspondences reflects how each message strategy

affects decisions. Recall that λ1 and λ2 represent the maximal incentives to reveal information about each

state. Positive informational interdependence then leads to the negative slopes of λ1 and λ2
18 because

incentives to reveal any single signal are greater when decision-specific biases have different signs. Condition

(1.1) can thus be re-expressed as follows:

||bi − Projλr(b
i)|| ≤ [w2

1r + w2
2r]

1
2

2

[
1

(kr + 3)
− Cr

(kr̃ + 3)

]
This formulation allows the comparison with the specialist case. The main difference relates to the

effects of ambiguous information on incentives for communication: the set of biases for which there is any

information transmission is strictly smaller than when senders are specialists.19

Figure 1.3 illustrates the set of biases for which the different strategies arise in equilibrium, for a given

set of parameter values. The blue and red regions correspond to DNS message strategies. Note that the blue

region consists mainly of biases in the II and IV quadrants, meaning that bi1 and bi2 have different signs. When

i’s biases lie on this region and his signals are Si = {(0, 0); (1, 1)}, fully revealing them moves both decisions

in the same direction and, as a consequence, i’s utility gains associated to one decision compensate the utility

losses associated to the other. This interaction between interdependence, biases, and messages makes the

aggregate conflict of interest relatively small, and the message credible. On the contrary, if the receiver were

to believe any of the messages given by mi = {{(0, 1)}; {(1, 0)}}, i will announce the message that moves

decisions according to the biases. Similar intuition applies when biases are in the red region (quadrants I and

III), for full revelation of signals Si = {(0, 1); (1, 0)}—decisions move in different directions in this case.

Next I present a formal discussion on the effects of informational interdependence on communication.

1.4 How Informational Interdependence Affects Communication

To provide a more intuitive interpretation of the results, I assume w11 = w22 = w and w > 1
2 . The

analysis looks at how sender i’s IC constraints change when w changes, given sender j’s message strategy.

Note that a higher w means less informational interdependence.

Proposition 1.3. Let 1/2 ≤ w ≤ 1. Increasing interdependence affects communication through the effect of

the credibility loss and the aggregate conflict of interest. The effect through the credibility loss associated to

18The different slopes relate to the fact that incentives to reveal information about θ1 (θ2) weighs more the bias on y1 (y2).
19Here I only refer to whether there is communication or not, leaving aside the amount of information transmitted in each case.
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Figure 1.3: Equilibrium communication for a sender with information about both states (Prop. 1.2)
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Note: w11 = w22 = 3/4 (Corr(δ1, δ2) = 0.6) and k1 = k2 = 0

state θr = {θ1, θ2} is given by:

CLr =
∂Cr
∂w

< 0

The effect through the aggregate conflict of interest associated to state θr = {θ1, θ2} is given by:

ACIr =
∂|Bi

r|
∂w

Interdependence changes the extent to which the credibility loss affects communication: more inter-

dependence increases the effect of credibility loss on incentives. To see the intuition, consider the case in

which i is expected to reveal information on θ1. When interdependence increases, the opportunity costs of

not revealing favourable information about θ2 increases as well—revealing information about the latter has

a relatively higher influence on both decisions due to the stronger interdependence. Whenever i observes

ambiguous information, his incentives to deviate to sending a favourable message associated to θ1 increase.

A similar intuition holds for the incentives to reveal both signals, since equations (1.3) and (1.4) require than
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revealing at least one signal individually is incentive compatible.

On the other hand, interdependence also affects the aggregate conflict of interest. Below I show the cases

in which more interdependence reduces the aggregate conflict of interest.

Lemma 1.6. A necessary condition for interdependence to reduce the aggregate conflict of interest is

sign(Bi
1) = sign(bi1 − bi2), which implies that:

1. if sign(bi1) = sign(bi2), the necessary condition becomes: |bi1| > |bi2|;

2. if sign(bi1) 6= sign(bi2), the necessary condition becomes: w|bi1| > (1− w)|bi2|.

Suppose, again, that sender i is expected to reveal information about θ1 in equilibrium. Higher inter-

dependence loosens the corresponding IC constraint when bi2 is sufficiently small relative to bi1.20 In other

words, information in hands of i has a higher influence on a decision of smaller conflict of interest between

him and the principal.

Figure 1.4 depicts the intuitions behind Proposition 1.3 and Lemma 1.6, illustrating the two channels

described above. The change in the aggregate conflict of interest can be seen in the rotation of λ1 and

λ2, which represent the maximal incentives to reveal information about θ1 and θ2, respectively. Higher

interdependence means that information about θ1 (θ2) affects both decisions more similarly, then the weights

of bi1 and bi2 on the corresponding IC constraint will be more similar, i.e. λ1 (λ2) rotates towards the -45o line.

The second effect relates to the credibility loss. More interdependence exacerbates the negative implica-

tions of ambiguous information. Take the incentives to reveal one signal. As interdependence increases, such

strategy is incentive compatible for a smaller set of biases, which is represented by how the corresponding IC

constraints narrow in Figure 1.4. The same effect is also present for the DNS strategy involving full revelation

of Si = {(0, 1), (1, 0)}. Recall that in such case the overall influence on decisions is smaller than revealing

each signal individually. Higher interdependence means each signal counteracts the effect of the other and,

thus, the overall influence decreases.

Note that the DNS strategy involving full revelation of Si = {(0, 0); (1, 1)} is not affected by the

credibility effect. The influence that revealing each signal has on decision reinforces that of the other in such

strategy. As a consequence, sender i’s incentives to deviate from truth-telling are driven only by his bias and

not his information.

In the next section I explore the possibility of beneficial congestion, which is related to the role of k1 and

k2 on i’s incentives to fully reveal his signals (at least for some realizations).

1.5 Beneficial Congestion

The cheap talk literature has identified many instances in which an additional source of information

negatively affects the incentives of the original source. For perfectly informed senders, Krishna and Morgan

(2001b) show that if their biases go in the same direction the receiver cannot do better than consulting the

sender with the lowest bias. When senders observe imperfect information, Morgan and Stocken (2008);

20Note that bi2 corresponds to the decision for which θ1 is less important, i.e. w12 < w11.
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Figure 1.4: Equilibria in Proposition 1.2 for different levels of interdependence
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(b) Corr(δ1, δ2) = 0.3
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(c) Corr(δ1, δ2) = 0.8
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(d) Corr(δ1, δ2) = 1

Notes: k1 = k2 = 0

Galeotti et al. (2013) among others, show that individual incentives for communication decrease with the

number of truthful messages transmitted in equilibrium. In one-decision problems, therefore, congestion

harms individual incentives for communication.21,22

When senders are imperfectly informed and decisions are correlated, the possibility of ambiguous

information harms communication incentives. In particular, sender i’s incentives to reveal information about

21This also holds for multidimensional problems in which decisions are not correlated (Dewan et al., 2015).
22Krishna and Morgan (2001b) show that the receiver can extract more information from senders with opposing biases. As I shall

show, the mechanism is completely different to the case of multiple decisions and imperfectly informed senders.
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θ1 also depend on the information the receiver gets about θ2 in equilibrium. If she is expected to be well

informed about θ2, sender i’s signal associated to this state would represent a small proportion of the receiver’s

information. Sender i’s credibility loss is therefore weaker, i.e. his incentives to deviate from revealing Si1
are less affected by ambiguous information. Figure 1.5 shows how the set of biases for which revealing Si1 is

incentive compatible expands as the number of sender revealing information about θ2 increases.

Figure 1.5: Beneficial Congestion effect on incentives to reveal Si1

S1 only S2 only (0, 0) and (1, 1) only (0, 1) and (1, 0) only
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(a) k1 = 0, k2 = 0
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(b) k1 = 0, k2 = 1

Note: Corr(δ1, δ2) = 0.8.

This beneficial congestion effect becomes stronger with interdependence, that is:

∂IC(1.1)

∂kr̃
=

Cr
(kr̃ + 3)2

Beneficial congestion also arises for DNS strategies. Due to the complexity of the IC constraints and

their derivatives, I show the results by looking at the set of biases for which the beneficial congestion takes

place. Below I describe the conditions under which increasing the number of senders revealing information

about θ1 induces i to reveal more information.

Proposition 1.4. Let b = {bi,bj} and b̃ = {bi, b̃j} be two collections of bias vectors, such that bj 6= b̃j .

Let k1, k2 ∈ {0, 1} be the number other truthful signals the receiver has from other senders in the equilibrium

under b, and k̃1 = k1 + 1 and k̃2 = k2 be those for the equilibrium of the game under b̃. For any

1/2 < w < 1, if
(k2 + 3)

(k1 + 3)
< min

{
(k1 + 4)

(k2 + 3)
;

4w (1− w)

[w2 + (1− w)2]

}
Then, there exist bi ∈ <2 such that i’s equilibrium message strategies are:
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• Revealing both signals when they coincide and nothing otherwise, when preferences are given by b;

and

• Revealing both signals, when preferences are given by b̃.

Figure 1.6 presents Proposition 1.4 with a simple example. There are two senders, A and B, each

characterized by his bias vector. The figure represents A’s IC constraints. I show how sender A’s incentives

change for different biases of sender B. The different biases will lead to different equilibrium message

strategies for B, which change sender A incentives for communication. In the graph on the left, B’s

equilibrium message strategy is babbling, while A fully reveals when signals coincide and play babbling

strategy otherwise.23 Note thatA’s bias on the first dimension is relatively large, so if he observes SA = (1, 0)

he prefers to announce mA = {(0, 1)}—that is why full revelation cannot be an equilibrium in this case.

Figure 1.6: Effect of increasing the receiver’s equilibrium information under Proposition 1.4 onA’s incentives
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B
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(a) k1 = 0, k2 = 0
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(b) k1 = 1, k2 = 0

Note: Corr(δ1, δ2) = 0.8. Both k1 and k2 are A’s equilibrium conjectures.

Sender A’s incentives change when B’s preferences are as shown in B̃ in the right panel. Because B̃

is expected to reveal his information about θ1 on path, A’s influence from revealing both signals is smaller

in y1 relative to y2. As a consequence, A is now willing to fully reveal if he observes SA = (1, 0) and his

equilibrium message strategy is full revelation.24 Thus, increasing the receiver’s precision on y2 is now more

important for A than the cost associated to y1.

In summary, as the receiver has more information about θ1 on path, sender A’s influence on y1 decreases.

Given A has strong preferences over y1, the reduced influence improves his communication incentives to
23Formally, mA

(a) = {{(0, 0)}; {(1, 1)}; {(0, 1); (1, 0)}} and mB = {{(0, 0); (1, 1); (0, 1); (1, 0)}}.
24Numerically, preferences for A are bA1 = −0.11 and bA2 = −0.03.
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the point he transmits more information than in the original situation. Note that the beneficial congestion

is also possible because neither bA1 nor bA2 are too large in magnitude. Both informational interdependence

and imperfectly informed senders are crucial features for this mechanism to arise. The mechanism can

have important implications for the conformation of executive cabinets or legislative committees, which

have been among the most studied applications of cheap talk models (see Austen-Smith, 1990; Dewan and

Hortala-Vallve, 2011; Dewan et al., 2015).

1.6 Concluding Remarks

I studied cheap talk communication between two senders and a receiver who decides on two issues.

Information relevant for each issue also influences the other. Such informational interdependence affects

senders’ incentives because it aggregates decision-specific biases, but communication also depends on the

information structure. When senders are specialized on different issues, the aggregate conflict of interest is the

only determinant of communication. When senders observe noisy signals on both issues, on the other hand,

the possibility of ambiguous information also affects communication. Incentives to reveal information that

influences decisions against the sender’s bias become weaker when he observes other pieces of information

that would have the opposite influence if revealed.

I showed that the aggregation of decision-specific biases can lead to informational spillovers. Negative

spillovers arise when the multidimensional decision problem reduces the amount of information transmitted

in equilibrium as compared to separate unidimensional problems—similar to Levy and Razin (2007). Positive

spillovers arise because the aggregate conflict of interest of the multidimensional problem is smaller than the

biases associated to each decision. Such spillovers can play a key role in the organization of governmental

departments (White and Dunleavy, 2010) and negotiation teams (Trager, 2011, 2017) among others.

I also showed that information congestion can result in more information transmitted in equilibrium. In

a context of imperfectly informed senders, the more information the receiver gets in equilibrium, the less

influential each sender is. Deviations that may arise in the presence of favourable information that is not

revealed in equilibrium are therefore less profitable.
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Appendix

A1 Proofs

Senders as Specialists

PROOF OF LEMMA 1.1. First, note that ∂
2U i

∂y2d
< 0 and ∂2U i

∂yd∂θr
> 0 because preferences are quadratic losses

and additively non-separable. This guarantees that equilibrium message strategies involve finite partitions of

the state space characterized by an integer N(b)|see Lemma 1 in Crawford and Sobel (1982). For a given

equilibrium N(b), let ai0, a
i
1, ..., a

i
N denote the boundaries of this partitions.

I now derive the arbitrage condition for a typical ‘boundary type’. Let assume sender 1 observes the

realization of θ1 and sender 2 that of θ2. Also, let νi = E(θi|mi) denote the posterior induced on θi after

message mi was sent by sender i, for i = {1, 2}}. Communication incentives for a given realization of θi are

then given by:

E
[
U i|θi, νi∗i

]
= −E

[
(y1 − w11θ1 − w12θ2 − bi1)2 + (y2 − w21θ1 − w22θ2 − bi2)2|θi,mi∗]

= −E
[
[w11(νi1 − θ1) + w12(νi2 − θ2)]2 − 2bi1[w11(νi1 − θ1) + w12(νi2 − θ2)] + (bi1)2+

+ [w21(νi1 − θ1) + w22(νi2 − θ2)]2 − 2bi2[w21(νi∗1 − θ1) + w12(νi∗2 − θ2)] + (bi2)2|θi,mi∗
]

Notice that the independence of θ1 and θ2 implies that sender i’s messages cannot affect the receiver’s

beliefs on θj , i.e. E
[
νi∗j |θi,mi∗

]
= E

[
θj |θi,mi∗] = E(θj). Then, re-arranging the squared terms involving

(νi1 − θ1) and (νi2 − θ2), sender i’s IC constraint becomes:

E
[
U i|θi, νi∗i

]
=− E

[
(νi∗i − θi)2(w2

1i + w2
2i)− 2(νi∗i − θi)[bi1w1i + bi2w2i]|θi,mi∗

]
− E

[
(E(θj)− θj)2

]
(w2

1j + w2
2j) + (bi1)2 + (bi2)2 (A1.1)

Because of continuity of the state space, for any equilibrium partition there exist boundary types that

would be indifferent between announcing two messages. More precisely, denote by ain a generic boundary

type for n = {0, 1, ..., N}. Then, by definition of boundary type:

E[U i(mi
n)− U i(mi

n+1)|ain] = 0

Now solving the above expression with (A1.1) and noting that:

νin =
ain−1 + ain

2
and νin+1 =

ain+1 + ain
2

I get:

(ain−1 − ain+1)
[
(w2

1i + w2
2i)(a

i
n+1 − 2ain + ain−1)− 4(bi1w1i + bi2w2i)

]
= 0
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Which holds if and only if:

ain+1 = 2ain − ain−1 + 4
(bi1w1i + bi2w2i)

(w2
1i + w2

2i)

The same Arbitrage condition as the uniform-quadratic case in Crawford and Sobel (1982), with the

conflict of interest between sender i and the receiver defined by:

Bi ≡ (bi1w1i + bi2w2i)

(w2
1i + w2

2i)

Senders observe noisy signals about both states

Suppose that the decision-maker holds k∗r signals about one of the states, for r = {1, 2}. Let `∗r denote

the number of such signals that equal 1; then the conditional pdf is:

f(`∗r |θr, k∗r) =
k∗r !

`∗r !(k
∗
r − `∗r)!

θ`
∗
r
r (1− θr)k

∗
r−`∗r

And her posterior is:

h(θr|`∗r , k∗r) =
(k∗r + 1)!

`∗r !(k
∗
r − `∗r)!

θ`
∗
r
r (1− θr)k

∗
r−`∗r

As a result:

E(θr|`∗r , k∗r) =
(`∗r + 1)

(k∗r + 2)
Var(θr|`∗r , k∗r) =

(`∗r + 1)(k∗r − `∗r + 1)

(k∗r + 2)2(k∗r + 3)

For r = {1, 2}.

A generic IC constraint. Recall that Si is the vector of signals actually received by sender i and m∗ is

the vector of equilibrium message strategies for all senders. Now, let mi∗ denote sender i’s pure message

strategy in equilibrium, and m̂i the deviation under consideration. In addition, denote by yd(mi,m-i) the

action the receiver would take in dimension d = {1, 2}, when she receives m-i from players other than i, and

i is influential under both mi∗ and m̂i. Given that i takes other senders’ equilibrium strategies as given, and

in order to simplify notation let yd(mi∗(Si),m-i) = yd(m
i∗) and yd(m̂i(Si),m-i) = yd(m̂

i).

For δd = wd1θ1 + wd2θ2, then sender i reports mi∗ instead of m̂i if and only if:

−
∫ 1

0

∫ 1

0

[[ (
y1(mi∗ − δ1 − bi1)

)2
+
(
y2(mi∗ − δ2 − bi2)

)2 ]−
−
[ (
y1(m̂i)− δ1 − bi1

)2
+
(
y2(m̂i)− δ2 − bi2

)2 ]]
f(θ1,m

-i|Si) f(θ2,m
-i|Si) dθ1 dθ2 ≥ 0
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Using the identity a2−b2 = (a+b)(a−b), and by noting that f(θ1,m
-i|Si) = f(θ1|m-i, Si1)P (m-i|Si1)

and that f(θ2,m
-i|Si) = f(θ2|m-i, Si2)P (m-i|Si2) I get:

−
∫ 1

0

∫ 1

0

[ [(
y1(mi∗) + y1(m̂i)

)
− 2(δ1 + bi1)

] (
y1(mi∗)− y1(m̂i)

)
+

+
[(
y2(mi∗) + y2(m̂i)

)
− 2(δ2 + bi2)

] (
y2(mi∗)− y2(m̂i)

) ]
f(θ1|m-i, S1) f(θ2|m-i, S2)P (m-i|Si1)P (m-i|Si2) dθ1 dθ2 ≥ 0

Note that in equilibrium:

y1(mi,m-i) = E(δ1|mi,m-i) y2(mi,m-i) = E(δ2|mi,m-i)

Now let denote:

∆(δ1) = E(δ1|mi∗,m-i)− E(δ1|m̂i,m-i)

∆(δ2) = E(δ2|mi∗,m-i)− E(δ2|m̂i,m-i)

I then get the first expression of the IC constraint:

−
∫ 1

0

∫ 1

0

[[E(δ1|mi∗,m-i) + E(δ1|m̂i,m-i)

2
− δ1 − bi1

][
∆(δ1)

]
+

+
[E(δ2|mi∗,m-i) + E(δ2|m̂i,m-i)

2
− δ2 − bi2

][
∆(δ2)

]]
f(θ1|m-i, Si1) f(θ2|m-i, Si2)P (m-i|Si1)P (m-i|Si2) dθ1 dθ2 ≥ 0 (A1.2)

Given that the equilibrium message strategies for players other than i, m-i, are independent of i’s actual

signal realizations, the expressions P (m-i|Si1) and P (m-i|Si2) can be taken out the double-integral. Then,

noting that:∫ 1

0

∫ 1

0
δ1 f(θ1|S1,m

-i) f(θ2|S2,m
-i)P (m-i|S1)P (m-i|S2) dθ1 dθ2 = E

(
δ1|S1, S2,m

-i)
= E

(
w11 θ1 + w12 θ2

∣∣S1, S2,m
-i)

= w11E(θ1|S1,m
-i) + w12E(θ2|S2,m

-i)

and similarly for δ2. Note that yd(mi,m-i) = wd1E(θ1|mi,m-i) + wd2E(θ2|mi,m-i) for any mi =

24



{mi∗, m̂i}. Let define the receiver’s updated beliefs with respect to δd from i’s perspective as:

νi∗d = E(δd|mi∗) ν̂id = E(δd|m̂i) νid = E(δd|Si)

And let νi∗1r = νi∗2r = E(θr|mi∗), ν̂i1r = ν̂i2r = E(θr|m̂i), and νi1r = νi2r = E(θr|Sir) the posteriors

associated to θr, respectively. Then, equation (A1.2) becomes:

−
[[

(νi∗1 + ν̂i1)− 2(νi1 − bi1)
]

∆(δ1) +
[
(νi∗2 + ν̂i2)− 2(νi2 − bi2)

]
∆(δ2)

]
P (m-i|S1)P (m-i|S2) ≥ 0

(A1.3)

The following lemma shows the expressions for the expected influence of each message when the sender

is believed with respect to a single signal.

Lemma A1.1. Suppose sender i is expected to truthfully reveal his information about Sir = {Si1, Si2}, and

let kr = {k1, k2} be the other truthful messages associated to the same state that the receiver expects to

receive on the equilibrium path. Then the receiver’s updated beliefs about θr = {θ1, θ2} is given by.

E
(
θr|Sir = 0,m-i) =

(kr + 2)

2(kr + 3)
E
[
E
(
`r, θr|Sir = 1,m-i)] =

(kr + 4)

2(kr + 3)

Proof.

From equation (A1.2) it is true that:

E
(
δd|mi = {Si1, Si2},m-i) = wd1E

(
θ1|Si1,m-i)+ wd2E

(
θ2|Si2,m-i)

Working out the expectation for each state conditional on the signal realization gives the following (for

θr = {θ1, θ2}, and Sir = 0):

E
(
θr|Sir = 0,m-i) =

(`r + 1)

(kr + 3)

By the Law of Iterated Expectations, recalling that f(`r|θr, kr) = h(θr|`r, kr)/(kr + 1), I get:

E
(
θr|Sir = 0,m-i) = E

[
E
(
θr|`r, Sir = 0,m-i)]

=
1

(kr + 3)

kr∑
`r=0

(`r + 1)

(kr + 1)

=
(kr + 2)

2(kr + 3)
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And now the expectation conditional on Sir = 1:

E
[
E
(
`r, θr|Sir = 1,m-i)] =

1

(kr + 3)

kr∑
`r=0

(`r + 2)

(kr + 1)

=
(kr + 4)

2(kr + 3)

PROOF OF LEMMA 1.3 .

Consider the interim equilibrium in which i is believed to be telling the truth with respect to one signal.

The equivalent of equation (A1.3) in terms of the posteriors on states if given by:

∑
yd={y1,y2}

−
[
wd1(νi∗d1 − ν̂id1) + wd2(νi∗d2 − ν̂id2)

] [
wd1(νi∗d1 + ν̂id1 − 2νid1) + wd2(νi∗d2 + ν̂id2 − 2νid2)− 2bid

]
≥ 0

(A1.4)

Consider the case in which i reveals Si1 only. This implies that νi∗11 = νi∗21 = νi1, and νi∗12 = νi∗22 = 1/2.

The above IC constraint then becomes:∑
yd={y1,y2}

−
[
wd1(νi∗d1 − ν̂id1)

] [
−wd1(νi∗d1 − ν̂id1)− 2wd2

(
νid2 −

1

2

)
− 2bid

]
≥ 0

Now I analyse for each possible pair of signal realizations.

1. Si = {(0, 0)}, then according to Lemma A1.3:

νid1 = νi∗d1 =
(k1 + 2)

2(k1 + 3)
; ν̂id1 =

(k1 + 4)

2(k1 + 3)
; and νid2 = νid1

And the IC constraint (A1.4) becomes:

∑
yd={y1,y2}

−
[
wd1

(−1)

(k1 + 3)

] [
−wd1

2

(−1)

(k1 + 3)
− wd2

2

(−1)

(k2 + 3)
− bid

]
≥ 0

Operating the sum I get:

w11b
i
1 + w12b

i
2 ≤

(w2
11 + w2

12)

2(k1 + 3)
+

(w11w12 + w21w22)

2(k2 + 3)
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Multiplying both sides by (w2
11 + w2

12)-1 and defining C1 = (w11w12+w21w22)
(w2

11+w2
12)

I get:

Bi
1 ≤

1

2

[
1

(k1 + 3)
+

C1

(k2 + 3)

]

2. Si = {(1, 1)}, then according to Lemma A1.3:

νid1 = νi∗d1 =
(k1 + 4)

2(k1 + 3)
; ν̂id1 =

(k1 + 2)

2(k1 + 3)
; and νid2 = νid1

Following the same steps as above it can be shown to lead to:

−Bi
1 ≤

1

2

[
1

(k1 + 3)
+

C1

(k2 + 3)

]

3. Si = {(1, 0)}, then according to Lemma A1.3:

νid1 = νi∗d1 =
(k1 + 4)

2(k1 + 3)
ν̂id1 =

(k1 + 2)

2(k1 + 3)
and νid2 =

(k2 + 2)

2(k2 + 3)

The IC constraint becomes:∑
yd={y1,y2}

−
[
wd1

(1)

(k1 + 3)

] [
wd1

2

(1)

(k1 + 3)
+
wd2

2

(−1)

(k2 + 3)
− bid

]
≥ 0

Which, following the same steps leads to

−Bi
1 ≤

1

2

[
1

(k1 + 3)
− C1

(k2 + 3)

]

4. Si = {(0, 1)}, then according to Lemma A1.3:

νid1 = νi∗d1 =
(k1 + 2)

2(k1 + 3)
ν̂id1 =

(k1 + 4)

2(k1 + 3)
and νid2 =

(k2 + 4)

2(k2 + 3)

Which, following the same steps leads to

Bi
1 ≤

1

2

[
1

(k1 + 3)
− C1

(k2 + 3)

]

Note that the absolute values for left-hand sides of the above IC constraints are equal; hence, the

expression with the minimum value on the right-hand side constitutes a necessary and sufficient condition for

truthful revelation of Si1. The proof for truthful revelation of Si2 is equivalent.
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PROOF OF LEMMA 1.4.

Here I derive the IC constraint for truthful revelation of both signals, against the deviation of lying on

both of them simultaneously. In other words, if i is believed to reveal both signals on path and he observes

Si = (0, 0) he must not find profitable to announce mi = (1, 1). Note that, when i reveals all his information,

then νi∗dr = νidr for both decisions and states —yd = {y1, y2} and θr = {θ1, θ2}. Then, equation (A1.3)

reduces to:

−
[[
− ∆(δ1)

2
− bi1

]
∆(δ1) +

[
− ∆(δ2)

2
− bi2

]
∆(δ2)

]
P (m−i|S1)P (m−i|S2) ≥ 0

Let βir = w1rb
i
1 + w2rb

i
2 (βir = Bi

r (w2
1r + w2

2r)), then:

(a). For Si = (0, 0) not announcing mi = (1, 1):

βi1
(k1 + 3)

+
βi2

(k2 + 3)
≤ 1

2

[
(w2

11 + w2
21)

(k1 + 3)2
+

(w2
12 + w2

22)

(k2 + 3)2
+

2[w11w12 + w21w22]

(k1 + 3)(k2 + 3)

]

(b). For Si = (0, 1) not announcing mi = (1, 0):

βi1
(k1 + 3)

− βi2
(k2 + 3)

≤ 1

2

[
(w2

11 + w2
21)

(k1 + 3)2
+

(w2
12 + w2

22)

(k2 + 3)2
− 2[w11w12 + w21w22]

(k1 + 3)(k2 + 3)

]

No deviation for Si = (1, 1) requires a condition similar to (a) with the signs on the left-hand side

changed, while no deviation for Si = (1, 0) requires the same as (b) with the corresponding change in

signs.

PROOF OF LEMMA 1.5.

When sender i’s equilibrium message strategy includes full revelation of some signals realization and

babbling for others, any information transmission must be incentive compatible against the deviation to

the babbling message (and vice-versa). Then, by Lemma A1.1 the expected marginal influence against the

deviation to babbling, for each possible combination of signals realizations is given by:

∆(δd)(0,0) = − wd1

2(k1 + 3)
− wd2

2(k2 + 3)
∆(δd)(1,1) =

wd1

2(k1 + 3)
+

wd2

2(k2 + 3)

∆(δd)(0,1) = − wd1

2(k1 + 3)
+

wd2

2(k2 + 3)
∆(δd)(1,0) =

wd1

2(k1 + 3)
− wd2

2(k2 + 3)

Plugging each of these expression into (A1.3) and working each of them out as previously:

(a). For Si = (0, 0):

βi1
(k1 + 3)

+
βi2

(k2 + 3)
≤ 1

4

[
(w2

11 + w2
21)

(k1 + 3)2
+

(w2
12 + w2

22)

(k2 + 3)2
+

2[w11w12 + w21w22]

(k1 + 3)(k2 + 3)

]
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(b). For Si = (0, 1):

βi1
(k1 + 3)

− βi2
(k2 + 3)

≤ 1

4

[
(w2

11 + w2
21)

(k1 + 3)2
+

(w2
12 + w2

22)

(k2 + 3)2
− 2[w11w12 + w21w22]

(k1 + 3)(k2 + 3)

]

And similarly for Si = (1, 1) —part (a)— and Si = (1, 0) —part (b). Each of the above corresponds

to the incentives for the influential type to play his equilibrium strategy. Now, for the babbling types in

each case, the expected influence of no announcing the influential type will be the opposite to that of the

corresponding influential type; that is:

∆(δd)babbling = −∆(δd)(Si1,S
i
2)

Which can be proved to lead to the same IC above. Finally, pairing the corresponding IC constraints in each

case leads to the corresponding conditions.

Characterization of the Most Informative Equilibrium

Proposition A1.1. The strategy profile (y∗,m∗) constitutes the receiver-optimal equilibrium when for every

possible message strategy from sender i to the decision-maker, then i:

1. Reveals both signals if and only if condition (1.2) holds for both signals, and (1.4) hold. The message

strategy in this case is given by:

mi =
{{

(0, 0)
}

;
{

(0, 1)
}

;
{

(1, 0)
}

;
{

(1, 1)
}}

.

2. Reveals Sr only:

(a) if (1.1) holds for Sir but not for Sir̃

(b) if (1.1) and (1.5) hold together, then:

[(w11)2 + (w21)2]

(k1 + 2)(k1 + 3)
>

[(w12)2 + (w22)2]

(k2 + 2)(k2 + 3)
(A1.5)

3. Reveals both signals when is of type (0, 0) or (1, 1) and no information otherwise:
mi =

{{
(0, 0)

}
;
{

(1, 1)
}

;
{

(0, 1); (1, 0)
}}

(a) if condition (1.5) holds but (1.1) does not; or

(b) if (1.5) and (1.1) hold, and condition (A1.5) does not.

4. Reveals both signals when is of type (0, 1) and (1, 0) and no information otherwise if and only if

condition (1.6) holds and (1.1) does not. The associated message strategy is:

mi =
{{

(0, 0); (1, 1)
}

;
{

(0, 1)
}

;
{

(1, 0)
}}

.
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5. Reveals no information (babbling strategy) if and only if none of the previous applies. That is:

mi =
{{

(0, 0); (1, 1); (0, 1); (1, 0)
}}

.

PROOF OF PROPOSITION A1.1.

This proof consists on two steps: in the first I construct the equilibrium for each of the message strategies

in Proposition 1.2, while the second shows that each message strategy constitutes the receiver-optimal

equilibrium for the set of preferences it applies.

Equilibrium Construction

Part 1. Sender i revealing both signals truthfully constitutes the Fully Separating equilibrium. Thus, for bi1
and bi2 satisfying (1.2) for both signals, (1.3), and (1.4), then the following system of beliefs:

µ∗
(
(0, 0)|mi = {(0, 0)}

)
= 1 µ∗

(
(1, 0)|mi = {(1, 0)}

)
= 1

µ∗
(
(0, 1)|mi = {(0, 1)}

)
= 1 µ∗

(
(1, 1)|mi = {(1, 1)}

)
= 1

And the following equilibrium actions:

y∗d
(
mi = {(0, 0)},m-i) = wd1

(`1 + 1)

(k1 + 3)
+ wd2

(`2 + 1)

(k2 + 3)
y∗d
(
mi = {(1, 0)},m-i) = wd1

(`1 + 2)

(k1 + 3)
+ wd2

(`2 + 1)

(k2 + 3)

y∗d
(
mi = {(0, 1)},m-i) = wd1

(`1 + 1)

(k1 + 3)
+ wd2

(`2 + 2)

(k2 + 3)
y∗d
(
mi = {(1, 1)},m-i) = wd1

(`1 + 2)

(k1 + 3)
+ wd2

(`2 + 2)

(k2 + 3)

For d = {1, 2}.
Are consistent with sender i revealing both signals truthfully, that is mi∗ = {(0, 0); (0, 1); (1, 0); (1, 1)}

Part 2. For sender i’s biases that satisfy (1.1) for Si1 only, consider the following equilibrium beliefs for

the receiver:

µ∗
(
(0, 0)|mi = (0, 0)

)
= µ∗

(
(0, 1)|mi = (0, 0)

)
=

1

2
µ∗
(
(0, 1)|mi = (0, 1)

)
= µ∗

(
(0, 0)|mi = (0, 1)

)
=

1

2

µ∗
(
(1, 0)|mi = (1, 0)

)
= µ∗

(
(1, 1)|mi = (1, 0)

)
=

1

2
µ∗
(
(1, 1)|mi = (1, 1)

)
= µ∗

(
(1, 0)|mi = (1, 1)

)
=

1

2

The above beliefs mean that upon hearing any message the receiver is certain that i reveals the realization

of Si1 truthfully but not that for Si2. The receiver’s optimal actions being the following:

y∗d
(
mi = (0, 0),m-i) = y∗

(
mi = (0, 1),m-i) = wd1

(`1 + 1)

(k1 + 3)
+ wd2

(`2 + 1)

(k2 + 2)

y∗d
(
mi = (1, 0),m-i) = y∗

(
mi = (1, 1),m-i) = wd1

(`1 + 2)

(k1 + 3)
+ wd2

(`2 + 1)

(k2 + 2)

For d = {1, 2}.
When bi satisfies (1.1) o but not (1.3) the above system of beliefs is consistent with i optimally revealing

the realization of Si1 only, that is mi∗ =
{{

(0, 0), (0, 1)
}

;
{

(1, 0), (1, 1)
}}

, and i being influential trough Si1
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only.

Part 3. The case of i revealing the realization of Si2 only is equivalent to the previous and, thus, omitted.

Part 4. Note that when (1.5) but not (1.1), the only incentives to lie for sender i happens between types

Si = (0, 1) and Si = (1, 0). In this equilibrium types Si = (0, 1) and Si = (1, 0) play the corresponding

babbling strategy, while the other types are revealing truthfully both signals.

Let consider the following equilibrium beliefs for the receiver upon having seen sender i’s message mi,

given that i’s bias satisfy condition (1.5) but not (1.1).

µ∗
(
(0, 0)|mi = (0, 0)

)
= 1 µ∗

(
(1, 1)|mi = (1, 1)

)
= 1

µ∗
(
(0, 1)|mi = (0, 1)

)
= µ∗

(
(1, 0)|mi = (0, 1)

)
=

1

2
µ∗
(
(1, 0)|mi = (1, 0)

)
= µ∗

(
(0, 1)|mi = (1, 0)

)
=

1

2

And the optimal actions by the receiver:

y∗d
(
mi = (0, 0),m-i) = wd1

(`1 + 1)

(k1 + 3)
+ wd2

(`2 + 1)

(k2 + 3)

y∗d
(
mi = (1, 1),m-i) = wd1

(`1 + 2)

(k1 + 3)
+ wd2

(`2 + 2)

(k2 + 3)

y∗d
(
mi = (1, 0),m-i) = y∗d

(
mi = (0, 1),m-i) = wd1

(`1 + 1)

(k1 + 2)
+ wd2

(`2 + 1)

(k2 + 2)

For d = {1, 2}. The above means that upon hearing either mi = (0, 0) or mi = (1, 1) the receiver updates

her estimation of both θ1 and θ2, but she does not update any of them otherwise. From the sender’s perspective,

types Si = (0, 1) and Si = (1, 0) should prefer an equilibrium babbling strategy (mixing between these two

messages) rather than announcing any of the influential messages.

The lack of incentives for types Si = (0, 0) and Si = (1, 1) to pool to each other given both of them are

influential is given by condition (1.3), which is implied by (1.5).

Now, incentives to reveal both signals given types Si = (0, 1) and Si = (1, 0) are babbling are given by

Lemma 1.5. It is worth noting that condition (1.5) guarantees type Si = (0, 0) as well as Si = (1, 1) has no

incentives to play the babbling strategy when he is believed about both signals if announces truthfully. At the

same time, these conditions guarantee types Si = (0, 1) and Si = (1, 0) prefers to play the babbling strategy

available rather than announcing any of the influential messages.

Part 5. In this equilibrium types Si = (0, 0) and Si = (1, 1) send the corresponding babbling messages,

while the other types are revealing truthfully both signals. The proof is similar to that in Part 4, adapting the

equilibrium beliefs to the messages and types that are playing each strategy.

Part 6. The babbling equilibrium is always part of the available equilibria in any cheap talk game. In Part 6

of the following section I show that for the set of preferences that do not satisfy any of the conditions above,
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the unique equilibrium available is the babbling.

Most Informative Equilibrium

Part 1. Trivially, the sender is fully revealing his information.

Part 2. Any strategy that is more informative than revealing only one signal has at least one type fully

revealing in equilibrium (and the others revealing partially). Consider the following message strategies that

would improve upon revealing Si1 only:

• m̃i = {{(0, 0)} ; {(0, 1)} ; {(1, 0); (1, 1)}}

• m̂i = {{(0, 0); (0, 1)} ; {(1, 0)} ; {(1, 1)}}

(a) Condition (1.1) holds for Si1 only. For m̃i to be an equilibrium, types Si = (0, 0) and Si = (0, 1)

must have incentives to separate from each other, which requires condition (1.1) to hold for Si2, leading to a

contradiction. The same applies to m̂i for separation between types Si = (1, 0) and Si = (1, 1).

(b) Condition (1.1) hold for both signals. The set of preferences for which both m̃i and m̂i can be

sustained in equilibrium are the same, leading to multiple equilibria. Moreover, both m̃i and m̂i improve the

receiver’s ex-ante payoff25 in exactly the same way|i.e. by obtaining information about Si2 when sender is one

of the fully revealing types, which occurs with probability 1/2; thus, receiver ex-ante utility fails to select

among these equilibrium message strategies. Finally, the implementation of any m̃i or m̂i depends upon

the pooling types playing mixed strategies and, thus, is restricted to all possible message strategies being

played with positive probability on path. In other words, there are no out-of-equilibrium strategies/beliefs

that sustain any of these strategies|i.e. neologism-proofness (Farrell, 1993) fails.

Part 3. Any strategy that is more informative than revealing only Si2 must be of the form:

• m̃i = {{(0, 0)} ; {(1, 0)} ; {(0, 1); (1, 1)}}

• m̂i = {{(0, 0); (1, 0)} ; {(0, 1)} ; {(1, 1)}}

Then, the same arguments as in Part 2.(a) and 2.(b) apply.

Part 4. Given the equilibrium message strategy mi = {{(0, 0)} ; {(1, 1)} ; {(0, 1); (1, 0)}} then a more

informative message strategy would necessarily involve at least one more type revealing both signals, since

revelation of one signal is not available due to pooling types not sharing any single realization —i.e. (0, 1) and

(1, 0). As a consequence, the only message strategy that is more informative than mi is the fully separating

one, for which condition (1.4) must hold; a contradiction.

25With respect to revealing Si1 only.
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Part 5. Given the equilibrium message strategy mi = {{(0, 0); (1, 1)} ; {(0, 1)} ; {(1, 0)}} then a more

informative message strategy would involve at least one more type revealing both signals, since revelation of

one signal is not available due to pooling types not sharing any single realization —i.e. (0, 0) and (1, 1). As

a consequence, the only message strategy that is more informative than mi is the fully separating one, for

which condition (1.4) must hold; a contradiction.

Part 6. The equilibrium message strategy is given by mi = {(0, 0); (0, 1); (1, 0); (1, 1)}.
Let first consider the partition in which a single type fully separates. Lemma 1.5 implies that for types

(0, 0) and (1, 1) (individually) the corresponding condition leads to the equilibrium in Part 4, which rules

out this possibility. The same argument applies to the cases in which either types (0, 1) or (1, 0), the

receiver-optimal equilibrium for the set of preferences satisfying the corresponding condition would involve

the following message strategy mi = {{(0, 0); (0, 1)} ; {(1, 0)} ; {(1, 1)}}.
Secondly, consider the cases in which one type with coincident signals and another with non-coincident

signals separate and the others play babbling. By Lemma 1.5 whenever type (0, 0) separates, type (1, 1) has

incentives to do so and the deviation is profitable for the receiver; while type (0, 1) has incentives to separate

if and only if (1, 0) has.

Finally, I must rule out the message strategy in which only one realization of a given signal is revealed

—i.e. the equilibrium message strategies being either mi = {{(0, 0); (0, 1)} ; {(1, 0); (1, 1)}} or mi =

{{(0, 0); (1, 0)} ; {(0, 1); (1, 1)}}, with only one message being influential in each. The argument is simple:

if, for instance, sender i were willing to reveal only Si1 = 1; then the receiver would infer Si1 = 0 when i

plays the babbling strategy, which implies the equilibrium in Part 1.

PROOF OF PROPOSITION 1.3 AND LEMMA 1.6

Both Proposition 1.3 and Lemma 1.6 are corollaries of the following result.

Proposition A1.2. Let 1/2 ≤ w ≤ 1. How informational interdependence affects incentives for communica-

tion depend on two effects: the aggregate conflict of interest and the credibility loss; as follows.

Incentives to reveal one signal only:

∂IC(1.1)

∂w
= − 1

(kr̃ + 3)

∂Cr
∂w
− 2

∂|Bi
r|

∂w
(A1.6)

Incentives to fully reveal (Si1, S
i
2) = {(0, 0); (1, 1)}:

∂IC(1.3)

∂w
=

2

(k1 + 3)(k2 + 3)

[
∂Cr
∂w
± (k2 + 3)

∂Bi
1

∂w
± (k1 + 3)

∂Bi
2

∂w

]
(A1.7)

Incentives to fully reveal (Si1, S
i
2) = {(0, 1); (1, 0)}:

∂IC(1.4)

∂w
=

2

(k1 + 3)(k2 + 3)

[
−∂Cr
∂w
± (k2 + 3)

∂Bi
1

∂w
∓ (k1 + 3)

∂Bi
2

∂w

]
(A1.8)
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for θr̃ 6= θr

Proof. Let w11 = w22 = w; then, note that:

∂Bi
1

∂w
=

bi1 − bi2
w2 + (1− w)2

− [2w − 2(1− w)][wbi1 + (1− w)bi2]

[w2 + (1− w)2]2

=
bi1 − bi2

w2 + (1− w)2
− 2(2w − 1)

w2 + (1− w)2
Bi

1

By the rule of derivative of absolute value functions, ∂|y(x)|
∂x = ∂y(x)

∂x
y(x)
|y(x)| , and noting that |Bi

1| =

|wbi1+(1−w)bi2|
w2+(1−w)2

, the above expression yields:

∂|Bi
1|

∂w
= sign(Bi

1)× (bi1 − bi2)

[w2 + (1− w)2]
+ |Bi

1| ×
2(1− 2w)

[w2 + (1− w)2]

For higher interdependence to reduce the aggregate conflict of interest, I need ∂|Bi1|
∂w > 0.26 The second

term of the above equation is clearly negative; so, for the derivate to be positive a necessary condition is that

the first term is positive as well. I then need that sign(Bi
1) = sign(bi1 − bi2), which depends on the signs of

the decision-specific biases as follows.

1. if sign(bi1) = sign(bi2), then sign(Bi
1) = sign(bi1) and the necessary condition above depends on

sign(bi1 − bi2). It is straightforward to check that the necessary condition is satisfied when |bi1| > |bi2|.

2. if sign(bi1) 6= sign(bi2), then sign(bi1 − bi2) = sign(bi1) and the necessary condition above depends

on sign(Bi
1). Again, it is straightforward to notice that sign(Bi

1) = sign(bi1) requires that w|bi1 >
(1− w)bi2.

Now, let proceed to compute the credibility loss, given by ∂Cr
∂w . Note that w11 = w22 implies that

C1 = C2 = 2w(1−w)
1−2w(1−w) ; for which, after some algebra I get:

∂Cr
∂w

=
2(1− 2w)

[1− 2w(1− w)]2
≤ 0

PROOF OF PROPOSITION 1.4. For k′1 > k1, the statement in Proposition 1.4 is equivalent to preferences

26Recall that highe w means less informational interdependence.
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that satisfy the following conditions:

|βi1| ≤
w2 + (1− w)2

2 (k′1 + 3)
(A1.9)

|βi2| ≤
w2 + (1− w)2

2 (k2 + 3)
(A1.10)∣∣∣∣ βi1

(k′1 + 3)
− βi2

(k2 + 3)

∣∣∣∣ ≤ 1

2

[
w2 + (1− w)2

(k′1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k′1 + 3)(k2 + 3)

]
(A1.11)∣∣∣∣ βi1

(k1 + 3)
− βi2

(k2 + 3)

∣∣∣∣ > 1

2

[
w2 + (1− w)2

(k1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k1 + 3)(k2 + 3)

]
(A1.12)

The proof proceeds as follow: I first find βi1 and βi2 for which both (A1.11) and (A1.12) hold, and then

derive the conditions under which they satisfy (A1.9) and (A1.10). First note that LHS of both (A1.11) and

(A1.12) depend on the signs of βi1 and βi2:

1. If sign[βi1] 6= sign[βi2], then∣∣∣∣ βi1
(k′1 + 3)

− βi2
(k2 + 3)

∣∣∣∣ =
|βi1|

(k′1 + 3)
+

|βi2|
(k2 + 3)

2. If sign[βi1] = sign[βi2], then∣∣∣∣ βi1
(k′1 + 3)

− βi2
(k2 + 3)

∣∣∣∣ =

∣∣∣∣ |βi1|(k′1 + 3)
− |βi2|

(k2 + 3)

∣∣∣∣
The signs of βi1 and βi2 are determined by both the sign and the relative magnitude of bi1 and bi2. In the

first of the above, biases go in opposite directions and are relatively similar in magnitude according to the

interdependence: (1−w)
w <

|bi1|
|bi2|

< w
(1−w) . For sign[βi1] = sign[βi2] arises either when sign[bi1] = sign[bi2], or

sign[bi1] 6= sign[bi2] but one of them being sufficiently larger in magnitude. For the sake of simplicity, assume

the increase in the receiver’s information on θ1 is minimal —i.e. k′1 = k1 + 1.

Case 1: sign[βi1] 6= sign[βi2]. Then, (A1.11) becomes

|βi1|
(k′1 + 3)

+
|βi2|

(k2 + 3)
≤ 1

2

[
w2 + (1− w)2

(k′1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k′1 + 3)(k2 + 3)

]
And (A1.12):

|βi1|
(k1 + 3)

+
|βi2|

(k2 + 3)
>

1

2

[
w2 + (1− w)2

(k1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k1 + 3)(k2 + 3)

]
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The biases for which increasing information in θ1 improves communication must satisfy:

(k1 + 3)

2

[
w2 + (1− w)2

(k1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k1 + 3)(k2 + 3)

]
− |β

i
2| (k1 + 3)

(k2 + 3)
< |βi1| ≤

≤(k′1 + 3)

2

[
w2 + (1− w)2

(k′1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k′1 + 3)(k2 + 3)

]
− |β

i
2| (k′1 + 3)

(k2 + 3)

and

(k2 + 3)

2

[
w2 + (1− w)2

(k1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k1 + 3)(k2 + 3)

]
− |β

i
1| (k2 + 3)

(k1 + 3)
< |βi2| ≤

≤(k2 + 3)

2

[
w2 + (1− w)2

(k′1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k′1 + 3)(k2 + 3)

]
− |β

i
1| (k2 + 3)

(k′1 + 3)

Then, the necessary conditions for each of the above to hold are, respectively:

|βi2| ≤
[w2 + (1− w)2]

2 (k2 + 3)
− [w2 + (1− w)2] (k2 + 3)

2 (k1 + 3)(k1 + 4)
(A1.13)

and

|βi1| >
[w2 + (1− w)2]

2

[
1

(k1 + 3)
+

1

(k1 + 4)

]
− 2w(1− w)

(k2 + 3)
(A1.14)

Note that condition (A1.13) implies condition (A1.10). Then, for it to hold it must be that the RHS is

greater than zero, which occurs if:

(k1 + 3)(k1 + 4) > (k2 + 3)2

Now, condition (A1.14) holds together with (A1.9) only if the value of |βi1| is in between two magnitudes:

RHS(A1.14)< |βi1| ≤ RHS(A1.9); which holds if:

(k2 + 3)

(k1 + 3)
<

4w (1− w)

[w2 + (1− w)2]

It is worth noting that both conditions above require k1 to be sufficiently large with respect to k2, which

has the interpretation of saturation. After the increase in k1 takes place, sender i is willing to reveal all his

information because he will move y1 very little and y2 (where preferences are aligned) very much.

Case 2: sign[βi1] = sign[βi2]. I consider two cases. First, the conflict of interest in the first dimension

is so large that it outweighs that of the second in terms of incentives (even in the case in which they go

in opposite directions across dimensions). Secondly, I analyse the case in which the bias in the second

dimension outweighs that of the first.

a. |βi1|
(k′1+3)

>
|βi2|

(k2+3)
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Then, (A1.11) becomes

|βi1|
(k′1 + 3)

− |βi2|
(k2 + 3)

≤ 1

2

[
w2 + (1− w)2

(k′1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k′1 + 3)(k2 + 3)

]

And (A1.12) becomes

|βi1|
(k1 + 3)

− |βi2|
(k2 + 3)

>
1

2

[
w2 + (1− w)2

(k1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k1 + 3)(k2 + 3)

]

Getting restrictions over |βi1| and |βi2| the necessary conditions are:

|βi2| >
[w2 + (1− w)2]

2 (k2 + 3)
− [w2 + (1− w)2] (k2 + 3)

2 (k1 + 3)(k1 + 4)
(A1.15)

and

|βi1| >
[w2 + (1− w)2]

2

[
1

(k1 + 3)
+

1

(k′1 + 3)

]
− 4w(1− w)

(k2 + 3)
(A1.16)

In this case both (A1.9) and (A1.10) will be upper bounds for |βi1| and |βi2|, such that (A1.15) holds if:

(k1 + 3)(k1 + 4) > (k2 + 3)2

While (A1.16) holds if:
(k2 + 3)

(k1 + 3)
<

4w (1− w)

[w2 + (1− w)2]

Note that the conditions are the same as the previous case. The differences are on the restrictions over

bi1 and bi2: sign[βi1] = sign[βi2] implies that when sign[bi1] 6= sign[bi2] then (1− w)|bi1| > g|bi2|; while

in the previous case both conflict of interest had to be of similar magnitude.27

In summary, when biases go in opposite directions across dimensions, “beneficial congestion” occur

when the magnitude of the conflict in the first dimension is sufficiently large with respect to that on the

second dimension.

b. |βi1|
(k1+3) <

|βi2|
(k2+3)

Then, (A1.11) becomes

|βi2|
(k2 + 3)

− |βi1|
(k′1 + 3)

≤ 1

2

[
w2 + (1− w)2

(k′1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k′1 + 3)(k2 + 3)

]
27More precisely, when sign[βi1] 6= sign[βi2], (1− w)|bi2| < |bi1| < w|bi2|.
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And (A1.12) becomes

|βi2|
(k2 + 3)

− |βi1|
(k1 + 3)

>
1

2

[
w2 + (1− w)2

(k1 + 3)2
+
w2 + (1− w)2

(k2 + 3)2
− 4w (1− w)

(k1 + 3)(k2 + 3)

]

Getting restrictions over |βi1| and |βi2| the necessary conditions are:

|βi2| <
[w2 + (1− w)2]

2 (k2 + 3)
− [w2 + (1− w)2] (k2 + 3)

2 (k1 + 3)(k1 + 4)
(A1.17)

and

|βi1| <
2w(1− w)

(k2 + 3)
− [w2 + (1− w)2]

2

[
1

(k1 + 3)
+

1

(k1 + 4)

]
(A1.18)

Given that (A1.17) implies (A1.10), it is only necessary to check when its RHS is greater than zero.

As before, this happens for:

(k1 + 3)(k1 + 4) > (k2 + 3)2

Similarly, (A1.18) is greater than zero when:

(k2 + 3)

[
1

(k1 + 3)
+

1

(k1 + 4)

]
<

4w (1− w)

[w2 + (1− w)2]

Note that the last condition is more restrictive than those of the previous cases. Hence, it is a sufficient

condition for the existence of positive congestion effects for a large range of biases.

Moreover, it can be noted that when w = 1 the above condition cannot be satisfied.28

B1 Equilibrium Selection

Proof. The ex-ante expected utility for a generic player in equilibrium (y,m) is given by:

E
[
U i(δ,b); m

]
= −E

[
(y1 − δ1 − bi1)2

]
− E

[
(y2 − δ2 − bi2)2

]
= −

∑
d={1,2}

E
[
(yd − δd)2 − 2(yd − δd)bid +

(
bid
)2

; m
]

28I am leaving aside the case of |βi
1|

(k′1+3)
<

|βi
2|

(k2+3)
<

|βi
1|

(k1+3)
, since the conditions above guarantee the beneficial effect of

increasing the receiver’s information for some range of biases.
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Which, by definitions of yd andδd yield:

E
[
U i(δ,b); m

]
= −

∑
d={1,2}

(
bid
)2

+ E

[(
wd1

(
E(θ1|m)− θ1

)
+ wd2

(
E(θ2|m)− θ2

))2
]

+ E [E(δd|m)− δd] bid

With some rearranging and given the last term equals zero, I have:

E
[
U i(δ,b); m

]
= −

[(
bi1
)2

+
(
bi2
)2]− [(w11)2 + (w21)2]E

[(
E(θ1|m)− θ1

)2
; m
]

− [(w12)2 + (w22)2]E
[(
E(θ2|m)− θ2

)2
; m
]

(B1.19)

Now, following Galeotti et al. (2013) and Dewan and Squintani (2015), the expectation of the squared

deviation for each state is given by:

E
[(
E(θr|m)− θr

)2
; m
]

=

∫ 1

0

kr+1∑
`r=0

(
E(θr|m)− θr

)2
f(`r|kr, θr) dθr

=

∫ 1

0

kr+1∑
`r=0

(
E(θr|m)− θr

)2h(θr|`r, kr)
(kr + 2)

dθr

=
1

(kr + 2)

kr+1∑
`r=0

∫ 1

0

(
E(θr|m)− θr

)2
h(θr|`r, kr) dθr

=
1

(kr + 2)

kr+1∑
`r=0

Var(θr|`r, kr)

Plugging the above into B1.19 gives the expression for player i’s ex-ante expected utility:

E
[
U i(δ,b); m

]
= −

[(
bi1
)2

+
(
bi2
)2]− [(w11)2 + (w21)2]

6 (k1 + 2)
− [(w12)2 + (w22)2]

6 (k2 + 2)

In order to analyse the ex-ante optimality of each equilibrium in Proposition 1.2.6, I “break” m into mi

and m-i. Then, denoting by k̃r the equilibrium number of truthful messages for senders other than i, the

expected variance of each possible message strategy for i become:

E
[
UR
(
y,mi = {{(0, 0); (0, 1)}; {(1, 0); (1, 1)}} ,m-i)] = − [(w11)2 + (w21)2]

6 (k̃1 + 3)
− [(w12)2 + (w22)2]

6 (k̃2 + 2)

(B1.20)

E
[
UR
(
y,mi = {{(0, 0); (1, 0)}; {(0, 1); (1, 1)}} ,m-i)] = − [(w11)2 + (w21)2]

6 (k̃1 + 2)
− [(w12)2 + (w22)2]

6 (k̃2 + 3)

(B1.21)
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E
[
UR
(
y,mi = {{(0, 0)}; {(1, 1)}; {(0, 1); (1, 0)}} ,m-i)] =− 1

2

[
[(w11)2 + (w21)2]

6 (k̃1 + 3)
+

[(w12)2 + (w22)2]

6 (k̃2 + 3)

]
− 1

2

[
[(w11)2 + (w21)2]

6 (k̃1 + 2)
+

[(w12)2 + (w22)2]

6 (k̃2 + 2)

]
(B1.22)

Where the fact that in (B1.20) sender i reveals S1 only can be seen in the different numerators of its

first and second term, and the same applies to (B1.21). Now, when i reveals (0, 0) and (1, 1) only (Part

4.c) the receiver’s ex-ante expected utility weights the probability of i being one of these types, and the

complementary probability of being (0, 1) or (1, 0) and not receiving any information. The following step

consist in finding the conditions under which each of the above expressions are ex-ante optimal for the

receiver, given the equilibrium strategies of the other senders.

1. Sender i reveals S1 only:

(a) (B1.20) ≥ (B1.21):

− [(w11)2 + (w21)2]

6 (k̃1 + 3)
− [(w12)2 + (w22)2]

6 (k̃2 + 2)
+

[(w11)2 + (w21)2]

6 (k̃1 + 2)
+

[(w12)2 + (w22)2]

6 (k̃2 + 3)
≥ 0

Which leads to:

[(w11)2 + (w21)2]

(k̃1 + 2)(k̃1 + 3)
≥ [(w12)2 + (w22)2]

(k̃2 + 2)(k̃2 + 3)
(B1.23)

(b) (B1.20) ≥ (B1.22):

[(w11)2 + (w21)2]

2

[
1

(k̃1 + 2)
− 1

(k̃1 + 3)

]
− [(w12)2 + (w22)2]

2

[
1

(k̃2 + 2)
− 1

(k̃2 + 3)

]
≥ 0

Which is straightforward to note that leads to (B1.23).

2. Sender i reveals S2 only: requires that (B1.21) ≥ (B1.20) and (B1.21) ≥ (B1.22); which following the

above algebra happen if and only if

[(w11)2 + (w21)2]

(k̃1 + 2)(k̃1 + 3)
≤ [(w12)2 + (w22)2]

(k̃2 + 2)(k̃2 + 3)
(B1.24)

3. Sender i reveals (0, 0) and (1, 1) only: requires that (B1.22) ≥ (B1.20) and (B1.22) ≥ (B1.21); which

happen if and only if,
[(w11)2 + (w21)2]

(k̃1 + 2)(k̃1 + 3)
≥ [(w12)2 + (w22)2]

(k̃2 + 2)(k̃2 + 3)
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and
[(w11)2 + (w21)2]

(k̃1 + 2)(k̃1 + 3)
≤ [(w12)2 + (w22)2]

(k̃2 + 2)(k̃2 + 3)

Both equations above are compatible if and only if:

[(w11)2 + (w21)2]

(k̃1 + 2)(k̃1 + 3)
=

[(w12)2 + (w22)2]

(k̃2 + 2)(k̃2 + 3)
(B1.25)

The above equation tells us that the receiver’s ex-ante utility is maximal when i reveals (0, 0) and (1, 1)

only, when she has similar amount of truthful messages for each state in the equilibrium being played. In

addition, equation (B1.25) implies that for i revealing S1 only to be the optimal ex-ante equilibrium for the

receiver (B1.23) must hold with inequality, and the same applies for S2 and (B1.24).

Observation 1.1. The RHS of (1.4) is positive if and only if:

[w11(k2 + 3)− w12(k1 + 3)]2 + [w22(k1 + 3)− w21(k2 + 3)]2 > 0

Since w11
(k1+3) represents sender i’s influence on y1 through revealing S1, thenw11(k2+3)−w12(k1+3) =

0 implies that the influence on y1 through S1 perfectly outweighs that of S2. Consequently, RHS of (1.4)

equal to zero implies sender i has no influence on any decision when he reveals both signals (and he is either

type (0, 1) or (1, 0)), which again depends on the number of other sender revealing truthfully their signals. In

section 1.4 I show this plays an important role on the effect of changes in the number of senders other than i

revealing truthfully in equilibrium.
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Chapter 2

Authority in Complex Organizations

2.1 Introduction

A principal in charge of many decisions needs to aggregate soft information from agents. The amount

of information agents transmit depends on both their preferences over decisions and how the information

they have affects these decisions (Battaglini, 2002; Levy and Razin, 2007; Ambrus and Takahashi, 2008).

When decisions are independent, communication takes place in each dimension separately and depends

on the degree of preference misalignment between each sender and the decision-maker. In some cases,

the principal can delegate authority over a decision to an agent and reduce the conflict of interests with

other agents, thus improving the transmission of information in that dimension (Gilligan and Krehbiel,

1987; Krishna and Morgan, 2001a; Dessein, 2002). When information most relevant for one decision also

affect other decisions, on the other hand, communication depends on how this interdependence aggregates

decision-specific preferences. In such cases, delegating authority over a decision will affect communication in

other dimensions as well. This paper studies the allocation of authority under informational interdependence

when communication is strategic.

Consider information aggregation in Multinational Corporations (MNC). The ability to generate and

exploit innovations in such organizations is dispersed among subunits () but requires that each subunit forges

close relationships with local partners, which creates conflicts with organizational goals (Ghoshal and Bartlett,

1990; Ghoshal and Westney, 1993; Andersson and Forsgren, 2000; Andersson et al., 2007; Ecker et al., 2013).

Preference misalignment can affect the transmission of information that is valuable across the organization.

To govern this complexity, the MNC needs a rather flexible organizational structure or, as Ghoshal and

Westney (1993) put it, ‘the management process must be able to change from product to product, from country

to country, and even from decision to decision’ (1993, p. 5).

If decisions are independent, headquarters delegate control over a decision to a subsidiary if the informa-

tion received from business partners and other subsidiaries compensates for the preference misalignment

(Austen-Smith, 1990; Dewan and Squintani, 2015).1 If there is informational interdependence, on the other

hand, delegating control over one decision may affect incentives to transmit information relevant for other
1See also Gilligan and Krehbiel (1987); Aghion and Tirole (1997); Dessein (2002).
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decisions. These incentives depend on how the interdependence aggregates conflicts of interest between

senders and receivers. In other words, the headquarters’ incentives to delegate authority depend on whether

the interdependence benefits or harms information transmission. Along these lines, the international business

literature found evidence that a subsidiary’s autonomy over product decisions is positively correlated with the

degree to which the knowledge created spills over to sister units (Andersson et al., 2007).

In this paper I construct a theoretical model of authority under informational interdependence. The

headquarters of a MNC must decide on the design of two products and needs information about profitable

innovations over two different attributes. There are n susidiaries, each represented by its manager. A manager

has access to information about innovations that are locally profitable, and his preferences over the design

of each product are common knowledge. Information can be transmitted trought costless, non-veriable

(cheap talk) messages. Before any communication takes place, the headquarters allocates the right to decide

over each product among all members of the organization: she can either delegate or retain authority over

any decision.2 The degree of preference misalignment (conflict of interest) between each manager and

decision-maker determines the amount of information the former transmits to the latter.

Delegating authority over a decision can lead to informational gains, which in this context are of two

types. Direct gains refer to the additional information a manager receives in equilibrium as compared to what

the headquarters would receive if she controlled that decision. This constitutes the mechanism found in the

literature (Dessein, 2002; Dewan et al., 2015). Indirect gains, by contrast, refer to the additional information

the headquarters receives when she delegates one decision and retains authority on the other. These gains

occur only under informational interdependence, and require there exist managers whose preferences are

misaligned with the headquarters in one dimension but aligned in the other.3 Delegating the high-conflict

decision allows the headquarters to restrict these managers’ influence to the low-conflict decision.

The intuition behind indirect informational gains leads to one of the main results of the paper. Proposition

2.2 shows that when indirect gains are sufficiently large, the optimal informational structure is partial

delegation; that is, the headquarters delegates high-conflict decisions and retains authority over low-conflict

ones. Indeed, because of indirect informational gains, the headquarters tolerates a larger bias on the delegated

decision for a fixed ‘amount’ of direct gains, as compared to the case of independent decisions. For a different

set of preferences, however, the headquarters tolerates less bias on the delegated decision. This takes place

when there are many managers whose preferences do not align with headquarters in any dimension, but

still the aggregate conflict of interest is small; i.e. decision-specific (large) biases counteract each other

due to the interdependence. The optimal organizational structure when such preferences are prevalent is

centralization. The mechanism behind this result is similar to ‘mutual discipline’ in public communication

with multiple audiences (Farrell and Gibbons, 1989; Goltsman and Pavlov, 2011), and ‘persuasive cheap talk’

in multidimensional communication (Chakraborty and Harbaugh, 2010).

2In other words, the headquarters has limited commitment power: she can commit to delegate decision rights but cannot contract
on decisions; which defines her problem as one of organizational design (Aghion and Tirole, 1997; Dessein, 2002) rather than
mechanism design (Holmström, 1977).

3The presence of high conflict of interest in one dimension kills a manager’s credibility under centralization, which led Levy and
Razin to call this situation ‘negative informational spillovers’.
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Informational interdependence also affects incentives to acquire information. In the second part of the

paper, I extend the basic framework allowing managers to decide about what information to observe once

decision rights have been allocated. Managers have access to imperfect information about each type of

innovation and must incur in a cost to observe it. The investment is worth making only if the expected

utility gains from a given piece of information compensate its costs. However, a manager’s expected gains

from truthful communication are decreasing in the amount of information the decision-maker receives on

the equilibrium path.4 As a consequence, there exists an upper bound on the amount of information any

decision-maker receives in equilibrium.

I show that the upper bound on information aggregation is weakly lower when the headquarters delegate

at least one decision. In other words, a subsidiary aggregates a suboptimal amount of information (in

expectation) when it controls only a subset of all decisions affected by that information: some senders are

expected to underinvest in information because they fail to internalize the informational interdependence. A

similar mechanism leads to unbalanced investment in information under delegation; that is, managers acquire

information that is more relevant for the decision they influence. Finally, I show that the headquarters may

prefer to restrict a manager’s access to information he is not expected to reveal in equilibrium. By doing so,

she reduces the set of deviations from truthful communication and communication is incentive compatible

for a larger set of preferences.

2.1.1 Related Literature

The paper contributes to the literatures on cheap talk and organizational design. In multidimensional

cheap talk, the receiver can extract all the information from perfectly informed senders by restricting the

influence of each of them to the dimension of common interest (Battaglini, 2002). As long as the number of

decisions do not exceed that of senders, the receiver can commit to ignore part of the information provided

by any sender because it is provided by the others (in equilibrium). Note that, as a consequence, she does

not need delegation to affect communication incentives.5 But this argument relies on the assumption of

perfectly informed senders. When this is not the case and decisions are interdependent, the receiver loses

her equilibrium commitment power. Levy and Razin (2007) show this leads to communication breakdown

if the conflict of interest in one dimension is sufficiently large because communication incentives depend

on how information affects decisions.6 My paper shows delegation substitutes for the receiver’s ability to

ignore information in Battaglini (2002) and, more generally, analyses how the allocation of authority helps to

manage informational interdependence.

Strategic communication with informational interdependence has received some recent attention in the

work of Deimen and Szalay (2019). Their paper focuses on an unidimensional decision problem with two

payoff-relevant states of the world, such that principal and agent disagree about the state upon which the

4I assume signals have a fixed amount of noise and agents can acquire at most one such signal per state. As a consequence,
individual incentives for communication are decreasing in the amount of information the decision-maker is expected to have in
equilibrium (see Morgan and Stocken, 2008; Galeotti et al., 2013).

5Dewan and Hortala-Vallve (2011) apply this argument to study how a Prime Minister uses her prerogatives on ministerial
appointments and allocation of portfolios to limit ministers’ influence to decisions of low conflict of interest.

6See also Chakraborty and Harbaugh (2007); Ambrus and Takahashi (2008).

44



decision has to be calibrated. Hence, the conflict of interest between the two players decreases with the

correlation between states. In my paper, the effect of interdependence (correlation) on communication is

not monotonic because conflicts of interest are state independent (as in Crawford and Sobel, 1982). Besides,

the multidimensionality of the decision problem plays a central role in shaping incentives for information

acquisition under different organizational structures.

The second contribution of the paper relates to organizational design. In unidimensional decision

problems, Dessein (2002) shows that the benefits from delegation are increasing in the sender’s informational

advantage.7 The same intuition applies to the organization of legislative debate (Gilligan and Krehbiel, 1987;

Austen-Smith, 1990; Krishna and Morgan, 2001a), policy-making cabinets (Dewan et al., 2015; Dewan

and Squintani, 2015), bureaucracies (Epstein and O’Halloran, 1994; Gailmard and Patty, 2012), and multi-

divisional firms (Alonso et al., 2008; Rantakari, 2008). In all these environments, however, is natural to think

of multidimensional decision problems in which the relevant information is dispersed among many agents

and features interdependence.

Part of organizational design literature has addressed questions similar to mine. Several papers focus on

multi-divisional firms, which trade off the need for adaptation to local shocks with the need for coordination

between divisions. Communication frictions may lead to inefficiencies in terms of giving up benefits from

the specialization of production (Dessein and Santos, 2006) or the need for coordination through scheduled

tasks instead of using communication (Dessein et al., 2016). When divisional managers’ information is not

verifiable, the allocation of decision rights—along with non-separability of preferences and divisional conflict

of interest—shapes incentives for communication (Alonso et al., 2008, 2015; Rantakari, 2008). Differently

from these papers, I focus on interdependence arising exclusively from information and not preferences.

Besides matching many real-world environments,8 this approach allows a more direct comparison with the

mainstream cheap talk literature (see above) and helps study strategic acquisition of imperfect information

(see Di Pei, 2015; Argenziano et al., 2016).

The allocation of decision rights also affects incentives to acquire information. Aghion and Tirole (1997)

show that delegation of real authority motivates an agent to acquire information, resulting in a loss of control

for the principal. But delegation may discourage information acquisition in this context, either because the

agent prefers to put more effort into information that benefits him personally (Rantakari, 2012), or because he

no longer has to convince a principal with divergent opinion about the best course of action (Che and Kartik,

2009). My paper shows that informational interdependence has meaningful consequences for incentives to

acquire information. By allowing information acquisition about multiple states, my framework also captures

different drivers of specialization.

The next section presents the baseline model with no information acquisition and the results for optimal

allocation of decision-rights. In section 2.4 I integrate the allocation of decision-rights with endogenous

7He also shows that delegation dominates cheap talk communication for all conflicts of interest for which there is transmission
of information in the latter, but this result relies on the sender being perfectly informed.

8In addition to aggregation of knowledge in MNC, the framework in this paper reflects the design of legislative committees to
incentivize acquisition and transmission of information from legislators (Austen-Smith, 1990, 1993; Dewan et al., 2015), and the
conformation of negotiation teams in international relations (see Ramsay, 2011; Trager, 2011).
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information acquisition. In section 2.6 I discuss some extensions and conclude.

2.2 Baseline Model

Players and preferences. An organization consists of a principal, P , and n agents.9 There are two decisions

to be made, y ∈ <2, but the outcome of each of them depends on two state variables θ1 and θ2 (to be defined

later). Optimal decisions thus require information about these states. The decision-specific uncertainty is

represented by two composite states δ1 (θ1, θ2) and δ2 (θ1, θ2). Preferences for player i = {P, 1, . . . , n} are

given by:

U i(θ,y,bi) = −
(
y1 − δ1(θ1, θ2)− bi1

)2 − (y1 − δ2(θ1, θ2)− bi2
)2

Where bi ∈ < represents i’s bias vector, which is normalized to bP = (0, 0) for the principal.

Information structure. Pay-off relevant states, θ1 and θ2, are uniformly distributed with support in the

interval [0, 1], and θ1 ⊥ θ2. Information about each of these states affects both decisions, that is, there is

informational interdependence. In the example of multinational corporations, the states can be interpreted as

different technological attributes relevant for many products the firm produces. Decisions would represent

the different product lines using these technologies; arguably, each technology is a salient attribute for a

different product. In a policy-making example, states can be interpreted as the different goals of a policy

intervention, while decisions represent the different policy instruments that address those goals; arguably,

different instruments address goals with different degrees of success. The composite states δ1 and δ2 capture

informational interdependence: δ1

δ2

 ≡
w11 θ1 + w12 θ2

w21 θ1 + w22 θ2


The uniform distribution of states represents the canonical example in Crawford and Sobel (1982) and

has been extensively used in the cheap talk literature.Assuming independent states allows me to isolate the

effect of informational interdependence through δ. The elements of the weighting matrix W are indexed by

wdr, for yd = {y1, y2} and θr = {θ1, θ2} (d represents decisions and r represents states). All the weights

are weakly positive and I normalize them as wd1 + wd2 = 1. Without loss, I also take w11, w22 >
1
2 , so

that the index corresponding to the state also reflects which decision that state is more important for. As a

consequence, the informational interdependence between decisions is linear, and captured by the ex-ante

correlation between the composite states.

Corr(δ1, δ2) =
(w11w12 + w21w22)

[(w2
11 + w2

21)(w2
12 + w2

22)]

Agents’ signals and communication. Agents have access to noisy, non-verifiable information about both

states. Each agent observes one signal associated with each state (two in total). Let Si = (Si1, S
i
2) ∈ S ≡

9As usual in this literature, I use female pronouns to refer to the principal and male pronouns for each agent.
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{0, 1}2 be i’s signals, and S̃ ∈ S be the vector of realizations. Signals are independent across players,

conditionally on θ. The prior probability distribution for each signal is characterized by Pr(S̃i1 = 1) = θ1

and Pr(S̃i2 = 1) = θ2.10

Each agent sends private, non-verifiable (cheap talk) messages to decision-maker j = {P, 1, .., n}.11 Let

mi
j

(
Si
)
∈ {0, 1}2 denote agent i’s message to decision-maker j, in charge of yd = {y1, y2}. Note that i’s

(pure) message strategies associated with each signal can take one of two forms (up to relabelling messages):

the truthful one, mi
j(S

i
r) = S̃ir for all Sir, and the babbling one, mi

j(S̃
i
r = 0) = mi

j(S̃
i
r = 1). Besides,

the complete set of message strategies is not just based on babbling or revealing information on separate

dimensions independently. An agent could, for instance, truthfully reveal both signals for some realizations

and send the babbling message for others. Such message strategies arise because states are orthogonal and

information about one state does not reveal information about the other. I call these strategies ‘dimensional

non-separable’ (DNS).

Let mj = {...,mi
j , ...} denote the matrix containing all the messages decision-maker j receives from

agents (including himself if applicable). The updated expectation and variance for each state depend on

the number of agents revealing the corresponding signal truthfully, kr(j) ≤ n, and the the number of those

agents who report a 1, `r(j), for θr = {θ1, θ2}, as follows.

E (θr|mj) =
(`r(j) + 1)

(kr(j) + 2)
Var (θr|mj) =

(`r(j) + 1)(kr(j)− `r(j) + 1)

(kr(j) + 2)2(kr(j) + 3)

Allocation of decision rights. Decision-rights are allocated before each agent learns his information.

Formally, the principal decides on a set of assignments that grants decision making authority over the set of

decisions. The assignment grants complete jurisdiction over the delegated decision, such that authority over

each decision is granted to a unique individual. Decision makers are also granted the possibility of private

communication with each agent. I assume decision-makers cannot communicate the information transmitted

to them by other agents. Different allocations of decision-rights lead to different organizational structures. I

group these structures into three categories: under centralization the principal decides on both issues; under

full delegation the principal grants authority to two different agents, each of them assigned to a different

decision; under partial delegation the principal retains authority over one issue and delegates the other to an

agent.

At this point two clarifications are necessary. First, I am not considering the case of delegation of both

decisions to a single agent. Incentives for communication in such a case use the same measure of conflict of

interest as under centralization. Hence, interdependence plays no role beyond the basic trade-off between

informational gains and loss of control. On the contrary, the two forms of delegation considered in the paper

involve different measures of conflict of interest. The second clarification relates to the distinction between

10A similar information structure, for unidimensional problems with one state variable, has been used in Austen-Smith and Riker
(1987); Morgan and Stocken (2008); Galeotti et al. (2013) among others.

11When an agent controls a decision, I assume he cannot reveal any information provided by other agents at the communication
stage. An in-depth analysis of informational hierarchies can be found in Migrow (2017), while discussions of communication of
imperfect information in the form of binary signals can be found in Förster (2020) and Chapter 3 of this dissertation.
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delegation of decision authority and decentralization on the access to information. In my framework, authority

can be centralized or decentralized, the latter is called ‘delegation’ throughout the paper. Information, on the

contrary, is always decentralized because it is dispersed among agents.

Equilibrium concept The equilibrium concept is pure-strategies Perfect Bayesian Equilibria (equilibrium,

henceforth). A full characterization including mixed strategies is cumbersome and does not provide much

insight beyond the pure-strategies case. Because communication is cheap talk, there typically exist multiple

equilibria. I select among equilibrium message strategies on the basis of the decision-maker’s ex-ante

expected utility.12

In the following section I analyse optimal organizational design when agents observe one signal associated

with each state.

2.3 Organizational Design and Information Transmission

In this section I characterize the role of informational interdependence in organizational design. I first

describe incentives for communication under each organizational structure (the formal analysis is left to the

appendix). I then analyse the optimal organizational structure. The figure below outlines the timing of the

game.

1 2 3 4 5

P allocates
decision rights

Agents observe
signals

Communication
takes place

Decisions
are made

Payoffs realized

Figure 2.1: Timing of the Organizational Design Game

Before describing the incentives for communication, I introduce some notation. Let k∗r(j) ≡ kr(m
∗
j )

and `∗r(j) denote the number of truthful messages and ‘ones’ decision-maker j receives in equilibrium,

respectively. Also, let kr(j) be an agent’s conjecture about the number of agents other than him who

reveal information about state θr to decision-maker j (on path).13 To keep track of who decides what, let

j′, j′′ ∈ {P, 1, ..., n} be the decision-makers for y1 and y2, respectively (the number of apostrophes coincides

with the index on the decision).

An equilibrium of the game defined by the allocation of authority is characterized by the triple
(
y∗,m∗j′ ,m

∗
j′′
)
,

representing the vector of decisions and the vectors of message strategies to j′ and j′′, respectively. Optimal

actions satisfy:

y∗1 = w11E(θ1|m∗j′) + w12E(θ2|m∗j′) + b′1 y∗2 = w21E(θ1|m∗j′′) + w22E(θ2|m∗j′′) + b′′2

12See Crawford and Sobel (1982); Farrell (1993); Chen et al. (2008). Also, given the focus on pure strategies, it can be shown
that this criterion satisfies neologism proofness (Farrell, 1993).

13Note that i’s conjecture will be correct in equilibrium, and whenever his message strategy involves revealing the corresponding
signal then k∗r (j) = kr(j) + 1, otherwise k∗r (j) = kr(j).
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Where b′1 represents the bias of decision-maker j′ with respect to y1, and similarly for b′′2 , j′′, and y2.

Note that centralization means j′ = j′′ = P , such that the biases are equal to zero. From the principal’s

perspective, delegation of decision-rights has two payoff-relevant consequences. On the one hand, it implies

a biased agent decides on behalf of the principal, resulting in a biased decision. On the other hand, individual

incentives for communication depend on the conflict of interest between the agent and each decision-maker.

Different organizational structures (and decision-makers) then result in different communication incentives.

Agent i’s optimal message strategy to decision-maker j solves:

mi∗
j (Si,bi, b′1, b

′′
2) = arg max

mi
j

{
E
[
−
(
y1

(
mi
j′ ,m

-i
j′
)
− δ1 − bi1

)2 − (y2

(
mi
j′′ ,m

-i
j′′
)
− δ2 − bi2

)2 ∣∣∣Si]}

To simplify notation, let kC
r ≡ {kr(j)| j′ = j′′ = P} denote the number of truthful messages about

θr = {θ1, θ2} the principal receives under centralization; let kP1
r ≡ {kr(P )| j′ = P} be the number of

messages received when she decides on y1 only, and kP2
r ≡ {kr(P )| j′′ = P} when she decides on y2 only.

For when P does not decide at all, let k′r ≡ k∗r(j′) and k′′r ≡ k∗r(j′′) refer to the number of truthful messages

for decision-makers of y1 and y2, respectively, while keeping kjr ≡ k∗r(j) for a generic decision-maker.

Note that the principal’s expected utility from different allocations of decision rights depends on the

amount of information the different decision-makers are expected to receive on the equilibrium path. I first

analyse incentives for communication for a typical agent under different organizational structures, then I

study the role of informational interdependence in the principal-optimal structure.

2.3.1 Incentives for Communication

Delegation. I first describe agent i’s incentives to reveal information to decision-maker j in charge of yd.

Because communication between i and j is private, incentives depend on the conflict of interest between

them, represented by |bid − b
j
d|. But since i is imperfectly informed, communication also depends on how

many other agents are expected to be truthful to j on the equilibrium path. If j receives information from

many agents other than i, he conjectures the decision will be ‘too close’ to j’s ideal, and far away from

his. These two determinants constitute the traditional mechanism determining communication of imperfect

information via cheap talk (Austen-Smith and Riker, 1987; Morgan and Stocken, 2008; Galeotti et al., 2013).

In my framework, agents observe signals about two independent states, which introduces a third determinant.

Informational interdependence implies that information about the two states affect each decision. When

i observes signals Si = {(0, 1)}, for instance, his influence depends on which signal he is expected to

reveal to j. Because the conflict of interest between them is unidimensional, one of these signals always

moves the decision towards his bias. Therefore, i has higher incentives to follow the favourable signal, for

all possible message strategies. These deviation incentives lead to a credibility loss, which depends on i’s

conjecture about the influence of the favourable signal, given the equlibrium behaviour of the other agents.

As a consequence, incentives for communication now depend on how much information about both states

other agents are expected to reveal on path.

Lemma A2.1 and Proposition A2.1 in Appendix A2 characterize the equilibrium communication between
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agent i and decision-maker j; here I describe the intuitions. When i is expected to reveal one signal on path,

his incentives depend on the conflict of interest with j, on how many agents reveal the same information,

and how many of them reveal the other signal (due to the credibility loss). When i is expected to reveal both

signals on path, his influence on the decision depends on whether the signals realizations coincide or not.

If they coincide, Si = {(0, 0), (1, 1)}, the signals’ influences reinforce each other; i’s expected marginal

utility from revealing such signals will be larger than revealing each of them individually (conditional on

kj1 and kj2). Agent i would have, in principle, higher incentives to reveal both signals than revealing either

of them individually. But signals may not coincide, Si = {(0, 1), (1, 0)}, in which case their influences

counteract each other and i has incentives to follow the most favourable of them. An implication of this is

that incentive compatiblity constraints for revelation of one signal and full revelation coincide, meaning that

these constraints hold for the same set of bias vectors. As a result, the equilibrium under delegation involves

only two message strategies: full revelation, mi∗
j = {{(0, 0)}; {(1, 1)}; {(1, 0)}; {(0, 1)}}, and babbling,

mi∗
j = {{(0, 0); (1, 1); (1, 0); (0, 1)}}.14

Centralization. In Chapter 1 I showed that interdependence means that information transmitted to the

principal under centralization affects both decisions. But an agent’s influence on decisions depend on the

type and amount of information he transmits. To see this, note that revealing Si1 has a larger influence on y1

and, thus, the bias on the first dimension weighs more heavily in determining i’s incentives. If he reveals

both signals, on the contrary, the overall influence is more balanced and so are the weights of bi1 and bi2 on the

IC constraints. This leads to different measures of conflict of interest depending on the information revealed

by different message strategies.

The possibility of different measures of conflict of interest results in two main differences with respect to

delegation. First, revealing information about one state only constitutes the equilibrium message strategy

for a non-empty set of bias vectors. The relevant measure of conflict of interest for revealing Si1 is given

by β1 = bi1w11 + bi2w21, while that for revealing Si2 is β2 = bi1w12 + bi2w22 (Proposition A1.1). The

second difference with delegation relates to the effects of ambiguous information, i.e. Si = {(0, 1), (1, 0)}.
Under centralization, revealing both signals has a balanced overall influence on decisions. Note that truthful

revelation of Si = {(0, 1)} or Si = {(1, 0)} move decisions in opposite directions. If, for instance, i credibly

announces mi
P = {(0, 1)}, he would influence y1 towards 0 and y2 towards 1. If i’s biases have the same

sign, such a message leads to utility gains in one dimension and losses in the other. For some set of bias

vectors i’s equilibrium message strategy consists of revealing ambiguous signals and sending non-influential

messages otherwise. As Proposition A1.1 shows, the principal-optimal equilibrium features the following

message strategies: full revelation, revelation of information about one state, full revelation of some signal

realization and nothing otherwise, and babbling. I now focus on the analysis of the optimal organizational

structure.

14One could think that i may want to fully reveal signals when they coincide and announce the corresponding babbling message
when they do not—i.e. mi

j = {{(0, 0)}; {(1, 1)}; {(1, 0); (0, 1)}}. In the Appendix I show the set of bias vectors for which this is
incentive compatible is a strict subset of that for which full revelation is.
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2.3.2 Optimal Organizational Structure.

In this subsection I characterize the optimal organizational structure and present the main result of the

communication game: the optimal allocation of decision-rights depends on the existence and the extent of

informational spillovers.

The profile of preferences, B = {b1, ...,bn}, determines the amount of equilibrium information for

each possible organizational structure. By allocating decision rights the principal affects agents’ equlibrium

message strategies; effectively, she chooses among the different equilibria induced by B. Let Var(θr|mj)

denote the ex-ante expected variance associated to state θr = {θ1, θ2} in the equilibrium in which decision-

maker j = {P, 1, ..., n} receives messages characterized by mj .15 The definition below characterizes the

principal’s ex-ante expected utility, for two generic decision-makers j′ and j′′.

Definition 2.1 (principal’s ex-ante expected utility). Consider an equilibrium (y,m) in which j′, j′′ =

{P, 1, ..., n} decide on y1 and y2, respectively. Denote by mj = {mj′ ,mj′′} the equilibrium messages for

j′ and j′′ under delegation, for j′, j′′ = {P, 1, 2, ...}. Then, the principal ex-ante expected utility is given by:

Û P(B,mj′ ,mj′′) =−
[
(b′1)2 + (w11)2 Var(θ1|mj′) + (w12)2 Var(θ2|mj′)

]
−
[
(b′′2)2 + (w21)2 Var(θ1|mj′′) + (w22)2 Var(θ2|mj′′)

]
(2.1)

Equation (2.1) is derived in Appendix A2. The first term in square brackets represents the principal’s

ex-ante expected utility associated with delegation of y1 to decision-maker j′. Because his decision will be

biased, the principal’s utility is decreasing in b′1. But her utility also depends on her expectations about the

decision-maker’s posterior beliefs in equilibrium. The principal thus delegate authority to a player whose

preferences on the associated decision are sufficiently close to other agents’ preferences. This is the trade-off

in the literature: informational gains must compensate for the loss of control.

But informational interdependence can lead to a different source of informational gains for the principal.

Because delegation breaks the interdependence, there may be agents willing to reveal information under

delegation but not under centralization. This happens when, for instance, agents’ biases are very large in one

dimension and small in the other. If the principal delegates the high-conflict decision and retains authority

over the low-conflict decision, these agents will reveal information to her. I call these informational gains

indirect, since they do not arise because the new decision-maker aggregates more information, but is a

by-product of delegation. Indeed, indirect informational gains arise because some agents are affected by

negative informational spillovers—under centralization, a high-conflict dimension impedes communication

in a dimension of low conflict of interest (Levy and Razin, 2007).16 The proposition below defines both types

of informational gains arising in this game, and characterizes the necessary conditions for each of them.

Proposition 2.1. Consider the equilibrium under centralization, characterized by m∗C; and the equilibrium

15Formally, Var(θr|mj) ≡ E
[(
E(θr|mj)− θr

)2
; mj

]
= 1

6(k
j
r+2)

.
16Levy and Razin describe negative informational spillovers as the case when i’s bias with respect to y1 is so large that he would

not reveal any information under centralization, even though |bi2| is very small.
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in which the principal delegates y1 to agent j′ and retains authority on y2, characterized by m∗j′ and m∗P2.

Utility gains from delegation consist of:

• Direct Informational Gains if:

DIGj′(y1) ≡ (w11)2
[
Var(θ1|m∗C)− Var(θ1|m∗j′)

]
+ (w12)2

[
Var(θ2|m∗C)− Var(θ2|m∗j′)

]
≥ (b′1)2

Moreover, such direct informational gains require that there exists an agent i whose preferences satisfy:

|bi1 − b′1| <
∣∣∣∣bi1 + bi2

w21

w11

∣∣∣∣ (2.2)

• Indirect Informational Gains if:

IIG(y2) ≡ (w21)2
[
Var(θ1|m∗C)− Var(θ1|m∗P2)

]
+ (w22)2

[
Var(θ2|m∗C)− Var(θ2|m∗P2)

]
≥ 0

Moreover, such indirect informational gains require that there exists an agent i whose preferences

satisfy:

|bi2| <
∣∣∣∣bi1 w12

w22
+ bi2

∣∣∣∣ (2.3)

Moreover, whenever the optimal allocation of decision rights involves delegation of y1 to j′, then either

DIGj′(y1) > b′1, or IIG(y2) > 0, or both.

Proof. All proofs can be found in Appendix A2

Direct informational gains arise when more agents transmit information to the new decision-maker under

delegation than to the principal under centralization. Such gains arise only if j′ has more central preferences

on y1; that is, if there is at least one agent who is willing to reveal information to j′ but not to the principal

under centralization. Equation (2.2) reflects this condition: it shows that the relevant conflict of interest

between i and j′ (left-hand side) is lower than that between i and the principal under centralization (right-hand

side).

Indirect informational gains arise when more agents transmit information to the principal upon delegation

of one decision, as compared to centralization. For this to take place there must be at least one agent who

reveals more information to the principal when she decides on y2 only. Equation (2.3) shows that the conflict

of interest with the principal under partial delegation must be lower than the aggregate conflict of interest. In

this case, the bias on the first dimension is so large that communication under centralization is less informative

than when the principal only decides on y2. The presence of negative informational spillovers is then a

necessary condition for indirect informational gains.

The optimal allocation of decision rights is fully characterized in Proposition A2.2. Full delegation is

optimal when there are two different agents with central preferences and no informational spillovers associated
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with retaining authority. The allocation of decision rights depends then on the different communication

equilibria induced by the profile of preferences. The previous discussion made clear that the argument reduces

to whether the direct and/or indirect informational gains are sufficiently large, where sufficiency involves the

loss of control from delegation.

2.3.3 Organizational Design with Informational Spillovers

I now present the main result of this section: how the presence of informational spillovers leads to

specific organizational structures. In the previous section I showed that the presence of negative informa-

tional spillovers is a necessary condition for indirect gains, which in turn leads to partial delegation. But

informational spillovers are not limited to being negative in this context. Positive spillovers occur when i’s

decision-specific biases are both large, but the aggregate conflict of interest (associated with the information

he reveals in equilibrium) is small. When i is expected to reveal information about θ1 only, for instance, his

incentives are maximal when bi1 = −w12
w11

bi2. Intuitively, if there were many agents whose preferences are

affected by positive spillovers, the principal would prefer centralization to any other organizational structure.

The proposition below shows how informational spillovers affect the allocation of authority.

Proposition 2.2. Let the triple (kC,k′,k′′) characterize the optimal organizational structure under the

profile of biases Bn = (b1, ...,bn). Suppose that k′1 = k′2, k′′1 = k′′2 , and kC
1 = kC

2 . Now, consider the

associated game consisting of n + m agents, with the profile of biases for the first n being Bn, such that

Bn+m = (b1, ...,bn,bn+1, ...,bn+m). For a sufficiently large b ∈ <+, it is true that:

1. For bn+1 = ... = bn+m = (b, 0); then, there exists a sufficiently large m such that the optimal

organizational structure in the game with n+m agents is partial delegation of y1 only.

2. For bn+1 = ... = b
2n+m+1

2 = (−b, b) and b
2n+m+1

2 = ... = bn+m = (b, b); then, there exists a

sufficiently large m such that the optimal organizational structure in the game with n+m agents is

centralization.

If negative spillovers are sufficiently large with respect to one dimension, the principal’s optimal organ-

izational structure is partial delegation. If positive spillovers are sufficiently large, the principal’s optimal

organizational structure is centralization. Informational spillovers in Proposition 2.2 are captured by the

preferences of the ‘additional’ agents, such that m reflects the intensity of these spillovers.

Negative spillovers lead to partial delegation because the principal finds optimal to delegate the controver-

sial decision in order to induce the additional agents to reveal the information they have. Positive spillovers,

on the other hand, lead to centralization because the additional agents are willing to play dimensional

non-separable strategies under centralization. Agents whose decision-specific biases have different signs fully

reveal their signals when Si = {(0, 0); (1, 1)} and announce the babbling message for the other possible real-

izations; while agents whose biases have the same sign fully reveal their signals when Si = {(0, 1); (1, 0)}
and announce the babbling message otherwise. In both cases, the additional information the principal expects

to receive from the m agents brings her a higher expected utility than the optimal allocation under the original

profile of preferences.
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Because the choice among organizational structure depends on the trade-off between informational gains

and loss of control, in the following subsection I study it in more depth.

2.3.4 Informational Gains and Loss of Control

Proposition 2.3 below characterizes the relationship between informational gains and loss of control

under informational interdependence, when agents are imperfectly informed.

Proposition 2.3 (Maximum Admissible Loss of Control). Let bD = (b′1, b
′′
2) be the biases of decision-makers

for y1 and y2, respectively. Then, the maximum bD for which the principal is willing to delegate at least one

decision is given by:

||bD|| ≡
[∑
yd

[
w2
d1

(
Var(θ1|mC)− Var(θ1|mj)

)
+ w2

d2

(
Var(θ2|mC)− Var(θ2|mj)

)]] 1
2

There is a positive relationship between informational gains from delegation and loss of control. The

expression ||bD|| represents the relevant measure for the loss of control: how far are both decisions from the

principal’s (state-dependent) ideal. Under partial delegation, one of the components of ||bD|| is zero, which

marks the maximum bias the principal tolerates in a single decision.

Figure 2.2 illustrates the relationship between informational gains and loss of control. It shows the

maximum deviation the principal tolerates from her ideal decision—measured by ||bD||—as a function of

the number of agents revealing both signals in three cases.17 First, when she delegates both decisions to

different agents (in blue). Minimum informational gains in this case mean each decision-maker decides

with his own signals, but no other agent reveals any additional information. The concavity of the curve

represents the decreasing marginal utility of additional information, which comes from quadratic preferences

and the updating process.18 Maximum informational gains are represented with the dashed line, showing the

maximum bias the principal tolerates when she expects each decision-maker to become perfectly informed

in equilibrium. Second, the red lines show the relationship for direct informational gains only, assuming

the principal retains authority on one decision and does not receive any information from agents. Minimum

informational gains thus mean the agent decides with his own information and the principal decides with

no information. Hence, the maximum bias the principal tolerates is lower than the full delegation case,

which holds for all possible informational gains. The same intuition applies for the maximum bias the

principal tolerates (dashed line). Finally, the yellow lines show the relationship when informational gains are

indirect—partial delegation results in more information being received by the principal. For the delegated

decision, the agent observes his own signals, which explains in part why the principal tolerates a higher bias

than for direct informational gains. Because of the quadratic preferences, this additional information has a

high marginal return for the principal.

The intuitions just described assume constant information under centralization (kC
1 = kC

2 ). I now show

17To make the comparison clear, I assume kC
1 = kC

2 = 0.
18The marginal influence of an additional signal on the associated posterior belief is decreasing (see Morgan and Stocken, 2008;

Galeotti et al., 2013).
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Figure 2.2: Maximum bias the principal tolerates as a function of informational gains
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how the information the principal expects to receive under centralization affects the loss of control she

is willing to tolerate. In summary, the principal’s marginal expected utility from an additional signal is

decreasing in the amount of information she expects to receive under centralization.

Corollary 2.1. The ‘marginal value’ of a signal for the principal is decreasing in the amount of information

she receives under centralization. Let ∆Var(θr|kC
r ) = Var(θr|mC)− Var(θr|mj , k

j
r = kC

r + 1).

∂∆Var(θr|kC
r )

∂kC
r

=
1

6

[
1

(kC
r + 3)2

− 1

(kC
r + 2)2

]
< 0 (2.4)

Equation (2.4) means that an additional signal represents a smaller informational gain when the principal

expects to be well informed under centralization. The maximum bias she is willing to tolerate thus decreases

as the profile of biases allows more agents to truthfully reveal information under centralization. The result

extends Corollary 1 in Dessein (2002) to the case of imperfectly informed senders.19

19Dessein finds that incentives to delegate depend on the magnitude of the residual variance. His paper features a single, perfectly
informed sender who advises the principal on a one decision problem. He analyses incentives for delegation as a function of the
ex-ante variance associated with the state, against the babbling equilibrium. The residual variance here depends on the amount of
information received by the principal under centralization.
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2.4 Endogenous Information Acquisition

In this section I analyse agents’ incentives to acquire information before the communication stage,

but after decision-rights have been allocated. I first present the extended model. Next, I derive the two

incentive compatibility constraints involved in information acquisition decisions and show how costs impose

restrictions on informational gains from delegation. I then characterize the equilibrium strategies for a generic

agent, showing the cases in which he decides to specialize. Finally, I analyse how interdependence affects

incentives to acquire information under different organizational structures.

Baseline model with endogenous information acquisition. Agents have access to imperfect information

about each state. In particular, each agent has access to one binary trial per state and decides which realizations

to observe (if any).20 Formally, let si ∈
{
{∅}, {S̃1}, {S̃2}, {S̃1, S̃2}

}
be agent i’s information acquisition

decision. With this formulation, i’s type is given by the realizations of both signals but he decides the extent

to which he observes his type.

Definition 2.2. The information structure for agent i in the game with endogenous information acquisition

consists of the following elements: Si = (Si1, S
i
2) are the signals available to him, S̃i = (S̃i1, S̃

i
2) the

realization of the corresponding signals (his type), and si ∈
{
{∅}, {S̃1}, {S̃2}, {S̃1, S̃2}

}
the information he

actually decides to observe.

The costs of different information structures are captured by the functionC(s), which satisfiesC
(
{S̃1, S̃2}

)
>

C
(
{S̃1}

)
= C

(
{S̃2}

)
> C (∅) = 0. The principal has no direct access to information. The preferences of

agent i = {1, . . . , n} are given by:21

U i(θ,x,bi, si) = −
∑

yd={y1,y2}

(
yd − δd(θ1, θ2)− bid

)2 − C(si)

Figure 2.3 shows the timing of the game. The allocation of decision rights is observed by all agents.

Knowing who decides what, each agent chooses the information he will observe (if any). I assume overt

information acquisition—individual decisions (but not information) are observable. In Section 2.6 I discuss

the implications of relaxing this assumption.

The communication stage is similar to the previous section, so I keep the notation. Let i be a generic agent

and j a generic decision-maker, let j′, j′′ ∈ {P, 1, ..., n} be the decision-makers for y1 and y2, respectively,

such that i = {1, ...n} and j = {j′, j′′}. Let kjr ≡ k∗r(m∗j (s∗)) be the number of truthful messages decision-

maker j receives in equilibrium, and k′r ≡ k∗r(j′) and k′′r ≡ k∗r(j′′) refer to the number of truthful messages

to decision-makers j′ and j′′ (respectively).

20In principle, agents could have the choice on how much information about each state to observe, involving information
acquisition at the intensive and the extensive margins. Here, however, I focus on the extensive margin, meaning that each agent
decides whether to observe at most one binary signal per state. In section 2.6, I discuss some implications of allowing agents to
acquire information on the intensive margin.

21The principal’s preferences are captured by UP (θ,x) = −
(
y1 − δ1(θ1, θ2)

)2 − (y2 − δ2(θ1, θ2)
)2.
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P allocates
decision rights

Agents decide
on

info acquisition

Agents
observe
signals
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takes place

Decisions
are made

Payoffs realized

Figure 2.3: Timing of the Org. Structure / Info Acquisition game.

An equilibrium in this game is then characterized by the decision vector, y∗d, and collections of messagse

and information acquisition strategies for each agent and decision-maker j, m∗j = {. . . ,mi∗
j , . . . } and

s∗ = {. . . , si∗, . . . }. The expressions for optimal actions and messages are similar to those of the previous

section, noting that k∗r(m
∗(s∗)), y∗d(m

∗
j (s
∗)), and m∗ij

(
si,m-i(s-i)

)
. Agent i’s information acquisition

strategy is given by:

si∗ = arg max
si

{
E
[
−
(
y1

(
mi
j′(s

i),m-i
j′
)
− δ1 − bi1

)2 − (y2

(
mi
j′′(s

i),m-i
j′′
)
− δ2 − bi2

)2 ]− C(si)

}
The expectation is based on equilibrium beliefs. Agent i’s equilibrium message strategy depends on

the information he acquired in an earlier stage of the game and his conjecture about other agents’ message

strategies. Information acquisition are observable at the communication stage, which simplifies the beliefs

space. The signals i acquired thus affect his communication strategy. When he acquires information about

both states, the IC constraints for communication are the same as in the previous section. When he acquires

information about one state, however, the IC constraints change significantly because his incentives to reveal

information are not affected by beliefs about the other state. This kills the credibility loss and truthful

communication is incentive compatible for a larger set of bias vectors. Now, let me focus on the details of

these arguments.

Incentives to acquire information. For an agent to acquire a piece of information the expected utility

gains must compensate its costs. First, costly information acquisition means that each agent will invest in a

signal only if he expects to benefit from it. In equilibrium i only acquires signals he is willing to reveal; if

he fails to reveal any piece of information (off path), no other agent will change his equilibrium message

strategy.22 The number of truthful messages does not change when i acquires a signal he does not reveal, but

he still bears the costs. The lemma below formalizes this intuition—incentive compatibility at the information

acquisition stage requires incentive compatibility at the communication stage.

Lemma 2.1. Let (y∗,m∗, s∗) be equilibrium strategy profiles for the principal and all agents. The equi-

librium is characterized by the number of truthful messages decision-makers receive, kj1
(
m∗j (s

∗)
)

and

22Formally, i’s incentives for communication depend on having acquired the signal, bi, and on his conjecture about kj1 and kj2.
Then, for i acquiring Sir off-path to change another agent h’s conjecture about kjr , bi should be such that he is willing to reveal that
signal. In such a case, h (off-path) conjecture for kjr should be larger than the equilibrium value, but then i would be willing to reveal
Sir in equilibrium and would have acquired it.

57



kj2

(
m∗j (s

i∗)
)

, for j = {j′, j′′}. Then, agent i equilibrium information acquisition strategy, si∗, satisfies:

• Sr ∈ si∗ only if truthful revelation to j is incentive compatible, given kjr
(
m∗j (s

∗)
)

;

• {S1, S2} ∈ si∗ only if full revelation to j is incentive compatible, given kj1
(
m∗j (s

∗)
)

and kj2
(
m∗j (s

∗)
)

.

The main implication of Lemma 2.1 is that the choice of organizational structure will affect agents’

incentives for information acquisition, because it determines the relevant IC constraints at the communication

stage. Incentives to acquire information depend on the possibility of being influential. But credibility hinges

on both the conflict of interest and the number of other agents expected to reveal similar information on path.

Agents thus acquire information they expect to reveal on the equilibrium path, given the allocation of decision

rights. The conclusion is similar to Di Pei (2015): information structures available to agents and the cost

function satisfy assumptions 1 and 2 of his paper (“Richness” and “Monotonicity”). Both seem rather natural

assumptions in my framework; for a given information structure a ‘coarser’ alternative means investing in

less signals, which will also be cheaper than the original choice.

The second element of incentive compatibility of information acquisition relates to its costs. Utility

gains from revealing any piece of information are decreasing in the number of other agents revealing the

same information (kjr). Given costs are strictly positive, there is a maximum number of agents for whom the

utility gains of revealing that piece of information compensate the costs. The following lemma presents the

cost-effectiveness condition, which captures this idea.

Lemma 2.2. Let kjr denote i’s conjecture about other agents revealing Sr truthfully to j.

Centralization: acquiring signal Sir is cost-effective for i under centralization if:

C(Sir) ≤
(w1r)

2 + (w2r)
2

6(kC
r + 2)(kC

r + 3)
(2.5)

Delegation: acquiring signal Sir is incentive compatible for agent i if for at least one decision, yd, with the

corresponding decision-maker j is true that:

C(Sir) ≤
(wdr)

2

6(kjr + 2)(kjr + 3)
(2.6)

The right-hand sides in equations (2.5) and (2.6) represent the ex-ante expected utility gains from

revealing one signals under centralization and delegation, respectively. An agent acquires a signal if its

expected influence on decision(s) is sufficiently large. The influence of revealing a signal depends on how

many other agents are expected to reveal the same information, which in turn depends on the organizational

structure. Under centralization, revealing a given signal influences both decisions, which is reflected in the

numerator of equation (2.5). Under delegation, the influence depends on whether i reveals the signal to one
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or both decision-makers. The ex-ante expected utility gains of acquiring (and revealing) a given signal are

thus weakly lower under delegation.

Dimensional non-separable message strategies face a more restrictive cost-effectiveness condition because

i expects to reveal information for half of the possible signal realizations. The costs of acquiring both signals

must then be sufficiently low for such a strategy to be cost-effective. The latter does not hold if revealing one

signal is also incentive compatible for i, in which case the most-informative equilibrium consists of acquiring

and revealing information about one state.

Because the expected influence of truthful revelation is decreasing in the number of other agents revealing

the same information, there exists a maximum number of agents for whom cost-effectiveness holds with

respect to any signal.

Corollary 2.2. The maximum number of agents acquiring Sr in any equilibrium under centralization is

given by:

KC
r =

⌊[
1

4
+

[(w1r)
2 + (w2r)

2]

6C(Sir)

]1/2

− 5

2

⌋
+ 1 (2.7)

And under delegation, the maximum number of agents acquiring Sr in any equilibrium is:

KD
r ∈

[⌊[
1

4
+

(ŵdr)
2

6C(Sr)

]1/2

− 5

2

⌋
+ 1 ; KC

r

]
(2.8)

Where ŵdr ≡ min{w1r, w2r}

Expressions (2.7) and (2.8) represent the maximum number of agents, other than i, for whom investing

in a signal is cost-effective under centralization (KC
r ) and delegation (KD

r ), respectively. These numbers

depend on whether revealing information influences both decision or only one of them. Note that under

centralization any influential agent affects both decisions; while, under delegation, the same is true only for

agents revealing information to both decision-makers. Typically, however, many agents under delegation will

reveal information to one decision-maker, which would make KC
r > KD

r .

I now discuss the equilibrium information acquisition and message strategies and how they are affected

by the allocation of decision rights. I also present the analysis on specialization.

2.4.1 Specialization

Equilibrium information acquisition strategies depend on the organizational structure and the cost of

information. Cost-effectiveness imposes restrictions in addition to incentive compatibility at the communica-

tion stage, which can lead agents to underinvest in information—relative to what they would be willing to

reveal. In the following paragraphs, I analyse how this leads to specialization, here defined as the case in

which an agent decides to acquire information about one state only.

Individual decisions on information acquisition are equivalent to choosing between message strategies

given other agents’ equilibrium behaviour. In particular, when agent i acquires information about one state
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only, his incentives for communication do not depend on information about the other state (because he does

not observe any). This eliminates the credibility loss due to ambiguous information, thus enlarging the set of

biases for which revealing that signal is incentive compatible. The proposition below shows the result.

Proposition 2.4. Let kj = {kj1, kj2}, where kjr = kjr
(
m∗j (s

∗)
)

be i’s conjecture about other agents revealing

their information about θr = {θ1, θ2} to decision-maker j = {P, 1, ..., n}. There exists a set of bias vectors,

Bj
r = Bj

r(bj ,kj), such that if bi ∈ Bj
r, then revealing information about θr only is incentive compatible

when si = {S̃ir}, but is not incentive compatible when si = {S̃i1, S̃i2}. Moreover, the set Bj
r depends on the

organizational structure.

Acquiring information about one state eliminates the possibility of ambiguous information. Hence, agent

i is not tempted to lie when information about the other state is more favourable: revealing information

about that state is thus incentive compatible for a larger set of biases. In other words, specialization acts as a

commitment device because the agent does not know when an unfavourable signal produces an excessive

update against his preferences.

Proposition 2.4 also implies that, for a given set of biases, the principal prefers that agent i specializes,

even when he has free access to information.

Corollary 2.3. Let C(Si1) = C(Si2) = 0. If agent i’s preferences satisfy:

|βi1| ∈
(

(w11)2 + (w21)2

2

[
1

(kC
1 + 3)

− C1

(kC
2 + 3)

]
;

(w11)2 + (w21)2

2 (kC
1 + 3)

]
Then, in the most informative equilibrium under centralization he acquires and truthfully reveals inform-

ation about θ1 only.

The principal prefers a less informed agent because it guarantees he will not be tempted to manipulate

information. Note that the two results above hinge on the assumption that information acquisition decisions

are observable. In Section 2.6, I discuss the implications of relaxing it and show that specialization still

increases credibility when the cost of information is not too low. These results have implications for how

firms organize subunits’ access to information, since increasing the cost of some types of information may

improve the quality of communication.

I now analyse the different conditions that induce an agent to specialize, in an example with two agents.

Let assume w11 = w22 = w > 1
2 and C(si) = c× (# si), and let denote the agents by A1 and A2. I focus

on the centralization equilibrium in which A1 acquires information about θ1 and A2 acquires information

about θ2, s1∗ = {S̃1
1} and s2∗ = {S̃2

2}. In the equilibrium under consideration, the principal is (ex-post)

more informed than each of the agents since k∗1 = 1 and k∗2 = 1.23 The Proposition below formalizes the

result and panel (a) in Figure 2.4 illustrates the set of biases for which s1∗ = {S̃1
1} under centralization.

23The paper by Alonso et al. (2015) analyses a similar situation in the form of generalist-specialist information structure, where
each agent specializes in a different piece of information and fully transmits it to the principal.
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Proposition 2.5 (Specialization under centralization). Suppose that there are only two agents, A1 and A2,

and the marginal cost of each signal is linear and equal to c. There exist two cost thresholds, c < c̄, such that

the most-informative equilibrium under centralization, (y∗,m∗, s∗), consists in A1 acquiring and revealing

information on θ1 only, and A2 acquiring and revealing information about θ2 only, in the following cases:24

1. For c ≤ c, if and only if revealing S1
1 is IC for A1, revealing S2

2 is IC for A2, and revealing both

signals is not IC for any of them; or

2. For c < c ≤ c̄, if and only if revealing S1
1 is IC for A1 and revealing S2

2 is IC for A2.

Where c = w2+(1−w)2

72 and c̄ = w2+(1−w)2

36 .

When the cost of a signal is close to zero, information acquisition does not impose restrictions on

communication. Agents will then acquire any information they are willing to reveal and, thus, they specialize

on different signals only if these are the only IC message strategies. The stripped region in panel (a) of Figure

2.4 shows specialization driven by preferences.

Figure 2.4: Specialization in the two-agents model — Driven by preferences (P), influence (I), and costs (C)

P

P

I

I

C
b1

b2

(a) A1 specializes on θ1 – Centralization

P

P

P

P

I

I
C

bi1 - b
′
1

bi2 - b
′′
2

(b) A1 specializes on θ1 – Delegation

Notes: w = 2
3 and k∗1 = k∗2 = 1

The cross-hatched region in panel (a) represents the set of biases for which A1 is willing to reveal

information about any state if he only observes the associate signal, but this does not hold if he observes

information about both states. In the equlibrium under considerantion, he expects A2 to acquire and

24Formally, the equilibrium consists in s1∗ = {S̃1
1} and m1∗ =

{
{(0, 0), (0, 1)}, {(1, 0), (1, 1)}

}
for A1, and s2∗ = {S̃2

2} and
m2∗ =

{
{(0, 0), (1, 0)}, {(0, 1), (1, 1)}

}
for A2.
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reveal information about θ2, such that the expected utility gains is larger when he specializes on θ1. This

specialization decision is driven by expected larger influence on the principal’s beliefs, given the equilibrium

strategy of the other agent.25

Now suppose preferences of A1 are such that he is willing to reveal both signals under centralization.

Specialization only emerges if acquiring such information is too costly. Whether he acquires information

about θ1 or θ2 depends on what A2 is expected to do: A1 acquires information about the state the principal is

expected to be less informed on path. The solid gray region in panel (a) illustrates the case of specialization

driven by costs.

Specialization under delegation follows the same intuitions. I describe them using Panel (b) in Figure

2.4. Recall that information about θ1 affects y1 more than y2. Therefore, A1 specializes on θ1 when his

preferences on the first dimension are sufficiently close to j′. Indeed, whenever his preferences are close to

the decision-maker of the second dimension, A1 prefers to acquire information about θ2. The intuitions for

the different drivers of specialization—preferences, influence, and costs— are the same as for centralization,

and are illustrated in the different regions of panel (b).

In the following section, I analyse the effects of different organizational structures on incentives to acquire

information.

2.4.2 Information Acquisition and the Organizational Structure

The optimal organizational structure depends on both the profile of biases and the cost of information. In

the previous section I showed that an agent acquires a signal if the expected utility gains from revealing it

compensate its cost. If information costs are small, the principal can materialize the informational gains from

delegation studied in Section 2.3. For sufficiently large costs, however, centralization is always optimal, since

at the limit no agent can aquire any signal.

In this section, I study how the allocation of decision rights affects incentives to acquire information

when the exact profile of biases is not known by the principal. Abstracting from the precise profile of biases

circumvents the fact that information acquisition depends on how many other agents are willing to reveal each

piece of information. In other words, for sufficiently small costs, there always exists a profile of biases for

which delegation outperforms centralization in terms of information acquisition. This conclusion, however,

stems from the analysis in section 3 more than from new insights on the effects of organizational structure

on investment. From an empirical perspective, the analysis captures the idea that institutions may have

persistent informational effects on outcomes. In policy-making, for instance, the allocation of authority over

a set of issues to a governmental agency effectively grants policy influence to interest groups linked to it

(Baumgartner and Jones, 2009). Part of that influence is about ‘feeding’ the agency with information likely to

be more favourable to the groups’ preferences. Hence, the policy becomes too responsive to these issues but

insensitive to other issues it should be taking into account.

25An alternative equilibrium exists when both agents’ bias vectors lie on cross-hatched regions. The strategies s1∗ = {S̃1
2} and

s2∗ = {S̃2
1} can also be sustained; agents thus face a coordination problem for which there is no clear selection criterion—the

principal is ex-ante (and ex-post) indifferent between any of these. Both equilibria involve specialization mainly because no agent is
willing to reveal both signals.
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I first analyse whether delegation affects the expected absolute investment in information, by focusing on

the maximum number of agents for whom acquiring a signal is cost-effective. Second, I analyse whether

delegation affects the expected relative investment in information, by assuming the bias vectors are randomly

allocated within a fixed conflict of interest with the principal.

Absolute Investment in Information

When information is costly for agents, there is a limit on the informational gains the principal can obtain

from delegation (Corollary 2.2). Through this channel, costs affect the ability of different organizational

structures to aggregate information. The following result shows that information costs impose stronger

restrictions on delegation than centralization.

Proposition 2.6. Let κ be the maximum number of agents willing to reveal information about θr = {θ1, θ2}
to both decision-makers under delegation. Then, for every κ < n, there exist costs for which the maximum

number of agents willing to acquire (and reveal) information about θr is strictly lower under delegation than

under centralization. Formally,

C(Sr) ∈
(

(ŵdr)
2

6(κ+ 2)(κ+ 3)
,

(w1r)
2 + (w2r)

2

6(κ+ 3)(κ+ 4)

]
⇒ KC

r > KD
r

Where ŵdr = max{w1r, w2r}.

When information is costly, the maximum informational gains under delegation are weakly lower than

under centralization. Under delegation, there can be agents who reveal information to one decision-maker

only, unless there is an agent whose preferences are central in both dimensions (and these are not too far from

the principal’s preferences). Under centralization, on the contrary, any information transmitted affects both

decisions, and agents willing to reveal any signal have larger overall influence. The expected utility gains for

such agents are thus larger under centralization and there will typically be more of them willing to invest in

information.

Proposition 2.6 does not mean that centralization is always optimal. For a non-empty set of cost values,

there exist profiles of biases, b, for which delegation of some sort is preferred to centralization (KC
r > KD

r is

not binding). But for sufficiently large costs, centralization always dominates (see Corollary A2.1). This is

the case when the cost of each signal is so high that no agent acquires information under delegation.

In addition, Proposition 2.6 relates to the relationship between loss of control and informational gains in

Proposition 2.3. In the previous section we learned that ||bD|| is increasing in the informational gains from

delegation. In the present section I showed that information costs impose limits on informational gains; now

I will show how ||bD|| is affected by costs. The maximum bias as a function of KD (maximum informational

gains) is given by:

||bD|| =
[

[w2 + (1− w)2]

6

[
1− 2

(KD + 2)

]] 1
2

Which together with equation (2.8) in Corollary 2.2 leads to the following result.
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Corollary 2.4. The effect of information costs on ||bD|| is given by:

∂||bD||
∂C(Sr)

< 0

The maximum admissible bias the principal tolerates decreases as the cost of information increases.

Increasing costs reduces the number of agents willing to acquire any signal, decreasing the informational

gains that can be achieved through delegation. This is relevant when information costs are large and the

principal is not sure about the exact profile of biases at the moment of allocating decision rights. In such

a case, she can expect the benefits from delegation to be low relative to centralization. This relationship

between the information costs and distributional loss could be related to information acquisition on the

intensive margin—the higher the costs, the lower the amount of information a single agent is expected to

acquire and, thus, the lower his ‘informational advantage’ with respect to the principal. I explore this intuition

in Section 2.6.

Relative Investment in Information

I now analyse whether the allocation of decision rights affects the relative investment in information—the

amount of information about each state decision-makers are expected to receive. In order to isolate the

mechanism, I make two assumptions. First, I assume the principal does not observe the exact distribution of

biases when deciding on the allocation of decision rights. As in the previous analysis, this assumption allows

me to abstract from the influence of the specific profile of biases. Second, I assume zero cost of information,

which eliminates the influence of the costs on incentives to acquire information.

Consider the case of delegation. Agent i’s incentives for communication with decision-maker j′, in charge

of y1, are maximal when the conflict of interest is zero, that is bi1 − b′1 = 0. More generally, any conflict of

interest between i and j can be expressed as the ‘horizontal distance’ between bi and bj . Communication of

a given piece of information is then incentive compatible for i if this distance is small enough or, equivalently,

the distance between bi and the ‘maximal incentives for communication’ is small enough. In the Appendix I

show this distance can be expressed as the projection of bi onto the line that represents the maximal incentives

for communication when j′ decides on y1.

Because θ1 is more important for y1 than θ2, j′ expects to receive more information about the former

than about the latter (Lemma A2.2). In other words, under delegation, each decision-maker expects to receive

proportionally more information about the state that is more important for the decision he controls. This can

be seen in Panel (a) of Figure 2.5, for fixed conflict of interests ε and γ ε, and where the maximal incentives

to reveal information about θ1 (θ2) are denoted by λ1 (λ2).

Now, consider the case of centralization. As in the case of delegation, the conflict of interest between i and

the principal can be measured as the distance between bi and the ‘maximal incentives’ for communication.

Here, however, the maximal incentives for communication with the principal depend on the information i

is expected to reveal. For instance, when expected to reveal information about θ1 only, i’s communication

incentives are maximal when βi1 = w11b
i
1 + w12b

i
2 = 0. Because there are different measures of ‘maximal
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incentives’, for a fixed conflict of interest, there are always agents willing to reveal information about θ1

and θ2. This is shown in panel (b) of Figure 2.5 by the two lines λ1 and λ2, which represent the maximal

incentives to reveal information about θ1 and θ2, respectively. The difference between λ1 and λ2 implies that

for any agent i who is willing to truthfully reveal Si1 on path, there exista an agent h who is willing to reveal

Sh2 on path (Lemma A2.3).

Figure 2.5: Information transmission under different organizational structures

ε

γε

b1

λ1, λ2

b2

(a) Delegation of y2

λ1

λ2

ε

γε

b1

b2

(b) Centralization

Full Revelation S1 only S2 only Babbling

(0, 0) and (1, 1) only (0, 1) and (1, 0) only

Note: w11 = w22 = 2
3

In Section 2.3 I showed that negative informational spillovers can provide a just foundation for partial

delegation. This argument requires that the principal knows the profile of biases of informed agents, B. When

she does not observe B, however, delegation may lead to losing control over payoff-relevant information,

well beyond the distributional loss. In particular, each decision-maker under delegation is expected to receive

more information on the more relevant state, becoming an ex-post specialist. I formalize this argument in the

proposition below.

Proposition 2.7. Let w11 = w22 = w. For a sufficiently large number of agents, n; for any conflict of

interest ε ∈ <+, such that the profile of biases, B = {b1, ...,bn}, is uniformly distributed between [0, ε] for

agents i = {1, .., n}; for any integer κ. Then, the principal expects to receive more balanced information

under centralization than when she delegates any decision to agent j; that is,

|E [Var(θ1|m∗C)]− E [Var(θ2|m∗C)]| <
∣∣E [Var(θ1|m∗j )

]
− E

[
Var(θ2|m∗j )

]∣∣
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Because of informational interdependence, the influence of revealing any signal is larger under central-

ization. When a principal delegates a decision, this influence decreases and, also, varies depending on the

dimension in which communication is expected to take place. For instance, the decision-maker of y1 expects

to receive more information about θ1 because expect to have a higher influence by revealing the associated

signal. This leads to decision-makers being ex-post specialized on the issues that are more relevant for a

decision. Proposition 2.7 shows this specialization in the form of higher expected precision of beliefs about

the most important state for each decision.

Ex-post specialization of decision-makers under delegation is not in itself an undesired outcome. The

increased precision associated with the most important state could, in principle, compensate for the lower

precision of the other. Proposition 2.6, however, shows that the opposite happens: the expected absolute

investment in information is (weakly) lower under delegation. These two results highlight an important

limitation of delegation that goes beyond the distributional loss: the negative effects on incentives to acquire

information. Hence, organizational design that aims at providing incentives to invest in information must

consider the negative ‘long run’ informational consequences of delegation.

2.5 Covert Information Acquisition

Suppose information acquisition decisions are private information of each agent. I focus on the cent-

ralization case, restricting the analysis to pure strategies at the information acquisition and communication

stages. It can be shown that focusing on equilibria in which messages do not convey information about the

acquisition decision is without loss (Lemma C2.4).26 As a result, messages sent at the communication stage

do not convey information about decisions on information acquisition. Also, any deviation at the information

acquisition stage results in a deviation (from truth-telling) at the communication stage (see Lemma C2.5).

In the appendix I derive the IC constraints for a typical agent i in the covert information acquisition

game. There are two relevant deviations: acquiring fewer or more signals than on the equilibrium path. First,

when agent i deviates by acquiring fewer signals than on path, he saves on information costs but he induces

lower-than-optimal precision on beliefs. Suppose i is expected to acquire information about both states

on path; if, instead, he decides to acquire information about θ1 only, his message corresponding to θ2 will

induce wrong beliefs for half of its possible realizations. Because his message strategy off-path consists of

announcing the most favourable of the possible realizations of Si2, the deviation is equivalent to lying on this

signal. Incentive compatibility, hence, requires that these utility gains—lying towards his bias plus saving

on information costs| are lower than the expected utility losses from inducing a higher expected variance.27

Incentive compatibility constraints in the covert game are thus more restrictive than in the overt game.

The second deviation consists of acquiring more signals than on path. When i is expected to acquire

and reveal information about θ1, he can profitably deviate by also acquiring information about θ2. But i

cannot transmit information about θ2 on path. Hence, the expected utility gains have to do with ambiguous

information. This means he lies about θ1 when his information is unfavourable and that about θ2 is favourable.

26Also, see Lemma 3 in Argenziano et al., 2016.
27See equations (C2.10), (C2.11), and (C2.12).
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If information costs are sufficiently low, i cannot commit himself to acquiring information about θ1 only. The

result below shows when he can commit.

Proposition 2.8. Let (s∗,m∗,y∗) characterize an equilibrium in the covert game under centralization, and

let kC = {kC
1 , k

C
2} be agent i’s equilibrium conjecture about other agents truthfully revealing information.

Denote by Bi
r = Br

(
C(Si1), C(Si2),kC

)
the set of biases for which acquiring and revealing information

about θr is incentive compatible for agent i, where θr, θr̃ = {θ1, θ2} such that θr 6= θr̃.

1. Bi
r 6= ∅ if and only if (w2

1r+w
2
2r)

2(kC
r+3)2

−max
{
C(Sir) ; (w1rw1r̃+w2rw2r̃)

2(kC
r+3)(kC

r̃+3) − 2C(Sir̃)
}
> 0;

2. ∂Bi
r

∂C(Sir)
< 0;

3. ∂Bir
∂C(Sir̃)

> 0.

Acquiring information about θ1 in the covert game is incentive compatible for i if and only if the utility

gains are sufficiently large. As in the overt game, these utility gains must compensate for the cost of acquiring

the corresponding signal, C(Si1). Unlike the overt game, however, the utility gains from increasing the

precision of the principal’s beliefs must compensate for the utility gains associated with having ambiguous

information (rightmost term inside the curly brackets). In other words, if acquiring information about θ2 is

cheap for i, he will acquire Si2 and lie to the principal whenever this signal favours his interests and Si1 goes

against them. Incentive compatibility, hence, requires that the cost of the signal associated with the state is

low and the cost of that associated with the other state is sufficiently high.

The relationship between incentive compatibility and the costs of the different signals is shown in the

last two statements of Proposition 2.8. Because of the first type of deviations—acquiring fewer signals— i’s

incentives to acquire and reveal information about θ1 decrease as the cost of Si1 increases; saving on the cost

of the signal becomes more profitable for i. The second type of deviations—acquiring more signals— leads

to an increase in credibility when the cost of Si2 increases. This effect stems from the credibility loss due to

ambiguous information.

2.6 Concluding remarks

Most organizations operate in complex environments: they face multi-causal problems and solutions

involve many interrelated courses of action. Because actions address the causes with different degrees of

success, relevant information affects many of these actions. In addition, the information is typically dispersed

among the organization’s members, who communicate it strategically. This paper has studied how information

is acquired and aggregated under such complexity. I showed that the allocation of decision rights constitutes

a key tool to govern the conflict of interests in an organization. In particular, I found a principal may want

to delegate controversial decisions if that improves transmission of information on other, less controversial

ones. When preferences over all decisions are extreme, centralization can ‘discipline’ these conflict of

interests such that more information is transmitted. I have shown that complexity affects incentives to acquire

information under different organizational structures. Under delegation, expected investment in information
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is not only lower overall but also more concentrated on issues that are salient for the corresponding decision.

The analysis presented here has broad applications to the organization of policy-making bodies, advisory

committees, knowledge creation in multinational corporations, and other settings where information needs to

be obtained and communicated in complex environments.
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Appendix

A2 Proofs and Complementary Results

Equilibrium communication under delegation

Lemma A2.1 (Incentive Compatibility of Communication on yd.). Consider an equilibrium (y∗,m∗) in

which the principal delegates yd to agent j (and he does not decide on the other decision).28 Then, revealing

any information (either Sir or both signals) is incentive compatible for i if:

|bid − bjd| ≤
1

2

∣∣∣∣∣ wd1(
kj1 + 3

) − wd2(
kj2 + 3

)∣∣∣∣∣ (A2.1)

And revealing both signals when S̃i{(0, 0); (1, 1)} and announcing the babbling message for other

realizations if:

|bid − bjd| ≤
1

4

[
wd1(
kj1 + 3

) +
wd2(
kj2 + 3

)] (A2.2)

Where yd = {y1, y2}.

Proof. All proofs of results in this Appendix can be found in B2

The proposition below summarizes the equilibrium communication in the case of delegation.

Proposition A2.1 (Equilibrium Communication for yd). Let agent j be the decision-maker of yd. In the

most-informative equilibrium (y∗,m∗j′ ,m
∗
j′′) between agents i and j, i fully reveals his information if and

only if condition (A2.1) hold. If the right-hand side of (A2.2) is larger than that of (A2.1), then agents

with |bid − b
j
d| within these two values reveal both signals when (S̃i1, S̃

i
2) = {(0, 0), (1, 1)} and send the

corresponding babbling message otherwise. For other values of bi, i always send the babbling message

consistent with his bias.

Equilibrium communication in the case of one decision is characterized by the IC constraint in Lemma

A2.1. As already discussed, full revelation dominates message strategies in which i reveals one signal because

the IC constraints are the same and the decision-maker always prefer the former. The same happens with

dimensional non-separable message strategies for most parameter values, so they can be overlooked in this

case with little loss. Now is time to analyse communication between i and the principal when she retains

authority over both decisions.

28By assumption, communication between decision-makers only involves own signals (not information transmitted by other
agents). For an analysis on hierarchies as information intermediation see Migrow (2017).
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PROOF OF EQUATION (2.1). The principal’s ex-ante expected utility in the equilibrium characterized by by

{y,mj′ ,mj′′} is given by:

E [U P(δ,b); m] = −E
[
(y1 − δ1)2; mj′

]
− E

[
(y2 − δ2)2; mj′′

]
Which, by definitions of equilibrium yd and δd yield:29

E [U P(δ,b); m] = −(b′1)2 − (b′′2)2 −
∑

yd={y1,y2}

E

[(
wd1

(
E(θ1|mj)− θ1

)
+ wd2

(
E(θ2|mj)− θ2

))2
]

With some rearrangement and given θ1 ⊥ θ2, I have:

E [U P(δ,b); m] =− [(b′1)2 + (b′′2)2]−
∑

yd={y1,y2}

∑
θr={θ1,θ2}

[
(wdr)

2E
[(
E(θr|mj)− θr

)2
; mj

]]
(A2.3)

Now, the expectation of the squared deviation for each state is given by:

E
[(
E(θr|mj)− θr

)2
; mj

]
=

∫ 1

0

kjr∑
`r=0

(
E(θr|mj)− θr

)2
f(`jr|kjr, θr) dθr

=

∫ 1

0

kjr∑
`r=0

(
E(θr|mj)− θr

)2h(θr|`jr, kjr)
(kjr + 1)

dθr

=
1

(kjr + 1)

kjr∑
`jr=0

∫ 1

0

(
E(θr|mj)− θr

)2
h(θr|`jr, kjr) dθr

=
1

(kjr + 1)

kjr∑
`jr=0

Var(θr|`jr, kjr)

=
1

(kjr + 1)

kjr∑
`jr=0

(`jr + 1)(kjr − `jr + 1)

(kjr + 2)2(kjr + 3)

Solving the sum and plugging the above into (A2.3) yields:

Û P(B,mj′ ,mj′′) = −
[

(b′1)2 +
(w11)2

6
(
k′1 + 2

) +
(w12)2

6
(
k′2 + 2

)]− [(b′′2)2 +
(w21)2

6
(
k′′1 + 2

) +
(w22)2

6
(
k′′2 + 2

)]

29Note that the terms E (E(δd|mj)− δd) bjd = 0.
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Let denote by Var(θr|mj) ≡ E
[(
E(θr|mj)− θr

)2
; mj

]
.

Û P(B,mj′ ,mj′′) =−
[
(b′1)2 + (w11)2 Var(θ1|mj′) + (w12)2 Var(θ2|mj′)

]
−
[
(b′′2)2 + (w21)2 Var(θ1|mj′′) + (w22)2 Var(θ2|mj′′)

]

Optimal Organizational Structure

Proposition A2.2 (Optimal Organizational Structure). Given the vector of preferences, B = {b1, . . . ,bn},
and generic agents i, j′, and j′′; the organizational structure that maximizes the principal’s ex-ante welfare

is:

Full Delegation. That is, agents j′ and j′′ decide on y1 and y2 (resp.) if and only if:

1. DIGj′(y1)− (b′1)2 > max
{

DIGi(y1)− (bi1)2 , IIG(y1) , −{DIGj′′(y2)− (b′′2)2}
}

for any i 6= j′; and

2. DIGj′′(y2)− (b′′2)2 > max
{

DIGi(y2)− (bi2)2 , IIG(y2) , −{DIGj′(y1)− (b′1)2}
}

for any i 6= j′′.

Partial Delegation. That is, agent j decides on yd and the principal retains decision authority over yd̃;

if and only if there exist both Direct and Indirect informational gains such that:

1. DIGj(yd)− (bjd)
2 > max

{
DIGi(yd)− (bid)

2 , IIG(yd) , −IIG(yd̃)
}

for any i 6= j; and

2. IIG(yd̃) > max
{

DIGi(yd̃)− (bi
d̃
)2 , −{DIGj(yd)− (bjd)

2}
}

for any i 6= j.

Centralization. That is, the principal decides on both issues, if and only if there are no agent i and j

such that:

1. DIGj(yd)− (bjd)
2 + IIG(yd̃) > 0; nor

2. DIGj′(y1)− (b′1)2 + DIGj′′(y2)− (b′′2)2 > 0

Proof. The proof is constructive. The optimal organizational structure maximizes the principal’s ex-ante

expected utility. Optimality of delegation implies some informational gains, otherwise she can retain authority

over both issues and decide with the information transmitted under centralization. Full Delegation is then

optimal if there are two agents j′ and j′′ who decide on y1 and y2, respectively; such that the corresponding

informational gains more than compensate each decision-maker’s bias. These gains must be maximal among

all agents, and strictly larger than if the principal retained any single decision (IIG).

Partial Delegation is optimal in either of two cases (non-exclusive). First, when direct informational gains

from delegation are possible only on one decision, the principal prefers to retain authority on the other. If the

DIG are sufficiently large, she may be willing to tolerate some informational losses on the retained decision;

that is, receiving less information than under centralization.
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The second and most interesting case is when indirect informational gains are large. From Proposition 2.2

we know that the presence of negative informational spillovers under centralization is a necessary condition.

Delegating yd thus breaks the interdependence between decisions and allows communication on the low-

conflict dimension. This may hold even if there are no informational gains in the delegated decision, as long

as the indirect ones are sufficiently large.

Finally, Centralization is optimal when any potential informational gain is small, such that it does not

compensate the loss of control on the delegated decision(s).

PROOF OF PROPOSITION 2.1. The characterization of the optimal organizational structure (Proposition

A2.2 above) is a complement of this result. Informational gains arise when more agents reveal information to

at least one decision-maker, as compared to those revealing information to the principal under centralization.

Consider direct informational gains first. For every agent who would reveal information under centraliza-

tion, there must exist an agent revealing at least the same amount of information to the new decision-maker

under delegation. Strict gains require that there also exist at least one agent revealing strictly more information

to the new decision-maker. Let j′ denote the decision-maker on y1 and suppose the principal decides on y2.

For every other agent h ∈ N such that βh1 satisfies (1.1) there must exist a i ∈ N such that bi1 satisfies (A2.1);

otherwise, k′1 will be lower than kC
1 .30 At this point, there must also exist an agent such that:

|bi1w11 + bi2w21| >
1

2

[
(w11)2 + (w21)2

(kC
1 + 3)

− w11w12 + w21w22

(kC
2 + 3)

]
|bi1 − bj1| ≤

1

2

[
w11

(kj1 + 3)
− w12

(kj2 + 3)

]

Multiplying the last inequality by w1r, its right-hand side is strictly lower than that of the expression

above. I thus get the condition that |bi1 − bj1| < |bi1 + bi2
w21
w11
| for direct info gains from delegation.

Indirect informational gains mean that in equilibrium kP2
2 > kC

2 ; the above equations must hold for y2.

An argument similar to the previous leads to: for every h ∈ N such that βh2 satisfies (1.1), there must exist a

i ∈ N such that bi2 satisfies (A2.1) and, in addition, there exist exists an agent i such that:

|bi1w12 + bi2w22| >
1

2

[
(w12)2 + (w22)2

(kC
2 + 3)

− w11w12 + w21w22

(kC
1 + 3)

]
|bi2| ≤

1

2

[
w22

(kj2 + 3)
− w21

(kj1 + 3)

]

Again, multiplying the last inequality be w22 evidences that its RHS is larger than that of the first one.

This reduces the necessary condition for IIG to w22|bi2| < |bi1w12 + bi2w22|. It follows that the previous is

only possible when |bi1| is sufficiently large.

30Indeed, any of the agents revealing under delegation are revealing both signals.

72



PROOF OF PROPOSITION 2.2. Let Bn = (b1, ...,bn) denote a given profile of biases for n informed

agents. The optimal organizational structure is characterized by the number of truthful messages decision-

makers receive in equilibrium, k′, k′′, and the number of truthful messages the principal receives under

centralization, kC, as per Proposition A2.2. Suppose that k′1 = k′2, k′′1 = k′′2 , and kC
1 = kC

2 . Now consider the

associated game consisting of n+m agents, with the profile of biases for the first n agents being Bn, that is

Bn+m = (b1, ...,bn,bn+1, ...,bn+m). Let b ∈ <+ denote a large number.

Now, consider the following cases for the preferences of agents n+ 1 to n+m:

1. bn+1 = ... = bn+m = (b, 0).

Suppose first that the optimal organizational structure under Bn was full delegation. Under the profile

Bn+m, the principal prefers to retain authority over y2 if and only if IIG(y2) ≥ DIGj′′(y2)− (b′′2)2;

which by Lemma 2.1 and Proposition A2.2 translates into:

w2
21

6

[
1

(k′′1 + 2)
− 1

(kP2
1 +m+ 2)

]
+
w2

22

6

[
1

(k′′2 + 2)
− 1

(kP2
2 +m+ 2)

]
≥ −(b′′2)2

Then, for any k′′1 , k
′′
2 , k

P2
1 , k

P2
2 ≤ n, there exists a m for which the above holds.

Now, suppose the optimal organizational structure under Bn is centralization. Then the additional

information she receives with partial delegation of y1 under Bn+m must also compensate the distribu-

tional loss on the delegated decision; which means:

w2
21

6

[
2

(kC
1 + 2)

− 1

(kP2
1 +m+ 2)

]
+
w2

22

6

[
1

(kC
2 + 2)

− 1

(kP2
2 +m+ 2)

]
≥

≥ w2
11

6

[
1

(k′1 + 2)
− 1

(kC
1 + 2)

]
+
w2

12

6

[
1

(k′2 + 2)
− 1

(kC
2 + 2)

]
+ b′1

Note that the RHS of the expression above is non-negative because of the optimality of centralization

under Bn. A sufficient condition for optimality of partial delegation is that there exists an agent j′

whose bias satisfies:31

(b′1)2 ≤ w2
11 + w2

21

6(n+ 2)
+
w2

12 + w2
22

6(n+ 2)
− w2

11

18
− w2

12

18

Then, there exists a finite m such that Partial Delegation (of y1) is preferred by the principal over

centralization.

2. bn+1 = ... = b
2n+m+1

2 = (−b, b) and b
2n+m+1

2 = ... = bn+m = (b, b).

Lemma 1.5 implies that, for kC
1 = kC

2 , senders with these preferences will have maximal incentives to

31The expression reflects the case in which all n agents fully reveal their signals under centralization (kC
r = n), j′ does not

receive any signals from other agents in equilibrium (k′r = 1), and the indirect informational gains are maximal (m = b).
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play equilibrium DNS strategies. In particular, those in the first group satisfy:∣∣∣∣ βi1
(kC

1 + 3)
+

βi2
(kC

2 + 3)

∣∣∣∣ =

∣∣∣∣w11b
i
1 + w12b

i
2 + w21b

i
1 + w22b

i
2

(kC + 3)

∣∣∣∣ =

∣∣∣∣ bi1 + bi2
(kC + 3)

∣∣∣∣ = 0

And those in the second group:∣∣∣∣ βi1
(kC

1 + 3)
− βi2

(kC
2 + 3)

∣∣∣∣ =

∣∣∣∣w11b
i
1 + w12b

i
2 − w21b

i
1 − w22b

i
2

(kC + 3)

∣∣∣∣ =

∣∣∣∣ bi1 − bi2(kC + 3)

∣∣∣∣ = 0

Then, m = 2n is a sufficient condition for the principal to prefer centralization over any other

organizational structure that was optimal with the original profile of biases.

PROOF OF PROPOSITION 2.3. Suppose the equilibrium organizational structure involve some form of

delegation, and let j′, j′′ ∈ {P, 1, 2, ...} be decision-makers for y1 and y2, respectively. The principal’s

ex-ante utility gain with respect to centralization is given by:

(b′1)2 + (b′′2)2 ≤(w11)2

6

[
1

(kC
1 + 2)

− 1

(k′1 + 2)

]
+

(w12)2

6

[
1

(kC
2 + 2)

− 1

(k′2 + 2)

]
+

(w21)2

6

[
1

(kC
1 + 2)

− 1

(k′′1 + 2)

]
+

(w22)2

6

[
1

(kC
2 + 2)

− 1

(k′′2 + 2)

]
According to expression (2.1), and denoting by mC the messages sent to the principal under centralization,

the above can be expressed as:

[
(b′1)2 + (b′′2)2

] 1
2 ≤

[∑
yd

[
w2
d1

(
Var(θ1|mC)− Var(θ1|mj)

)
+ w2

d2

(
Var(θ2|mC)− Var(θ2|mj)

)]] 1
2

Denote by b̂D the vector whose component satisfy the above expression with equality. Because the

LHS above represents the euclidean distance of a vector with components b′1 and b′′2 to the origin, then b̂D

represents the maximum conflict of interest the principal will tolerate as a function of the informational gains

from delegation of the corresponding decision(s).

For the second part of the proof let assume that kjr = kC + 1, and denote the reduction in variance under

delegation by ∆Var(θr|mj) = Var(θr|mC)− Var(θr|mj , k
j
r = kC

r + 1), which then is given by:

∆Var(θr|mj) =
1

6

[
1

(kC
r + 2)

− 1

(kC
r + 3)

]
Then, taking the derivative with respect to kC

r gives expression (2.4).
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PROOF OF LEMMA 2.1. The proof proceed by contradiction. I focus on the centralization case, since

decentralization follows the same logic. Let ({y∗}, {m∗, s∗}) be the equilibrium strategy profiles for the

receiver and all agents, respectively. Recall the equilibrium is characterized by k∗1 and k∗2 .

Acquisition of S1. Suppose that i’s equilibrium info acquisition strategy has S1 ∈ si∗ but condition

(1.1) does not hold for S1. In such a case revealing information about θ1 is not incentive compatible for i

despite he acquired information about it. Other agents base their message strategies on conjectures about k∗1 ,

but i is not included among agents revealing S1 truthfully. At the information acquisition stage, i’s expected

payoff of si∗ is thus given by:

E
[
U i
(
y∗(m∗(s∗)), δ, bi

)]
= −E

[(
y1

(
mi∗(si∗),m-i∗)− δ1 − bi1

)2
+
(
y2

(
mi∗(si∗),m-i∗)− δ2 − bi2

)2]−C(si∗)

Now, consider the following deviation: ŝi = si∗\{S1}. Note that this deviation does not affect k∗1 or k∗2 ,

and i’s overall influence on j’s decision(s) is thus unaltered—i.e. yd
(
mi(ŝi),m-i

j

)
= yd

(
mi(si∗),m-i

j

)
.

Note also that C(si∗) > C(ŝi), given #si∗ > #ŝi. Consequently,

E
[
U i
(
y∗(m∗(s∗)), δ, bi

)]
− E

[
U i
(
y
(
mi(ŝi),m-i∗) , δ, bi)] = −C(si∗) + C(ŝi) < 0

So, ŝi is a profitable deviation from si∗. ⇒⇐

Acquisition of both signals. The proof is similar to the previous, with i’s proposed equilibrium strategy

being si∗ = {S1, S2} but conditions for Full Revelation do not hold. Then, a profitable deviation for i will be

to acquire the signal he is willing to reveal on the equilibrium path (if any).

Equilibrium Information Acquisition and Cost-effectiveness condition

Before the proof of Lemma 2.2 I derive the information-acquisition IC constraint.

Observation 2.1. Let kj∗r ≡ kjr
(
mi
j(s

i∗, s-i),m-i
j (si∗, s-i)

)
and k̂jr ≡ kjr

(
mi
j(ŝ

i, s-i),m-i
j (si∗, s-i)

)
for

θr = {θ1, θ2}. Let si∗ denote i’s information acquisition strategy in an equilibrium characterized by

(y∗,m∗, s∗). Then, i’s ex-ante expected utility from si∗ is given by:

E
[
U i
(
m∗, si∗, s-i, δ,bi

)]
=−

[
(bi1)2 + (bi2)2

]
−

∑
yd={y1,y2}

[
(wd1)2

6
(
kj∗1 + 2

) +
(wd2)2

6
(
kj∗2 + 2

)]

Now, let (y∗,m∗, s∗) be equilibrium strategy profiles. Then, si∗ is incentive compatible for agent i if and

only if, for every alternative ŝi:

∑
yd={y1,y2}

∑
θr={θ1,θ2}

(wdr)
2

6

[
1(

k̂jr + 2
) − 1(

kj∗r + 2
)] ≥ [C(si∗)− C(ŝi)

]
(A2.4)
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PROOF OF PROPOSITION 2.4. Let Sr ∈ si∗ and Sr̃ /∈ si∗ for θr 6= θr̃, and kjr
(
m∗j (s

∗)
)

be i’s conjecture

about other agents revealing their information about θr to decision-maker j. Then, agent i’s IC constraint for

revealing Sir is:

• When j = P decides on both issues (centralization),

|βir| ≤
(w1r)

2 + (w2r)
2

2 (kC
r + 3)

(A2.5)

• When j decides on yd only,

|bid − bjd| ≤
wdr

2
(
kjr + 3

) (A2.6)

I prove the IC constraint for case of delegation, as centralization follows the same argument but requires

more algebra.Suppose agent i’s acquires only Si1; then strategy mi∗ = {mi∗
j′ ,m

i∗
j′′} is preferred to any

alternative m̂ iff (IC constraint in section B2):

−
[
wd1(νi∗d1 − ν̂id1) + wd2(νi∗d2 − ν̂id2)

] [
wd1(νi∗d1 + ν̂id1) + wd2(νi∗d2 + ν̂id2)− 2[wd1ν

i
d1 + wd2ν

i
d2 − (bid − bjd)]

]
≥ 0

But since i has information about θ1 only, then E(θ2|Si1,m-i
j ) = νid2 = νi∗d2 = ν̂id2. Moreover, the

strategy space when i has only one signal is degenerated, such that he can only reveal it or lie. Revealing Si1
is thus IC iff:

−
[
wd1(νi∗d1 − ν̂id1)

] [
wd1(νi∗d1 − ν̂id1)− 2(bjd − bid)]

]
≥ 0

Following the same steps as in section B2 it is easy to note that the above expression becomes:

For S̃i1 = 0 : 2(bid − bjd) ≤
wd1

(kj1 + 3)

For S̃i1 = 1 : − 2(bid − bjd) ≤
wd1

(kj1 + 3)

Which together imply equation (A2.6).

Now, the vector Bj
r(bj ,kj) results from comparing equations (A2.1) and (A2.6). That is, assuming

j decides over yd only and kjr = {kj1, kj2} are i’s equilibrium conjectures about other agents revealing

information to j, BDj
r (bj ,kj) can be defined as:

Bj
r =

{
x : bjd ± x ∈

1

2
×
(∣∣∣∣∣ wd1(

kj1 + 3
) − wd2(

kj2 + 3
)∣∣∣∣∣ , wdr(

kjr + 3
)]}

Under centralization, the vector Bj
r(bj ,kj) results from comparing equations (1.1) and (A2.5). Denote

by kC
r agent i’s equilibrium conjectures about other agents revealing information about θr{θ1, θ2} to the
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principal under centralization, and kC
r̃ 6= kC

r . Then, BP
r(k

P) is defined as:

BP
r =

{
x : |x| ∈ (w1r)

2 + (w2r)
2

2
×
([

1

(kC
r + 3)

− Cr
(kC
r̃ + 3)

]
, 2 (kC

r + 3)

]}

PROOF OF LEMMA 2.2. I first derive the cost-effectiveness condition (2.5) and then the maximum number

of agents for which acquiring a given piece of information is cost-effective —condition (2.7). In order to

derive cost-effectiveness (CE), I consider each possible info acquisition strategy in equilibrium.

The number of agents revealing truthfully their signals in equilibrium, k∗r , includes i’s message strategy

when he acquires (and reveals) it in equilibrium.32 Here I need to make two clarifications. Firstly, if there

were agents who acquired information on θ1 but were not willing to reveal it when k̂1 = k∗1 + 1, then only

one of them changes his message strategy because when one of these agents stop revealing, then k̂1 = k∗1
again. As a consequence, k̂1 = {k∗1, k∗1 + 1}. I take the most conservative of these approaches by making

k̂1 = k∗1 + 1 whenever i acquires S1 off-path.

The second clarification relates to what happens when i acquires a signal and does not reveal it. Since

other agents’ message strategies will depend on conjectures about kr, i not revealing the signal acquired

off-path does not affect their equilibrium behaviour at the communication stage. In other words, Lemma 2.1

holds: i gains nothing from acquiring a signal he will not reveal.

Centralization. Let first consider the acquisition of both signals in equilibrium; that is si∗ = {Si1, Si2}.
Expression (A2.4) for each possible alternative strategy becomes:

1) s̃i = {∅} ∑
θr

(w1r)
2 + (w2r)

2

6(k∗r + 2)(k∗r + 3)
≥ C(Si1, S

i
2)

When i plays DNS message strategies on path, he expects to reveal information for half of the possible

realizations, such that the CE conditions becomes:

(w11)2 + (w21)2

6(k∗1 + 2)(k∗1 + 3)
+

(w12)2 + (w22)2

6(k∗2 + 2)(k∗2 + 3)
≥ 2C(Si1, S

i
2) (A2.7)

2) s̃i = {Sir}
(w1r̃)

2 + (w2r̃)
2

6(k∗r̃ + 2)(k∗r̃ + 3)
≥ C(Sir̃)

Now, when the equilibrium strategy consists of one signal only, si∗ = {S̃ir}, the IC constraints become:

32In equilibria in which i does not acquire Si1, k∗1 does not count him; but in any deviation in which he does acquire it, then
k̂1 = k∗1 + 1.
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3) s̃i = {∅}
(w1r)

2 + (w2r)
2

6(k∗r + 2)(k∗r + 3)
≥ C(Sir)

4) s̃i = {Sir̃}
(w1r)

2 + (w2r)
2

6(k∗r + 2)(k∗r + 3)
≥ (w1r̃)

2 + (w2r̃)
2

6(k∗r̃ + 2)(k∗r̃ + 3)

5) s̃i = {Si1, Si2}
(w1r̃)

2 + (w2r̃)
2

6(k∗r̃ + 2)(k∗r̃ + 3)
< C(Sir̃)

Case 3) represents the necessary condition to acquire any individual signal Sir, since it implies case 1)

(in which it holds for both signals) and case 4) (in which the agent acquires the signal that would have the

highest influence). This case corresponds to equation (2.5).

Now I work out the expression for the maximum number of agents to acquire a given signal under

centralization. According to the equation (2.5) as kr increases the ex-ante expected utility of acquiring Sr
decreases. So, the maximum number of agents who will acquire that signal is given by the largest k∗ for

which the cost-effectiveness condition hold. Re-arranging this condition I get the following polynomial:

−(k∗r)
2 − 5k∗r −

[
6− (w1r)

2 + (w2r)
2

6C(Sir)

]
≥ 0

Then, solving for the highest positive root I get KC
r in (2.7).

Delegation. As before, i is not willing to acquire signals he is not willing to reveal on-path (Lemma 2.1).

But in this case there are two decision-makers and IC can refer to any of them (or both). From (A2.4) we

know that acquiring Sir requires that i is willing to reveal it to at least one decision-maker, say:

C(Sir) ≤
(wdr)

2

6(kjr + 2)(kjr + 3)

For at least one yd. Consider the case of acquiring both signals, which is cost-effective in two generic cases.

First, when i is willing to reveal at least one signal to a different decision-maker, the CE condition above

should hold for each decision-maker. Second, when i is willing to reveal both signals to a single j the RHS of

the above expression becomes larger. As a consequence, equation (2.6) is a necessary condition for investing

in any individual signal.

To get the expression for the maximum number of agents to invest in Sr I need to analyse also two cases.

The minimal incentives to reveal are given by the case in which all agents are willing to reveal Sr to decide

on the dimension it is less important. This will define the minimum upper-bound, since the CE condition
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becomes

C(Sir) ≤ min
wdr

{
(wdr)

2

6(kjr + 2)(kjr + 3)

}
Now consider the case in which all agents are willing to reveal both signals to both decision-makers. This

is the maximum upper-bound. In such a case, the CE condition will be just like the centralization case; that is:

C(Sir) ≤
(w1r)

2 + (w2r)
2

6(kjr + 2)(kjr + 3)

Then, following the same steps as the proof of Lemma 2.2 (Appendix A2) I have the first and the second

expressions in square bracket in equation (2.8), respectively.

Agents’ equilibrium strategies (endogenous information acquisition).

In this subsection I combine the results of Lemma 2.1 and Lemma 2.2 to characterize agent i’s equilibrium

information acquisition and message strategies. I start with the case of centralization (j′ = j′′ = P ) and then

proceed to the case of delegated decisions. The following result summarizes the intuitions developed in the

previous discussion, presenting the equilibrium acquisition and message strategies for a typical agent under

centralization.

Proposition A2.3 (Equilibrium under Centralization). In the most informative equilibrium under centraliza-

tion (y∗,m∗, s∗), agent i only acquires signals that are cost-effective and incentive compatible. In particular,

i’s equilibrium strategies are given by:

Acquiring and revealing both signals: if and only if conditions (2.5) and (A2.5) hold for both signals,

and (1.4) hold.

Acquiring both signals and playing a dimensional non-separable strategy: if condition (A2.7) hold for

both signals and (A2.5) does not at all, in the following cases:

• Fully revealing both signals when they coincide and babbling otherwise, if condition (1.3) holds;

• Fully revealing both signals when they do not coincide and babbling otherwise, if condition (1.4) holds.

Acquiring and revealing one signal only. Agent i acquires and reveals Si1 if (A2.5) and (2.5) hold with

respect to θ1 and one of the following is true:

• Revealing Si2 is not IC —i.e. (A2.5) does not hold for θ2; or

• Acquiring Si2 is not CE —i.e. (2.5) does not hold for θ2; or

• Acquiring Si2 is CE and revealing it is IC, but revealing both signals is not IC —i.e.(1.1) and (2.5) hold

for both signals, but (1.4) does not and (w1r)2+(w2r)2

(k∗r+2)(k∗r+3) ≥
(w1r̃)

2+(w2r̃)
2

(k∗r̃+2)(k∗r̃+3)

For r 6= r̃.

Acquiring no signal, if only if any of the statements below is true:
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• No signal is CE to acquire —i.e. condition (2.5) does not holds for any signal; and/or

• No signals is IC to reveal —i.e. condition (A2.5) does not hold for any signal, nor (1.4) holds.

Proof. See Appendix B2

As discussed earlier, the number of agents revealing the same piece of information is an important

determinant of cost-effectiveness. It could lead some agents to acquire less information than what each is

willing to reveal, resulting in either specialization or non-investment. The possibility of abstaining to acquire

a given signal can enhance incentives for communication (for the other signal) because it kills the effects of

ambiguous information.

Dimensional non-separable message strategies can arise under centralization. As in the pure communica-

tion game, these strategies take the form of full revelation for some realizations and babbling for the rest.

Because any of these involves acquiring both signals and revealing them half of the time, they arise when

costs are sufficiently low and only if revealing one signal is not IC. Then, agent i typically prefers to reveal a

single signal than play a DNS strategy, provided both are incentive compatible and cost-effective.33

Similar intuitions apply to the case of delegation. The result below characterizes equilibrium strategies

for agent i and decisions yd and yd̃.

Proposition A2.4 (Equilibrium under Delegation). When the organizational structure involves more than

one decision-maker, agent i only acquires signals that are cost-effective and for which communication is

incentive compatible. In the most informative equilibrium ,(y∗,m∗, s∗), i’s equilibrium strategies are:

Acquiring and revealing both signals: if and only if conditions (A2.1) and (2.6) hold for both signals

and at least one decision-maker —and the associated decision.

Acquiring and revealing S1 only, if acquiring this signal is both cost-effective and incentive compatible

for agent i in the following cases:

1. Revealing S2 is not IC for any decision —i.e. condition (A2.6) does not hold for Si2; or

2. Acquiring S2 is not CE for any decision —i.e. condition (2.6) does not hold for Si2 for any decision; or

3. Both S1 and S2 are CE and IC, but revealing both is not IC with respect to any decision-maker —i.e.

conditions (A2.6) and (2.6) hold for both signals and at least one decision-maker, but (A2.1) does not

hold for any of them and (wdr)
2

(k∗r+2)(k∗r+3) ≥
(wdr̃)

2

(k∗r̃+2)(k∗r̃+3)

For r 6= r̃.

Acquiring no signal if only if any of the statements below are true:

1. Condition (A2.6) does not hold for any signal and any decision, nor (1.4) hold; and/or

2. Condition (2.6) does not holds for any signal, any decision.

33For a formal discussion see Appendix B2.
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Proof. See Appendix B2.

In presence of two decision-makers agents acquire a signal if it is cost-effective and incentive compatible

to reveal it to at least one of them. As discussed in Proposition 2.4, the possibility of not acquiring one of the

signals makes credible the strategy of revealing only one signal. When such a strategy is incentive compatible

it always refers to the state the decision-maker is less informed in equilibrium. In other words, the agent will

acquire the signal for which the influence is larger, which in turn implies that dimensional non-separable

strategies are dominated by this strategy. As a consequence, no DNS strategy can emerge in equilibrium

under delegation.

Corollary A2.1. Let w ≡ w11 = w22, κ = 1, and ŵ2
dr

72 < C(Sr) ≤ [(w1r)2+(w2r)2]
72 for both θr. If there are

no agents j′ and j′′ whose preferences represent a conflict of interest within ||bD|| ≤ 1− 2w(1−w), then the

principal strictly prefers centralization over any form of delegation. If there where such agents, the principal

still prefers centralization (strictly) as long as there is at least one agent i who fully reveals his information

—i.e. bi satisfy conditions (1.1) and (1.4) with respect to both signals.

Proof. When κ = 1, decision-makers have the stronger incentives to acquire both signals under delegation.

Noting that 6(κ+ 2)(κ+ 3) = 72, from Proposition 2.6 I get that ŵ
2
dr

72 < C(Sr) ≤ [(w1r)2+(w2r)2]
72 implies

KC
r > KD

r = 1. In addition, from Proposition 2.3 we know that, for w11 = w22 = w and kjr = 1:

||b̂D|| =
[
w2

6

(
1− 2

3

)
+

(1− w)2

6

(
1− 2

3

)]
= 1− 2w(1− w)

If there are no agents j′ and j′′ such that ||bD|| ≤ ||b̂D||, then the distributional loss from delegation is

never compensated by the maximal informational gain; as a consequence, centralization yields higher ex-ante

expected utility to the principal. On the other hand, if there were agents j′ and j′′ such that (b′1, b
′′
2) ∈ ||b̂D||

the principal prefers delegation when there is no agent i whose preferences satisfy conditions (1.1) and (1.4).

For if there were such an agent, he reveals both signals under centralization and, thus, delegation yields no

informational gains.

Under the parameters of Corollary A2.1, costs are so high that the maximum number of truthful messages

under delegation is zero. Having the chance to influence both decisions, i’s acquisition of one signal is cost-

effective (provided communication is IC). The result also illustrates the restrictions imposed by information

costs on the optimality of different organizational structures (Proposition A2.2). For sufficiently high costs the

principal always prefer to retain authority over both issues, but restrictions weaken as the costs of acquiring a

signal decreases.

PROOF OF PROPOSITION 2.6. Let (s,m,y) denote a generic equilibrium in which κ < n is the maximum

number of agents willing to reveal Sr to both decision-makers (suppose κ > 0). For any of such agents

cost-effectiveness under delegation —condition (2.6)— is given by:

C(Sir) ≤
(w1r)

2 + (w2r)
2

6(kjr + 2)(kjr + 3)
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But for any other agent, the CE condition is at most:

C(Sir) ≤
(ŵdr)

2

6(kjr + 2)(kjr + 3)

Then, C(Sir) ≤ (w1r)2+(w2r)2

6(κ+2)(κ+3) implies acquiring information about θr is CE for agents willing to reveal it

to both decision-makers. But if at the same time C(Sir) >
(ŵdr)

2

6(κ+2)(κ+3) , agents willing to reveal Sr to at most

one decision-maker do not acquire this signal because it is not CE.

On the other hand, the first of the above equations (2.7) determines the maximum number of agents for

which acquiring Sr is CE under centralization. But since C(Sir) ≤ (w1r)2+(w2r)2

6(κ+3)(κ+4) , it should be greater or

equal to κ+ 1. Then, KD
r = κ < KC

r

Relative investment in information under delegation

Consider the case of delegation. Let λdr ≡ {z ∈ <2| z′ Id = 0} be the locus of maximal incentives

to reveal about θr = {θ1, θ2} when deciding on yd = {y1, y2}.34 The locus λdr captures the fact that

communication depends only on the conflict of interest associated with yd—coincides with either the vertical

or the horizontal axis, for λ1
r . and λ2

r (respectively). Condition (A2.6) for communication with the principal

can be expressed as:

||bi − Projλdr (b
i)|| ≤ wdr

2
(
kPd
r + 3

)
Then, the lemma below shows when the principal can expect to receive more information about one state

under (partial) delegation.

Lemma A2.2. Let w ≡ w11 = w22. Given ε ∈ <+ and an arbitrarily large nε, there exists an integer κ and

i ∈ Nε with ||bi − Projλdr (b
i)|| ≤ wdr

2(κ+3) such that ||bi − Projλdr̃ (b
i)|| > wdr̃

2(κ+3) .

Moreover, this is true for the state associated with wdr because wdr > wdr̃

Proof. Given that λdr = λdr̃ and wdr > wdr̃, the result holds for any bid ∈
(

wdr̃
2(κ+3) ; wdr

2(κ+3)

]
Now, consider the case of centralization. Let ε ∈ <+ and Nε = {1, 2, ..., nε} be a group of agents whose

preferences satisfy: for all i ∈ Nε then ||bi|| = ε. Now, let λr ≡
{
z ∈ <2| z′Wr = 0

}
be the locus with

slope −w1r
w2r

related to θr. This locus represents maximal incentives to reveal information about θr = {θ1, θ2}
to the principal (βir = 0). The IC constraint for revealing one signal under centralization —equation (A2.5)—

can be expressed as:

||bi − Projλr(b
i)|| ≤

[
(w1r)

2 + (w2r)
2
] 1
2

2 (kC
r + 3)

Where Projλr(b
i) is the projection of i’s bias vector onto the locus λr. Note that agents with small conflict of

interest reveal both signals. The same conclusion applies to dimensional non-separable message strategies;

34Where I is the 2-by-2 identity matrix, and Id is its dth column, which matches the index of the decision under consideration.
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agents with the corresponding preferences reveal both signals for some realizations and reveal nothing

otherwise. Hence, the principal expects to receive more information about one of the states when many

agents acquire and reveal the associated signal and few agents acquire and reveal the other. The result below

shows whether this is the case under centralization.

Lemma A2.3. Let w ≡ w11 = w22. Given ε ∈ <+ and arbitrarily large nε, then for every integer κ

and i ∈ Nε with ||bi − Projλ1(bi)|| ≤ [(w)2+(1−w)2]
1
2

2 (κ+3) , there exists a j ∈ Nε with ||bj − Projλ2(bj)|| ≤
[(1−w)2+(w)2]

1
2

2 (κ+3) .

Proof. See appendix B2

PROOF OF PROPOSITION 2.7. Note first that Var(yd|m∗) = w2
d1Var(θ1|m∗) + w2

d2Var(θ2|m) which,

givenw11 = w22 = w, implies that Var(y1|m∗)−Var(y2|m∗) = w2(1−w)2 [Var(θ1|m∗)− Var(θ2|m∗)] =

w2(1− w)2
[

1
6(k̃∗1+2)

− 1
6(k̃∗2+2)

]
.

Under centralization, the principal’s expectation about her updated beliefs on each state—and, thus, the

residual variance— depends on how much information she expects to receive from agents on the equilibrium

path. Since biases are uniformly distributed between [0, ε], Lemma A2.3 implies that for any agent revealing

information about θ1, she expects another agent with the same conflict of interest who will be willing to

reveal information about θ2. Then, in expectation, the number of agents revealing each signal coincide, that

is k̃c
1 = k̃c = 2, which implies that E [Var(θ1|m∗)− Var(θ2|m∗)] = 0.

Now suppose the principal delegates y2 to agent i = 0. Again, given the uniform distribution of biases,

by Lemma A2.2 she expects more agents willing to reveal information about θ1 than θ2—and the opposite

pattern for i = 0. Then, her ex-ante expectations about equilibrium information on each state satisfy:

k̃P1
1 > k̃P1

2 and k̃0
1 < k̃0

2; as a consequence, E
[
Var(θ1|mP1)

]
< E

[
Var(θ2|mP1)

]
and E

[
Var(θ1|m0)

]
>

E
[
Var(θ2|m0)

]
.

B2 Proofs of Complementary results

Generic IC constraints for communication

Proof. Let j′, j′′ ∈ {P, 1, ..., n} be the decision-makers for y1 and y2, respectively; and i ∈ {1, ..., n} be a

generic sender. Let mi∗
j denote i’s equilibrium message strategy with respect to j, and m̂i

j an alternative

message strategy (deviations to be considered in each case). Then, yd(mi
j ,m

-i
j ) represents the action j takes

when i is expected to play mi∗
j and other senders are playing m-i

j . Given i’s conjectures about others’ strategies

are correct in equilibrium, I can simplify notation in the following way: yd(mi∗
j (Si),m-i

j ) = yd(m
i∗
j ) and

yd(m̂
i
j(S

i),m-i
j ) = yd(m̂

i
j).

Message strategy mi∗ = {mi∗
j′ ,m

i∗
j′′} is then incentive compatible for sender i if and only if for any
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alternative m̂i:

−
∫ 1

0

∫ 1

0

[[ (
δ1 + bi1 − y1(mi∗

j′ )
)2

+
(
δ2 + bi2 − y2(mi∗

j′′)
)2 ]−

−
[ (
δ1 + bi1 − y1(m̂i

j′)
)2

+
(
δ2 + bi2 − y2(m̂i

j′′)
)2 ]]

f(θ1,m
-i|Si) f(θ2,m

-i|Si) dθ1 dθ2 ≥ 0

By operating inside the square brackets with the identity a2 − b2 = (a + b)(a − b), by definition of

optimal decisions, y∗d = E(δd|mj) + bjd, and by denoting:

∆(δ1) = E(δ1|mi∗
j′ ,m

-i
j′)− E(δ1|m̂i

j′ ,m
-i
j′) ∆(δ2) = E(δ2|mi∗

j′′ ,m
-i
j′′)− E(δ2|m̂i

j′′ ,m
-i
j′′)

I get:35

−
∫ 1

0

∫ 1

0

[[E(δ1|mi∗
j′ ,m

-i
j′) + E(δ1|m̂i

j′ ,m
-i
j′)

2
− δ1 − (bi1 − b′1)

]
∆(δ1)+

+
[E(δ2|mi∗

j′′ ,m
-i
j′′) + E(δ2|m̂i

j′′ ,m
-i
j′′)

2
− δ2 − (bi2 − b′′2)

]
∆(δ2)

]
f(θ1|m-i, Si1) f(θ2|m-i, Si2)P (m-i

j′ |Si1)P (m-i
j′ |Si2)P (m-i

j′′ |Si1)P (m-i
j′′ |Si2) dθ1 dθ2 ≥ 0

Given that the equilibrium message strategies for players other than i, m-i, are independent of i’s actual

signal realizations, the expressions P (m-i
j |Si1) and P (m-i

j |Si2) can be taken out the double-integral.

I denote the receiver’s updated beliefs with respect to δd from i’s perspective as:

νi∗d =E(δd|mi∗
j ,m

-i
j ) ν̂id =E(δd|m̂i

j ,m
-i
j ) νid =E(δd|Sij ,m-i

j )

Such that ∆(δd) = νi∗d − ν̂id. The generic IC constraint is then given by:

−
[[

(νi∗1 + ν̂i1)− 2(νi1 + b′1 − bi1)
]

∆(δ1) +
[
(νi∗2 + ν̂i2)− 2(νi2 + b′′2 − bi2)

]
∆(δ2)

]
P (m-i|S1)P (m-i|S2) ≥ 0

(B2.8)

Note that under Centralization b′1 = b′′2 = 0 and we are back to the IC constraints in Chapter 1.More

importantly, when i reveals one signal only νi∗d and ν̂id are different from νi. Sender i’s strategies in

equilibrium and in the deviation under analysis do not transmit all the information he has, and the beliefs

he induces on j are different from what he believes are the optimal decisions (in the equilibrium under

consideration). As I show later, this generates credibility losses for i because of the possibility of ambiguous

information —i.e. signals that move decisions in opposite directions if fully revealed.

35Note that f(θ1,m
-i|Si) = f(θ1|m-i, Si1)P (m-i|Si1) and that f(θ2,m

-i|Si) = f(θ2|m-i, Si2)P (m-i|Si2)
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PROOF OF LEMMA A2.1. Consider the equilibrium (y∗,m∗j′ ,m
∗
j′′) in which the principal delegates yd to

agent j, who does not decide on the other decision. By the assumption on private information with each

decision-maker, i’s messages to j only affect yd. The IC constraint in (B2.8) then becomes:

−
[
(νi∗d + ν̂id)− 2(νid − bid)

]
∆(δd) ≥ 0

I denote by νi∗dr = E(θr|mj) and ν̂idr = E(θr|m̂j) sender i’s expectations of j’s posterior beliefs about

θr in equilibrium when he plays strategies mi
j and m̂j (eqm and deviation), respectively. In addition, denote

by νidr = E(θr|Sir,m-i
j ) sender i’s expectation of j’s posterior beliefs about θr if j knew i’s information

about that state.

The IC constraint then becomes:

−
[
wd1(νi∗d1 − ν̂id1) + wd2(νi∗d2 − ν̂id2)

] [
wd1(νi∗d1 + ν̂id1) + wd2(νi∗d2 + ν̂id2)− 2[wd1ν

i
d1 + wd2ν

i
d2 − (bid − bjd)]

]
≥ 0

When he reveals only one signal, however, the previous is true for the state associated with the signal he

reveals truthfully but not for the other state. To see this recall that he is not being influential with respect to

the latter, so his expectations about j’s beliefs in equilibrium are different from his conjectures including his

own information.36 It is easy to check that:

νidr = E
(
θr|S̃ir,m-i

j

)
=

(`jr + 1 + S̃r)

(kjr + 3)

=

(
kjr + 3− (−1)S̃

i
r
)

2(kjr + 3)

The second equality follows from taking expectation over the realization of others’ signals (by the Law of

Iterated Expectations); whereas E(θr|m-i
j ) = ν-i

dr = 1/2 —i.e. what i expects j’s beliefs on θr are if only

considers other senders’ truthful messages.

Consider the equilibrium in which i reveals Si1 only, the IC constraint becomes:

−
[
wd1(νi∗d1 − ν̂id1)

] [
wd1(ν̂id1 − νi∗d1) + 2wd2(νi∗d2 − νid2) + 2[(bid − bjd)]

]
≥ 0

When i’s type is given by S̃i = (0, 0), then νi∗d1 = νid1 =
(kj1+2)

2(kj1+3)
, ν̂id1 =

(kj1+4)

2(kj1+3)
; and νi∗d2 = ν̂id2 = 1/2,

while νid2 =
(kj1+2)

2(kj1+3)
. Replacing these values on the above IC constraint I get:

2(bi1 − bj1) ≤ wd1

(kj1 + 3)
+

wd2

(kj2 + 3)

The case of S̃i = (1, 1) is analogous, with the LHS having negative signs. For the case of S̃i = (0, 1), all

36In other words, if i is expected to reveal Si1, then νi∗d2 = ν̂id2 = E(θs|m-i
j ) because i is not influential with respect to θ2, and

νi∗d2 6= νid2.
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i’s conjectures about j’s posteriors are the same as the previous case (i reveals the same realization of the

same signal), except for νid2 =
(kj1+4)

2(kj1+3)
. It can be easily checked that this leads to:

2(bi1 − bj1) ≤ wd1

(kj1 + 3)
− wd2

(kj2 + 3)

Whereas for S̃i = (1, 0) the LHS above has a negative sign.

Because all these IC constraints have to be satisfied in order for i to be credible in the equilibrium under

consideration, and given that all of them hold for the same measure of conflict of interest between i and j, the

following is a necessary and sufficient conditions for i not having incentives to lie on Si1:

|bi1 − bj1| ≤
1

2

[
wd1

(kj1 + 3)
− wd2

(kj2 + 3)

]

Now, in equilibria in which i reveal both signals truthfully νi∗dr = νidr; that is, what he expects j’s

beliefs to be in equilibrium is the same as what he conjectures the optimal decisions will be according to his

information. The IC constraint then becomes:

−
[
wd1(νi∗d1 − ν̂id1) + wd2(νi∗d2 − ν̂id2)

] [
wd1(νi∗d1 − ν̂id1) + wd2(νi∗d2 − ν̂id2)− 2(bid − bjd)]

]
≥ 0

Incentive compatibility in this case means i prefers truthful revelation of both signals to any de-

viation, taking into account that any message he sends is believed to be truthful. So, for each type

S̃i = {(0, 0); (0, 1); (1, 0); (1, 1)} I consider deviations to announce a message different from his own.

This leads to three generic deviations: lying in both signals,37 lying on Si1,38 and lying on Si2.39 A substantial

amount of algebra shows that the IC constraints for not lying in one signal are similar to those for revealing

one signal, but without the negative term on the RHS. Incentives not to lie on both signals depend on whether

the signals coincide or not, enthusiast readers can check that replacing the values for νi∗dr and ν̂idr for each

type and deviation leads to the following IC constraints.

For S̃i = {(0, 0); (1, 1)} : |bi1 − bj1| ≤
1

2

[
wd1

(kj1 + 3)
+

wd2

(kj2 + 3)

]

For S̃i = {(0, 1); (1, 0)} : |bi1 − bj1| ≤
1

2

∣∣∣∣∣ wd1

(kj1 + 3)
− wd2

(kj2 + 3)

∣∣∣∣∣
The last of the above is the necessary condition for full revelation given it is more restrictive (RHS is

smaller). Note moreover that the expression is similar to that for revealing one signal only, which mean that

whenever ‘both’ hold the decision-maker will prefer full revelation and, thus, will be the strategy arising in

37Meaning that type (0, 0) announces (1, 1) or vice-versa, and type (0, 1) announces (1, 0) or vice-versa.
38Meaning that type (0, 0) announces (1, 0) or vice-versa, and type (0, 1) announces (1, 1) or vice-versa.
39Meaning that type (0, 0) announces (0, 1) or vice-versa, and type (1, 0) announces (1, 1) or vice-versa.
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equilibrium.

Finally, I analyse the existence of Dimensional Non-separable (DNS) message strategies. I con-

sider two of them:40 revealing both signals when they coincide and no information otherwise, mi∗
j =

{{(0, 0)}, {(1, 1)}, {(0, 1), (1, 0)}}, and full revelation when they do not coincide and nothing otherwise,

mi∗
j = {{(0, 1)}, {(1, 0)}, {(0, 0), (1, 1)}}. Deviation incentives between the two influential messages trans-

late into the IC constrains derived above. Note that this rules out the DNS in which the agent fully reveals

ambiguous information because the IC constraint will be similar to that for Full Revelation.

Now I show that the strategy mi∗
j = {{(0, 0)}, {(1, 1)}, {(0, 1), (1, 0)}} cannot arise in equilibrium. The

argument relies on the incentives of the ‘non-influential types’ to announce influential messages according

to their bias. When Si = (0, 1) does not have incentives to announce mi
j = {(1, 1)}, νi∗1r = 1/2 and

ν̂i1r = (kjr+4)

2(kjr+3)
for both signals; whereas νi11 =

(kj1+4)

2(kj1+3)
and νi12 =

(kj2+2)

2(kj2+3)
. Then, solving the IC constraint I

get the following:

(bi1 − bj1) ≤ 1

4

[
w11

(kj1 + 3)
− w12

(kj2 + 3)

]
Which, solving for all the relevant cases, leads to:

|bi1 − bj1| ≤
1

4

∣∣∣∣∣ w11

(kj1 + 3)
− w12

(kj2 + 3)

∣∣∣∣∣
Note that this IC constraint is more restrictive than that for Full Revelation, and the decision-maker will

prefer the latter. As a consequence, no DNS strategy arises under delegation.

PROOF OF PROPOSITION A2.1. Having derived the necessary conditions for communication (Lemma

A2.1), getting the receiver-optimal (R-optimal) equilibrium consist of finding the system of beliefs consistent

with each message strategy (if those exist). Let denote by µ∗j
(
Si|mi∗

j

)
the beliefs of decision-maker j about

i’s information (her type) upon receiving message mi∗
j .

A Fully Revealing message strategy means any of i’s messages is taken at face value, that is:

µ∗
(
(0, 0)|mi

j = {(0, 0)}
)

= 1 µ∗
(
(1, 0)|mi

j = {(1, 0)}
)

= 1

µ∗
(
(0, 1)|mi

j = {(0, 1)}
)

= 1 µ∗
(
(1, 1)|mi

j = {(1, 1)}
)

= 1

From Lemma (A2.1) we know that if i’s preferences satisfy condition (A2.1), then he truthfully announces

his type and the beliefs above are consistent with that strategy in equilibrium. Because j also knows that, the

system of beliefs defined above are implemented only if i’s preferences satisfy condition (A2.1); otherwise,

there is always a deviation for which the beliefs are not consistent. Now, because the IC constraints for

revealing one signal are the same and given I focus on R-optimal equilibria, fully revealing dominates.
40In the companion paper I show that full revelation of two types and babbling for the other two are the only two DNS message

strategies arising in any equilibrium. The argument is based on the equilibrium selection criterion given the similarity of IC
constraints, and applies to the case of one decision as well.
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For DNS, the Proof of Lemma A2.1 showed the only of such strategies emerging in equilibrium is

mi∗
j = {{(0, 0)}, {(1, 1)}, {(0, 1), (1, 0)}}. Beliefs consistent with such a strategy are given by:

µ∗
(
(0, 0)|mi

j = {(0, 0)}
)

= 1 µ∗
(
(1, 1)|mi

j = {(1, 1)}
)

= 1

µ∗
(
(0, 1)|mi

j = {(0, 1)}
)

= µ∗
(
(1, 0)|mi

j = {(0, 1)}
)

= 1/2

µ∗
(
(0, 1)|mi

j = {(1, 0)}
)

= µ∗
(
(1, 0)|mi

j = {(1, 0)}
)

= 1/2

By the same argument as above, these are equilibrium beliefs if and only if i’s preferences satisfy (A2.2).

PROOF OF EQUATION (A2.7) (DNS UNDER CENTRALIZATION). For any dimensional non-separable
strategy in which i fully reveals some realizations and play babbling on the others, the expected payoff in
equation (A2.4) becomes.

[(w11)2 + (w21)2]

6

[
1(

k̂1 + 2
) − 1

2
(
k∗1 + 2

) − 1

2
(
k∗1 + 3

)]+

+
[(w12)2 + (w22)2]

6

[
1(

k̂2 + 2
) − 1

2
(
k∗2 + 2

) − 1

2
(
k∗2 + 3

)] ≥ [C(si∗)− C(ŝi)
]

Agent i fully reveals his signals half of the time (in expectation), where k∗r indicates the equilibrium

number of agents revealing information about θr apart from i. Then, solving for deviations as in the previous

result, I get that acquiring both signals to play a DNS message strategy is cost effective if:

(w11)2 + (w21)2

6(k∗1 + 2)(k∗1 + 3)
+

(w12)2 + (w22)2

6(k∗2 + 2)(k∗2 + 3)
≥ 2C(Si1, S

i
2)

Now, i would prefer to acquire both signals and play DNS strategy to acquire only Sr and reveal it for

sure if:
(w1r̃)

2 + (w2r̃)
2

6(k∗r̃ + 2)(k∗r̃ + 3)
− (w1r)

2 + (w2r)
2

6(k∗r + 2)(k∗r + 3)
≥ 2C(Sir̃)

Which is easily shown that never holds when w11 = w22 and wd1 + wd2 = 1.

Proof of Proposition A2.3

PROOF OF PROPOSITION A2.3. We know from Lemmas 2.1 and 2.2 that any equilibrium information

acquisition strategy must be CE and IC at the communication stage. Recall that the principal observes agents’

choices of information, for which she knows the relevant message space for each agent. Equilibrium com-

munication is then characterized as in Proposition A2.1 and its equivalent under centralization (Proposition

A1.1).

But cost-effectiveness can impose restrictions on equilibrium communication; for instance, when i cannot

afford to acquire all the information he is willing to reveal on-path. Consider the case in which i revealing

both signals is IC but acquiring only one of them is CE. Revelation of each signal individually is a necessary
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condition for Full Revelation, so i acquires one signal if CE and reveal it in equilibrium. Now, which of those

signals he actually acquires depend on the ex-ante expected utility —see case 4) in the previous proof.

Similar argument applies to any equilibria in which i is willing to reveal Sir only. If acquiring is CE, then

he reveals that information in equilibrium; if not, he does not reveal any information —indeed, he has no

message to send and the receiver observes that.

Finally, no information is transmitted when i’s preferences are such that he is not willing to reveal any

information, or when acquiring any signal is not cost-effective.

For the case of delegation the same argument applies, with Lemmas A2.1 and 2.1, and Corollary 2.2.

PROOF OF PROPOSITION 2.5. When costs do not impose restrictions on information acquisition, incentive

compatibility at the communication stage dictates agents’ equilibrium strategies (expressions in Proposition

A1.1). In the case of two agents and linear costs, CE does not restrict agents’ communication strategies if the

cost of any signal is lower than the ex-ante expected utility in the equilibrium when k∗r = 1; that is:

C(Sir) ≤
(w1r)

2 + (w2r)
2

6(k∗r + 2)(k∗r + 3)

c ≤(w)2 + (1− w)2

72

Agent A1 acquires and reveals S1
1 in equilibrium if his preferences satisfy expression (A2.5) associated

with θ1 and with k∗1 = 1 (see Section B2 for the supporting system of beliefs on communication). But his

preferences should not be such that full revelation is IC, otherwise the principal would be better-off under

this equilibrium.41 A similar argument applies for A2 with respect to S2
2 .

When (w)2+(1−w)2

72 < c ≤ (w)2+(1−w)2

36 it is not CE to acquire both signals, so agents acquire the signal

each of them is willing to reveal. In other words, the necessary and sufficient condition for specialization in

this case is that (A2.5) holds for different signals for each agent.

PROOF OF LEMMA A2.3. Let w ≡ w11 = w22, let κ be an non-negative integer, and let ε ∈ <+ with

associated integer nε. Also, let i ∈ Nε be an agent whose preferences satisfy equation (A2.5) with

respect to θr for kr = κ. Note that λr =
(

1, −w1r
w2r

)
, the associated unit vector is λ̂r = λr

||λr|| =(
w1r

(w2
1r+w

2
2r)

1/2 ,
w2r

(w2
1r+w

2
2r)

1/2

)
, and that Projλr(b

i) = (bi · λ̂r)λr. Then, careful algebra leads to condition

(A2.5) expressed as:

||bi − Projλ1(bi)|| ≤
[
(w)2 + (1− w)2

] 1
2

2 (κ+ 3)

Now consider an agent j with the following preferences: bj1 = bi2 and bj2 = bi1. I need to show 1) j ∈ Nε,

and 2) bj satisfies equation (A2.5) for θ2. Proving the first claim is straightforward, since j’s preference

41Note that if condition (A2.5) holds for S1
2 (but still not those for full revelation) he will still find optimal to acquire S1

1 only,
given A2 is acquiring the other signal in equilibrium.

89



vector is just i’s with its components swapped. This says that both i and j agents have exactly the same

conflict of interest with the principal.

The second part of the proof requires work out ||bj − Projλ2(bj)||, which yield:

||bj − Projλ2(bj)|| = |bj1 (1− w) + bj2w|
[
(w)2 + (1− w)2

]- 1
2

= |bi2 (1− w) + bi1w|
[
(w)2 + (1− w)2

]- 1
2

= ||bi − Projλ1(bi)||

C2 Covert Information Acquisition

Covert Information Acquisition Game

In the covert game the decision-maker does not observe agents’ information acquisition decisions. This

implies that a Perfect Bayesian Equilibrium must also specify the decision-maker’s beliefs about agents’

investments in information. I will focus on pure strategy equilibria at the information acquisition stage.

In principle, the agent in question may try to convey information about which signals he acquired to the

decision-maker by means of his cheap talk message. However, a result from Argenziano et al. (2016) allows

me to restrict attention to equilibria in which agents do not signal how much information each has acquired,

and this is without loss of generality. Below I present the result.

Lemma C2.4 (Argenziano et al., 2016). Any outcome supported in a Perfect Bayesian Equilibrium of the

covert game in which an agent follows a pure strategy in the choice of information can be supported in a

Perfect Bayesian Equilibrium in which the decision-maker’s beliefs about his information acquisition decision

do not vary with the agent’s message.

There would be two classes of deviations available to agents if the decision-maker’s beliefs about

information acquisition decisions could be affected by the choice of messages. First, an agent could acquire

an off-path amount of information but still send the message corresponding to the equilibrium amount

of information. Secondly, the agent could acquire an off-path amount information and send a message

corresponding to an off-path information acquisition choice, which in turn may no be true. The lemma says

that any equilibrium outcome under the second class of deviations can be supported as an equilibrium in

which the agent cannot change the decision-maker’s beliefs about his information acquisition decision.

When an agent acquires an off-path amount of information he can choose among the equilibrium messages

according to his preferences. As a consequence, any deviation at the information acquisition stage implies a

deviation at the communication stage. The result below summarizes this.

Lemma C2.5. When agent i acquires fewer signals than what is expected on the equilibrium path, the

messages used under the deviation are a strict subset of the equilibrium messages available. When i acquires

more signals than expected on path, he uses the additional information to deviate from truth-telling for some

signal realizations.
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The argument of the above lemma is straightforward. When i acquires fewer signals, he will not be able

to condition his message on the information that has not been observed. As a consequence, the messages

effectively used under the deviation will be fewer than those available on the equilibrium path, which implies

that i is inducing beliefs that do not reflect his signal realizations. When i acquires more signals he cannot

transmit that additional information on the equilibrium path (there is no way of signalling he acquired more

information). Because additional information implies additional costs, i must be obtaining some utility gains

with respect to equilibrium communication|by inducing beliefs according to his preferences for some signals

realizations. This clearly implies that he will deviate from truth-telling when he observes the corresponding

realizations.

Let (s∗,m∗ (s∗) ,y∗ (m∗(s∗))) be the equilibrium information acquisition decisions, message strategies,

and decisions (respectively). Then, agent i’s IC constraint at the information acquisition stage must consider

any possible deviation ŝi and the corresponding message strategy m̂i(ŝi); that is,

E

[∫ 1

0

∫ 1

0
−
{y1,y2}∑
yd

(
yd
(
mi∗,m-i∗)− δd − bid)2 f(θ1|si∗,m-i∗)f(θ2|si∗,m-i∗) +

+

∫ 1

0

∫ 1

0

{y1,y2}∑
yd

(
yd
(
m̂i,m-i∗)− δd − bid)2 f(θ1|ŝi,m-i∗)f(θ2|ŝi,m-i∗)

]
≥ C(si∗)− C(ŝi) (C2.9)

Then, given that deviations at the info acquisition stage do not affect the set of influential messages

(Lemma C2.4) and that this deviations necessarily imply deviations at the communication stage (Lemma

C2.5), the above expression can be solved by computing the expectation over all possible signals realizations

and the corresponding messages on- and off-path. In particular, the utility gains from deviations will be

given by the realizations in which the messages on- and off- path are different. Formally, let S̃i represent the

realization of the signals corresponding to agent i, independent of which of these he observes (determined

by si). I can then express and compare message strategies on- and off-path as functions of i’s type and the

information he observes. In other words, before deciding on information acquisition and given the equilibrium

under play, he can assess the utility gains from any info acquisition strategy and the corresponding messages

he expects to send conditional on each possible pair of signal realizations. Equation C2.9 then becomes:

∑
S̃∈S

Pr(S̃i)×
∫ 1

0

∫ 1

0
−
{y1,y2}∑
yd

[(
yd

(
mi(si∗, S̃i)

)
− δd − bid

)2
−
(
yd

(
mi(ŝi, S̃i)

)
− δd − bid

)2
]
×

×f(θ1|S̃i1,m-i∗)f(θ2|S̃i2,m-i∗) ≥ C(si∗)− C(ŝi)

Now, I proceed to analyse deviations from different equilibrium info acquisition strategies.

Agent i acquires both signals in equilibrium (si∗ = Si)
Let denote by νi∗r (S̃i) = E

(
θr|mi(si∗, S̃i),m-i∗

)
the beliefs about θr = {θ1, θ2} induced by i under

the equilibrium information acquisition strategies and the message corresponding to the realizations given
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by S̃ ∈ S. Equivalently, denote by ν̂ir(S̃
i) = E

(
θr|mi(ŝi, S̃i),m-i∗

)
be the beliefs induced under the

deviation at the information acquisition stage (for the same signals realizations). Then, the IC constraint at

the information acquisition stage for agent i becomes:

∑
S̃i∈S

Pr(S̃i)

[
−
∑
yd

[
wd1

(
νi∗1 (S̃i)− ν̂i1(S̃i)

)
+ wd2

(
νi∗2 (S̃i)− ν̂i2(S̃i)

)]
×

[
−wd1

(
νi∗1 (S̃i)− ν̂i1(S̃i)

)
− wd2

(
νi∗2 (S̃i)− ν̂i2(S̃i)

)
− 2bid

] ]
≥ C(si∗)− C(ŝi)

First consider the deviation in which i only acquires information about θ1; that is, ŝi = {Si1}. It is

straightforward to note that this deviation per se does not imply any difference in induced beliefs with respect

to θ1, formally νi∗1 (S̃i) = ν̂i1(S̃i) for all S̃i ∈ S. Now, i’s message associated with Si2 does not depend on

the signal’s realization, but depends on bi and may also depend on Si1.

Let consider the case in which m̂i = {S̃i1, 1}, i.e. i truthfully reveals his information about θ1 and

announces always a 1 for θ2. Then, ν̂i1(S̃i) = (k2+4)
2(k2+3) and it is different from νi∗1 (S̃i) only when S̃i2 = {0}

which, in turn, happens for S̃i = {(0, 0); (1, 0)}. The IC constraint in such a case is:

Pr
(
S̃ = {(0, 0)}

)[∑
yd

[
wd2

[
(k2 + 2)

2(k2 + 3)
− (k2 + 4)

2(k2 + 3)

]] [
wd2

[
(k2 + 2)

2(k2 + 3)
− (k2 + 4)

2(k2 + 3)
− 2bid

]]]
+

Pr
(
S̃ = {(1, 0)}

)[∑
yd

[
wd2

[
(k2 + 2)

2(k2 + 3)
− (k2 + 4)

2(k2 + 3)

]] [
wd2

[
(k2 + 2)

2(k2 + 3)
− (k2 + 4)

2(k2 + 3)
− 2bid

]]]
≥ C(Si2)

Given that Pr
(
S̃ = {(0, 0)}

)
= Pr

(
S̃ = {(1, 0)}

)
= 1/4, the IC constraint becomes.

1

(k2 + 3)

[
(w2

12 + w2
22)

2(k2 + 3)
− βi2

]
≥ C(Si2)

That is, the expected utility gains of inducing the correct beliefs about θ2 should be greater than the extra

utility from saving in the costs of becoming informed about that state. It is easy to show that the case of

m̂i = {S̃i1, 0} has the sign of βi2 reversed, for which the generic IC constraint for not acquiring signal Sir
becomes:

1

(kr + 3)

[
(w2

1r + w2
2r)

2(kr + 3)
− |βir|

]
≥ C(Sir) (C2.10)

For the deviation involving no information acquisition, ŝi = {∅}, the expression of the IC constraint will

depend on the message i decides to announce at the communication stage. On the one hand, when the message

is m̂)
i

= {(0, 0), (1, 1)}, the induced beliefs will coincide with the equilibrium strategy when S̃i = (1, 1),

but also partially for other realizations. Formally νi∗r (1, 1) = ν̂ir(1, 1) for θr = {θ1, θ2}, νi∗1 (1, 0) = ν̂i1(1, 1),

and νi∗2 (0, 1) = ν̂ir(1, 1). Following the characterization of equilibrium communication under centralization,
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the IC constraint becomes:[
1

(k1 + 3)

[
(w2

11 + w2
21)

2(k1 + 3)
+

(w11w12 + w21w22)

(k2 + 3)
− |βi1|

]
+

+
1

(k2 + 3)

[
(w2

12 + w2
22)

2(k2 + 3)
+

(w11w12 + w21w22)

(k1 + 3)
− |βi2|

]]
≥ 2C(Si1, S

i
2) +

(w11w12 + w21w22)

(k1 + 3)(k2 + 3)

(C2.11)

Which basically is a more strict version of the IC constraint for full revelation when signals coincide

(under centralization).

Similarly, when the deviation involves announcing m̂)
i

= {(0, 1), (1, 0)} the IC constraint becomes:[
1

(k1 + 3)

[
(w2

11 + w2
21)

2(k1 + 3)
− (w11w12 + w21w22)

(k2 + 3)
− |βi1|

]
+

+
1

(k2 + 3)

[
(w2

12 + w2
22)

2(k2 + 3)
− (w11w12 + w21w22)

(k1 + 3)
− |βi2|

]]
≥ 2C(Si1, S

i
2) +

(w11w12 + w21w22)

(k1 + 3)(k2 + 3)

(C2.12)

Agent i acquires one signal on path (si∗ = {Si1}).
When i acquires only one signal on path, his assessment of the consequences of any deviation still

conditions on each possible pair of signal realizations. As I show in this section, this becomes particularly

important for deviation involving acquisition of more signals. Not is necessary to distinguish between the

induced beliefs on- and off-path, and the actual information i has access to. Thus, in addition to the previously

defined νi∗r (S̃i) and ν̂ir(S̃
i), I now denote by νir(S̃

i) = E
(
θr|S̃i,m-i∗

)
the beliefs about θr that would result

from the decision-maker observing the signals available to agent i (independent of his information acquisition

strategy). Then, i’s IC constraint at the information acquisition stage becomes:

∑
S̃i∈S

Pr(S̃i)

[
−
∑
yd

[
wd1

(
νi∗1 (S̃i)− ν̂i1(S̃i)

)
+ wd2

(
νi∗2 (S̃i)− ν̂i2(S̃i)

)]
×

[
wd1

(
νi∗1 (S̃i) + ν̂i1(S̃i)− 2νi1(S̃i)

)
+ wd2

(
νi∗2 (S̃i) + ν̂i2(S̃i)− 2νi2(S̃i)

)
− 2bid

] ]
≥ C(Si1)− C(ŝi)

When i considers the deviation of not acquiring any signals and decides to announce m̂i
1 = {1}, he

induces incorrect beliefs as compared to the equilibrium in two cases, namely S̃ = {(0, 0); (0, 1)}. The
ex-ante expected utility losses of such strategy depends on the signal realizations, as can be noted in the
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expression for the IC constraint below:

Pr
(
S̃i = (0, 0)

)[
−
∑
yd

[
wd1

(
(k1 + 2)

2(k1 + 3)
− (k1 + 4)

2(k1 + 3)

)]
×

[
wd1

(
(k1 + 2)

2(k1 + 3)
+

(k1 + 4)

2(k1 + 3)
− 2(k1 + 2)

2(k1 + 3)

)
+ wd2

(
1

2
+

1

2
− 2(k2 + 2)

2(k2 + 3)

)
− 2bid

]]
+

Pr
(
S̃i = (0, 1)

)[
−
∑
yd

[
wd1

(
(k1 + 2)

2(k1 + 3)
− (k1 + 4)

2(k1 + 3)

)]
×

[
wd1

(
(k1 + 2)

2(k1 + 3)
+

(k1 + 4)

2(k1 + 3)
− 2(k1 + 2)

2(k1 + 3)

)
+ wd2

(
1

2
+

1

2
− 2(k2 + 4)

2(k2 + 3)

)
− 2bid

]]
≥ C(Si

1)

Which, after some algebra gives:

1

(k1 + 3)

[
(w2

11 + w2
21)

2(k1 + 3)
− βi1

]
≥ C(Si1) (C2.13)

It is straightforward to note that the generic IC constraint involves the absolute value of βir.

Deviations involving the acquisition of more information have the issue that i cannot signal this to the

decision-maker. This additional information will thus be used to identify situations (i.e. signal realizations)

under which i will deliberately lie to the decision-maker. Such deviations are thus related to the credibility

loss, because i would like to induce beliefs about the signal he is not expected to acquire on path by means of

messages on the signal he is believed on path.
As analysed in the communication game, the credibility loss takes place when signals do not coincide,

S̃i = {(0, 1); (1, 0)}, so any deviation at the communication stage will take place in one of these cases.
Moreover, given that βi1 is typically not zero, i’s incentives to lie will always be in a single direction, that is
either when S̃i = (0, 1) or when S̃i = (1, 0) but not in both. The IC constraint for the deviation of acquiring
both signals and announcing m̂i

1 = 0 when S̃i = (1, 0) will be given by:

−Pr
(
S̃i = (1, 0)

)∑
yd

[ [
wd1

(
(k1 + 4)

2(k1 + 3)
− (k1 + 2)

2(k1 + 3)

)]
×

[
wd1

(
(k1 + 4)

2(k1 + 3)
+

(k1 + 2)

2(k1 + 3)
− (k1 + 4)

(k1 + 3)

)
+ wd2

(
1− (k2 + 2)

(k2 + 3)

)
− 2bid

] ]
≥ C(Si

2)

Which yields: [
(w2

11 + w2
21)

2(k1 + 3)2
− (w11w12 + w21w22)

2(k1 + 3)(k2 + 3)
− βi1

]
≥ −2C(Si2) (C2.14)

Which is equivalent to say that the cost of acquiring the second signal is too large with respect to the utility

gain from deviating under ambiguous information.

Incentive compatibility then depends on |βi1| being within the limits imposed by equations (A2.5),
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(C2.13), and (C2.14). Note that equation (C2.13) implies (A2.5), meaning that if i is willing to acquire S̃i1
instead of acquiring no signal, then he will certainly reveal it. Incentive compatibility thus is captured by

equations (C2.13), and (C2.14), which lead to:

|βi1|
(kC + 3)

≤ min

{
(w2

11 + w2
21)

2(kC
1 + 3)2

− C(Si1) ;
(w2

11 + w2
21)

2(kC
1 + 3)2

− (w11w12 + w21w22)

2(k1 + 3)(k2 + 3)
+ 2C(Si2)

}
(C2.15)

Now, let define B1 (C(S1), C(S2),kC) = {b : b satisfies equation (C2.15)}. Then, the LHS in equation

(C2.15) is weakly positive and, thus, B1 6= ∅ when the RHS is strictly positive, that is,

(w2
11 + w2

21)

2(kC
1 + 3)2

−max

{
C(Si1) ;

(w11w12 + w21w22)

2(kC
1 + 3)(kC

2 + 3)
− 2C(Si2)

}
> 0 (C2.16)

Moreover, it is evident from the above expression that ∂B1
∂C(S1) < 0 and ∂B1

∂C(S2) > 0.
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Chapter 3

Organizational Design and the Acquisition
of Imperfect Information

3.1 Introduction

Principals who need to implement a policy and do not have enough information typically consult experts.

Politicians consult advisors, headquarters consult managers before making corporate decisions, and investors

consult investment bankers about the value of securities. However, effective communication is often impaired

by the presence of conflicts of interest between parties: experts may want to misrepresent information to

manipulate the principal’s decision. This credibility problem can be solved by delegation of authority, such

that all of an expert’s knowledge is used for decision-making. As long as the expert is well informed, the

principal typically benefits from the informational gains associated to delegation despite the decision will be

biased (Dessein, 2002). But information is often costly and the expert’s knowledge on the relevant matters

can be limited. This paper argues that information costs play a crucial role in the expert’s informational

advantage under delegation, thus shaping the principal’s incentives to allocate authority.

I model the interaction between a principal and a biased expert as a game with three stages. First, the

principal decides whether to make the decision herself or delegate it to the expert. Secondly, the expert decides

how much information he observes. The information, in turn, takes the form of noisy signals correlated

with a state with known prior distribution. Finally, the expert sends a costless, non-verifiable message to the

principal. Unlike similar papers in the literature, here I characterize information acquisition incentives for all

biases for which communication is possible.1 Doing so allows me to analyse information acquisition and

optimal allocation of authority for intermediate biases, which leads to novel intuitions.

Under centralization, information transmission at the communication stage depends on the expert’s bias

and information. Were he perfectly informed, equilibrium communication involves a particular ‘coarsening’

of his information (Crawford and Sobel, 1982). When information is costly, however, the expert will typically

have imperfect information. Equilibrium communication in such cases may also involve coarse messages,

1Argenziano et al. (2016) answer a similar question but focus on incentives to acquire information for small conflict of interests.

96



but there are instances in which he fully reveals his information (Fischer and Stocken, 2001; Di Pei, 2015;

Förster, 2020). For small biases and large information costs, the prevalence of such communication strategies

reduces the expert’s informational advantage under delegation (Argenziano et al., 2016).

Incentives for delegation thus depend on how much information the expert acquires under each organiza-

tional structure. Signals have decreasing informational value but increasing costs. When in charge of the

decision, the expert acquires information until the utility from the marginal reduction in variance compensates

for the marginal costs. When the principal decides, however, the amount of information the expert can

credibly transmit in equilibrium decreases with his bias. For intermediate biases, the use of coarse messages

dilutes the informational value of each additional signal. Decisions under delegation are therefore (weakly)

more informed than under centralization, but information costs will affect how large these informational

gains are. Delegation is optimal only if the informational gains compensate for the loss of control.

My contribution is threefold. First, I show that centralization is optimal if the cost of information is

sufficiently large—where the expert’s bias determines how large costs must be. The benefits from delegation

depend on how much more information is effectively used in decision-making. When the expert’s bias is

small, such benefits are marginal because he is willing to fully reveal large amounts of information. When

the expert’s bias is large, on the other hand, the informational gains that would make the principal delegate

authority must compensate a larger loss of control. Therefore, the net informational benefits from delegation

decrease as the unitary costs of information increase.

Secondly, I show that for intermediate biases the expert needs sufficiently many signals in order to

implement an informative message strategy.2 For the case of quadratic preferences, uniform distribution

of the state, and binary signals, this restriction results in the expert acquiring more information under

centralization than under delegation. Such overinvestment leads to optimal centralization for a range of

intermediate biases, despite delegation being optimal for a non-empty set of smaller and larger biases.

Finally, when the principal does not observe how much information the expert acquires, delegation

becomes (weakly) more profitable for all biases and information costs. This is due to the additional deviations

available to the expert at the information acquisition stage. Acquiring fewer signals than what the principal

expects in equilibrium would save the expert some costs of information. Such deviations restricts the expert’s

ability to become informed under centralization, while they do not affect his incentives under delegation.

Therefore, informational gains from delegation in the covert game are larger than in the overt game.

3.1.1 Related Literature

The paper relates to two strands of the literature on organizational design: one dealing with endogenous

information acquisition, and the other analysing optimal information quality when communication is strategic.

Aghion and Tirole (1997) present one of the first analysis of authority on incentives to acquire information. In

a model of project selection, a principal delegates formal authority to an agent because it encourages him to

acquire information, if these increased incentives compensate for the loss of control associated to preference

2The arbitrage condition for the implementation of a two-partition message strategy in Crawford and Sobel (1982) holds for
types closer to zero as the bias increases.
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divergence. When actions are contractible, Szalay (2005) finds that the agent’s incentives improve when left

with extreme option because departing in the wrong direction is ex-ante more costly.

For the case of non-contractible actions and strategic communication, Dessein (2002) studies the allocation

of authority when a perfectly informed expert can send cheap talk messages to the principal. He finds that full

delegation dominates communication if the preference divergence between players is sufficiently small. My

paper shows that this result is not robust to imperfect information. For small biases, the expert is willing to

fully reveal his information to the principal.3 Such communication incentives reduce informational gains from

delegation when the cost of information is sufficiently large. The same intuition led Argenziano et al. (2016)

to conclude that the principal can induce the agent to overinvest in information under centralization. Beyond

the case of small biases, my paper also shows that the set of intermediate biases for which centralization is

optimal increases with the costs of information.

The fact that imperfect information can lead to better communication is not new either. Fischer and

Stocken (2001), for instance, find that the optimal information structure in a two-players cheap talk game

consists of noisy signals the sender fully reveals in equilibrium. Such information structure divides the state

space into intervals which are more even than under equilibrium communication when the sender is perfectly

informed. In a more general setting, Ivanov (2010) shows that the principal prefers such information design

to different forms of delegation if the conflict of interest with the expert is small. More recently, Förster

(2020) shows similar results when the agent has access to binary signals.4 Unlike these papers, my work

features an expert who optimally decides how much information he acquires after he knows who controls the

decision.

3.2 The Model

An organization has the opportunity to engage in a valuable project. There are potentially infinite projects

but only one can be implemented. A principal, P (she), controls the critical resources of the organization,

needed to initiate the project. An agent (expert), E (he), is hired to implement the project because he has

access to relevant information.

Preferences. The projects available differ from each other in one dimension that can be represented by a

real number y ∈ Y ≡ <+. Players derive utility from each project, denoted by uP (y, θ) for the principal and

uE(y, θ, b) for the expert, where θ is a random variable representing the payoff-relevant state and b > 0 is a

parameter of preference dissonance between E and P . The utility of the principal reaches a unique maximum

for y = θ and can be represented as:

uP (y, θ) = uP (θ, θ)− ` (|y − θ|)

where `′′(·) > 0 and `′(0) = 0. Similarly, the utility of the expert is maximized for y = θ+ b. Unlike the

3Förster (2020) shows the expert’s (equilibrium) willingness to fully reveal information is decreasing in his bias.
4The notion that some noise added to cheap talk communication can improve welfare is also related to mediation (Goltsman

et al., 2009), and language barriers (Giovannoni and Xiong, 2019)—see also Blume et al. (2007).
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principal, the expert has access to imperfect information about θ, but he must bear some costs to effectively

observing that information. The information structure SK represents the amount of information the expert

decided to observe, where K (to be explained below) is associated to its precision. Acquiring more precise

information is increasingly costly for the expert. The expert’s preferences can be rewritten as

uE(y, θ, b) = uE(θ + b, θ)− ` (|y − (θ + b)|)− c(SK)

Information structure and timing. The state is distributed in the unit interval, θ ∈ Θ ≡ [0, 1]. The

common prior over the state is a distribution F on Θ with continuous and strictly positive density f(θ). The

expert can decide on how many binary signals associated to θ he observes. In particular, his information is

represented by a vector SK = (s1, s2, ..., sK) ∈ SK = {0, 1}K for K ∈ K ≡ Z+. Each sk ∈ {0, 1} is a

conditionally independent realization of a Bernoulli Distribution associated with θ; that is, pr(si = 1) = θ

and pr(si = 0) = 1− θ.

The cost of information structure SK is represented by an weakly increasing and convex function c(SK),

such that c(0) = 0. Formally, if the expert chooses to observe K signals, he incurs in the cost c(SK)

and simultaneously learns the realization of all signals, ΣK =
∑K

k=1 sk ∈ {0, 1, 2, ...,K}. I assume that

the number of signals the expert observes, K, is common knowledge at the communication stage.5 Once

informed, he sends a cheap talk message to the decision-maker, m ∈M = <.

Before the expert decides on information acquisition, the principal allocates the right to decide over y.

Figure 3.1 depicts the timing of the game. If the principal retains authority, the expert can use his information

indirectly through communication with the principal. If, in the other hand, she delegates authority to the

expert, he has complete discretion over y and hence uses his information directly. Formally, the principal

decides on a ∈ A = {P,E}, which defines a proper subgame Γ = {ΓP ,ΓE} characterized by the player

who has the right over y. A strategy for the principal is then a mapping α : A→ Γ; strategies for the expert

are mappings σ : K → SK and µ : SK → ∆(M). Also, depending on who controls y, a decision strategy is

a mapping ψ : Γ×K ×M → ∆(Y ).

1 2 3 4 5

P allocates
decision rights

E decides on
info acquisition

Communication
takes place

Decision
is made

Payoffs realized

Figure 3.1: Timing of the Game

Equilibrium concept. In this game I study Perfect Bayesian Equilibria (α, σ, µ, ψ) ≡
(
α, σ(a), µ(SK), ψ(β(m))

)
;

where β(m) → ∆(Θ) denote the posterior belief of the decision-maker upon receiving message m ∈ M
derived from the expert’s message strategy µ following Bayes’ rule whenever possible. As usual in the cheap

5Section 3.5 deals with the case of covert information acquisition.
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talk literature, I assume that for any m ∈M such that Pr(m|µ) = 0, then ψ(m) = ψ(µ(SK)) which allows

us to ignore off-equilibrium messages.6

Let DM = {P,E} the index for the decision-maker; then the equilibrium action profile ψ(m) satisfies:

yDM ∈ arg max
y∈Y

∫
Θ
uDM (y, θ, b)f(θ|µ(SK), σ)dθ

In particular, the optimal decision for any decision-maker will depend on the updated expectation about

the state: yDM = E [θ|µ(SK),K] + bDM .

Given K, the communication strategy µ(SK) satisfies:

m ∈ arg max
m∈M

∫
Θ
uE(y, θ, b)f(θ|σ)dθ

And σ maximizes the expert’s expected payoff under the allocation of decision rights, given equilibrium

conjectures about µ and ψ:

K ∈ arg max
K∈K

∫
Θ
uE(y, θ, b)f(θ)dθ

Finally, the optimal organizational structure depends on the principal’s ex-ante expected utility under

centralization and delegation. Delegating the right to decide over y motivates the expert to acquire information

because he can use all knows to decide; contrary to the case of centralization, where the bias determines the

amount of information that can be credibly transmitted. As a consequence, having more signals does not

necessarily translate into a more informed decision, since it depends on how the expert uses his information—

directly when he controls y, and by means of cheap talk when the principal does.7 Besides the potential

informational gains, delegation leads to decisions that are different from the principal’s ideal. This involves a

trade-off between informational gains and loss of control for the principal which, in this case, is determined

by how much information the expert is willing to acquire under the different organizational structures.

3.3 Equilibrium Analysis

3.3.1 Information Acquisition

Delegation. If the expert controls y, then µD(SK) = ΣK . In this case, any additional signal improves the

precision of his decision but the net marginal utility of such additional information also depends on costs.

Remark 3.1. When the expert controls y, the following holds true:

(i). E
[
`
(
y(SK), θ, b

)]
< E

[
`
(
y(SK−1), θ, b

)]
for all K;

(ii). E
[
`
(
y(SK−1), θ, b

)]
− E

[
`
(
y(SK), θ, b

)]
> E

[
`
(
y(SK), θ, b

)]
− E

[
`
(
y(SK+1), θ, b

)]
Acquiring more signals increases the precision of the expert’s decision, which reduces the expected loss

from decision-making for him as well as for the principal. The fact that there are no communication-related
6In the covert game, I have to consider deviations at the information acquisition stage as well.
7Förster (2020) shows that additional signals may decrease the informativeness of equilibrium communication.
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distortions makes this effect is monotonic, but it is decreasing in the number of signals because of the loss

function and the decreasing marginal value of information.8 Together with the convexity of cost, these

features make the equilibrium amount of information under centralization unique.

Lemma 3.1. The equilibrium under delegation is characterized by a unique KD = {0, 1, 2, ...} and decision

yD ≡ y(SKD , b):

KD ≡ max
K

{
E
[
`
(
|E(θ|ΣK−1)− θ|

)]
− E

[
`
(
|E(θ|ΣK)− θ|

)]
≥ c(SK)− c(SK−1)

}
(3.1)

yD ≡ E(θ|ΣKD) + b

The principal’s expected utility from delegation is given byE
[
uP
(
y, θ, b, SK

)
|·
]
≡ UP (y(b,ΣKD), SKD) =

uP (θ, θ) − E
[
`
(
|E(θ|ΣKD)− θ + b|

)]
. Note that this expression is increasing in the number of signals

the expert acquires, KD, and decreasing in his bias, b. The principal is thus willing to delegate if the loss

from a biased decision is compensated (in expectation) by the additional information the expert acquires as

compared to centralization.

Centralization. This section builds upon Förster (2020), who characterizes a sender’s incentives to transmit

information via cheap talk when he has access to binary signals. When the information the expert observes

is imperfect, the equilibrium communication strategy can be truthful revelation even for non-zero biases

(Austen-Smith and Riker, 1987; Fischer and Stocken, 2001; Morgan and Stocken, 2008; Ivanov, 2010;

Galeotti et al., 2013; Argenziano et al., 2016). The lemma below characterizes the expert’s incentives for

communication given his bias and the number signals he observes.

Lemma 3.2 (Equilibrium communication). A message strategy µ(b, SK) is an equilibrium under cent-

ralization if and only if there exist a K and an associated consecutive overlapping partition9 PK =

{P0, P1, ..., Pκ−1} of SK such that:

(i). There exist a message associated to each element of the partition, m0,m1, ...,mκ−1 ∈ MK = SK ,

such that mk ∈ sup(µ(b, SK)) if and only if ΣK ∈ Pk for all k = 0, 1, ..., κ− 1,

(ii). The following arbitrage conditions hold:

E
[
`
(
|E(θ|mk−1)− θ + b|

)
|ΣK = maxPk−1

]
≤ E

[
`
(
|E(θ|mk)− θ + b|

)
|ΣK = maxPk−1

]
E
[
`
(
|E(θ|mk)− θ + b|

)
|ΣK = minPk

]
≤ E

[
`
(
|E(θ|mk−1)− θ + b|

)
|ΣK = minPk

]
(3.2)

8Signals have a positive but decreasing marginal value of information. Let MSE(K) ≡ E

[(
θ − E(θ|ΣK)

)2]
denote the

ex-ante residual variance of θ when the decision involvesK signals; then,MSE(K)−MSE(K−1) < MSE(K+1)−MSE(K).
9A consecutive overlapping partition of the signal space SK is a PK = {P0, P1, ..., Pκ−1} such that

⋃κ−1
k=0 Pk = SK and

maxPk−1 ≤ minPk for all k = 1, 2, ..., κ− 1 (see Definition 3 in Förster, 2020).
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There are two bias thresholds, bFR(K)10 and bNC(K),11 such that the most informative message strategy

characterized by partition PK = {P0, P1, ..., Pκ−1} involves:

1. Full revelation of information if b ≤ bFR(K),

2. Partial revelation of information if bFR(K) < b < bNC(K),

3. Babbling otherwise.

Proof. Application of Propositions 2 and 3 in Förster (2020).

The first part of the lemma constitutes a generalization of Crawford and Sobel (1982) to imperfect

information in the form of binary signals. A message strategy is informative in equilibrium if different

messages induce different actions by the decision-maker. Any of such strategies involves a partition of the

signal space such that there is a unique message associated to each partition, and the expert finds incentive

compatible to announce a particular message when the signals realization corresponds to the associated

partition. The optimality of the expert’s behaviour is captured by the incentives of the ‘boundary types’ in the

arbitrage condition.

The second part of the lemma shows the different equilibrium message strategies. Information trans-

mission in equilibrium depends on the conflict of interest between principal and expert, and on how much

information the latter observes. When the expert observes few signals, his own posterior beliefs carry some

noise. He thus faces a trade off between giving information to the principal, which result in a more accurate

yet biased decision, and inducing too much residual variance that can also be costly. For small conflict of

interest, his optimal decision is close enough to the principal’s such that he prefers to keep the expected

residual variance low.

In other words, when the expert observes few signals, his information is less precise than what he would

optimally reveal to the principal through coarse messages. This intuition is captured by bFR(K) < bNC(K)

for any K, and by the fact that bFR(K) is decreasing in K.Indeed, for biases b ≤ bFR(K) the equilibrium

communication strategy with SK can never be partially informative because any of such equilibria involve

neglecting favourable information for some signals realizations (which, he is actually willing to fully reveal).12

With a partition with fewer elements the principal’s best responses to the different messages are further

apart from each other and, therefore, communication is less informative. Because less informative com-

munication loosens the expert’s incentive compatibility constraints, the equilibrium amount of information

transmitted in the most informative equilibrium is weakly decreasing in b. In the limit, large biases prevent

10bFR(K) ≡ min
k=0,1,...,K−1

bFR(k,K), such that bFR(k,K) solves E
[
`
(
E(θ|ΣK = k), bFR(k,K)

)∣∣ΣK = k
]

=

E
[
`
(
E(θ|ΣK = k + 1), bFR(k,K)

)∣∣ΣK = k
]
.

11bNC(K) ≡ max
k=0,1,...,K−1

bNC(k,K), such that bNC(k,K) solves E
[
`
(
E(θ|ΣK ≤ k), bFR(k,K)

)∣∣ΣK = k
]

=

E
[
`
(
E(θ|ΣK > k), bFR(k,K)

)∣∣ΣK = k
]
.

12Förster (2020) shows that for any SK , partially informative equilibria in which the expert fully reveals a subset of the available
signals is not an equilibrium for b ≤ bFR(K). Also, for the same biases, note that all equilibria involving fewer partitions than
#SK are dominated by full revelation.
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credible information transmission. This boundary is represented by bNC(K), which is increasing in K

because having more signals enlarges the set of posteriors about θ that can be induced in equilibrium; giving

the expert more flexibility to combine them into incentive compatible messages.

The threshold bFR(K) represents the bias up to which the expert prefers to disclose each of the possible

realizations of his K signals than to exaggerate some of them to induce higher actions.13 Similarly, the

threshold bNC(K) represents the bias above which the expert prefers to induce a higher action whenever the

principal believes him to be revealing any information. The following two lemmas define variables associated

to these thresholds, and some of they properties that will help analyse information acquisition.

Lemma 3.3. There exists a non-negative integer KFR(b) defined as:

KFR(b) ≡ arg max
K

{
E
[
`
(
y(ΣK = k), b

)
|ΣK = k

]
≤ E

[
`
(
y(ΣK = k + 1), b

)
|ΣK = k

]}
for all k = 0, 1, ...,K − 1. Moreover, lim

b→0
KFR(b) =∞, KFR

(
b > bFR(1)

)
= 0, and ∂KFR(b)

∂b ≤ 0.

KFR(b) characterizes the maximum amount of information an expert with bias b is willing to fully reveal

to the principal in the most informative communication equilibrium. Note that, as the expert bias tends to

zero, his incentives to be truthful to the principal involve infinitely large amount of information. Indeed, if the

expert actually observes fewer than KFR(b) signals, he reveals them all at the communication stage, which

has clear implications for the principal’s incentives to delegate decision-making authority.

As the bias increases, incentives for truthful communication decrease. At some point all communication

equilibria involve coarse messages. In order to do this, he needs enough signals to implement an incentive-

compatible partition of the state space. The lemma below characterizes the minimum amount of information

the expert needs to implement an incentive-compatible message strategy.

Lemma 3.4. There exists a a non-negative integer KNC(b):

KNC(b) ≡ arg min
K

{
E
[
`
(
y(ΣK < k), b

)
|ΣK = k

]
≥ E

[
`
(
y(ΣK > k), b

)
|ΣK = k

]}
for at least one k = 0, 1, ...,K − 1. Moreover,KNC

(
b ≤ bFR(K = 1)

)
= 0, and ∂KNC(b)

∂b ≥ 0 for

b ∈ [b̄, bNC∞ ], where b̄ > bFR(K = 1) and bNC∞ ≡ lim
K→∞

bNC(K).

When the expert’s bias is so small that he is willing to fully reveal information, the minimum number of

signals to implement an influential message strategy is 1. For sufficiently large biases, on the contrary, there

is a single communication equilibrium which involves no information transmission—such strategy does not

require any information by the expert. Hence, the restrictions on the minimum amount of signals apply to

intermediate biases only.

Note that the relationship defined in Lemma 3.4 focuses on the implementation of equilibria involving

only two messages (κ = 2). As the expert’s bias increases, incentive compatibility of such equilibria requires
13For binary signals and positive bias, it is sufficient to focus on deviations involving misrepresentations of a single low signal,

i.e. for SK = ΣK , then µ′ = ΣK + 1.
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Figure 3.2: Maximum amount of signals the expert fully reveals, KFR(b), and minimum amount needed to
implement an informative communication equilibrium, KNC(b) (Lemmas 3.3 and 3.4)
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the message inducing the high decision to be coarser (see Crawford and Sobel, 1982). In other words, for

biases b < b′ such that influential communication is possible, κ∗(b, θ) ≥ κ∗(b′, θ) ≥ 2,14 the boundary

type for κ = 2 with the former bias is larger for b than for b′, i.e. maxPK0 (b) ≥ maxPK0 (b′) for any K.

Therefore, implementing PK(b′) requires a finer partition of the state space, which means acquiring more

signals: KNC(b) is weakly increasing in b.

The relationships KFR(b) and KNC(b) characterize communication incentives when information costs

are large for the expert. If the maximum amount of information he finds cost-effective to acquire is lower

than KFR(b), the associated message strategy involves full revelation. On the contrary, an expert with large

bias may find that he cannot afford to acquire KNC(b) signals and, hence, no information will be transmitted

(or acquired) in equilibrium. Figure 3.2 shows both relationships.

I now proceed to characterize information acquisition under centralization. The expert’s decision depends

on the cost of a given information structure and on how much of that information he can credibly transmit to

the principal at the communication stage. Because costs are weakly convex, it is worth acquiring additional

14κ∗(b, θ) ≡ lim
K→∞

κ∗(b,K); that is, the number of intervals in the most-informative equilibrium when an expert of bias b

perfectly observes the state θ.
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signals only if enough of the additional information can be transmitted through cheap talk communication.

A larger bias, hence, typically means the optimal information structure involves fewer signals. The fact

that information acquisition is a discrete decision implies that for sufficiently close biases, the equilibrium

information acquisition decision coincide. The proposition below presents these intuitions.

Proposition 3.1. Given c(·) and b, there exists two thresholds, bC ≤ b̄C , such that:

1. for b ≤ bC , then KC ≤ min{KD,KFR(b)} and µ(b,KC) = ΣKC ;

2. for b ≥ b̄C , then KC = 0; and

3. for b ∈ (bC , b̄C), then KC > max{KFR(b),KNC(b)} and µ(b,KC) = {m0,m1, ...,mκ}, with

κ < K + 1.

Moreover, bC ≥ bFR(KD) and b̄C < bNC∞ .

Equilibrium information acquisition is characterized by at least two regions. For non-zero costs KD is

always finite. Therefore, even if the expert fully reveals his information, the decision never perfectly matches

the realization of the state. For sufficiently small biases, the expert fully reveals any KC ≤ KD. The amount

of signals he effectively acquires for b ≤ bFR(KD) depends on costs, but can never exceed KD.

For sufficiently large biases, on the contrary, the expert cannot credibly transmit any information to the

principal in equilibrium and, hence, acquiring information is useless. How large must the bias be for KC = 0

to be optimal? This depends on information costs. A sufficient condition is that b ≥ bNC∞ , which amounts

to say that no communication can take place even if the expert has perfect information about theta. The

actual b̄C may be larger than bNC(KD), which implies that an expert with bias b ∈ (bNC(KD), b̄C) acquires

more information than if he were in charge of the decision. As shown in section 3.4, such overinvestment in

information arises because the expert is ex-ante better off revealing some information to the principal than

leaving her uninformed. The expected marginal utility the expert derives from being able to transmit some

information to the principal compensates the cost of more than KD signals.

Equilibrium communication for intermediate biases can take the form of coarse messages, in which case

µ(b, SKC ) = {m0,m1, ..,mκ} with κ < KC + 1. Such a possibility requires sufficiently low information

costs. To see this suppose costs are such that KD ≥ 2 and the expert’s bias greater but close to b̃ = bFR(KD)

— b̃ = bFR(KD) + ε for small ε > 0. Note that with such bias, the expert would be willing to fully reveal a

positive amount of signals had he observed them at the communication stage (KFR(b̃) ≥ 1). Then, among

all K ≤ KFR(b), denote by K1 the cost effective information acquisition strategy involving full revelation

at the communication stage. When K > KFR(b), however, the expert’s communication strategy involves

κ < K+1 partitions of the state space; let K2 denote the cost effective of such strategies. Because K2 > K1,

the existence of an equilibrium involving coarse communication requires that the expected marginal utility

compensates for the additional information costs. Moreover, when K1 and K2 are close, some of the

additional signals are pooled together in the same messages and, hence, the expected utility gains (if any) are

small. Relatively low information costs are then a necessary condition for KC = K2.

I now show how these intuitions shape the principal’s incentives to delegate authority.
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3.3.2 Decision Rights

The expert’s bias determines the maximum amount of information he can credibly communicate to the

principal, while information costs determines the cost-effectiveness of different information structures given

the allocation of authority. Under centralization, a well-informed but biased expert typically communicates

only part of his information. His his incentives to become informed are thus lower than the case in which he

controls the decision. Despite this intuition is not new (Aghion and Tirole, 1997), the optimality of delegation

depends on whether the informational gains outweigh the loss of control from a biased decision (Dessein,

2002; Ivanov, 2010; Argenziano et al., 2016). In the present context, the extent of the informational gains is

affected by the fact that information acquisition is endogenous and costly.

Firstly, let define a notion of ‘sufficient’ informational gains for the case in which the principal decides

with no information under centralization.

Definition 3.1. For every b ∈ <+, let

KNI(b) ≡ arg min
{
K : E

[
` (|E(θ)− θ|)

]
− E

[
` (|E(θ|ΣK)− θ + b|)

]
≥ 0
}

Moreover, there exists a bias bNI∞ such that lim
b→bNI∞

KNI(b) =∞

The relationship KNI(b) determines the minimum amount of information the expert with bias b must

have in order to get an uninformed principal to delegate authority to him. In this framework, this threshold

can be interpreted in terms of babbling equilibria under centralization.15 Next, I define a ranking of cost

functions that will be useful to interpret the results on organizational structure.

Definition 3.2. Given the expert’s bias, b, a cost function c(b, ·) leads to acquisition of more signals than

another cost function c̃(b, ·) if KC(b, c(b, ·)) ≥ KC(b, c̃(b, ·)) or KD(c(b, ·)) ≥ KD(c̃(b, ·)), or both. I

denote such relationship as c(b, ·) � c̃(b, ·).

The relationship � specifies a criterion to compare between cost functions, based on how much informa-

tion an expert of bias b can acquire under each organizational structure. With such criterion, I now proceed to

set bounds on the principal’s incentives to delegate.

Proposition 3.2. Given c(·) and b ∈ [0, bNI∞ ], there exist two cost thresholds, c1(b, ·) ≤ c2(b, ·), and

associated information acquisition decisions, KC
1 (b) ≤ KD

1 and KC
2 (b) ≤ KD

2 , such that:

1. Centralization is the optimal organizational structure for all c(b, ·) � c1(b, ·);

2. Delegation is the optimal organizational structure for all c(b, ·) � c2(b, ·).

Moreover, lim
b→0

c2(b) = lim
b→bNI∞

c1(b) = 0.

15Equilibria in which the expert transmits no information to the principal.
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Whether the principal prefers to retain or delegate authority depends on how much more information

the expert acquires and uses when he controls y, as compared to the most informative equilibrium under

centralization. When information is costly and the expert’s bias is small, he fully reveals his information in

equilibrium and, thus, the incentives to acquire information are similar to delegation. For biases sufficiently

close to zero, indeed, the expert’s equilibrium information acquisition under centralization and delegation

coincide. The expert’s communication incentives improve as the bias converges to zero, which means that the

number of signals he is willing to fully reveal increases. As a consequence, the necessary informational gains

that justify delegation require a larger KD relative to KFR(b). In other words, as the bias converges to zero

the principal will find that centralization is optimal for a larger set of costs.

For larger biases, however, the principal’s expected dis-utility from biased decision becomes very large.

Delegation will thus be optimal if the informational gains are sufficiently large. Note that, as the bias

increases, the expert’s incentives for communication given K deteriorate, which means the informational

gains from any given KD initially increase. Eventually, for sufficiently large biases, the equilibrium message

strategy consists of only two different messages. From this bias onwards, the amount of information that

would compensate the principal for the loss of control increases in the bias. At the limit of bNI∞ , the expert

needs to be perfectly informed for the principal to delegate authority to him. In other words, as the bias

becomes large the principal will find that centralization is optimal for a larger set of costs.

In summary, Proposition 3.2 shows that the principal’s incentives to delegate are non-monotonic in

the bias. On the one hand, small bias means the expert is willing to acquire as much information under

centralization as under delegation, and finds incentive compatible to fully reveal that information. Large

biases, on the other hand, lead to a large loss of control under delegation and, thus, the amount of information

that would compensate the principal can only be implemented if information is sufficiently ‘cheap’ for the

expert. Overall, large information costs lead to centralization for a large set of biases.

3.4 An Example: The Uniform-quadratic Case

In this section I apply the results to the case of quadratic preferences and uniform distribution of the

state. The uniform-quadratic case has been the workhorse formulation in the applied cheap talk literature

because its closed-form solutions provide clear-cut policy implications. Players’ preferences are then defined

by uP = −(y − θ)2 and uE = −(y − b − θ)2 − c(SK). Information costs are given by c(SK) = γKα. I

focus on the overt information acquisition game.

The state of the world is uniformly distributed in [0, 1] which, together with the binary structure of each

piece of information, configure a Beta-Binomial updating process in line with that of the previous chapters.

3.4.1 Information Acquisition

Delegation. It is well know in the literature that the expected utility of deciding with K signals in this

context is given by the residual variance V(θ|K) = 1
6(k+2) (see Argenziano et al., 2016). Hence the expert’s

optimal information acquisition under delegation is given by:
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KD = arg max
K∈K

{
− 1

6(K + 2)
− γKα

}
(3.3)

The principal’s ex-ante expected utility is thus given by UP = − 1
6(KD+2)

− b2.

Centralization. When the principal is in charge of the decision, the expert’s communication strategy

depends on how many signals he observes. After communication takes place, the principal’s decision upon

receiving a message associated to partition PKi ∈ PK is given by:

y(Pi,K) =
1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)
(3.4)

Given the optimal decision rule, the following lemma describes the expert’s incentives for communication.

Lemma 3.5 (Lemma 2’). For the uniform-quadratic case, the expert’s incentives for communication are

characterized by:

1. KFR(b) =
⌊

1
2b − 2

⌋
2. KNC(b) =

⌈
(8b−1)
(1−4b)

⌉
3. |Pi+1| − |Pi| ∈ {4b(K + 2)− 2 , 4b(K + 2) + 2} for all Pi = {P0, P1, ..., Pκ}.

How many signals the expert acquires thus depend on the net expected utility from each possible

information structure and the associated optimal communication strategy, which is characterized by partition

PK(b).

KC(b) = arg max
K∈K

− 1

(K + 1)

∑
Pi∈PK(b)

∑
k∈Pi

(k + 1)(k + 2)

(K + 2)(K + 3)
− 1

|Pi|

∑
k∈Pi

(k + 1)

(K + 2)

2− b2 − γKα


(3.5)

Note that the first term of the right hand side represents (minus) the residual variance under the equilibrium

communication strategy for a given number of signals K; i.e. V(θ|SK ,PK(b)) = UP (SK , b). Given the

bias, if the number of signals acquired is lower than KFR(b), the residual variance is 1
6(K+2) similar to

the delegation case. I now proceed to analyse the equilibrium information acquisition for different cost

parameters.

Figure 3.3 shows the equilibrium information acquisition strategy as a function of the expert’s bias, for

different values of γ. It also depicts the maximum amount of information the expert is willing to fully reveal,

KFR(b), the minimum number of signals he needs to be able to implement an informative message strategy,

KNC(b), and the amount of information the expert would acquire if he controls the decision, KD.
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Figure 3.3: Equilibrium information acquisition under centralization
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As shown in Proposition 3.1, an expert with sufficiently small bias finds optimal to acquire the same

amount of information as if he had authority; also, the largest bias for which this holds decreases with the

cost of information. On the contrary, when the expert’s bias is large enough, his optimal decision is to acquire

no information at all, and the smallest bias for which this holds is increasing in costs. Note that for non-zero

information costs, KC(b) = 0 is optimal for some biases for which there are informative message strategies

available|but they are too costly for the expert.
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For intermediate biases, information acquisition incentives are shaped by two forces: KFR(b) and

KNC(b). Firstly, when the expert’s bias is close to bFR(KD) the amount of information he is willing to fully

reveal is relatively large. Acquiring information beyond KFR(b) means the additional signals will not be

fully revealed which, together with decreasing marginal informational value of signals makes such strategies

less attractive.

As the bias increases, however, the amount of information the expert is willing to fully reveal decreases.

For small enough costs the expert will be better-off implementing a message strategy involving coarse

communication (κ < KC). In such cases there exists an intermediate range of biases for which coarse

communication is optimal, which can be seen in panels (b) to (d) of Figure 3.3. Indeed, the figure shows that

the range of biases featuring such information acquisition and communication strategies in equilibrium is

decreasing in the costs of information. For such biases, the equilibrium number of signals depends on the

communication strategy that can be implemented with each K and the marginal cost of information. Panel

(d) shows that, for sufficiently small costs, the amount of information acquired tends to decrease as the bias

increases.

When the bias is large, the expert needs sufficiently many signals in order to implement an informative

message strategy. This is captured by KNC(b) –meaning that the expert implements an informative message

strategy if KC(b) > KNC(b) and acquires no information otherwise. For large biases, the amount of

information transmitted in the most informative equilibrium is small, even when the expert is perfectly

informed. The expert thus finds cost-effective to acquire the minimum amount of information that allows

him to implement such message strategy. Because KNC(b) is increasing in b, the amount of information

acquired by such an expert is also increasing in the bias. Indeed, at some point KC(b) = KNC(b) > KD

which means the expert is willing to acquire more signals under centralization than under delegation. This

overinvestment, however, does not always translate in better decision-making for the principal.16

3.4.2 Decision Rights

Now the question is how the expert’s behaviour under centralization affects the principal’s decision about

who controls y. Figure 3.4 shows the expert’s information investment under the optimal organizational

structure as well as the principal’s equilibrium ex-ante expected utility, for different values of γ.

First notice that the set of biases for which delegation is optimal (red line) is decreasing in the costs of

information. Because the state is uniformly distributed, optimal delegation converges to results in Dessein

(2002) as the unit costs converge to zero (panel (d)). This reflects the main result in Proposition 3.2. Further

intuitions arise when information is costly. Panel (a) in Figure 3.4 illustrates the fact that centralization is

optimal for (almost) all biases when cost are sufficiently large. More interestingly, though, is the fact that

there are some biases for which the principal prefers to centralize despite communication is very noisy.

To see this consider the case of b = 0.2. An expert with such bias needs at least three signals to

implement an informative message strategy but, more importantly, the same amount of information allows

16Unlike Argenziano et al. (2016), overinvestment in the present paper arises for large biases. Indeed, the case described in their
paper does not arise here because for small biases the expert acquires at most KD signals under centralization.

110



Figure 3.4: Information acquisition in the optimal organizational structure
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him to implement a message strategy with a very small residual variance: PK=3(b = 0.2) = {{0}, {1, 2, 3}}.
This strategy can be implemented when α = 1.5 and γ = {0.005, 0.0005}. When γ = 0.005, such a strategy

represents an overinvestment relative to what the expert would acquire under delegation (KD = 2), which

can be seen in panel (a). The rationale of why the principal prefers centralization is such a case is clear, but

the expert’s incentives crucially depend on his impossibility to commit ex-ante to a less generous information

acquisition strategy. Indeed, the principal prefers such an expert to one with b = 0.15.

When the costs are lower (γ = 0.005) the expert with b = 0.2 still finds optimal to acquire three signals

under centralization, but he would acquire many more if the had control over the decision (KD = 7). The
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principal, however, still prefers to retain authority because the informational gains from delegation are not that

large relative to the amount of information the expert is expected to transmit. Panel (c) shows that, for slightly

smaller unitary costs, the associated informational gains do compensate the loss of control—delegation is

optimal. To summarize, for large biases for which informative equilibria exist, the informational gains from

delegation may not compensate for the loss of control when information costs are large. In such cases, the

principal prefers to retain control of the decision.

The optimality of centralization for large biases and information costs crucially depend on the expert’s

lack of commitment at the information acquisition stage. For if he could commit to acquire no information at

all, the principal prefers to give up control rights in his favour. Note that the overinvestment in information

only benefits the principal for sufficiently large costs, as in panel (a). Overall, for large biases, centralization

incentives are more sensitive to whether KD compensates the principal for the loss of control.

3.5 Covert information acquisition

In this section, I analyse the game in which the principal does not observe the expert’s information

acquisition strategy. I focus on pure-strategy equilibrium at the information acquisition stage. When

information acquisition is covert the equilibrium must specify the principal’s beliefs about the expert’s

information acquisition strategy. The latter could, in principle, use his cheap talk messages to communicate

how many signals he previously acquired. Based in Argenziano et al. (2016), I restrict attention to equilibria

in which the expert cannot affect such beliefs at the communication stage, which is without loss of generality.

A pure-strategy Perfect Bayesian Equilibrium of the covert game is then characterized by the triple(
KC
c ,PK

C
c , y(PKC

c )
)

; where KC
c represents the number of signals, PKC

c = {PK
C
c

0 , P
KC
c

1 , ..., P
KC
c

κ } is a

communication partition, and y(PKC
c ) = {yPi}Pi∈PKCc is the principal’s action profile. As in the overt game,

PKC
c must be incentive compatible and y(PKC

c ) must be sequentially rational. The equilibrium amount of

signals must maximize the expert’s expected payoff given PKC
c and y(PKC

c ) but, as noted above, it must be

immune to deviation to non-equilibrium information acquisition decisions.

KC
c ∈ arg max

K

K∑
ΣK=0

[
max

y∈ψ(b,KC
c )

∫ 1

0
uE (y, b, θ) f(θ|ΣK , SK)dθ

]
Pr(ΣK |SK)− c(SK) (3.6)

When the principal does not observe how many signals the expert acquired, the equilibrium must be

immune to two deviations. First, the expert should not find profitable to acquire fewer signals than what the

equilibrium specifies, despite the cost savings. This will be true when the expected utility loss associated to a

larger residual variance outweighs the lower information costs. Information costs then must not be too large

as compared to the gains in decision precision.

The expert could also acquire more signals than those specified in a candidate equilibrium. By doing

so he can use the additional information to ‘tailor’ the different messages available in PKC
c to the different

possible realizations of the information acquired off path, K ′. The expert thus expects some utility gains
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from using the message strategy associated to the equilibrium number of signals, KC
c , while he acquires

more. For this to be true, if the principal knew the expert acquired K ′, then equilibrium communication

would involve less information transmission than the equilibrium under KC
c . Also, the costs of information

must be sufficiently small.

I now analyse how these additional restrictions affect equilibrium information acquisition as compared to

the overt game. First note that the observability of the information acquisition decision does not affect the

expert’s incentives under delegation. Hence, the equilibrium under delegation is characterized by Lemma 3.1.

Under centralization, the equilibrium information acquisition must be incentive compatibility in the sense

of (3.6) but must also be cost effective (among all K that satisfy IC). As a consequence, the set of equilibrium

information acquisition strategies available to an expert with bias b in the covert game is a subset of those

available to the same expert in the overt game. The lemma below extends this intuition to show that any

equilibrium in the former can be implemented as an equilibrium of the overt game in which the principal’s

off-path beliefs are conveniently restricted.

Lemma 3.6. Any outcome supported in a Perfect Bayesian Equilibrium of the covert game in which the

expert follows a pure strategy at the information acquisition stage can be supported in a Perfect Bayesian

Equilibrium of the overt game.

Our main result in this section uses the above lemma to guarantee the existence of cost thresholds that

work as sufficient conditions for the optimality of different organizational structures, just as in the overt

information acquisition game.

Proposition 3.3. Given c(·) and b, there exists two cost thresholds in the covert game, c̃1(b, ·) and c̃2(b, ·),

such that

1. Centralization is the optimal organizational structure for all c(c, ·) � c̃1(b, ·);

2. Delegation is the optimal organizational structure for all c(b, ·) � c̃2(b, ·).

Moreover, c̃1(b, ·) � c1(b, ·) and c̃2(b, ·) � c2(b, ·).

First note that KC
c = 0 satisfies (3.6) because acquiring more information is never profitable, as there

is no information transmission at the communication stage and, thus, the expert cannot make use of any

additional signals acquired off path. Therefore, the set of K that satisfies (3.6) is not empty. Now, among

those K within this set, the equilibrium information acquisition decision must bring the expert the highest

expected utility given the optimal communication strategy µ(b,K) and the cost of that information c(SK).

This constitutes the argument behind Lemma 3.6 and guarantees the existence of c̃1(b, ·) and c̃2(b, ·).

Now the question is how these thresholds compare with those of the overt game. In the appendix I

show that for any two information acquisition decisions K < K ′ and the associated message strategies

characterized by κ(b,K) and κ(b,K ′), if acquiring more signals leads to more precise decisions, then cost

effectiveness implies incentive compatibility (condition (3.6) holds). In other words, the IC constraints

that typically bind in the covert game involve acquisition of fewer signals. As a consequence, information
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acquisition under centralization in the overt game involves as many signals as in the covert game. A

qualification to this relates to specific cases in which more signals involve less information transmission.17

For large costs and small biases the informational gains from delegation are small because information

acquisition decisions under both organizational structures are similar; moreover the message strategy involves

full revelation. Deviations to acquire more signals than any candidate equilibrium are not profitable such that

KC
c ≤ KC

o . Because these (weakly) lower incentives for information acquisition, informational gains from

delegation are (weakly) larger in the covert game than in overt game.

A similar argument applies to the case of small costs and bias. Suppose there exist biases for which the

principal would optimally delegate were the expert perfectly informed. This is the limit case of information

costs converging to zero. Increasing costs affects incentives to acquire information under centralization more

than under delegation. The informational value of additional signals decreases because, for sufficiently many

signals the associated message strategies consist of the same number of partitions of the state.18 When the

principal does not observe the expert’s choice of signals, the additional incentive constraints hamper his

information acquisition incentives, increasing the informational gains from delegation as compared to the

overt game.

The same argument holds true for large biases as long as delegation is optimal when the expert is perfectly

informed. Now, recall that for large biases the expert needs enough signals in order to implement the

minimally-informative message strategy, KNC(b). Given any candidate equilibrium KC
c > KNC(b), then,

the expert will have incentives to acquire fewer signals rather than more. As a consequence, for large biases

and costs, there will be more instances in which the expert acquire no information at all, as compared to the

overt game. This further strengthen the claim that informational gains from delegation will be larger in the

covert game.

3.6 Conclusion

This paper analysed the optimal allocation of decision rights in the context of strategic communication

and endogenous information acquisition. A biased expert decides on how much information he acquires

after a principal allocates authority over a decision. If the expert is in charge, his incentives are shaped by

the marginal cost of information and by how it increases the precision of the resulting decision. From the

principal’s perspective, however, delegating the right to decide leads to a loss of control because the decision

will be biased. Delegation is then optimal only if the loss of control is outweighed by informational gains, i.e.

the expert acquires and uses more information than if the principal decides.

Under centralization, information acquisition depends on how much information the expert can credibly

transmit through cheap talk messages. Incentives for communication are shaped by the conflict of interest

between players and by the amount of information the expert decides to observe. For sufficiently small

biases the equilibrium communication strategy involves full revelation of information, up to a given expected

precision of the resulting decision. Such incentives to fully reveal information are decreasing in the expert’s
17For instance, when comparing KFR(b) and KFR(b) + 1.
18Proposition 4 in Förster (2020) shows that for sufficiently large K the most informative, cheap talk message strategy converges

to the equilibrium characterized in Crawford and Sobel (1982).
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bias. For sufficiently large biases, on the contrary, effective transmission of information requires that the

expert has enough information. Notably, communication in the latter case involves coarsening the information

the agent acquires.

I find that centralization is optimal for any conflict of interest provided the costs of information are

sufficiently large. Intuitively, large costs limit the amount of information the expert acquires under delegation

and thus the expected benefits for the principal. Low information costs, on the other hand, allow large

investments in information under delegation. Given that the amount of information transmitted through

communication is limited by the conflict of interest, sufficiently small costs leads a optimal delegation.

A more interesting set of findings stems from the application to quadratic preferences and uniform distri-

bution of the state. Firstly, an expert with intermediate bias acquires more information under centralization.

He does so because the minimum amount of information needed to implement an informative message

strategy exceeds his maximum investment under delegation. Secondly, this overinvestment leads to optimal

centralization when information costs are large. The overinvestment reduces the informational gains from

delegation to the point that they no longer compensate for the loss of control. For the same costs and larger

biases, however, the expert acquires no information in the equilibrium under centralization and, hence, the

principal is better off delegating authority to him. These intuitions will be further investigated in future work.
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Appendix

A3 Proofs and Complementary Results

Centralization

PROOF OF LEMMA 3.3. The proof exploits the fact thatKFR(b) = (bFR(K))−1. By definition, bFR(K =

1) is the bias for which E
[
`
(
E(θ|Σ1 = 0), b

)∣∣Σ1 = 0
]

= E
[
`
(
E(θ|Σ1 = 1), b

)∣∣Σ1 = 0
]
. For b ≤

bFR(K = 1) the left-hand side of the equality is strictly smaller because of the strict convexity of `(·), which

means a looser IC constraint.

Similarly, bFR(K = 2) solves E
[
`
(
E(θ|Σ2 = k), b

)∣∣Σ2 = k
]

= E
[
`
(
E(θ|Σ2 = k + 1), b

)∣∣Σ2 = k
]

for k = 0, 1. Note that E(θ|Σ2 = k + 1) − E(θ|Σ2 = k) < E(θ|Σ1 = k + 1) − E(θ|Σ1 = k)

for all k ≤ 1, which means that the IC constraint for full revelation of K = 2 is tighter than that for

K = 1. As a consequence, bFR(K = 2) < bFR(K = 1) which, in turn, leads to KFR(b) = 1 for all

b ∈ (bFR(K = 2), bFR(K = 1)].

By the same argument, E(θ|ΣK+1 = k + 1)− E(θ|ΣK+1 = k) < E(θ|ΣK = k + 1)− E(θ|Σ1 = K)

for all k ≤ K, and thus bFR(K + 1) < bFR(K).

As b goes to zero, Crawford and Sobel (1982) and Spector (2000) show that the amount of information the

expert is willing to reveal in the most informative equilibrium goes to infinity; hence, lim
b→0

KFR(b) =∞.

PROOF OF LEMMA 3.4. The relationship KNC(b) shows the minimum amount of signals the expert needs

to implement the least-informative message strategy, which consists of only two partitions of the state space,

κ(b,K) = 2, and thus two equilibrium messages MK = {m0,m1}. Under such a strategy there are two

‘boundary types’, maxPK0 and minPK1 , whose incentives shape equilibrium communication and information

acquisition. The proof proceeds in two steps: first, I derive KNC(b) = 1 and KNC(b) = 2; then, I show that

KNC(b) is decreasing in b.

Because b ≥ 0, I can focus on type maxPK0 ’s incentives to announce m1 instead of its on-path message

m0. Let bFR1 = bFR(K = 1) and bNC∞ = lim
K→∞

bNC(K) represent the largest bias for which there is truthful

revelation of one signal and the largest bias for there will be some information transmission (only if the

expert is perfectly informed), respectively. Similarly, let κ∗(b, θ) = lim
K→∞

κ∗(b,K) represent the number of

partitions in the most-informative message strategy when the expert is perfectly informed.

Now, let b′ = bFR1 + ε < bNC∞ for sufficiently small ε > 0. Because the loss function satisfies

single crossing it is true that E
[
`
(
y(Σ1 = 0), b′

)
|Σ1 = 0

]
≥ E

[
`
(
y(Σ1 = 1), b′

)
|Σ1 = 0

]
.19 But

b′ < bNC∞ implies that κ∗(b, θ) ≥ 2 and, therefore, there exists a K ′ > 1 such that κ(b,K ′) = 2 can be

implemented; that is, there exist PK
′

0 and PK
′

1 such that E
[
`
(
y(ΣK′ = maxPK

′
0 ), b′

)
|ΣK′ = maxPK

′
0

]
≤

E
[
`
(
y(PK

′
1 ), b′

)
|ΣK′ = maxPK

′
0

]
. Define KNC(b′) = K ′ − 1 ≥ 1.

Similarly, take b̃ > b′ such thatE
[
`
(
y(ΣK′ = maxPK

′
0 ), b̃

)
|ΣK′ = maxPK

′
0

]
= E

[
`
(
y(PK

′
1 ), b̃

)
|ΣK′ =

19By definition of bFR1 = bFR(K = 1), E
[
`
(
y(ΣK=1 = 0), bFR1

)
|Σ1 = 0

]
= E

[
`
(
y(ΣK=1 = 1), bFR1

)
|Σ1 = 0

]
.

116



maxPK
′

0

]
. Following the previous argument, define b′′ = b̃ + ε < bNC∞ such that the previous IC

constraint fails to hold. Then, there must be a K ′′ > K ′ and associated PK
′′

0 and PK
′′

1 such that

E
[
`
(
y(ΣK′′ = maxPK

′′
0 ), b′′

)
|ΣK′′ = maxPK

′′
0

]
≤ E

[
`
(
y(PK

′′
1 ), b′′

)
|ΣK′′ = maxPK

′′
0

]
. Again,

KNC(b′′) = K ′′ − 1 ≥ K ′.
To see why K ′′ > K ′, let first define θ̃1 ≡ lim

K→∞
E[θ|ΣK = maxPK0 ] = lim

K→∞
E[θ|ΣK = minPK1 ], as

the boundary type for a two-message communication equilibrium when the sender is perfectly informed.

Proposition 4 in Förster (2020) shows that such θ̃ exists and if the expert has enough signals, such an

equilibrium can be implemented.20 Now, Lemma 2 and Corollary 1 in Crawford and Sobel (1982) show

that to induce truthful communication from an expert with larger bias, the messages inducing higher actions

must be less profitable. This implies that for b < b′, the boundary types in a two-partition message strategy

satisfy θ̃b1 > θ̃b
′

1 , which in turn means that lim
K→∞

E[θ|ΣK = maxPK0 (b)] > lim
K→∞

E[θ|ΣK = maxPK0 (b′)].

Because a higher K results in a finer partition of the state space, there exist sufficiently large b < bNC∞ such

that the corresponding two-partition message strategies can be implemented by truthful revelation of ΣK = 0.

Then, for b < b′ sufficiently close to b < bNC∞ the minimum K to implement κ(b′, ·) = 2 is never larger than

the corresponding to κ(b, ·) = 2.

Now, the fact that the minimum amount of information needed to implement a two-partitions communic-

ation equilibrium is decreasing in the bias does not preclude that an equilibrium with more partitions can

be implemented with fewer signals. Indeed, Förster (2020) shows that this is true for the uniform-quadratic

case (see Example 2). In the present context, however, this can happen only for intermediate biases, since the

amount of information conveyed in the most informative communication equilibrium is decreasing in the bias.

For sufficiently large biases b = bNC∞ − ε, then κ∗(b, θ) = 2 and, therefore, KNC(b) is weakly increasing in

b.

PROOF OF PROPOSITION 3.1. The expert’s information acquisition decision under centralization, KC ,

maximizes his ex-ante expected utility given his bias and information costs; that is, for all K ′ 6= K

KC =
{
K : −E

[
`
(
|E(θ|µ(b, SK))− θ − b|

)]
− c(SK) ≥ −E

[
`
(
|E(θ|µ(SK′ , b))− θ − b|

)]
− c(SK′)

}
(A3.1)

Given the equilibrium message strategy associated to KC and b (Lemma 3.2), the resulting decision is

yC ≡ y(µ(b, SKC )) = E(θ|µ(b, SKC )).

First note that, for a given c(·) and sufficiently small bias, the optimal information acquisition under

delegation, KD, represents the maximum number of signals the expert acquires. Suppose, on the contrary,

that KC(b) > KD for b < bFR(KD). It must then be true that KFR(b) ≥ KD, which implies that, when

the principal decides;

E [` (|E(θ|ΣKD)− θ − b|))− ` (|E(θ|ΣKC )− θ − b|))] ≥ C(SKC )− C(SKD)

20Förster shows that the most-informative equilibrium with binary signals converges to that in Crawford and Sobel (1982).
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But if the expert himself decides, then

E [` (|E(θ|ΣKD)− θ|))− ` (|E(θ|ΣKC )− θ|))] ≤ C(SKC )− C(SKD)

Which is a contradiction because it means is willing to ‘use’ more information when the resulting

decision is biased than when it is not. Indeed, for b = 0 the left-hand sides of the above expressions coincide

and, thus, it must be that KC(b = 0) = KD. For all b ≤ bFR
KD it is therefore true that KC ≤ KD and

the acquired information is fully revealed to the principal. Moreover, because information takes the form

of discrete signals, there exists a b′ ∈ (0, bFR(KD)] such that the expert will be indifferent between KD

and K < KD—while for a marginal larger bias he strictly prefers the latter. The same argument applies

up to b = bFR(KD), beyond which the equilibrium message strategy may not involve full revelation of

information.

Secondly, for sufficiently large biases no communication takes place in equilibrium; the resulting

equilibrium information acquisition strategy is hence KC = 0. A sufficient condition for this to be true is

b ≥ bNC∞ . Note that this is a sufficient condition, since an expert with bias b = bNC(KD) can only implement

an informative equilibrium if and only if KC > KD and, for sufficiently low costs such an expert may find

cost effective to acquire KC = KD + 1 signals. In such cases, the equilibrium communication strategy

involves coarse information transmission.

Now, given the sufficient conditions for full revelation and no communication, let analyse what happens

with intermediate biases. For b ∈ (bFR(KD), bNC∞ ) the equilibrium message strategy may involve coarse

communication. More precisely, for such biases there are always two candidate message strategies, one

involving full revelation of signals and the other involving coarse messages. In the former case, KFR(b)

gives the maximum amount of information the expert is willing to fully reveal. Let K1 denote the cost

effective of such strategies, that is, for all K ′ ≤ KFR(b), K1(b) satisfies

−E
[
`
(
|E(θ|ΣK1)− θ − b|

)]
− c(SK1) ≥ −E

[
`
(
|E(θ|ΣK′)− θ − b|

)]
− c(SK′)

Note that K1(bFR(KD) + ε) ≤ KC(bFR(KD)); that is, as long as the optimal info acquisition decision

involves full revelation, KC is weakly decreasing in b.

The possibility of coarse communication arises when KC allows the expert of bias b to implement a

communication strategy involving at least two messages. Let K2 > KFR(b) denote the cost effective of such

strategies; that is, for all K ′′ > KFR(b) and associated µ(b,K ′′), K2 and associated µ(b,K2) satisfy:

−E
[
`
(
|E(θ|µ(SK2 , b))− θ|

)]
− c(SK2) ≥ −E

[
`
(
|E(θ|µ(b, SK′))− θ|

)]
− c(SK′)

Proposition 4 in Förster (2020) shows that for all b there exists a sufficiently large K̃(b) > KFR(b)

such that for all KC ≥ K̃(b) the most-informative communication equilibrium implements the same

number of partition as if the sender were perfectly informed. Indeed, for all k = {0, 1, ..., κ(b,K) − 1},
lim
K→∞

maxPKk = lim
K→∞

minPKk + 1 = θk, where θk represents the boundary type between partition k and
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k + 1 of the most-informative equilibrium in Crawford and Sobel (1982). Therefore, for sufficiently small

costs the expert can implement the communication strategy he would implement if perfectly informed.

I now need to show that such strategies can dominate full revelation (of fewer signals). I show this is the

case when the state is uniformly distributed and preferences are quadratic losses. Figure A3.1 depicts the

expected residual variance in the most informative equilibrium as a function of the expert bias. It compares

the case in which the expert is perfectly informed (in blue) against the case in which he fully reveals binary

signals (according to Lemma 3.2). The picture shows that coarse communication dominates full revelation of

binary signals for all biases for white the latter features some information transmission. A direct implication

is that, for the uniform-quadratic case, sufficiently low information costs will result in implementation of the

former strategy over the latter.

Figure A3.1: Comparison between residual variances of a perfectly informed and an imperfectly informed
expert who fully reveals his signals

Allocation of Decision Rights

PROOF OF PROPOSITION 3.2. Given the costs of information and the expert’s bias b, the principal deleg-

ates authority to the expert if and only if:

E
[
`
(
|E(θ|µ(b, SKC ))− θ|

)]
− E

[
`
(
|E(θ|ΣKD)− θ + b|

)]
≥ 0 (A3.2)

Such that KD and KC solve (3.1) and (A3.1), respectively.
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I first prove the existence of c1(b, ·) and c2(b·). Note that information costs can be so large that KD = 0

for all b; in such cases, the principal strictly prefers to retain authority over y. Decreasing c(SK) increases

both KD and KC under the different organizational structures. As the costs go to zero, however, the expert’s

information acquisition under delegation converges to infinity, i.e. the ex-ante expected loss for the expert

converges to zero. Proposition 3 in Dessein (2002) shows that, when the expert is perfectly informed, a

principal who keeps control and communicates is on average infinite times farther away from θ than a

principal who delegates control. In other words, there exists a sufficiently small bias such that the principal

ex-ante prefers to delegate authority to a perfectly informed agent than to decide by herself.21 Hence,

c1(b, SK) is cost function yielding the highest cost for each SK for which (A3.2) holds. Similarly, for any b

for which Proposition 3 in Dessein (2002) holds, c2(b, SK) is the cost function yielding the smallest costs for

each SK for which (A3.2) fails to hold.

I now prove that c1(b, ·) is bounded below by the expert’s information acquisition decision under

centralization.

Lemma A3.1. For all 0 ≤ b ≤ bFR(K = 1), there exists a c̃(b, ·) such that KD = KC(b) ≤ KFR(b).

Proof. First recall that for any c(·) and associated KD, an expert with bias b ≤ bFR(KD) fully reveals his

information to the principal under centralization. Also note that at bFR(KD) the expert is indifferent between

fully revealing KD signals and exaggerating any low realization he could have; the marginal expected utility

of acquiring KD signals for such an expert is, therefore, small. For such costs, acquiring KD is incentive

compatible for b = 0; therefore, there exists a 0 < b̃ ≤ bFR(KD) such that acquiring KD is incentive

compatible for smaller biases and it is not for larger biases.

The cost c̃(b, ·) holds for all b such that KFR(b) ≥ 1; thus, characterizes a relationship K̃(b) ≡ KD =

KC(b) which constitutes an horizontal translation of KFR(b). I need to show that lim
b→0

K̃(b) =∞—which is

easy provided that lim
b→0

KFR(b) =∞, and that for any non-zero cost c(·) and associated (finite)KD, b̃ > 0.22

The previous paragraphs showed the lower bounds for c1(b, ·) when the bias is sufficiently small; I now

prove the corresponding bounds for large biases. For given c(·) and associated KD, if the bias is sufficiently

large even the maximal informational gains fail to compensate the principal for the loss of control from

delegation. This threshold can be defined as

bNIKD ≡
{
b : E

[
` (|E(θ)− θ)

]
− E

[
` (|E(θ|ΣKD)− θ + b|)

]
= 0
}

which is increasing in b, its minimum being bNI
KD=0

= 0, and its maximum, bNI∞ ≡ lim
KD→∞

bNI
KD is a finite

integer.

21This holds for any F (θ). The argument builds upon the observation that the elements of the most-informative partition increase
at a rate 4b and, therefore, as b tends to zero the number of partitions converge to infinity at a rate that is lower than the measure of
the loss of control, b2.

22Note that KC = KD is always incentive compatible for b = 0.

120



The relationship bNI
KD can be inverted, leading to KNI(b) (Definition 3.1) which represents the minimum

amount of information an uninformed principal requires from an expert in order to be willing to delegate

authority to him. The definition of KNI(b) assumes the principal is uninformed under centralization and,

hence, it is binding for biases such that the most-informative communication equilibrium is the babbling on

(for K ≤ KNI(b)). As a consequence, when c(·) and b are such that KD ≤ min{KNC(b),KNI(b)}, the

principal strictly prefers to retain authority over y. This show a sufficient condition on information costs that

guarantees that centralization is optimal for higher costs and b ≥ bNC(K = 1). Finally, note that bNI∞ ≤ bNC∞ ,

and that:

lim
b→bNI∞

KNI(b) =∞

Example

As in the previous chapters, when θ ∼ U [0, 1] and signals are i.i.d. realizations of a Bernoulli distribution,

the updating process follows a Beta-binomial distribution. Given the number of signals available to the

expert, K, the number of successes k is distributed according to a binomial distribution. And the posterior

distribution of θ given k successes in K trials is a Beta distribution with parameters k + 1 and K − k + 1,

which leads to a posterior expectation E(θ|k,K) = (k+1)
(K+2) .

Derivation of expression (3.4) (Argenziano et al., 2016). Suppose authority is centralized. The number

of signals observed by the agent is given by K, and the equilibrium communication is characterized by

PK(b). Upon receiving the message associated to Pi ∈ PK(b) the principal chooses y(Pi) so as to maximize

−
∫ 1

0 (y(Pi)− θ)2f(θ|k ∈ PKi ,K)dθ. It is easy to see that the FOC leads to y(Pi) = E[θ|Pi,K], which can

be worked out as:

E[θ|Pi,K] = E [E[θ|k,K]|k ∈ Pi] =
∑
k∈Pi

E[θ|k,K]
f(k : K)∑
k∈Pi f(k : K)

=
1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)

Where |Pi| is the cardinality of the set Pi. Since E(θ|k,K) = (k+1)
(K+2) and f(k : K) = 1

(K+1) . Note that,

under delegation, the expert’s uses all the information available to him so PK = SK and, hence, the optimal

decision is given by y = (k+1)
(K+2) + b.

Derivation of expressions (3.3) and (3.5). Again, suppose authority is centralized. The expert’s bias

defines an optimal message strategy for each possible K, PK(b) (see proof of Lemma 3.5 below). His

information acquisition decision maximizes his ex-ante expected utility given by

E
[
−(y(Pi ∈ PK(b))− θ − b)2

]
= E

[
E
[
−
(
y(Pi ∈ PK(b))− θ − b

)2 |k ∈ Pi]|Pi ∈ PK(b)
]
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The RHS results from the application of the Law of Iterated Expectations, and can be expressed as:

−
∑

Pi∈PK(b)

Pr(Pi)∑
Pi∈PK(b) Pr(Pi)

∑
k∈Pi

Pr(k)∑
k∈Pi Pr(k ∈ Pi)

×
∫ 1

0

(
y(Pi 3 k)− θ − b

)2
f(θ; k,K)dθ


(A3.3)

Where, as before, Pr(k)∑
k∈Pi

Pr(k∈Pi) = 1
|Pi| and, therefore, Pr(Pi)∑

Pi∈PK (b)
Pr(Pi)

= |Pi|
|SK | = |Pi|

(K+1) . Note also that

E
[
−(y(Pi)− θ − b)2

]
= E

[
E
[
(y(Pi)− θ)2|Pi ∈ PK

]]
− 2bE

[
E
[
(y(Pi)− θ)|Pi ∈ PK

]]
+ b2. Since

y(Pi) = E[θ|Pi,K], the second term of the RHS equals zero and I can work out equation (A3.3) to get (3.5):

−
∑

Pi∈PK(b)

|Pi|
(K + 1)

∑
k∈Pi

1

|Pi|
×
∫ 1

0

(
y(Pi)− θ

)2
f(θ; k,K)dθ + b2


= −

∑
Pi∈PK(b)

|Pi|
(K + 1)

∑
k∈Pi

1

|Pi|
×
∫ 1

0

(
y(Pi)

2 − 2y(Pi)θ + θ2
)
f(θ; k,K)dθ + b2


= −

∑
Pi∈PK(b)

|Pi|
(K + 1)

[ 1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)

2

− 2

 1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)

∑
k∈Pi

1

|Pi|

∫ 1

0
θf(θ; k,K)dθ+

+
∑
k∈Pi

1

|Pi|

∫ 1

0
θ2f(θ; k,K)dθ + b2

]

= −
∑

Pi∈PK(b)

|Pi|
(K + 1)

[ 1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)

2

− 2
∑
k∈Pi

 1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)

2

+

+
∑
k∈Pi

1

|Pi|
(k + 1)(k + 2)

(K + 2)(K + 3)
+ b2

]

= −
∑

Pi∈PK(b)

|Pi|
(K + 1)

[ ∑
k∈Pi

1

|Pi|
(k + 1)(k + 2)

(K + 2)(K + 3)
−

 1

|Pi|
∑
k∈Pi

(k + 1)

(K + 2)

2

+ b2

]

= − 1

(K + 1)

∑
Pi∈PK(b)

[ ∑
k∈Pi

(k + 1)(k + 2)

(K + 2)(K + 3)
− 1

|Pi|

∑
k∈Pi

(k + 1)

(K + 2)

2

+ b2

]

PROOF OF LEMMA 3.5 Condition number 3 comes from Lemma 2 in Argenziano et al. (2016), hence I

refer interested readers to the corresponding proof in that paper. Now, full revelation implies that |Pi| = 1 for
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all partitions Pi = {0, 1, ...,K} and, thus, incentive compatibility requires:

|Pi+1| − |Pi| ≥ 4b(K + 2)− 2 |Pi+1| − |Pi| ≤ 4b(K + 2) + 2

2 ≥ 4b(K + 2) −2 ≤ 4b(K + 2)

1

2(K + 2)
≥ b − 1

2(K + 2)
≤ b

Because I assumed b ≥ 0, then the constraint on the right is not binding.

I now derive the equilibrium boundary types for each interval in the most informative equilibrium

partition given b and K. For each interval |Pi| there are two of such boundary types ki = minPKi and

k̄i = maxPKi . Note that |Pi| = k̄i − ki + 1 and that k̄i = ki+1 − 1 for all partitions. I can then rewrite

|Pi+1| − |Pi| = k̄i+1 − ki+1 − k̄i + ki = k̄i+1 − 2k̄i + k̄i−1, while |Pi| − |Pi−1| = ki+1 − 2ki + ki−1.

Incentive compatibility thus becomes

|Pi| − |Pi−1| ≥ 4b(K + 2)− 2

ki+1 − 2ki + ki−1 ≥ 4b(K + 2)− 2

and

|Pi| − |Pi−1| ≤ 4b(K + 2) + 2

ki+1 − 2ki + ki−1 ≤ 4b(K + 2) + 2

Each of which, after applying the initial condition k0 = 0, configures a second-order linear difference

equations with a class of solutions parametrized by k1 as (respectively):

ki ≥ ik1 + i(i− 1)[2b(K + 2)− 1] (A3.4)

ki ≤ ik1 + i(i− 1)[2b(K + 2) + 1] (A3.5)

A necessary condition for any informative equilibrium is k2 < K. The maximum number of intervals in

any informative equilibrium, κ(b,K), is thus the largest positive integer such that i(i− 1)[2b(K + 2) + 1] <

K + 1,23 which can be show to be:

κ(b,K) =

⌈
−1

2
+

1

2

[
1 +

4(K + 1)

(2b(K + 2) + 1)

] 1
2

⌉
(A3.6)

Similarly, a sufficient condition for the non-existence of an informative equilibrium, κ(b,K) = 1, is

i(i− 1)[2b(K + 2)− 1] > K − 1 for i = 2, which translates into b > (K+1)
4(K+2) .

23Recall that the cardinality of SK is K + 1.
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Covert Information Acquisition

DERIVATION OF EXPRESSION (3.6) The assumption of covert information acquisition only affects the

expert’s equilibrium strategy under centralization. Covert information acquisition implies that a Perfect

Bayesian Equilibrium must specify the principal’s beliefs about the expert’s information acquisition decision.

I focus on pure-strategy equilibrium at the information acquisition stage. Using a result by Argenziano

et al. (2016), I restrict attention to equilibria in which the expert does not use his cheap talk message to

influence the principal’s beliefs on KC . The lemma below shows that this is without loss of generality.

Lemma A3.2 (Lemma 3 in Argenziano et al. (2016)). Any outcome supported in a Perfect Bayesian

Equilibrium of the covert game in which the expert follows a pure strategy in the choice of the number of

signals can be supported in a Perfect Bayesian Equilibrium in which the principal’s beliefs about the number

of signals do not vary with the expert’s message.

Proof. See pp. 142 in Argenziano et al. (2016).

If the expert could affect the principal’s beliefs about the number of signals he acquires, he would face

two classes of available deviations. First, he could mislead the principal by acquiring a non-equilibrium

number of signals but sending a message that signals he acquired the equilibrium number. Secondly, he could

acquire a non-equilibrium number of signals and send a message associated to a different, non-equilibrium

number of signals to the principal.

If the expert cannot affect the principal’s beliefs, on the contrary, the relevant class of deviations is the

first. Hence, any equilibrium that is immune to both classes of deviations remains an equilibrium when

it has to be immune to only the first of these. This results allows us to focus on equilibria in which the

principal beliefs the expert acquired the equilibrium number of signals, irrespective of his message at the

communication stage.

The equilibrium is characterized by the triple
(
KC
o ,PK

C
o , y(PKC

o )
)

. As in the overt game, PKC
o must

be incentive compatible and y(PKC
o ) = {yK

C
o

Pi
}
Pi∈PK

C
o

must be sequentially rational. Let k = ΣK denote

the number of successes for a given information acquisition decision K. The equilibrium amount of signals

must, then, maximize the expert’s expected payoff, that is:

E
[
uE
(
y(PKC

o ), θ, b
)]

= −
KC
o∑

k=0

Pr(k;KC
o )

[∫ 1

0
`
(
|yPi − θ − b|

)
f(θ|k,KC

o )dθ

]
Recall that yPi = E(θ|Pi ∈ PKC

o ). For each equilibrium candidate K the expert must be better off, on
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the equilibrium path, than investing in any other amount K ′ 6= K:

−
K∑
k=0

Pr(k;K)

[∫ 1

0
`
(
|yKPi − θ − b|

)
f(θ|k,K)dθ

]
− C(SK) ≥

≥ −
K′∑
k′=0

Pr(k′;K ′)

[
max

yPj∈y(PK)

∫ 1

0
`
(
|yKPj − θ − b|

)
f(θ|k′,K ′)dθ

]
− C(SK′) (A3.7)

Note that yKPj represents the decision that maximizes the expert’s utility upon observing k′ successes,

among those induced by PK . In principle, the deviations may involve fewer or more signals than K.

On the one hand, K ′ < K means the expert saves on information costs but typically induces a larger

residual variance. To see this consider the candidate equilibrium in which the expert fully reveals K. The

deviation to acquiring K ′ < K implies he must implement K + 1 messages (actions) with K ′ + 1 < K + 1

available posterior beliefs about the state. To do that he must either use mixed strategies for some k′ ∈ K ′ or

leave at least one of the K + 1 messages unused (presumably k = 0 since b ≥ 0). In both cases, the message

he announces upon observing any k′ induces an action that does not correspond to his posterior beliefs on the

state and, thus, he is more uncertain about it being the appropriate decision than if he acquired K signals. A

stronger argument for such deviations holds true when the expert’s message strategy with K signals involves

coarse messages because the marginal informational value of some signals is lower than if fully revealed.

On the other hand, by acquiring more than the equilibrium amount of signals, K ′ > K, the expert could

better accommodate the messages on PK to the additional information. Because of the additional information

costs, the expected utility gains from ‘gaming’ the message strategy must be sufficiently large. Such a strategy

will then be particularly useful if the equilibrium with K ′ induces fewer partitions than that under K—for

instance, when K = KFR(b) and κ(b,K ′) < K + 1.

Note that, given a candidate equilibrium K, the profitability of acquiring a different K ′ does not depend

on the optimal communication strategy under K ′, but on the expert’s expectation of implementing µ(b, SK)

with fewer or more signals. Because of this, there may be manyKs that satisfy condition (A3.7). In particular,

KC
o = 0 is always a candidate equilibrium, since acquiring fewer signals is not feasible and acquiring more

signals cannot be used by the expert on his benefit.24 Among all Ks that satisfy (A3.7), the expert chooses

the cost effective one; that is, for all K and K ′′:

−
K∑
k=0

Pr(k;K)

[∫ 1

0
`
(
|yKPi − θ − b|

)
f(θ|k,K)dθ

]
− C(SK) ≥

≥ −
K′′∑
k′′=0

Pr(k′′;K ′′)
[∫ 1

0
`
(
|yK′′Pj − θ − b|

)
f(θ|k′′,K ′′)dθ

]
− C(SK′′) (A3.8)

The condition above is the same as in the overt game, which implies that condition (A3.7) reduces the set

of candidate equilibria in the information acquisition stage.

24The equilibrium message strategy upon KC = 0 is babbling.
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PROOF OF LEMMA 3.6. Consider an equilibrium of the covert game Eo =
(
Kc(b, c(·)), µ(b,Kc, k), Bc(·), ψc

)
in which the expert acquires Kc signals and follows message upon observing k successes, the principal

forms beliefs Bc : M → ∆
({

(Kc, k)|Kc, k ∈ K,Kc ≥ k
})

and follows decision strategy ψc(·) : Bc →
∆
(
[0, 1]

)
. The principal’s beliefs Bc reflect the fact that in the covert game she has to form beliefs on both

the number of successes k and the number of signals the expert acquires K.

Now, for the same b and c(·) consider an equilibrium of the overt game Eo =
(
Ko(b, c(·), µ(b,Ko, k), β(·), ψo

)
.

Unlike Ec, the principal’s equilibrium belief β(·) is a mapping from the set of messages to the set of probability

distributions over the number of successes k ≤ Ko.

First note that when Kc = Ko, and given Lemma A3.2, then Bc(·) = β(·) on the equilibrium path.

Secondly, recall that, for given b and c(·), the equilibrium number of signals in the covert game Kc satisfies

(A3.7) and (A3.8), while Ko only needs to satisfy (A3.8). Hence, if condition (A3.7) does not hold in the

covert game for K = Ko, it means that Kc 6= Ko. However, I could still implement Kc in the overt game: I

impose off-path restrictions of the form ψo(β(µ(b,K 6= Ko, k))) = E(θ) for all k ∈ K. This amounts to

say that the principal does not update beliefs upon the expert’s message when he acquires K 6= Ko.

I now prove that for sufficiently large K and K ′ > K, cost effectiveness implies incentive compatibility,

i.e. (A3.8) implies (A3.7).

Lemma A3.3. For any K and K ′ > K, and b such that κ(b,K) ≤ κ(b,K ′); if K satisfies (A3.8) with

respect to K ′, then it also satisfies (A3.7).

Proof. I prove it by contradiction. Suppose condition (A3.8) holds for K with respect to K ′. Because

κ(b,K) ≤ κ(b,K ′), cost effectiveness means the (weakly) increased precision from acquiring more signals

does not compensate the expert for the additional costs:

K∑
k=0

Pr(k;K)
[
E
[
`
(
|yKPi − θ − b|

)
|k,K

]]
−

K′∑
k′=0

Pr(k′;K ′)
[
E
[
`
(
|yK′Pj − θ − b|

)
|k′,K ′

]]
≤ C(SK′)− C(SK)

(A3.9)

I now suppose that condition (A3.7) is violated, that is, the expert has incentives to acquire K ′ when the

principal expects he acquires K. The incentive compatibility constraint thus becomes:

K∑
k=0

Pr(k;K)
[
E
[
`
(
|yKPi − θ − b|

)
|k,K

]]
−

K′∑
k′=0

Pr(k′;K ′)

E[ max
yKPj
∈y(PK)

`
(
|yKPj − θ − b|

)
|k′,K ′

] > C(SK′)−C(SK)

I now add and subtract
∑K′

k′=0 Pr(k′;K ′)
[
E
[
`
(
|yK′Pj − θ − b|

)
|k′,K ′

]]
to the left hand side of the above

expression, which gives us:
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{
K∑
k=0

Pr(k;K)
[
E
[
`
(
|yKPi − θ − b|

)
|k,K

]]
−

K′∑
k′=0

Pr(k′;K ′)
[
E
[
`
(
|yK′Pj − θ − b|

)
|k′,K ′

]]}
+

+

{
K′∑
k′=0

Pr(k′;K ′)

E[`(|yK′Pi − θ − b|)|k′,K ′]− E[ max
yKPj
∈y(PK)

`
(
|yKPj − θ − b|

)
|k′,K ′

]} > C(SK′)− C(SK)

Note that the first term in brackets is at most equal toC(SK′)−C(SK)|equation (A3.9). Hence, the above

condition holds if the second term in brackets is larger than zero which, in turn, requires that the expert’s

utility is larger when he uses K ′ signals to mislead the principal using the message strategy associated to K

than when using the message strategy that is optimal for K ′. Because K ′ > K, the message strategy with

PK partitions of θ is available to the expert with K ′ signals,25 but given κ(b,K ′) ≥ κ(b,K) the optimal

message strategy for such an expert is not the same and involves at least the same number of partitions. As a

consequence,

K′∑
k′=0

Pr(k′;K ′)
[
E
[
`
(
|yK′Pi − θ − b|

)
|k′,K ′

]]
≤

K′∑
k′=0

Pr(k′;K ′)

E[ max
yKPj
∈y(PK)

`
(
|yKPj − θ − b|

)
|k′,K ′

]
which leads to a contradiction.

PROOF OF PROPOSITION 3.3. Note that, given an equilibrium number of signals KC
c and Lemma 3.6, the

argument in Proposition 3.2 applies to the covert game. This means that for each b there exist sufficiently

large (small) information costs such that the principal prefers to centralize (delegate) control over y, which

includes larger (smaller) costs. In other words, c̃1(b, ·) and c̃2(b, ·) exist for all b.

I now compare the cost thresholds of the covert versus the overt game. First, I focus on large information

costs. For each b there exists a sufficiently large cost such that KD = KC
c = 0 and thus the principal strictly

prefers centralization. For slightly lower costs, KD weakly increases while KC
c increases if and only if

both (A3.7) and (A3.8) relax. Note that, because costs are large, the expert will be inclined to deviate to

acquiring fewer signals than in any candidate equilibrium, i.e. equation (A3.7) will tend to bind for some

K ′ < K. As a result, the sufficient condition on costs for centralization to be optimal is more restrictive:

c̃1(b, ·) � c1(b, ·).26

Secondly, I analyse the case of small information costs. In Proposition 3.2 I used results by Dessein

(2002) to show that delegation dominates cheap talk communication for a non-empty set of biases and some

distributions of the state when the expert is perfectly informed. This represents a sufficient condition for

25Possibly under mixed strategies.
26Note also that, because for large costs KC

o (b, c(·)) ≤ max{KFR(b),KNC(b)}, conditions of Lemma A3.3 are satisfied; that
is, cost effectiveness implies incentive compatibility and thus KC

c (b, c(·)) ≤ KC
c (b, c(·)).
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delegation when information costs are zero, given that expert who controls the decision will always become

perfectly informed. Now consider slightly large information costs for which the equilibrium number of

signals in the overt game allows the expert to implement the same number of partitions as in Crawford and

Sobel (1982). For any K and K ′ > K, conditions of Lemma A3.3 are satisfied, and the fact that the expert’s

optimization problem in the covert game features more restrictions than in the overt game guarantees that

KC
c (b, c(·)) ≤ KC

o (b, c(·)). As a consequence, the cost below which the principal prefers delegation to

centralization is higher in the covert game than in the overt game: c̃2(b, ·) � c2(b, ·).
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