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Strategy-Proof Club Formation with Indivisible
Club Facilities

Bhaskar Dutta, Anirban Kar, and John A. Weymark

November 2020; Revised April 2021

Abstract We investigate the strategy-proof provision and financing of indivisible
club good facilities when individuals are subject to congestion costs that are non-
decreasing in the number of other club members and in a private type parameter. An
allocation rule specifies how the individuals are to be partitioned into clubs and how
the costs of the facilities are to be shared by club members as a function of the types.
We show that some combinations of our axioms are incompatible when congestion
costs are continuous and strictly increasing in the type parameter, but that all of them
are compatible if congestion costs are dichotomous and there is equal cost sharing.
We present a number of examples of allocation rules with equal cost sharing and
determine which of our axioms they satisfy when the congestion cost is linear in
the type parameter. We also show that using iterative voting on ascending size to
determine a club partition is not, in general, strategy-proof when each facility’s cost
is shared equally.

Key words: club goods; strategy-proofness

JEL classification number D71

1 Introduction

The degree of publicness of a good lies on a spectrum of possibilities ranging from
the purely private to the purely public. In his theory of clubs, Buchanan (1965) ad-
dressed the problem of determining the optimal number of individuals with whom
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to share the consumption of a good when the benefits and costs of belonging to a
sharing group—a club—depend on both the amount of the good and the number of
individuals the club good is shared with. Buchanan was concerned with the prob-
lem of determining the optimal size of a single club. In contrast, Tiebout (1956)
was interested in investigating the sorting of individuals into communities through
locational choices so as to consume local public goods, which are goods that are
non-rival in consumption within a community but provide no benefits to outsiders.
Communities in Tiebout’s model can be thought of as being clubs in Buchanan’s
sense.1

In this article, we investigate the partitioning of a fixed group of individuals into
clubs so as to share the benefits and costs of a single club good from which non-
members can be excluded. We assume that each club is self-financing, so there is no
cross-subsidization across clubs. The benefits of a club good are public to the mem-
bers of a club, but are subject to congestion costs due to the negative externality that
arises when a club good is shared with other people. Examples include community
swimming pools and parks. As in these examples, we regard a club good as being
some form of infrastructure, what we henceforth call a facility. We consider the case
in which each facility is indivisible and is produced with a common fixed cost. The
congestion cost experienced by an individual depends on both the number of indi-
viduals in his club and on his own characteristics. The latter is his type, which is
private information.

An allocation consists of a partition of the individuals into clubs and a speci-
fication of how the costs of the facilities are to be shared by club members. An
allocation rule chooses a feasible allocation as a function of the types of the individ-
uals. We consider two possibilities for the set A F of feasible allocations, the set A
of all allocations and the set A E of allocations in which the cost of a club facility is
shared equally among the club members. We are interested in determining which al-
location rules, if any, are strategy-proof and satisfy one or more additional desirable
properties when the congestion cost is non-decreasing in both the number of indi-
viduals a club is shared with and the value of the type parameter. Strategy-Proofness
is the requirement that everybody always has an incentive to report his true type. By
assuming that the size of a facility is fixed, we are able to focus on how the design
of allocation rules that satisfy the properties that we consider depend on congestion
effects in isolation from any facility size considerations.

In addition to Strategy-Proofness, we consider four other desirable properties for
an allocation rule: Cost Efficiency, Pareto Optimality on A F , Nondictatorship on
A F , and Individual Rationality.2 Cost Efficiency requires the partition of individ-
uals into clubs to minimize the sum of the total financial cost of the club facilities
and the aggregate congestion cost. Pareto Optimality on A F requires that alloca-
tions be strictly Pareto optimal on the feasible set of allocations. Nondictatorship on
A F requires that nobody always has one of his most preferred feasible allocations

1 An introduction to the literature on club goods and local public goods may be found in Cornes
and Sandler (1996).
2 Whether an allocation rule is Pareto optimal or nondictatorial depends on which allocations are
feasible.
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chosen. Individual Rationality requires that nobody is ever worse off being assigned
to a multi-member club than being in his own single-member club.

If the congestion cost function is continuous and strictly increasing in the type
parameter, we show that when the range A F of an allocation rule is either the unre-
stricted range A or the restricted range A E , no allocation rule satisfies (i) Strategy-
Proofness and Cost Efficiency or (ii) Strategy-Proofness, Pareto Optimality on A F ,
and Individual Rationality. However, if congestion costs can only take on two values,
we show that a serial dictatorship satisfies all of our axioms if each club’s financial
cost is shared equally among its members. We also present a number of examples
of allocation rules with equal cost sharing (many of which are some form of serial
dictatorship) and determine which of our axioms they satisfy when the congestion
cost is linear in the type parameter. Finally, we introduce an allocation rule that uses
iterative voting on ascending size to determine a club partition and show that it is
not, in general, strategy-proof. This voting procedure adapts a voting rule for de-
termining the membership of a single club due to Long (2019) to the problem of
partitioning all of the individuals into clubs.

In Section 2, we discuss some related literature. We present the model in Sec-
tion 3 and the axioms in Section 4. Our impossibility theorems are presented in
Section 5. We consider dichotomous costs in Section 6. In Section 7, we present our
examples. The iterative voting procedure for determining a club partition is consid-
ered in Section 8. Finally, in Section 9, we offer some concluding remarks.

2 Related Literature

While there is an extensive literature on club formation, little attention has been de-
voted to this issue when individuals have private information about the benefits and
costs of a club. As a consequence, little is known about the incentive issues involved
when determining club membership. To the best of our knowledge, there are only
three other papers that examine the strategy-proof provision of club goods. Jackson
and Nicolò (2004) and Long (2019) have considered the problem of determining the
membership of a single club, while Bogomolnaia and Nicolò (2005) have consid-
ered the problem of partitioning the individuals into a fixed number of clubs. For
Long, the club good has a fixed size, whereas for Jackson and Nicolò and Bogo-
molnaia and Nicolò, the location of the club good in [0,1] (which can be interpreted
as the quantity of the good) must also be determined. In each of these articles, the
private information is about the preferences of the individuals. Like Bogomolnaia
and Nicolò, we are concerned with the problem of partitioning the individuals into
clubs, but we allow the number of clubs to be endogenously determined. Like Long,
we assume that the club good is of fixed size.

Jackson and Nicolò (2004) assumed that an alternative is characterized by two
attributes—the location of a club good facility in [0,1] and the number of individu-
als sharing it. An individual only cares about a facility’s location if he belongs to the
club. Preferences over possible locations are single-peaked, with the peak being in-
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dependent of the club membership. An individual also has preferences over the size
of the club (but not its composition) if he is a member and the option of not being
in the club, with preferences over group size assumed to be single-peaked. Jackson
and Nicolò considered four alternative restrictions on the club size preferences in
addition to the requirement that they be single-peaked. In three of them, everybody
agrees on the most preferred club size: (i) a single-member club (the congestion ef-
fect dominates), (ii) a club with everybody in it (the cost-sharing effect dominates),
or (iii) some intermediate-sized club. In their fourth preference domain, there are
two possible most-preferred club sizes. They have established a number of possibil-
ity and impossibility results for a strategy-proof allocation rule when various other
desirable properties are required. The nature of the results depends on which of
the four preference domains is considered. Of particular note is their finding that
strategy-proofness and Pareto optimality imply that the number of club members
must be independent of the locational preferences. When the location of the club
good is required to depend only on the preferences of the individuals who are mem-
bers of the club, then the club has only one member in case (i) and consists of the
whole group in case (ii). In the former case, this person—a dictator—chooses the
facility location; in the latter case, it is chosen using a generalized median rule. In
case (iii), the location must coincide with the peak of one of the club members, and
so any member whose locational peak diverges sufficiently from this value might
prefer not to be in the club, which is inconsistent with voluntary participation.

Bogomolnaia and Nicolò (2005) also assumed that an alternative is characterized
by the location of a club good facility in [0,1] and the number of individuals sharing
it. Their allocation rule specifies the locations of a fixed number of club good facil-
ities and partitions the individuals among them. Unlike Jackson and Nicolò (2004),
there is no option of not joining a club. Individual preferences over locations are
single-peaked. Conditional on club size, being closer to the locational peak is pre-
ferred, and conditional on the facility location, having a smaller club is preferred.
When there are only two club good facilities, Bogomolnaia and Nicolò have shown
that it is possible to find allocation rules that are strategy-proof, Pareto optimal, and
satisfy a stability property that requires no individual to want to change the club
he is assigned to. However, with more than two club facilities, these conditions are
incompatible.

Long (2019) considered the problem of selecting which individuals are to form a
club out of a group of n individuals. Each individual has strict, single-peaked pref-
erences over being in a club with k ∈ {0,1, . . . ,n}members, where 0 is the option of
not joining any club. Long focused on the construction of strategy-proof rules satis-
fying Pareto optimality and a voluntary participation constraint that ensures that no
one is forced to join the club if that is worse than not joining.3 She identified two
interesting classes of rules satisfying these properties, both of which satisfy some
form of group strategy-proofness. One involves individuals who wish to do so join-
ing a club in a fixed priority order until someone who has already joined objects. The
other involves individuals voting on club group size in ascending order subject to a

3 Not joining any club is not an option in our model.
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stopping rule. In Section 8, we define an iterative version of this procedure that re-
sults in a partition of the individuals into clubs and show that it is not strategy-proof
when costs are shared equally.

Strategy-proofness is not the only way to model individual incentives in the pres-
ence of private information. For the problem of determining which of a finite set of
possible levels of a single club good to provide and who is to share it, Massó and
Nicolò (2008) have studied which collective choice rules are Nash or Subgame Per-
fect Nash implementable when individuals prefer larger groups in the sense of set
inclusion. They have shown that Subgame Perfect Nash implementability is com-
patible with Pareto optimality and a stability property that requires that nobody can
be excluded from access to the good or forced to consume it against his wishes,
whereas Nash implementability is not.

Finally, we note that our problem of partitioning individuals into clubs con-
tributes to the more general literature on coalition formation.4 As we have already
mentioned, communities in the Tiebout (1956) problem can be thought of as being
clubs that are not subject to congestion effects. With models of hedonic coalition
formation, an individual’s preferences only depend on the composition of the coali-
tion that he belongs to. See, for example, Bogomolnaia and Jackson (2002). Clubs
are coalitions and its members’ preferences only depend on group size rather than
on their identities, and so are non-hedonic. The model of group activity selection
studied by Darmann (2019) in which individuals are to be assigned to at most one
of a set of possible activities is also closely related. In Darmann’s model, individuals
have preferences over pairs consisting of an activity and the number of individuals
participating in it. In our model, individuals do not care about which club they be-
long to, only how many members it has.

3 The Model

There is a group N = {1, . . . ,n} consisting of n ≥ 2 individuals. Individuals form
clubs (subgroups of N) so as to self-finance indivisible club good facilities whose
benefits are public to the members of a club but from which outsiders are excluded.
There is a fixed cost of producing a facility, which we normalize to equal 1. Individ-
uals in a club do not care about the identities of its members, only their number and
how the costs of their facility is shared.

Let P denote the set of all partitions of N, with typical element P. Given P∈P ,
Si(P) is the element of P that contains i; Si(P) is i’s club. The number of other indi-
viduals who are in i’s club is ni, where ni ∈ N◦ = {0, . . . ,n−1}. We write ni(Si(P))
when we want to explicitly note the dependence of ni on which club in the partition
P that i belongs to. Thus, Si(P) contains ni(Si(P))+1 individuals.

Club good facilities are congestible. The congestion cost experienced by individ-
ual i depends on both the number of individuals in i’s club and on i’s own charac-

4 For a survey, see Bloch and Dutta (2011).
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teristics, which we assume can be summarized by a scalar αi. This is i’s type. It can
take on any non-negative value. The value of αi is private information to individual
i. We let α = (α1, . . . ,αn) denote a vector of types.

Individual i’s congestion cost is f (αi,ni), where f (αi, ·) is non-decreasing in
ni and f (·,ni) is non-decreasing in αi. In other words, the congestion cost is non-
decreasing in both club size and an individual’s type. There is no congestion cost if a
club only has one member, so f (αi,0) = 0 for all types. Note that it is assumed that
the function f is the same for all individuals; all person-specific congestion effects
are captured by the type parameters.

Congestion costs are measured in monetary units, so f (αi,ni) can be interpreted
as being the amount by which an individual of type αi who shares a facility with
ni other individuals must be compensated in order to be indifferent to being the
only person in the club. With this interpretation of congestion costs, the function f
represents an individual’s preferences for sharing a facility. Measuring congestion
costs in monetary units permits us to compare these costs with the monetary cost of
providing a facility.

We further assume that (i) there is a value of the type parameter a∗ such that
f (a∗,1) > 1 and (ii) f (0,ni) = 0 for all ni ∈ N◦. The first assumption requires the
congestion cost to be larger than the financial cost of producing the facility for suf-
ficiently high values of the type parameter even if there is only one other club mem-
ber. The second assumption simply says that if an individual does not care about
how many people the facility is shared with (i.e., his type is 0), then there is no
congestion cost.

Two kinds of congestion cost functions that are of particular interest here are
those with linear congestion costs and those with dichotomous costs.

Linear Congestion Costs. For all i ∈ N, all αi ∈ R+, and all ni ∈ N◦, f (αi,ni) =
αini.

With linear congestion costs, the congestion cost experienced by any individual
is proportional to the number of other people the facility is shared with, with the
factor of proportionality given by his type.

Dichotomous Congestion Costs. For all i∈N, all αi ∈R+, and all ni ∈N◦, f (αi,ni)=
c > 1 if ni > αi and f (αi,ni) = 0 otherwise.

With dichotomous congestion costs, i’s type αi specifies a threshold. If the num-
ber of other members of his club falls below this threshold, then he does not experi-
ence any congestion cost. However, if the threshold is met, then the congestion cost
is some fixed value c that exceeds the cost of the facility regardless of by how much
αi exceeds the threshold. In keeping with our assumption that αi can be any non-
negative number, the threshold need not be an integer. This is of no consequence
because the value of f is constant in αi for all αi in an interval of the form [ j, j+1),
where j is a non-negative integer.

We assume that each club is responsible for fully financing its own facility, so
there is no cross-subsidization of a facility’s cost between clubs. An allocation
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(P,r) = (P,r1, . . . ,rn) ∈P ×Rn
+ consists of a partition P of the individuals into

clubs and the amount ri ≥ 0 that each individual i ∈ N contributes to the cost
of the facilities with ∑i∈S ri = 1 for all S ∈ P. Let A be the set of allocations.
An allocation rule specifies an allocation as a function of the individuals’ types.
Formally, an allocation rule is a function A : Rn

+ → A , where for all α ∈ Rn
+,

A(α) = (P(α),r(α)) = (P(α),r1(α)), . . . ,rn(α)). In this definition, P(·) is the par-
tition chosen and ri(·) is how much i must pay towards the cost of i’s club good
facility as a function of the type vector.

An allocation has equal cost sharing if the cost of each facility is shared equally
among the club members. Let A E denote the set of allocations for which there is
equal cost sharing. An allocation rule has equal cost sharing if it always chooses an
equal-cost-sharing allocation. In this case, we can write an an allocation rule as a
function A : Rn

+→A E .

Equal Cost Sharing. An allocation rule A has equal cost sharing if for all α ∈ Rn
+

and all i ∈ N, ri(α) = 1/|Si(P(α))|.

Given α , the aggregate cost associated with a partition P ∈P is given by

C(P,α) = |P|+ ∑
i∈N

f (αi,ni(Si(P))).

The first term is the financial cost of building the |P| facilities associated with the
partition P, while the second term is the aggregate congestion cost associated with
it.

Each individual wants to minimize the sum of the amount paid towards the cost
of the club facility and the congestion cost associated with it. Thus, individual i with
type αi and cost share ri who belongs to a club with ni other members has utility

U(αi,ri,ni) =−[ri + f (αi,ni)].

A person’s type captures all person-specific effects on utility, so the functional form
of the utility function is not indexed by the names of the individuals. If there are
linear congestion costs and the cost of a club good facility is shared equally among
the club members, then

U(αi,ri,ni) =−
[

1
ni +1

+αini

]
.

Many of the allocation rules that we consider are some form of serial dictatorship
with equal cost sharing. In these rules, in some prespecified order, the individuals
fix some features of the partition of the individuals into clubs. What properties a
serial dictatorship satisfies depends on what these features are.
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4 The Axioms

We are interested in strategy-proof allocation rules. These are rules for which type
misrepresentation is never advantageous.

Strategy-Proofness. An allocation rule A is strategy-proof if for all α ∈ Rn
+, all

i ∈ N, and all α ′i ∈ R+,

U(αi,ri,ni(Si(P)))≥U(αi,r′i,ni(Si(P′))),

where (P,r) = A(α) and (P′,r′) = A(α−i,α
′
i ).

It is a simple matter to construct strategy-proof allocation rules. For example,
an allocation rule with equal cost-sharing is strategy-proof if the choice of partition
is independent of the type vector. This is clearly an unsatisfactory allocation rule.
Hence, Strategy-Proofness must be supplemented with one or more additional prop-
erties to be of interest. We consider four such properties, which we state as axioms.

A partition P ∈P is cost efficient at α if there is no other partition P′ ∈P such
that C(P′,α) < C(P,α). A cost efficient partition minimizes aggregate cost. Note
that cost efficiency does not depend on how the facility costs are shared among the
individuals.

Cost Efficiency. An allocation rule A is cost efficient if for all α ∈Rn
+, P(α) is cost

efficient at α .

An allocation (P,r) ∈A is individually rational at α if for all i ∈ N,

U(αi,ri,ni(Si(P)))≥U(αi,1,0).

With an individually rational allocation, nobody can be made worse off by being in
a club with one or more other members instead of having his own single-member
club. When this condition is satisfied, club membership is voluntary.

Individual Rationality. An allocation rule A is individually rational if for all α ∈
Rn
+, A(α) is individually rational at α .

Whether an allocation rule is Pareto optimal or nondictatorial depends on the fea-
sible set of allocations. Let A F denote the set of feasible allocations. We consider
two possibilities for A F : (i) the set of all allocations, A , and (ii) the subset of A
that has equal cost sharing, A E . We refer to A E and A as the unrestricted range
and the restricted range (of the allocation rule), respectively.

An allocation (P,r)∈A F is Pareto optimal on A F at α ∈Rn
+ if there is no other

allocation (P′,r′) ∈A F such that for all i ∈ N,

U(αi,r′i,ni(Si(P′)))≥U(αi,ri,ni(Si(P)))

and there exists an i ∈ N such that
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U(αi,r′i,ni(Si(P′)))>U(αi,ri,ni(Si(P))).

In other words, a feasible allocation is Pareto optimal if there is no other feasible
allocation that makes everybody as least as well off and one or more individuals
strictly better off.

Pareto Optimality on A F . An allocation rule A is Pareto optimal on A F if for all
α ∈ Rn

+, A(α) is Pareto optimal on A F at α .

Individual d ∈ N is a dictator on A F for the allocation rule A if for all α ∈ Rn
+

and any allocation (P,r) ∈A F ,

U(αd ,rd(α),ni(Sd(P(α)))≥U(αd ,rd ,nd(Sd(P))).

That is, there is some individual d—the dictator—for whom for each type vector α ,
the allocation rule A selects a feasible allocation so as to minimize the sum of d’s
congestion cost and d’s cost share. If A F = A , a dictator never contributes to the
cost of a club facility if someone other than the dictator is in his club.

Nondictatorship on A F . An allocation rule A is nondictatorial on A F if there is
no dictator on A F .

When A F = A , we refer to the preceding two axioms as Pareto Optimality and
Nondictatorship without explicitly specifying the set of feasible allocations.

As Theorem 1 demonstrates, Cost Efficiency and Pareto Optimality are not inde-
pendent properties.

Theorem 1. If an allocation rule A : Rn
+→A satisfies Cost Efficiency, then it also

satisfies Pareto Optimality.

Proof. Consider any α ∈ Rn
+. Aggregate cost is equal to the absolute value of the

sum of the utilities. If A(α) is cost efficient, it therefore maximizes the sum of the
utilities. Hence, it is not possible to find an allocation a ∈ A that makes anybody
better off compared to A(α) without making somebody worse off. ut

The converse of Theorem 1 is not true. If Cost Efficiency is violated, then there
is an α ∈ Rn

+ such that P(α) is not cost efficient. Hence, there exists a P′ ∈P with
a smaller aggregate cost than P(α). Let r′i ∈R, i ∈ N, be such that ∑i∈N r′i = |P′|. In
order for (P′,r′) to be a feasible allocation, the facility charges r′i must be chosen to
be non-negative and add up to 1 for each club. It may not be possible to satisfy these
restrictions so that (P′,r′) is both an allocation in A and so that it Pareto dominates
A(α).

5 Impossibiility Theorems

We have assumed that the congestion cost function f is non-decreasing in the type
parameter for a given number of club members. In this section, we show that if f is
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continuous and strictly increasing in the type parameter, then regardless of whether
the range A F of the allocation function is unrestricted or restricted, Strategy-
Proofness is incompatible with Cost Efficiency and with the joint satisfaction of
Individual Rationality and Pareto Optimality on A F .

We first establish our impossibility theorem for Strategy-Proofness and Cost Ef-
ficiency when the range is unrestricted.

Theorem 2. If f (·,ni) is continuous and strictly increasing in its first argument for
all ni ∈ N◦, then there is no allocation rule A : Rn

+ → A that satisfies Strategy-
Proofness and Cost Efficiency.

Proof. (i) We first consider the case in which n = 2.
Let R = {α ∈ R2

+ | f (α1,1)+ f (α2,1) < 1}. Note that for all α ∈ R, Cost Ef-
ficiency implies that the allocation rule must assign both individuals to the same
club.

We begin by showing that for all α,α ′ ∈ R, r(α) = r(α ′). There are three cases
to consider.

First, suppose that αi > α ′i and α j < α ′j, where i ∈ {1,2} and i 6= j. Let ᾱ be
such that ᾱi = α ′i and ᾱ j = α j. Note that ᾱ ∈ R, and so both individuals must be
in the same club at ᾱ . If ri(α) > ri(ᾱ), then i can manipulate at α by reporting
α ′i . Conversely, if ri(α) < ri(ᾱ), then i can manipulate at ᾱ by reporting αi. Thus,
by Strategy-Proofness, we must have r(α) = r(ᾱ). For analogous reasons, we must
have r(α ′) = r(ᾱ). Hence, r(α) = r(α ′).

Second, suppose that αi > α ′i for i = 1,2. Let ᾱ be such that ᾱi = αi and ᾱ j = α ′j.
Then, r(α ′) = r(ᾱ), for otherwise i can manipulate. Similarly, r(α) = r(ᾱ), for
otherwise j can manipulate. Hence, r(α) = r(α ′).

Third, suppose that αi ≥ α ′i for i = 1,2 with just one strict inequality. The proof
for this case is almost identical to the proof of the preceding case.

For α ∈ R, we have shown that the individual cost shares are independent of the
types. Because the cost shares are non-negative and sum to 1, it then follows that
for every α ∈ R, either 1 pays at least 1/2 or 2 pays at least 1/2. Without loss of
generality, suppose that 1 pays at least half the cost of the club. Now, choose α̂1
such that 1/2 < f (α̂1,1)< 1. Because f (0,ni) = 0 and there exists an a∗ ∈R+ such
that f (a∗,1) > 1, the continuity and strict increasingness of f in its first argument
implies that such an α̂ exists. Let α̂ = (α̂1,0). By construction, α̂ is in R. We have
that U(α̂1,r1(α̂),n1(S1(P(α̂))) =U(α̂1,r1(α̂),1)<−1.

If individual 1 announces α ′1 = a∗, then α ′ = (α ′1,0) /∈ R and the cost ef-
ficient partition puts 1 and 2 in separate clubs. With this partition, 1 does not
suffer any congestion cost, but pays the full cost of a club good facility. Thus,
U(α ′1,r1(α

′),n1(S1(P(α ′)))) = U(α ′1,1,0) = −1. Hence, 1 can manipulate at α

by reporting α ′1. Therefore, when n = 2, it not possible to satisfy both Strategy-
Proofness and Cost Efficiency.

(ii) We now consider the case in which n > 2. Let R′ = {α ∈ Rn
+ | f (αi,1) >

1 for all i > 2}. Then, for all α ∈ R′ such that (α1,α2) ∈ R, Cost Efficiency and the
non-decreasingness of f in its second argument imply that individuals 1 and 2 share
a facility, while everybody else forms a singleton club. For such an α , by applying
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the preceding argument for n = 2, we conclude that Strategy-Proofness and Cost
Efficiency are inconsistent with having a two-person club. ut

For some values of the type vector α , it is optimal to have a two-person club.
One of the members of this club, say i, must pay at least half of the cost of this club
facility. The proof of Theorem 2 shows that by reporting a sufficiently large value of
αi (i.e., by claiming to be strongly negatively affected by the presence of other club
members), Cost Efficiency requires i to instead form his own single-member club,
which is beneficial for him because his increased facility charge is more than offset
by the absence of any congestion cost. But if that is the case, Strategy-Proofness is
violated.

Further intuition for this result may be obtained by considering what i considers
when deciding what to report when his true type is αi. Suppose that i misrepre-
sents by, say, reporting α ′i . If this results in the same club partition, then the only
difference in aggregate cost is due to the change in the sum of i’s congestion and
facility costs, which i takes account of when deciding what type to report. However,
if the membership of i’s club differs when α ′i is reported, then the aggregate cost
also differs due to the change in the costs that the other individuals experience. The
failure to take account of this externality underlies the incompatibility of Strategy-
Proofness and Cost Efficiency, much like the failure to take account of a negative
externality underpins the Tragedy of the Commons (Hardin, 1968).

Theorem 3 shows that Theorem 2 is also valid with Pareto Optimality and In-
dividual Rationality substituted for Cost Efficiency. The intuition for Theorem 3 is
similar to that of Theorem 2.

Theorem 3. If f (·,ni) is continuous and strictly increasing in its first argument for
all ni ∈ N◦, then there is no allocation rule A : Rn

+ → A that satisfies Strategy-
Proofness, Pareto Optimality, and Individual Rationality.

Proof. The proof of Theorem 3 is the same as the proof of Theorem 2 except for the
arguments used to show which clubs must form.

In part (i) of the proof, it needs to be shown that if α ∈ R, then there must
be a single club. Let r1 = f (α2,1)+ ε and r2 = 1− f (α2,1)− ε , where 0 < ε <
1− f (α1,1)− f (α2,1). By construction, r1 > 0, r2 > 0, and r1 + r2 = 1. We have
U(α1,r1,1) = −[ f (α2,1) + ε + f (α1,1)] > −1 = U(α1,1,0) and U(α2,r2,1) =
−[1− f (α2,1)−ε + f (α2,1)]>−1 =U(α2,1,0). Hence, having a single club with
the cost shares r1 and r2 is preferred by both individuals to having their own clubs.
Therefore, by Pareto Optimality, there must be a single club.

In part (ii) of the proof, it needs to be shown that if α ∈ R′ with (α1,α2)∈ R, then
individuals 1 and 2 form a club with everybody else in their own singleton clubs.
Because α ∈ R′, the latter requirement follows from Individual Rationality. It then
follows from the argument for the n = 2 case that individuals 1 and 2 must be in the
same club. ut

In Theorems 2 and 3, no restrictions are placed on how the costs of the club
facilities are shared except for the maintained assumptions that the payments are
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non-negative and that the members of a club pay for their own facility themselves.
Analogues of these two impossibility theorems can be established if we further sup-
pose that club members share the cost of their facility equally (i.e., if the allocations
must be in A E ). Indeed, the proofs of Theorems 2 and 3 also establish these impos-
sibility results.

Corollary. If f (·,ni) is continuous and strictly increasing in its first argument for
all ni ∈ N◦, then there is no allocation rule A : Rn

+→A E that satisfies (i) Strategy-
Proofness and Cost Efficiency and (ii) Strategy-Proofness, Pareto Optimality on
A E , and Individual Rationality.

6 The Dichotomous Domain

If there are dichotomous congestion costs, then the congestion cost function f is
weakly, but not strictly, increasing in the type parameter, and so our impossibility
results do not apply.5 When congestion costs are dichotomous, as shown in The-
orem 4, it is possible to find an equal-cost-sharing allocation rule that satisfies all
of our axioms. We do this by first proving that Individual Rationality is implied by
Cost Efficiency when costs are dichotomous and then by constructing an allocation
rule with equal cost sharing that satisfies all of the axioms.6

Theorem 4. If there are dichotomous congestion costs, then there is an allocation
rule A : Rn

+→A E satisfying Strategy-Proofness, Cost Efficiency, Individual Ratio-
nality, Pareto Optimality, and Nondictatorship on A E .

Proof. First, we show that in the presence of dichotomous costs, Cost Efficiency
implies that there are no congestion costs, from which it follows that Individual Ra-
tionality is satisfied. To see why this is so, recall that with dichotomous congestion
costs, i’s type αi serves a threshold. If the number of other club members exceeds
this threshold, then f (αi,ni) = c > 1; otherwise f (αi,ni) = 0. By Cost Efficiency,
when the type vector is α , i must be assigned to a club with no more than bαi +1c
club members, where bac denotes the largest integer that does not exceed a. To see
why, suppose on the contrary that |Si(P(α))| > bαi + 1c. By partitioning Si(P(α))
into two clubs one of which only includes i, the total financial cost of the facilities
increases by 1. Individual i’s congestion cost decreases by c > 1. The congestion
costs of the other original members of Si(P(α)) either do not change or are reduced
by c. Nobody else’s congestion cost changes. Thus, the sum of the congestions costs
declines more than the increase in the financial cost of the facilities, contradicting

5 In the proofs of Theorem 2 and 3, continuity and strict increasingness (rather than weak increas-
ingness) of f in the type parameter are only used to show the existence of an α̂1 ∈ (0,a∗) for which
1/2 < f (α̂1,1)< 1. This is not possible with dichotomous congestion costs.
6 When A(α) ∈A E for all α ∈Rn

+, it follows that (i) if an allocation rule satisfies Pareto Optimal-
ity, it also satisfies Pareto Optimality on A E and (ii) if it satisfies Nondictatorship on A E , it also
satisfies Nondictatorship.
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the cost efficiency of P(α). Thus, if a partition is cost efficient, there are no conges-
tion costs, and so Individual Rationality is satisfied.

Now, suppose that there is equal cost sharing so that it is only necessary to specify
how the allocation rule partitions individuals into clubs. We construct an equal-cost-
sharing allocation rule that satisfies all of our axioms.

Let� be a linear order of the partitions in P , with P� P′ interpreted as meaning
that P precedes P′ in this order. For any type vector α , let E (α) denote the set of
cost efficient partitions. The allocation rule is a serial dictatorship using the natural
order of the individuals, 1, . . . ,n, in which the partition choices are restricted to the
cost efficient partitions. More precisely, for all α ∈ Rn

+, the partition P(α) is de-
termined sequentially as follows. First, individual 1 chooses his utility maximizing
partitions E1(α) in E (α). Second, individual 2 chooses his utility maximizing parti-
tions E2(α) in E1(α). Each person gets to choose a set of cost efficient partitions in
turn until the set En(α) is identified. P(α) is the first partition in this set according
to �. Note that if a unique partition is identified at any stage in this process, then it
is P(α). By construction, the allocation rule that chooses partitions in this way and
shares costs equally among club members satisfies Cost Efficiency. Hence, by the
preceding argument, Individual Rationality is satisfied, and by Theorem 1, Pareto
Optimality is as well.

To show that this allocation rule satisfies Nondictatorship on A E , consider an
individual i for whom αi > n−1. Then, i prefers to be in a club with all of the other
individuals if the cost of a facility must be shared equally. However, this is not cost
efficient if some other individual j has α j < n−1.

We now show that this allocation rule also satisfies Strategy-Proofness.
Consider any type α ∈ Rn

+ and any individual i ∈ N. To show that the allocation
rule is strategy-proof, we need to show that any reported type α ′i different from i’s
true type αi does not make him better off. Let α ′ = (α1, . . . ,αi−1,α

′
i ,αi+1, . . . ,αn).

There are two cases: (i) α ′i < αi and (ii) α ′i > αi.
(i) Suppose that α ′i < αi. If α ′i < ni(Si(P(α))), then P(α) is not cost efficient for

α ′ because Cost Efficiency requires i to be in a club with no more than bα ′ic other
members. As with the partition P(α), i has no congestion cost with the partition
P(α ′). However, because i is in a smaller club when he changes his reported type
from αi to α ′i , his share of the facility cost increases. Hence, reporting α ′i is not ben-
eficial for him. If, however, αi > α ′i ≥ ni(Si(P(α))), then the original partition P(α)
is cost efficient when the reported type vector is α ′. Moreover, E (α ′) ⊆ E (α). As
a consequence, the serial dictatorship chooses the same partition when the reported
type profile is α ′ as it does when it is α .

(ii) Suppose that α ′i > αi. Increasing αi raises the threshold at which i’s conges-
tion cost becomes positive. Consequently, reporting α ′i instead of α does not change
the aggregate cost associated with any of the partitions in E (α). There are four cases
to consider.

First, suppose that ni(Si(P(α))) > ni(Si(P(α ′))). In this case, by reporting α ′i
instead of αi, there is no change in i’s congestion cost (it remains 0), but his share
of the facility’s financial cost increases, so reporting α ′i makes i worse off.
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Second, suppose that ni(Si(P(α))) = ni(Si(P(α ′))). In this case, i is indifferent
between P(α) and P(α ′), and so has no incentive to misreport.

Third, suppose that ni(Si(P(α ′)))> bαi+1c. In this case, by reporting α ′i instead
of αi, i’s congestion cost increases to c from 0. Because c > 1, the increase in his
congestion cost exceeds the reduction in his share of the financial cost of the facility,
and therefore he is worse off if he reports α ′i .

Finally, suppose that ni(Si(P(α))) < ni(Si(P(α ′))) ≤ bαi + 1c. In this case, be-
cause ni(Si(P(α ′))) ≤ bαi + 1c, i’s congestion cost remains at 0 if he reports α ′i
instead of αi. Because the congestion costs of the other individuals do not depend
on i’s type and P(α ′i ) minimizes aggregate costs when the type vector is α ′i , it then
follows that the aggregate cost when the partition is P(α ′i ) is the same as it is with
P(αi). Thus, P(α ′i ) ∈ E (α) ⊆ E (α ′). Because P(α ′i ) ∈ E (α) but is not chosen by
the serial dictatorship when α is reported, it is not chosen when α ′i is reported either.
Hence, it is not possible for this case to occur. ut

7 Consistency of the Axioms on the Restricted Range

When the range of the allocation rule is A or A E , we have shown that Strategy-
Proofness is incompatible with either Cost Efficiency or the combination of Pareto
Optimality and Individual Rationality if the congestion cost function is continuous
and strictly increasing in the type parameter. In view of these impossibility results,
there does not seem to be any satisfactory way of constructing a strategy-proof al-
location rule with an unrestricted range if the congestion cost function has these
properties. For this reason, we henceforth restrict attention to allocation rules that
have the restricted range A E and do not consider Cost Efficiency further. Moreover,
we restrict the application of Pareto Optimality and Nondictatorship to allocations in
A E . We proceed by providing a series of examples of allocation rules and consider
which of our axioms they satisfy.

When an allocation function has the restricted range A E , specifying a club parti-
tion uniquely determines an allocation. Hence, it is possible to think of individuals as
having preferences over club partitions and club sizes. Abusing terminology some-
what, we can also speak of a partition being Pareto optimal (on A E ) or individually
rational even though, strictly speaking, it is the corresponding allocations that have
these properties.

In Example 1, we show that when n = 3, it is possible to construct an equal-cost-
sharing allocation rule that satisfies all of our axioms except for Cost Efficiency if
the congestion costs are linear.

Example 1. Let N = {1,2,3}. Suppose that there are linear congestion costs and
equal cost sharing.

To define the allocation rule, we first partition the type space. The cube
[
0, 1

2

]3
is

split into five subsets. The set
[
0, 1

2

)3
obtained by removing the upper faces of this

cube is subdivided into two sets, T1 and T2. One of upper edges of this cube is the
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set T4 and two of the other upper edges constitute the set T5. The set T3 consists of
the rest of the three upper faces. The rest of the parameter space is subdivided into
the sets T6 and T7. Letting i, j, and k with i 6= j 6= k 6= i be any relabelling of the
three individuals, this partition is formally defined as follows.

T1 =

{
α ∈ R3

+ | 0≤ α1 ≤
1
6
, 0≤ α2 ≤

1
3
, and 0≤ α3 ≤

1
6

}
;

T2 =

{
α ∈ R3

+ | 0≤ α1 <
1
2
,0≤ α2 <

1
2
, and 0≤ α3 <

1
2
,

}
\T1;

T3 =

{
α ∈ R3

+ | 0≤ αi <
1
2
, 0≤ α j <

1
2
, and αk =

1
2

}
;

T4 =

{
α ∈ R3

+ | α1 = α3 =
1
2

and 0≤ α2 ≤
1
2

}
;

T5 =

{
α ∈ R3

+ |
[

α1 = α2 =
1
2

and 0≤ α3 ≤
1
2

]
or

[
α2 = α3 =

1
2

and 0≤ α1 ≤
1
2

]}
;

T6 =

{
α ∈ R3

+ | 0≤ αi ≤
1
2
, 0≤ α j ≤

1
2
, and

1
2
< αk

}
;

T7 =

{
α ∈ R3

+ |
1
2
< αi and

1
2
< α j

}
;

The allocation rule A : Rn
+→A E is defined by setting:

P(α) = {{1,2,3}} if α ∈ T1;
P(α) = {{1,3},{2}} if α ∈ T2;
P(α) = {{k},{i, j}} if α ∈ T3;
P(α) = {{1,2},{3}} if α ∈ T4;
P(α) = {{1,3},{2}} if α ∈ T5;
P(α) = {{k},{i, j}} if α ∈ T6;
P(α) = {{1},{2},{3}} if α ∈ T7;

We now show that A satisfies Strategy-Proofness, Pareto Optimality on A E , Non-
dictatorship on A E , and Individual Rationality.

Strategy-Proofness. First, suppose that α ∈ T1. In this case, {1,2,3} is an optimal
club for both 1 and 3, so they have no incentive to misreport their types. The same is
true for 2 if 0≤ α2 ≤ 1

6 . If 1
6 < α2 ≤ 1

3 , 2 would only be better off in a two-member
club. This outcome only occurs if the type report is in T3 with k 6= 2, T4, or T6 with
k 6= 2. Each of these three situations requires someone other than 2 to announce a
type weakly greater than 1

2 . But this is not possible with a non-truthful report on the
part of 2 alone.

Second, suppose that α ∈ T2. There are two cases to consider.
(i) Suppose that 0≤ α2 ≤ 1

3 . Then, at least one of α1 or α3 must be greater than
1
6 , otherwise α would be in T1. Without loss of generality, suppose that 1

6 < α1 <
1
2 .
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For 1, {1,3} is an optimal club. If it is the case that 1
6 < α3 ≤ 1

2 , then {1,3} is also
an optimal club for 3. If, however, 0 ≤ α3 < 1

6 , 3 can only be made better off by
switching to the three-person club, which requires the reported type vector to be
in T1. Because 1

6 < α1 <
1
2 , this is not possible using a unilateral deviation from a

truthful report by 3. As far as 2 is concerned, he either strictly or weakly prefers
being in the three-member club or in a two-member club to being in his own single-
member club. It is not possible for 2 to report a type that results in the type vector
being in T1 because 1

6 < α1 < 1
2 , and so the three-member club is not achievable.

Individual 2 is assigned to a two-member club only if the reported type is in T3 with
k 6= 2, T4, or T6 with k 6= 2. As in the case of T1, it is not possible for the reported
type vector to be in any of these three sets with a unilateral deviation from a truthful
report by 2.

(ii) Now, suppose that 1
3 <α2 <

1
2 . The optimal club size for both 1 and 3 is either

two or three. They are in the same two-person club. Because α2 > 1
3 , a unilateral

change in the reports of either 1 or 3 cannot result in a reported type vector in T1,
which is what is required to obtain the three-member club. Hence, neither of them
has a beneficial manipulation. Individual 2 prefers being in his own single-member
club to the three-person club, so can only be made better off by misreporting so
that the reported type vector is in T3 with k 6= 2, T4, or T6 with k 6= 2, which is not
possible with a unilateral deviation from a truthful report by 2.

Third, suppose that α is in either T3 or T6. In both of these cases, k is in an optimal
club. If 1

6 ≤ αi ≤ 1
2 , then i is also in an optimal club. If 0 ≤ αi <

1
6 , i would only

prefer being in the three-member club, which requires the reported type vector to be
in T1. Because αk ≥ 1

2 , it is not possible for the reported type vector to be in T1 by
a unilateral deviation from a truthful report by i. The same reasoning shows that j
cannot beneficially manipulate the outcome either.

Fourth, suppose that α is in either T4 or T5. In this case, everybody is in an optimal
club except for any individual i for which 0 ≤ αi <

1
6 . If that is the case, i is in a

two-member club and only prefers being in the three-member club. That outcome
requires the reported type vector to be in T1, which is not possible with a unilateral
deviation from a truthful report by i because the types of the other two individuals
are both equal to 1

2 .
Finally, suppose that α ∈ T7. In this case, both i and j are assigned their opti-

mal clubs. The allocation is independent of k’s report, so k has no opportunity to
manipulate the allocation.

Pareto Optimality on A E . First, suppose that α ∈ T1. In this case, {1,2,3} is
the unique optimal club for anybody whose type is less than 1

6 , in which case the
allocation is Pareto optimal on A E . If α1 = α3 = 1

6 , then both individuals 1 and
3 are indifferent between being in the club {1,2,3} and being in a two-member
club, which is only possible if the partition is {{1,3},{2}}. But with the club {3},
2 is worse off if α2 6= 1

3 and indifferent to the change if α2 = 1
3 . So, no Pareto

improvement is possible.
Second, suppose that α ∈ T2. We consider two cases.
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(i) Suppose that 0≤ α2 ≤ 1
3 . Then, at least one of α1 or α3 must be greater than

1
6 , otherwise α would be in T1. Without loss of generality, suppose that that this is
the case for 1. Then, {1,3} is an optimal club for 1. He is indifferent between being
in {1,3} or {1,2}. However, in the latter case, 3 is in the single-member club {3},
which makes him worse off than with the club {1,3} because 0≤ α3 <

1
2 .

(ii) Now, suppose that 1
3 < α2 < 1

2 . In this case, 2 strictly prefers his single-
member club {2} to {{1,2,3}}. The other partitions are {{1,2},{3}}, {{2,3},{1}},
and {{1},{2},{3}}, all of which make either 1 or 3 worse off.

Third, suppose that α ∈ T3. Then, the partition is {{k},{i, j}}. Individual k is in
an optimal club and is indifferent between being a single-member or two-member
club. Thus, in order not to make him worse off, the partition can only be changed to
{{i},{ j},{k}}, {{k, i},{ j}}, or {{k, j},{i}}. In all of these partitions, either i or j
is worse off than in {{k},{i, j}}.

Fourth, suppose that α is in either T4 or T5. In this case, everybody is in an
optimal club except for any individual i for which 0 ≤ αi <

1
6 . If that is the case,

i is only better off with the three-member club, but that would make the other two
individuals worse off.

Fifth, suppose that α ∈ T6. In this case, {k} is k’s unique optimal club, so the
allocation is Pareto optimal on A E .

Finally, suppose that α ∈ T7. In this case, both i and j are assigned their unique
optimal clubs, so the allocation is Pareto optimal on A E .

Nondictatorship on A E . Consider any individual i. If i were a dictator (on A E )
and 0 ≤ αi <

1
6 , then the partition would be {{1,2,3}}. However, if the other two

individuals have types that exceed 1
2 , the type vector is in T7 and the partition that is

chosen is {{1},{2},{3}}. Hence, nobody is a dictator.
Individual Rationality. We only need to consider clubs with two or three mem-

bers. If α ∈ T1, then αi ≤ 1
3 for all i, and so nobody is better off in his own single-

member club than with the partition {{1,2,3}}. If α ∈ T2, then 0 ≤ α1 < 1
2 and

0 ≤ α1 < 1
2 and, therefore, neither 1 nor 2 prefer being in his own single-member

club to the partition {{1,3},{2}}. The same argument holds for i and j in T3 and
T6, for 1 and 2 in T4, and for 1 and 3 in T5. Hence, A satisfies Individual Rationality.

We have not been able to find a way to extend the allocation rule constructed in
Example 1 for n > 3. This raises the issue of whether there are other more trans-
parent rules that satisfy Strategy-Proofness on A E , Individual Rationality, Pareto
Optimality on A E , and Nondictatorship on A E . An obvious candidate is a serial
dictatorship. A serial dictatorship is strategy-proof and always chooses a weakly
Pareto optimal allocation on A E (i.e., there is no other feasible allocation that
makes everyone better off) if there are no restrictions on what allocations in A E

can be chosen. Unfortunately, it need not choose allocations that are strictly Pareto
optimal on A E . To illustrate this claim, Example 2 describes an allocation rule that
employs a form of serial dictatorship that does not satisfy Pareto Optimality on A E .
It also does not satisfy either Nondictatorship on A E or Individual Rationality.

Example 2. Suppose that there are linear congestion costs and equal cost sharing.
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The allocation rule A : Rn
+→A E is constructed as follows. First, individual 1’s

optimal club size is determined. Using the natural order of individuals, individuals
are assigned to a club that includes individual 1 until this optimal size is achieved.
Once this is done, if there are unassigned individuals, the process is sequentially
repeated using the optimal club size (using only the unassigned individuals) of the
next person in line until everybody is in a club. If there are two optimal club sizes at
any step in this procedure, the tie is broken in favor of the smaller one.

Individual i’s preferences are only taken into account if they are used to determine
the size of i’s club. Because this size is optimal for i, this allocation rule satisfies
Strategy-Proofness.

To show that our other axioms are violated, consider the case in which n = 3.7

Because the allocation rule is a serial dictatorship, the chosen allocations are weakly
Pareto optimal on A E . However, as we now show, this rule does not satisfy Pareto
Optimality on A E . Suppose that 1’s unique optimal group size is two, so that the
clubs {1,2} and {3} are formed. Further suppose that 2’s unique optimal club size
is one, whereas for 3 it is two. Then, the partition {{1,3},{2}} Pareto dominates
{{1,2},{3}}. If 0 ≤ α1 < 1

6 , only a single club is formed. If, however, α2 and α3

both exceed 1
2 , they would prefer to be in their own single-member clubs. Hence,

this rule violates Individual Rationality. It clearly violates Nondictatorship on A E .

The serial dictatorship in Example 2 fails to satisfy Pareto Optimality on A E be-
cause only one person’s preferences are considered when forming each club. As Ex-
ample 3 demonstrates, it is possible for a serial dictatorship to satisfy both Strategy-
Proofness and Pareto Optimality on A E by taking account of the other individuals’
preferences. However, the allocation rule we construct violates both Nondictator-
ship on A E and Individual Rationality.

Example 3. Let N = {1,2,3}. Suppose that there are linear congestion costs and
equal cost sharing.

The allocation rule A : Rn
+ → A E is a serial dictatorship using the individ-

ual preferences over club partitions, with individual 1 being the first dictator and
indifferences broken by individuals 2 and 3 in that order. If a unique partition
has not been chosen after all three individuals have been considered, a linear or-
der � of the partitions in P is used to make a final choice from the partitions
that are still under consideration. For concreteness, we assume that � is given by
{{1},{2},{3}} � {{1},{2,3}} � {{1,3},{2}} � {{1,2},{3}} � {{1,2,3}}. By
construction, individual 1 is a dictator on A E and, therefore, this rule does not sat-
isfy Nondictatorship on A E .

To state this rule formally, we partition the type space into the following 18 sets.
The values of the type parameter used to define the partition are 1

6 , 1
3 , and 1

2 . These
are the values of the type parameter for which an individual is indifferent between
being in a club with (i) two or three members, (ii) one or three members, and (iii)
one or two members, respectively.

7 Our arguments can be adapted to apply to larger values of n.
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T1 =

{
α ∈ R3

+ | α1 >
1
2

and α2 >
1
2

}
;

T2 =

{
α ∈ R3

+ | α1 >
1
2
, α2 =

1
2
, and α3 ≥

1
2

}
;

T3 =

{
α ∈ R3

+ | α1 >
1
2
, α2 =

1
2
, and 0≤ α3 <

1
2

}
;

T4 =

{
α ∈ R3

+ | α1 =
1
2
, α2 ≥

1
2
, and α3 ≥

1
2

}
;

T5 =

{
α ∈ R3

+ | α1 =
1
2
, α2 >

1
2
, and 0≤ α3 <

1
2

}
;

T6 =

{
α ∈ R3

+ | α1 =
1
2
, α2 =

1
2
, and 0≤ α3 <

1
2

}
;

T7 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2

and α2 >
1
2

}
;

T8 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2
, α2 =

1
2
, and α3 >

1
2

}
;

T9 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2
, α2 =

1
2
, and 0≤ α3 =

1
2

}
;

T10 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2

and 0≤ α2 <
1
2

}
;

T11 =

{
α ∈ R3

+ | α1 =
1
6

and α2 >
1
2

}
;

T12 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
2
, and α3 >

1
2

}
;

T13 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
2
, and α3 ≤

1
2

}
;

T14 =

{
α ∈ R3

+ | α1 =
1
6

and
1
6
< α2 <

1
2

}
;

T15 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
6
, and α3 ≥

1
3

}
;

T16 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
6
, and α3 <

1
3

}
;

T17 =

{
α ∈ R3

+ | α1 =
1
6

and 0≤ α2 <
1
6

}
;

T18 =

{
α ∈ R3

+ | 0≤ α1 <
1
6

}
.

The allocation rule A : Rn
+→A E is formally defined as follows:

P(α) = {{1},{2},{3}} if α ∈ T1∪T2∪T4;
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P(α) = {{1},{2,3}} if α ∈ T3∪T6;
P(α) = {{1,2},{3}} if α ∈ T8∪T10∪T12∪T14∪T15;
P(α) = {{1,3},{2}} if α ∈ T5∪T7∪T9∪T11∪T13;
P(α) = {{1,2,3}} if α ∈ T16∪T17∪T18.

A complete proof of the claim that the informal definition of the allocation rule
is being used to construct A is rather lengthy, and so we only verify it for a few
of the sets in the partition of the type space. The sets considered have been chosen
to illustrate differences in the way that this serial dictatorship operates in different
regions of the type space.

First, suppose that α ∈ T1. Because α1 >
1
2 and 1 is the first dictator, 1 must be

in a single-member club. This individual is indifferent about how 2 and 3 partition
themselves into clubs. Because α2 >

1
2 and 2 is the second dictator, 2 must be in a

single-member club, so that leaves no choice but for 3 to be in a single-member club
as well.

Second, suppose that α ∈ T2. As in the previous case, 1 must be in a single-
member club. Now, however, 2 is indifferent between being in a club with 3 or not,
so we consider 3’s preferences. If α3 > 1

2 , 3 prefers that 2 and 3 be in separate
clubs, so this is chosen. If α3 = 1

2 , 3 is indifferent between the two options. The
final tie-breaking rule then assigns 2 and 3 to separate clubs.

Third, suppose that α ∈ T3. As in the previous case, 1 must be in a single-member
club and 2 is indifferent between being in a club with 3 or not. Because α3 < 1

2 ,
3 strictly prefers being in a two-member club to being in a single-member club.
Consequently, 2 and 3 form a club.

Fourth, suppose that α ∈ T4. Now, 1 is indifferent between a single-member club
and a club with one other member. If α2 >

1
2 , 2 chooses to be in a single-member

club. If α3 >
1
2 , so does 3, with the consequence that there are three clubs. If, instead,

α3 =
1
2 , the last tie-breaking rule also results in three clubs being chosen. If α2 =

1
2

and α3 > 1
2 , then both 1 and 2 are indifferent between a single-member club and

a club with one other member, whereas 3 prefers a single-member club. Individual
3’s choice is implemented, and then the final tie-breaking rule assigns 1 and 2 to
separate clubs. If, however, α1 = α2 = α3 =

1
2 , all three individuals are indifferent

between being in a single-member or a two-member club. Applying the final tie-
breaking rule also results in three separate clubs being chosen.

Finally, suppose that α ∈ T15∪T16. In this case, individuals 1 and 2 are indifferent
between being in a two-member or three-member club. Thus, the partitions 3 gets to
choose from are {{1,2,3}} and {{1,2},{3}}. As previously noted, 3 would choose
the former if α3 <

1
3 and the latter if α3 >

1
3 . If α3 =

1
3 , then 3 is indifferent between

these two partitions, in which case the final tie-breaking rule chooses {{1,2},{3}}.
With the allocation rule A, when an individual chooses, he leaves for further

consideration all of the partitions that he most prefers from among the partitions that
are still available when it is his turn to choose. If there is more than one partition
remaining after he chooses, this is only because he is indifferent between them. As a
consequence, A satisfies Strategy-Proofness and Pareto Optimality on A E . If α ∈ T7
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and α3 >
1
2 , individual 3 is assigned to the club {1,3}, but strictly prefers being on

his own. Hence, A does not satisfy Individual Rationality.

Example 3 uses a serial dictatorship over the set of all partitions of the individ-
uals into clubs to determine which clubs form. This is equivalent to using a serial
dictatorship over the set of all partitions that are Pareto optimal on A E . As we have
seen, this allocation rule is not individually rational. In Example 4, we show that if
a serial dictatorship is used to choose allocations in A E by having each of the serial
dictators choose from among the club partitions that are Pareto optimal on A E and
individually rational, then it is not strategy-proof.

Example 4. Let N = {1,2,3}. Suppose that there are linear congestion costs and
equal cost-sharing.

The allocation rule A : Rn
+→ A E is the same as in Example 3 except that each

of the serial dictators is only permitted to choose a partition that is individually
rational. Recall that the sequence of dictators is the natural order of the individuals.

Consider a vector of types α ∈ R3
+ for which 0 ≤ α1,α3 < 1

6 and 1
6 < α2 < 1

3 .
Thus, individuals 1 and 3 prefer being in a three-member club to a two-member
club to a single-member club. Individual 2 prefers being in a two-member club to a
three-member club to a single-member club.

Having a single club—the partition {1,2,3}—is Pareto optimal on A E (it is
the unique top choice for individuals 1 and 3) and individually rational (individual
2 prefers the three-member club to having his own single-member club). Because
individual 1 is the first dictator and the three-member club is his top choice, P(α) =
{1,2,3}.

Let α ′ = (α1,α
′
2,α3), where 1

3 < α2 < 1
2 . Now, individual 2 prefers being in a

two-member club to a single-member club to a three-member club. For individual
2, the three-member club is no longer individually rational. Consequently, the first
dictator (individual 1) will choose the two partitions in which he is in a two-member
club and one person has his own single-member club. Individual 2 is the second
dictator and he prefers being in a two-member club to being on his own, so P(α ′) =
{{1,2},{3}}. The partition P(α ′) is preferred by individual 2 to P(α), so A is not
strategy-proof.

Thus, A satisfies Pareto Optimality on A E and Individual Rationality, but it does
not satisfy Strategy-Proofness or Nondictatorship on A E .

8 Iterative Voting on Ascending Size

Examples 1–4 show that the construction of strategy-proof rules satisfying Pareto
Optimality on A E , Nondictatorship on A E , and Individual Rationality is a non-
trivial task. This may seem to be inconsistent with the fact that Long (2019) has
provided two rules for choosing the membership of a single club that are (weakly
group) strategy-proof, Pareto optimal, and do not force anybody to join the club.8

8 There is no explicit cost sharing rule. Cost sharing is implicit in the preferences over club size.
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However, in fact, there is no inconsistency because, in contrast to Long, we require
everybody be in some club. To show why this matters, we consider her voting on
ascending size rule for choosing a single club’s size. We define an iterative version
of this procedure that partitions the individuals into clubs and show that, in general,
it need not be strategy-proof when costs are shared equally.

Here is an informal description of Long’s voting rule. Starting with group size 1,
for each club size k ≥ 1 in turn, individuals vote on whether they prefer to be in a
club of that size or to remain on their own. For Long, this is a club of size 0. If more
than k individuals vote in favor of a club with k members, the procedure continues
with a vote for a club of size k+1 unless sufficiently many individuals according to
a priority ordering used to breaks ties over club membership prefer a smaller size.
However, in Long’s framework, only one club forms and individuals are allowed
not to join any club at all. In contrast, everyone must be in a club in our framework.
This turns out to be an important difference.

Our club partitioning rule employs an iterative version of Long’s voting proce-
dure in which, for each type vector, one club at a time selected. Because we do not
permit a club of size 0, voting in our case starts with club size k = 2 and individuals
are asked to vote on whether they prefer to be in a club of size k to one of size 1.

Before formally stating our rule, some further notation is needed. Let σ be a
fixed linear priority ordering on N, where iσ j denotes that i has higher priority than
j. For all α ∈ Rn

+ and all k ∈ {2, . . . ,n}, let ∆Nl ,k(α) be the set of individuals in
Nl ⊆ N who strictly prefer club size k to club size 1. If |∆Nl ,k(α)| ≥ k, let ∆̃ σ

Nl ,k
(α)

be the first k members of ∆Nl ,k(α) according to σ . For k = 1, let ∆̃ σ
Nl ,k

(α) be the first
person in Nl according to σ .

Iterative Voting on Ascending Size for the Priority Ordering σ . A club partition-
ing rule Pσ is Iterative Voting on Ascending Size for the Priority Ordering σ if for
all α ∈ Rn

+, Pσ (α) is obtained using the following two iterative algorithms.
Step l of the refinement algorithm determines the lth club Cl(α) in the parti-

tion Pσ (α) by applying the club size algorithm described below to the set of in-
dividuals Nl = N \ (∪l−1

q=1Cq(α)). The algorithm begins with l = 1 and terminates
when Cl(α) = Nl . For l ≥ 2, at the end of Step l− 1, N has been partitioned into
{C1(α), . . . ,Cl−1(α),Nl}. In Step l, this partition is refined by partitioning Nl into
one or two sets.

The club size algorithm applied to the nonempty set of individuals Nl ⊆N identi-
fies the club Cl(α)⊆ Nl .9 In Step 1, if |Nl |= 1, set Cl(α) = ∆̃ σ

Nl ,k
(α) (which equals

Nl) and terminate the algorithm; otherwise proceed to Step k = 2. Step k for k ≥ 2
is defined by the following four cases.

Case 1 If |∆Nl ,k(α)|< k, stop and set Cl(α) = ∆̃ σ
Nl ,k

(α).
Case 2 If |∆Nl ,k(α)| ≥ k and at least |∆Nl ,k(α)|− k+1 individuals in ∆Nl ,k(α)∩

∆̃ σ
Nl ,k−1(α) strictly prefer club size k− 1 to size k, then stop and set Cl(α) =

∆̃ σ
Nl ,k−1(α).

9 For a discussion of this algorithm, see Long (2019).



Strategy-proof club formation 23

Case 3 If |∆Nl ,k(α)|= k and nobody in ∆Nl ,k(α)∩ ∆̃ σ
Nl ,k−1(α) strictly prefers club

size k−1 to size k, then stop and set Cl(α) = ∆ σ
Nl ,k

(α).
Case 4 If |∆Nl ,k(α)|> k and fewer than |∆Nl ,k(α)|−k+1 individuals in ∆Nl ,k(α)∩

∆̃ σ
Nl ,k−1(α) strictly prefer club size k−1 to size k, then go to Step k+1.

In Example 5, we show that if there is equal cost sharing, then choosing club par-
titions using the iterative voting rule described above is not strategy-proof if n = 4.
This example can be straightforwardly extended to more individuals by choosing
types for them that ensure that being in a club by themselves is the best option.
Hence, a natural extension of Long’s iterative voting rule for determining the mem-
bership of a single club to the club partitioning problem does not preserve truth-
telling as a dominant strategy, at least when n≥ 4.

Example 5. Let N = {1,2,3,4}. Suppose that there is equal cost-sharing.
The allocation rule A : Rn

+→A E uses iterative voting on ascending size for the
priority ordering σ given by 1σ2σ3σ4 to determine the partition Pσ (α) for all
α ∈ R4

+. For individual i of type αi, let k �αi k′ denote that i strictly prefers club
size k to k′.

Consider a type vector α for which 2�α1 3�α1 1�α1 4 and 3�α j 2�α j 1�α j 4
for j 6= 1. The club size algorithm for identifying C1(α) terminates in Step 4. Case 1
applies, so the three individuals with the highest priority form the first club. Hence,
C1(α) = {1,2,3}. There is only one person remaining, so Pσ (α) is completed with
the club C2(α) = {4}.

Suppose that individual 4 instead reports a type α ′4 for which 2�α ′4
1�α ′4

3�α ′4
4. Let α ′ = (α1,α2,α3,α

′
4). With this type report, the club size algorithm for iden-

tifying C1(α
′) terminates in Step 3. Case 2 applies, so the two individuals with the

highest priority form the first club. Hence, C1(α
′) = {1,2}. The club size algorithm

is then repeated for N2 = {3,4}. It terminates in Step 2 with Case 3 applying, so
C2(α

′) = {3,4}, which completes the partition.
Because 2�α j 1, at α , individual 4 has an incentive to misreport his type as α ′4.

Hence, this allocation rule is not strategy-proof.

When n = 2, if the club partition is determined using the iterative voting proce-
dure described above and there is equal cost sharing, then a single club is formed
if and only if both individuals agree. This partitioning rule is equivalent to a serial
dictatorship on the set of Pareto optimal (on E E ) and individually rational partitions
and, hence, it is strategy-proof. In contrast, when n = 2, a serial dictatorship on the
set of cost-efficient club partitions is not strategy-proof when the congestion cost
function is continuous and strictly increasing in its first argument because if some-
one misreports, he may benefit from a change in the set of cost-efficient partitions.10

10 We are indebted to a referee for the observations made in this paragraph.
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9 Concluding Remarks

If the congestion cost function is continuous and strictly increasing in the type pa-
rameter, we have shown that when the range A F of an allocation rule is either
the unrestricted range A or the restricted range A E , no allocation rule satisfies (i)
Strategy-Proofness and Cost Efficiency or (ii) Strategy-Proofness, Pareto Optimality
on A F , and Individual Rationality. We have also shown that all of our axioms can
be satisfied if congestion costs are dichotomous. We have presented a number of ex-
amples of allocation rules that have the restricted range A E and determined which
of our axioms they satisfy when the congestion cost is linear in the type parameter.
Finally, we have shown that using iterative voting on ascending size to determine a
club partition is not, in general, strategy-proof when the cost of each club’s facility
is shared equally.

The are a number of possible extensions of our analysis that are worth explor-
ing. For example, it would be interesting to provide characterizations of all of the
allocation rules that satisfy consistent combinations of our axioms, both with and
without the assumptions of equal cost sharing and linear congestion costs. It would
also be of interest to allow for the size of a club good facility to be determined
endogenously.
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