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Abstract

X-ray resonant magnetic scattering (XRMS) has been used to investigate
patterned arrays created using electron beam lithography. Diffraction from the
repeating pattern has been measured close to the origin of reciprocal space. The
impact of the spatial coherence of x-ray radiation is discussed in the context of repro-
ducing rocking curves at various azimuthal rotation angles from patterned arrays of
multilayered circular and elliptical islands. We show how traditional diffraction the-
ory implicitly assumes a high coherence which has to be adapted to account for both
the finite number of elements coherently illuminated by the beam and the specific
experimental configurations used. This allowed a generic theoretic framework to be
developed to describe the scattering from patterned arrays. The derived computa-
tional foundation is formulated in a specifically developed simulation framework, of
modular code design allowing for efficient data processing, simulation, and fitting.

Utilising XRMS, and fitting the charge and magnetic scattering signals si-
multaneously, allowed quantitative fits to the in-plane diffraction data contained in
rocking curves and the specular reflectivity from a patterned array of disk-like cir-
cular islands. The islands were spatially resolved into a three-dimensional chemical
and magnetic profile revealing a core-shell structure. This structure is likely to be as
a result from oxidation, affecting the surface of the islands. Simple models assuming
flat disks could not reproduce the data and failed to account for the modulations
in the intensity of the Bragg peaks, often by several orders of magnitude. A spa-
tial model in which the islands were domed was developed in order to accurately
reproduce the scattering data. The doming is likely to occur as a result of the pre-
patterning process used in sample production. The limited number of diffraction
orders limits the precision of the modelling and we show how a grazing incidence
small angle scattering (GISAXS) geometry can be exploited to easily and quickly
obtain diffraction data over many orders, allowing a straightforward characterisation
of the sample. The alternative experimental geometry is tested under laboratory
conditions in which the coherence could be varied. Finally, XRMS measurements
were also used in order to investigate the intra-island magnetic structure. Due to
the shape anisotropy, magnetic vortex states form in the disk-like patterns. Fits of
the magnetic hysteresis derived from the magnetic signal allow the structure of a
magnetic vortex to be determined directly and indicate elliptical deformation of an
magnetic vortex as it approaches the edge of the cylindrical host element.
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Chapter 1

Overview

1.1 Thesis Structure

Within this work, characteristics of x-ray scattering of patterned arrays are explored,

stressing both the similarities and differences to more established scattering theories

like thin-film reflectivity and diffraction of atomic or molecular lattices. A complete

framework for simulating the diffraction of patterned arrays will be developed and

it will be shown how (resonant magnetic) x-ray scattering can be utilised in order

to reveal peculiarities related to the x-ray coherence on microscopic length scales as

well as to provide a detailed spatial model of the chemical- and magnetic structure

of a patterned array.

Chapter 2 provides the fundamental theoretical groundwork concerning x-ray

interaction with matter, classical x-ray reflectivity of stratified media, its connection

to the current work, and the basics of diffraction of quasi two-dimensional structures.

A summary of techniques used in this work in order to fabricate patterned

arrays, as well as the basics of performing laboratory- and central facility based x-ray

experiments is presented in chapter 3. Further, an introduction to the differential

evolution optimisation strategy is provided, forming the backbone of data fitting

used in this work.

Chapter 4 focusses on how consideration of the spatial coherence of an x-

ray beam becomes increasingly important on the large lateral dimensions typical

of many types patterned arrays. It is shown how additional diffraction peaks are

registered if the coherence of the radiation perpendicular to the scattering plane is

smaller than the lattice constant of the diffracting array and how even under these

ill-defined conditions valuable information may be retrieved from experimental data.

It is further presented how the low-coherence conditions are in fact an extreme case
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of classical diffraction theory, however necessitating a more rigorous mathematical

treatment compared the (usually implicitly assumed) high coherence limiting case.

Following, chapter 5 presents an in-depth discussion of the framework de-

veloped for high resolution spatial modelling of three-dimensional patterned arrays

and how these models are applied in diffraction theory. It is then shown how these

techniques are used in order to perform a three-dimensional reconstruction of a pat-

terned array consisting of domed islands utilising X-ray Resonant Magnetic Scat-

tering (XRMS). To the author’s knowledge, the accuracy in spatially resolving the

(internal) chemical- and magnetic structure of the islands is unprecedented, prov-

ing how resonant x-ray scattering principally provides the sensitivity necessary for

resolving three-dimensional micron sized structures on a sub-nm resolution.

Subsequently, chapter 6 shows how the previously developed theory extends

to the use-case of Grazing Incidence Small Angle X-ray Scattering (GISAXS), and

points out why the GISAXS geometry is believed to be the preferred method of

investigating patterned arrays in future studies.

Chapter 7 then concludes with an outlook of how the developed theory ex-

tends to resolving magnetic structures that a spatial non-uniform, on the example

of magnetic vortex formation on magnetically non-saturated micron-sized islands.

Finally, chapter 8 provides a conclusion and closing remarks of the thesis.

1.2 Project History

Nanotechnology[1–3] affects numerous scientific and industrial fields like the energy

sector[4], medicine and drug delivery[5–7], environmental studies[8, 9], food pro-

duction and agriculture[9], biosensors[10] and many more. Within solid state- and

scattering physics, the last two decades have shown drastic advances in sample pat-

terning techniques [11–17], in particular regarding lithographic patterning [18–25].

The latter opened up the research field of micron- and nano-patterned arrays, char-

acterised by two-dimensional periodic arrays of highly uniform elements of typical

structure sizes ranging from a few nm up to multiple micrometers. Essentially form-

ing perfect supercrystals, patterned arrays provide many useful applications ranging

from the fabrication of data storage devices to studying the dynamical magnetic in-

teractions of Artificial Spin Ice (ASI).

1.2.1 Context to Scientific Literature

Lithographically patterned arrays have various use cases in both fundamental re-

search and direct technological applications. One of the most prominent examples of
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applying patterning to metallic systems is the formation of magnetic vortex states

within thin nanoscopic disks. The internal magnetic state of the disk is deter-

mined by the interplay of magnetostatic interaction of the atomic spins, their total

Zeeman energy, and their respective exchange interaction[26, 27]. The dominance

of the magnetostatic energy for certain disk-geometries favours the formation of a

magnetic vortex, being characterised by the internal atomic spins aligning locally to

form closed loops within the plane of the disk[28–30]. These vortex states exhibit a

two-fold degeneracy in terms of their sense of rotation, with associations regarding

data storage applications emerging immediately. The latter requires control of both

vortex-formation[31] as well as -detection[32] and have therefore been considered an

important field of work since many years. Furthermore, apart from data storage, un-

derstanding vortex formation plays an important role in research of demagnetisation

processes[33, 34] and logical magnetic circuits[35–37].

Another application of nano-patterning concerns the creation of artificial

spin-ice (ASI). An ASI generally consists of a two-dimensional array of elongated

magnetic rods, whose dimensions have been chosen to favour an internal single do-

main magnetic state, i.e. the parallel alignment of all internal atomic spins. The

consequence is the formation of a mesoscopic superspin by means of superposition

of the electrostatic fields of the individual atomic spins. ASI geometries include

Square-[38], Kagome-[39, 40] or Shakti-lattices[41] and modifications thereof[42].

Each geometry is characterised by a periodic spatial arrangement of clusters of rods

exhibiting a finite number of energetically distinct spin configurations per local clus-

ter. The long-range structure of the lattice, though, is chosen in a way that not all

neighbouring clusters are able to simultaneously adopt a low energy state, which

hence leads to “spin frustration”[43, 44], as a single superspin is part of multiple

local clusters. ASIs provide a highly interesting research topic, as they constitute

an ideal opportunity to engineer specifically tailored systems of superspins of tun-

able interaction strength. This allows to gain insight into traditional atomic spin

ice, spin liquids, emergent magnetic Coulomb phases, and many more by study-

ing the temperature dependent dynamics and statistical distribution of local spin

configurations on a mesoscopic length-scale[45–49].

Most research work concerning patterned arrays appears to be falling into

one of two categories. The first category applies to experimental observations on

a rather qualitative level, often concerning interactions at length scales exceeding

the structure size of the single elements constituting the patterned array, instead

of focussing on the structure of individual elements. The most prominent examples

exploit X-ray Resonant Magnetic Scattering (XRMS) in order to observe the forma-
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tion of magnetic Bragg peaks, often as a consequence of emergent antiferromagnetic

order. Experiments have been performed on a wide variety of one-dimensional and

two-dimensional gratings by means of rocking curve measurements[50, 51]. Further-

more, using SAXS geometry and an area detector, it has been possible to observe

antiferromagnetic ordering of an artificial square-ice utilising the magnetic sensi-

tivity of resonant x-ray scattering[52]. Recently published was the observation of

magnetic vortices in square nanomagnets, modulating the scattered intensity cap-

tured via XRMS diffraction measured by a CCD detector upon performing a full

magnetic hysteresis cycle[53].

The second category involves fitting of simulated to experimental data in

order to extract quantitative information about the sample. Typically, sample mod-

els are kept as simple as possible, being often defined by not more than a handful

parameters, an approach that is justified if either the sample is itself very simple,

or the experimental data do not provide sufficient sensitivity in order to resolve the

sample structure in higher detail. Furthermore, simple structures are often-times

preferred by researchers since they are likely to allow a fully analytical treatment

of the scattering process. Examples include fitting of the x-ray scattering of one-

dimensional gratings, determining both the geometry of the trapezoidal cross-section

of the grating[54] as well as a varying beam coherence changing with the incidence

angle of the radiation[55]. Rocking curve measurements of a square patterned array

of circular disks exhibited an unexpected intensity distribution, which could be re-

solved only after the sample model was adapted to include the unintended crowning

of the circular disks having occurred as a side effect of the removal process of the

photo resist used in the fabrication process of the array[56]. While the previous

examples relied on an analytical description of the scattering process, a different

approach consists in a fully numerical determination of diffraction data, obtained

by performing the Fast Fourier Transformation (FFT) of a binary map, which is

encoding only the presence or absence of an island on a spatial grid of arbitrary

resolution, with the grid corresponding to a coherent sampling of the array[57].

In the context of this thesis, two major factors differ from the previously

discussed cases. First, as will be discussed in depth in chapters 3 and 5, it turned

out that the samples used in this work in their majority suffer from unintended

doming having emerged most likely as a byproduct of using a deep pre-patterned

mask, which significantly exceeded the nominal thickness of the elements. This

left the nominally flat islands with a height gradient spanning about one half of the

total island height ranging from the islands centre to its edges. Further, the samples

were fabricated by sputter deposition of the patterned elements. The non-epitaxial
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sputter deposition is believed to be the reason for obtaining a high surface roughness,

likely rendering the islands susceptible to strong surface oxidation. The oxidised

shell leads to a strong chemical contrast with respect to the non-oxidised core of the

islands, manifesting in a measurable impact upon the scattered signal. In conclusion,

this means that in contrast to what is generally desired by an experimenter, the

sample structure is not simple, but rather requires a high amount of parametrisation

in order to be adequately modelled.

Secondly, most of the experiments were performed at synchrotron facilities,

with the associated high photon flux allowing the measurement of rocking curves

at relatively high scattering angles without compromising statistical accuracy. The

latter, in combination with the comparatively large lattice constants of patterned

arrays allowed the measurement of high orders of diffraction peaks, implying sensi-

tivity to high Fourier components and therefore pronouncedly spatial sensitivity to

the structure of the sample. Further, the experiments presented in chapter 5 were

taken under open detector conditions. This scattering geometry means that the

detector accepted and integrated wavevector transfers over its whole window size,

instead of reducing the acceptance by the additional introduction of slit apertures

between sample and detector. As will be shown later in this work, the open detector

set-up implied additional sensitivity to the Qz component of the wavevector transfer

superimposing the usual Qx dependence of rocking curves. This left the experiment

effectively a hybrid between rocking curve and off-specular reflectivity measurement,

which decidedly complicated the subsequent fitting procedure. However, while us-

ing the open detector set-up arguably presents an experimental inaccuracy from

the point of view of producing easily interpretable data, it nevertheless drastically

increased the information density of the experiment.

These two factors, i.e. complex sample structure and high information den-

sity of the experimental data, synergised in the way of producing data which are

highly sensitive to the spatial geometry of the sample, while the sample itself in

its complexity required careful spatial modelling. In other words, the experiments

constituted a particularly suitable use-case for exploring the capabilities of resolving

the three-dimensional structure of patterned arrays by means of x-ray diffraction.

1.2.2 Finding a Framework

Using the approach of a binary sampling of the patterned array as described by

Eastwood et al. [57] provides the advantage of a very straightforward sample mod-

elling and calculation of the scattered intensity, at the cost of high computational

strain if large spatial resolution is required. It leads to reasonable results if

5



1. The islands can be modelled adequately as being perfectly flat and contain no

internal lateral structure. As pointed out by Tolan et al. [54], if the patterned

structure is not flat, the quantity to be laterally Fourier transformed is not

a simple surface-height representation of the pattern, but the (analytical) z-

component of the Fourier transformation of the structure height.

2. The kinematical approximation of x-ray scattering is valid, i.e. no multiple

scattering events, for instance as a result of substrate reflection, have to be

taken into account.

3. The beam coherence is sufficient so as to render the simulated (coherently

scattering) area of the sample an ergodic representation of the entire sample.

If this condition is not fulfilled, additional sampling of the array has to be

performed, slowing the already computationally demanding calculation down

even further.

Initially following the previously described approach within this project, it quickly

became clear that the resolution given by the numerical lateral grid was quickly

becoming too small in order to accurately model the spatial structure of a non-flat

array.

In a refined, yet still fully numerical approach, application of the convolution

theorem allowed to limit the spatial grid to the dimensions of the unit cell of the

patterned array, in turn providing a significantly higher lateral resolution using the

same grid size. This allowed calculating the islands structure factor, which then

works as a scaling factor to the diffraction peaks, with the positions of the latter

being analytically determined instead of emerging as a result of the direct Fourier

transformation of the binary array. A refined version of this approach has indeed

been used in this thesis in order to fit the experiments performed at low spatial

beam coherence presented in chapter 4.

When turning to the experimental data taken at magnetic resonance pre-

sented in chapter 5, though, it was eventually realised that the additional strain of

simultaneous fitting of charge- and magnetically scattered data in connection with

the high spatial sensitivity to the sample structure would quickly overburden any

available computing power, which was ultimately motivating the development of the

scattering framework described in section 1.3 and, in more detail, the first part of

chapter 5. The decision was made to employ a semi-analytical model, that essen-

tially consisted in dividing the sample into discrete slices, each of which corresponds

to a horizontal cross-section of the structure. The chemical and magnetic structure

of each slice would then be encoded by horizontally stratified annuli, each obtaining
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a well defined analytical Fourier Transformation given by certain combinations of

Bessel functions, similar to the approach of Lee et al. [56]. By freely choosing the

slicing thickness and restricting radial increments within a given slice to chemical-

or magnetic gradients of the scattering length density (SLD), this model allowed

arbitrary resolution in directions both parallel and perpendicular to the sample sur-

face, not wasting computational resources on subdividing the sample within areas

of constant SLD.

Developed in this way, the framework is computationally highly efficient,

taking into account the huge amount of calculations a three-dimensional micron

sized structure sampled on �A-level resolution is requiring. However, the model faced

its limitations when attempting the simultaneous fitting of magnetic rocking curve

and reflectivity data, due to additional complications arising from interference of the

scattered radiation of the pattern and unpatterned substrate. Improving the quality

of the fit further did not seem worth the additional effort of introducing an even

more refined sample model, after the high utility of resonant magnetic scattering

for spatial characterisation of patterned arrays has arguably been proven.

It is instead believed to be more promising for future applications to switch

to the GISAXS geometry as proposed in chapter 6, allowing the simultaneous ex-

traction of sometimes dozens of diffraction peaks, providing an immense amount

of experimental data of large Fourier components necessary to fit complex pattern

structures.

1.3 Simulation Structure

A huge part of the work invested into the creation of this thesis has been devoted

to the development of a computational framework concerning x-ray scattering of

patterned arrays, which is roughly divided into three main components. The first

component is given by formulation of a modelling framework used for defining high

resolution representations of the spatial structure of patterned arrays. The second

component is given by the creation of a simulation framework that allows the effi-

cient and accurate computation of the way x-rays are being scattered off of patterned

arrays under various experimental conditions. The third major component consists

of the fitting framework that allows connecting the sample model and scattering

simulation to match simulated- to specific experimental data. Since no publicly

available software has existed to perform each of these individual tasks, one of the

biggest challenges of this thesis consisted in developing of a unified framework that

is able to perform each task individually and sequentially, being versatile enough to
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adapt individual components if required, without compromising the functioning of

the underlying larger programmatic structure.

In the broader context of this work, the specific implementation is arguably

less important than the emergent structure of the general framework, which in many

respects differs drastically from conventional atomic diffraction or x-ray reflectivity

of stratified media. This way, any interested reader should be able to identify the

relevant individual aspects of the simulation framework as well as common exper-

imental and programmatic pitfalls. Further, this thesis also aims at developing a

general appreciation for the possibilities associated with the high spatial sensitivity

of x-ray diffraction of patterned arrays and presenting solutions that have empir-

ically proven useful by the experience gained from spending hundreds of hours of

refactoring of a complex code-base and increasing both the efficiency and accuracy

through countless iterations until finally having arrived at the current state of the

work. In other words, apart from the specific results obtained from fitting a variety

of experimental data, this thesis is also aimed not just at providing a theoretical

framework, but on providing a guide for any scientific researcher to create his or her

own implementation of a proven concept without going through the same laborious

process needed for the current structure to emerge.

The simulation code follows an object oriented design (OOD) principle[58],

emphasising the encapsulation of functionality within components that are strongly

isolated from the remaining code. The latter prevents rippling effects that are

typically found if parts of a highly interconnected code-base have to be changed,

which may cause great complications as rather drastic changes are very common

when experimenting with constantly evolving models. Another advantage of highly

isolated code is the easy re-use of specific components, as isolated data structures

rely on no implementation details of components found elsewhere in the project.

A high level schematic of the finally used design structure is presented in

Fig. 1.1, where individual objects are depicted by coloured boxes, with nested boxes

representing composites of lower-level structures. The total design is separated into

three fundamental columns, concerning simulation functionality, data structures,

and functionality related to the fitting of simulated to experimental data. Solid

arrows indicate the instantiation of a new object, while open arrows represent the

referencing of an already existing object.

The individual components of the diagram seen in Fig. 1.1 can be summarised

in the following way:

• All relevant experimental data are collectively stored in the Experimental

Data module (top of middle column), which hence constitutes a pure data
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Figure 1.1: Design of the developed code.
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structure, obtaining no additional functionality.

• An instance of a parameter class (nested within Parameter Controller, bot-

tom of middle row) consists of five basic objects. The raw value is the quan-

tity being varied during a fitting procedure, while the variation takes place

within the limits specified by the fit range tuple. In contrast, the quantity

exposed by the public interface of the Parameter object is the Ext Value,

which is the external representation of the parameter, e.g. the value used for

defining a particular sample geometry. The Ext Value differs from the raw

value, since it is given by the output of an instance of a Coupler object, creat-

ing a parametric coupling to another instance of a Parameter class. Whether

or not a parameter is considered a fitting parameter is determined by the

Boolean Fit Flag.

As an example, two interfaces may be coupled in a way forming a layer of

unknown thickness in between them, disregarding of the actual height of the

interfaces relative to, say, the substrate level. Both interface heights are rep-

resented by an instance of a Parameter object, for instance Interface1 and

Interface2. Since the physics of the composite system are intricately coupled

to the absolute film thickness, it is often found to be computationally much

more efficient to fit only the height of one interface and the total thickness

of the respective layer, instead of fitting both interfaces independently. This

corresponds to using an additive coupler on Interface2, adding an amount

specified by the raw value off Interface2 to the (external) interface height

of Interface1. Apart from Additive Couplers, the most commonly used

Coupler classes are Subtractive- and Multiplicative Couplers.

• The Parameter Controller is a collection of Parameter instances, typically

defining the complete set of quantities relevant for the creation of a specific

logical entity, e.g. fully describing all parameters necessary for modelling of

a single island of a patterned array. It provides additional functionality like

returning a list of all fitted parameters and their allowed minimum and max-

imum values, which are of obvious relevance for the Fitter object.

• The Controller Collection is, in a sense, the organisational centre of the

code, as it represents a unified collection of all relevant information deter-

mining not only all parameter values but also the specific way all individual

components work together. It contains all information relevant for creating

the sample structure in the form of the Island Controller and Substrate
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Controller, what kinds of measurements are to be simulated, specifics of

the experimental set-up in form of the Instrument Controller, as well as

the algorithmic parameters determining the dynamics of the fitting procedure

given by the Fit Controller. The Controller Collection further contains

the Master Controller, which is the union of all individual Parameter Con-

trollers, often simplifying certain tasks.

Additionally, the Controller Collection provides serialisation functionality,

enabling saving the Controller Collection to disk, as it is the single quantity

that defines the whole set of parameters, therefore allowing recreation of par-

ticular sample- and instrumental states for subsequent analysis.

• The Simulation class encapsulates all functionality necessary to produce sim-

ulations of arbitrary scans through reciprocal space, by coordinating the in-

terplay of lower level objects not shown in the diagram. Since an instance

of a Simulation class has to reference a controller collection, it can ac-

cess all information required for instantiation of Island, Substrate, and

Instrument classes, defining the experimental conditions of the sample and

measurement device. The exact kind of the simulated measurement is defined

by specific Experimental geometry plug-ins, defining the exact coordinates

in reciprocal space that have to be considered in order to simulate a par-

ticular type of scan. Another plug-in, the Scattering Theory, performs the

calculations corresponding to the Experimental Geometry utilising a particu-

lar scattering theory, e.g. kinematic approximation, Distorted Wave Born

Approximation, etc. The Simulation class is the most complex of all con-

stituents in terms of its internal structure, since it performs both the creation

of the simulated sample and the calculation of the scattered signal. By invok-

ing it’s only public method simulate() it returns a dictionary containing the

reciprocal space coordinates and associated intensities.

• A Dataset object is a collection of a particular set of experimental and simu-

lated data, the latter being created on demand, by invoking of the simulate()

method of an associated Simulation object. The degree in which simulated

and experimental data match is determined by a figure of merit (FOM), calcu-

lation of which is performed by a specific FOM function class, which has to be

compatible with the return value of the Simulation object and the formatting

of the experimental data. Hence, by invoking the public calc fom() method

of any instance of a Dataset class, a simulated signal will be created accord-

ing to the current state of the respective Parameter Controllers, which is
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in turn reduced to a single number characterising how closely the simulation

matches the experimental data specific to the used FOM function.

• The Fitter class combines structure and the functionality required for fitting

simulated to experimental data. It takes an arbitrary number of Datasets

objects and requires the implementation of a calc fom() method, which com-

bines the respective individual FOMs of each Dataset to a composite FOM.

The composite FOM represents the quantity then minimised by the optimiser.

The latter takes the form of a plug-in, principally allowing different optimisers

to be used, although in the context of this work only the (excellent) standard

optimiser coming with the differential evoution[59] module of the python

scipy.optimize library has been used. Apart from referencing a Controller

Collection in order to determine the fit values and boundaries, the Fitter

class is fully ignorant of any implementations lying outside of its scope.

Although not currently implemented, parallel processing of the optimise()

method is highly desirable for future work, since it may drastically speed up

the relatively slow optimising process. In order to use parallel processing, new

simulation processes must not contain any external references in order to be

be spawned independently. The latter requires the fresh instantiation of all

involved objects, potentially necessitating the implementation of an additional

class taking care of proper encapsulation of the required data and functionality.

• Attached to the Fitter is an arbitrary number of Fit Observer objects,

that constitute callback functions to the Optimiser instance, being able to

reference the currently best matching values of the fitting parameters according

to the FOM function. Hence, the observers have access to all information

necessary for tracing the progression of the fit, therefore allowing the observers

to perform tasks like visualisation of the evolving simulations and figure of

merit, keeping track of the speed of convergence of the fit, save the current

state of the fitting procedure in the form of a new instance of a Controller

Collection, etc.

• Once the fitting procedure is finished, the Analytics module can fully re-

cover the state of any simulation by loading the corresponding Controller

collection, in order to perform arbitrary visualisation of data, calculate

depth profiles of the scattering length density and compare different combina-

tions of algorithmic fitting parameters in terms of their convergence efficiency

and reliability, Further, Analytics contain the option to perform parameter
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scans, in order to explore how small changes of single parameter affect the

outcome of the simulation result. All of these analytics have been proven

immensely useful in the exploration and evaluation of x-ray scattering of pat-

terned arrays, with many examples found throughout this thesis.
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Chapter 2

X-Ray Scattering Theory

2.1 Basics of X-rays Interacting with Matter

2.1.1 Electromagnetic plane waves

The electromagnetic plane wave is arguably the simplest manifestation of electro-

magnetic radiation and it will be shown that plane waves, in fact, comprise the

building blocks of arbitrary electromagnetic waves by means of the superposition

principle[60–62]. Generally, an electromagnetic plane wave consists of oscillating

electric and magnetic components, E(r, t) and H(r, t), as depicted in Fig. 2.1 and

evaluated at position r and time t to read

E(r, t) = E0 ei(k·r−ωt) ε̂ (2.1a)

H(r, t) = H0 ei(k·r−ωt) η̂, (2.1b)

with E0 and H0 being the electric and magnetic modulus field amplitudes, ε̂ and

η̂ are the unit polarisation vectors of the respective components, and oscillatory

frequency ω. The direction and wavelength of the plane wave is fully described by

the wavevector

k =
2π

λ
k̂. (2.2)

Since both wave components are at all times perpendicular to each other as

well as to the propagation direction of the wave they individually form transverse

waves, meaning that

ε̂ η̂ = ε̂ k̂ = η̂ k̂ = 0. (2.3)

Upon being exposed to electromagnetic radiation, the charge e− and spin-
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Figure 2.1: Schematic of an electromagnetic plane wave, propagating along wavevec-
tor k. The E and H components are always perpendicular to each other and k.

induced magnetic moment µe of an electron couples to the respective components

of an electromagnetic wave via the Lorentz force[63, 64]

FE = e−E = e−E0 ei(kr−ωt) ε̂ (2.4a)

FH =∇(µeH) = ikE0µB ei(kr−ωt) η̂, (2.4b)

inducing an electronic oscillation and hence the re-emittance of electromagnetic

radiation by means of an accelerating charge. However, the respective forces on the

electron, and hence the amplitudes of the re-emitted electric field, differ by a factor

FE

FH
=

e−

kµB
≈ 1 MeV

Exray
, (2.5)

which, depending on the x-ray energy Exray ranging from roughly 0.5 keV (∼ 2.5 nm)

for soft- to 10 keV (∼ 0.12 nm) for hard x-rays and leading to a difference of mea-

sured intensities by four to six orders of magnitude, justifying the negligence of the

magnetic field component when considering x-ray scattering in most cases including

the remainder of this work.

The angle of the exponential term of eq. 2.1 with the real axis in the complex

plane describes the phase of the wave at any given point of space and time taking

on a value from the interval [0, 2π]. Since the factor e−iωt is the same for all waves

considered simultaneously, it cancels out in every equation and will from now on be

omitted.

X-rays in this work are treated to be mostly monochromatic, meaning the
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incident wavefield is characterised by a single wavelength λ0, associated with the

vacuum wavevector of length

k0 = |k0|. (2.6)

Furthermore, scattering is considered to be elastic, implying that any scattered plane

wave leaving the sample is of the same wavelength λ0 as the incident field[65, 66],

implying

|k| = |k0|. (2.7)

Then, the phase difference between two waves scattered by electrons located at an

arbitrarily placed origin and at some location r can be evaluated geometrically[62]

to read

∆φ(r) = (kf − ki)r, (2.8)

justifying the introduction of the fundamentally important quantity of the wavevec-

tor transfer

Q = kf − ki. (2.9)

Q is the quantity connecting scattering theory and experiment, since it appears

in virtually all calculations and it’s directional dependence of ki and kf translates

directly into laboratory source and detector angles. The wavevector transfer, for

instance, allows straightforward evaluation of the total scattered amplitude into a

particular direction specified by Q, simply by summing over (or integrating) the

positions of all scatterers, comprising what will later be shown to be the kinematical

approximation

A(Q) =

∫
f(r)ρnum(r)e−iQr dr, (2.10)

where f(r) is the scattering length or scattering factor of the atoms located within

dr at r, with ρnum(r) being their local atomic number density, i.e. number of atoms

per unit volume.

If the electromagnetic wave travels through a medium, the length of its

wavevector k changes with respect to its vacuum value k0 according to

|k| = k = nk0, (2.11)

with the refractive index n being the proportionality constant connecting the two

wavevectors[67], introduced in section 2.1.2.

As will be shown in section 2.2, when traversing the interface between two

media, the component of a wavevector k parallel to a flat interface is conserved,
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therefore relaxing eq. 2.7 to now read

∣∣k0,‖
∣∣ =

∣∣k‖∣∣ =
2π

λ
cosα ≡ k‖, (2.12)

with α being the angle between the sample surface and the incident radiation. The

subscript ‖ denotes the component of the wavevector parallel to the surface.

Since the scattering is elastic, any wavevector k is fully specified by two of

its cartesian coordinates, which leads to the definition of the dispersion relation

|k|2 ≡ k2
x + k2

y + k2
z = n2k2, (2.13)

where each component is related to the real space coordinates

kx =
2π

x
(2.14a)

ky =
2π

y
(2.14b)

kz =
2π

z
, (2.14c)

with x̂ and ŷ defining the sample plane and ẑ being the sample normal. Since the

parallel component k‖ of the wavevector is always conserved, eq. 2.13 is often stated

in the equivalent form

kz = ±
√
n2k2 − k2

‖ . (2.15)

2.1.2 Refractive index and Scattering length density

In calculating x-ray scattering, the atomic scattering factor, refractive index and

scattering length density are all closely related but distinct quantities, which only

differ in their convenience in a given experimental or theoretical context.

Away from electron resonances, the atomic scattering factor is given by

f(Q) =

∫
ρ(r)eiQr dr (2.16)

and is the scattering amplitude of a single atom as a function of wavevector transfer

Q from the Fourier Transformation of the spatial charge distribution ρ(r). By

convention, f(Q) is typically implicitly considered in units of the classical electron

radius re, given by

re =
e2

4πε0mec2
≈ 2.818× 10−15 m, (2.17)

characterising the response of an electron upon driven oscillation by means of an
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electro-magnetic wave, being defined by the fundamental quantities electron charge

e, electron mass me, the permittivity of free space ε0, and the speed of light c.

Since the integral over ρ(r) equals the atomic number Z of electrons of an

atom. For typical x-ray energies, small Q and away from electronic resonances it

is essentially equivalent to f(Q) = Z, the number of atomic electrons Z times the

classical electron radius.

A more general way of expressing the scattering factor is given by

f = f0(Q) + f ′(E) + if ′′(E), (2.18)

with the Q-dependence of f0 entering in non-forward direction as a consequence of

the spatial charge distribution of electrons surrounding the atomic core, and f ′(E)

and f ′′(E) being the resonant dispersion correction terms[68], depending on the

energy of the x-rays interacting with the atom. The real part of the dispersion

correction f ′ deviates from zero around absorption edges, which corresponds to the

x-rays being able to excite particular electronic transitions within the atoms[69–71].

The imaginary part of the dispersion correction is related to atomic absorption of

individual photons and consequently increases by sharp steps every time the photon

energy exceeds the energy difference of a particular electronic transition. Both,

the energy dependence of real and imaginary dispersion correction terms f ′(E) and

f ′′(E) are plotted for the example case of Palladium in Fig. 2.2. On the wide energy

range of Fig. 2.2 a) it is apparent that both correction terms tend towards zero away

from electronic resonances. Fig. 2.2 a), on the other hand, presents a magnified view

of the Palladium L-edge, resolving the splitting into LI, LII, and LIII edges.

The refractive index n in the x-ray regime is commonly given in the form

n = 1− δ + iβ, (2.19)

with the connection to the dispersion correction terms[68] given by

δ =
2πρnumre

k2
(Z + f ′) (2.20a)

β =
2πρnumre

k2
f ′′, (2.20b)

where Z ≈ f0, is the atomic number of an atom, with the approximation being valid

at small scattering angles.

Contrary to the atomic scattering factor, the refractive index is a material

property in the sense that it depends on the (homogeneous) atomic number density
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Figure 2.2: Dispersion correction of Palladium. As can be seen in panel a), real and
imaginary parts of the dispersion correction are largest around resonance edges,
with the L and K edge falling in the range of plotted energies. Panel b) shows a
magnified view around energies close to the L edge, resolving the LI, LII, and LIII

absorption edges. Data taken from [72].

averaged over the material. It is therefore sensitive to the structure of the material

on length scales larger than single atoms.

Another very similar quantity is the scattering length density (SLD) of a

material, which is the atomic scattering factor multiplied with the atomic number

density[73, 74]. It differs from the refractive index only by a wavelength dependent

factor to read

SLD = f(E) ρnum (2.21)

where it is again assumed that ρnum can be considered locally constant. One use
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case of the SLD is calculating x-ray diffraction of patterned arrays since its Fourier

Transformation directly yields the form factor of an atomic distribution in the kine-

matical approximation via

A(Q) =

∫
f(E, r)ρnum(r) eiQr dr =

∫
SLD(E, r) eiQr dr. (2.22)

The (local) SLD of a multi component material is simply the sum of the correspond-

ing SLDs, i.e.

SLD =
∑
γ

SLDγ =
∑
γ

fγ(E,Q) ρnum
γ . (2.23)

In many cases the material composition of an alloy is known, but calculation of the

corresponding atomic number densities of each constituent might not be straight-

forward, which is particularly true if the growth is amorphous. In these cases the

SLD can be re-expressed as a function of the mass density, which can be measured

more easily or even taken from standard texts.

In order to do this, the mass density of the materials is expressed in unified

atomic mass units u per unit volume. Next, a formula unit is defined that represents

the chemical composition of the material and its weight in units of u is calculated.

Dividing the mass density by the mass of the formula unit gives the number density

of formula units. The latter can be multiplied with the total scattering length of all

atoms comprising the formula unit to obtain the final SLD.

As an example, consider magnetite (Fe3O4) of known mass density

ρmass
Fe3O4

= 5.18 g cm−3 = 3120 u�A−3
.

The mass of one formula unit is

mFe3O4
= 3× 55.845u + 4× 15.999u = 231.531 u,

leading to the formula unit density (”Fe3O4” per unit volume)

ρnum
Fe3O4

= 3120
231.531

�A−3
= 13.475�A−3

,

finally yielding the total scattering length density at E = 8.04 keV (Cu K-α)

SLDFe3O4
= ρnum

Fe3O4
×
∑
γ

fγ(E)

≈ 13.475�A−3 × (3× (24.74 + 3.19i)re + 4× (8.04 + 0.03i)re)

≈ 1433.47 + 130.57i re
�A−3

.
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Generally, calculation of the SLD from a known mass density and scattering fac-

tors fα as well as masses mα of all the atoms comprising one formula unit can be

performed by means of

SLD
[
re
�A−3

]
=
∑
α

fα [re]

mα [u]

ρmass
[
g cm−3

]
103

1.660539
, (2.24)

with α appropriately chosen to represent the chemical composition of the material.

Note that eq. 2.24 holds for both atomic compounds as well as alloys of arbitrary

form, e.g. AxB1–x, in which case α takes on the fractional weights of each compo-

nent.

2.1.3 Wave Polarisation

The scattering plane has been defined to be spanned up by the surface normal

ŝ of the sample and the component of ki lying within the sample plane. When

calculating resonant x-ray scattering factors it is found convenient to separate the

incoming and scattered electric field amplitude into two components being parallel

(π) and perpendicular (σ) to the scattering plane.

The polarisation unit vectors of the π and σ components of the electric fields

of wavevector k are denoted ε̂π and ε̂σ, respectively. For an incident and scattered

wave of wavevectors ki and kf and incident and scattered angles αi and αf , the

polarisation vectors in laboratory Cartesian coordinates x̂, ŷ, and ẑ can be expressed

to read

ε̂iπ =

sinαi

0

cosαi

, ε̂iσ =

0

1

0

 (2.25a)

ε̂fπ =

− sinαf

0

cosαf

, ε̂fσ =

0

1

0

 (2.25b)

(2.25c)

where the x̂ and ŷ span the sample plane, x̂ lays within the scattering plane and

ẑ = ŝ is the surface normal (also compare Fig. 2.3).

Hence, any polarisation state is described as a linear superposition of com-

ponents parallel and perpendicular to the scattering plane having a fixed phase

difference ∆φ = ∆φ‖−∆φ⊥. The two cases ∆φ = 0 and ∆φ = ±π/2 correspond to

the important cases of linearly, left- and right circularly polarised light, respectively.
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Figure 2.3: Scattering geometry discriminating polarisation states of the incident
and scattered x-rays. If the scattering is limited to the scattering plane indicated in
purple, the π (σ) components will always lie within (perpendicular to) the scattering
plane.

For instance, π-polarised light is given by the expression

Eπpol. =

(
1

0

)
(2.26)

and left and right circularly polarised light are expressed by

ELCP =
1√
2

(
1

i

)
(2.27a)

ERCP =
1√
2

(
1

−i

)
(2.27b)

where in all cases ∆φ‖ has been defined to be 0 and E‖ = E⊥ = 1/
√

2, so that the

modulus amplitude is normalised to 1.

2.1.4 Magnetic Scattering: A Special Case of Resonant Scattering

Magnetic scattering is usually dominated by electrical dipole (E1) transitions [70,

74, 75], and neglecting all other contributions, the x-ray scattering factor in dipole-

approximation is given by the expression

f(Q, E) = (ε̂f · ε̂i)F (0)(E)− i(ε̂f × ε̂i) · m̂F (1)(E),+(ε̂f · m̂)(ε̂i · m̂)F (2)(E) (2.28)

with F (0)(E), F (1)(E) and F (2)(E) being energy dependent constants according to

the specific electronic configuration of the ion. Additionally, the magnetic dispersion

correction includes a dependency on the magnetic moment m of an atom through
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the electric dipole (E1) transition[76] as indicated in eq. 2.28. Being a resonance

effect, magnetic dispersion of scattering factors is still limited in occurrence to the

vicinity of absorption edges, however imposing the additional requirement of initial

and excited atomic states being spin-split as is, for instance, the case for the LII and

LIII edges, but not for the LI edge.

An often more convenient expression for the scattering factors can be found

in matrix notation[69], explicitly considering the polarisation state of the x-rays by

splitting the electrical field E up into π- and σ-components Eπ and Eσ as discussed

in section 2.1.3, to take on the form

f res. = ME =

(
Mππ Mπσ

Mσπ Mσσ

)(
Eπ

Eσ

)
, (2.29)

with M being a transition Matrix taking into account the particular electronic

excitations of the scattering ion. In other words, computation of eq. 2.29 results in

a 2-vector, specifying the π- and σ-components of the scattering amplitudes given

a particular polarisation state of the incoming x-ray wavefield E.

The four scattering channels (π → π, π → σ, σ → π, σ → σ) in eq. 2.29 can

be expressed in terms of the respective vector products seen in eq. 2.28 using the

laboratory frame for the polarisation vectors as seen in eq. 2.25. Assuming circularly

polarised x-rays and small angle approximations of the trigonometric functions, we

find the expression

f res.dipole =
1√
2

(
F (0) −iF (1)mx

−F (1)mx F (0)

)(
1

±i

)
=

1√
2

(
F (0) ± F (1)mx

±i
(
F (0) ± F (1)mx

)). (2.30)

Interpreting eq. 2.30 it is apparent that the terms involving F (0) simply

contribute to the charge scattering amplitude, since they are limited – like the non-

resonant charge scattering – to the π → π and σ → σ scattering channels and

include no magnetic sensitivity. The magnetic terms of eq. 2.30 being proportional

to F (1) are limited to cross-channel scattering π − σ and σ − π, respectively.

The total scattering factor f is then given by

f = f0 + f res.dipole =
1√
2

(
f0 + F (0) −iF (1)mx

−F (1)mx fnonres. + F (0)

)(
1

±i

)

=

(
f0 + F (0) ± F (1)mx

±i
(
f0 + F (0) ± F (1)mx

)), (2.31)

where f0 = Zr0 for small scattering angles and it can be seen that F (0) = f ′ + if ′′,
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i.e. the usual resonant dispersion correction, while F (1) is non-zero only for x-rays

of energy close to a suitable absorption edge.

Inspecting eq. 2.31 it is clear that using circularly polarised light and under

the stated approximations, the scattered amplitude under resonant scattering condi-

tions is, again, a circularly polarised electric field of the same helicity as the driving

field. Depending on the beam helicity used, the charge-dependent resonant scat-

tering amplitude is additionally either increased or reduced by an amount F (1)mx

proportional to the local x-component of the local magnetic moment. Note, that

the same result is obtained when instead of considering a flipped beam helicity the

samples magnetic moments are inverted.

The intensity of the circularly polarised scattered E-field of an arbitrary

distribution of atoms is the squared modulus of the amplitude, i.e. both polarisation

components contribute equally and separately. Hence, it is possible to write the total

scattering factor again in the familiar form, slightly modified to include the magnetic

contribution at resonance to read

f± = f0(Q) + F (0) ± F (1)m̂x

= f0(Q) + f ′(E) + if ′′(E)± f ′mag(E,mx)± if ′′mag(E,mx)
(2.32)

where the ± sign in the magnetic correction term corresponds to either a switch

of beam helicity or component within the scattering plane of the local magnetic

moment mx. The rightmost equality of eq. 2.32 stresses the fact that on resonance,

the scattering factor consists of four distinct components, the real- and imaginary

parts of the charge- and magnetic contributions, which generally have all to be fitted

separately when a magnetic characterisation of a sample is to be done. Further,

following eq. 2.20, the magnetic dispersion correction also affects the refractive index

n of a magnetic material, as well as the SLD.

Fig. 2.4 shows the energy dependence of the charge- and magnetic dispersion

corrections of Fe at the L-edge. The data have been found experimentally[50],

by measuring the imaginary components via x-ray absorption from which the real

components are calculated using the Kramers-Kronig relations[62]. Energies right

below the LIII absorption edge are found particularly convenient for measurements

of magnetic scattering: Small values of f ′′ imply a low fluorescence yield, which

would otherwise contribute background noise to the experiment. At the same time,

f ′mag and f ′′mag are both relatively large, maximising the difference of the scattered

intensities I+ and I−, measured at opposite beam helicity or sample magnetisation,

following the sign convention established in eq. 2.32. Hence, the dependence of

f towards the magnetisation of the sample reflects in the non-resonant scattered
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Figure 2.4: Dispersion correction of charge scattering (left) and magnetic scattering
(right) of the Fe LII and LII absorption edges. Adapted from [50].

intensity I splitting up into two slightly different intensities I+ and I− at energies

close to a suitable resonance edge.

The Asymmetry Ratio[75, 77, 78] defined by

A.R. =
I+ − I−

I+ + I−
(2.33)

stresses the usually relatively small difference of two measurements I+−I− involving

a magnetic contribution by normalising it to the sum signal I+ + I− of the two.

Since charge- and magnetic resonance corrections collectively contribute to the total

dispersion correction and hence the scattering amplitude, the A.R. is a charge-

magnetism interference term and single components cannot directly be reconstructed

from intensity measurements but have to be treated as separate parameters when

fitting simulated to experimental data.

2.2 X-ray Reflectivity

When exposed to x-rays, every material interface in a layered system affects the

complex-valued electromagnetic field amplitude within and above the sample. The

characteristic interference phenomena affecting the reflected intensity are highly

sensitive to the chemical structure of the sample. Hence, x-ray reflectivity (XRR)

is a universal and well established tool in thin film and multilayer characterisation

close to the origin of reciprocal space.

The small wave vector transfers XRR is performed at, mean that the x-rays

are not sensitive to atomic structure, whose small length scales require large Q. This
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means that the sample can justifiably be modelled by a continuous distribution of

scatterers, described by the refractive index n, which is known as the optical regime.

It will first be shown how an electromagnetic wave behaves at a single flat

interface between two media of differing refractive index n, before generalising the

result to calculate the reflectivity of a fully generic structure. It will be shown how

XRR theory provides an analytical solution of the electromagnetic wave equation,

which is readily extensible to a wide range of real systems investigated by x-ray

scattering experiments[62, 79–83].

Intuitively, it is expected that disregarding what happens microscopically at

the interface of the two media, part of the energy of the wave will penetrate from

the first into the second medium, whilst some of its energy will remain in the first

medium. The exact form of these new wavefields will be obtained by introducing

the concepts of (amplitude and intensity) reflectivity and transmittivity and deriving

Snell’s law and the Fresnel equations[61, 62, 79].

In the following, indices of different media will be used either in the form

of superscript or subscript. The exact choice will be made in order to maximise

readability, rather than consistency and what is meant should generally be clear

from context. However, if used as superscript, indices are usually used in parentheses

to avoid confusion with mathematical exponents in power notation.

2.2.1 The wave equation

The starting point of the discussion will be a general electromagnetic wave of the

form

E (r) =

∫
Ek eikr d3k =

∫
eik‖r‖

(
tk‖ eikzz + rk‖ e−ikzz

)
d2k‖, (2.34)

and two infinite slabs of material of refractive indices n1 and n2 filling the half

spaces z ≥ 0 and z < 0 in cartesian coordinates, forming a common interface in the

x-y-plane at z = 0 as seen in Fig. 2.5.

The two solutions of eq. 2.34 in the two media defined for z ≥ 0 and z < 0

have to be connected[62, 84] at the interface z = 0. Demanding the boundary

condition of a smooth connection of the wavefields at the interface we find

E(1)(r)

∣∣∣∣
z=0

= E(2)(r)

∣∣∣∣
z=0

and
∂E(1)(r)

∂z

∣∣∣∣∣
z=0

=
∂E(2)(r)

∂z

∣∣∣∣∣
z=0

, (2.35)

where superscripts are used to indicate in which medium the waves are propagating.
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Figure 2.5: Real Space representation of the electric field at the interface of two
linear, isotropic and homogeneous media. A monochromatic plane wave of wavevec-
tor k(1) and amplitude t(1) excites a reflected and transmitted wavefield of identical
in-plane wavevector component k‖ and amplitudes r(1) and t(2), respectively. The

reflection and refraction angles α(1) and α(2) are connected to the refractive indices
of the media n(1) and n(2) by eq. 2.39. Since electromagnetic waves are transver-
sal, the amplitude vector will be a linear combination of the π̂ and σ̂ unit vectors,
which are parallel and perpendicular to the scattering plane, respectively. Although
part of the general solution, the amplitude r(2) of the reflected wave in the second
medium is 0 for a single reflection process but becomes important when considering
the reflectivity of multiple interfaces.

From eq. 2.34 it now follows that∫
e
ik

(1)
‖ r‖

(
R

(1)
k‖

+ T
(1)
k‖

)
dk‖ =

∫
e
ik

(2)
‖ r‖

(
R

(2)
k‖

+ T
(2)
k‖

)
dk‖ (2.36a)∫

e
ik

(1)
‖ r‖

(
k(1)R

(1)
k‖
− k(1) T

(1)
k‖

)
dk‖ =

∫
e
ik

(2)
‖ r‖

(
k(2)R

(2)
k‖
− k(2) T

(2)
k‖

)
dk‖

(2.36b)

and since eq. 2.36 a) and b) have to hold for any choice of r‖, all exponentials and

the constant terms in parentheses have to equate independently from each other,
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which directly leads to

k
(1)
‖ = k

(2)
‖ (2.37a)

r
(1)
k‖

+ t
(1)
k‖

= r
(2)
k‖

+ t
(2)
k‖

(2.37b)

k
(1)
‖ k̂‖

(
r
(1)
k‖

+ t
(1)
k‖

)
+ k(1)

z k̂z

(
r
(1)
k‖
− t

(1)
k‖

)
= k

(2)
‖ k̂‖

(
r
(2)
k‖

+ t
(2)
k‖

)
+ k(2)

z k̂z

(
r
(2)
k‖
− t

(2)
k‖

)
(2.37c)

where eq. 2.37 a) shows that the in-plane components of ki and kf are conserved as

pictured in Fig. 2.6. In explicit consideration of angular variables and choosing the

coordinate system in a way that k‖ = kx eqs. 2.37 take on the form

n(1)k cosα
(1)
i = n(1)k cosα

(1)
f = n(2)k cosα

(2)
i = n(2)k cosα

(2)
f (2.38a)

n(1)k cosα(1) r(1)
α + n(1)k cosα(1) t(1)

α = n(2)k cosα(2) r(2)
α + n(2)k cosα(2) t(2)

α

(2.38b)

n(1)k sinα(1) r(1)
α − n(1)k sinα(1) t(1)

α = n(2)k sinα(2) r(2)
α − n(2)k sinα(2) t(2)

α . (2.38c)

From eq. 2.37 a) it follows that in each medium αi = αf = α and from eqns 2.37 b)

and 2.38 b) it directly follows that

n(1) cosα(1) = n(2) cosα(2). (2.39)

Eq. 2.39 is known as Snell’s Law, which relates the refractive indices n with the

refraction angles α at the interface of two media[85, 86].

2.2.2 Fresnel Equations

We are now going to discuss the results of the previous section in the context of the

problem of solving the wave equation at an interface between two media for a par-

ticular driving field in the form of a single monochromatic plane wave of wavevector

k propagating in medium (1) incident at angle α on the interface of medium (2).

This corresponds to considering eqns 2.34 and the following discussion for a single

wave coefficient Ek = Eα = E. Hence, we specify the parameters for the refractive

indices of the two media and choose a wave vector ki of the incident radiation and

expect to obtain values for α2, r1, t2 and r2.

However, the system of linear equations 2.37 a-c (and equivalently eqns 2.38

a-c) is still underdetermined and requires specification of one additional parameter.

Considering the physical interpretations of the wave components associated with r

and t it is intuitively clear that for both media being semi-infinite in the positive and
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Figure 2.6: Reciprocal space representation of the scattering process. Because of the
conservation of the in-plane component of the wavevector for each partial solution
of the wave equation the wavevector in each medium has to terminate on the same
vertical line perpendicular to k‖. The two circles represent the spheres defined by
the dispersion relation |k| = nk0 in the upper and lower medium. As can be seen,
for values α ≤ αc it holds k‖ ≥ n(2)k0, leading to the formation of an evanescent
wave.

negative z-directions no reflected wave component in medium (2) is then expected[61,

62, 84]. Consequently r2 = 0 and all other quantities can be derived.

We define the amplitude reflectivity r and amplitude transmittivity t by

r ≡ r1/t1 (2.40a)

t ≡ t2/t1, (2.40b)

which corresponds to the fraction of the incident wave that gets reflected on- and

transmitted through the interface, respectively. From eq. 2.37 b and the kz compo-

nent of eq. 2.37 c (eq. 2.38 c for the angular representation) we find

r =
sinα1 − sinα2

sinα1 + sinα2
(2.41a)

t =
2 sinα1

sinα1 + sinα2
, (2.41b)

which is known as the Fresnel equations[86]. It allows the straightforward calculation

of the important quantities r and t solely from knowledge of the wavevector transfer
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Q in each medium which takes on the form

k(2)
z =

√
(n2k)2 − k2

‖ =

√
(n2k)2 − (n1k cosα1)2. (2.42)

2.2.3 Critical angle, total reflection and limiting cases

As can be seen from eq. 2.42 c), k
(2)
z will be fully imaginary if

n2
2 < n2

1 cos2 αc. (2.43)

In this case the expression for the transmitted wave takes on the form of an evanes-

cent wave[62, 85, 86]

Et = t eik‖r‖ e− Im(kz)z, (2.44)

meaning that the wave is showing oscillatory behaviour along r‖ over the surface of

the interface and gets exponentially damped with increasing penetration depth into

the material.

From eq. 2.43 and the definition of the refractive index n = 1−δ+ iβ, Taylor

expanding the cosine and neglecting third order terms we find

αc ≈
√

2
(
δ(2) − δ(1)

)
+ 2i

(
β(2) − β(1)

)
. (2.45)

Neglecting the usually very small absorption related imaginary part of eq. 2.45 we

find that the critical angle of total reflection takes on the approximate value

αc ≈
√

2
(
δ(2) − δ(1)

)
, (2.46)

which, for a vacuum-matter interface, with n(1) = nvac = 1 and refractive index of

the material n(2) = n = 1− δ + iβ takes on the common form αc ≈
√

2δ.

To explore the limiting behaviour of reflection and refraction at low and high

incident angles we consider the particular case of illuminating a vacuum-iron inter-

face with collimated x-rays of energies slightly below and above the Fe K absorption

edge at angles around αc. The Fe K-edge is found at 7.112 keV and we limit the

discussion to the two energies 7.0 keV and 7.2 keV. Strictly speaking αc will be a

function of the x-ray energy, but for the cases under consideration the approximation

for both wavelengths δ ≈ 2.6× 10−5 and hence αc ≈ 0.41° will suffice.

Qualitatively, when increasing above an electronic absorption edge, the pho-

ton energy exceeds a particular electronic transition in the material, allowing a

stronger photonic absorption of the material, manifesting in a sudden increase of
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the extinction coefficient β being part of the refractive index n = 1− δ + iβ.

A usual way of calculating the refractive index of a given material at a

particular energy consists in looking up the (complex) scattering lengths f as well

as the atomic number density ρat of the material from a standard source in order to

calculate n according to eqs. 2.19 and 2.20.

The refractive indices of iron at each of the two energies is found to be

nFe(7.0 keV) ≈ 1− 2.6× 10−5 + i 5.6× 10−7

and

nFe(7.2 keV) ≈ 1− 2.6× 10−5 + i 4.3× 10−6,

corresponding to an almost tenfold increased x-ray absorption. With

qvac/k = 2 sinα (2.47a)

qFe/k = 2
√
n2 − cos2 α, (2.47b)

we obtain the angle dependent intensity reflectivity R and intensity transmittivity

T defined by

R = rr∗ (2.48a)

T = tt∗. (2.48b)

As can be seen in Fig. 2.7 a) and b) the intensity reflectivity generally starts at

values close to 1 at low angles indicating the regime of total external reflection of

the wave[62, 87, 88]. Around αc the reflected intensity drops rapidly, with a lower

extinction coefficient β generally meaning the drop being sharper. For angles α� αc

the reflected intensity drops to very low values and from inspection of eq. 2.41 it

becomes apparent that the intensity follows a power law ∝ q−4.

Apart from absorption losses, radiation which is not reflected on the interface

has to be transmitted into the material, the transmitted intensity not very surpris-

ingly acts in a way complementary to the reflected intensity as seen in Fig. 2.7 b).

At very low angles below αc, the transmitted intensity is effectively zero, because all

the radiation gets reflected. Accordingly, at high angles almost all intensity of the

incoming radiation gets transmitted into the material and T ≈ 1. The evanescent

wave propagating along the surface at angles around αc may go up to as high as four

times the intensity of the incident radiation. However, the evanescent wave stores

energy supplied from the incident radiation but does not contribute to the energy
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Figure 2.7: Angle dependence of refraction effects at a vacuum-iron interface below
and above the Fe K-edge. a) reflected intensity, b) transmitted intensity, c) real and
imaginary part of the reflected wave with respect to the incident wave of amplitude
1 + 0i, d) phase shift of reflected and transmitted wave with respect to incident
wave, e) comparison of internal and external wavevector transfer. For clarity each
plot also contains a graph where the absorption coefficient β has artificially been
set to zero.
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flow in the (semi-infinite) system, and therefore transmitted intensities > 1 do not

violate energy conservation.

It is further instructive to consider the phase dependency of the amplitude of

the reflected and transmitted waves as seen in Fig. 2.7 c) and d). As α increases, the

real and complex parts of amplitude reflectivity r ≡ r(1)eik
(1)r/t(1)eik

(1)r smoothly

vary in a way that its amplitude undergoes a phase shift from π to 0, meaning that

the reflected wave is out-of-phase below αc and in-phase above αc with respect to

the incoming radiation. Similarly, the transmitted wave shows a phase shift of π/2

at α = 0 and is in-phase for α� αc.

Finally, Fig. 2.7 e) compares the internal and external wavevector transfer.

Around αc the difference is largest before qFe asymptotically approaches qvac for α >

αc. Figure 2.7 b) and e) together confirm the validity of the kinematic approximation

for α � αc, when approximating the internal wavevector transfer of a material

by the easily obtainable external wavevector transfer above the sample setting the

transmittivity over the whole sample equal to 1.

2.2.4 Multiple interfaces

In this section we will calculate the reflection of a plane wavefield from an arbi-

trary number of interfaces instead of restricting ourselves to a single interface, as

is schematically presented in Fig. 2.8. The procedure as presented here basically

follows that of Mikulik [84].

The illuminated sample is now modelled by a stack of N thin layers of ma-

terial of refractive index n(i), with n(0) being the refractive index of vacuum and

n(N+1) corresponding to the substrate. Furthermore, each pair of layers n(i) and

n(i+1) share an interface at height z(i).

We can then find a generalised set of equations from eq. 2.37 b and c valid

for arbitrary values of zi to read

r(i)eik
(i)
z zi + t(i)e−ik

(i)
z zi = r(i+1)eik

(i+1)
z zi + t(i+1)e−ik

(i+1)
z zi (2.49a)

k(i)
z r(i)eik

(i)
z zi − k(i)

z t(i)e−ik
(i)
z zi = k(i+1)

z r(i+1)eik
(i+1)
z zi − k(i+1)

z t(i+1)e−ik
(i+1)
z zi .

(2.49b)

The latter system of equations can be re-expressed using a matrix formalism to read
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Figure 2.8: Schematic of a layered sample. Each layer consists of material of refrac-
tive index ni. The transfer matrices T i,i+1 connect the wavefields at the interfaces
located at height zi. The propagation matrices Pi+1 connect the phase of the wave-
fields within layer i+ 1, traversing the distance ∆i+1 = zi − zi+1.

T iEi(zi) = Ti+1Ei+1(zi) (2.50a)

T i =

(
1 1

k
(i)
z −k(i)

z

)
T−1
i =

1

2k
(i)
z

(
k

(i)
z 1

k
(i)
z −1

)
(2.50b)

Ei(zi) =

(
r(i)eik

(i)
z zi

t(i)e−ik
(i)
z zi

)
(2.50c)

with interface matrix T i, its inverse T−1
i and the interphase amplitude vector

Ei. In order to directly obtain an expression for Ei, assuming the field amplitudes

Ei+1 are known, eq. 2.50 a can be re-arranged to read

Ei(zi) = T−1
i T i+1Ei+1 = T i,i+1Ei+1(zi), (2.51)

where the Transfer Matrix T i,i+1 is given by

T i,i+1 =
1

2k
(i)
z

(
k

(i)
z 1

k
(i)
z −1

)(
1 1

k
(i+1)
z −k(i+1)

z

)

=
1

k
(i)
z

(
k

(i)
z + k

(i+1)
z k

(i)
z − k(i+1)

z

k
(i)
z − k(i+1)

z k
(i)
z + k

(i+1)
z

)
≡ 1

ti

(
1 ri

ri 1

)
(2.52)

with rj and tj being the reflectivity and transmittivity amplitudes as defined in eq.
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2.41.

So far, only the connection of wavefields at the interfaces have been consid-

ered, but in order to calculate the total wavefield the propagation of the electric

field within each layer has to also be considered. Propagating from smaller to larger

values of z the reflected component of the wavefield will advance in phase, while the

transmitted component will recede in phase. Expressing this in matrix formulation,

we find

Ei+1(zi) =

(
eik

(i+1)
z ∆i+1 1

1 e−ik
(i+1)
z ∆i+1

)(
r(i+1)eik

(i+1)
z zi+1

t(i+1)e−ik
(i+1)
z zi+1

)
= P i+1Ei(zi+1),

(2.53)

where the Propagation Matrix P connects the field amplitudes at height zi at

the top of layer i + 1 to the field amplitudes at height zi+1 at the bottom of layer

i+1. The indices of eq. 2.53 have been chosen in this way to stress that the quantity

of interest is the field at height zi.

It is now possible to connect the wavefields at the top of neighbouring layers i

and i+1 by first calculating the phase-shift of the waves associated with propagating

through layer j+1 to obtain the field at the bottom of interface j and then calculate

the change of field when transferring the interface. Mathematically, this is expressed

by the matrix product

Ej(zi) = T i,i+1P i+1Ei+1(zi+1). (2.54)

To connect the fields E0(z0) above the sample surface to the fields in the sub-

strate EN+1(zN+1) = ES(zS) all intermediate layers are connected by appropriate

matrices of the form of eq. 2.54

E0(z0) = (T 0,1P 1) (T 1,2P 2) · · · (TN−1,NPN ) (TN,N+1PN+1)ES(zS)

=

(
N∏
i=0

T i,i+1P i+1

)
ES(zS) = MES(zS). (2.55)

Introducing the Multilayer Transfer Matrix U and using the explicit form of

the amplitude vector E, eq. 2.55 reads(
r(0)eik

(0)
z z0

t(0)e−ik
(0)
z z0

)
= U

(
rSeik

S
z zS

tSe−ik
S
z zS

)
=

(
U11 U12

U21 U22

)(
rSeik

S
z zS

tSe−ik
S
z zS

)
, (2.56)

where, in calculating T the propagation matrix of the substrate was defined to be

PN+1 = 1. This is necessary because no lower interface exists within the infinitely
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thick substrate, so there is no reference point to calculate the phase of the wavefield

to and it is hence identified with the phase of the amplitude vector ES within the

substrate. Also, because of the lack of another interface below the substrate level

zS no reflected wave propagates within the substrate, i.e. rS = 0. Therefore, from

eq. 2.56 the reflectivity amplitude r0 of the whole stack can be calculated to be

r0 ≡
r(0)

t(0)
=
U12

U22
. (2.57)

The latter procedure suffices if one is only interested in describing the reflec-

tivity of the sample as a whole, which generally is the only observable in a reflectivity

experiment. It may be found necessary, though, that the electric field over the whole

depth of the sample is required, for instance in order to utilize higher order pertur-

bation theory. In this case, a useful approach is to keep track of the intermediate

results of the matrix multiplication of eq. 2.55

U j =
N+1∏
i=j

T i,i+1P i+1 (2.58)

in order to obtain the electric field in each layer defined by

Ej = U jES (2.59)

once the amplitude transmittivity into the substrate

tS ≡
tS

t(0)
=

1

U22
(2.60)

has been calculated.

As an example and to recap, Fig. 2.9 shows the angle-dependent amplitude

and intensity of the electric field in a sample of a single bilayer of an FeCo-Al2O3,

each of thickness 3 nm, on a Si substrate. Panel a) shows the SLD profile of the

bilayer, panels b and c (d and e) show the electric field amplitude and intensity at

αi = 2.5° (αi = 15°). It can be seen how no reflected wave exists within the substrate

and how the layer and interface thicknesses are affecting the electrical field within

the sample.

2.2.5 Reflectivity of a slab and Parratt’s Algorithm

Calculation of the electrical field as described in the previous section provides ex-

act results – given the resolution of the z-slicing is sufficient – but is often found

36



Figure 2.9: Visualisation of the scattering length density (a) of a FeCo-Al2O3 bilayer
on a Si substrate at x-ray energy 8.04 keV. The remaining panels show the corre-
sponding E-field and amplitude of the reflected wave at αi = 2.5°(Qz = 3.4 nm−1,
panel b and c) and αi = 15°(Qz = 20.3 nm−1, panel d and e). Note that αi = 15° is
far beyond the grazing incidence geometry and has been chosen for demonstration
purposes, only.
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inefficient because of the computationally expensive matrix multiplications, which

might slow a fitting process down notably. If, however, only the reflected amplitude

of a sample is of interest, i.e. no differentiation in between the transmitted and re-

flected fields within the sample is necessary, Parratt’s recursive algorithm provides

a computationally efficient algorithm, which works for arbitrary sample profiles, the

latter often not being able to be treated analytically[62, 89].

The general idea behind the algorithm is to find an exact expression of the

reflectivity of a single slab and then to generalise the result to capture the reflectivity

of generic sample structures. Following the previous indexing convention, let the slab

of thickness d be denoted by index 1 and embedded between two semi-infinite media

0 and 2 on top and bottom, respectively. When exposed to x-ray radiation parts

of the incident electrical field will be reflected on top and transmitted into the slab

according to the Fresnel reflectivity and transmittivity (eqs. 2.41). However, a part

of the wave transmitted into the slab is being reflected on the bottom of the slab,

before being partly transmitted into medium 0 again, therefore contributing to the

reflected wavefield above the slab. It is easy to see that in this way, more and more

multiple reflections of ever diminishing amplitude within the slab occur, which is

given by the infinite series

r = r̃0,1

+ t̃0,1 t̃1,0 r̃1,2 p
2

+ t̃0,1 t̃1,0 r̃1,0 r̃
2
1,2 p

4

+ ...

(2.61)

where the order of the indices indicates in which medium the wave propagates and

interacts with and p2 = e−ikideikfd = ei qz d is the change of phase of the wave

on traversing the slab once in both directions. Note that the notation is slightly

changed so that a tilde now indicates the single reflection Fresnel reflectivity r̃ and

transmittivity t̃ in order to make the differentiation from total reflectivity r including

multiple reflections easier.

Eq. 2.61 is a standard geometric series, which can be evaluated and re-

expressed[62], to read

r =
r̃0,1 + r̃1,2 p

2

1 + r̃0,1 r̃1,2 p2
, (2.62)

which allows one to calculate the total reflectivity of a slab simply from knowledge

of the Fresnel reflectivities in the respective media.

In order to obtain the latter, it is noted that the wavevector transfer in
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a medium is related to the (nominal) wavevector transfer in vacuum k through

decomposition into a (conserved) in-plane kmedium
‖ = k‖ and out-of-plane kmedium

z

part of the electrical field, which has to fulfil the condition

k =
√
k2 − k2

z =
√
nk2 − kmedium

z = nkmedium. (2.63)

This directly leads to

qz,j = 2
√
k2(n2 − 1) + k2

z , (2.64)

the wavevector transfer in medium j, which in conjunction with eq. 2.41 a) allows

the evaluation of eq. 2.62.

The goal of Parratt’s algorithm is to slice the whole sample up into N slabs

of arbitrary thickness d, with the topmost layer of the stack being identified by index

1 and the last non-identical layer of index N sitting directly on top of an infinitely

thick substrate indexed N + 1.

In the derivation of eq. 2.62 the reflectivities r̃0,1 and r̃1,2 are the standard

Fresnel reflectivities due to the geometry of the problem, but the equation generalises

to arbitrary stacks. This means that knowledge of the Fresnel reflectivity r̃j−1,j and

the actual reflectivity rj,j+1 of the underlying stack allows one to calculate the

reflectivity of a single slab on top of any stack of known reflectivity.

Parratt’s algorithms recursively builds up the total sample reflectivity from

the substrate upwards, i.e.

rj−1,j =
r̃j−1,j + rj,j+1p

2
j

1 + r̃j−1,jrj,j+1p2
j

, (2.65)

where r̃j−1,j is the Fresnel reflectivity of the top of the iteratively built structure

and rj,j+1 is the recursively calculated reflectivity of the so-far underlying stack.

Again, the absence of a reflected wave within the substrate is exploited in

order to start the iterative process, such that for calculation of the reflectivity of

layer N eq. 2.62 is used, followed by calculating the reflectivity of the total stack

r0,1 by repeated application of eq. 2.65.

2.2.6 Interface Roughness

Since real interfaces between layers of material are not perfectly sharp, any calcula-

tion of x-ray reflectivity has to consider interface roughness.

Integrating the Fresnel reflectivity over infinitesimally thick slices of an ar-
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bitrarily shaped interface, it can be shown that the reflectivity follows the form[62]

r(Q) = rF(Q)

∫ ∞
−∞

df

dz
e−iQzz dz, (2.66)

with f(z) being an interface profile function that describes the continuous transition

between the nominal SLD of the two respective layers as depicted in Fig. 2.10. The

derivative of the error function erf(x) is a Gaussian, i.e.

d

dz
erf(z) =

2√
π

e−x
2
. (2.67)

Considering the particular choice

f(z) = erf(
z − si√

2σ
), (2.68)

it follows that
df

dz
=

1√
2πσ2

e−
z2

2σ2 . (2.69)

Inserting eq. 2.69 into eq. 2.66, it follows that the reflectivity of an interface being

Figure 2.10: Rough interfaces in a layered system. The left line represents the
SLD profile of the sample, while the Gaussians on the right hand side of the figure
describe the gradient of each interface. According to eq. 2.71 wider interfaces imply
lower reflected intensity at the interface.
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described by an error function is given by the particularly simple expression

r(Q) = rF(Q) e−
Q2
zσ

2

2 , (2.70)

so that the intensity reflectivity R(Q) follows

R(Q) = RF(Q) e−Q
2
zσ

2
. (2.71)

This result immensely simplifies calculation of x-ray reflectivity, since it provides an

analytical solution to an important and common case of rough interfaces, simply

stating that the reflectivity of rough interface is the Fresnel reflectivity of an per-

fectly flat interface, modulated by an Debye-Waller-like factor e−Q
2
zσ

2
, which reduces

reflectivity by an amount proportional to the interface width σ. meaning that the

reflectivity is lower, the larger the total width of the interface is.

However, if the interface under consideration can not be reasonably described

by an error function, for instance because the respective roughness of neighbouring

interfaces is high enough for their profile functions to overlap, it might not be possible

to find an analytical solution to the problem and the interface profile has to be solved

numerically, by slicing the depth profile into slabs of finite size. Each slice is then

attributed with an SLD corresponding to the desired (arbitrary) depth profile and

solved by, for instance, by either of the methods discussed in sections 2.2.4 and

2.2.5.

2.3 Examples of X-ray Reflectivity

This section presents examples of x-ray reflectivity of some common sample struc-

tures and their corresponding reciprocal space characteristics. The examples are

chosen to be of increasing complexity, either structurally or in the required experi-

mental effort in determining sample properties of interest.

2.3.1 Reflectivity of a Single Slab

Even simple systems may deviate from a desired nominal structure and x-ray re-

flectivity often provides sufficient sensitivity to characterise a sample and validate

a certain sample model. A simple example is thin film deposition onto a substrate

of known material. Potentially unknown factors include the roughness on top of

both the substrate and the deposited layer, as well as the question if any of the

involved materials have oxidised and how thick the corresponding oxide layers are.
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Figure 2.11: Reflectivity of a thin Fe film on a Si substrate at E = 8.04 keV. The
nominal film thickness was 10 nm. In case of the oxidised sample the top part of
the Fe layer was replaced with a 2.5 nm thick layer of Fe3O4. The third simulation
assumed an increased surface roughness of σFe = 0.5 nm of the Fe layer compared
to 0.1 nm in the nominal case. The inset shows the corresponding SLD profiles of
all three systems.

Fortunately, all these factors affect the SLD profile and will therefore manifest in

the x-ray reflectivity of the sample, which can therefore be conveniently used for

structural characterisation.

Fig. 2.11 exemplifies how real space deviations affect the reciprocal space

representation of the sample presenting the reflectivity and SLD profile of three

similar but distinct systems. The nominal sample structure serves as a guide, and

is in this case given by the simplest of the three systems, characterised by sharp

interfaces and no oxidation. The calculated reflectivity of the nominal sample shows

well defined oscillations over the whole angular range up to 7° or roughly 7.5 nm−1.

If the Fe layer oxidises, the top part of the scattering length density profile

changes due to the altered chemical profile as can be seen in the inset of Fig. 2.11.

Oxidation manifests in reciprocal space mainly by a periodical modulation of the

nominal samples reflectivity. Increasing the roughness of the Fe layer on the other

hand leads to a continuous dampening of the oscillation amplitude with increasing

Q-values. Obviously, oxidation and increasing roughness as well as all combinations

thereof, distinctly affect the samples reflectivity, and can therefore generally be
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determined from an adequate model of the SLD-profile.

2.3.2 Reflectivity of a Multilayer

If the sample is organised into a superlattice, Bragg satellites corresponding to the

combined thickness of the repeating component emerge in the reflectivity. Fig. 2.12

presents the simulated reflectivity of a stack of 10 repetitions of an CoFe-Al2O3

bilayer, each component 3 nm thick, on a Si substrate. The emerging Bragg peaks

are separated by ∆Q = 2π/6 nm ≈ 1.04 nm−1 corresponding to the total thickness

of the bilayer. Note the intensity modulation given by the form factor of the bilayer,

which significantly reduces the intensity of every second Bragg peak, because of the

equal thickness of the two bilayer components. This system was also benchmarked

against the known reflectivity tool GenX to empirically check for the validity of the

slicing approach used in this work as described in section 2.2.5.

The required z-resolution of the slicing technique strongly depends on the

experimental resolution and the acceptable tolerance in spatial sampling the actual

SLD profile. That means that a slicing approach is only able to determine any
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Figure 2.12: Reflectivity of 10 repetitions of a CoFe-Al2O3 bilayer. The main peaks
correspond to the thickness of the bilayer, while in between Kiessig fringes corre-
sponding to the total thickness of the stack are observed. The strong deviations at
∆z = 0.5 nm are due to miss sampling of the true interface structure. The inset
shows the SLD profile of the sample.
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interface within its z-resolution, which therefore has to be chosen appropriately.

Potentially even more important is being able to determine a rough interface be-

tween two layers, since the exact transition will often strongly impact the actual

experimental reflectivity.

From Fig. 2.12 it is evident that a slicing resolution of ∆z = 0.1 nm is suffi-

cient to produce virtually perfect agreement between the exact analytical model and

the slicing model. On the other hand, another simulation using a coarser resolution

of ∆z = 0.5 nm is not able to produce satisfactory agreement with the analytical

model, with strong deviations, particularly at high Q values. If the interface is con-

sidered to be of width 6σ, i.e. transitioning from 99% material A and 1% material

B to 1% material A and 99% material B, a z-resolution of ∆z = 0.1 nm digitises

the interface six times on average, which is sufficient to compete with the analytical

model. The rough sampling at ∆z = 0.5 nm, however, only digitises the interface

once, which is the reason for the observed deviation.
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Figure 2.13: Energy dependence of the Fe and Co scattering factors. Just below the
Fe K absorption edge at 7.1 keV the real part of the scattering factors show a large
difference. At the Co K-α edge at 8.048 keV the difference is almost zero. Data
taken from [72].
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2.3.3 Resonant Multilayer

In case a sample consists of materials which only show very little contrast in their

respective SLD (which is often the case for elements neighbouring each other in the

periodic table), resonant scattering can be a useful tool in resolving the samples

chemical structure. The latter is accomplished by tuning the x-ray energy close to

a particular resonance edge of one of the materials, affecting the energy dependent

dispersion correction terms f ′ and f ′′ in the expression for the scattering factor,

therefore manifesting in a change of the materials SLD and hence the recovery of

chemical contrast.

As an example, consider the reflectivity of a multilayer stack of 10 repetitions

of an Co-Fe bilayer of thicknesses 2 nm and 4.5 nm, respectively. The atomic numbers

of the two materials are 27 and 26, and hence their uncorrected scattering factors in

reflectivity differ by only about 3.7 %, often too little to be resolved in the chemical

structure during a non-resonant experiment.

By tuning the x-ray energy to just below the Fe K-edge, a strong negative

correction term

f ′Fe(EFe−K −∆E) < 0

is affecting the real part of the scattering factor and and hence the SLD. Since

absorption is only significantly increased above the absorption edge it holds that

f ′′Fe(EFe−K −∆E)� f ′Fe(EFe−K −∆E)

and fluorescence is avoided. The latter would reduce the background intensity and

therefore simplify an experimental measurement, if desired.

Fig. 2.13 shows the real- and imaginary parts of the scattering factors of

Fe and Co for a range of energies covering the Fe K-edge as well as the Co K-α

edge, the latter being the most commonly used x-ray energy in standard laboratory

equipment and providing almost no chemical contrast between Fe and Co.

The effect of resonant scattering on the Co-Fe multilayer is presented in Fig.

2.14. The simulation taken off-resonance at ECoK−α = 8.048 keV is showing very

little structure in both real- and reciprocal space. By tuning the x-ray energy to the

Fe resonance, the SLD of the Fe is significantly decreased, leading to the emergence

of well resolved Bragg peaks.
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Figure 2.14: Reflectivity of 10 repetitions of an Co-Fe bilayer simulated on and
off the Fe K-absorption edge. The inset shows the energy dependence of the SLD
profile.

2.3.4 X-Ray Magnetic Scattering

A special case of resonant scattering occurs if the energy of polarised x-rays is tuned

to magnetically sensitive absorption edges, like the LIII edge. At these energies, the

refractive index of a magnetic material is not only affected by a large dispersion

correction, but develops a coupling between the x-ray polarisation and orientation

of the local magnetic moment of magnetic atoms as has been discussed in section

2.1.4.

Fig. 2.15 a) and b) show the sum signal and asymmetry ratio, calculated

according to eq. 2.33, corresponding to a stratified magnetic system, consisting of

a 5 nm slab of Fe, located between an semi-infinite Si substrate and a 5 nm slab

of Fe3O4. The Fe was assumed to be fully magnetised along the direction of the

incident x-ray beam and the real- and imaginary parts of the magnetic component

of the scattering factor of the pure Fe were, for simplicity, defined to be 5 % and

1 %, respectively, of the corresponding non-magnetic components, i.e.

f ′mag = 0.05 (f0(Q) + f ′(E)) (2.72a)

f ′′mag = 0.01 f ′′(E). (2.72b)
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Figure 2.15: Example of the magnetically sensitive XRMS signal of an Fe-Fe3O4

bilayer. Panel a) and b) present the simulated sum signal and asymmetry ratio,
respectively, as it would be obtained from measuring I+ and I−, the reflected inten-
sities under flipping of the helicity of the circularly polarised x-rays. The inset of
panel a) shows the real parts of the charge- (purple line) and magnetic (green line)
SLD profiles of the underlying system.

The scattering factors of the Si and Fe3O4 were modelled to not obtain any magnetic

components. Simultaneous fitting of both the sum signal and the asymmetry ratio

then allows resolving the charge- and magnetic profile of the sample as depicted in

the inset of Fig. 2.15 a).

2.4 X-Ray Diffraction of Patterned Arrays

This section will briefly summarize the fundamental aspects of diffraction of pat-

terned arrays, i.e. of two-dimensional mesoscopic lattices. Generally, a broad body

of diffraction theory exists, which can generally be quite involved both to calculate

and relate to experiments[84, 90]. Applications of diffraction of patterned arrays

span a wide range of topics, including Lattice imperfections and long range sample

correlation [54, 91–93], short range structural characterisation [91, 92, 94, 95], coher-
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ence effects [55, 95, 96], magnetic order [28, 38, 50, 75, 97, 98] and more. However,

approximations such as kinematical scattering [62, 79] and the two-beam approxima-

tion[84, 90] can simplify the mathematics drastically with often still satisfactory

results.

2.4.1 Motivation

In a general way, the intensity of an elastically scattered monochromatic electro-

magnetic wave, is given by[90]

I(Q) =
k2I0

16π2A

∣∣∣ 〈kf |T̂|ki〉∣∣∣2 =
k2I0

16π2A

∣∣∣∣∫ T̂(r)e−i(kf−ki)r d3r

∣∣∣∣2 (2.73)

where I0 is the intensity of the incident radiation, A is the (coherently) illuminated

sample area and ki and kf are the incident and scattered wave vectors, respectively,

both of length |ki| = |kf | = k. The scattering operator T̂ is given by the infinite

series

T̂ = V̂ + V̂Ĝ0V̂ + V̂Ĝ0V̂Ĝ0V̂ + ..., (2.74)

where terms of order higher than zero (one) are neglected in case of kinematic

approximation (Distorted Wave Born approximation). G0 is the Green function,

i.e. the free particle solution of the wave equation, which can be expressed as the

superposition of plane waves to read[90]

G0(r− r′) = − i

8π2

∫
eik(r−r′)

kz
d2k‖, (2.75)

where the in-plane wavevector component k‖ ≤ k and k2
‖ + k2

z = k2. Hence, in order

to evaluate eq. 2.73 one has to find an expression for the scattering potential V̂ of

the sample as will be done below.

2.4.2 Real and Reciprocal Lattice

A convenient way of describing the scattering potential V̂(r) of the sample requires

the decomposition of the periodic structure of a patterned array into three distinct

parts. The first is the (infinite) lattice

X =

∞∑
n=−∞

δ(x− ndlatt) (2.76)
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with n ∈ Z characterising the periodicity of the array. The second is the scattering

potential of the unit cell, e.g. in terms of the scattering length density

V̂uc(r) = f(r)ρnum(r),

which defines the repeating element. Lastly, the third component is some kind of

truncation function

Γ(r),

that takes care of the spatial finiteness of any real sample. The latter might be given

either by the limited sample dimensions itself, or by the coherence of the radiation

interacting with the sample as is discussed in more detail in chapter 4.

Mathematically, taking into account all three of the above components, the

scattering potential of the whole ”active” sample can be modelled by

V̂ = V̂uc ⊗X · Γ, (2.77)

where ⊗ and · denote the convolution and multiplication operations, respectively.

A particular example is given by Fig. 2.16 a), where for simplicity a one-

dimensional array was chosen. The scattering potential of the unit cell is given

by

V̂uc(x) =


(a− x)/a for 0 < x < a

(a+ x)/a for − a < x < 0

0 for |x| > a,

(2.78)

where a = 1/3 has been used in the figure, while the infinite array is truncated by

a box function

Γ(x) =

1 if |x| < B

0 else ,
(2.79)

and B = 4.5 has been used in Fig. 2.16.

From eq. 2.73 it is clear that the scattered intensity is given by the Fourier

transformation of the scattering potential V̂. The latter can be easily performed by

repeated application of the convolution theorem

(f · g)FT = fFT ⊗ gFT (2.80a)

(f ⊗ g)FT = fFT · gFT (2.80b)
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Figure 2.16: Real, panel a), and reciprocal, panel b), space of a one-dimensional
array. Both lattices are finite, however the modulation of the real space lattice
is given by a box-truncation of the infinite lattice, whereas the modulation of the
reciprocal lattice is given by the Fourier transform V̂FT

uc of the unit cell scattering
potential V̂uc, both depicted in dark purple. The Fourier transform of the truncation
function Γ(x) = rect(4.5dlatt)

FT is a sinc function ΓFT(Qx) = 9 sinc(Qx), which is
convolved with the reciprocal lattice, both being depicted in orange. Combined,
the truncated array in panel a) turns into the modulated array in panel b) both
depicted in green.

to read

V̂FT = {(V̂uc ⊗X) · Γ}FT
= (V̂uc ⊗X)

FT ⊗ ΓFT = V̂FT
uc ·XFT ⊗ ΓFT. (2.81)

With the Fourier transformation of the real space lattice being the reciprocal lattice

X(x)FT =

∞∑
n=−∞

δ(Qx − n
2π

dlatt
) = X(Qx), (2.82)

it is apparent that eq. 2.81 represents the convolution of the reciprocal lattice with
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the Fourier transform of the truncation function ΓFT, modulated by the Fourier

transform of the scattering potential of the unit cell V̂FT, as depicted in Fig. 2.16.

This is the basic premise to understand the scattering from a patterned array.

2.4.3 Kinematical Scattering

With respect to eq. 2.73 and for the moment restricting to kinematical scattering in

the definition of V̂ in eq. 2.74, this means that the diffracted intensity of a patterned

array consists of a fan of Bragg peaks distributed around diffracted wavevectors kn

whose component within the sample plane satisfies the Bragg condition

kn,‖ = n
2π

dlatt
+ ki,‖, (2.83)

and, since only elastic scattering is considered, the out-of-plane component is given

by kn,⊥ =
√
k2 − k2

n,‖. The larger the sample area, the smaller the spread of intensity

around each Bragg peak, and the scattering potential of the unit cell V̂uc is encoded

within the intensity modulation of the Bragg peaks, generally allowing detailed

analysis of the unit cell from diffraction.

The nature of the sample and the experimental set-up determines the level

of scattering processes that have to be taken into account in order to reproduce

experimental data. Within the kinematical approximation only a single scattering

process is considered, and hence eq. 2.74 is truncated after its first term. Limiting

to a single Bragg peak, the scattered intensity is then given simply by connecting

kf and ki by a single scattering process, obtaining the lateral wavevector transfer

Q‖ = n 2π/dlatt as seen by wavevector transfer Qtt in Fig. 2.17 b).

Further, since the scattered wavefield consists of a fan of diffracted waves

each satisfying the lateral diffraction condition, theories involving multiple scatter-

ing effects generally have to consider excitations from neighbouring Bragg peaks.

However, the latter can mostly be ignored for diffraction of patterned arrays, since

the coherent parts of the diffracted waves propagate mostly above the generally very

thin sample structures. The latter justifies the use of the two-beam approximation,

named so because only the incident and one diffracted wave are considered at any

given time. One example where multiple scattering may play a role in diffraction

of patterned arrays is Umweganregung, where Bragg diffraction within the underly-

ing substrate may create significant wave fields diffracting with the array structure

above[90, 99, 100].
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Figure 2.17: Real- and reciprocal space diffraction. Panel a) depicts four scatter-
ing processes involving intermediate states of specularly reflected waves. Within
the kinematical approximation only the top left process is considered, whereas the
DWBA takes all four into account. Shading of the arrows is representative of di-
minishing modulus of the wave field amplitudes. Panel b) shows the corresponding
diffraction wavevector transfers in reciprocal space. Whenever both ki and kf ter-
minate on GTRs the lateral diffraction condition is fulfilled. The orange arrows
correspond to the four scattering processes considered in the DWBA on excitation
of a single GTR.

2.4.4 Distorted Wave Born Approximation

Another example of multiple scattering effects concerning patterned arrays is given

by the Distorted Wave Born Approximation (DWBA)[68, 90, 92]. Generally, in

DWBA implementations, the scattered wavefield defined by |kf 〉 is divided into an

undisturbed and disturbed contribution obtained from the undisturbed and dis-

turbed scattering potentials, V̂0 and V̂1, respectively. V̂0 is chosen simple enough

so that an exact analytical solution 〈k1| exists, which interacts with V̂1, leading to

I(Q) =
k2I0

16π2A

∣∣∣ 〈kf |V̂|ki〉
∣∣∣2 ≈ k2I0

16π2A

∣∣∣ 〈k1|V̂0|k〉+ 〈kf |V̂1|k1〉
∣∣∣2. (2.84)

In the specific case of patterned arrays one implementation may consider replacing

the periodic scattering potential V̂(x, y, z) at height z with an average scattering

potential V̄ (z). Following section 2.2.4 this allows one to calculate the reflected and

transmitted amplitudes in an imaginary stratified medium of identical average scat-

tering length density as the real sample. Hence, additional to the direct excitation
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of the Bragg peak, single reflections of either incident, ki, or detector beam, kf or a

double reflection of ki and kf are taken into account, as illustrated in Fig. 2.17 a).

Note that in order to calculate the E-field amplitudes of transmitted and reflected

field, tf (z) and rf (z), of the detector side, kf has been time-inverted, i.e.

|kf 〉 = t∗f exp
{
−ik∗fr

}
+ r∗f exp

{
ik∗fr

}
. (2.85)

From the known (flat wave) solution of

〈k1|V̂0|ki〉

the matrix element of eq. 2.84 can then be expanded to read

〈kf |V̂|ki〉 = titfV̂
FT(Qtt) + ritfV̂

FT(Qrt) + tirfV̂
FT(Qtr) + rirfV̂

FT(Qrr), (2.86)

where the definition of the wavevectors as seen in Fig. 2.17 b) has been used. In

other words, each term corresponds to a particular kinematical scattering event, e.g.

the second term describes the kinematical scattering of an incoming wave, which

has previously been specularly reflected by the sample into an outgoing wave, which

is directly accepted by the detector.

However, since at angles higher than the critical angle αc the modulus of the

scattered amplitudes r � 1 drops rapidly (while t ≈ 1), multiple scattering processes

generally contribute very little intensity unless either the source or detector angle,

αi and αi, is very small. The fourth term involves reflection of both the incident

and the exiting wave, so that it usually never provides any significant contribution

to the scattered intensity under experimental rocking conditions where 2θ is in the

order of multiple degrees, since either ri or rf becomes vanishingly small.

2.4.5 Grating Truncation Rods

Finally, the fact that patterned arrays only possess lateral translational symmetry,

i.e. within the sample plane, also means that only a lateral diffraction condition has

to be fulfilled for Q‖ in order for diffraction to occur. This means that diffraction of

a two-dimensional patterned array is observed along rods parallel to Q̂z, located at

positions Qx and Qy according to the lateral reciprocal lattice X(Qx, Qy) as seen

in eq. 2.82. These rods are a direct consequence of the finiteness of the sample in ẑ

direction and can alternatively be interpreted as a result of a truncation of a three-

dimensional array. Because of the latter and of the apparent similarity to crystal

truncation rods[62, 68, 73, 81], diffraction rods of patterned arrays are also called
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Grating Truncation Rods (GTRs)[54, 87, 101].

Since the scattering considered here is elastic, both ki and kf lie on the

Ewald sphere, and hence intercept each GTR at a particular value of Qz, according

to the dispersion relation

Q2 = Q2
‖ +Q2

z = G2
m,n +Q2

z, (2.87)

with Gm,n being a reciprocal lattice vector defined for a general real space lattice of

varying pitch dx and dy by

Gm,n = m
2π

dx
Q̂x + n

2π

dy
Q̂y, (2.88)

with m,n ∈ Z. Separating lattice and unit cell, the structure factor F (Q) along

a given GTR obviously depends on the three-dimensional structure of the unit cell

and is given by

F (Gm,n, Qz) ∝ 〈kf,z|V̂uc|ki,z〉 . (2.89)

Within the kinematical approximation eq. 2.89 takes on the simple form

Fkin(Gm,n, Qz) =

∫
f(r‖, z)ρ

num(r‖, z) exp
{
−i(G‖r‖ +Qzz)

}
d3r, (2.90)

which is often found to be adequate in describing diffraction of patterned arrays.

Figure 2.18: Intensity reflectivity R of the specularly reflected beam (open circles)
and 1st Qx diffraction order peak of an one-dimensional surface grating. The asym-
metric trapezoidal cross section of the grating leads to a phase shift of the periodic
intensity modulations. Adapted from [55].
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Within the DWBA, F (Q) is calculated according to eq. 2.86, where the periodic

scattering potential of the sample V̂ has to be replaced by the scattering potential

of the unit cell V̂uc.

For simple (which in this case means: flat) structures, the intensity modula-

tion along a particular GTR resembles the specular reflectivity, although generally

including a phase shift of the modulation function[54, 55], an example of which can

also be seen in Figs. 2.18 and 5.12, where the GTRs of each diffraction order are

clearly offset from each other.

2.4.6 Diffuse Scattering

Similar to patterned arrays, correlated surface- and interface roughness gives rise to

diffuse scattering away from the specularly reflected beam[54, 102–106]. While the

highly correlated islands of a patterned array produce discrete diffraction satellites

at well defined positions in reciprocal space, the (imperfectly) correlated surface-

and interface roughness produces a much more continuous distribution in intensity.

It can principally be found by replacing the interface height z by the height-height

correlation function

C(x, y) = 〈h(0, 0)h(x, y)〉, (2.91)

averaged over the incoherently illuminated sample, when calculating the scattered

intensity. The angular brackets in eq. 2.91 represent a sample average, over all

height differences separating any two points of the sample surface by the distance

vector (x, y).

Correspondingly, additional to the diminishing specular reflectivity given by

eq. 2.71, the emerging diffusely scattered intensity can be expressed by[62]

Idiffuse ∝
e−Q

2
zσ

2

Qz

∫ (
eQ

2
zC(x,y) − 1

)
e−i(Qxx+Qyy) dx dy. (2.92)

Fig. 2.19 shows the effect of structural surface roughness within the vicinity of

the first Bragg peak of a 25-repetition Co-Cu multilayer, grown on silicon-nitride,

resulting in the distinct separation of a very narrow Bragg peak sitting on a broad

distribution of diffuse scatter.

Another example of diffuse scatter is found in the rocking curves of this work,

as seen, for instance, in Fig. 5.4 a). Correlated roughness on the islands occurring on

small length scales, lead to a broad distribution of diffuse intensity within reciprocal

space. Particularly at the high detector angles corresponding to negative Qx values,

the wide detector acceptance integrated up a lot of diffusely scattered intensity,
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Figure 2.19: Diffuse scatter of a 25-period Co-Cu multilayer deposited on silicon
nitride. The inset shows a 50-fold repetition of the same bilayer, grown on pure
silicon. The solid line corresponds to a fit of the data, obtained from a superposition
of two Voigt functions[107] representing sample correlation lengths. Adapted from
[103].

manifesting in a wide background signal, being more distinct towards lower Qx,

which the diffraction satellites are sitting on. Since diffraction peaks and diffuse

scatter are separate and distinct from each other, it has been possible to subtract

the background, where the intensity distribution allowed interpolating the intensity

between neighbouring diffraction peaks.

2.5 Summary

This chapter covered the theoretical foundations of x-ray scattering in general and

x-ray diffraction of patterned arrays in particular. The discussion covered the rela-

tionship of the atomic scattering factors f , scattering length density SLD, and the

refractive index n. Further a framework for the allowance of arbitrary polarisation

of the electric field E of x-rays was discussed. In particular, it was shown how circu-

lar polarisation is treated within the scattering framework. The latter is one of the

prerequisites of x-ray resonant magnetic scattering (XRMS), utilising the circularly

polarised light of tunable energy E obtainable from modern synchrotron sources as

discussed in chapter 3, therefore enabling the consideration of the distribution of

local magnetic moments by simulation.

The respective scattering geometry of measurement techniques like x-ray re-

flectivity, rocking curves and GISAXS all possess differing requirements on the form
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of the wavevector transfer Q in calculating the structure factor F (Q) even when

using the same underlying sample model. However, as will be seen over the course

of the thesis, different scattering problems also have been found to require funda-

mentally different models of the sample, ranging from purely numerical summation

of simple two-dimensional grids to sophisticated (semi-)analytical three-dimensional

models of �A-level resolution. Furthermore, depending on the scattering geometry

employing the DWBA might become necessary, significantly slowing down the sim-

ulation process.

The requirements regarding the calculation of scattering intensities are there-

fore found to strongly vary depending on the problem, while most of the remaining

analysis, i.e. parametrisation framework and data fitting, is found to essentially be

problem independent. Hence, maximising code re-usability motivated the encapsu-

lation of the respective components seen in the leftmost column of Fig. 1.1, therefore

decoupling the Simulation module from the remaining code base.
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Chapter 3

Tools & Techniques

The focus of this section lies on the practical aspects of the work contained in this

thesis such as sample creation and experimental set-ups, as well as the subsequent

analysis of data, including the particularities of the fitting method applied in order

to extract meaning from experimental data.

Therefore, section 3.1 will deal with nanoscopic patterning techniques in

general while their practical implementation in creating the patterned arrays dealt

with in this work are presented in section 3.2. The next section (3.3.2) focusses on

the types of diffractometer scans performed and what the relationship between the

various diffractometer angles and the wavevector transfer Q is. This provides the

connection between experiment and scattering theory. Section 3.3.1 briefly summa-

rizes the most important properties of modern synchrotron sources and why they

are necessary for certain types of experiments. Finally, the purpose of section 3.4 is

to familiarise the reader with the basic concepts of the Differential Evolution Algo-

rithm, which mimics natural genetic selection in order to adapt, or fit, simulations

to experimental data.

3.1 Sample Preparation

The patterned arrays presented in this work are examples of mesoscopic systems,

the latter being loosely characterised by exhibiting some kind of correlation length

in the order of tens of nanometres up to multiple micrometers. Often, mesoscopic

systems are specifically engineered utilising various nanopatterning techniques[108–

113]. The correlation lengths of these systems are then found to be of dimensions

suitable for the low wavelength transfers used in grazing incidence and small angle

x-ray scattering[114][68][115][116] (GISAXS and SAXS, respectively).
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The structure of all samples discussed in this work can be broadly divided

into their out-of-plane and in-plane components. In the case of patterned arrays in

particular, the out-of-plane component is intimately related to the planar thin film

deposition techniques, which are discussed in section 3.1.1. The in-plane structure

of a patterned array is, in most cases, created through some kind of lithographic

structuring[117][118][47], spatially truncating the out-of-plane structure into a two-

dimensional array. As such, lithographic patterning is discussed in section 3.1.2.

3.1.1 Thin film deposition

Some of the most common techniques of (unpatterned) thin film deposition in nan-

otechnologies are sputtering [119–121], molecular beam epitaxy [122, 123] (MBE) and

spin coating [124, 125]. Their common use is the creation of thin films[57, 126, 127] of

materials, ranging from �As up to multiple µm in thickness. In the case of sputtering

and molecular beam epitaxy the mass is transferred from a material source to the

sample via an intermediate vaporous state, whereas in spin coating a large quantity

of material is deposited on a rapidly rotating sample and subsequently spread out

into a thin film via centrifugal forces. Since no samples in this work have been

prepared by MBE[128, 129], no explicit discussion will be provided at this point.

Sputtering techniques

Sputtering is an umbrella term for a plethora of similar techniques, which all follow

the basic principle of transferring material from a sputtering target to be deposited

on a sample. This generally happens by means of bombarding a target with highly

accelerated particles of molecular size[113]. Most commonly, the incident particles

are ions formed from an atmosphere of very low pressure in the order of mbar inert

gases like argon, following the evacuation of the sputtering chamber to a very low

base pressure in the order of 10−9mbar. Acceleration of the ions onto the target

material is performed by a high electrical potential difference in between anode

(which might be the sample itself) and the target cathode. The kinetic energy of

the incident ions is bound by the requirements that

1. it is sufficient to eject atoms or molecules out of the bulk target material

2. the remaining kinetic energy of the particles after ejection is sufficient to ex-

hibit a mean free path through the sputtering chamber which is much larger

than the target-sample distance in order to keep a sufficient particle flux onto

the sample surface. The kinetic energy of the ejected particles is generally

59



found to be actually too high for efficient adsorption onto the sample. There-

fore, the mean kinetic energy of the ejected particles is reduced by inelastic

collisions with inert gas molecules, the number of which is controlled by ad-

justing its pressure.

Generally, a balance of parameters like gas pressure and potential difference has to

be found to ensure both high deposition rates and thin film quality.

The simplest and most common form of sputtering is direct current sputtering

(DC sputtering)[71][130], where a constant potential difference up to multiple kV is

applied in between the target and source material. Any ions of inert gas atoms and

free electrons are immediately accelerated either towards, or away from, the sputter

target cathode. On their way, the charge carriers are triggering a chain reaction of

impact ionisation of gas atoms, thereby creating a stable plasma around the target

cathode which is characterised by the eponymous direct current of positive electrical

charge towards the target.

Another variant of the technique is radio frequency sputtering [131] (RF sput-

tering), which – among other advantages – enables sputtering of non-conducting tar-

get materials, which would otherwise quickly lead to an agglomeration of positive

charge on the target with consequences like electrical arcing and reduced sputtering

rates[132, 133]. In RF-sputtering a high frequency alternating electrical field is ap-

plied in between the sputtering target and the sample. From multiple tens of kHz

upwards, the relatively heavy ions are not able to follow the oscillating field any

more, due to their low charge-to-mass ratio. Any electrons in the plasma, however,

are still sufficiently mobile and able to follow the driving field thereby replenishing

any deficient charge on the target on every field cycle. In order to overcome the

apparent immobility of the inert gas ions at high frequency fields an offset voltage

is applied in addition to the RF field, therefore leaving the basic working principle

of a net stream of ions towards the sputtering target intact.

To improve sputtering rates even further, a magnetron may be added close

to the target in a magnetron sputtering [98][75][134] set up. Here, electrons in the

plasma are trapped close to the surface of the sputtering target by the magnetic

field of the magnetron. According to the Lorentz force, the electrons take on a

spiralling course along the magnetic field lines, more or less parallel to the target

surface. In this way, the increased path lengths of electrons leads to drastically

higher ionisation rates, therefore increasing the net ion flux towards the target and

the associated sputtering rate.

In order to efficiently grow layered systems, sputtering chambers generally

contain a number of sputtering targets of various materials. They are shielded from
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each other with shutter doors, and can be used as required following a protocol

determining the order and thickness of the desired layers. The layer thickness is

usually controlled by a quartz crystal microbalance (QCM), which measures either

the material deposition rates or the total deposited material per unit area[135]. The

latter is accomplished by piezoelectric detection of the changing oscillation period

of a quartz-crystal resonator, depending on the oscillators mass-increase due to

the deposited material. For a reliable reading of the material deposition rate it

is important that the QCM is located in close proximity to the sample within the

sputtering chamber, so that the deposition rates at both locations are equal. Typical

deposition rates for growing patterned arrays are in the order of �A s−1.

All samples contained in this work have been created by either RF- or DC

magnetron sputtering, with details about the growth process being found in Arnalds

et al. [98] and Östman et al. [77].

Spin Coating

Another technique for creating thin films is spin coating [136][137]. Here, a liquid

droplet of material is deposited onto a rapidly spinning substrate and subsequently

thinned out by centrifugal forces into a thin film, removing any excess material.

This technique is obviously limited by requiring a liquid state of the initial

material, which severely limits the choice of deposited material under normal labo-

ratory conditions. Furthermore, controlling the film thickness is much less precise

than in the previously discussed techniques and the lower limit of obtainable film

thickness of about 100 nm is often larger than desired by an experimenter.

However, the technique’s low cost and fast preparation time makes it an

excellent technique for depositing electronbeam- or photoresist layers (furtherly dis-

cussed in section 3.1.2) and leaves spin coating among the most ubiquitously used

techniques in nanopatterning.

3.1.2 Lateral Structure

The last section focused on the controlled creation of planar, or stratified, samples,

whose structuring is basically limited to the out-of-plane direction. Patterned ar-

rays, however, additionally to the aforementioned structure normal to the sample

plane, obtain an additional dimension of structure within the sample plane, which

usually manifests in form of lateral translational symmetry or at least structural

long distance correlations[92, 113, 127].

Various approaches for the creation of these structures exist, most of which
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can be characterised by one of either top-down[138–140] or bottom-up[137, 141, 142]

patterning.

Bottom-up Approaches

The term bottom-up approach refers to the indirectly controlled creation of larger

systems from specifically engineered building blocks, which interact in a desired

way that leads to self-assembly into a desired structure[143]. Since the engineering

takes place on the level of the building blocks, the approach is termed “bottom up”.

Bottom-up assembly generally requires less direct interference of an experimenter

and is most often found to be significantly faster and cheaper than top-down ap-

proaches, because of the self assembling characteristics of the system, which ne-

cessitates little or no external intervention. However, on the flip side, the number

of obtainable systems is arguably relatively low, since the processes driving the

self-assembly are hard to control and can generally not be used to create arbitrary

systems. Furthermore, true long range order over mesoscopic length scales can only

rarely if ever be obtained and correlations of the systems are generally limited by

statistical fluctuations[91].

Top-down Approaches

As opposed to bottom-up approaches top-down patterning works by successive re-

duction of an extended but simple system into a smaller system of a more complex

structure[113], therefore patterning the sample from the “top down”. In top-down

approaches it is usually the interactions between the sample and an external pattern-

ing device that drive the assembly, rather than interactions in between the building

blocks themselves as is the case for bottom-up approaches.

The very high spatial resolution modern lithography techniques provide has

recently dropped to single digit nm resolution[144–146]. The ability to re-use pat-

terning masks obtained from electron beam lithography allows the rapid sample

creation using photo-lithography [147, 148] and nano-imprint lithography [149] lead-

ing to remarkably large spatial patterning dimensions of up to ∼ 10 cm2[77]. Because

of the time consuming patterning by scanning an electron beam over the sample,

mask-less patterns directly obtained via electron beam lithography [150, 151] (EBL)

are usually smaller, typically < 1 mm2. In any case, the exceptional short- and long-

range accuracy obtained by any lithographic patterning techniques leads to the re-

sulting patterned arrays to justifiably being regarded to as perfect two-dimensional

supercrystals[91]. Using any lithographic technique, a chemical pattern is created
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by exposing selected parts of the resist material to either light or an electron beam,

thus changing the molecular structure of the exposed resist. Typically, the exposure

follows either a negative or positive template of the final sample pattern.

In the development step the physical pattern is created, usually by application

of a developer solvent to the (chemically patterned) resist. Using positive resist, the

parts of the resist that have previously been chemically modified dissolve on contact

with the developer solvent, while the chemically unmodified resist remains stable

on contact with the developer. Using negative resist on the other hand, the resist

is generally soluble within the developer solution and the chemical modification of

the resists following the patterning process now stabilises the solvent with respect

to the developer chemical. Using mask-less lithography (e.g. EBL) the choice of

which kind of resist to use depends, amongst other factors, on whether a positively

or negatively pattern requires the larger exposure area, since the electron beam has

to be rastered over the whole patterning template, which can take many hours for

the patterning of a micro- or even millimetre sized sample area, possibly including

many millions of nano-elements.

Being a mask-less technique, EBL provides the advantage of an extremely

high flexibility, as arbitrary sample structures may directly be printed to a resist

layer, without requiring to first go through the mask-creation process. Further, EBL

patterns usually show better results than competing lithographic techniques, both

Figure 3.1: Example of patterning of narrow nano-elements into an artificial spin
ice lattice. In this example a post-patterning of the sample was used, meaning that
the island material has been deposited before the lithographic patterning of the
sample took place. Despite impurities and scratches, the patterned array in itself is
found to be virtually defect less over very large areas as can be seen in panel a). The
nominal length and height of single islands almost perfectly match the specifications
of 150 nm and 450 nm. Images have been captured within the authors work-group.
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in terms of fewer structural defects as well as lower edge roughness[145]. Because

of these advantages, EBL is the technique nowadays most often used in scientific

research. Fig. 3.1 shows an example of the high degree of accuracy obtainable from

electron-beam lithography.

In contrast, photo-lithography provides an advantage in sample preparation

speed because of its highly parallel exposure step, which basically consists in simply

irradiating the sample with light[152]. Because of the rapid patterning speed and

low cost, photo-lithography is most commonly used in industrial manufacturing of

nano- and microstructures.

In practice, a complex sample structure usually requires a combination of

different approaches and the creation process may involve multiple steps of growing-

and patterning procedures as will be shown in the example given in the next section.

3.2 Experimental Realisation of Samples in this Work

The samples presented in this work were designed by a multi-step combination of

deposition methods and lithographic patterning leading to either a pre-patterning or

post-patterning of the samples. The exact experimental details of sample creation

are provided in the respective chapters as well as in Arnalds et al. [75] and Östman

et al. [77], in all cases using pre-patterning of the arrays. For completeness, the

alternative route of post-patterning samples is discussed as well. Here, only the

basic principles will be compared, which are also depicted in the top- and bottom

rows of Fig. 3.2.

In the case of pre-patterning the sample creation process can be broken down

into five steps:

1. Application of a layer of positive resist using spin-coating.

2. Patterning of the e-beam resist through exposition to a scanning electron

beam. This is the most time consuming step in the process.

3. Development of the e-beam resist, creating the patterned mask. Since a posi-

tive resist was chosen in the first step, the area exposed to the electron beam

is now removed from the substrate, leaving behind a hole-pattern within the

remaining resist, representing the in-plane structure of the final patterned ar-

ray. (Alternatively, if nano-imprint lithography[149] is used, the patterning

mask is obtained mechanically via application of a spatially moulded stamp

onto a spin-coated film of silica-based sol-gel instead of chemical dissolving.)
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Figure 3.2: Schematic of the pre- and post-patterning processes using EBL. (a) Ap-
plication of e-beam resist via spin coating, b) Chemical resist-patterning by using a
focused e-beam, c) Physical resist-patterning through removal of chemically altered
resist, d) sputter deposition of either the pattern material (top) or a chromium
shielding (bottom), e) chemical removal of the remaining resist and attached ma-
terial, f) Physical patterning of the unshielded sample material through ion-milling
(postpatterning only), g) the final array is identical in both patterning processes.

4. Deposition of the pattern material by a suitable technique, e.g. magnetron

sputtering. Hence, only now is the out-of-plane chemical structure of the

pattern created.

5. In the last step, the remaining resist is dissolved in a lift-off process, detaching

the material deposited on top of the resist from the sample, leaving behind

the bare patterned array.

On the other hand, the post-patterning protocol consists of a slightly more compli-

cated six-step process:

1. Spin-coating of positive resists onto an already grown stratified system, corre-

sponding to the desired out-of-plane structure of the patterned array. (Prepar-

ing the thin film structure in advance, has the advantage of better control of

the growth process, enabling, for instance, epitaxial growth of single crystalline

structures.)

2. Patterning of the e-beam resist through exposure to a scanning electron beam.

3. Development of the e-beam resist. Being identical to step 3 of the pre-

patterning approach.
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4. Deposition of a shield layer, e.g. chromium, by a suitable technique, e.g.

magnetron sputtering. The shield covers both the stratified sample and the

remaining patterned resists.

5. Dissolving of the remaining resists. Any chromium on top of the resists is

removed as well, leaving behind a chromium shielding corresponding to the

lateral structure of the desired pattern.

6. Patterning of the layered sample is accomplished by ion-milling[152, 153], bom-

barding the sample with high energy Argon or Gallium ions. Therefore, sam-

ple material which is not protected by the chromium shield is sputtered away,

hence completing the sample patterning process.

Post patterning has been used within the scope of this project for creating the

artificial spin ice presented by Stopfel et al. [42]. However, since no further analysis of

this system has been performed within the scope of this thesis, no further discussion

is provided here.

Which of the two patterning processes is to be used depends on the desired

kind of sample. Although generally possible[154, 155], if the patterned elements re-

quire epitaxial growth, usually post-patterning is favoured, since the sample growth

demands a much higher spatial control of the growth process, which is much easier

for stratified- than patterned media. On the other hand, pre-patterned masks are

reusable, which may speed up the sample creation significantly if multiple similar

arrays are to be created. However, pre-patterning is only compatible with amor-

phous or polycrystalline sample structures, which require less precise control over

the conditions of the growth process.

What is common to all patterning processes is that the thickness of the resist

layer providing the patterning mask is always significantly thicker than the final

patterned structure which is mostly due to limitations regarding the lower limit

of film thickness obtainable by a spin coating process. The latter might lead to

problems in pre-patterned samples, since it increases the probability of shadowing

effects if the incident angle of the subsequent material deposition into the mask

deviates even slightly from the normal incidence to the sample plane.

Another factor to consider is the inhomogeneous energy deposition of the

electron beam within the resist layer in lithographic patterning, known as the prox-

imity effect [156, 157], meaning that, generally, meaning that volume within which

the incident electrons deposit their kinetic energy generally exceeds the volume of

the nominal scanning pattern. Fast electrons penetrating into the resist layer de-

posit their kinetic energy in a cascade of scattering events and are often found to
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be elastically backscattered from the underlying substrate. In effect, this leads to

over exposure of the resist, with the effect being more pronounced the more kinetic

energy the electrons possess and the further the backscattered electrons travel back

up through the resist film[158, 159]. Both of the latter is true for the higher parts

of the resist layer, generally leading to overexposure being more pronounced higher

up in the resist layer, resulting in patterning masks using positive resist ending up

being wider at the top, potentially leading to undesired crowning effects[56]. To

compensate for this overexposure, actually two layers of e-beam resist have been

applied to the substrate, the lower one having a higher sensitivity to compensate

for the narrower exposure width deeper down in the resist.

In fact, crowning has not been observed in subsequent characterisation of

the pattern. However, the patterned arrays consistently exhibit doming, i.e. a

continuous radial distribution of island height, decreasing from the island centre

to the edges, an example of which is depicted in Fig. 3.3. The latter shows an

AFM linescan over one patterned island of nominal radius and height of 450 nm and

10 nm, respectively. Most prominently, each island obtains a pronouncedly domed

top, spanning roughly six to eight nanometres in height. Furthermore, the island’s

side walls do not appear to be perfectly vertical, but rather narrow down multiple

tens of nanometres in width over the first 10 nm in island height.

One possible explanation of this observation is a shadowing effect of the rela-

Figure 3.3: Atomic force microscopy linescan of a patterned amorphous iron palla-
dium nanodot. The doming of the structure is clearly visible. The doming is either
due to a shadowing effect of the relatively high (100 nm) patterning mask or a more
dynamical redistribution of the FePd adatoms after deposition.
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tively high patterning mask over the thin layer of deposited island material (100 nm

vs. 10 nm) affecting the uniformity of the growth under non-perpendicular incident

angles of the deposited material. However, geometric considerations show that the

patterning mask would have to be significantly higher in order to account for the

observed continuous radial distribution under any conceivable realistic incidence an-

gles of deposited material. The latter, together with the fact that – as will be shown

in chapter 4 – doming also occurs in the post-patterned samples, renders shadowing

effects a relatively unlikely explanation for island doming. Another possible expla-

nation is a more dynamical restructuring of the deposited material, due to adsorbent

diffusion of surface atoms within the patterning holes or stress-induced deformation

of the islands.

In summary, more research has to be done in order to explain the exact

doming mechanism, but the possibility of doming of patterned arrays should always

be considered when using disk-like island geometries, since they appear to be most

susceptible to doming effects because of their rotational invariance. This is particu-

larly true since domed structures, under certain conditions, are found to significantly

influence the quantitative analysis of scattering experiments as will be shown in the

main body of this work.

3.3 Structural Characterisation

Real space imaging techniques like scanning electron microscopy (SEM), atomic

force microscopy (AFM) or magnetic force microscopy (MFM) are techniques for

direct measurement of the (outer) shape and surface chemical composition of micro-

and nanoscopic objects. The field of view in direct space is usually limited to a

comparatively small area of a sample, making statistical statements over the whole

sample difficult. Since modern lithography is able to very consistently produce pat-

terns with remarkable accuracy, the latter is not necessarily a big problem. How-

ever, imaging techniques are usually limited to the surface of a sample, rendering

any (usually much more interesting) internal structure fully inaccessible.

X-ray scattering solves both problems, by simultaneously (incoherently) illu-

minating large sample areas, providing very good statistical information. Further,

because of their large penetration depth, x-ray scattering is very sensitive to the

internal chemical- and (under certain conditions) magnetic structure of a sample.

The remainder of this section will provide a summary of the techniques used in order

to characterise a patterned array, which include the utilisation of synchrotron radi-

ation in order to gain magnetic sensitivity, rocking- and reflectivity scans in order

68



to probe the in- and out-of-plane pattern structure, and finally fitting of a model to

experimental data by means of the differential evolution algorithm.

3.3.1 Synchrotron Radiation

X-ray radiation for scientific applications is generally generated in laboratories, ex-

ploiting x-ray emission following ionisation, or at central facility sources, exploiting

x-ray emission via accelerating electrons by magnetic fields.

In laboratory sources, energetic electrons are accelerated towards a metallic

target, ionising atoms upon impact. The emitted spectrum contains Bremsstrahl-

ung[160] as well as x-ray photons characteristic of the target material. The latter

is a consequence of de-excitation along specific electronic transitions. Generally,

experimental applications use these characteristic lines, since they are high in in-

tensity and of a narrow energy bandwidth[60]. Drawbacks of laboratory sources

include limited x-ray flux, high angular divergence of x-ray emittance and lack of

x-ray polarisation. However, the biggest drawback is probably the inability to tune

the x-ray energy to a particular value that an experiment might require, for instance

in order to investigate resonant scattering phenomena.

A synchrotron, on the other hand, is a combination of straight and arced

sections of vacuum tubes, forming a closed ring[161]. Relativistic electrons orbit the

ring within the vacuum tubes, being guided by bending magnets placed within the

arced sections[62]. While exposed to the magnetic field B of the bending magnets

oriented perpendicular to the plane of the ring and in absence of any electric field the

electrons experience the Lorentz force perpendicular to both their current velocity

and the magnetic field[60]. The latter forces the electron on a circular path within

the plane of the ring. Given the electrons charge e− and velocity vel the Lorentz

force takes on the form

FL = e−(vel ×B). (3.1)

In order to keep the electrons in orbit without touching the edges of the vacuum

tube, both B and vel have to be tuned so as to match the angular diversions of

the electrons on traversing a bending magnet to the curvature of the tube. Modern

synchrotron facilities operate at bending magnet field strengths in the order of 1 T

and relativistic electron energies in the GeV range[162, 163]. Since the accelerated

charges lose energy on being diverted by the bending magnets, the electrons emit a

narrow cone of radiation tangentially to their curved trajectory, which is found to

be of angular divergence[62]

∆α =
1

γ
, (3.2)
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with γ being the Lorentz factor. For the super-relativistic electrons in a synchrotron

the Lorentz factor takes on values of γ ≈ 104, meaning the angular divergence of

the radiation is in the order of 0.1 mrad. The beam is found to be linearly polarised

within the plane of the electrons’ orbit and forms a continuous energy spectrum.

Beamlines are located along these tangent points, enabling the utilisation of the

highly energetic x-rays for scientific experiments. Naturally, the energy the electrons

lose on every bending magnet has to be replaced through radio frequency cavities,

having the accompanying effect of separation of the electrons into bunches[164, 165].

On stable operation, a fixed number of electron bunches transit the rings on

time separations on the order of ns. Hence, a synchrotron is therefore a stroboscopic

radiation source, with any beamline receiving a flash of x-rays on each bunch of

electrons transitioning the associated bending magnet. Because of the continuity

of the energy spectrum of the emitted radiation, it is possible to select a desired

energy by using a suitable monochromator. The flux obtained in this way is orders

of magnitude higher than a typical laboratory source and is capped by the quality

of the vacuum within the ring and the bunch size of electrons that can be stabilised

against their electrostatic repulsion[161].

Historically, x-ray production has been somewhat of a necessary byproduct of

using bending magnets in order to keep electrons in a closed orbit. On the current,

third generation synchrotron sources such as the ESRF, APS, Diamond etc. x-

ray production for scientific applications has moved from the bending magnets, to

specifically designed insertion devices within the straight sections of the ring. These

devices consist of magnetic lattice arrays of a number of N alternating magnetic

fields, oriented perpendicular to the plane of the ring. Hence, the electrons are

forced to oscillate around their average trajectory, emitting a cone of radiation along

the beamline on passing each array element. The two main types of magnetic arrays

used to create synchrotron radiation are called undulators and wigglers, which vary

in the maximum angular diversion that the electrons experience while traversing

the array, as indicated in Figs. 3.4 and 3.5. It is convenient to define the maximum

angular diversion by[62]

∆α = K/γ =
2π

du
= kuA, (3.3)

where du is the spacing between the array elements, K is the maximum angular

deviation from the undulator axis, and A is the amplitude modulus of the electrons’

oscillating path, being smaller the higher the relativistic energy of the electrons and

the smaller the magnetic field is.

It can be shown[62] that the small oscillation amplitudes of the electrons of
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Figure 3.4: Schematic of an undulator. Electrons are diverted within the oscillating
vertical magnetic fields connecting the opposite magnetic poles depicted as either
blue or yellow array element. The small angular diversion of the electrons along the
undulator leads to a coherent summation of amplitudes and a compression of the
emitted radiation cones by a factor of 1/

√
N compared to a bending magnet. The

inset shows the narrow energy spectrum including five harmonics calculated via the
openly available XOP project[166]. Image adapted with slight alterations from [62].

an undulator, characterised by K = 1, lead to a compression factor of 1/
√
N in an-

gular divergence as compared to the opening angle of a radiation cone emitted by a

bending magnet 1/γ as indicated in Fig. 3.4, hence producing x-rays of high spatial

coherence. The number of array elements is typically found to be N ≈ 50. Undula-

tors tune du in a way that the x-ray emission at all oscillations are in-phase, implying

coherent summation of amplitudes, leading to a quasi-monochromatic spectrum (in-

cluding harmonics) of radiation as seen in the inset of Fig. 3.4.

Wigglers are characterised by larger oscillation amplitudes, characterised by

K ≈ 20, requiring significantly larger magnetic fields compared to an undulator

given the same energy of the electrons. The emission at each magnet of the array

is formally identical to that of a bending magnet of the same field, but the emitted

cones of radiation at each oscillation are no longer in phase with each other. There-

fore, the intensity emitted by a wiggler scales by a factor of 2N to that of a regular

bending magnet, leading to a flux spectrum identical to that of a regular bending

magnet. The total radiation cone of a wiggler gets wider by a factor of K within the

synchrotron plane, while maintaining its natural opening angle 1/γ perpendicular
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Figure 3.5: The large angular diversion in a wiggler leads to a massive increase
in emitted flux at the cost of a widening of the radiation cone by a factor of K
within the synchrotron plane compared to a bending magnet. The inset shows the
continuous energy spectrum of a wiggler calculated via the openly available XOP
project[166]. Image adapted with slight alterations from [62].

to the synchrotron plane.

A further advantage of insertion devices is that the magnetic lattice can be

phase shifted resulting in beams of circular, elliptical or linear polarisation. Such

“APPLE” (Advanced Planar Polarized Light Emitter) undulators are used for ener-

gies < 1 keV[167–169], since the tolerances on the magnetic lattice means these are

only useful for soft x-ray beamlines. Recently, APPLE-Knot undulators have been

developed that supply the advantage of arbitrary beam polarisation, while main-

taining low on-axis heat of higher harmonics, which has been a common byproduct

of low-energy x-rays at high-energy synchrotrons[170].

Beamlines

Following, a very short summary of the typical set-up of a synchrotron user-station is

presented. Regarding the exact parameters of all performed experiments, the reader

is referred to Procter [171] containing a more complete summary of experimental

details. The multilayer samples of chapter 4 were measured on the X-22C beamline

of the National Synchrotron Light Source (NSLS), using a bending magnet, while
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Figure 3.6: Schematic of the optical instrumentation at the user end of the XMaS
beamline. Depicted in orange is the two-crystal monochromator, followed by fo-
cussing mirrors, harmonic rejection mirrors and phase retarders. All elements are
connected by a pair of each of horizontal and vertical slits. Adapted from [172].

the samples of chapter 5 were measured at 4-ID-D beamline at the Advanced Photon

Source (APS), using undulator radiation.

At the level of an individual beamline, the synchrotron radiation has to be

processed in a few steps before being used to illuminate a sample. First, an energy

dispersive monochromator[173, 174] selects a particular energy from the continuous

bending magnet spectrum, or the narrow spectrum of an undulator. Typically, the

monochromator is a cryogenically cooled single crystal usually made of silicon. After

passing focusing mirrors[175, 176] and slits the beam is tailored further by other op-

tical elements such as harmonic rejection mirrors[177, 178] and phase-retarders[179].

The latter are used for beamlines of “hard” energy (> 3 keV), where “APPLE” un-

dulators cannot be used to directly produce circularly polarised light and the phase

retarder acts essentially like a quarter wave plate converting linearly polarised- into

circular- or elliptical light. A final set of slits, intensity monitors and absorbers

allow the users to correct for changes in fluctuations of the incident flux over time

and protect sensitive detectors. Fig. 3.6 shows a schematic of a typical synchrotron

user end, including most of the optical elements discussed in the text above.

Energy selectiveness and polarisability of radiation are crucial elements in

performing magnetically sensitive x-ray diffraction, which makes modern synchro-

trons indispensable for investigations into magnetic patterned arrays.

3.3.2 Scans through Reciprocal Space

This section briefly summarises the relationship of the scattering geometry with

the probed position in reciprocal space[62, 68, 79, 180] after the sample has been

aligned with respect to a particular source of x-ray radiation. In particular, it will

be shown how the wavevector transfer Q can be controlled by three distinct angles

73



Figure 3.7: Basic diffractometer set-up. Panel a) shows the side-view from within the
sample plane, panel b) shows the top-view along the sample normal. The incidence
angle αi is controlled by rotating the sample at a fixed source position around a
horizontal axis perpendicular to ki. The exit- or detector angle αf is controlled by
the angle in between detector and source 2θ. If the detector does not lie in the
scattering plane, the wavevector transfer contains a Qy component that scales with
the sine of γ, the detector angle in the sample plane.

of a diffractometer.

Generally, the position in reciprocal space any scattering experiment is prob-

ing is determined by the wavevector ki of the incident radiation and the wavevector

kf of the detected wave, which both depend on the relative positions of sample,

x-ray source and detector. In a usual experimental set-up the radiation is entering

the sample chamber horizontally and the sample may be rotated freely within the

chamber.

Figure 3.7 shows a schematic of a typical experimental set-up. The angle in

between and incident radiation in the laboratory frame is called θ, whereas in the

sample frame the naming convention αi is used. Furthermore, the angle between the

source and detector in the laboratory frame is, for historical reasons, often called

2θ, although strictly speaking the condition 2θ = 2× θ is valid only in the specular

condition. Similarly, the angle between the sample and detector in the coordinate

frame of the sample is given by the angle αf . For consistency, in the following all

discussion will be considering the sample frame only, although transformation of the

respective coordinate systems can be easily performed by noting that αi = 2θ − θ.
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If the sample frame is defined in such a way that x̂ is aligned with the

projection of ki onto- and the ẑ is given by outward normal of the sample plane,

and restricting scattering to a plane defined by the ẑ and ki, the relationships

ki = k

 cosαi

0

− sinαi

 (3.4a)

kf = k

cosαf

sin γ

sinαf

 (3.4b)

always hold. Hence, the respective components of the wavevector transfer

Q = kf − ki

are given by

Qx = k (cosαf cos γ − cosαi) (3.5a)

Qy = k sin γ cosαf (3.5b)

Qz = k (sinαf − sinαi) . (3.5c)

The condition γ = 0 defines the scattering plane, spanned up by the coordinate axes

Qx and Qz, since traditionally most experiments were realised under this condition.

Reflectivity Measurements

Reflectivity measurements are characterized by the symmetric condition

αi = αf (3.6a)

γ = 0, (3.6b)

which means that the wavevector transfer points solely in direction Q̂z, as can be

seen in Fig. 3.7 and eqs. 3.5. Hence, this type of scan probes the out-of-plane sample

structure only and is therefore particularly useful in the characterisation of strat-

ified media, since the latter can often be considered to be purely one-dimensional

structures, varying only in their depth profile of scattering length density.

From eq. 3.5 c) it is evident that the Q-resolution in a reflectivity measure-

ment is given by

dQz = 2k dα . (3.7)
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Figure 3.8: Trajectories of Qx and Qz scans through reciprocal space. The green
line corresponds to a reflectivity measurement. Each purple lines corresponds to a
different detector angle 2θ, which probes reciprocal space at constant Qz and up
to a certain maximum wavevector transfer Qx,max, given by eqs. 3.10. The shaded
region is inaccessible since the sample would be blocking either the source or the
detector and the vertical dashed lines indicate the positions of GTRs intercepted in
Qx scans.

Rocking Curves

While the trajectory of a reflectivity measurements is purely vertical, a rocking scan

probes reciprocal space in a horizontal line along Q̂x. The scan is defined by the

rocking condition

αi + αf = 2θ, (3.8)

meaning the detector angle in laboratory coordinates 2θ is held constant while the

sample angle θ is rocked within the range [0°, 2θ]. For small angles limited to the

scattering plane, substituting αf = 2θ−αi and under rocking conditions eqs. 3.5 a)

and c) take on the form

Qrock
x =

k 2θ

2
(2αi − 2θ) (3.9a)

Qrock
z = 2k(αi + αf ). (3.9b)

Further, given a particular detector angle 2θ magnitude of the scanned Qx
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range and the (constant) Qz value are given by

Qrock
x,max ≈ k

2θ2

2
(3.10a)

Qrock
z,max ≈ k 2θ. (3.10b)

Thus, at small and grazing detector angles 2θ the scanned Qx range in a rocking

geometry is significantly lower than the probed Qz value. By the same token, the

Qx resolution of a rocking curve is usually much better than that of a reflectivity

measurement since it is given by

dQx = k 2θ dα . (3.11)

Hence, by choosing 2θ accordingly, the Qx range probed can be adjusted to match

the in-plane periodicity of a patterned array in order to intercept a given number of

grating truncation rods as indicated by the vertical dashed lines in Fig. 3.8.

For instance, in a laboratory using a standard x-ray source (k = 40.78 nm−1)

measuring a patterned array of superlattice constant of d = 1 µm the detector has

to be placed at

2θ =

√
2(52π

d )

k
≈ 2.25°

in order to ensure that five orders of satellite peaks are being observed.

3.4 Data Fitting with Differential Evolution

After the scattered signal of the sample has been measured, the final step of struc-

tural characterisation consists of the fitting of a suitable model to the experimental

data. In the context of this work, fitting of simulated to experimental data is per-

formed via the differential evolution algorithm, originally invented by Storn and

Price [181], and will therefore be briefly discussed in the following section. The al-

gorithm is inspired by natural selection in biological evolution, in which the genetic

material of a given population slowly changes through mutation and combination

of parents.

Any individual possesses a unique genome, which encodes all of it’s particular

characteristics, and is a combination of the genomes of it’s two parents genomes,

created following certain combinatory rules. If an offspring’s genome is found to lead

to generally beneficial characteristics given the current environmental conditions,

chances of survival, i.e. fitness, are increased. On the other hand, if recombining
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the parents genomes leads to a net decrease of the individuals fitness, the probability

of survival of the individual is reduced. The building blocks of a genome are single

genes, which any genome consists of a fixed number of.

Recombination of the parents’ genes implies that only one or the other of

each of the two variants of any gene can be chosen to make it into the new genome.

Generally, recombining the parents genes into a new genome might lead to an overall

increase in fitness, if more often than not the more adapted gene of either parent is

chosen to make it into the offspring’s genome. Sometimes, however, a gene randomly

mutates and is then found to not be part of either of the parents’ genomes. Typically,

these mutations are rare and are often limited to a only a few or even just a single

gene. However, by chance mutations might lead to adaptations that neither of it’s

parents were capable of and might therefore prove very useful for an individual.

In the context of differential evolution, the counterpart to the biological

genome is a vector from the D-dimensional parameter space defining an agent ai,

being identified by the running index i. The counterpart to a single gene of the

genome is given by the µth parameter ai,µ of the optimization problem. The fitness

of a biological individual ai corresponds to the value of an arbitrary function, called

the figure of merit, FOM(ai), taking a single agent as an argument. In the context

of data fitting the figure of merit is usually minimised as it typically is a measure of

how well simulated and experimental data match.

A set of parameter vectors pi constitutes an original population P comprised

of a number of agents, NP , similar to a population of biological individuals. A trial

population T of the same size NP is obtained from a linear combination of the

parameters taken from a subset of agents from P , therefore mimicking biological

reproduction. In this way the total population is temporarily doubled, before each

trial vector ti of T competes against an agent pi taken from the parent population

P , leading to the reduced sets P̃ ⊆ P and T̃ ⊆ T . The latter is done by comparing

FOM(pi) against FOM(ti), with the agent performing worse being eliminated from

the population pool, therefore completing one generational cycle resulting in a new

generation g + 1 of vectors P g+1 = P̃ g ∪ T̃ g, which, again, is of size NP . Note that

in the following the superscript g will appear only in inter-generational contexts and

is dropped otherwise for clarity.

The elimination of poorly adapted agents and promotion of well adapted

ones eventually leads to a clustering of agents in volumes of the parameter space

associated with a beneficial figure of merit. Subsequent generations in this way

continue converging to a global optimum until the population is considered to have

successfully adapted, at which point pbest, the population member of the lowest
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figure of merit, is considered a solution to the optimisation problem. In the context

of data fitting, the convergence criterion is usually defined by the deviation between

simulated and experimental data falling below a predetermined cut-off limit or by

the population having converged to a point that no further significant improvement

is to be expected. Note that the latter typically occurs in case of a misconvergence

into a local optimum, so that it cannot be considered as a criterion for a successful

fit.

Probably the biggest advantage of differential evolution is that it is an ex-

ample of a gradient-free algorithm. In fact, the optimization function only has to

be evaluable, not requiring a closed form mathematical expression. On the other

hand, the meta-heuristic character of the algorithm does not guarantee convergence

to a global optimum and, in fact, misconvergence to local optima is a common

problem[181]. The latter has been confirmed by this work, where highly coupled

parameters and the periodic nature of complex exponentials is believed to lead to

formation of many – often rather broad – minima, leading to an increased likelihood

of the algorithm converging prematurely. A meta analysis of the convergence be-

haviour of the differential evolution algorithm for a particular geometry of patterned

arrays will be presented in section 5.4.2.

Mutation and Recombination Operations

This section will begin by providing a short discussion of the most commonly used

implementation of the mutation and recombination operations, as originally pro-

posed by Storn and Price[181]. However, many variants to these basic implemen-

tations exist, each sharing common principles. Later on, a couple of these variants

will be briefly touched upon, but the following basics provide a good idea of the

working principles.

In order to create a member ti of the trial population T , a mutation vector mi

is created, which is then partially recombined in its parameters mi,µ with a subset

of parameters pi,µ taken from exactly one pi, the latter being a unique parent vector

for every trial vector. In this way ti represents a combination of mutated and parent

parameters.

Each mutant vector is created by

mi = pj + F (pk − pl), i 6= j 6= k 6= l, (3.12)

where

F ∈ [0, 2]
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Figure 3.9: Example of mutation and recombination operations on a population
of size N = 4. The scaled difference vector F (p2 − p3), with F = 0.5, is added
to base vector p1, creating the mutant m0. Recombination in the two-dimensional
parameter space leads to the three possible trial vectors t′0, t′′0, and t′′′0 , competing
against the parent vector p0.

denotes the differential weight of the mutant, therefore being a scaling factor of the

difference vector.

Recombination of mi and pi is performed for each parameter i individually,

the µth parameter of ti given by

tiµ =

miµ if r < CR

piµ otherwise
(3.13)

where

CR, r ∈ ]0, 1]

denotes the crossover probability and a random number generated for every param-

eter µ, respectively.

Both processes are visualised in Fig. 3.9 considering the minimum number

of parameter vectors, p0, p1, p2, p3, satisfying the index condition of eq. 3.12 and a

single trial vector t0. In this example, the mutant m0 is given by a scaled difference

vector p2 − p3, attached to the base vector p1. By definition, the member of the

current population p0 competes against the trial vector t0, which has to be one of

[t′0, t
′′
0, t
′′′
0 ]. After the recombination process, the latter generally shares at least one
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Figure 3.10: Visualisation of a single evolutionary step. Panel a) depicts a full
population P g of size NP = 12 by using filled circles. The trial population T g is
indicated by empty circles. Each population member pi is associated with exactly
one trial vector ti as indicated by the arrows. Panel b) presents the new popula-
tion after the generational step. Green filled circles represent trial vectors, which
succeeded against their corresponding parent vectors, the latter being depicted by
empty red circles. Filled orange circles represent population members that survived
the comparison to their trial vectors (the latter not shown for clarity).

vector component – or gene – with m0 and at most N − 1 = 1 (since the system

is two-dimensional, N = 2) vector components with p0. For higher dimensional

parameter spaces the number of possible recombinations is 2D and therefore the

number of unique trial vectors t
(n)
0 will be obviously much greater.

The color coding of the surrounding figure of merit indicates that t′′0 would be

promoted to next generations starting population P g+1, whereas t′0 and t′′′0 present

no improvement over p0, meaning the latter would remain in the population. Fur-

ther, Fig. 3.10 presents a simple example of a single evolutionary step, visualising

in panel a) the sets P g and T g as well as the new population P g+1 in panel b).
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Variants of Differential Evolution Strategies

The exact way the trial population T is generated from the original population

P is only loosely specified, and a multitude of common mutation- and recombi-

nation mechanisms exist[182–185], which are generally denoted by a string of the

format “base vector/number of difference vectors/recombination scheme”. Follow-

ing this notation, some of the most used examples amongst the originally pro-

posed schemes by Storn and Price include “Best1Bin”, “Rand1Exp”, “current-

ToBest1Bin”, “Rand2Bin”, etc. For instance, strategies starting in either “Best”,

or “Rand” use a base vector chosen to be either the current best or a randomly

chosen vector of the original population, while strategies ending in “Bin” or “Exp”

use either a binary or exponential crossover scheme, both being defined later in the

text on page 82.

The Choice of the Base Vector in the original implementation by Storn

and Price [181] regarding each trial vector ti is that it is randomly taken from P .

Alternatively, a popular variant consists in always using the best-so-far population

vector pbest as base vector for every ti, both being visualised in Fig. 3.11. Obviously,

choosing the base vector randomly results in a much broader search radius. The

latter often comes at the cost of slower convergence since much of the sampling occurs

far away from the current optimum, where the probability of finding improvements

is low. However, changes are that the global optimum might indeed lie far away

from the currently best population member pbest = p0, in which case the broader

search radius helps in preventing misconvergence. Hence, eq. 3.12 actually refers to

a ”Rand/number of difference vectors/recombination scheme” strategy, whereas in

case of a Best strategy pj is replaced by bbest in eq. 3.12. It has been found[186]

that for most optimisation problems commonly encountered, always choosing the

best-so-far candidate significantly outperforms random choice of base-vectors.

The Number of Difference Vectors in the original differential evolutions

implementation was taken to be one. That means that the mutant mj is generated

by adding a single difference vector F (pk−pl) to the base vector pbase, as for example

seen in eq. 3.12. However, the search space can be further increased by adding a

second difference vector to the mutant. An example of the latter is the Best2Bin

implementation given by

mi = mbest + F (m1 −m2) + F (m3 −m4), (3.14)

with i /∈ {1, 2, 3, 4}.
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Figure 3.11: Difference in search space according to choice of base vector of popula-
tion of size NP = 5 and F = 1. The search space depicted in Panel a) covers most
of the parameter space since every population member may be used as a base vector
for trial candidate creation. In contrast, the search space depicted in panel b) results
from considering the best-so-far candidate p0 as the only choice for a base vector
and is spatially much stronger confined. Generally, the two schemes compromise
robustness against optimisation speed and vice versa.

The Crossover Scheme determines the exact mechanism the parameters of

the mutant and parent vector are being recombined. Eq. 3.13 provides an example

of binary recombination since for each µ it is a random and independent binary

choice, deciding whether the parameter is taken from the parent or mutant vector.

The latter naturally leads to a binomial distribution of the number of parameters

which are taken from either mutant or parent.

Another popular – and indeed the originally proposed – mechanism is expo-

nential crossover, in which a randomly chosen index d acts as a starting point from

where the following n parameters are taken from the mutant, whereas the remaining

parameters are taken from the parent vector. The number n is again chosen accord-
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ing to the crossover rate and dimensionality of the problem n = CRD. Because

of its dependence on the ordering of parameter axes, exponential crossover suffers

from a representational bias[187], which led to binomial crossover being favoured in

this work.

Mutation/Recombination hybrids may improve convergence efficiency

further for some problems. In these variants the base vector pbase may already consist

of a mutated difference vector, as, for instance, in the CurrentToBest scheme given

by mi = pi + F (pbest − pi) + F (p1 − p2).

In this case, instead of choosing pbest as a base vector, for every population

member pi a unique base vector specific (i.e. including no randomised component) to

pi is calculated, pointing from pi in direction of pbest, to which a randomly chosen

difference vector is added. This approach is spatially less confined compared to

always choosing bbase = pbest, since the centre of the search is spread wider through

parameter space, while at the same time ensuring a tendency towards the best-so-far

individual, provided that F < 1.

Dithering and Jittering[186, 187] may introduce additional flexibility to

the mutation process, somewhat alleviating problems with high sensitivity towards

the (often unknown) optimal mutation rate control parameter.

In case of dithering, the mutation control parameter is a variable, and takes

on a new random value, usually in the range [0.5, 1], for every trial vector ti. This

leads to a more robust (although sometimes slower) convergence, since the momen-

tary state of the optimisation may demand either a wide or small search radius,

both of which are randomly employed. Dithering is usually denoted by subscripting

the mutation control parameter, Fi, with the running population index. In other

variants, the Fi was decreased linearly as the optimisation proceeded[183, 188], en-

suring a wide search radius at an explorative phase at the beginning, while having

a refined search radius during the exploitative phase when the population resides

near the global optimum towards the end of the optimisation process.

Jittering, on the other hand, randomly varies the mutation parameter for

every parameter of each trial vector, therefore not only rescaling the difference vec-

tor, but also rotating it since the scaling varies along each parameter axis. Jittering

is usually indicated by subscripting Fµ with the running parameter index. Jitter-

ing can significantly speed up convergence by requiring fewer function evaluations

of the FOM, by means of demanding a lower or similar population size compared

to dithering or classical differential evolution, respectively. It has, however, been

found to perform poorly for non-separable FOM function of highly interdependent
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Figure 3.12: Optimal control parameters for optimisation of a 15-dimensional x-ray
reflectivity problem for strategies Best1Bin and Rand1Bin. Adapted from [189].

parameters[187]. Since the latter is true for x-ray diffraction of patterned arrays, no

jittering has been applied in the context of this work.

Finally, many authors give recommendations for the choice of the control pa-

rameters NP , F , and CR. In their original work, Storn and Price [181] propose the

general use of values of NP between 5D and 10D, depending on the dimensionality

D of the parameter space. Further, they propose the use of F ≈ 0.5, while noting

that values of F < 0.4 and F > 1 are only rarely found to be effective choices. The

crossover rate CR, according to Storn and Price, is not necessarily very important,

and values within the range 0.1 < CR ≤ 1 may all lead to good results.

Björck [189] found that for x-ray reflectivity of layered systems of dimension-

ality D = 15, a good choice of population size is around 3D to 4D with optimal

values of F and CR being shown in the two-dimensional parameter space shown in

Fig. 3.12.

Das and Suganthan [186], on the other hand, argue that NP should generally

lie between 3D and 8D, while 0.4 < F < 0.95, with a tendency towards the higher

end of this range. They further advice 0 < CR < 0.2 for uncoupled systems, while

0.9 < CR < 1.0 ought to be a good choice for highly coupled parameter spaces.

More suggestions for the choice of control parameters exist[182–184, 190,

191], with the conclusions often being inconsistent if interpreted with generality. It

rather appears that the optimal control parameter strongly depend on the individual
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problem and general advice is not easy to give, with the likely exception that most

sources agree that high crossover rates CR are strongly beneficial for problems that

suffer from strong coupling of open parameters. An analysis estimating the optimal

control parameters for the patterned arrays concerned with in this work will be

given in section 5.4.2.

3.5 Summary

In this chapter the fundamental techniques related to investigation of patterned

arrays were presented. The discussion followed the general chronology of the pro-

cess of investigation, starting with the patterning of the sample, followed by the

experimental measurement, and finally ending with fitting a simulated signal to the

experimentally obtained data.

The first section of the chapter revolved around the patterning of micro- and

nanoscopic elements, putting focus on the different processes utilised for creating the

in-plane and out-of-plane structure of a sample. It was shown how the out-of-plane

structure is mainly determined by the material deposition technique used, while

the in-plane structure is usually obtained by some form of lithographic patterning

process. Pre- and post-patterning processes refer to whether the lateral structure

is imprinted on the surface before or after the material comprising the array is

deposited on the sample.

Following, the specific patterning routines of all samples used in the context

of this work were discussed, putting particular focus on the unintended crowning

observed in the case of pre-patterned samples. The latter was identified to be the

source of an interesting, yet unintended, modulation of the x-ray scattering cross

section of the sample affecting a large part of the subsequent data analysis following

in the coming chapters. In order to avoid unintended doming, it is advised to rather

use a post-patterning process for sample creation. Post-patterning preserves the

high quality of the out-of-plane chemical structure obtainable by common material

deposition techniques of stratified media, which, for completeness, has been included

in the discussion as well.

Section 3.3 then focussed on the characteristics of synchrotron radiation and

how it is has been exploited in the context of this work. Further, it was discussed

how the two main types of scans through reciprocal space used in this work, specular

reflectivity and rocking curves, are used in order to gain quantitative information

about the sample. While x-ray reflectivity probes the average SLD depth profile of

a sample, rocking curves are sensitive to its lateral structure.
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Finally, section 3.4 presented the basics of differential evolution, which com-

prises an optimisation strategy analogous to biological evolution. This approach

allows the resolution of the chemical- and magnetic structure of a sample through

a process of iterative adaptation of a series of parameters describing the physical

properties of a sample in order to match simulated- to experimental data.
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Chapter 4

Diffraction of Patterned Arrays

in the Low X-Ray Coherence

Limit

One of the distinct characteristics of nano-patterned arrays is that the typical struc-

ture size of the repeating unit often exceeds atomic length scales by multiple orders

of magnitude. Typically, lithographically patterned mesocrystals obtain lattice pa-

rameters of hundreds up to thousands of nanometres as opposed to atomic crystals,

whose lattice parameters are in the orders of Ångströms, leaving a factor of about

1000-10 000 between both length scales. Despite the fact that the general mathemat-

ical treatment is unaffected by the absolute length scales in a diffraction problem,

the much smaller sizes of atomic lattices usually allow for certain approximations,

which are often not valid in the case of patterned arrays. Generally, the determining

factors for what approximations may be applied to obtain the correct solution to

a diffraction problem in an efficient way depend mainly on the ratio between the

(super)structure’s lattice parameters, structural correlation length, total crystal size

and the coherence volume of the illuminating radiation, which will be defined more

precisely in the following.

In this chapter the classical solution to a diffraction problem will be re-

formulated mainly considering the interplay between lattice parameters and the

coherence length of the radiation and it will be shown how the formalism has to

be adapted to give correct results in the particular case of the beam coherence

being smaller than the typical length scale of the array, a scenario which is rather

uncommon in atomic diffraction or diffraction of one-dimensional mesostructures

but can easily become important in two-dimensional patterned structures.
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The theory will then be applied to the case of modelling Qz and Qx scans

of a patterned array of a multi-element unit cell, finding that low-coherence theory

has to be applied in order to be able to fit experimental data.

4.1 Theoretical and Experimental Considerations re-

garding coherence and resolution

4.1.1 Limits of diffracted intensity

A fully coherent radiation source like, for instance, a laser[192, 193], means that

a distinct phase relationship between all points of the electromagnetic wave field

exists. In this case, the phase difference ∆φ of any two points r1 and r2 of the wave

field depends only on their spatial separation ∆r.

If, on the other hand, the source is only partially coherent, r1 and r2 may

lose this well-defined relationship and interference effects become less pronounced[96,

194]. The effect of decorrelation usually gets amplified with increasing spatial sep-

aration, meaning that the phase differences of the electromagnetic wave at the

two positions are increasingly randomised the further they are separated from each

other[195, 196]. Randomisation of phase differences then generally implies the re-

duction of averaged sums of amplitudes and hence the disappearance of interference

effects[197].

Typical x-ray sources are in fact only partially coherent[96, 198], meaning

that generally only a limited part of the sample will scatter coherently. The coher-

ently scattering part of the sample is then given by the coherence volume[83, 91]

over which a certain phase correlation of the incident wave field was maintained.

The exact shape of the coherently scattering volume generally depends on the type

of source and experimental geometry, but will in many cases be modelled adequately

by an ellipsoid[198].

Since stratified media can generally be considered ergodic, their laterally

averaged SLD profile is identical to their local depth profile at any given sample po-

sition. Hence, the effectively one-dimensional nature of these systems requires x-rays

to be phase coherent only along the sample normal at any surface position. These

conditions are usually fulfilled and implicitly assumed in performing, for instance,

reflectivity measurements.

In atomic crystallography, the �A-level length scale of atomic lattices is the

reason that a diffraction experiment can be carried out without explicit consider-

ation of source coherence, as coherent illumination of a sufficiently large sample
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volume is considered implicitly in common diffraction techniques, meaning all rele-

vant (statistical) sample properties are covered[62].

Generally, the electric field amplitude of an x-ray beam decorrelates be-

tween two points in space because of either finite beam divergence or imperfect

monochromaticity[55, 198]. Conversely, this means that any point in space (includ-

ing any point of the sample) is surrounded by a finite coherence volume, over which

at least a partial phase correlation of the electric field is retained[91]. Hence, every

part of the sample contributes a coherently scattered amplitude, which is the co-

herent superposition of the waves scattered by its surrounding area, each point of

which is weighted by the locally retained amount of phase correlation. In this way,

coherently scattered amplitudes corresponding to every point on the sample surface

are then integrated up incoherently over the entire sample, i.e. added by intensity.

In x-ray diffraction, the thickness of a scattering structure is usually so small

that decorrelation of the wave field can safely be neglected in this direction, since

the penetration depth of the radiation is usually less than the coherence length

perpendicular to the sample surface. Instead of referring to a coherence volume

it may then be adequate to refer to the coherence area of a sample, which is to

emphasize that the decorrelation of the wave field mainly happens within the sample

plane. Sometimes the coherence area is more specifically referred to by the term

coherence ellipse, which is due to the fact that, for reasons discussed in section 4.1.2,

the coherence area is found to be elongated along the projection of the incident beam

onto the sample surface[198].

The measured intensity in a diffraction experiment is typically considered in

reciprocal space as a function of the wavevector transfer Q = (Qx, Qy, Qz), which is

the conjugate variable of the real space positional vector r = (x, y, z). The mathe-

matical formalism connecting real- to reciprocal space under Fraunhofer diffraction

conditions[57, 96, 199] and considering the classical scattering from electrons as

given by the Fourier transformation of the scattering length density (SLD) in real

space, within the coherence area. The mathematical treatment of the problem can

often be significantly simplified by describing the sample and its coherently scat-

tering area in terms of multiplications and convolutions of objects which are easier

to describe separately than the complete system all at once, as was introduced in

section 2.4.

From the discussion so far, it is clear that in order to be able to describe a

diffraction phenomenon, knowledge of the phase relation between scattering objects

is critical. However, these phase relations are not exclusively restricted to decorre-

lation of the electrical field only. Spatial decorrelation of the physical structure of
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a periodic system may lead to similar effects as limited coherence of radiation[75,

102, 180]. In this case it is the probability of the presence of a scatterer separated

by ∆r relative to r that determines the strength of interference, rather than the

probability of phase alignment of the E-field at the two positions.

Mathematically, the effects of decorrelation of the electric field amplitude and

of structural decorrelation of the scattering structure are identical and the type of

decorrelation occurring at smaller length scales is usually the dominant one. In any

case, the correlation length ξ is the average distance over which amplitudes instead

of intensities are added and it is given by the smaller of the beam coherence length

or the structural correlation length of the sample.

In the case of patterned arrays obtained from electron beam lithography the

structural correlation can be safely assumed to be much larger than the typical x-ray

coherence length. However, many examples exist where the outcome of a diffraction

experiment is governed by sample properties. For instance, self-assembled nanopar-

ticles often form grains of perfect hexagonal order, but are separated by grain bound-

aries effectively randomising the lattice orientation of neighbouring grains[116, 137].

The typical grain size is often found to be of only tens to hundreds of nanometres

in diameter, which is very likely to be smaller than the coherence length of any

impinging radiation. Another example is the investigation of magnetic correlations

within artificial spin ice[42], which potentially span only a very short distance.

4.1.2 Coherence of Radiation and Resolution in Reciprocal Space

Finite beam coherence is a result of the gradual dephasing of x-ray wave trains in

space, which are for now visualised by restricting to only the real part of a complex

wave to read[194]

A(k) = P (k) Re(e−i(kx+∆φ)) = P (k) cos(kx+ ∆φ). (4.1)

Depending on the properties of the beam, each wavetrain is associated with a

spectral Power coefficient P (k), which represents the amplitude of a wave train

of wavevector k. Wave trains which share a distinct phase relation ∆φ at a particu-

lar point in space will dephase as a result of a misfit ∆k with respect to their mean

wavevector modulus k0 = |k0|.
Fig. 4.1 a) shows a schematic of the amplitudes of a series of wave trains

following the (Gaussian) Power spectrum

P (k) ∝ exp(−(k − k0)2

2σ2
k

), (4.2)
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Figure 4.1: Real space dephasing of plane waves in dependence of varying wavenum-

bers k and amplitude exp
(
−(k−k0)2

2σk

)
. In panel a) all waves are in phase at point

separation point x = 0 and will gradually lose their phase relation with increasing
|x|. The solid line in panel b) shows the normalised integral over all k as a func-
tion of real space separation x. With increasing |x| the integral gets progressively
smaller as the sign of the waves starts fluctuating more and more. The dashed line
represents the amount of phase correlation and represents the coherence function Γ
of the radiation.

which all share the same phase at the origin of the x-axis, with the variance σ2
k

determining the spread of k around k0. This implies that the amplitudes of waves

decrease if they are stronger misaligned with k0. It is evident that at a larger

distance from the origin the phase alignment of all wavetrains gets progressively

worse until all waves effectively inhibit a random phase for large separation ∆x.

Integrating the wave trains over all k

Γ(x) =

∫
exp

{
−(k − k0)2

2σ2
k

}
Re(exp{−i(kx+ ∆φ)}) dk (4.3)

results in the solid curve of Fig. 4.1 b), which effectively accounts for addition of

all plane waves being of phase φ at a distinct point in space and obeying the power

spectrum given by equation 4.3. As can be seen in Fig. 4.1 b), the coherent summa-

tion leads to an oscillating function, where the diminishing maxima are indicative

of the dephasing of increasingly distant wave peaks.

In case of a complex wave P (k) e−ikx integration over all k and restricting

to the modulus of the result leads to the dashed curve of Fig. 4.1 b). A spread

in the wavevector modulus ∆k determines the phase decorrelation – and hence the
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coherence length of the radiation, which is identified as ξ = 1
σk

in the following – as a

function of real space separation ∆x around an arbitrarily chosen point. Therefore,

small values of σk imply a large coherence length ξ in real space, and vice versa.

A variance in ∆k along a particular direction is not exclusively limited to

a spread in the wavelength of the radiation, but may as well – and often more

importantly – be the result of a diverging beam. In the latter case, it is more

precise to use the notation ∆k, indicating the vector characteristic of k and that

decorrelation of the radiation is a result of projecting wavevectors k = k0 + ∆k of

identical modulus k but differing directions onto the nominal direction k0.

The spectral purity ∆λ/λ of the beam determines the coherence of the radi-

ation parallel to its propagation direction and is hence called longitudinal coherence

or temporal coherence. Two points along a given ray of the beam will be illuminated

coherently only if their separation is less then the length it takes for the radiation to

decorrelate due to imperfections of the monochromaticity of the beam. Identifying

the longitudinal coherence ξt,0 of the radiation along a given angle α as the Gaussian

standard deviation σλ we find [90]

ξt,0 ≈
λ

2

λ

∆λ
. (4.4)

In a typical experiment using a silicon single crystal monochromator typical values

of the spectral purity are in the order ∆λ/λ ≈ 10−4[62, 200], which means that for

soft x-rays of λ ≈ 0.5 nm the longitudinal coherence length of the x-ray beam is in

the order ξt,0 ≈ 103nm.

The second contribution affecting the beam coherence is the dephasing of

wave trains perpendicular to k due to an angular divergence ∆α of the beam, which

is named the lateral coherence or spatial coherence and is given by[55, 198]

ξs,0 ≈
λ

2∆α
. (4.5)

Typical values for the beam divergence are in the order ∆α ≈ 10−3mrad[68, 75, 80,

179], which results in spatial correlation of a typical x-ray beam of about ξ & 103nm

The quantities of interest in a scattering experiment are, however, the pro-

jections of ξt,0 and ξs,0 onto the sample surface, which are consequently given by

ξt =
ξt,0

cosα
(4.6)

and

ξs =
ξs,0

sinα
. (4.7)
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Figure 4.2: Projections of the temporal- and lateral coherence lengths, ξt and ξs,
onto the sample surface. Because of the 1/ sinα dependence, under grazing inci-
dence geometry the total coherence length will be strongly dominated by the lateral
coherence length ξs.

As can be seen from eq. 4.7 and Fig. 4.2, ξs can become very large for a grazing

incidence geometry and hence this term often dominates the coherence area on a

sample, while ξt will generally be of the same order of the lattice pitch of the samples

discussed in this chapter. The inverse sine of the incident angle αi and its effect on

ξs is found to be the main reason for the high ellipticity of the coherence area.

It should be noted that not only the radiation source determines the amount

of coherence in a scattering experiment, but eqs. 4.4 - 4.7 equally hold for the detector

geometry. This can easily be understood when interpreting the coherence area of

a sample as the distance on a sample over which a (random) fixed phase relation

emitted from two points on the sample will be maintained until the radiation reaches

the detector.

In total, the projected beam coherence onto the sample surface is given by[55,

198, 201]

ξtotal = ξs,source + ξs,detector + ξt,source + ξt,detector

≈ λ

2

(
1

∆αi sinαi
+

1

∆αf sinαf

)
+

λ2

2∆λ

(
1

cosαi
+

1

cosαf

)
(4.8)

Applying Gaussian superposition to each coherence component leads to an effective

width of the coherence area of

σtotal =

√(
σs,source

sinαi

)2

+

(
σs,detector

sinαf

)2

+

(
σt,source

cosαi

)2

+

(
σt,detector

cosαf

)2

(4.9)

along the impinging beam direction.

Note that in grazing incidence geometry, where the angles are of the order

of one degree or less, the 1/ sinα dependence of the lateral coherence component
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usually dominates and is strictly a function of αi,f , meaning that the coherence area

on the sample varies as a function of the relative positions of source and detector.

Although reasonable estimates for ∆λ/λ and the divergence of the incoming beam

from the known optical elements in the beamline can be made, they should be

determined separately for each instrument used. The effect of changing instrumental

parameters upon the beam coherence will be discussed in more detail in chapter 6.

4.1.3 Detector Resolution in Reciprocal Space

As was shown in the previous section, the coherently scattering area of a sample

depends on the spectral purity of the radiation and the divergence of the incident

and scattered radiation. However, in order to describe the measured intensity in a

scattering experiment it is necessary to consider the resolution of the detector.

The detector resolution describes the area in reciprocal space a given de-

tector integrates over and depends on the scattering angles (or, equivalently, wave

vectors) the detector accepts at a given nominal detector angle αf . In other words,

a detector of a given angular acceptance will simultaneously be exposed to a range

of wave vector transfers Q = (kf + ∆kf ) − (ki + ∆ki), over which it is integrat-

ing, therefore limiting its resolution. In this definition ∆ki,f represents a vector

distribution perpendicular to the source and detector beams ki,f .

The resolution element is intrinsically a three-dimensional object in recip-

rocal space and later on in this section the importance of the detector integrating

perpendicular to the scattering plane (along ν as seen in Fig. 3.7) will be discussed

in detail. The latter leads to a finite (and in fact often very considerable) width of

the resolution element in Qy. However, the extent of the detector resolution in Qy

does not change with varying angles αi and αf and will therefore not be concerned

in detail in this section, but it should be remembered that the following discussion

implicitly assumes the integration over a more or less (depending on the detector

size and slit geometry) wide Qy range.

Mathematically, in a diffraction experiment, the measured intensity is the

convolution of the probed reciprocal space and the detector resolution function[55,

80, 198, 201]

R(∆αi,∆αf ).

The resolution function, however, is given by the convolution of wave vector

spreads ∆ki and ∆kf of the source and detector beams[90, 198]. Since usually[62]

∆λ/λ � ∆α/α it is justified to neglect non-monochromaticity of the beam. As-

suming Gaussian beams for both source and detector, the resolution function R as
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Figure 4.3: Resolution elements in reciprocal space probed by a diffractometer as
a function of beam divergences on the source- and detector side of the experi-
ment. The beam divergences were assumed to be of the form a Gaussian stan-
dard deviation. Values used were, panel a): ∆αi = 0.005°,∆αf = 0.05°, panel b):
∆αi = 0.05°,∆αf = 0.005°, panel c): ∆αi = 0.05°,∆αf = 0.05°. Panels d) - f) show
the projection of the resolution elements onto the Qx axis.

a function of angular divergence ∆αi = σi and ∆αf = σf (representing standard

deviations) of the incident and detected beam is given by

R(∆αi,∆αf ) =(
exp

(
−(αi − αi,0)2

2∆α2
i

)
k sin ∆αi

)
⊗

(
exp

(
−

(αf − αf,0)2

2∆α2
f

)
k sin ∆αf

)
. (4.10)

The three upper panels of Fig. 4.3 show resolution elements corresponding to a

typical rocking scan of patterned arrays as performed in this thesis, assuming a

detector angle 2θ = 8°. All the plots in Fig. 4.3 are calculated at αi = 3° and

αf = 5° but assume varying angular divergence for the incident and exit beams. The

resolution elements of panels a) to c) in Fig. 4.3 correspond to the cases ∆αi < ∆αf ,

∆αi > ∆αf and ∆αi ≈ ∆αf . Fig. 4.3 d) to f) shows an approximate projection

onto the Qx-axis of the respective resolution elements obtained from a Gaussian
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superposition of ∆ki and ∆kf which for the Qx- and Qz-directions read

∆Qx = k
√

∆α2
i sin2 αi + ∆α2

f sin2 αf (4.11a)

∆Qz = k
√

∆α2
i cos2 αi + ∆α2

f cos2 αf . (4.11b)

It is often convenient to simplify the problem of resolution convolution to a one-

dimensional case by using eq. 4.11 a) as the resolution function. The latter is justified

if the rate of change of intensity in reciprocal space over ∆Qx is much greater than

the change over ∆Qz. The latter is often the case for grating truncation rods

found in off-specular diffraction, which (after convolution with R) show a Gaussian

profile alongQx depending on the scattering correlation length but can be considered

constant in intensity over the Qz range the detector is integrating over[54, 87, 101].

If, however, the detector acceptance ∆αf is wide and the detector acceptance

window intercepts the GTR at considerably differing Qz values, then the convolu-

tion of the whole resolution element is required (using eqs. 4.11 a and b), taking

into account the variation of intensity along the GTR. The latter quickly gets com-

putationally expensive when confronted with the task of fitting experimental data.

This is particularly true for an open detector set-up, where no exit slit is present in

front of the detector. This is a problem discussed in more detail in Chapter 5.

A related phenomenon often witnessed in off-specular diffraction experiments

is an angle sensitivity of the satellite peak width, which most often manifests in the

form of peak broadening with increasing detector angle αf = 2θ − αi, which might

be confused for a reduction of beam coherence leaving to similar effects. The reason,

however, is the inclination of the detector resolution element in combination with

a large angular detector acceptance ∆αf as seen in Fig. 4.4. The latter can also

be seen from inspection of eq. 4.11 a) in the limit ∆αi < ∆αf . At low detector

angles, the total acceptance of the detector effectively consists of a vertical sheet in

reciprocal space, leading to progressively worse resolution as the detector angle αf

increases and, equivalently, Qx decreases.

In the simplified case of considering the Qx projection of the resolution ele-

ment only, the intensity at position Qx,0 in reciprocal space defined by a particular

set of nominal source and detector angles αi and αf , respectively, is given by the

integral of the squared amplitude over the detector acceptance

I(Qx,0) =

∫ ∞
−∞

A(Qx)A∗(Qx) dQx, (4.12)
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Figure 4.4: Angle dependency of resolution elements at fixed beam divergences
∆αi = 0.025°,∆αf = 0.09° on a rocking geometry αf = 2θ − αi with fixed angle
2θ = 8°. Going from left to right, the panels represent detector angles αf =7°, 4°
and 0.5°. As can be seen, larger values of αf lead to a wider detector acceptance in
Qx, which often leads to a visible broadening of satellite peaks at low Qx values.

where the amplitude is given by

A(Qx) = exp

(
−(Qx −Qx,0)2

2∆Q2
x,0

)
A(QGTR

x , Qz)

(
1

ξ̃
√

2π
exp

(
−(Qx −QGTR

x )2

2ξ̃2

))
,

(4.13)

with ξ̃ = ξ−1
total being the Gaussian width of the coherence function in reciprocal

space under a particular experimental set-up. Eq. 4.13 is the product of the detector

resolution function

R(∆Qx = σDet., Qx) = exp

(
−(Qx −Qx,0)2

2∆Q2
x,0

)
(4.14)

and a grating truncation rod[54, 65, 101]

AGTR(ξ̃, Qx) =
1

ξ̃
√

2π
exp

(
−(Qx −QGTR

x )2

2ξ̃2

)
A(QGTR

x , Qz), (4.15)

where the amplitude of the GTR over its full width has been approximated by its

value at the nominal lattice position QGTR
x and the nominal Qz-value of the detector

under diffraction condition with the particular GTR (as defined in section 2.4). Note
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that this simplification, which is also known as the two-beam approximation[90, 202,

203], is valid only if the beam coherence is sufficiently large so that no two GTRs

are broadened such that their amplitudes significantly overlap in reciprocal space.

Low coherence conditions and broad GTRs will, in fact, comprise a large part of the

remaining chapter.

Inserting eq. 4.13 into eq. 4.12 leads to

IGTR(Qx,0) =

∣∣A(QGTR
x , Qz)

∣∣2
2
√
πξ̃

∆Qx,0√
∆Q2

x,0 + ξ̃2
exp

(
−(Qx,0 −QGTR

x )2

∆Q2
x,0 + ξ̃2

)
, (4.16)

which is the general expression for the integrated intensity of a GTR over a given

detector acceptance. Inspecting eq. 4.16, it becomes apparent that I(Qx,0) tends to

zero if the nominal detector position Qx,0 in reciprocal space is far away from the

GTR located at QGTR
x .

Furthermore, as a sanity check, we check eq. 4.16 with respect to the classical

case of high beam coherence. We find that, as it should, the scattered intensity

is proportional to both the squared structure factor
∣∣A(QGTR

x , Qz)
∣∣2 and the real

space coherence length ξ = ξ̃−1 if Qx,0 ≈ QGTR
x and the high coherence condition

ξ̃ � ∆Qx,0 is fulfilled, i.e. if the length in reciprocal space probed by the detector

is broader than the coherence function in reciprocal space. Eq. 4.16 then simplifies

to a more familiar form

IGTR(Qx,0) = ξ

∣∣A(QGTR
x , Qz)

∣∣2
2
√
π

exp

(
−(Qx,0 −QGTR

x )2

∆Q2
x,0

)
, (4.17)

Finally, in an open detector set-up or when the slit width of the detector is

large the resolution function is not described well by a Gaussian. Instead, an often

better approximation is given by a rectangular window function, accepting all wave

vectors within the solid angle given by the geometry of the detector equally. In this

case the first exponential in eq. 4.13 is replaced by 1 and the integration limits in eq.

4.12 are replaced by the Qx values corresponding to the upper and lower detector

edges so that the open detector analogue to eq. 4.16 now reads

I(Qx,0) open
detector

=

∣∣A(QGTR
x , Qz)

∣∣2ξ̃√π
2

(
erf

(
QGTR
x −Qx,1

ξ̃

)
− erf

(
QGTR
x −Qx,2

ξ̃

))
, (4.18)

where erf denotes the Gauss error function.

99



4.1.4 The Limiting Case of Very Low Coherence

In many cases of x-ray diffraction – and particularly in the case of diffracting atomic

lattices – the coherence length of the radiation can safely be assumed to be much

larger than any significant periodicity of the diffracting structure. All photons scat-

tered within a coherence ellipse centred arbitrarily at point r‖,c on the illuminated

surface of the sample contribute a coherent superposition of electric field amplitudes

A(r,Q) at a given detector position corresponding to wave vector transfer Q. The

total measured intensity I then is the incoherent sum or integral

I =

∫
A(r,Q)A∗(r,Q) dr‖,c (4.19)

taken over all possible centre positions r‖,c within the (incoherently) illuminated

area.

Since in the high coherence limit the coherently scattering area is large, it

can be safely assumed to represent an ergodic subset of the whole sample. Hence,

the scattered amplitude of both coherence ellipses seen in Fig. 4.5 is effectively

independent of the centre position r‖,c = (xc, yc). Consequently, the incoherent

integral of eq. 4.19 will effectively contribute only a scaling factor and can generally

be neglected if the illumination of the sample is homogeneous and absolute intensities

are not required.

However, if ξ/dlatt . 1, i.e. the coherence of the radiation is of the order of,

Figure 4.5: Coherence areas in the limit of large beam coherence. The part of sample
probed by a large coherence ellipse looks effectively identical and can therefore be
considered ergodic, irrespective of exactly where the coherence ellipse is centred on
the sample.
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Figure 4.6: Effects of small beam coherence. Panel a) visualises coherence areas
in the limit of small beam coherence. If the beam coherence along the short axis
of the coherence ellipse is less than the width of the superstructures unit cell, the
coherently illuminated sample area can not be considered ergodic and the diffracted
signal will in general vary depending on where the coherence ellipse is placed on the
sample. The scattered amplitude from coherent summation of GTRs at fixed value
of Q is shown in panels b) - d). Panel e) shows the scattered intensity as a function
of y-position of centre of the (narrow) coherence ellipse.

or less than the lattice periodicity, the exact localisation of the coherence ellipse does

matter. This is sketched in Fig. 4.6 a), where the blue areas represent individual

coherence ellipses, which extend far to the top and bottom beyond the figure because

of the extreme ratio of ξt and ξs being typical in the small angle geometry.
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The coherence ellipses are identical apart from a translation ∆y along ŷ.

They are aligned with a lattice vector, and longer than multiple lattice constants

but narrower than a single lattice constant. This means they either probe multiple

elements along the principle lattice direction (here ŷ) or are located right between

the rows, missing all elements on the way. Whether the coherence ellipse is located

between the rows or on top of multiple elements determines whether x-ray diffraction

occurs and is solely determined by ∆y. The latter translation becomes a single

additional phase factor e−i∆yQy in reciprocal space.

The large coherence along the incident beam direction means the reciprocal

coherence ellipse (which by means of convolution with the reciprocal lattice com-

prises the reciprocal space representation of the coherently sensed sample) extends

over less than a single lattice spacing, which may lead to classical Bragg satellites

if the diffraction condition Qx = n 2π/dlatt is met. However, because of the poor

coherence perpendicular to the scattering plane (here along ŷ), the reciprocal lattice

points along Q̂y extend over many reciprocal lattice spacing and consequently over-

lap with each other. This means that if the diffraction condition is met the coherent

amplitude in the two-beam approximation is in fact a sum over lattice points of a

single row along Qy, each obtaining a Gaussian weight according to the distance

of their corresponding lattice point from the detected wave vector transfer Qy. In

order for the diffracted intensity to vanish because the coherence ellipse is located

in between rows of elements, the coherent lattice sum has to average out towards

zero, so that no net amplitude emerges, despite of the scattering amplitude of each

individual lattice point being finite, as will be shown shortly in eq. 4.21.

Qualitatively, this is depicted in Fig. 4.6 b), where the real and imaginary

part of each amplitude is visualised in the complex plane. Neglecting GTRs, which

are separated by more than 3ξ̃ from Q, yellow and blue arrows represent the most

distant lattice points in negative and positive Qy direction, respectively. Two con-

nected arrows represent neighbouring lattice points, and after traversing all probed

lattice points, the final amplitude ends up very close to the origin, as is expected

for a coherence ellipse effectively “missing” all patterned structures. By translating

the coherence ellipse so that the pattern is probed only partially, each amplitudes

phase is slightly altered so the final amplitude ends up to be small, but finite, as

depicted in panel c). Finally, if the coherence ellipse is located right in the centre of

the patterned islands, most of the amplitude phases are aligned within the complex

plane, leading to a strong coherent amplitude, as shown in panel d). Scanning over

the sample along ŷ, the scattered intensity periodically shows distinct maxima when

the coherence ellipse hits a row of patterned islands as seen in Fig. 4.6 e).
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Figure 4.7: Reciprocal space and resolution function (depicted by the rectangular
box) in the low-coherence limit. The GTRs located at the reciprocal lattice points
are broadened up by the poor coherence in the direction Q⊥ perpendicular to the
scattering plane. Addition of amplitudes instead of intensities is required whenever
two or more GTRs overlap.

Fig. 4.7 shows a sketch of the relevant features of a square reciprocal lattice

and the detector resolution function – now in the Qx−Qy-plane – under conditions of

low beam coherence. Two coordinate systems have been utilised: The sample space

coordinate systems is defined by the Qx and Qy axes aligned with the principal

reciprocal lattice vectors, hence all lattice points are found at integer multiples of

2π/dlatt in Qx and Qy, respectively. The instrumental coordinate system is rotated

at an angle φ with respect to the sample space, attributing an azimuthal rotation

of the sample, misaligning ki,‖ and R1, the first real space lattice vector. The

detector resolution element moves through reciprocal space along the Q‖ axis of the

instrumental coordinate system, as is depicted by the rectangular box centred at

Q‖.

The schematic exemplifies four key features of x-ray diffraction:

1. The inclined rectangle represents the resolution element under the assumption

of a narrow slit perpendicular to the scattering plane and placed in front of

the detector. It is centred at position Q‖ = k (cosαf − cosαi). The resolution

element is wide in direction of Q⊥ because the angular acceptance along the
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slit is restricted by the detector window only. The measured intensity at the

nominal detector position then is the incoherent integral over the squared

amplitudes over the whole resolution element. The inclination angle of the

resolution element correspond to an azimuthal rotation of the sample, rotating

the resolution element with respect to the lattice vectors of the sample.

2. The dots represent the reciprocal lattice of the sample, which equivalently can

be thought of as a horizontal cut through the GTRs of the two dimensional

supercrystal. Each lattice point is associated with a distinct phase and am-

plitude depending on the exact charge distribution within the unit cell of the

array and the wave vector transfer Q. Depending on the geometry of the ex-

perimental set-up each GTR will be intercepted at a particular value of Qz,

which generally leads to a modulation of the measured intensities.

For a rocking scan of the sample, the interception value of the nominal wave

vector transfer is a constant given by Qz,rock = 2k sin 2θ/2. If the dimension

∆Qz of the resolution element is small enough, the variation in amplitude along

the GTR is low enough that it can be considered constant when integrating

over ∆Qz. Under these conditions the integration in Qz contributes only a

scaling factor to the scattered intensity and can often be ignored.

3. Because of the finite beam coherence, the reciprocal lattice is convoluted with

the coherence function, represented in this example by a two dimensional

Gaussian function. Because of the sin−1 α dependence of the lateral coherence

length ξ‖ within the scattering plane, the coherence element is narrow in di-

rection of Q‖. The component of the beam coherence perpendicular to the

scattering plane, however, depends mainly on the perpendicular divergence of

the incoming radiation and may be found to fall below the unit cell dimensions

of typical patterned arrays.

Under these circumstances the convolution of reciprocal lattice and coherence

functions transforms GTRs from scattering rods into scattering sheets, which

may interfere with sheets associated with neighbouring lattice points. Per-

haps surprisingly, this means that under conditions of low beam coherence the

scattering amplitude will generally be the coherent sum of the densely packed

neighbouring lattice points of the often µm-pitched patterned arrays which are

contributing to a particular wave vector transfer Q. Contrary to that, under

conditions of large coherence, the separation of narrowly defined GTRs leads

to at most one reciprocal lattice point contributing to the scattered intensity

at any given value of Q.
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It is probably noteworthy that, because it is the Fourier transform of the real-

space coherence ellipse, each coherence function in reciprocal space has a strict

dependence on the centre position of the coherence ellipse and is therefore pro-

portional to exp
(
−ir‖Q‖

)
. This phase factor can usually be ignored, since it

cancels when squaring the scattering amplitude of a single GTR. However,

since in the low coherence case multiple distinct amplitudes of neighbouring

GTRs interfere, the corresponding phase factor for each GTR has to be ex-

plicitly taken into account when calculating the overall amplitude and hence

intensity. For clarity, in Fig. 4.7 the convolution of reciprocal lattice and the

coherence function has been performed for the lattice points overlapping with

the resolution function, only.

4. Finally, because of the narrow size of the detector slit within the scattering

plane, the resolution function can be approximated by a Gaussian distribu-

tion along Q‖. Hence, the amplitude of each GTR is modified by a factor

exp

(
−

g2
‖

2ξ̃2
‖

)
, where g is the vector connecting the nominal detector position

and a particular reciprocal lattice point located at G. The components of

g parallel and perpendicular to Q‖ can be easily found in the instrumental

coordinate system expressed by its components in sample coordinate system

to read

g‖ = gx sinφ− gy cosφ (4.20a)

g⊥ = gx cosφ+ gy sinφ. (4.20b)

The above considerations describe the general case of low-coherence diffraction. In

reality, the parallel beam coherence is generally so much larger than the coherence

perpendicular to the scattering plane that it is often justified to approximate the

two-dimensional coherence function by a one-dimensional function, which signifi-

cantly simplifies the mathematical treatment and lowers the computational effort.

The latter is accomplished by treating any one GTR as a one-dimensional function

when convolving with the detector resolution function R.

Combining the above considerations with eq. 4.15 assuming a Gaussian pro-

file for the one-dimensional coherence function one can readily derive the general
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diffraction equations at low perpendicular beam coherence to read

A(Q‖, Q⊥) =
∑
g⊥

A(G)
ξ‖√
2π

exp

(
−

(Q‖ − g‖)2ξ2
‖

2

)
ξ⊥√
2π

exp

(
−

(Q⊥ − g⊥)2ξ2
⊥

2

)
exp

(
i r⊥(Q⊥ − g⊥)

) (4.21a)

I(Q‖) ∝
∫∫

A(Q‖, Q⊥)A∗(Q‖, Q⊥) dr⊥ dQ⊥. (4.21b)

Eq. 4.21 a) defines the scattering amplitude of a single coherence ellipse located

arbitrarily on the sample. It is a sum over reciprocal lattice vectors whose GTRs

fall within the detector resolution. Each GTR is of peak amplitude A(G), whose

amplitude at position Q is modulated by the two exponentials containing the coher-

ence lengths ξ‖ and ξ⊥. Additionally, the last exponential takes care of the phase

factors of all GTRs at position Q depending on the real space displacement r⊥ of the

coherence ellipse, which becomes important when multiple (broad) GTRs overlap.

Parallel displacement of the coherence ellipse does not need not to be considered

because of sufficient ergodicity of the coherence ellipse along its long coherence axis

aligned with ki,‖.

Eq. 4.21 b) represents the measured intensity of the detector at the nominal

wave vector transfer Q‖ = k (cosαf − cosαi). The (incoherent) integration is per-

formed over all the perpendicular wave vector transfers Q⊥ the detector accepts as

well as over all relevant perpendicular shifts r⊥ of the coherence ellipse in real space.

Due to the large coherence within the scattering plane, integrating over r‖

only contributes a scaling term to the intensity and can generally be neglected. The

integration over r⊥ can be performed in two ways: Either it has to be taken over

a large enough range to provide sufficient statistical averaging to accommodate for

the non-ergodicity of the sample area probed by the narrow coherence function.

Alternatively, the integration can be performed over a range that reflects the pe-

riodicity of the lattice. Hence, if considering a high symmetry direction like (10),

the integration may be carried out, for instance, over one lattice constant, to ensure

that the coherence ellipse probes every distinct view of the sample (compare also

Fig. 4.6).
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4.2 Investigation of Coherence Limited Diffraction on

Multi-Element Patterned Arrays

As was discussed in the previous sections, when performing x-ray diffraction on

patterned samples it can easily be the case that coherence conditions of the beam

have to be considered explicitly, which might usually be safely neglected for most

types of samples.

In the following, the geometrical configuration of a set of samples of meso-

scopic dimensions is introduced and it will be shown how a naive treatment of

scattering theory breaks down in trying to reproduce the experimental diffraction

pattern and how with a proper treatment of beam coherence one is able to capture

the diffraction features on both a qualitative and quantitative level. Previous ex-

periments on this set of samples have already recognised the importance of beam

coherence in MOKE[98] and XRMS[75] studies, highlighting the need of a diffrac-

tion framework of patterned arrays, which explicitly contains applicability to low

beam coherence. This framework was developed in the course of this thesis and will

be presented in the current chapter. If not indicated differently, all results are the

work of the author.

The following experiments show all of the characteristics previously dis-

cussed: The lattice pitch of the patterned arrays used is on a µm scale, requiring

a low coherence treatment of scattering theory. Wide detector slits parallel to the

sample surface lead to a wide resolution element in reciprocal space. Finally, by

rotating each sample around its surface normal a wide range of diffraction peaks

corresponding to distinct lattice planes could be resolved. It will be shown how the

latter will be quantitatively reproduced considering – amongst other parameters –

the beam coherence as a critical fitting parameter.

4.2.1 Sample structure

A negatively patterned resist of the structures was prepared at the Micro and Nan-

otechnology Centre, MNTC[204, 205], by electron beam lithography before depo-

sition of the samples at Uppsala University. The latter was done by depositing

10 bilayers, each consisting of 3 nm thick Co68Fe24Zr8 and 3 nm thick Al2O3 into

the prepatterned masks. The material was deposited by magnetron sputtering and

each multilayer was additionally seeded by 3 nm of Al2O3 adding up to a total stack

height of 63 nm. The whole preparation process is described in more detail in [98].

Each final structure was a supercrystal consisting of circular islands of diam-

eter 1.5 µm and elliptical islands of short- and long axis 1.5 µm and 4.5 µm, respec-
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Figure 4.8: AFM image of type α (panel a) and β (panel b) patterned arrays. The
α is characterised by circular and elliptical islands lining up in the (10) direction.
In pattern β both sublattices are shifted by half a lattice constant in both x- and
y-directions. Images also published in [98].

tively, an atomic force microscopy image can be seen in Fig. 4.8.

We will now briefly discuss the α and β configurations, which differ in the

relative positioning of one circular and one elliptical island and together form the

unit cells of the supercrystals. Both patterns consist of a square unit cell of lattice

constant 6 µm. In the α case, the centres of the elliptical islands were placed in-line

with the circular islands along the (10) direction, with the long axis pointing in the

(01) direction. In the β case, the elliptical islands were shifted by half a lattice

constant in the (01) direction, so that each elliptical island was centred in between

four neighbouring circular islands.

In the following, a cartesian coordinate system originating in the centre of a

circular island with x- and y-axis aligned with the (01) and (10) directions of the

real space lattice will be used in describing the patterned arrays.

4.2.2 Experiment

For each sample a series of rocking curves as a function of azimuthal rotation angle φ

were taken on beamline X22C at the NSLS[206]. For the α sample the beam energy

was chosen to be 8.8 keV and the detector angle was set to 1.403°, corresponding to

an Bragg peak of the reflectivity. For the β sample the beam energy was decreased

to 6.5 keV in order to reduce the amount of x-ray fluorescence; a decision made after

the α sample had been measured already, and the detector had been adjusted to

stay at the Bragg peak.

For each angle φ the experimental set-up is sensitive to distinct sample peri-
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Figure 4.9: Scattered intensity of α pattern as a function of in-plane wave vector
transfer Q‖ and azimuthal rotation φ. The high symmetry directions (01) and (10)
are clearly visible at φ = 0°, 90° and 180°. The dark horizontal lines indicate missing
data, being the result from problems with the diffractometer motors.

odicities, manifesting in the formation of Bragg peaks (or GTRs) along Q‖, where,

in this context, the latter again denotes the in-plane component of the wavevector

transfer within the scattering plane. The GTRs are visible as continuous streaks in

Figs. 4.9 and 4.10, showing a map of scattered intensity against Q‖ and azimuthal

sample rotation φ of the β pattern.

Since both pattern types sit on the same lattice, the mappings of Figs. 4.9

and 4.10 look very similar, with the main difference being the range of probed Q‖

because of the differing beam energy the respective measurements have been taken

at, which is of course also affecting the (constant) Qz value the rocking curves of

each pattern have been measured on. The asymmetric form factor of the unit cells
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Figure 4.10: Scattered intensity of β pattern as a function of in-plane wave vector
transfer Q‖ and azimuthal rotation φ. The high symmetry directions (01) and (10)
are clearly visible at φ = 0°, 90° and 180°. The dark horizontal lines indicate missing
data, being the result from problems with the diffractometer motors.

of both patterns clearly manifest in an asymmetry between rocking curves measured

at φ = 0° along the (01)-direction and φ = 90° along (10), despite the spacing of

the diffraction peaks along both direction being identical due to the rectangular

nature of the real space lattice of both patterns. As the α pattern was measured

at a smaller slit size determining the beam divergence ∆αi, diffraction peaks along

Q‖ are expected to be sharper compared to the β pattern, which is hard to be

confirmed visually but will be subjected to the subsequent analysis by means of

fitting the data.

Along high symmetry directions – most pronouncedly at φ = 0° and φ =

90°, i.e. along the (10) and (01) direction of the lattice – GTRs corresponding to
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the same lattice plane align, and are hence superimposed onto the same values of

Q‖. Contrary, along ill-defined values of φ the GTRs of differing Q⊥ are likewise

intercepted at ill-defined values of Q‖. Both effects can be seen in Figs. 4.11 and

4.12, respectively. From the absence of a visible background signal in the upper

two panels of Figs. 4.11 and 4.12 it also becomes apparent that what appears to

be a continuous background of diffuse scattering over most part of the azimuthal

maps, is in fact simply the superposition of a huge number of misaligned diffraction

peaks. Note that, technically, the average number of GTRs the resolution element

R intercepts at any orientation in reciprocal space is more or less constant, and

the apparent smaller number of peaks along high symmetry directions is merely a

consequence of the GTRs aligning with- and superimposing on each other.

Each (roughly vertical) streak corresponds to a particular GTR, continu-

ously being modified in Q‖, due to the φ-dependent interception with the detector

resolution function R. The latter can be interpreted visually by inspection of the

value of Q‖ corresponding to any reciprocal lattice point shown in Fig. 4.7 upon

rotating φ. Once φ is moved away from a high symmetry direction, the GTRs along

Q⊥ do not align up with the detector resolution element any more. Because of the

wide detector acceptance these additional GTRs appear to spread up away from

the high symmetry directions, typically into three to five additional streaks. The

latter is therefore indicative of the width of the resolution element in reciprocal

space. Put differently, a narrower detector acceptance perpendicular to the scat-

tering plane would result in less or no additional streaks at all since the resolution

function would be able to accept fewer, only one or even not a single GTR at any

nominal Q‖. Additionally, the continuity of every single streak is potentially indica-

tive of a low coherence set-up, in which a lack of coherence perpendicular to the

scattering plane leads to formation of scattering sheets being perpendicular to Q‖,

which are anchored at the corresponding reciprocal lattice points. In this case, even

a narrow detector acceptance would intercept multiple scattering sheets even if the

corresponding reciprocal lattice points are not located within the detector resolution

function.

The full lines in Figs. 4.11 and 4.12 show experimental rocking curves at

selected values of φ for the α and β patterns. As expected, the measurements

taken at φ = 0° and φ = 90° (or, equivalently, along the (10) and (01) directions)

show well defined, Gaussian shaped satellite peaks at Q‖,m = m 2π
d = m∆Qx ≈

m × 0.001 nm−1 corresponding to the lattice periodicity dlatt = 6000 nm and m

being integer.

The satellite peak intensity modulation is determined by the contribution
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of all simultaneously probed GTRs according to eq. 4.21, which are generally more

than one under low coherence conditions even for the high symmetry directions. The

(kinematical) GTR structural amplitude A(G) in eq. 4.21 can be approximated for

a unit cell consisting of a spatially flat pair of a circular island of radius R centred at

r = 0 and elliptical islands of long and short axes Ax and Ay and center displacement

xoff and yoff by the superposition of scaled Bessel functions of the first kind of order

1 to read[207]

AGRT(Q‖) ∝ R2J1(RQ‖) +AxAyJ1

(√
A2
xQ

2
x +A2

yQ
2
y

)
exp(−i(Qxxoff +Qyyoff)),

(4.22)

which will be proportional to the scattering length density SLD(z) of the material

as well as to

AGTR(Qz) ∝
1− exp{−ihQz}

−iQz
, (4.23)

the z-component of the Fourier Transformation of the unit cell, depending on the

total height h of the islands.

Note that the layered structure of the real sample has only implicitly been

included in the SLD and plays no role in eq. 4.22. This is justified since the chemical

profile of the islands is a function of the height over the substrate surface z only, and

will hence only modulate the scattered intensity distribution along Qz by means of

forming Bragg peaks according to the multilayer periodicity of the internal structure

of each island as discussed in section 2.2. The Qx, Qy dependency of the scattered

intensity, on the other hand, is not affected apart from a proportionality constant

which is implicitly considered in a scaling constant of the total intensity.

It is evident that the reduced intensity of odd ordered peaks along the (10)

direction as witnessed for the α pattern presented in Fig. 4.11 b) is a result of the

dlatt/2 offset of the ellipse in the (10) direction with respect to the circular island of

the same unit cell as seen in Fig. 4.8. According to eq. 4.22 this corresponds to a

phase shift in between the circular and elliptical island of the unit cell of

exp(−iQyyoff) = exp
(
−i(Q‖roff

‖ )
)

= exp

(
−im 2π

d

d

2

)
= exp(−imπ) (4.24)

leading to destructive interference for satellites of odd order m along the Q‖ = Qy

axis at Q⊥ = Qx = 0, which corresponds to the nominal direction in reciprocal space

for the scan. On the other hand, the two islands of the unit cell of the α pattern

are not subjected to any spatial offset along the (01) direction. The center points of

neighbouring islands along the beam in this direction are always separated exactly

by dlatt and hence, for Qy = 0, the structure factors of both circular and elliptical
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islands add constructively leading to no local minima in the combined structure

factor.

Interestingly, by the same argument the diffracted intensity of the β pattern

does not show any signs of destructive interference, despite the predicted minima of

the unit cell structure factor from eq. 4.22 for xoff = yoff = dlatt/2, according to the

predicted phase shift when restricting to the scattering plane (Q⊥ = Qy = 0)

exp(−i(Qxxoff +Qyyoff)) = exp
(
−i(Q‖roff

‖ +Q⊥r
off
⊥ )
)

= exp(−imπ). (4.25)

The latter can be explained qualitatively by considering the finite perpendicular

beam coherence ξ⊥ of the radiation. Inspecting Fig. 4.8, it is clear that if

ξ⊥ .
dlatt

2
= 3000 nm

a coherence ellipse aligned in the (01) direction is able to only coherently illuminate

rows of a single type of either ellipses or circles at any given time, therefore always

experiencing the total lattice pitch dlatt in between coherently scattering elements.

A coherence ellipse aligned along the (10) direction of the α pattern will conversely

be able to coherently illuminate both types of elements aligned in any row along

(10), therefore leading to destructive interference of odd ordered diffraction peaks as

displayed in Fig. 4.11. However, because of the relative shift of circles and ellipses,

when aligned along the (10) direction of the β pattern, the coherence ellipse will,

again, be only able to coherently illuminate a single type of elements, therefore not

experiencing destructive interference of circles and ellipses. Destructive interference

is nevertheless implied in the calculation of the classical structure factor F (Q),

since the integration limits of eq. 2.90 span the whole unit cell, disregarding any

considerations regarding beam coherence, therefore predicting a dip in intensity for

odd-ordered peaks which is not observed in experiment.

Because of the projected coherence properties, the coherence ellipse will be

able to extend over many unit cells in the parallel direction and be narrow in the

perpendicular direction. That means that in the high symmetry (10) and (01) direc-

tions of the β pattern only a single row of elements of a single kind will be coherently

illuminated simultaneously. A supplementary discussion of the experimental obser-

vations is provided by Arnalds et al. [75].
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Figure 4.11: Simulated and experimentally measured rocking curves. Panels a), b),
and c) show measurements along φ = 0°, 90° and 28°, respectively, taken on the α
pattern. Solid lines show experimental data. In panel b) odd satellite orders are
of reduced intensity due to destructive interference of circular and elliptical islands
being lined up along the (10) direction corresponding to azimuthal rotation φ = 90°.
Panel c) shows the superposition of multiple GTRs being probed due to the wide
detector acceptance and low perpendicular beam coherence. Dashed green lines show
simulations of the experiment considering flat islands (modelled by Bessel functions
of first kind of order 1) and infinite coherence along both r‖ and r⊥, leading to poor
match in between experimental and simulated data.

4.2.3 Neglecting coherence effects

The dotted lines in Figs. 4.11 and 4.12 show examples of a “näıve” simulation of

the scattered signal, disregarding beam coherence effects. For the simulation, the

patterns have been modelled by two-dimensional circles and ellipses of SLD being

unity within and zero outside of the structure. This is justified by the comparatively

simple nominal sample geometry, in terms of the side walls and island tops being

perfectly flat. This way, the effect of the chemical profile along the z-direction of

each island towards the structure factor F (Q) is reduced to a simple scaling factor

modifying the simulated intensity.
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Figure 4.12: Simulated and experimentally measured rocking curves. Panels a), b),
and c) show measurements along φ = 0°, 90° and 28°, respectively, taken on the
β pattern. Solid lines represent experimental data. Note how in the experimental
data in panel b) odd ordered satellite peaks in the (10) direction show no decrease
in intensity, although the structural form factor A(Q) of the unit cell of the array
exhibits reduced amplitude along Qy, since the two sublattices are shifted by a half
a lattice period along y. This is a direct indication of poor perpendicular coherence
under the experimental conditions, since amplitudes scattered by the circular and
elliptical islands are not able to add coherently. The dashed lines represent simulated
data, again leading to poor matching with experiment. Note how the simulated
rocking curve of panel b) – since it was performed in the high coherence limit – does
show reduced intensity of odd satellite orders along the (10) direction.

It is furthermore implicitly assumed that the beam coherence is infinite in

both spatial directions in the sample plane. The angular detector acceptance ∆αf

has been assigned empirically through trial-and-error in order to roughly match the

satellite shape of the experimental observation, whereas the perpendicular angular

acceptance ∆ν of the detector was assumed to the cover the whole detector range.

Finally, all curves have been scaled by normalising the 0° simulation of the α pattern

to the first negative order Bragg satellite of the experimental data.

In eq. 4.21 a) the exponential containing the perpendicular coherence length
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ξ⊥ can here be dropped because the detector slit will always be able to integrate the

whole GTR in Q⊥. Also, the last exponential, which contains the phase information

depending on the center location rc of the coherence ellipse, can be dropped because

at any value of Q only a single GTR will be contributing intensity, so the phase

information will eventually cancel out when multiplying the scattering amplitude

with its complex conjugate. Furthermore, in eq. 4.21 b) the integration over r⊥ can

be dropped because of the ergodicity of the coherently illuminated part of the sample

and the integration over Q⊥ turns into a summation over single lattice points that

are being accepted by the detector. Performing these adaptations it follows that

I(Q‖) ∝
∑
G

ξ2
‖ exp

(
−g2
‖ξ

2
‖

)
|A(G)|2, (4.26)

where the amplitude structure factor A(G) of the two-element unit cell according to

eq. 4.22 has been used and the sum over lattice vectors G is taken over the extent

of the resolution function R.

Comparing simulated and experimental signals in Fig. 4.11 it becomes clear

that the simulation qualitatively captures the features of the measurements at φ =

0° and φ = 90°, which is expected following the previous discussion, even when

neglecting coherence effects. However, higher order satellite intensities are found to

be much smaller than expected and the simulation completely breaks down for the

example case of a rocking curve not along a high symmetry direction. The match

of simulated and experimental signal for the β pattern is even worse. Because of

the relative spatial dislocation in both x and y of circular and elliptical islands,

the geometry is more susceptible to coherence effects, which is why the destructive

interference of odd ordered peaks is observed principally in the simulation along

both (10) and (01) directions. Again, deviation between data and model is greatest

for diffraction away from a high symmetry direction, where the detector appears to

capture significantly fewer GTRs because of the stricter diffraction condition in the

high coherence case, again stressing the importance of considering beam coherence

in diffraction of patterned arrays.

4.2.4 Simulating Low Beam Coherence

In the previous section it was seen how simulating off-specular diffraction fails if

no proper treatment of the beam coherence is performed. Hence, in this section

the general form of eq. 4.21 will be put to use. To this end, conditions of low

perpendicular beam coherence will be assumed so as to investigate the effects of the

latter towards the diffracted intensity.
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Figure 4.13: Experimental (black dotted) and simulated (red line) signal of rock-
ing curves of α pattern at selected azimuthal rotations φ at beam energy 8.8 keV.
Structural form factors of circular- and elliptical islands have each been calculated
from a single Bessel function of first kind of order 1.

Generally, decreasing beam coherence is associated with a widening of the

GTRs, centred at the reciprocal lattice points. One potential consequence is the ap-

pearance of additional peaks in the diffraction pattern, each corresponding to a single
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Figure 4.14: Experimental (black dotted) and simulated (red line) signal of rocking
curves of β pattern at selected azimuthal rotations φ at beam energy 6.5255 keV.
Structural form factors of circular- and elliptical islands have each been calculated
from a single Bessel function of first kind of order 1.

reciprocal lattice point, which actually does not necessarily have to lie within the

detector resolution function. However, the corresponding GTR, which is anchored

to the lattice point, has been extremely widened due to low coherence conditions,
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Parameter Empirical Value

Parallel beam coherence [nm] 150000
Perpendicular beam coherence [nm] 750
Parallel detector acceptance [mrad] 0.166667
Perpendicular detector acceptance [mrad] 0.5

Table 4.1: Simulation parameters used in producing Figs. 4.13 and 4.14. The parallel
detector acceptance is understood to be along the narrow slit dimension and repre-
sents one Gaussian standard deviation. The perpendicular detector acceptance lies
along the wide detector slit dimension, effectively represents the angular acceptance
of the (open) detector and represents the width of a top-hat function.

so that it is nevertheless partly intercepted by the detector resolution function. A

second potential effect is the coherent amplitude modulation of overlapping GTRs.

In this case, it is not sufficient for the perpendicular coherence ξ⊥ to merely fall

below the spatial distance of neighbouring islands, but additionally, the GTRs have

to be oriented in a way that the long axis of the GTRs aligns with a reciprocal

lattice plane, as is indicated in Fig. 4.7, where GTRs align and partly overlap along

the (11) lattice plane.

Simulated rocking curves of both patterns are presented in Figs. 4.13 and 4.14,

using reasonable simulation parameters presented in table 4.1. As can be seen both

of the effects mentioned above are observed in the low-coherence simulated signal.

The simulation now produces peaks at most of the positions observed in experiment.

Also, the odd ordered peaks along the (01) direction of the β pattern seen in

Fig. 4.14 f) are no longer affected by the reduced structural form factor of the unit

cell, which is a direct consequence of the low coherence conditions present. Similarly,

because of the circles and ellipses lining up in the α case, modulation of the odd

ordered satellites along (10) is still observed in Fig. 4.13, as would be expected even

under low perpendicular coherence.

Apparently, the implementation of the low beam coherence appears to be able

to reproduce many of the experimental features already and is a promising route

to providing valuable information for both investigating beam coherence properties

as well as a means of characterising sample properties under imperfect coherence

conditions. However, although attempted, up to this point no proper fitting of ex-

perimental data has been successful.

The motivation for applying fits of low coherence experiments is clear, though. On

the one hand, experimental set-ups often simply do not provide sufficient coherence
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that neglecting the issue is feasible. Also, the complex interplay of many superpo-

sitioned GTRs – in particular at wide detector acceptance, is computationally very

costly. On the other hand, the same complexity may be understood as providing a

plethora of information about the investigated system; in particular rocking curves

taken away from high symmetry sample directions may be sensitive to a very high

number of reciprocal lattice points as well as to their superposition mediated by the

beam coherence.

Coming back to the simulated data, as a general trend, satellites at large

wave vector transfers are found to be systematically of intensities significantly too

low relative to the experimental data. This strongly indicates that the simulation

model is not able to adequately reproduce the experimental measurement, and so

fitting of the experimental data cannot be expected to lead to any meaningful results

under the assumptions currently used.

The fact that all peaks seen in experiment are actually present in the sim-

ulation but are found to be at too low intensities hints at the need to re-evaluate

the role of the structure factor F (Q) of the superlattice unit cell, which provides

the envelope function of the Bragg peaks. It seems that the scattering amplitude

of the GTRs gets underestimated systematically with increasing
∣∣Q‖∣∣. Apparently,

the model that has been used is not able to capture all the critical contributions in

evaluating the structure factor of the patterned array.

4.2.5 A Realistic Model of the Sample Structure

In the previous sections the spatial structure of the sample was assumed to obey a

number of simplifying assumptions. First, the variation of the chemical composition

of each layer of the sample was assumed to be limited in the direction perpendicular

to the sample plane, which in turn means that the perpendicular SLD profile merely

affects the scattered intensity along Qz, hence only acting as a scaling factor in a

rocking experiment, for which Qz = const holds.

The second simplifying assumption was the constant cross section at any

height z of the patterned structure. This simplified the mathematical treatment

significantly, since the Fourier Transformation of the unit cell consisted of a simple

product of two terms. The first is a constant phase factor given by eq. 4.23, cor-

responding to the nominal height h of the islands, which does affect the scattered

intensity only in the form of a scaling factor and is taken care of implicitly in the fi-

nal rescaling of the simulated intensity to match the experimental data. The second

factor is the superposition of the Fourier transforms of a circle and an ellipse given

by eq. 4.22. The apparent simplicity of this approach is tempting, and it is, in fact,
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an often legitimate approximation[38, 52, 75, 98]. However, off-specular diffraction

of patterned arrays is often found to be highly sensitive to even the smallest changes

in the sample structure[56, 65, 83], a phenomenon which will be explored more fully

in Chapter 5.

In any fitting procedure it is critically important to accurately account for

any sample property, which might be affecting the scattered intensity. Only if the

model of the investigated system encapsulates all the relevant sample properties will

it correctly reproduce the scattered intensity at all wavevector transfers Q and the

fit converges, providing sensitivity to experimental parameters. In the context of the

current work, the latter means that even if deviations from the target structure may

only be of secondary interest, for instance, in characterising the beam coherence, an

accurate model of the spatial sample structure is necessary if these deviation have

a strong impact on the structure factor of the unit cell.

Therefore, the very convenient analytical form factor of the array given by

eqs. 4.22 and 4.23 had to be dropped in favour of a more flexible numerical evalua-

tion, taking into account more subtle geometrical factors like sloped walls or doming

of the islands. Hence, in the model finally adopted, each island was characterised

by a surface cut function

S(r) = h(x, y)

determining its total height on a finite two-dimensional grid, representing the x and

y coordinates within the unit cell. The three dimensional Fourier transformation

of the scattering length density is then performed by replacing each point on the

real space grid by the product of its phase contributions in all three dimensions

and performing a Riemann sum of these phases at particular locations in reciprocal

space. The latter locations are given by all the reciprocal lattice points whose

GTRs intercept the detector resolution function so as to obtain the correct phase

information of overlapping GTRs. In the limit of kinematical scattering this leads

to the structure factor of the unit cell

A(Q, h(x, y)) ≈
∑
x,y

fρnum

−iQz

(
1− e−ih(x,y)Qz

)
e−i(Qxx+Qyy) dA

∝
∑
x,y

(
1− e−ih(x,y)Qz

)
e−i(Qxx+Qyy) dA , (4.27)

with fρnum being the (constant) island scattering length density, dA is the area of

a single grid element and the sum is taken over all grid elements contained in one

unit cell. Note that the scattering length density is again considered constant over
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the whole volume of the island, since it is still implicitly considered to vary along

z only, so that it contributes no modulation of the GTR intensity at constant Qz.

Moreover, in the following analysis all constant factors in eq. 4.27 will be dropped

and implicitly enter the scaling constant.

In the lack of any analytical model describing the deviations of the patterned

islands from the target structure, the surface cut function S(r) had to be defined in

such a way so as to provide an adequate amount of flexibility in describing sloped

edges and island doming caused by the deposition through a patterning mask, while

keeping the number of open fitting parameters needed to create a sufficiently flexible

model as low as possible. The choice was therefore made to allow the model to

account for any potentially sloped sides by a double exponential function, smoothly

transitioning from its saturation value at substrate level close to a saturation value

representing the nominal height of the islands. Furthermore, the domed tops were

modelled by a variant of a Pearson VII function, being able to reproduce a wide

range of doming shapes, while ensuring a physically reasonable shape. The exact

modelling procedure is described in the context of Chapter 5. For now, it suffices

if the reader accepts that in the following the unit cell structure factor is modified

by a more flexible and more realistic model of the spatial shape of the patterned

islands. However, this comes at the cost of a computationally much more demanding

evaluation of what is only an approximate solution, which is limited by the finite

resolution of the real space lattice the unit cell is defined on.

Exploiting the rotational symmetry of the circular island, its surface cut

function has been defined as a function of the horizontal distance to the islands

centre r to read

S(r) =


ζhn exp

(
rt−r
σb

)
for r ≥ rt

hn

(
1− (1− ζ) exp

(
−(rt−r)

σt

))
for rt > r ≥ rn

(hd − h̃0)
(

η2

η2+r2

)M
for r0 > r,

(4.28)

which is explored in more detail in eqs. 5.5 and 5.6, Fig. 5.7 and the accompanying
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discussion. Eq. 4.28 includes the substitutions

ζ = σb/(σb + σt) (4.29a)

η = r0

√
κ

κ− 1
(4.29b)

κ =

(
boff

hd − hn

) 1
M

(4.29c)

h̃0 = hn −∆h (4.29d)

rt = r0 − roff (4.29e)

roff =
σt

1− ζ
ln

(
toff

hn + toff

)
, (4.29f)

and the open parameters of the model are then given by the nominal height and

nominal radius of the island, respectively hn and rn, the total height of the dom-

ing centre hd, the top- and bottom widths of the sloped island sides σt and σb, the

Pearson-VII exponent M and the two offset parameters boff and toff . The latter

define z-offsets of the doming function and the z-value ≥ hn at which the transi-

tion from sloped sides to the domed centre function occurs, which both provides

additional flexibility to the model in obtaining a wide range of generalised island

structures. Defining the transition radius rt of eq. 4.28 in this way indirectly via toff

has the advantage of being able to fix a range of transitioning heights in a fit more

easily.

Importantly, the slightly complicated form of eq. 4.28 was chosen deliber-

ately, so that what is believed to be the most critical parameters (like the nominal

height, doming height and nominal radius) remain uncoupled from other parame-

ters, which significantly accelerates most data fitting procedures. Inserting eq. 4.28

into eq. 4.27 and expressing the scattering amplitude of the elliptical island as a lin-

ear transformation of a translated and stretched circular island the structure factor

of the patterned arrays unit cell evaluates to

A(Q)u.c. = A(Q, h(x, y)) + lxly A
(
Q̃, h(x, y)

)
e−i(xoffQx+yoffQy), (4.30)

with Q̃ =
√
l2xQ

2
x + l2yQ

2
y. The first term on the right hand side of eq. 4.30 represents

the circular island and the second term represents the elliptical island following a

suitable real-space translation and scaling of the circular island axes by factors of lx

and ly of the elliptical island.

Fitting of simulated to experimental data has been performed utilising the

differential evolution algorithm[181] using recommended parameters [189], by min-
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Figure 4.15: Comparison of experimental (black dotted) and simulated (red line)
rocking curves of α pattern at selected azimuthal rotation φ. The annotated values
of φ represent fitted parameters, which match experimental data best.

imising the figure of merit of the absolute difference of experimental and simulated

data as discussed in section 3.4. The unit cell structure factor has been calculated

from eqs. 4.30 and 4.27 using a grid size of 151x151 points, corresponding to a real
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Figure 4.16: Comparison of experimental (black dotted) and simulated (red line)
rocking curves of β pattern at selected azimuthal rotation φ. The annotated values
of φ represent fitted parameters, which match experimental data best.

space spatial resolution of 9 nm within the sample plane used in evaluation of the

structure factor of the circular islands.

For both the α and β pattern simultaneous fits of simulated to experimental

125



Parameter Value [α] Value [β]

Nominal island height h [nm] 56.6 61.7
Dome height hd [nm] 2.2 1.4
Bottom edge slope σb [nm] 4.6 0.56
Top edge slope σt [nm] 21 23
Beam divergence ∆αi [mrad] 0.2 0.5
Parallel Detector Acceptance ∆αf [mrad] 0.11 0.2
Perpendicular beam coherence ξ⊥ [nm] 230 390
Perpendicular Detector Acceptance ∆φ [mrad] 2.5 0.73

Table 4.2: Selection of fitting parameters for the α pattern

data at seven different azimuthal angles φ have been performed and are presented

in Figs. 4.15 and 4.16. Note that in between the experiments measuring the α and β

patterns the beam energy and incident slit size has been adjusted to improve exper-

imental conditions by reducing x-ray fluorescence and improving counting statistics

via increasing incident slit width. The first experiment has been performed on the β

pattern at 8.8 keV and an incident slit width of 150 µm and the second experiment,

on the α pattern, has been performed at 6.5255 keV and an incident slit width of

240 µm. As a consequence, important properties determining the beam coherence

have changed from one experiment to the other, making a simultaneous fit of both

pattern types impossible. Furthermore, since identification of lattice directions by

fine tuning of the azimuthal rotation φ was not possible at the time of the exper-

iment, measurements were taken at azimuthal steps of 2°. The final identification

of the actual azimuthal rotation with respect to the (10) direction was left out to

subsequent analysis, meaning that after a rough identification of lattice directions

by eye, the final evaluation of φ was performed by inclusion of a fitting parameter

φoff in the range 4° to 4°.
The quality of the fits is generally satisfactory, reproducing the qualitative

features of the rocking curves in all cases and in many cases reproducing even subtle

details. Table 4.2 presents the best fitted values of the individual fitting of the α

and β patterns, while Figs. 4.17 and 4.18 presents scans of the FOM as a function of

varying a single selected parameter, while keeping all remaining parameters fixed at

their fitted values. This presentation highlights the impact of a particular parameter,

with well defined minima usually being indicative of high model sensitivity towards

that parameter.

The critical parameters determining the quality of the fits have been iden-

tified to be the beam coherence both parallel, ξ‖, and perpendicular, ξ⊥, to the

scattering plane as well as the doming height hd and nominal height hn of the is-
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Figure 4.17: FOM scans of selected parameters for fitting the α pattern. Each
panel shows a simulation’s figure of merit as a function of a specific parameter,
while keeping all other parameters at their best values according to the fit. The
dotted line indicates the parameter’s best value as obtained from the fit. Panel
a) shows FOM vs. nominal height hn (Total island height minus dome height), b)
FOM vs. total island height hd including the doming, c) FOM vs. divergence of the
incident beam αi, and d) FOM vs. perpendicular beam coherence ξ⊥ of the beam.

lands. The minima of both nominal height hn and total height including doming

hd = hn + td presented in panels a) and b) of Figs. 4.17 and 4.18 coincide very well

with the best fit values. In case of the α pattern, the nominal height hn = 56.6 nm

falls slightly short below its design value of 60 nm, while it slightly exceeds the de-

sired value in case of the β pattern. The observed discrepancy can be interpreted as

a direct consequence of the sample model; Neglecting the sloped sides, each island

can be approximately decomposed into a flat and a domed part. Then, varying the
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Figure 4.18: FOM scans of selected parameters for fitting the β pattern. Each panel
shows a simulation’s figure of merit as a function of a specific parameter, while
keeping all other parameters at their best values according to the fit. The dotted
line indicates the parameter’s best value as obtained from the fit. Panel a) shows
FOM vs. nominal height hn (Total island height minus dome height), b) FOM vs.
total island height hd including the doming, c) FOM vs. divergence of the incident
beam αi, and d) FOM vs. perpendicular beam coherence ξ⊥ of the beam.

nominal island height hn, while maintaining the shape of the dome, will primarily

affect the complex exponential term containing z in eq. 4.27. Hence, changes in hn

will mostly manifest in changes of a constant scaling factor, which is compensated

for in the fit by adaptation of the global intensity scaling factor, which combines

all constant factors determining the registered intensity (like incident beam flux,

sample size, etc). In other words, without additional explicit consideration of the

Qz dependence of the scattering, for instance in form of a reflectivity measurement,
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the nominal island height is very hard to reproduce from the rocking curves, as it

merely enters the calculations as one of the many constant scaling factors of the

rocking curve intensity.

The thickness of the dome td is found to be 2.2 nm for the α and 1.4 nm for

the β pattern. Albeit only relatively small relative to the total island height, td plays

a particularly decisive role in determining the unit cell structure factor A(Qu.c.) and

is therefore critically important when a quantitative fit of experimental data is to

be obtained. The reason is that island doming boosts high frequency modulation

of the form factor as will be shown in the course of chapter 5. If island doming

is neglected in the modelling of the sample, the simulation will systematically un-

derestimate high order Bragg satellites and fitting of the data becomes impossible.

However, because of the similarity of the patterning processes, the doming height td

is expected to be similar for both the α and β patterns and despite being small, the

discrepancy is significant. The most likely explanation for this result is a combina-

tion of an imperfect sample model and measuring both patterns at different x-ray

beam energies, the latter affecting the energy dependent scattering length density.

The doming of the outer surface of the islands is expected to actually propagate

through all of the stacked bi-layers as well, therefore creating additional and unique

in-plane components of the structure factor of the unit cell F (Q) within each bi-

layer. These additional modulations may differ in their effect in between the α and

β samples, since changing the beam energy also affected the respective SLDs of the

Co68Fe24Zr8 and Al2O3 comprising each bilayer. As the scattering model does not

include the chemical structure of the multilayer, but rather assumes the islands to

be of a homogeneous SLD, the additional effects of bilayer doming are not incorpo-

rated within the used scattering model, and may reflect in independent variations

of the doming thickness td, leading to different values matching the experimental

data best, considering the imperfect sample model and differing energy dependent

SLD profiles. If both measurements were taken at the same energy, the model would

still be slightly off for the reasons just discussed, however, the similarity of the two

patterns would likely reflect in both fits converging to an identical doming thick-

ness td. The hypothesis of the doming propagating through the bilayers is further

strengthened by the SLD profile of the α pattern obtained from independent fitting

of the specular reflectivity presented in Fig. 4.21 of section 4.2.6, which taking into

account a different sample model, being better suited for fitting Qz scans. The SLD

profile shows that the interface roughness of each bilayer increases the higher up in

the stack the bilayer is. The latter is exactly how increasing the doming thickness

of bilayers would reflect in the laterally averaged SLD profile of a sample, which is

129



what a reflectivity measurement is probing.

Figs. 4.17 c) and 4.18 c) show a parameter scan of the divergence ∆αi of

the incident beam, the quantity that determines the parallel beam coherence along

the long axis of the coherence ellipse. In accordance with the experimental set-

up, the beam divergence increased after using a wider slit when measuring the β

sample. Apart from their absolute difference, both parameter scans reveal very

similar behaviour, with the best value according to the fit, curiously, being located

in neither local nor global minimum, despite larger values in both cases clearly

leading to a smaller figure of merit.

Direct evaluation of the parallel coherence is not straightforward, since it is

generally a function of the source angle αi and changes therefore over the probed

range of Q‖, according to

ξ‖ =
λ

2

1

∆αi sinαi
, (4.31)

where the coherence has been assumed to be determined purely by the divergence

of the impinging radiation, so the detector and wavelength spread according to eq.

4.8 have been neglected.

Finally, panel d) of Figs. 4.17 and 4.18 shows the relationship of fit quality

and coherence perpendicular to the scattering plane ξ⊥. The FOM continuously

decreases with ξ⊥ down to almost exactly 1 µm, below which the FOM plateaus and

variation in the FOM is less drastic. This makes intuitive sense, since at a certain

threshold, islands which are even slightly offset in their projection along the incident

wave field, will not scatter coherently and so the scattered signal stays effectively the

same when reducing the coherence even further. The best value of the α pattern, as

obtained from the fit, appears more or less chosen randomly from within the range

of basically constant FOM. Interestingly, in case of the β pattern, the figure of

merit steeply increases for values of the perpendicular coherence ξ⊥ . 300 nm. This

is interpreted as a characteristic of the sample geometry, arising if perpendicular

coherence ξ⊥ lies within an intermediate range between the high coherence limit

and vanishing perpendicular coherence. When aligned along the (10) direction, the

width of the coherence ellipse has to exceed a certain threshold in order to coherently

cover at least parts of both circles and ellipses. This is in contrast to the geometry of

the α pattern, where the alignment of the circles and ellipses along (10) means that

not such a high amount of sensitivity to the intermediate coherence length exists,

since whenever an ellipse is illuminated coherently, the circles scatter coherently as

well. In other words, there exists no lower limit for ξ⊥ for the α pattern, below the

scattering changes qualitatively because the respective island do not even partially
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scatter coherently.

Figs. 4.19 and 4.20 show reproductions of the mapping of parallel wavevector

transfer Q‖ vs. azimuthal rotation φ of the α and β pattern, respectively. The full

set of azimuthal rotations spanning more than 180° has been calculated according

to the best parameters obtained from the fitting the limited set of rocking curves

as seen in Figs. 4.15 and 4.16, leading to generally satisfying agreement between

simulated and experimental data.
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Figure 4.19: Simulation (a) and experimental data (b) of the azimuthal map of the
α pattern.
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Figure 4.20: Simulation (a) and experimental data (b) of the azimuthal map of the
β pattern.
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4.2.6 Specular Reflectivity

In the previous section it was shown that in order to obtain a satisfactory fit to

experimental data, the sample model had to be adapted to allow for deviations of

the nominal sample structure in the form of island doming. Despite the doming

being comparatively small (only 2.2 nm compared to about 60 nm total height) the

impact on the satellite modulation was profound as can be witnessed, for instance,

by comparing Figs. 4.13 and 4.15. The question now arises, in how far island doming

might be affecting the specular reflectivity of the sample as well and if reflectivity

measurements support the domed island model.

Because of its vertical wavevector transfer, |Q| = Qz, reflectivity measure-

ments are sensitive to the averaged scattering length density along the sample normal

only. That means that on the one hand any coherence projections onto the sample

plane can safely be neglected. On the other hand, the temporal coherence along the

beam is under all conceivable experimental conditions sufficient to coherently illumi-

nate the sample along its very thin z-projection. Hence, three models of increasing

complexity (two of which are including doming) representing the out-of-plane SLD-

profile of the sample have been fitted to the experimental data in order to determine

which matches the experimental observations best.

Fitting has been performed using the freely available GenX-software[208],

utilising Parratt’s Recursive Method, which is discussed in section 2.2.5. Although

the software package was designed for fitting of continuous multilayers, the insensi-

tivity to the in-plane chemical structure of the sample allows fitting of reflectivity

curves, taking into account the spatially averaged scattering length density at height

z of the sample, hence requiring the periodic nature of the multilayer to reflect in

the simulated SLD profile.

All models assumed a stack of ten identical bilayers of Co68Fe24Zr8 and Al2O3

as well as a seeding and terminating layer of Al2O3. The thickness of each sublayer

was coupled by a common bilayer thickness. Each bilayer was assumed to be iden-

Parameter FittedValue

bilayer thickness dbl [nm] 6.0
thickness Co layer dCo [nm] 2.7
thickness of bottom Al buffer dAl,bottom [nm] 3.7
interface roughness σCoFeZr [nm] 0.51
interface roughness σAl [nm] 0.40

Table 4.3: Selected best fit parameters obtained from fitting of the simple model to
experimental reflectivity data.
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Figure 4.21: Reflected intensity (top) and SLD profile in z-direction (bottom) of the
α pattern. Despite strong differences in the SLD profiles of the respective models
the effect towards the reflected intensity is relatively weak.

tical with respect to its chemical profile and the open parameters of the bilayer

consisted of the respective sublayer’s SLD and interface roughness and the total

thickness dBL as well as the thickness of the Co68Fe24Zr8 sublayer. Consequently,

the thickness of the Al2O3 sublayer dAlO = dBL − dCo was fully determined by

the respective thickness of the two remaining layers. The most important fitting

parameters using this sample model are presented in table 4.3.

The fit to experiment and corresponding SLD profile are given by the blue

curves in Fig. 4.21. The fit obtained in this way is generally of satisfying quality,

indicating a layer period which almost exactly matches the target bilayer thickness

of 6 nm, and a thickness of the Cobalt layer dCo = 2.7 nm, implying the thickness of

the aluminium layer to be dAl = 3.3 nm, both slightly deviating from their nominal

thickness dnom.
Co = dnom.

Al = 3 nm. The fit further allowed the characterisation of

growth parameters like the interface roughness σCo and σAl, respectively.

Nevertheless, in a second fit the SLD profile of the sample was modelled in a

less restrictive way, which allowed the atomic number density ρnum of each layer to

depend on its lower neighbour’s density. The idea here is that the model is given the
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Parameter Fitted Value

bilayer thickness dbl [nm] 6.03
thickness CoFeZr layer dCoFeZr [nm] 3.03
thickness bottom AlO buffer dAlO,bottom [nm] 3.02
dome thickness hD [nm] 3.05
CoFeZr c0 4.48
CoFeZr c1 -0.20
CoFeZr c2 0.019
AlO a0 8.32
AlO a1 -0.38
AlO a2 0.01
γ2 0.76
γ3 0.80
γ4 0.82
γ5 0.83
γ6 0.86
γ7 0.94
γ8 0.87
γ9 0.91
γ10 0.77

Table 4.4: Selected best fit parameters obtained from fitting of the complex model
to experimental reflectivity data.

possibility to reflect changes in island geometry by means of adapting the laterally

averaged SLD. Hence, sloped side walls would be witnessed by a change in SLD

traversing one layer to another. Hence, the density of each sublayer ρi for i ≥ 2 is

calculated via

ρnum
i = γi ρ

num
i−1 , (4.32)

and the first layer’s density ρnum
1 and γ2−9 are all fitted independently.

Furthermore, the interface roughness of CoFeZr and Al2O3 layers i were

calculated via

σCoFeZr,i = c0 + c1 i+ c2 i
2 (4.33a)

σAlO,i = a0 + a1 i+ a2 i
2, (4.33b)

to, again, allow for a more flexible model. The motivation here was that stress

induced doming of the island would have a larger effect towards the upper layers.

The latter would lead to an increased average interface thickness because of the

additional height variation of the interface from centre to periphery.

Finally, a top layer of thickness equal to its roughness was added to the
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Figure 4.22: Interface roughness of the CoFeZr and Al2O3 interfaces as a function of
bilayer i following the complex sample model. Both types of interfaces were fitted
independently from each other (although within the same optimisation procedure),
obeying a polynomial model of order 2, given by eq. 4.33. It is found that for both
interface types the roughness appears to be increasing almost perfectly linearly with
i, which is in accord with the hypothesis of non-uniform growth of the islands as a
result of the pre-patterning of the sample.

model to account for sample doming. This is a rather crude approximation, leading

to an error-function-like tail to the SLD profile, similar to what would be expected

to be observed in case of island doming. The range of allowed values of each γi

spanned 0.75 to 1.25, so this model assured some flexibility in between the density

of neighbouring layers, without decoupling all layer density completely.

A fit and corresponding SLD profile using this model is presented by the

yellow lines in Fig. 4.21 and all relevant fitting parameters are shown in table 4.4.

The quality of the fit does slightly improve with respect to the simpler model (most

noticeably in the direct vicinity of the Bragg peaks, although the differences are

subtle), despite the SLD profile as a hole changing somewhat dramatically. It was

found empirically by repeating the fitting procedure multiple times that, although

the effect towards the quality of the fit is small, the SLD of higher layers is con-

sistently drawn towards decreasing value, as can be seen by the yellow line in the

bottom panel of Fig. 4.21. At the same time, the width of the Cobalt and Alu-

minium interfaces of bilayer i, following eq. 4.33, are systematically increasing with

i, as is shown in Fig. 4.22. It can be seen that the interface width tends to linearly
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increase with the bilayer index, which agrees with an non-uniform growth process

of the elements, preferentially depositing material closer to the centre of the holes

provided by the patterning mask. Consequently, chemical layers getting increasingly

deformed the higher they are located in the bilayer stack.

Furthermore, as is the case for the simpler model, a large thickness of the

topmost layer is reproducibly improving the quality of the fit, as it is seen to work

as a natural continuation of the envelope function modulating the SLD profile of

the bilayer stack.

To conclude, reflectivity measurements do not contradict domed island struc-

tures and in fact hint towards domed models being more adequate to reproduce the

experimental observations. However, unlike to the case of Qx scans, the exact choice

of model does after all only slightly affect the simulated outcome. In fact, even phys-

ically completely unreasonable SLD profile were able to fit the experimental data

somewhat satisfactory, so in this case x-ray reflectivity proved to be at most a

complementing technique, very well suited to resolve the out-of-plane structure of

the stratified medium, but not able to uniquely resolve the in-plane structure of a

patterned array from its averaged depth profile.

4.3 Summary

In the first section of this chapter, a framework for simulating low beam coherence

conditions and modelling the detector resolution function R were developed under

particular consideration of micro- and nano-patterned arrays. It was shown how

under low coherence conditions grating truncation rods are significantly widened,

replacing spatially confined grating truncation rods with diffraction planes, due to a

softening of the diffraction condition. Each diffraction plane is anchored on a recip-

rocal lattice point, and even if the lattice point does not lie within R, the latter might

still be intersected by a finite section of the diffraction plane, therefore contributing

to the detected intensity. In effect, especially when using an open detector set-up,

the number of detected diffraction planes under low coherence conditions is usually

much larger than the number of GTRs directly intersecting R under conditions of

large beam coherence, which is precisely what has been observed in experiment.

It was further shown how the scattered intensity of a single coherence ellipse

depends on its exact spatial location on the sample, and how the convolution theorem

can be used in order to calculate the scattered intensity of arbitrarily small coherence

areas. Further, it was discussed how the scattered intensity is calculated under the

additional restriction of overlapping GTRs, requiring coherent phase summation
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along the overlapping areas of neighbouring GTRs and real space translation of the

coherence ellipse, both of which is usually avoided under conditions of high beam

coherence.

In the second section of the chapter, a framework has been utilised in or-

der to obtain insight about the sample structure as well as to quantify the beam

coherence properties both parallel and perpendicular to the scattering plane. Two

complementary sample models have been utilised in order to characterise the sam-

ple. One model, agnostic of the internal chemical structure of the sample, has been

successfully utilised to reproduce rocking curves at a variety of azimuthal rotation

angles of the sample, while the second model, reproducing the averaged chemical

SLD depth profile, has been used in order to simulate the x-ray reflectivity of the

sample. As it reduces the three-dimensional sample structure to a laterally averaged

SLD, the model used in reflectivity appears too oversimplified as to provide mean-

ingful insight into in-plane components of the sample structure. On the other hand,

the model used to reproduce the rocking curves runs into problems when the sample

structure significantly deviated from perfectly flat islands. However, the shortcom-

ings of both models are well understood and form a consistent picture as to why

fits deviate from experimental data. The two complementary models highlight the

importance of being able to accurately model both lateral geometry as well as the

three-dimensional chemical structure of patterned arrays. Further, a unified model,

that allows simultaneous fitting of both rocking curves as well as specular reflectiv-

ity has been identified as highly desirable, which is, amongst others, the topic of

chapter 5.

In order to fit the experimental data, the modular structure of the simulation

code as shown in Fig. 1.1 was found advantageous in being able to easily switch be-

tween the respective approaches in calculating the scattering structure factor F (Q)

of the unit cells of the α and β patterns, replacing the semi-analytical approach

of section 4.2.4 with the more flexible, yet computationally more demanding, fully

numerical model discussed in section 4.2.5.
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Chapter 5

Three dimensional Modelling of

Magnetic Patterned Arrays

Chapter 4 primarily dealt with the effects of beam coherence towards the intensity

registered in an experiment. For the most part, it was sufficient to utilise compara-

tively easy analytical expressions to model the spatial structure of the sample when

developing the low-coherence scattering framework, only to, out of necessity, intro-

duce a more complex model in the final sections. This chapter, on the other hand,

focusses, amongst others, on the development of a generic spatial modelling frame-

work of arbitrary sample structures of patterned arrays. The discussion follows the

line of the whole process of fitting a particular sample of a patterned array, which

turned out to require a highly non-idealised modelling framework to reproduce the

experimentally observed x-ray scattering. However, the explicit implementation of

the model is presented along with the general ideas of the scattering framework, so

that translating the concepts to a different system is straightforward.

Despite the modelling process being time consuming and tedious, the exper-

imentally observed sensitivity to often subtle geometrical deviations from a nominal

sample structure makes diffraction of patterned arrays an excellent tool for extract-

ing a plethora of characterising information unavailable by most other experimental

techniques. This way, information about the internal magnetic state of a sample is

generated, provided the energy of the incident x-ray field is tuned to a resonance

edge of the sample material. Hence, this work represents the first attempt of solving

both the chemical and magnetic structure by means of parametric fitting of pat-

terned arrays consisting of islands obtaining an oxidised shell and a magnetic core.

Along the way to fitting the experimental data of this specific sample, the general

framework of fitting patterned arrays will be developed. This allows to easily extend
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this work to a wide range of similar patterned arrays, by means of both following

the discussing on common phenomena as well as providing a detailed description of

the underlying mathematical and computational modelling.

However, in order to keep things simple, in this chapter only saturated mag-

netic states, i.e. all internal magnetic moments aligned parallel, will be considered,

whereas chapter 7 extends the theory towards spatial distributions of internal mag-

netic moments within the scattering structure.

5.1 Experimental Observations

The samples dealt with in this section have been prepared by sputter deposition of

an amorphous Fe13.5Pd86.5 alloy into a pre-patterned lithographically defined tem-

plate as described in section 3.2 and Östman et al. [77] and both an SEM and AFM

image of which are presented in Fig. 5.1. However, as can be seen in Figs. 5.2 and

5.3, the AFM linescans are prone to systematic readout errors, most likely related to

the sharp height gradients at the island edges, since distinct spikes appear at almost

every island edge along the scan direction (best seen in Fig. 5.3). These spikes are

almost certainly scan artefacts, as they would otherwise break the rotational sym-

metry of the disks. Because of their apparent low reliability, extracting trustworthy

spatial information from AFM scans of patterned arrays seems to not be easy, again

stressing the importance of alternative analysis techniques.

The patterned array consisted of a two-dimensional square lattice of circular

islands of radius R = 225 nm, nominal height 10 nm and lattice pitch d = 513 nm.

Figure 5.1: Left: SEM image of the sample, showing the high lateral conformity of
the FePd patterned array studied herein. Right: A lateral AFM scan through an
island centre of the same array, showing an characteristic domed top.
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Figure 5.2: Four randomly chosen AFM linescans along individual nano disks. Al-
though each island shows a similar doming geometry, the linescans often include
sharp spikes, most likely due to problems related to large height-gradients of the
sample.

Below the Curie Temperature TC ≈ 308 K[77] the FePd exhibits a strong magnetic

response, as palladium is highly polarisable in the vicinity of the dopant iron, devel-

oping a high magnetic moment per iron atom of about 10 to 12 µB[209][210]. Upon

being magnetised, the atomic scattering factor f of a material is altered according to

the general form seen in eq. 2.31 derived in chapter 2. Under small angle conditions

and using circularly polarised radiation the simpler form found in eq. 2.32 may be

used, reading

f = fc(Q,E)± fm(E,Q,mx), (5.1)

where fc includes the Thomson scattering f0(Q) and (energy dependant) resonant

correction terms f ′(E) and f ′′(E) representing the charge scattering, fm depends

on the angle between the wavevector transfer Q and the local magnetic moment m,

only exhibiting maxima near appropriate resonance edges. Finally, the sign of the
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Figure 5.3: Two dimensional AFM sample profile. Spikes systematically appear at
the island edges along the y-axis. As these apparent spikes violate the isotropy of
individual disks (and their formation process) they are considered artefacts. Image
adapted from [171].

magnetic term depends on the helicity of the circularly polarised radiation as can

be seen from inspection of eq. 2.30.

X-ray Resonant Magnetic Scattering (XRMS) was then utilised to investi-

gate magnetised patterned arrays by performing multiple experiments on the 4-ID-D

beamline at the Advanced Photon Source (APS)[211], Chicago, Illinois. The exper-

iments presented in this chapter were performed on two different sample temper-

atures, 200 K and 30 K, both well below the Curie Temperature TC of the island

material. Furthermore, an external magnetic field of 12.85 mT was applied parallel

to both the sample- and scattering plane, which was sufficient to fully magnetise

the islands[77]. A strong magnetic sensitivity of the incident radiation was obtained

from tuning the photon energy to 3.174 keV, which is located just below the Pd L3

edge at 3.187 keV, ensuring an increased resonant response of f ′, at the same time

minimising the effect on f ′′, which would otherwise lead to enhanced fluorescence

at and above the absorption edge.

Since the islands were magnetically saturated, all of the local magnetic mo-

ments m̂(r) were in parallel alignment along both the scattering- and sample plane,
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Figure 5.4: Sum, difference and asymmetry ratio obtained from rocking scans taken
at 2θ = 8.12 ◦C corresponding to qz = 2.27 nm. Scans were performed at tempera-
tures 200 K and 30 K and all data are normalised with respect to integration time
per angular step. The difference signal and asymmetry ratio seen in panel b) and c)
and significantly increased at the 30 K measurement, in accord with the increased
bulk magnetisation of ferromagnetic material at lower temperatures.

and hence m̂x = x̂, implying mx = 1. Under these conditions, the local scattering

factors simplify further to read

f± = f0 + F (0) ± F (1), (5.2)

where now the explicit dependence on E and mx has been omitted since these

parameters are held constant. As can be seen, F (0) = f ′ + if ′′ and F (1) = f ′mag +

if ′′mag are simply the (complex) resonant charge- and magnetic correction terms,

which are often not very well defined and generally depend on the local atomic

environment and electronic band structure of a material. In a typical experiment

using circularly polarised x-rays, the local scattering factors f± manifest in slightly

different intensities I+ and I−, corresponding to left- and right circular polarisation
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Figure 5.5: Sum signal and asymmetry ratio in reflectivity scattering geometry.
Unfortunately no high temperature measurements could be performed due to time
constraints at the time of the experiment. The dashed dashed line marks the qz
value the rocking curve has been performed at, thus maximising the asymmetry
ratio of the specularly reflected beam.

according to the definition given by eqs. 2.27 a) and b).

Figs. 5.4 and 5.5 present a comparison of a set of quantities derived from I+

and I− taken respectively during rocking curve and reflectivity scans. They were

obtained by swapping the beam helicity at every angular step of the diffractometer.

By splitting up the scattered amplitude into charge- and magnetic parts

A±(Q) = Ac(Q)±Amag(Q) (5.3a)

I = AA∗ (5.3b)

and subsequent expansion, the sum signal, difference signal and asymmetry ratio

can be expressed by

Isum = I+ + I− = 2AcA
∗
c + 2A∗magAmag (5.4a)

Idiff = I+ − I− = 2AcA
∗
mag + 2A∗cAmag (5.4b)

A.R. =
Idiff

Isum
=
I+ − I−

I+ + I−
. (5.4c)

As can be seen in eq. 5.4 a) and b), the sum signal consists of an incoherent super-

position of charge- and magnetic intensities, which is always > 0. The difference
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signal, however, includes charge and magnetic mix terms, which are products of am-

plitudes of arbitrary phases and can therefore take on positive or negative values,

which is what is being observed in Figs. 5.4 and 5.5.

From these figures a couple of observations can be made:

1. As a result of the lateral periodicity of the patterned array, the sum signal of

the rocking curve presented in Fig. 5.4 a) exhibits at least 12 orders of satellite

diffraction peaks located at Qx,GTR = n∆Qx = n 2π
d = n 0.0122 nm−1, cor-

responding to the nominal lattice constant d = 513 nm and diffraction order

n ∈ Z.

The satellites decrease in width with Qx and despite the supposedly Gaussian

beam properties, satellites look remarkably non-Gaussian, which is particu-

larly true for orders < +6. The latter exhibit sloped tops both rising and

falling with Qx. As can be seen, sum signals obtained at different tempera-

tures vary only slightly, which is consistent with the separation of charge- and

magnetic intensities as seen in eq. 5.4 a) in conjunction with the modulus of

the magnetic amplitude being much smaller than the modulus of the charge

scatter, i.e. |Amag| � |Ac| (or, alternatively, f0 + F (0) > F (1)), even if the

material is close to its saturation magnetisation.

2. The islands of the patterned array are nominally cylindrical, and as such, their

structure factor F (Q) was expected to resemble the Fourier transformation of

a circle,

F (Q) = |2πRJ1(QR)|2,

with R = 225 nm being the island radius and J1 the first Bessel function of

kind 1 (the constant island height not contributing to any modulation along

Qx). The latter does clearly not provide a satisfying modulation function to

the experimental data as becomes obvious from comparing Figs. 5.4 a) and

5.6 b).

3. The difference signal in the rocking curve as seen in Fig. 5.4 b) expectedly

reveals the formation of satellites as well. However, the charge-magnetic in-

terference leads to a modulation of the peaks, being negative for the orders

−3 to 3 and positive for the remaining. The temperature dependence leads to

qualitatively similar difference signals, however, the 30 K measurements reveals

a significantly increased difference signal, which is in accord with increasing

island magnetisation at lower temperatures.

4. The asymmetry ratio present in Fig. 5.4 c) gives an idea of the modulating
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function of the difference signal and reveals a maximum difference in intensity

of sum and difference signal of about 2% for the 300 K and up to 8% for the

30 K sample.

5. The sum signal of the specularly reflected intensities shown in Fig. 5.5 a)

shows no easily identifiable beating, which again is in disagreement with the

relatively simple nominal sample structure. Flat islands lead to a sharp out-

of-plane SLD profile of the sample, which would lead to well-defined periodic

modulation in reciprocal space of period

∆Qz =
2π

10 nm
= 0.63 nm−1,

at least within the sum signal. The reflected intensity actually measured,

readily hints at a more complex depth profile of the sample. Together with

the unexpected intensity modulation of the rocking curves, this gives clear

indication that the real sample structure deviates in a very significant way

from what was desired in the patterning process.

6. Finally, the asymmetry ratio of the reflectivity shows clear indication of charge-

magnetic interference of up to 5% of the sum signal.

The rest of this chapter will focus on understanding these observations, using them

to find an adequate way of modelling the scattering of patterned arrays and obtain

information about the spatial geometry and magnetic structure of the system.

5.2 Sample Modelling

Clearly, if quantitative reproduction of experimental results is to be aspired, a model

has to take into account all relevant properties of a particular sample. When, as

already discussed earlier, dealing with an x-ray reflectivity measurement, it is often

sufficient to model the sample in a one-dimensional way, only taking into account

the SLD depth profile of the sample, since this is the only property a reflectivity

measurement is sensitive to. Depending on the sample, this modelling can get

arbitrarily complicated, but the problem remains essentially one-dimensional. By

the same token, one cannot expect to obtain any in-plane spatial information about

any sample from doing a reflectivity measurement without projecting the out-of-

plane data onto a three-dimensional model of the sample, in this way inferring

spatial information. In this way it is possible to fit the reflectivity measurement
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Figure 5.6: Comparison of J1 Bessel functions being the in-plane Fourier transfor-
mations of a disk. The graph in panel a) is proportional to the scattered amplitude
of a circular island of radius 225 nm. Panel b) shows the square of a), being propor-
tional to the scattered intensity of the same disk, providing the envelope function
of a patterned array of (perfectly flat) circular disks.

seen in Fig. 5.5, but reproducing the signal seen in Fig. 5.4 certainly requires a more

complex three-dimensional model.

The driving task of the modelling process is answering the questions “What

properties of the real system have to be captured by the model?” and “How can these

properties be implemented taking into account the limited processing capacity of the

available data processing system?”.

After all, the higher dimensionality (at least two dimensions are needed for

a spatial model of the rotationally symmetric islands discussed in this chapter)

also generally means higher computational effort, which can easily bring a modern

desktop computer to its limits if immense numbers of recalculations are required, as

is the case in fitting a model to experimental data. The latter is particularly true

if the simulated model obtains no closed form analytical expression describing the

scattering and solutions have to be found numerically.

Focussing on the first question from above, it seems reasonable for a model

of the patterned array to include the possibility of some kind of doming, since peak

modulation of the rocking curves did not at all meet the expectations from a flat

array, and, more specifically, both AFM imaging (see Fig. 3.3) and the SLD profile

obtained from reflectivity measurements indicates the presence of island doming to-

wards its central axis. A spatial model should be versatile enough to capture a range

of realistic domed structures, while requiring only as few parameters as possible to
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access this set. The model being as generic as possible is important since without

knowledge of the exact formation process of the dome the exact doming function

is still rather unclear. After all, a spherical dome might be easy to implement and

require only very few parameters to be fitted on top of the island, but this will be

to no avail if the real doming is in fact not spherical and the scattered intensity is

sensitive to the exact shape of the doming, (which it turned out to be).

In this work we chose to code the doming function using a Pearson VII

distribution, which provides a height z as a function of radius r of the form

z(r) =
1

αB
(
m− 1

2 ,
1
2

) [1 +

(
r − µ
α

)2
]−M

, (5.5)

where α = σ
√

2M − 3, σ is the variance of the distribution, B is the beta function,

µ is the distribution centre and M > 3/2 is a shape parameter controlling the kur-

tosis of the distribution. The distribution continuously varies from approximating

a Lorentzian for low values of M to Gaussian shapes for M & 10.

In modelling patterned arrays, though, choosing a slightly different form of

eq. 5.5 making certain restrictions is useful. Namely, demanding that

1. The doming height above the nominal island height takes on a fixed value

2. The value of the doming function takes on the nominal island height at the

edges of the island.

This way the model allows one to decouple certain key parameters of the doming

function like nominal height zn and doming height zD, while ensuring edge continuity

and smooth boundary conditions. From solving the two equations obeying the

boundary conditions z(rn)
!

= zn and z(0)
!

= zD a reformulation of eq. 5.5 leads to

z(r) = (zD − z0)

(
η2

η2 + r2

)M
+ z0 (5.6a)

η =
rn
√
ξ√

ξ − 1
(5.6b)

ξ =

(
h− z0

zD − z0

) 1
M

(5.6c)

z0 = zn − zoff (5.6d)

where the beta function has cancelled out. The shape of the dome is now fully

determined by the nominal island height zn, the doming height zD, the nominal

island radius rn, the shape parameter m and a parameter zoff ≥ 0, which translates
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Figure 5.7: Influence of doming parameters M (left panel) and zoff (right panel)
for boundary conditions of constant rn = 225 nm and three doming heights
zD = 12 nm, 14 nm and 16 nm, coloured yellow, blue and purple, respectively.
In the left panel zoff = 0.8 (indicated by the horizontal dotted line) was held
constant, while the Pearson exponent is varied covering the seven values M =
0.70, 0.97, 1.35, 1.87, 2.61, 3.63 and 5.04. In the right panel M = 1.5 is held con-
stant and zoff is scanned through the values 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 and 32.0.

the baseline of the Pearson VII distribution to values below zn, while keeping the

boundary conditions intact. A visualisation of eq. 5.6 is found in Fig. 5.7. Hence,

the shape is determined by four open parameters, of which it has been empirically

found that m may often be of only very little impact on the actual doming for

physically reasonable parameter combinations. The choice of eq. 5.6 is preferred

over eq. 5.5 because of looser parameter coupling, the obvious physical meaning of

the parameters and the possibility of easily defining meaningful parameter limits

when fitting the simulation to experimental data. After all, obscure parameter

choice could easily lead to, for instance, unreasonable doming heights, evaluating

unphysical sample geometries which are consequently wasting computing time and

efficiency. The implicit assumption in this choice of function, however, is that any

doming is symmetric. Alternatively, more general cases could be considered through

a different choice of analytic function. The choice was motivated by the AFM data

in Fig. 3.3 and reproduced in Fig. 5.1.
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Fig. 5.7 shows a comparison of the influence of the two parameters deter-

mining the shape of the doming function m and zoff , respectively, at fixed boundary

conditions given by rn, zn and zD. As can be seen from the chosen example, a wide

variety of different shapes continually morphing into each other can be obtained.

Generally, higher sensitivity to M is obtained at low values of zD, which is when the

baseline of the PearsonVII function is asymptotically closer to the nominal height zn

of the island, so that varying the shape in between the limiting cases of Lorentzian

and Gaussian actually has a strong impact upon the doming shape. By increasing

the zoff parameter to high values relative to zn the doming approaches more spherical

shapes, acquiring high residual slope at the nominal island radius rn. In practice,

it has to be kept in mind that M and zoff might be effectively coupled in a way

that the produced output is very similar for certain combinations or that varying a

parameter in between the allowed limits does not result in a recognisable change of

the doming shape for certain values of the other parameter. Again, this might slow

down fitting convergence or lead to high uncertainties in fitted parameter values and

must be considered an unavoidable side effect of the approach used here.

The Pearson VII function, as seen in Fig. 5.7, is hopefully sufficiently generic

in order to be able to model the doming on top of the islands. The small plateaus

around the edges of the island just above its nominal height as seen in Fig. 3.3,

might, if real and no artefact or peculiarity of this particular island, lead to very

small values of zoff as a result of parameter fitting. The latter, as can be seen on the

right hand side of Fig. 5.7, leads to a delayed onset of the sloping, i.e. the formation

of plateaus near the edges of an island. The choice to not include the plateaus

explicitly within the sample model was made deliberately, since it would provide the

risk of over-engineering the sample structure based on potentially inaccurate AFM

measurements and would greatly limit the generality of the final sample model.

Also, suspecting an (angle- and therefore position dependent) shadowing effect to

be responsible for the observed doming, perfect reproduction of the exact doming

shape for each island was very unlikely, implying that the average sample structure

(which is what a scattering experiment is usually sensitive to) would necessarily

smooth itself out. Hence, the average sample structure is expected to rather resemble

something seen in Fig. 5.7 than the AFM scan of Fig. 3.3.

However, the island edges at nominal radius are still found to be unrealisti-

cally sharp, which might, under certain conditions, lead to recognisable effects on

the yet to be implemented scattering structure factor of the island. In order to avoid

an abrupt transition from 0 at r > rn to zn at r = rn, the island height z(r) will be
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Figure 5.8: The effects of bottom and top shape parameters σb and σt determining
the roundedness of the island sides. The doming has been chosen to be zD = 12 nm to
exemplify the continuous merge of edge function to doming function at zcrossover ≥ h.

modelled by a double exponential function in the vicinity of rn:

z(r) =

αt exp
(
r0−r
σb

)
, for z < ta

(αt− t) exp
(
r−r0
σt

)
+ b, otherwise

(5.7)

with σb and σt being shape parameters determining the bottom and top slopes of

the function and t being the upper plateau value that the function asymptotically

approaches. Similarly, a lower plateau value can be added easily to eq. 5.7, which

has here implicitly been set to b = 0 and omitted for clarity. Note, however, that the

parameter t is not strictly equal to the nominal height h of the island, as this would

necessarily lead to an unsmooth transition from the double exponential function

determining the island edges to the Pearson VII function defining the top.

As a compromise – because physical realism has been considered more im-

portant than parametric consistency – the actual island modelling includes scaling

of the plateau value t > h in a way that a smooth transition of double exponential

to Pearson VII occurs at a (numerically identified) crossover point zcrossover as can

be seen in Fig. 5.8. This approach ensures a smooth height function z(r) of the is-

land at the expense of an implicit coupling of σt to the (parametrically inaccessible)
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plateau value t.

Hoping the above approach suffices in providing an island model flexible

enough to capture the shape of the actual nano dots presumably similar to what is

seen in Fig. 3.3, obvious limitations of its applicability to simulation quickly come to

mind; As it is, the model at best provides a way of modelling an island by describing

the sharp interface given by the island’s surface. However, this approach does not

allow for any chemical variation of the internal island composition. Here, the island

surface is described by it’s height at a given radius z(r), but can generally be chosen

to be an arbitrary function, being called a surface cut function[54]. After choosing a

set of the previously discussed shape determining parameters, the only quantity the

model provides is a one-dimensional relationship between z and r, which can not be

utilised to include any internal information of the structure. Nevertheless, it is very

likely that oxidation or surface roughness very likely alter the chemical structure

at particular points within the island, especially when it is identified with a spatial

average over a number of islands[68, 212]. The latter distinction is important since

the lateral average over the coherently illuminated sample area is the only quantity

a scattering experiment of partially coherent radiation is actually sensitive to.

A useful sample model has to contain a spatially fully resolved scattering

length density SLD(r) = f(r)ρnum describing the scattering potential at any point

within an island. For the experiments dealt with in this chapter the latter basically

means three things:

1. The final model does not have to provide information about the internal

atomic structure of the pattern, since the low-angle scattering geometry is

not sensitive to atomic length scales found around significantly larger Q val-

ues. Hence, it is reasonable to assume a continuous function describing the

scattering length density over the spatial extent of the islands.

2. Since the sample internally consists of an amorphous structure anyway, no

Bragg reflections would be seen at large Q even if the experiment were per-

formed in a corresponding way.

3. It is reasonable to try to exploit the rotational symmetry of the circular islands

in a way to simplify the mathematical treatment and computational effort of

the simulation.

A straightforward way of extending the model therefore consists in intro-

ducing of not only a single, but an arbitrary number of non-intersecting functions

zi(x, y), which allows connecting any local sample property with its spatial posi-

tion within the structure. More specifically, by utilising the rotational symmetry
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Figure 5.9: Comparison of surface cut functions and SLD profile of an island. In
panel a) the island has been modelled by 15 surface cut functions zi, i = 0..14. The
zi are located equally spread over ±3σ in two clusters around the nominal core and
outer shell interfaces, assuming an Error function like diffusive interface width σ.
Panel b) color codes the scattering length density of each shell zi(r), associating
all material in between shells i and i − 1 with a single value fi. For clarity, the
horizontal dashed line marks the nominal height zD = 12 nm of the island, which is
naturally smaller than the topmost diffusive shells.

of the sample and demanding zi(x, y) = zi(r) a core-shell model of the sample

naturally emerges, as seen in Fig. 5.9 a). Here, in an attempt to model island ox-

idation, the previous function z(r) has been replaced by a set of functions zi(r),

where the doming height zD and nominal radius rn change by the same amount

∆rn = ∆zD = ∆ in between any two neighbouring functions zi and zi+1. Similarly,

the set of surface cut functions zi is easily extensible by functions being centred

around (r = 0, z = zcore = zD − dox). In the example given in Fig. 5.9, dox = 2.5 nm

represents the average thickness of a potential oxidation layer surrounding the is-

land, which has been chosen to be larger than physically reasonable for demonstrat-

ing purposes only. A thing to be noted here is that the differing scale in the variables

r and z exaggerates the oxidation thickness on top, while decreasing the apparent

thickness around the edges. In fact, the thickness of the oxidation layer as measured

on top of the islands or radially along the sides, in other words along any surface
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normal, is identical.

By now applying the convention that a single surface cut function zi(r) is

representative of the material volume between zi(r) and zi−1(r), it now becomes

possible to conveniently refer to whole sections of the average island which are

chemically identical, implicitly assuming the same chemical gradient normal to any

surface normal of the island. In other words, probing the structure along it’s surface

normal, be it on top or on the sides, always results in an identical SLD profile 1 .

Fig. 5.9 b) represents a visualisation of the chemical structure of a cross sec-

tion of the island, with the colour coding being proportional to the value of the

scattering factors of unoxidised core, oxide shell and the surrounding ambience, re-

spectively. As can be seen, the scattering factors vary smoothly between the shells

through means of chemical interdiffusion in between shells. The latter is imple-

mented by assigning each (of the arbitrarily numbered N) surface cut function zi(r)

an effective fractional scattering factor fi,j according to nominal shell j (of prede-

termined number J , i.e. three for a system consisting of core, oxide and ambience).

In other words, each shell i is associated with a contribution of scattering factors

fi,j corresponding to nominal shell j according to a vertical slice through the island

at r = 0, with the chemical profile obeying error functions in the form

fi,j = fj ϕi,j(zD) =

fj
1
2

(
1 + erf

(
zi−zD,j√

2σj

))
, for z ≤ η

fj
1
2

(
1 + erf

(
zD,j−1−zi√

2σj−1

))
, otherwise

(5.8)

where η is a weighted average of zi and zi−1 given by

η =
σj+1zj + σjzj+1

σj + σj+1
. (5.9)

Examples of ϕi,j are seen in Fig. 5.10 a), which shows the chemical fractions at

the centre of the island r = 0 corresponding to the sample parts being identified

as constituting core, oxide shell and ambience, respectively. Note that fractions

are only defined where the material composition is changing with z by means of

chemical diffusion, i.e. in the vicinity of nominal shell interfaces. Afterwards, each

scattering length fi,j of shell j is associated with surface cut function zi(r). Fig.

5.10 b) shows the product of the nominal scattering factor fj of shell j, i.e. core,

oxide and ambience, with the corresponding fractional factors ϕi,j , taking care of

the chemical interdiffusion of surface cut function zi. The total scattering factor

1Exceptions to this rule are surface profiles of the scattering length density taken closely above
the substrate, which, or course, have to correctly merge with the substrate SLD and have to be
taken care of separately in the simulation.
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Figure 5.10: Panel a) shows the fractions of each nominal scattering length density
of core, oxide layer and ambience, where the dashed lines mark the nominal height
of the non-oxidised core zcore, crossover point η and the nominal height of the whole
island zD, respectively. Panel b) shows the contribution of each nominal scattering
factor at height z, while panel c) shows the weighted effective f(z) according to eq.
5.10. In order to effectively calculate the continuous SLD distribution, the zi(r = 0)
are distributed over the diffusive interfaces only, i.e. within the bold lines of panel
a).

fi(r) is then easily calculated by a weighted average of all nominal shells according

to

fi(z, r) =

J∑
j=0

fi,j(z, r)ϕi,j

J∑
j=0

ϕi,j

(5.10)

where the condition r = 0 has been dropped, so that eq. 5.10 allows to calculate the
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scattering factor of an arbitrary three dimensional structure, as long as an adequate

form of zi,j(r) satisfying rotational symmetry is formulated. Most of the times

the denominator of eq. 5.10 will be identically 1, unless more than two ϕ-functions

overlap, which happens when diffusive roughness is large compared to shell thickness.

Figure 5.10 c) shows an example of scattering factors calculated according to eq.

5.10 taken at the centre of a domed island.

By taking this one dimensional slice through the island, a profile of scattering

factors is obtained, which is similar to the z-profile of a stratified sample. The

main difference is that the scattering factor obtained at each value of z through

the rotation axis of the island is subsequently associated with a complete shell of

the structure, instead of only a single z value as is usually sufficient in the case

of stratified media. In a way, the approach is not dissimilar to folding a stratified

structure over a three dimensional skeleton as is illustrated in Fig. 5.9 b).

5.3 Scattering Framework

This section first presents the particular implementation of calculating the struc-

ture factor F of the unit cell of a patterned array using this model, i.e. a single

patterned island in this case, followed by the description of the diffracted intensity

registered in an experiment, under the complicating conditions of an experimental

set-up involving an open detector geometry. The theoretical foundations of idealised

diffraction of patterned arrays are given in section 2.4, whereas this section deals

with the particularities of evaluating the basic equations under the often non-ideal

conditions of experimental reality.

5.3.1 Island Structure Factor

Section 5.2 presented a way to independently define shape and chemical structure

of a patterned island, giving one possible answer to the previously asked question

“What properties of the real system have to be captured by the model?”. Hence, it

is now time to revisit the second question previously asked, i.e. how the calculation

of the scattered signal shall be performed, given all relevant sample properties are

defined. Two different approaches of calculating structure factors utilising surface

cut functions have been used in this work, both having respective advantages and

disadvantages.

The first approach divides the sample into vertical columns of varying

height, corresponding to the local value of the N ≥ 1 ∈ Z surface cut functions

si(x, y). Analytical Fourier transformation of these columns is trivial, and the final
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Figure 5.11: Panels a) and b) show the radial distribution of the scattering factors
f and ∆f at an arbitrarily chosen height z. As can be seen ∆fi = fi − fi+1 is
zero everywhere apart from in the vicinity of chemically diffused interfaces. Panel
c) shows the Fourier transformations of circles of radius r, at positions in reciprocal
corresponding to diffraction satellite orders 2, 3, 4 and 15. Panel d) shows the
product of ∆f(r) and the corresponding radial Fourier transformation, again for
different satellite orders. The total scattered amplitude of the single slice of the
system is given by the sum of each line of panel d), where interfaces may interfere
constructively (e.g. 3rd order) or destructively (e.g. 2nd order).

structure amplitude is given by the coherent sum of all columns2. The columns are

evaluated on an arbitrary Cartesian grid (X,Y ), that is large enough to cover the

extent of the entire island. Within the kinematic approximation, atoms at position

(x, y, z) contribute to the total scattered amplitude at (Qx, Qy, Qz) according to

2Note that this strictly corresponds to the high coherence limit as discussed in chapter 4
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their scattering length density

f(x, y, z)ρnum(x, y, z)

modified by a phase factor

exp(−i(Qxx+Qyy +Qzz)).

Hence, keeping fixed a point of the two-dimensional coordinate grid (x, y), the scat-

tered amplitude within the kinematic approximation is calculated according to

Az(Q, x, y) = ei(Qxx+Qyy)

∫ ∞
−∞

f(x, y, z)e−iQzz dz

= −ei(Qxx+Qyy)

iQz

N∑
i=1

[fi(x, y)− fi−1(x, y)] e−iQzsi(x,y)

(5.11)

where, by definition, the lowest surface cut function represents the substrate at

s0 ≡ 0 implying f0 ≡ 0. Hence, the island is “floating” in free space, neglecting the

unpatterned substrate. Note that in eq. 5.11 and from now on for the remainder of

this section, the atomic number density ρnum(r) has been implicitly merged with f(r)

for notational convenience since both quantities change simultaneously in describing

the chemical composition of the island.

The total scattered amplitude of one entire island can then be calculated, for

instance, by a simple Riemann integral over the Cartesian grid

A(Q) =

∞∑∑
x,y=−∞

Az(Q, x, y). (5.12)

However, even though the analytic formulation of the z-integration can save a lot of

time, the number of points on the x-y-grid is usually very large in order to provide

sufficient resolution. Another drawback is reduced compatibility of the integration

along columns with the Distorted Wave Born Approximation, the latter requiring

the formulation of an undisturbed scattering potential, which is not easy to identify

using this approach. Furthermore, the number of calculations scales linearly with

the number of surface cut functions si, which can furthermore get quite large if

modelling of the chemical interdiffusion is found to require high spatial resolution.

The final fitting in chapter 4 has been performed using integration along

columns, which was justified by realising that the internal island structure could be

dismissed in the case of this particular sample, and only a single surface cut function
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was sufficient in order to fit the data. If, on the other hand, the multilayer structure

of the sample of chapter 4 had to be fitted independently, potentially even including

chemical diffusion between the layers, the number of surface cut functions would

have very likely overextended the available computational resources. Instead, by

fitting the data within GenX[208], the sample’s reflectivity was calculated within

a different scattering framework, which did take into account the average internal

depth profile of the sample, however at the cost of not providing any information

about the lateral structure of the sample.

The second approach to obtain the structure factor of an island consists in

an (at least partly) analytical calculation of the lateral component of the scattering

potential within a horizontal slice through the island at height z and then obtaining

the total scattering amplitude by numerically integrating these potentials over the

total height of the sample. This, however, requires that the in-plane structure of the

island is of a form which allows analytical formulation of the scattering potential.

In contrast, integration along columns did not rely on any closed form ex-

pressions, meaning computation of the scattering potential can be performed on a

completely numerically defined si, a fact which becomes important when simulating

more complex (magnetic) structures, which might, for instance, have been obtained

from micromagnetic simulations or the like.

Mainly for notational convenience, in the following the sample coordinate

system will be expressed in cylindrical coordinates, i.e. r = x + y. Then, for the

particular case of the rotationally invariant si(r) of disk-like islands, every horizontal

cross section through si(r) at height z results in a set of circles of radii Ri(z) =

s−1
i (r), where the superscript denotes the functional inversion operation.

Consequently, calculating the scattered amplitude of a general horizontal

slice through an island consisting of an arbitrary number N ≥ 1 ∈ Z of surface cut

functions is given by

A‖(Q, z) = e−iqzz
∞∫

0

f(r)e−iQ‖r dr

= e−iQzz
N∑
i=0

fi 2πRi(z) J1(Q‖Ri(z))− fi+12πRi(z) J1(Q‖Ri(z))

= e−iQzz
N∑
i=1

∆fi 2πRi(z) J1(QRi(z)),

(5.13)

where ∆fi = fi− fi+1 is the difference of the scattering factors of two neighbouring

160



shells and the integral has been evaluated using the Fourier transformation of a

circle
R∫

0

e−iQr dr = 2πRJ1(QR) (5.14)

where J1 is the Bessel Function of the first kind of order 1.

In other words, the Fourier transformation of an entire horizontal cross sec-

tion of an island is replaced by the sum over the Fourier transformation of multiple

annuli, each representing an area of constant scattering length density. Further-

more, in order to keep the proper integration limits R0 = f(0) ≡ 0 must hold, and

fN+1 represents the ambient conditions of the structure, which is equal to zero for

vacuum or negligible ambience conditions.

The total scattered amplitude in the kinematic single scattering approxima-

tion is obtained from first calculating A‖(Q, zm) for a sufficiently high number

M ∈ Z of z values, in essence dividing the sample into M slices, each of known

thickness ∆zm. Subsequently, the out-of-plane components are added coherently,

considering the correct phase factor φm along z of each slice

A(Q) =
M∑
m=0

φmA‖(Q, zm) (5.15a)

φm =

zm+1∫
zm

eiqzz dz =
1

−iqz
(
e−iqzzm+1 − e−iqzzm

)
(5.15b)

where zm correspond to the lower interfaces of slice m and z0 marks the lowest z

value of the scattering structure.

The structure the above model describes so far is free floating in space, with-

out any connection to the underlying substrate. This might indeed be a sufficient

approximation to the real system if only off-specular scattering is considered, since

the unpatterned substrate only contributes to the specular intensity. However, if

simulating reflectivity data is desired, the substrate necessarily has to be included.

Most conveniently, substrate and island amplitudes are calculated separately and

coherently summed. If, however, the substrate is modelled simultaneously with the

island, two things have to be considered. First, to respect the correct integration

limits, the (horizontal) surface cut functions belonging to the substrate ssub(z) must

extend exactly over the entire unit cell, most likely of rectangular shape, in order to

ensure a vanishing amplitude contribution at reciprocal lattice points, where satel-

lite reflections occur. Second, care has to be taken to correctly set the integration
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limits in terms of s0 to get the correct phase information. It is often convenient to

set s0 = −∞ and let f(z0) = fsub be the scattering factors of the substrate. Since

no reflected wave travels within the infinite substrate (see section 2.2.4), the phase

factor of the lowest slice the becomes

φ0 =
1

−iqz
e−iqzz1 . (5.16)

Both approaches described above have been coded and investigated. They

generally give reasonable approximations in their own respect, whilst the first ap-

proach, integrating along the vertical columns, arguably provides a higher degree

of flexibility at the cost of computational efficiency. A further drawback of the first

approach is that because the sample is not sliced along a number of z-values, it is

not possible to utilise higher order perturbation theory, such as the Distorted Wave

Born Approximation (DWBA). The latter might be found necessary for grazing in-

cidence geometries like GISAXS or small angle reflectivity measurements but can

often be safely neglected at rocking curves taken at relatively large values of Qz.

5.3.2 Scattered Intensity

Following the discussion in section 2.4 it is apparent that, given the beam properties

are found to coherently illuminate multiple unit cells of the patterned array, the

scattered intensity of the sample concentrates within a fan of diffracted x-rays found

at planar wavevector transfers corresponding to reciprocal lattice vectors

Gk,l =
2π

dlatt
(kQ̂x + lQ̂x),

with k, l ∈ Z and dlatt being the pitch of the square lattice of the patterned array

in real space. The continuous intensity distribution of the GTR along Qz, given a

particular wavevector transfer Q‖ = G, is then given by eq. 2.89.

Fig. 5.12 a) shows the structure factor F (Q) of a test system given by a

randomly generated circular domed island, whereas panel b) shows the formation

of grating truncation rods. Assuming Gaussian coherence properties of the beam

projection onto the sample, each GTR obtains a Gaussian cross section along Qx,

of width σrec = σ−1
real, being modulated in intensity along Qz by F (Q).

As discussed previously in section 4.1.3 the detector resolution function

R(∆αi,∆αf ) integrates a volume of the scattered intensity in reciprocal space ac-

cording to its angular acceptance. In particular in an open detector set-up, R can

be quite large and span over a significant range of both Qx and Qz as was shown
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Figure 5.12: Structure factor a), and reciprocal space of a patterned array of domed
circular island b). The structure factors of the periodically distributed islands inter-
fere constructively along the grating truncation rods seen in panel b). Parameters
used here were for demonstrating purposes: The position of the GTRs corresponds
to a lattice pitch of d = 500 nm and the width of the (Gaussian) GTR cross section
has been chosen to be σrec = 0.000 35 nm−1, corresponding to a real space Gaussian
variance along x of σreal ≈ 2.8 µm.

in Fig. 4.4. This leads to distinct effects upon the detected intensity due to the fact

that the diffraction condition is fulfilled across different spatial parts of the detector

surface over a significant angular scan range.

In a typical rocking scan experiment the nominal source angle αi continuously

increases from 0 to 2θ, whereas the nominal detector angle αf continuously decreases

by the same amount from 2θ to 0. Hence, upon decreasing αf the nominal Qx

increases. Similarly, also upon decreasing αf every GTR is intercepted by the lower

part of the detector first, which can easily be shown geometrically to correspond
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to a lower Qz value compared to the top part of the detector as is immediately

verifiable from inspection of Fig. 5.13. In consequence, increasing Qx from left to

right along one of the wide satellite peaks as seen in Fig. 5.4 corresponds to a partial

scan upwards the respective GTR. The latter implies that the sloped peaks can be

interpreted as small sections of off-specular reflectivity, with the slope of the peak

depending on whether the form factor F (G, Qz) happens to increase or decrease

along the intersected Qz range. More specifically, given the nominal αi and αf , the

part of the detector corresponding to angular offset δGTRαf is intercepting the GTR

can be found from the specific form of the diffraction condition

δαGTR
f = arccos

(
G

k
+ cosαi

)
− αf . (5.17)

The corresponding Qz value of the interception point is then given by

QGTR
z = k(sin(αf + δαf ) + sin(αi)). (5.18)

If for a given lattice point G the angular offset δαGTR
f exceeds the maximum angular

offset the detector can accept, i.e.
∣∣∣δαGTR

f

∣∣∣ > δαdet
f , no part of the detector is ful-

filling the diffraction condition, where δαdet
f is defined to be the symmetric opening

angle of the detector.

Apparently, under open detector geometry δαdet
f may get wide enough so

that F (G, Qz) significantly changes over the total range of intercepted Qz values

of the GTR. Then, approximating the structure factor in the vicinity of G by the

nominal structure factor F (G, Qnominal
z ) at G is not justified any more (like it would

be when using a narrow detector slit). The latter is obvious if the satellite peaks

are wide, as is the case at high detector angles (more pronounced to the left of Fig.

5.4), but the effect is similar at low detector angles. In the latter case the effect is

more subtle, since the narrow width of the satellite hides the fact that the detector

is actually integrating over a diffracted beam of wide angular divergence, spanning

over a large Qz range.

Technically, at every nominal source- and detector position the total active

area of the detector should be mapped to its corresponding area in reciprocal space

followed by an integration of the respective intensity distribution. However, in

practice it was found that the calculation of the structure factor F (G, Qnominal
z )

constitutes the computational bottleneck of the whole simulation and it is therefore

reasonable to limit the number of calculations to the necessary minimum. It is hence

advisable to introduce a detector angular offset variable ∆αpf , which represents the
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angular deviation from the nominal detector angle αf of the centre of one of a

number P ∈ Z of subdivided detector areas identified by index p. Subdividing the

total detector area into finite units each associated with a single Qpz value (evaluated

at the point of intersecting a given GTR) allows the GTR intensity modulation along

Qz to be determined from the structure factor F (G, Qnominal
z ). In other words,

subdividing the detector leads to an approximate increase of the total calculation

time of the simulation by factor P .

Most of the time it is found sufficient to divide the detector into P = 3

parts. This approximation is valid if the modulation of the GTR intensity over

the respective Qz range is significant enough to be noticed within the experimental

angular acceptance of the detector, but low enough to be reasonably modelled by a

linear approximation in Qz.

As a result of the detector integrating over its resolution element R, each

detector subunit corresponds to a real position in reciprocal space deviating from

it’s apparent (nominal) reciprocal space position at which the intensity is registered

in a rocking scan. Correspondingly, the detector subunit associated with a particular

∆αpf maps to a particular set of nominal source- and detector angles αnom
i and αnom

f ,

i.e. the angles aligned with the centres of the source beam and detector. Given the

detector subunit at ∆αpf is located at real position in reciprocal space Qx, the

corresponding nominal detector- and source angles can be found geometrically to

read

αnom,p
i (Qx) =

Qx
k(2θ + ∆αpf )

+
2θ + ∆αpf

2
(5.19a)

αnom,p
f (Qx) = 2θ − αnom

i (Qx, p) (5.19b)

which allows the calculation of the interception points of a given GTR by detector

area p to read

Qpz(Q
GTR
x ) = k (sin[αnom,p

f (QGTR
x , p) + ∆αpf ] + sin[αnom,p

i (QGTR
x , p)]). (5.20)

The apparent position Qpx of the real reciprocal space coordinate Qx as seen

in a rocking scan can then be easily calculated according to the standard formula

Qpx(QGTR
x ) = k

(
cos[αnom,p

f (QGTR
x , p)]− cos[αnom,p

i (QGTR
x , p)]

)
. (5.21)

Equivalently, the wavevector transfer Q of each detector subunit p corre-
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Figure 5.13: Schematic of the experimental geometry as the nominal detector posi-
tion fulfils the diffraction conditions with a particular GTR. When a rocking scan
is performed, (nominal) αi is continually increasing, while (nominal) αf = 2θ − αi
decreases. Upon reducing the detector angle αf , the lower parts of the detector
intercept the GTR first at nominally lower Qx and Qz values. The red lines indicate
the wavevector transfers Q of each active part of the detector while the green arrows
indicate the (approximately constant) Qz values associated with each part of the
detector and corresponding scan directions.

sponds to only one (nominal) incident angle but varying detector angles given by

αpi (Qx) = αnom,p
i (Qx, p) (5.22a)

αpf (Qx) = 2θ − αnom,p
i (Qx, p) + ∆αpf . (5.22b)

In summary, the above equations allow one to predict the angles and reciprocal

space positions at which diffracted intensity is registered in an experiment. The

latter are offset from their real reciprocal space coordinates because the diffraction

condition is fulfilled at different angular offsets accepted by the detector over a range

of nominal angles αi and αf .

Fig. 5.13 shows a schematic of the scattering geometry involving a detector

of (exaggeratedly) wide acceptance ∆αpf intercepting a single GTR. From the figure

it is clear how parts of the detector corresponding to exit angles αf + ∆αpf intercept

the GTR at differing values of Qpz, and (nominal) αi and αf .
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Since each part of the detector intercepts any GTR exactly once, the cor-

responding nth order GTR intensity intercepted by each detector subunit can be

approximated by a Gaussian of peak intensity scaled corresponding to eq. 2.89 lo-

cated at reciprocal space coordinates

QGTR
x = n

2π

d
(5.23a)

Qp,GTR
z = k (sinαpf (QGTR

x ) + sinαpi (Q
GTR
x )), (5.23b)

contributing to the apparent intensity registered at the nominal Qx.

At any nominal source and detector positions αnom,p
i and αnom,p

f , the contri-

bution of intensity from any subunit p of the detector is then given by the integral

over the Gaussian cross-section of the GTR within the limits given by the angular

acceptance of each subunit

Ip(Q) = I(QGTR
x , Qp,GTR

z )

Qpx,high∫
Qpx,low

1√
2πσrec

e
−(Qx−QGTR

x )2

2σ2
rec dQx

=
I(QGTR

x , Qp,GTR
z )

2

(
erf

(
Qpx,low −Q

GTR
x√

2σrec

)
− erf

(
Qpx,low −Q

GTR
x√

2σrec

))
, (5.24)

where the integration limits Qpx,low and Qpx,high are calculated corresponding to the

∆αf values at the edges of the active detector area to read

Qpx,low = k
(

cos
(
αpf + ∆αpf/2

)
− cos(αpi )

)
(5.25a)

Qpx,high = k
(

cos
(
αpf −∆αpf/2

)
− cos(αpi )

)
, (5.25b)

where ∆αpf = ∆αf/P , is the angular acceptance of a single detector subunit, cor-

responding to the total angular acceptance of the detector ∆αf and the number of

detector subunits P ∈ Z.

Fig. 5.14 shows a magnified view of the cross-section of a GTR intercepted

by a wide detector divided into three subsections. Each active subsection of the

detector intercepts the GTR at a different Qpz value, leading to the intercepted

parts of the GTR to be of varying peak intensity as indicated by the dashed lines.

The obvious problem of the discontinuities at the integration limits seen

in Fig. 5.14 can be rectified by subdividing the detector into a larger number of

subunits. However, calculating I(Q) for more subdivisions is computationally very

costly, since the structure factor at each GTR F (QGTR
x , Qpz) has to be evaluated
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Figure 5.14: Integrated intensity of a wide detector acceptance over an extended
GTR., with the detector being divided into three subunits. Since each subunit p
is associated with a different Qpz value, the associated Gaussian cross-sections of
the GTR are of differing peak intensities given by F (QGTR

X , Qpz), represented by the
coloured dashed lines. The dark gray area marks the total Qx acceptance of the
open detector ∆Qx. The subdivision of the detector area into only three parts leads
to obvious discontinuities around the edges of the active subunits.

for an increasing number of only slightly different values of Qpz(QGTR
x ), which for

many systems may easily require hundreds or thousands of function evaluations

each. In consequence, the number of detector subdivisions M required for smooth

integration over the simultaneously active area is usually larger than the number

P of subdivisions required for a satisfactory approximation of the reciprocal space

intensity distribution over the active detector area. Hence, in order to ensure smooth

integration over a large number M of detector subunits whilst keeping the total

number of function evaluation low, it is often practical to obtain the set of M values

I(QGTR
x , Qmz ) from simple, e.g. linear, interpolation of I(QGTR

x , Qpz), containing

P �M values.

Finally, the total intensity associated with any nominal qx value is then found
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to read

I(Qx) =
M∑
m=0

Im(Q), (5.26)

which is simply the sum of intensities integrated over all subdivisions of the detector,

i.e. the sum of the coloured areas seen in figure 5.14.

In the above, no assumptions have been made about relative dimensions of

the width of the GTRs and the extent of the detector resolution function R, the

integral over which is given by eq. 5.25. Hence, the expression for the simulated

intensity is generally valid within both extreme cases of high coherence, in which a

very narrow GTR is fully integrated over by only a single detector subunit, as well

as the other extreme of the relative width of an GTR with respect to the detector

acceptance being so wide that every detector subunit simultaneously intersects only

a narrow section of the total width of the GTR in Qx direction.

In other words, if the width of the detector resolution function R is identified

with ∆Qx, and σGTR is the width of a GTR, two extreme cases can be distinguished:

1. ∆Qx� σGTR

The whole GTR is being integrated over by a single detector subunit, leading

to a wide satellite peak. This basically corresponds to the convolution of a

rectangular resolution function R with a delta-like GTR. Because of the GTRs

Qz modulation, the intensity varies over the apparent Qx positions, leading to

sloped satellite peaks, as observed on the left hand side of Fig. 5.4.

2. ∆Qx� σGTR

If, on the other hand, the projected Qx detector acceptance is small with

respect to the width of the GTR (as can be the case at low detector angles,

corresponding to satellite peaks of high, positive order), i.e. ∆Qx < σrec,

the whole GTR is intercepted simultaneously over the whole cross section of

the detector. The resulting intensity is the sum over the intensities of the

total intercepted Qz range, while the shape of the satellite peak effectively

corresponds to a convolution of the delta-like detector acceptance ∆Qx with

the cross-section of the GTR. Following from the convolution theorem eq.

2.80, the latter leads to satellite peaks of high positive order to mirror the

coherence function of the beam, which is often found to be of a Gaussian

shape as observed on the high positive orders seen in Fig. 5.4.

Having defined the range of allowed geometries of the sample as well as the

corresponding structure factor F (Q), it is necessary to determine the specific set of
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parametric values that best describe the physical sample. A common approach for

doing so is by systematic variation of the sample parameters in order to successively

approach experimental with simulated data, i.e. fit the data, a process which will

be described in detail in the next section.

5.4 Fitting Framework

In this section the framework of fitting simulations to experimental data used in

this work is presented. Often, each set of experimental data requires a specifically

tailored fitting approach to be reproduced successfully. Hence, the following discus-

sion is strictly true only for the experiments at hand, but can be considered to work

as a guideline for approaching similar problems.

The two main aspects determining the success of a fit are the choice of an

adequate figure of merit (FOM) and the choice of sensible algorithmic fitting param-

eters, which are governing the dynamics of the used fitting procedure as discussed

in chapter 3. As opposed to the model fitting parameters, which are being optimised

to fit experimental data, algorithmic fitting parameters are kept constant over the

course of a single fit but might strongly impact how efficient the optimisation pro-

gresses, and can therefore be considered as meta parameters.

5.4.1 Figure Of Merit

The figure of merit is a function taking the (discrete) experimental- and simulated

data, yexp
i and ysim

i , as an argument and returns a single positive number that

represents the degree ysim matches yexp, with lower values usually indicating a higher

degree of agreement. The abscissa xi usually refers to the scan direction in reciprocal

space. Generally speaking, it is often easy to find a figure of merit that works for a

particular fit, but hard to define an objective measure of the quality of a fit. It is

often rather the perceived quality by an investigator looking at a specific presentation

of the data, that determines if a fit can be considered successful. After all, changing

the way the data is presented, e.g. by changing the scale from linear to logarithmic,

can dramatically change the perceived quality of the fit.

The fitting algorithm then iteratively adapts the model fitting parameters in

an attempt to optimise the FOM, which for most implementations implies minimi-

sation of the FOM, as discussed in more detail in section 3.4.

A particularly simple figure of merit is obtained by simply taking the absolute
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difference of yexp and ysim

FOMdiff =
1

N

N∑
i

∣∣ysim
i − yexp

i

∣∣, (5.27)

where N is the number of datapoints in the set yexp. Despite its simplicity, this

figure of merit can indeed be a good choice when fitting a single set of data on a

linear scale, which is often found to be the case for rocking curves. However, since

high absolute intensities tend to have large absolute differences yexp − ysim, this

approach tends to be drastically more sensitive to minimisation in regions where

yexp are large. The latter causes obvious problems if the range of data values spans

multiple orders of magnitude, as is often the case for reflectivity measurements. In

this case, summing over the logarithm of yexp and ysim

FOMlog =
1

N

∑∣∣log ysim
i − log yexp

i

∣∣ (5.28)

provides a more symmetric weighting of high and low values.

The simultaneous fitting of multiple datasets of overlapping sets of fitting

parameters requires the definition of a global figure of merit, which has to be some

combination of the individual FOMs of each dataset. Because of the strictly positive

value of the individual FOMs, minimizing the composite FOM also minimises each

individual FOM. In a simple form, the global FOM can be provided by summation

of all individual FOMs

FOMtotal =
1

M

M∑
i

FOMi, (5.29)

where FOMi ≥ 0∀i.
However, eq. 5.29 bears the risk of not being equally sensitive to all consti-

tuting terms if, for instance, fits of identical perceived deviation from experimental

data result in FOMs of differing absolute values. In this case, minimisation of the

global FOMtotal will preferentially optimise dataset k providing the highest gain

in terms of it’s individual figure of merit FOMk at the expanse of the remaining

datasets, so that the quality of the combined fits decreases.

Furthermore, since the probed region of parameter space of the combined

system naturally shrinks while the fit is proceeding, it is important that the fits of

all datasets progress uniformly in order to prevent misconvergence to local minima.

Therefore, when fitting multiple datasets simultaneously, it is important to use

normalised FOMs for each respective dataset, so that an equal gain in quality of

any fit manifests in an equal gain in the FOM. Put differently, the algorithm must
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not preferentially minimise with respect to a particular dataset at an earlier stage

of the fitting procedure only to have the other datasets “catch up” at a later stage,

since, by then, the higher localisation in parameter space might prevent a global

optimum to be found.

One example of a normalised FOM is obtained by dividing FOMdiff by the

total range of y-values the data points span up

FOMdiff =
1

N

N∑
i

∣∣ysim
i − yexp

i

∣∣
max(yexp)−min(yexp)

, (5.30)

where max(yexp) and min(yexp) are the largest and smallest value of the experimental

data, respectively. Each simulated data point using eq. 5.30 contributes to the

figure of merit with its relative displacement, instead of the absolute displacement

of eq. 5.27, therefore resulting in FOMdiff being the average relative displacement

of simulated and experimental data.

Diffraction data obtained from rocking curves of patterned arrays are char-

acterised by alternating sections of high and low intensity, corresponding to the

formation of separate GTRs. Since in the context of this work, no fitting of the dif-

fuse scattering providing the background signal of the data is desired, these sections

can (and should) be neglected in determining a figure of merit. In other words, only

the GTRs should be considered in the evaluation of the figure of merit. However,

generally the peak intensity of GTRs substantially varies between different orders

and an implementation like eq. 5.30 is more sensitive to peaks of higher intensities,

leading to the fitting algorithm progressing by successively optimising for only the

satellite orders which provide the highest gains in the FOM. Naturally, this once

again bears the risk that by the time the peaks of highest intensity have been fit-

ted, the algorithm already converged into a local minimum. Note that these fits

might actually be perceived well, since the most prominent high intensity peaks ac-

tually match well in between simulation and experimental data. Generally, fitting

low intensity peaks is equally important as fitting high intensity peaks, so a useful

figure of merit should weight fitting both as equally important. A possible solution

is, instead of evaluating a given dataset as a whole, evaluate the average relative

deviation of all individual peaks with respect to their respective height, i.e.

FOMpeaks =
1

K

K∑
k

1

Nk

N∑
i

∣∣∣ysim
k,i − y

exp
k,i

∣∣∣
max(yexp

k )−min(yexp
k )

, (5.31)

where ysim
k,i and yexp

k,i are the sets of the Nk data points belonging to the kth satellite
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peak, and K is the total number of satellite peaks within the dataset. The figure

of merit given by eq. 5.31 weights each satellite equally, disregarding of its peaks

intensity, ensuring maximum data sensitivity on probing parameter space.

Finally, linearisation of data is another way of changing the presentation of

data in a format more convenient for fitting. Since specular reflectivity in particular

often spans multiple orders of magnitude in intensity, using a logarithmic figure

of merit like eq. 5.28 proves useful in maintaining sensitivity over the whole data

range. However, determining the quality of the fit is not straightforward, since a

significant fraction of the data resides at intensities too low to be perceived well by

a human observer, therefore requiring additional analysis not only to perform the

fit but also evaluate it’s quality. A simple alternative is direct modification of both

experimental and simulated data, by rescaling each data point according to a power

of the Qz component of the wavevector transfer

ỹ = y ×Qγz , (5.32)

where usually γ ≈ 4, compensating for the Q−4
z scaling of the Fresnel reflectivity[62]

according to 2.41.

In practise, it was found empirically that indiscriminately using the FOMdiff

function provides best results, mostly because it avoids problems regarding the abso-

lute scale of intensities when simultaneously fitting multiple sets of data. Somewhat

contrary to expectation, the FOMpeaks function did rather decrease the quality of

the fit. The most likely explanations include the unreliability of low intensity peaks,

where noise and background interference are found to be more prevalent. Alter-

natively, the used island model is likely to not provide sufficient spatial sensitivity

in order to reliably fit the high Fourier components found at diffraction peaks of

high orders, hence amplifying any model shortcoming and leading the algorithm to

compromise the quality of low order peaks in trying to fit the diffraction peaks of

higher orders. In the latter case, the decrease of fitting quality is not related to the

low intensity of the high order peaks, but to effectively increasing the total range of

(sensitively) fitted diffraction peaks.

5.4.2 Meta Optimisation of Algorithmic Fitting Parameters

Most variants of differential evolution offer the choice between multiple fitting strate-

gies as well as between three algorithmic parameters, which are the differential

weight F of mutants, the crossover probability Cr and population size N .
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Both quality and convergence speed of a fit can be highly sensitive to the

choice of algorithmic parameters. In fact, when trying to fit the data initially, it

was found that long convergence times of the fitting procedure in combination with

a huge misconvergence rate significantly hindered the progress of the studies. Not

knowing when true convergence has been reached, often spending multiple days on a

single fit, with results being hardly reproducible, made classifying any changes in the

fitting framework a very tenacious undertaking. It was therefore understood, that

finding the most reliable and efficient algorithmic parameters had to be prioritised,

if fitting of the experimental data was to be achieved.

However, finding the set of algorithmic parameters most suitable for a prob-

lem at hand is far from trivial, although rules of thumb for choosing particular

combinations for certain kinds of problems exist[182, 184, 213]. Generally, there

will be a trade off in between the robustness of the strategy and convergence speed.

But apart from merely requiring to wait longer for a fit to converge, different combi-

nations of algorithmic fitting parameters will also significantly affect the dynamics

of the algorithm and therefore the quality of the fit and even the probability of a fit

converging in the first place.

To find a good set of algorithmic fitting parameters the choice was made to

perform a meta-analysis of the fitting problem at hand. Here, the same modelling

framework that would later be used in analysing the experimental data was used

to create a simplified control system of known solution. The idea is that artificial

data are obtained by simulating the control system of known model parameters. The

control system should exhibit similar properties as the real system which is meant to

be fitted eventually, e.g. by exhibiting similar coupling of parameter, thus ensuring

similar fitting dynamics. On the other hand, the total number of parameters can be

decreased by neglecting parameters that are not affecting the fitting dynamics in a

crucial way. For instance, all effects related to the experimental geometry can be

safely discarded, since the latter do not couple to the model parameters determining

the spatial shape of the islands.

This way, the time consuming processes of repeated and extended calculation

of the structure factor F (Q) as discussed in section 5.3.2 can be reduced to the

necessary minimum. Physically this corresponds to neglecting beam divergences

∆αi and ∆αf , eliminating the need for integration over the open detector.

In effect, after eliminating all expendable ballast from the simulation, one is

left with the remaining bare skeleton containing the relevant fitting dynamics of the

system, which is found to be the calculation of a set of squared structure factors

|F (Q)|2 of the island. In other words, the fit consists in simply fitting arrays of
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numbers of structure factors corresponding to subsets of the positions in reciprocal

space which are similar to the ones probed in experiment. This approach provides

the immediate advantages of an increase in simulation time per iteration by up to

two orders of magnitude.

More importantly, though, the system has a known solution, which is al-

ready proven to be attainable by the specific modelling framework since it has itself

been created from within said framework. Without meta-optimisation, and imme-

diately going into fitting true experimental data, it is rather unclear if any problems

in attaining good-quality fits reside within the modelling- or fitting framework or

both. In contrast, any deviations of the fits to the artificial data are necessarily a

result of imperfect fitting dynamics, so that both model parameters and algorithmic

parameters can be optimised independently.

The artificial data were created by once allowing all model parameters a

random value within reasonable boundaries, therefore fixing a single manifestation of

a randomly determined domed island. It was then attempted to recreate the original

set of parameters by fitting this system in a chosen subset of the parameters only,

while keeping most of the model parameters fixed on their original values. Hence,

each population member within the differential evolution framework consisted of a

11-dimensional parameter vector pi corresponding to the following components

1. Real part of the scattering factor of the oxide shell Re(fshell)

2. Real part of the magnetic contribution to the scattering factor of the magnetic

core Re(fmag
core )

3. Diffusion width of the core-shell interface σcore

4. Diffusion width of the shell-vacuum interface σshell

5. Total height of the island including the dome hD

6. Nominal height of the island excluding the dome hn

7. Offset of the Pearson VII doming function below nominal island height zoff

8. Total thickness of the oxidised shell of the island dshell

9. Shape parameter determining upper slope of the side walls σt

10. Thickness of a SiO2 capping layer of the substrate dSiO2

11. Roughness of the SiO2 capping layer of the substrate σSiO2
.
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Similarly to what would be eventually the case for the experimental data,

four artificial datasets obtained from two kinds of reciprocal space scans were fitted

simultaneously. Pairs of sum and difference signals of the islands structure factor

F (Q) were evaluated along reciprocal space trajectories corresponding to the same

rocking curve and specular reflectivity measurement used in the actual experiment

as well. However, the number of data points was limited to 15 for the rocking

curves and 25 for the reflectivity, distributed uniformly over the total scan range of

the experiments. For all fits, the normalised difference figure of merit FOMdiff (eq.

5.30) has been used after linearisation of the reflectivity data as discussed in section

5.4.1.

Then, random combinations from a discrete set of algorithmic parameters

were used on performing each fitting procedure. Each fit was technically considered

successful if the convergence criterion

σFOM = 0.01× 1

N

N∑
i=1

FOMi (5.33)

was met, i.e. if the standard deviation of the individual FOMs of all population

members fell below a certain fraction of it’s arithmetic mean. Note that, again,

convergence of the algorithm does not necessarily imply convergence into the global

optimum. Conversely, if no convergence was obtained after 1500 generations the

fit was considered unsuccessful and was aborted. Obviously, exploring the four-

dimensional algorithmic parameter space still requires a large number of individual

fits, so the allowed values for each parameter were limited to small discrete sets.

The respective parameter sets are given by

strategy = {best1bin, rand1bin, currenttobest1bin, randtobest1bin}

F = {0.25, 0.5, 0.75, (0.25, 1.2), (0.5, 1.2), (0.8, 1.8)}

CR = {0.25, 0.5, 0.75}

N = {5, 10, 15}

where tuple notation of the differential weight F indicate dithering and the names of

the strategies follow the convention discussed in section 3.4 and Zaharie and Micota

[185]. Note that the quoted values for the population correspond to a multiplication

factors of the number of open fitting parameters, which means that for the 11 open

parameters the real populations were 55, 110, and 165.
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rank Strat F Cr N E(5%) E(1%) E(0.5%)

1 rand1bin 0.25 0.75 15 1773 13434 18098
2 randtobest1bin 0.75 0.75 15 2029 19470 29370
3 currenttobest1bin (0.5, 1.2) 0.75 10 1542 19475 28102
4 best1bin (0.5, 1.2) 0.75 15 2053 19926 30160
5 rand1bin 0.25 0.75 10 1288 20868 26522
6 randtobest1bin (0.5, 1.2) 0.5 10 1683 21175 35835
7 rand1bin 0.5 0.75 10 1496 21323 27856
8 best1bin (0.5, 1.2) 0.75 10 1502 21629 32297
9 rand1bin 0.25 0.5 10 1390 21929 30303

10 randtobest1bin 0.75 0.5 10 1510 23729 40669
11 randtobest1bin (0.5, 1.2) 0.75 10 1311 25740 32661
12 randtobest1bin (0.5, 1.2) 0.75 15 1787 27799 46886
13 rand1bin 0.25 0.5 15 1782 28375 42757
14 currenttobest1bin (0.8, 1.2) 0.75 10 3457 28490 49258
15 rand1bin (0.25, 1.2) 0.75 10 2708 28746 41238
55 rand1bin (0.25, 1.2) 0.5 15 2838 71412 115219
56 rand1bin (0.5, 1.2) 0.5 10 2506 72890 141733
57 currenttobest1bin (0.5, 1.2) 0.75 15 2256 77994 96839
58 currenttobest1bin (0.8, 1.8) 0.25 15 3597 87780 1119525
59 rand1bin (0.5, 1.2) 0.25 10 3229 90789 -
60 rand1bin 0.75 0.25 10 2783 92950 -
61 rand1bin (0.25, 1.2) 0.25 10 2039 95099 842270
62 best1bin (0.8, 1.8) 0.25 15 4059 97185 -
63 rand1bin 0.5 0.25 15 3520 102712 953920
64 rand1bin (0.5, 1.2) 0.5 15 3795 104362 203890
65 rand1bin 0.75 0.5 15 3975 112605 167565
66 rand1bin (0.5, 1.2) 0.25 15 4070 122796 -
67 currenttobest1bin (0.8, 1.8) 0.5 15 4125 124113 1086525
68 rand1bin (0.25, 1.2) 0.25 15 2816 131642 1573687
69 rand1bin 0.75 0.25 15 4140 132615 1343100

Table 5.1: Summary of values of algorithmic fitting parameters with corresponding
number of function evaluations leading to an average deviation of simulated to
artificial control data of 5%, 1%, and 0.5%.

This way, a total of 947 fits was performed, each corresponding to one of the

216 possible combinations pmeta
i of allowed algorithmic parameter vectors. In order

to reduce computational strain, parameter combinations that have been clearly out-

performed after six completed fitting procedures have been eliminated from further

trials, so that the average number of completed fitting procedures of each combi-

nation of algorithmic parameters pmeta (including both successful and unsuccessful

attempts) was N̄fits = 18.6.
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Figure 5.15: The five best performing sets of algorithmic fitting parameters. Mis-
convergence into one of two local minima is common for the more aggressive fitting
strategies.

For each fitting trial the complete evolution of the figure of merit as a function

of the total number of FOM evaluations has been tracked, a subset of which can be

seen in Fig. 5.15. Noticeably, despite the simplicity of the system and the lack of any

kind of experimental noise, misconvergence of the differential evolution algorithm

is common and seems to be occurring mainly into two local minima, which are

located roughly at FOM ≈ 0.02. Probably not unsurprisingly these local minima

appear to be mainly populated by the best1bin and currenttobest1bin strategies,

which are characterised by their higher convergence aggression coming at the cost

of robustness.

Bookkeeping of the FOM history further allows extraction of some useful
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statistical properties. For once, fixing a certain FOM, the probability P (FOM)

of convergence of pmeta
i below that threshold can be calculated from simple ratios

within all simulation runs of the same set of algorithmic parameters. Similarly,

Ẽ(FOM) is defined as the average number of function evaluations it takes pmeta
i to

reach a given FOM for fits that converge to below said FOM. Hence,

E =
Ẽ

P
(5.35)

is defined to be the average number of function evaluations it takes pmeta to reach a

given FOM. The quantity E(FOM) is very useful in evaluation of the performative

quality of the algorithmic parameters given by pmeta, since it allows deciding which

set of algorithmic parameters is most useful for obtaining a fit of a desired quality

characterised by a certain figure of merit, including the probability of misconvergence

of the procedure.

Table 5.1 presents the 15 best- and worst performing pmeta
i of the 69 combina-

tions that made it into the final evaluation, sorted according to the average number

of function evaluations E(1%) it took to obtain 1 percent deviation from the artificial

data. Noticeably, both the best and worst performing set of algorithmic parameters

are of strategy rand1bin. Furthermore, a clear trend is visible for more successful

sets pmeta
i to obtain a higher crossover probabilities Cr consistent with reported

observations[184, 186]. Further, there apparently exists no dominating strategy or

differential weights F , although, remarkably, 11 out of the 15 worst performing

strategies were rand1bin, which is also the overall winning strategy. Moreover, 5 out

of the 15 of the best performing and 11 of the 15 worst performing parameter sets

were of population factor 15, indicating that the improved covering of parameter

space is not generally able to compensate for the increase in number of function

evaluations. Again, the best performing strategy contradicts this trend, by also

being of population factor 15.

Fig. 5.16 summarises the performance of the five best-performing sets of

algorithmic parameters, by plotting the average number of function evaluations as a

function of the FOM value to converge below. In particular at low FOM values, the

winning candidate is clearly outperforming all its competitors, although the average

number of FOM evaluations of all five best performing parameter sets consistently

lays within a factor of 2 to each other. However, comparing to table 5.1 it is clear

that choosing a still reasonable but less suitable set of algorithmic parameters can

easily increase convergence time tenfold.

The main advantage of the winning variant of the rand1bin strategy seems to
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Figure 5.16: Average number of FOM evaluation necessary to converge below a given
FOM for the top 5 set of algorithmic parameters. Most implementations perform
similarly, although the set corresponding to the blue curve clearly outperforms the
remaining sets. The reason is the very high convergence rate, which compensates
for the individually slower convergence speed.

be the extremely low misconvergence rate, which is supposedly a consequence of the

conservative choice of small differential weight and high population number, which

seems to be well able to compensate for the relatively slow convergence speed. Since

misconvergence has been found empirically to be a huge concern in fitting the highly

coupled model parameters describing the particular domed shape of the patterned
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array it was decided to use the winning set of parameters

strat = rand1bin

F = 0.25

Cr = 0.75

N = 15

for the remainder of this chapter.

5.5 Experimental Results

This section discusses various fits of experimental data which are used to investigate

structural, chemical and magnetic sample properties as well as validate the scattering

framework as discussed in the preceding sections.

Measurements include both sum- and difference signals taken at opposite

polarisation helicities of the circularly polarised x-rays and are hence magnetically

sensitive. All fits are restricted to the measurements taken at 30 K, because of the

stronger magnetic response at lower temperatures as presented in Fig. 5.4 b) and

c). Since only the diffracted intensity of the GTRs is simulated, the sum signal of

the rocking curve data has been manually preprocessed by means of subtraction of

the continuous background signal provided by the diffuse scattering of the sample.

The background signal has been obtained by a common spline fit to points between

the GTRs. Background, raw- and corrected data are presented in Fig. 5.17 a).

Furthermore, the sum signal of the specular reflectivity has been linearised

by means of multiplying the experimental intensities by Q6
z, where the exponent was

found empirically. As discussed in section 5.4, linearising the data in this way sim-

plifies defining a global figure of merit when simultaneously fitting multiple datasets,

as well as serves as a more expressive presentation of the underlying structure within

the specular reflectivity.

The difference signals I− obtained from the rocking curve, as well as the

aspect ratio A.R. of the specular reflectivity as seen in Figs. 5.4 b) and 5.5 b) are

naturally presented on a linear scale and exhibit no easily distinguishable back-

ground signal and were therefore not subjected to additional preprocessing.

The patterned islands were simulated using a core-shell model, implying

uniform oxidation of the island surface. The scattering factor of the core fcore =

fnonmag
core ±fmag

core were assumed to include a magnetic contribution as discussed in sec-

tion 2.1.4. Since oxidation is assumed to have rendered the material non-magnetic,

181



0.15 0.10 0.05 0.00 0.05 0.10 0.15
Qx [nm 1]

0.0

0.5

1.0

1.5
Su

m
 si

gn
al

 I+
 [a

rb
. u

ni
ts

] 1e6
a) background corrected

raw
background

1.5 2.0 2.5 3.0 3.5
Qz [nm 1]

0

2

4

6

Su
m

 si
gn

al
 I+

 [a
rb

. u
ni

ts
] 1e7

b)

raw
Q6

z  scaled

Figure 5.17: Data processing preceding the fit procedure. Panel a) shows the raw
data of the sum signal measured at 30 K, the background signal as obtained from
spline interpolation between the satellites and the corrected data. Panel b) shows
the effect of scaling the sum signal of specular reflectivity taken at 30 K by Q6

z,
which effectively linearises the data. The scaled version exposes a richer structure
than the same data on a linear scale, as shown by the green curve, or on logarithmic
scale, as shown in Fig. 5.5 b).

the scattering factors fshell of the oxidised shell were consequently assumed to not

include a magnetic component.

In all fits, the substrate has been modelled individually by a standard one-

dimensional profile of a stratified system. Similar to the nominal shells of the island,

the substrate has been divided into nominal layers j, each defined by its lower

interface height sj and corresponding diffusive roughness σsub
j , as well as it’s nominal

182



scattering length density f sub
j , leading to an SLD profile defined by

f sub
i (zi) =

J∑
j=0

f sub
j (zi)ϕi,j(sj)

J∑
j=0

ϕi,j

, (5.37)

evaluated at each slice i with ϕi,j being defined analogous to eqs. 5.8 and 5.9. Note

that the atomic number density ρnum(zi), again, has been implicitly included within

fi(zi).

Consequently, the substrate SLD can be identified with the ambient SLD,

famb = f sub
i (zi) when evaluating eq. 5.13. Note that here, unlike to earlier discussion,

famb(zi) strictly is a function of height zi, and has hence to be re-evaluated for every

sample slice i associated with height zi.

In other words, above substrate level the scattering factor of the outermost

(ambient) shell is equal to zero, while below the nominal substrate level the scat-

tering length density of the islands continuously merges into the substrate’s SLD at

the same z-value, f sub(zi).

5.5.1 Rocking Curves

This section presents the simultaneous fits of the sum and difference signals I+ and

I− of the rocking curves, while including specular reflectivity into the fits will be

implemented in section 5.5.2.

Using the previously discussed approach, calculation of the structure fac-

tor was performed by slicing the island into discrete thin layers, each of thickness

0.07 nm. The nominal height of the (flat) islands, as designed by the patterning

process, was hn = 10 nm and the model was set up in a way that allowed the spa-

tial structure of the island to continuously morph in between flat- and domed tops.

Within the fitting procedure, the domed tops were allowed to vary in their total

height hd within reasonable limits, i.e. going up to 20 nm in total, which would

imply doubling the total island height with respect to the intended height. Fitting

parameters determining the spatial structure of the islands were the shape param-

eters of the bottom- and top parts of the islands side-walls, σb and σt, the nominal

height of the island hn on top of which the dome is located, the nominal radius

of the island rn, shape determining parameters of the dome, zoff and M , and the

total height of the island including the dome, hd, all of which have been discussed

in section 5.2. Further, the rectangular lattice pitch dlatt was included as a fitting

parameter, since as the measurement took place at 40 K it was presumed to be
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affected by thermal shrinkage.

Since oxidation is assumed to have occurred by uniform diffusion of oxygen

normal to the island’s surface, the oxide shell is modelled to be of constant thickness

dshell. This has been incorporated into the model by coupling the surface cut func-

tions of the oxide shell and magnetic core in a way that nominal radius and height

of the core depend on the corresponding values of the shell by

rcore
n = rshell

n − dshell (5.38a)

hcore
n = rshell

n − dshell. (5.38b)

The remaining parameters determining the chemical structure of the sample are the

diffusion widths of the core-shell and shell-ambient interfaces, σcore and σshell, as well

as the real and imaginary parts of the scattering factors Re(fnonmag
core ), Im(fnonmag

core ),

Re(fmag
core ), Im(fmag

core ), Re(fshell), and Im(fshell).

Note that the substrate was included in the sample model, for once because

the island pattern extended to below the nominal substrate level because of the

surface roughness and secondly because it is required by the DWBA. Hence, the

substrate was modelled by an oxidised layer of SiO2 of thickness dSiO2
located on

top of pure Si. The interface roughness of the Si-SiO2 and SiO2-island interfaces

were given by fitting parameter σSi and σSiO2
, while fSi and fSiO2

were taken from

standard tabulated values and hence not fitted directly.

Finally, instrumental fitting parameters included the incident intensity I0,

acting as a scaling factor for the simulated intensity, and the source- and detector

angular divergences, ∆αi and ∆αf , respectively.

Before proceeding to performing a full fit of the experimental data including

all open parameters, some of the previously defined parameters have been possible

to be determined in a partial fit involving only a small number of parameters, which

allowed the final fit to proceed more efficiently by reducing the dimensionality of

parameter space. The parameters determined in this way were the incident beam

divergence ∆αi, the detector acceptance ∆αf within the scattering plane, and the

lattice pitch dlatt, by exploiting their unique effect towards the shape and position of

the diffraction peaks. Ignoring their intensity for the moment, every simulated peak

ought to match experimental data in both width and side slope. In the experimental

data, peaks are looking more rectangular to the left hand side of each rocking curve,

while they appear more Gaussian to the right side of the curves. This is a conse-

quence of each diffraction peak being the convolution of the reciprocal coherence

function C(∆αi,Q) and the detector resolution function R(∆αf ,Q). Generally, it
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Figure 5.18: Result of repeated simultaneous fits of both sum- and differnece signal
as obtained from the rocking curve. The black symbols and line correspond to
experimental data, while the red line corresponds to the average of a certain number
of simulations. The standard deviations of the simulations is given by the shaded
region around the red line, which on most Qx values is too small to be notices,
indicative of the high reproducibility of the fits.

is often legitimate to approximate C(∆αi,Q) by a Gaussian, being more narrow the

larger the real space beam coherence is, which is in turn associated with smaller

values of ∆αi. Within the open detector geometry, R(∆αf ,Q) is approximated by

a box function, being wider the larger ∆αf is. Hence, the convolution of the two

resembles a box function of smooth edges, with ∆αf determining the total width

of the peak, while ∆αi determines the steepness of the side of the peak, with peaks

being sharper the larger the incident beam coherence is. The shape evolution of

the peaks over the course of the rocking scan is therefore fully determined by the

source- and detector angular divergences, ∆αi and ∆αf . Furthermore, the centre

position of each peak is obviously determined by the real space lattice pitch dlatt.
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To fix values for ∆αi, ∆αf , and dlatt, first a fit including the full set of

parameters was performed, which was aborted once the fit converged to the point

at which satellite peaks roughly matched experimental peaks in terms of intensity.

Subsequently, the fit was restarted but all fitting parameters apart from ∆αi and

∆αf and dlatt were held constant at their interim values. Reducing the dimension-

ality of the fit significantly sped up the fitting procedure, and despite most peaks

not matching experimental data very well, adapting ∆αi and ∆αf still allowed sig-

nificant gain using an arbitrary FOM function, simply by matching simulated to

experimental peak shapes in terms of their variation in widths as well as the peaks

slope around their sides. The values found in this way were

dlatt = 509 nm

corresponding to a 0.77 % reduction to the nominal value of 513 nm due to thermal

shrinkage, and

∆αi = 0.96 mrad

∆αf = 0.15°.

Once these three parameters had been eliminated from the fitting process,

a full simultaneous fit of the sum- and difference signals of the rocking curves op-

timising all remaining open parameters has been performed using the FOMdiff for

each set of data, the result of which is shown in Fig. 5.18. Sum and difference

signal of the rocking scan have been fitted simultaneously, leading to most features

of the scan being reproduced both qualitatively and quantitatively. In both fits,

the red line represents the mean of 10 simulation runs while the standard deviation

of the signal is included as a red shaded area around each simulated value. The

fact that the standard deviation is barely visible in the fit is indicative of the high

convergence rate and reproducibility of the fitting procedure, suggesting that any

remaining (small) deviation between experimental and simulated values are model

intrinsic.

Note that in both fits, the zero-order peak has been omitted from the fit

because of the potential interference with the reflected x-rays from the unpatterned

substrate. Including substrate properties into the model, while certainly possible,

adds what was considered to be an unnecessary complication to the fitting procedure,

while at the same time providing only very little useful information. After all, the

exact shape and chemical composition of the substrate is not considered critically

important in determining the structure of the patterned array. These considerations
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Parameter name mean STD relative STD [%]

dSiO2
-1.77 0.43 24

σSi 0.28 0.2 72
σSiO2

0.656 0.045 6.9
σb 1.34 0.48 35
σt 1.9 1.8 93
hn 8.39 0.39 4.6
rn 227.3 4.7 2.1
zoff 1.68 0.33 20
M 4.4 1.9 44
dshell 2.47 0.22 3.6
hD 14.98 0.37 2.5
σcore 0.27 0.095 35
σshell 0.79 0.16 20
Re(fnonmag

core ) 1822 90 5
Im(fnonmag

core ) 950 390 41
Re(fshell) 1140 210 18
Im(fshell) 440 200 47
Re(fmag

core ) 0.047 9 19000
Im(fmag

core ) -46.4 6.7 14

Table 5.2: List of parameters used to fit simulated to experimental data of sum-
and difference signal of the rocking curves.

are discussed in more detail in section 5.5.2, where an attempt of fitting a reflectivity

scan of the patterned array is presented.

Table 5.2 presents all fitting parameters in terms of their mean and standard

deviation as obtained from a total of 10 simulations. While the fits as seen in

Fig. 5.18 show a high degree of conformity as indicated by the very narrow spread

of intensities between repeated simulation runs, the standard deviations of many

individual parameters are remarkably high. The latter is not necessarily unexpected,

since strongly coupled parameters may, in general, be found to highly fluctuate in

their respective individual values, yet still lead to highly reproducible fits. The latter

is true since the quantity determining the scattered intensity is the factual spatial

distribution of scatterers, which are not linked per se to any physical parameters,

but which may be obtained from very different combinations of strongly coupled

model parameters with no intrinsic meaning in itself.

However, some parameters of particularly low standard standard deviation

like the nominal island height hn, the island dome height hD, and the thickness of

the oxidised shell dshell are considered to be highly decoupled from the remaining pa-

rameters and give valuable information about the spatial structure of the patterned
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array.

The unusual intensity modulation for satellite orders ≥ 5 of the rocking

curves was surprising, since the structure factor of cylindrical islands is directly pro-

portional to a regular Bessel function of first kind and order 1. Hence, the structure

factor F (Q) of the island, acting as the envelope function of the diffraction peaks,

was expected to be proportional to the Bessel function, which is rapidly decreasing

with increasing |Q|. Scanning electron microscopy images as presented in Fig. 5.1

initially confirmed the cylindrical shape of the islands, so this qualitative deviation

from the expected intensity distribution emerged rather surprisingly. Eventually,

the AFM measurements presented in Fig. 3.3 revealed the unintended doming of

the islands. The unusual modulation can be explained, though, by closer inspection

of the structure factor calculation. Considering for the moment only a single surface

cut function s(x, y), its scattering length density is described by

f(r)ρnum(r) =

const. for 0 < z ≤ s(x, y)

0 for z > s(x, y),
(5.39)

so that in kinematical approximation the island structure factor F (Q) is given by

the Fourier transformation of eq. 5.39 to read

s(x, y)FT ∝
∫∫∫

s(x, y) e−iQr dx dy dz =

∫∫
e−iQzs(x,y)e−iQ‖r‖ dx dy. (5.40)

In other words, the Fourier transformation of the scattering length density over

all three spatial dimensions is equivalent to the two-dimensional in-plane Fourier

transformation of the function

s(x, y)FTz = exp(−iQzs(x, y)). (5.41)

Obviously, s(x, y)FTz is strongly fluctuating in r‖ if

∆s = max(s(x, y))−min(s(x, y)) ≈ 2π

Qz

holds for the range of z-values which s(x, y) spans.

Fig. 5.19 shows a comparison of the functions s(x, y) and s(x, y)FTz as ob-

tained from the simultaneous fit. The phase of the z-component of the Fourier

transformation eq. 5.40 exhibits about three full oscillations on a real-space period
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Figure 5.19: Comparison of the surface cut function s(x, y) (panel a) and the z-
component of the Fourier transformation s(x, y)FTz (panel b). While panel a) ex-
hibits comparatively little structural variation, the periodic nature of the complex
exponential function in eq. 5.41 introduces additional oscillatory behaviour rooted
within the island’s height modulation by means of the doming.

of roughly 60 nm, corresponding to a position in reciprocal space

2π

60 nm
≈ 0.1 nm−1,

which is exactly where the unexpected modulation of the diffraction peaks observed

in experiment is strongest.

In order to investigate the sensitivity of the fit to individual parameters, Fig.

5.20 presents a number of scans showing the FOMdiff figure of merit, as defined

in eq. 5.30, corresponding to the simultaneous fits of the sum- (purple lines) and

difference signals (green lines). The scans have been performed on the set of param-

eters obtained from the fit of the lowest FOM at the end of the optimisation process

(although all fits resulted in very similar final FOMs). Each line is obtained from

the variation of a single selected parameter while keeping all remaining parameters

fixed at their best fitted values. The best value of the parameter under considera-

tion is further indicated by a vertical dashed line. Well defined and deep minima

therefore represent high model sensitivity, while flat minima are characteristic for

less important parameters.

As a first observation, in all scans the FOMs of both, sum- and difference
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Figure 5.20: Selected parameter scans corresponding to sum signal (purple lines)
and difference signal (green lines). Scanned parameters were the thickness of the
doming tD (a), thickness of the oxide shell dshell (b), parameters determining the
shape of the dome, zoff (c) and M (d), interface roughness between core and shell
σcore (e), and surface roughness σshell. The vertical dashed lines represent the best
fitted values. In all cases the FOMdiff function has been used to evaluate the figure
of merit. All involved parameters have been found from simultaneous fitting of the
sum and difference signal.
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signals, exhibit individual minima aligned at the best parameter values correspond-

ing to the fit. This is a strong indicator that the model captures essential properties

of the real system, as the same system obtains identically located minima for differ-

ent types of measurements, which by no means has to necessarily be the case, even

when the fit converged to the global minimum, the latter being a composite of the

individual FOM functions for each measurement. In other words, any model will ex-

hibit certain (local and global) minima, but aligned minima are indicative of a single

model meeting the requirements of simultaneously fitting multiple measurements,

therefore increasing the likelihood of the underlying model being accurate.

Fig. 5.20 a) and b) show parameter scans of the thickness of the dome dD

above the nominal island height and the thickness of the oxide layer dshell perpen-

dicular to the island surface. Both scans reveal high absolute change in FOM of

all parameters, quickly increasing average deviation of simulated and experimental

data from around 5 % to over 15 % for dD and 25 % for dshell. The rapidly increasing

FOM upon variation of dshell as well as the apparently highly structured profile of the

parameter scan stresses the importance of considering a core-shell structure when

fitting both sum and difference signal of the scattered x-rays. If no simultaneous fit

of sum- and difference signal had been performed, the algorithm had not been able

to differentiate between any of the local minima of the respective FOM function

of sum- and difference signal. The alignment of the two individual local minima

of sum- and difference signal at the vertical line renders this specific position in

parameter space a deep composite minimum, with the latter being calculated from

the sum of the individual figures of merit. Despite the parameter space apparently

being strongly structured along the dshell dimension, the parameter exhibits a very

low relative standard deviation of 3.6 % taken from repeated fitting procedures.

Both zoff and M exhibit well defined minima, but because of their supposedly

strong coupling in determining the exact shape of the dome, the exact scan profile

and best fitted values of zoff and M strongly vary in between individual fits (not

shown here), which reflects in the high associated errors as seen in table 5.2.

From table 5.2 it follows that the roughness of the interface separating core

and oxide shell σcore is consistently lower than the surface roughness of the island

surface σshell, although associated errors on both fitting parameters are relatively

large. Despite fluctuating in between individual simulation runs, both σcore and

σshell exhibit well defined minima on the selected simulation run, as seen in Fig.

5.20 e) and f).

In order to further explore the implications of the core-shell model, Fig. 5.21

shows the effect of varying the thickness of the oxide shell, presenting four simula-
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Figure 5.21: Simulations of the effects of varying shell thickness upon the sum- (a)
and difference signal (b).

tions spanning the range dshell = 0 nm to dshell = 2.5 nm. As can be seen, the effect

towards the sum signal is mainly an issue of intensity scaling, as the simulated signal

stays qualitatively identical. The difference signal, however, undergoes a massive

qualitative transition. At dshell = 0 nm peaks of order ≥ 3 are strongly damped,

while at dshell = 0.84 nm distinct peaks develop even for higher order peaks, despite

all being negative contrary to the peaks of the experimental data, which change in

sign between orders one and two. At dshell = 1.67 nm the experimentally observed

pattern emerges, which subsequently gets damped at dshell = 2.5 nm. This observa-

tion is indicative of the often subtle interplay in between the internal chemical and

magnetic structure of the patterned arrays and is exemplary of the high sensitivity

of resonant magnetic scattering of patterned arrays.
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Figure 5.22: Comparison of real- and imaginary parts, and normalised average depth
profile of non-magnetic (panels a and b) and magnetic SLD (panels c and d) obtained
from simultaneous fitting of sum and difference signal of the rocking curves.

Laterally averaged SLD profiles of the patterned array provide the opportu-

nity to investigate the spatial conformity of the results of repeated fitting procedures.

The advantage of reducing the three-dimensional patterned array in this way is that

deviations from the mean are easy to grasp visually as seen in Fig. 5.22, which

shows a comparison of a number of derived quantities all related to the averaged

SLD depth profile. Each line represents mean values, while the surrounding shaded

areas indicate the width of one standard deviation. Fig. 5.22 a) shows the real and

imaginary components of the SLD. The imaginary part of the SLD shows a huge

variability, which is interpreted as a result of the coupling with the incident intensity,

acting as a scaling parameter for the simulations. Apparently, the measurements

are not critically sensitive to the exact change of phase of the scattered wave asso-

ciated with the relative amplitude of the real- and imaginary part of the complex
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SLD. In other words, the fit is rather sensitive to the modulus of the SLD, which

then couples to the global scaling factor of the simulations, therefore allowing some

leeway for determining the value of the respective real and imaginary components of

the complex SLD. Note that this means that the profile seen in Fig. 5.22 a) and c)

are not representative of the uncertainty in determining the true values of the real

and imaginary parts of the SLD, but rather exemplify the range of physical systems

that all lead to almost indistinguishable scattering intensity distribution, as seen by

the tiny deviations of Fig. 5.18.

Fig. 5.22 b) presents the normalisation of the modulus SLD, therefore re-

moving the effect of the actual values of the SLD and reducing the system to a

purely geometrical representation. As can be seen, the standard deviation of this

representation of the individual fits show a remarkable degree of conformity, each

fit essentially tracing the same profile , representing an identical spatial geometry

of the patterned array.

Panels c) and d) show the same quantities as discussed above for the magnetic

contribution to the SLD. Averaging indicates that the real part of the magnetic

contribution to the SLD is fluctuating around zero, while the imaginary part is

converging relatively consistently to a value of Im(fmag
core ) = −47 re/nm3 ± 11%.

Note that the general shapes of the non-magnetic and magnetic SLD profiles

Figure 5.23: Cross section through the island as obtained from the best simultaneous
fit of sum- and difference signals obtained form the rocking curve.
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differs since the averaged non-magnetic SLD at any given depth z, is affected by the

relative weight of the non-oxidised core and oxide-shell SLDs, while the magnetic

SLD profile is affected solely by the chemistry and geometry of the non-oxidised core.

However, both systems are intricately coupled as discussed at the beginning of this

section, so that the high degree of conformity of the non-magnetic SLD, necessarily

implied the high conformity seen in the normalised modulus of the magnetic SLD.

Finally, Fig. 5.23 shows a real space cross-section through the island corre-

sponding to the single best fit, with the color coding corresponding to the real part

of the SLD. The image gives an idea of both the thickness of the oxide shell as well

as the geometrical shape of the island doming. note that since the magnetic SLD

is confined to the core, non-magnetic and magnetic SLD of the core overlap within

the yellow region of the figure.

5.5.2 Specular Reflectivity

Lateral averaging of the scattering length density according to the sample model

discussed in section 5.2 allows the calculation of SLD depth profiles of arbitrary pat-

terned arrays. In conjunction with Parratt’s recursive method described in section

2.2.5, this allows for the calculation of the reflectivity of a patterned array using the

same sample model that is also used for simulating rocking curves, if the substrate,

at least directly below the islands, is included within the sample model. Further,

since the reflectivity is expected to be highly sensitive to even slight adjustments

of the SLD depth profile, the model was allowed more flexibility by decoupling the

surface cut function of the magnetic core from the chemical structure of the island.

This implies that the island is still modelled by a chemical core-shell structure, but

the distribution of the magnetic SLD is allowed to freely adjust as long as it stays

within the chemically defined core. In other words, the chemical- and magnetic

structures are now both obtaining the full set of parameters describing a general

domed structure described in section 5.2.

In practice, taking on the specular condition generally complicates the calcu-

lations of x-ray diffraction, which is why, as mentioned earlier, the rocking curve fits

presented in section 5.5.1 did not include the zeroth order diffraction peaks. These

complications arise because of the potential interference with the reflectivity origi-

nating from the inter-element substrate as well as the reflectivity of the substrate

in the unpatterned areas of the sample, which may all differ from the substrate di-

rectly below the islands, for instance because of etching effects or residuals from the

patterning process. Including these effects in the scattering model requires a large

number of additional fitting parameters, involving the exact beam shape, projected
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Figure 5.24: Single fit exemplifying the potential consequences of an inadequate
sample model. Contributions of the reflectivity of the inter-island substrate are
likely to contribute additional intensity at high Qz that is not considered within
the current sample model. Since the model is not able to adequately simulate the
reflectivity over the whole range of Qz, the fit, correspondingly, is of low quality.

footprint, spatial alignment of the beam center with respect to the patterned area,

total sample area as well as the patterned area, amongst others. The contributing

factors are complicating the modelling framework by introducing correction terms

depending on the scattering angles αi and αf , as well as significantly increasing

optimisation time, while providing only very limited valuable information. It can

hence be often found advisable to try to circumvent these complications as much

as possible by avoiding experimental conditions under which they might become

relevant, i.e. performing reflectivity measurements. The alternative is to instead

overburden the model with an disproportional amount of additional fitting param-

eters, risking overfitting or the emergence of additional fragmentation of the FOM

parameter space accompanied by an increased risk of being trapped in local minima.
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Figure 5.25: Sum signal and asymmetry ratio of the reflectivity measurements after
excluding the range qz > 2.7 nm−1 from the sum signal. Solid red lines and shaded
areas correspond to mean and one standard deviation calculated from 13 individual
fits.

The effect of the presumed inadequacy of the model used can be seen in

Fig. 5.24, which presents an attempt at simultaneous fitting of the sum signal and

the asymmetry ratio in reflectivity geometry. As can be seen, although generally

agreeable, especially the fit of the sum signal misses many essential features of the

experimental data, which might be indicative of the previously discussed shortcom-

ings of the sample model, i.e. not including the inter-element reflectivity of the

substrate. Generally, noticeable interference with the presumably weak reflectiv-

ity of the inter-element substrate becomes more likely with increasing wavevector

transfer Qz, which is where the detected intensity is most strongly boosted from the

data linearisation process as described in the introductory remarks of section 5.1.

Truncating the fitting range of the sum signal at Qz = 2.7 nm−1, the fit is
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Parameter name mean STD relative STD [%]

dSiO2
-0.87 0.32 37

σSi 0.49 0.16 32
σSiO2

0.658 0.031 4.7
σb 1.27 0.49 39
σt 2.17 0.66 30
hn 8.338 0.069 0.82
zoff 3.82 0.58 15
M 8.2 2.2 27
dshell 1.335 0.021 1.2
hD 15.337 0.073 0.48
σcore 0.8 0.16 20
σshell 0.462 0.083 18
Re(fnonmag

core ) 1846 91 4.9
Im(fnonmag

core ) 840 180 21
Re(fshell) 1101 79 7.2
Im(fshell) 440 210 48
bmag 0.709 0.084 12
σmag

t 1.06 0.61 57
σmag

b 3.28 0.94 29
hmag

n 7.24 0.32 4.4
zmag

off 5 2.9 57
Mmag 8.3 2.9 35
hmag

D 10 1.3 13
σmag

interface 0.85 0.15 18
σmag

bottom 0.563 0.047 8.4
Re(fmag) -6.2 3.2 52
Im(fmag) -15.3 2.5 16

Table 5.3: List of parameters used to fit simulated to experimental data of sum-
and difference signal of the specular reflectivity.

no longer sensitive to high values of Qz at which the shortcoming of the model are

having the strongest impact, leading to a general improvement of the quality of fits

as seen in Fig. 5.25, again utilising the FOMdiff figure of merit. The solid lines again

represent the mean as calculated from 13 measurements, while the shaded areas

correspond to a width of one standard deviation.

Evidently, within the reduced Qz range, the sum signals fit almost perfectly,

with the intensity dropping significantly for Qz > 2.7 nm−1. This generally agrees

with the idea of additional intensity arising from inter-island substrate around these

wavevector transfers. Interestingly, although relatively well defined in terms of its

standard deviation, the fit of the asymmetry ratio actually seems to have declined in
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Figure 5.26: Individual fit of the asymmetry ratio using the same model parameters
as in the previous fits.

quality upon putting less restraints on the fit of the sum signal. For completeness,

table 5.3 presents a summary of all used fitting parameters, quoted including the

absolute and relative standard deviation.

The still consistently sub-optimal fits of the asymmetry ratio is not intrinsic

to the sample model, which can be seen in Fig. 5.26, showing a very agreeable

simulation of the A.R., obtained from an individual fit, using the same parameter

model as used in the simultaneous fits.

To explore the FOM parameter space further, Fig. 5.27 presents a selected

number of parameter scans of the FOMdiff function, with the purple and green lines

representing the sum-signal and asymmetry ratio, respectively. As can be seen,

in many cases no clearly identifiable individual minima of the two signals emerge,

contrasting the well aligned minima of the parameter scans corresponding to the

rocking curve fits seen in Fig. 5.20. In fact, in many cases only one of the two signals

seems to be sensitive to variation of a given parameter, which is corroborating the

hypothesis of a structural weakness of the used fitting model. Also consistent with

the presumed importance of substrate reflectivity is the fact that the roughness σSiO2

and thickness of the dSiO2
of the silicon-oxide substrate-capping-layer is strongly

affecting the quality of the fit.

Fig. 5.28 presents a number of SLD profiles obtained from the series of si-
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Figure 5.27: Selected parameter scans corresponding to sum signal (purple lines)
and asymmetry ratio (green lines). Following the order of the panels, the scanned
parameters were the nominal height of the islands, the (chemical) shell thickness,
total width of doming, the roughness of the magnetic core above substrate level, real
and imaginary scattering factors of the chemical core, and roughness and thickness
of the SiO2 substrate capping layer. The vertical dashed lines represent the best
fitted values. In all cases the FOMdiff function has been used to evaluate the figure
of merit. All involved parameters have been found from simultaneous fitting of the
sum signal and asymmetry ratio.
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Figure 5.28: Comparison of real- and imaginary parts (panel a), and normalised av-
erage depth profile (panel b) of the non-magnetic SLD. The corresponding profiles of
the magnetic SLD are presented in panels c) and d). All results (with the exception
of the dotted lines in panels b and d) are obtained from simultaneous fitting of sum
and difference signal of the reflectivity measurements.

multaneous fits, taking into account only the sum signal and A.R. of the reflectivity

measurements. The non-magnetic SLD of panel a) and normalised modulus of the

SLD of panel b) are particularly well defined, with error intervals generally being

smaller than in case of the SLD profile obtained from the rocking curve measure-

ments presented in Fig. 5.20.

Remarkably, despite originating from scans being either only sensitive to the

lateral- or the perpendicular sample structure, the SLD profiles of rocking curves

and reflectivity measurements show a very high degree of agreement, as indicated

by the dotted line in Fig. 5.28 b). Apart from a slight translation of about 1 mm

in the z-direction, which is due to the invariance of the scattered signal under z-

translation of the dome in the rocking geometry (discussed in more detail in chapter
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Figure 5.29: Cross section of the island as obtained from fitting the sum signal and
asymmetry ratio of the specular reflectivity. The yellow lines indicate the interfaces
of the chemical shell and core, and the substrate. Depicted in yellow is the magnetic
SLD confined to the chemical core of the island. Doming of the magnetic SLD is
significantly reduced compared to the structure obtained from fitting the rocking
curves, the latter being enforced by the coupling of chemical and magnetic structure
of the core.

4), both profiles look very similar. The latter is indicative that despite the non-

optimal quality of the fits, many essential sample properties are still being captures

by the sample model. A noticeable exception is the thickness of the oxide shell

dshell = 1.335 nm±1.2 %, deviating from 2.47 nm±3.6 % as found from fitting of the

rocking curve data. Because of the previously shown high sensitivity of the rocking

curve difference signal, such a strong deviation is surprising, unless the reflectivity

signal has a significantly reduced sensitivity towards dshell. Strongly supportive of

this hypothesis is the fact that only the reflectivity sum signal is observed to exhibit

a minimum at the best fitted value, which is exactly expected if the change in the

scans FOM is primarily due to mis-scaling with the (now kept constant) intensity

scaling parameter (compare also Fig. 5.21 and the accompanying discussion).

After allowing the model a higher flexibility by decoupling the chemical and

magnetic structures, the magnetic SLD profile does now show significant changes

with respect to the fits of the rocking curves as seen in Fig. 5.28 d). The differences

202



mainly manifest in what appears to be a magnetic dead-layer of about 1 nm thickness

on the bottom of the island and an almost vanishing doming of the magnetic core

as can also be seen in Fig. 5.29.

The total magnetic doming width is strongly reduced down to about 1 nm as

opposed to > 6 nm in the more restrictive model used in fitting the rocking curves

Finally, Fig. 5.29 presents a radial cross section through an island according to the

parameters of fitting series of the lowest total FOM.

5.5.3 Simultaneous Fitting of Rocking Curves and Specular Reflec-

tivity

Because of their complementary information, a simultaneous fit of the rocking curve

and specular reflectivity data is expected to provide the most accurate results. The

rocking curve data are most sensitive to the lateral structure of the patterned array,

but have been seen to be prone to ambiguity regarding the absolute values of the

atomic scattering factors and hence local SLD. The reason for this is mainly that

only a relatively small range within reciprocal space is being probed by a rocking

curve. The issue was in fact unintendedly solved in part by the open detector

geometry, that provided additional reciprocal space sensitivity because of the Qz

dependence of the GTR interception points of the detector.

It has further been anticipated that the data obtained by the specular reflec-

tivity could be exploited to further reduce the issue of SLD ambiguity, despite not

being eminently sensitive to the lateral structure of the sample. Interestingly, de-

spite the model having provided ample opportunity to deviate, fitting of the specular

reflectivity reproduced almost exactly the (three-dimensional) chemical structure of

the patterned array as obtained from exclusively fitting the rocking curves, while,

contrary to expectation, not having been able to uniquely resolve the values of the

SLD. Taking into account the shortcomings of the model in terms of fitting of the

specular reflectivity as discussed in section 5.5.1, it is interesting to put a simulta-

neous fit of all four datasets discussed so far into context with the results of the

individual fits of the rocking curves and specular reflectivity.

As can be seen in Fig. 5.30, simultaneous fitting generally provides satisfac-

tory results for each individual set of experimental data indicative of a consistent

sample model. The asymmetry ratio of the specular reflectivity is the least well

developed, while fitting of the sum signal of the specular reflectivity was again trun-

cated at Qz = 2.7 nm−1, for the same reasons as discussed in section 5.5.1.

The result of the simultaneous fit is summarized in table 5.4, presenting the

mean and associated standard deviation as obtained from a total of 7 simulation

203



0.15 0.10 0.05 0.00 0.05 0.10 0.15

Qx [nm−1]

0.0

0.5

1.0

1.5
Su

m
 si

gn
al

 I
+

 [a
rb

. u
ni

ts
]

1e6
a)

0.15 0.10 0.05 0.00 0.05 0.10 0.15

Qx [nm−1]

4

2

0

2

D
iff

 si
gn

al
 I
−

 [a
rb

. u
ni

ts
]

1e4
b)

1.5 2.0 2.5 3.0 3.5

Qz [nm−1]

2

4

6

8

Su
m

 si
gn

al
 I

+
 [a

rb
. u

ni
ts

]

1e7
c)

1.5 2.0 2.5 3.0 3.5

Qz [nm−1]

0

2

4

A
.R

.

1e 2
d)

Figure 5.30: Simultaneous fits of the rocking curve sum (a) and difference signal (b),
as well as the sum-signal (c) and asymmetry ratio (d) of the specular reflectivity.
In all cases, the FOMdiff function has been used to evaluate the figure of merit.
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Parameter name mean STD relative STD [%]

σb 2 0.45 23
σt 4.6 2.6 56
hn 8.1 0.17 2.1
zoff 4.5 1.1 24
M 1.6 0.14 8.7
dshell 2.05 0.15 3.6
hD 14.8 0.34 2.3
σcore 0.05 0.045 89
σshell 0.49 0.31 63
Re(fnonmag

core ) 1930 120 6.2
Im(fnonmag

core ) 250 110 45
Re(fshell) 1760 200 11
Im(fshell) 49 10 20
bmag 0.77 0.032 4.2
σmag

t 1.99 0.11 5.7
σmag

b 5 1.6 32
hmag

n 7.38 0.39 5.3
zmag

off 4.4 1.4 31
Mmag 1.6 0.2 13
hmag

D 13.38 0.37 2.8
σmag

interface 0.325 0.084 26
σmag

bottom 0.683 0.042 6.1
Re(fmag) -19 120 640
Im(fmag) -15 96 660
dSiO2

-1.64 0.32 19
σSi 0.261 0.099 38
σSiO2

0.634 0.022 3.4

Table 5.4: The fitted parameters with associated mean values and standard devia-
tion as taken from 7 simulation runs.

runs. Again, many values exhibit very high uncertainties as a result of parametric

coupling. Despite the anticipated compatibility issue of the scattering framework

with the specular reflectivity, some parameter are nevertheless remarkably well de-

fined, including the nominal height hn = 8.10± 0.17 nm, the thickness of the chem-

ical oxide shell dshell = 2.05± 0.15 nm, the total height of the island including the

doming hd = 14.80± 0.34 nm, the thickness of a magnetic dead-layer directly above

the substrate bmag = 0.770± 0.032 nm, the nominal height of the magnetic core

hmag
n = 7.38± 0.39 nm, the width of the (flat) interface separating the magnetic

core from the substrate σmag
bottom = 0.683± 0.042 nm, and the chemical roughness of

the substrate-island interface σSiO2
= 0.634± 0.022 nm.
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Figure 5.31: Selected parameter scans corresponding to the sum signal (purple) and
difference signal (blue) of the rocking curves as well as the sum signal (light green)
and asymmetry ratio (yellow) of the specular reflectivity. In all cases the FOMdiff

function has been used to evaluate the figure of merit. All involved parameters have
been found from simultaneous fitting of all four signals.
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Fig. 5.31 shows a number of selected parameter scans, varying a single pa-

rameter within ±30 % of its best fitted value, while keeping all remaining parameters

fixed at their fitted values. The purple and blue lines indicate the corresponding

FOM of the sum- and difference signal of the rocking curves, while the light green

and yellow lines correspond to the sum signal and asymmetry ratio of the specular

reflectivity measurement. Panels a) and b) show the variation of the FOM with the

nominal height hn and thickness of the chemical oxidation shell dshell, respectively.

Despite being highly structured, both scans reveal alignment of all four local minima,

indicative of high sensitivity and physical accuracy of the underlying model. Panel

c) shows the FOM dependence of the total thickness of the doming dd above the

nominal island height, revealing well-aligned minima of both sum signals, while the

difference signal of the rocking curve is less pronounced and slightly misaligned. The

asymmetry ratio of the specular reflectivity, however, seems to hardly be sensitive

towards dD, as the FOM is barely varying and is showing no identifiable minimum

within the scanned range.

Despite the problems with fitting the specular reflectivity, the roughness

of the island surface σshell exhibits well defined minima in the two sum signals,

with the minima getting progressively ill-defined and misaligned with the difference

signal of the rocking curve and asymmetry ratio of the specular reflectivity as can

be seen in panel d). Contrary, panel e) shows that the parameter scans of the

(chemical) interface width σcore hardly show any variability, which is consistent

with the chemical contrast between core and shell being smaller than the contrast

between the island and the exterior vacuum, consequently reflecting in a reduced

sensitivity of the experimental data towards σcore.

The scattering factor parameters determining the SLD of the core and shell

depicted in panels f) to h) remain inconclusive, in that no formation of well defined

minima for all four measurements emerges, so that relatively large parameter uncer-

tainties remain as seen in table 5.4. However, in all cases highest sensitivity towards

any scattering factor component is exhibited by the sum signal of the specular re-

flectivity, maintaining the hypothesis that Qz scans are generally suitable in order

to determine the SLD of a patterned array.

The effect of what is presumably a false compromise of the fitting algorithm

is seen in Fig. 5.31, where contradicting minima of the two difference signals ne-

cessitated the optimiser to choose an intermediate value, therefore minimising the

composite FOM. (Obviously, the two sum signals having no magnetic sensitivity

leading to the corresponding purple and green lines being flat).

Sensitivity to the magnetic doming is most pronounced for the difference
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signal of the rocking curves, as seen in panel k). A very strong sensitivity towards the

roughness σSiO2
of the substrate underlying the islands is observed for the sum signal

of the specular reflectivity as seen in panel l). As on scanning σSiO2
, the asymmetry

ratio of the reflectivity signal consistently shows no or only weakly developed minima

often misaligned with the remaining curves. This observation matches with the

reflectivity A.R. performing worst in the fitting procedure, as seen in Fig. 5.30 d),

with the most likely explanation being that the weak magnetic contribution of the

scattering is most sensitive to interference with the weak reflectivity of the inter-

island substrate, meaning that model inadequacies will in this case have the most

noticeable effect, by means of higher disagreement with the remaining (less affected)

measurements.

Finally, Fig. 5.32 shows the cross section of the island corresponding to the

best set of parameters from the series of simultaneous fits. Again, the solid yellow

lines correspond to the interfaces of the chemical core, shell and substrate, while

the magnetic core is depicted by the yellow shading. The additional black circles

in Fig. 5.32 depict an AFM linescan being representative of the sample. The AFM

line-profile agrees well with the SLD profile obtained from data fitting, although the

AFM data had to be cleaned by a 4.5 nm height-offset, matching the AFM baseline

with the substrate height of 0 nm (compare Fig. 5.2). Note that fitting has been

performed to reciprocal space data only (no direct fitting of the spatial SLD profile

to AFM data was conducted), yet, the obtained doming geometry resemble the AFM

profile remarkably well.

Despite being mostly decoupled from the internal chemical structure, the

magnetic core very much aligns with the chemical core, only slightly expanding

into the chemical shell on the edges of the islands. The domed structure of the

magnetic core is in stark contrast to its much flatter appearance in response of

fitting reflectivity data only, as seen in Fig. 5.29. However, the magnetic dead layer

seen as a result of exclusive fitting of the reflectivity data is reproduced here, as

well, therefore somewhat increasing the confidence in the accuracy of the obtained

structure.

Geometrically and chemically, the islands fitted resulting from different com-

binations of sets of experimental data as seen in Figs. 5.23, 5.29, and 5.32 are vir-

tually identical, again stressing the high reproducibility being associated with high

sensitivity towards the experimental data, rendering magnetic x-ray diffraction a

reliable tool of resolving the three-dimensional (chemical and magnetic) structure

of patterned arrays in even subtle details.
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Figure 5.32: Cross section of the island as obtained from fitting the sum and dif-
ference signal of the rocking curves as well as the sum signal and asymmetry ratio
of the specular reflectivity. The yellow lines indicate the interfaces of the chemical
shell, core, and the substrate. Depicted in yellow is the magnetic SLD. Doming of
the magnetic SLD is essentially recovering the chemical structure of the core-shell
model, despite being provided the opportunity of taking on an arbitrary shape. The
black circles depict a (representative) AFM linescan scan of the sample, which has
been cleaned by a 4.5 nm height-offset.

5.6 Summary

In this chapter a general scattering x-ray framework for x-ray diffraction from pat-

terned arrays has been developed. The framework covers both resonant- and mag-

netic x-ray scattering and it has been shown how high sensitivity to both the geo-

metrical, chemical and magnetic structure of the patterned array can be observed

in experiment and reproduced by simulation. In a meta-optimisation process, the

most efficient algorithmic fitting parameters for the robust fitting of x-ray scatter-

ing of patterned arrays have been determined and subsequently utilised in fitting
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simulations to experimental data.

It was found that restricting to off-specular scattering generally simplifies

the necessary complexity of the model and generally leads to more reliable results.

When dealing with stratified media, the effectively one-dimensional nature of the

sample means that lateral averaging of the scattering length density is a relatively

straightforward and reliably successful approach in determining the sample struc-

ture. Contrary, patterned arrays are intrinsically three-dimensional, which drasti-

cally complicates the mathematical treatment because of multiple interference effects

arising specifically under the specular condition, when substrate reflectivity and the

zeroth diffraction order of the pattern superimpose each other. When designing an

experiment, it seems therefore advisable to reduce any unnecessary complication by

means of avoidance of the specular condition.

Both the sum- and difference signals of magnetically sensitive reflectivity

measurements have been successfully reproduced previously, e.g. by Procter [171].

However, data fitting in reflectivity geometry, for instance using the GenX software

package, is usually done by creating a somewhat loosely defined SLD depth profile

representing the lateral average of the samples SLD. The latter technique is very

useful in the case of stratified media, but does hardly allow to draw any conclusions

about the actual three dimensional structure of the patterned array. Further, one-

dimensional modelling of the sample bears additional risks in that the SLD profiles

generated through the fitting process are not bound by any constraints connecting

it to the real, three-dimensional physical system. Therefore, the risk of overfitting

the experimental data significantly increases, since the likelihood of finding some

SLD profile whose scattered signal turns out to actually match the experimental

data is greatly increased if the SLD profile does not have to also obey any con-

straints ensuring that the SLD profile does actually refer to a physically meaningful

representation of the sample.

In contrast, the spatial model proposed in this chapter is directly linked to a

well-defined three-dimensional representation of the sample, therefore obeying phys-

ically meaningful restriction to the spatial geometry. The latter is true even when

fitting laterally insensitive scans like x-ray reflectivity measurements. Consequently,

properties like the thickness of the oxidised shell within the core-shell model obtained

from fitting reflectivity data, have a direct foundation in the physical reality of the

sample, which is in contrast to the relatively obscure lateral average of the SLD,

obtained from a one-dimensional model. This advantage comes, however, at the cost

of significantly increased computational- and simulation-time-effort, associated with

the demand of increasing complexity of the underlying model in order to capture
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the often very ill-defined geometry of a patterned array. The hardship of fitting

experimental data under these conditions stresses the fact that model inadequacies

become far more obvious, while being potentially compensated and dismissed when

using a more generic formulation of the problem. After all, the information residing

in a scattering experiment is always finite, making a thoughtful underlying model

extremely important if definitive conclusions are to be drawn.

Perhaps the biggest weakness of the developed framework is its high compu-

tational strain, emerging as a natural consequence of the increased dimensionality of

the problem. While technically three-dimensional, the rotational symmetry of the

islands of the patterned array discussed here allowed reducing the dimensionality

from three to two. Nevertheless, even a two-dimensional model might quickly exceed

the computational effort by orders of magnitude compared to the one-dimensional

problem of calculating the x-ray reflectivity of stratified media . Consequently, hav-

ing to sit through one to three days of computing time in order to see the effect

of changing one of the many aspects of the model was, unfortunately, not uncom-

mon. Hence, parallelised code and making use of centralised computer systems are

promising adaptations of the current framework.

Following the earlier discussion, it is advised that future studies of a similar

kind rely more heavily on off-specular scattering, avoiding substrate-array interfer-

ence effects otherwise faced at the specular condition. Furthermore, it appears that

future studies require additional information for efficient and uniquely resolved data

fitting. These additional information might be obtained by either performing a set

of rocking scans at various detector angles 2θ. Alternatively, complementary infor-

mation can be obtained by performing GTR scans along Qz at multiple values of

Q‖ 6= 0.

An even more promising candidate for an experimental geometry is given

by Grazing Incidence Small Angle Scattering (GISAXS), which is fully compatible

with the here-developed scattering framework and will be discussed in more detail

in chapter 6.
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Chapter 6

Laboratory Studies of X-Ray

Diffraction of Patterned Arrays

in GISAXS Geometry

Performing experiments at synchrotron sources often requires expenses in terms of

time-limited access, limited availability and an elaborate proposal process. It is

hence desirable to utilise laboratory based x-ray sources, whenever possible. Since

lab x-ray sources usually rely on particular electronic transitions (most notably the

ubiquitous Cu K-α absorption edge), one obvious drawback of lab based work is the

lack of a tunable x-ray energy, negating the utilisation of most resonant scattering

effects, including magnetically sensitive measurements. However, lab based sources

can still be found very useful in a variety of ways concerning geometric and chemical

sample characterisation. Since the x-ray flux of laboratory sources is generally

found to be orders of magnitudes lower than modern synchrotron sources, it is

often advisable to simultaneously probe as large a volume within reciprocal space

as possible in order to maximise the efficiency of a measurement. Grazing Incidence

Small Angle X-Ray Scattering (GISAXS), in conjunction with a two-dimensional

area detector is therefore the obvious experimental geometry to exploit.

Because of the small associated wavevector transfers, GISAXS is a technique

commonly employed in investigations of nano- and micro-patterned arrays. Ad-

vantages of GISAXS include that the commonly employed two-dimensional CCD

detectors allow high spatial resolution and probing of large areas of reciprocal space

in single measurements, while ensuring a high dynamic intensity range per pixel.

Further, even standard laboratory x-ray sources allow the observation of interest-

ing coherence effects, by tuning the slit size of the aperture of the incident beam,
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therefore trading increased coherence against reduced incident radiative flux. How-

ever, because of the relatively loosely defined experimental geometry, the scattered

intensity generally does not correspond to any well-defined trajectory but usually

corresponds to an oblique surface within reciprocal space.

6.1 Experimental Set-Up

The GISAXS experiments were performed in-house using a commercially available

Xenocs Xeuss 3.0 machine[214] with a microfocused copper Anode and monochro-

mated Cu K-α. The scattered intensity is captured by a two-dimensional Pilatus

300K CCD detector[215] detector of 487 × 619 pixels each of 172 × 172µm size,

leading to a total detector area of 83.8× 106.5mm2.

The requirements for a standard GISAXS set-up are relatively simple, re-

quiring only that the sample surface can be moved into the centre of the beam (a

height adjustment) and a theta axis to define the incident angle. These controls are

clearly insufficient to perform the required scattering experiments from patterned

arrays for which an additional azimuthal axis is needed. Thus, the Xenocs sam-

ple mounting systems was redesigned and engineered. The rotation axis of sample

rotation (theta) is centred 87.5 mm from the base of the instrumental theta axis.

A manual PR01/M rotation mount from Thorlabs[216] provided the azimuthal axis

needed. However, when mounting the sample directly onto this stage there is always

a small but unavoidable misalignment of the surface normal ŝ with the principle axis

of the rotation stage r̂. This could be corrected through redefining the theta an-

gle value every time φ is changed, but is generally found to be tedious, especially

when scanning dozens of azimuthal angles. To reduce this, an additional GN2/M

dual-axis goniometer (black box with screws on top of the rotation stage seen in

Fig. 6.1) was mounted on top of the rotation stage with one of the rotations parallel

to theta and the other orthogonal to it in a usual χ direction. This GN2/M was

mounted using a PR01A/M adapter plate onto the rotation stage. An additional

mounting plate for the sample was designed and manufactured in the departmental

workshop to bring the total height of the sample surface up from 76.1 mm to the

required 87.5 mm. The additional goniometer enables the alignment of ŝ and r̂ by

iterative adjustment of the two goniometer axes until a reflected optical laser beam

remains spatially unaltered on rotation of φ. Following this, the sample surface is

flat with respect to the rotation axis and can then be aligned with respect to the

incident beam in the usual way using the diffractometer angle θ and sample heigh

z. The incident angle is then defined (to within ±0.005°) for any azimuthal angle.

213



Figure 6.1: The custom rotation stage. Additional to enabling azimuthal sample
rotation the two-axis goniometer allows for the alignment of sample normal ŝ with
the rotation axis r̂.

The sample studied in this exploratory study consisted of a patterned array

of circular disks of radius 250 nm consisting of amorphous FePd located on a square

lattice of pitch 513 nm as seen in Fig. 6.2 and similar to the one discussed in chapter

5. In order to utilise the small angle scattering geometry, the detector was placed

Dsd = 2.492 m away from the sample as verified by a calibration grating. The direct

beam transmitted through the sample was covered by a beamstop, and the detector

slightly lifted, so it would have been hit by the direct beam approximately at one

fifth of its total height, while the detector surface was kept perpendicular to the

direct beam.

Assuming normal incidence of the direct beam, the scattering angles in the

laboratory frame 2θ and ν can be associated with the corresponding integer pixel

positions x and y, with x and y in this context referring to pixel coordinates with
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Figure 6.2: Scanning electron microscopy image of the patterned array discussed in
this chapter. Published in [77].

respect to the top left corner of the two-dimensional detector array. After determin-

ing the position of the direct beam x0 and y0, the associated scattering angles are

calculated using

2θ = atan

 y − y0√
(x− x0)2 +D2

sd

 (6.1a)

ν = atan

(
x− x0

Dsd

)
. (6.1b)

Therefore, the scattering angle αf in the sample frame is given by

αf = 2θ − θ cos ν, (6.2)

while ν is identical in both laboratory and sample frame and, of course, θ = αi.

With all scattering angles known, calculating the wavevector transfers Q

corresponding to each pixel is performed straightforwardly via the well known rela-

tionships

Qx = k (cosαf cos ν − cosαi) (6.3a)

Qy = k cosαf sin ν (6.3b)

Qz = k (sinαf + sinαi). (6.3c)
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Figure 6.3: Surface in reciprocal space probed by a two-dimensional area detector in
GISAXS geometry. The acceptance in Qy is much wide than in Qx. Note that units
in the Qx and Qy direction are measured in reciprocal lattice spacings 2π/dlatt to
stress the different ranges the detector spans within reciprocal space. Also pictured
are the projections of the detector window onto the main coordinate planes.

Alternatively, a recent update allows the pixel to Q conversion to be performed

by using the excellent set of tools provided by the esaProject[217]. Fig. 6.3 shows

the detector surface as well as its projection onto the three coordinate planes in

reciprocal space, corresponding to an incident angle of ω = 0.6° and the angular

acceptance of the two-dimensional detector area. The projection onto the Qy −
Qz−plane is the only one allowing a unique mapping from angular- to reciprocal

space coordinates, while a unique mapping for Qy − Qx and Qx − Qz projections

may be obtained from limiting scattering angles along the lines defined by

αf = 0 and ν = 0.

As can be seen, the GISAXS geometry leads to the range of Qy space probed to be

much wider than the range probed in Qx (compare about three reciprocal lattice

216



constants in Qx to about 120 lattice constants in Qy).

6.2 Influencing perpendicular coherence

Rotating the sample along its azimuth angle φ implies the rotation of the Bravais

lattice in reciprocal space, leading to varying diffraction patterns of the reciprocal

lattice points being intercepted by the detector at any given φ. Parallel lattice

planes corresponding to particular sets of miller indices hk of the two dimensional

reciprocal lattice often appear to be lying on clearly identifiable arcs in Fig. 6.4,

which comes as a result of the large discrepancy between the ranges of probed Qx

and Qy space.

As discussed in section 2.4, the diffraction pattern consists of the product

of reciprocal lattice X(Qx, Qy) and the rotationally symmetric structure factor

F (Q), the latter appearing stripe-like because of the small range of intersected

Qx values. The diminishing intensities towards the top of each image is due to

the Qz dependence of = F (Q) = F (Qx, Qy, Qy). Whenever φ corresponds to a

high symmetry direction of low Miller indices, the diffraction pattern aligns in a

way to form horizontal arcs of many closely spaced diffraction spots. If the beam

coherence along Qy is too small, individual (widened) GTRs may merge to form

a continuous arc, as has been discussed in detail in chapter 4. This continuous

intensity distribution can be seen in Fig. 6.4, where at φ = 45.1° the sample is

only very slightly misaligned with respect to the (11)-direction, which is already

sufficient to have the GTRs of a lattice plane overlap. Contrasting, in all other

panels, the misalignment of the probed lattice planes with respect to the long axis

of the coherence function ξ̃⊥, being in turn normal to the incident beam direction,

led to all individual GTRs being clearly separable.

In the grazing incidence geometry, the projected coherence ξ‖ onto the sam-

ple along the incident beam is almost always sufficient to exceed the lattice constant

even of mesoscopic patterned arrays because of the inverse sine relationship stated in

eq. 4.7. The beam coherence ξ⊥ perpendicular to the incident beam, however, is gen-

erally smaller by up to orders of magnitude. In order to investigate the instrumental

capabilities of controlling ξ⊥, multiple GISAXS measurements were performed using

varying slit sizes, controlling the width of the beam on the source side, taking val-

ues of 1.6 mm, 1.1 mm, 0.6 mm and 0.1 mm. According to the Fraunhofer diffraction

integral[86, 194] over the beam aperture, by reducing the slit width the coherence

of the radiation behind the aperture is increased.

Measurements were performed in the (11) and (31)-direction, where the sep-
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Figure 6.4: GISAXS diffraction patterns at various azimuthal sample angles. Lattice
planes appear to lie on arced segments due to the oblique detector geometry. Most of
the diffraction peaks to left and right of the purple vertical stripe were fully merged
with the diffuse background and are not visible even on a logarithmic scale.
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Figure 6.5: The same GISAXS pattern measured along the (31)-direction under
low and large beam coherence conditions. Panel a) shows the detected intensity in
angular space, while panels b) and c) show representations in Qy −Qx space using
the narrowest (0.1 mm) and widest (1.6 mm) slit widths. Lattice planes in angular
space appear to lie on arced line segments, while appearing on straight lines in the
reciprocal space representation, allowing for easy extraction of line scans.
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aration of neighbouring GTRs along a single lattice plane was supposed to be of the

same order as the width of the coherence function ξ̃⊥, determining in turn the width

of each GTR. Fig. 6.5 shows the effect of using either the largest or smallest slit

size of 1.6 mm and 0.1 mm, respectively. Using the small slit width clearly increased

the beam coherence sufficiently to resolve individual GTRs, whereas in the case of

a large slit width the peaks were much less well defined. Expressed in the Qy −Qx
plane, the reciprocal lattice does not appear distorted any more, which allows for

easy line extraction along a particular reciprocal lattice plane. Fig. 6.6 a) and b)

shows line scans along lattice planes perpendicular to the (11) and (31) directions,

respectively, normalised to their maximum intensity for clarity. The higher distance

Figure 6.6: Effects of changing beam coherence ξ⊥ perpendicular to the incident
beam. The figure shows how the diffraction peak widths along the (13) and (11)-
lattice planes (panels a) and b), respectively) decrease with decreasing slit width.
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amongst GTRs along the (31) planes means that lower beam coherence is sufficient

to fully separate individual GTRs. The shorter distance between GTRs along the

(11) means that resolving individual peaks requires higher beam coherence. Note

that at the very small wavevector transfers, slight misalignments of the slit center

and direct beam position resulted in a small offset of the origin of reciprocal space

making the two central peaks in panel a) of Fig. 6.6 appear to be of different inten-

sity despite their apparent symmetric location in reciprocal space. In fact, the two

central peaks correspond to orders h = 1̄, k = 1 and h = 2̄, k = 2̄ explaining the

apparent asymmetry in peak intensity as a result of differing modulus wavevector

transfer Q of all probed peak in Fig. 6.6 a). Fig. 6.6 b), on the other hand, shows a

more symmetric distribution of peak intensities, as is expected for the (11)-direction.

However, consistent with the observation in panel a), the same offset in Qy of about

−0.01 nm is seen again, correcting for which would re-establish the symmetry of all

peak positions. Note that the slight asymmetry in peak intensities, most noticeable

at the two peaks of highest intensity, is most likely due to a small angular offset in φ.

It should again be stressed that, unlike for rocking curves, Qz is not kept constant

over the length of the line scan, which explains the unusual peak intensities in Fig.

6.6 b), since peak modulation in this type of scan is no longer simply given by the

planar component of the structure factors F (Q).

Fig. 6.7 a) and b) show Gaussian fits along the Qx and Qy directions through

the (2̄2̄) diffraction spot. Apart from varying intensities due to slit induced flux

limitations, all peaks are fitted well by Gaussian cross sections. From the fit the

average coherence length along the incident beam was calculated to be

σ‖ = 85 500 nm± 1.9% ≈ 57× dlatt

while the coherence lengths perpendicular to the incoming beam where found to be

σ⊥(1.6 mm) = 610 nm

σ⊥(1.1 mm) = 780 nm

σ⊥(0.6 mm) = 920 nm

σ⊥(0.1 mm) = 1670 nm,

which are also presented in Fig. 6.8. The values of σ⊥ are much better defined than

the ones presented in chapter 4, as it was now possible to directly extract σ⊥ from

fitting the shapes of separate diffraction peaks, as opposed to the indirect calculation
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Figure 6.7: Gaussian fits of the (2̄2̄) diffraction spot along Qx (panel a) and Qy
(panel b) directions. The most likely reason for the shift in peak position along Qy
is a slight misalignment of the slit centre from the centre of the beam.

of coherence values obtained from fitting the intensities of a set of overlapping

diffraction peaks.

Note that the perpendicular coherence is determined solely by the divergence

of the beam, which can be easily traded for photon flux by tuning the respective

slit sizes of a lab source. In this way, values of perpendicular coherence similar to

the synchrotron based measurements presented in chapter 4 can be easily obtained

in laboratory based experiments.

6.3 GISAXS fitting protocol

In the previous section the GISAXS geometry has been shown to produce huge num-

bers of well resolved diffraction spots of patterned arrays of mesoscopic dimensions.

Azimuthal rotation of the sample can be used to control the intercepted diffraction
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Figure 6.8: Increasing perpendicular coherence as obtained form the Gaussian fits
presented in Fig. 6.7 b) as a function of slit width s⊥.

spots and beam coherence can be reliably controlled by adjustment of incidence

slits. Furthermore, the previously developed scattering frameworks dealing with

low-coherence limiting cases as well as spatial unit cell modelling are fully compati-

ble with the GISAXS geometry. In fact, GISAXS might even be able to circumvent

many nuisances of classical rocking curves. For one, the static geometry means that

many complicating factors like angle-dependent projected coherence lengths as well

as the implicit integration over a changing detector resolution function R do not

have to be taken into account. Further, GISAXS measurements allow for the si-

multaneous integration of wide areas of reciprocal space, whereas step-wise detector

integration takes additional orders of magnitude in time.

A promising protocol for fitting of a patterned array to GISAXS measure-

ments consists in taking multiple grazing incidence exposures at varying known val-

ues of sample azimuth φ and incident angle αi. After indexing the various diffraction

spots, regions of interest (ROIs) are set up to either integrate over or fit an adequate

function to it in order to obtain the total scattered intensity. The positions of the

ROIs under azimuthal rotation φ according to GTR positions Qx and Qy in the

instrument frame of reciprocal space can be easily found from their position in the

sample frame Q′x and Q′y due to the rotation matrix(
Qx

Qy

)
=

(
cosφ sinφ

− sinφ cosφ

)(
Q′x

Q′y

)
. (6.4)

This way, instead of fitting multiple complex curves of various scan types,
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many diffraction spots are broken down to single numbers that can be fitted effi-

ciently, since each diffraction spot requires only a single calculation of the structure

factor F (Q), corresponding to the Qz position the detector window intercepts a

reciprocal lattice point (k,l), an approach that is widely used in macromolecular

crystallography[218, 219]. This protocol appears much more robust, less error prone

and computationally light than the previously discussed approaches that required

multiple structure factor calculations per diffraction peak, followed by numerical

convolution and geometrical corrections, the latter introducing additional fitting

parameters and uncertainty to the model.

A proof of the obtainable (good) agreement in between experimental data

and a simple simulation is presented in Figs. 6.9 and 6.10. Thanks to its generality,

the sample model developed in chapter 5 is fully compatible with the GISAXS

geometry. Hence, the sample used here was reconstructed (without being explicitly

fitted) using the best model parameters obtained from fitting the (very similar)

sample used in chapter 5. Further, values describing the parallel and perpendicular

beam coherence, σ‖ and σ⊥, determined from fitting the diffraction peaks in Fig. 6.7

have been used in order to model the peak shape. Note, however, that unlike most

parts of rocking curves, the consistently low scattering angles require utilisation of

the DWBA in calculating the structure factor F (Q), implementation of which has

been discussed in section 2.4.4.

After adding an empirically determined (constant) diffuse background to the

data, the simulations presented in Figs. 6.9 a) and 6.10 a) are found to be almost in-

distinguishable by eye from the experimental data. Despite the data not having been

fitted for reasons of time constrictions, it is apparent that the GISAXS simulation

is indeed able to reproduce experimental measurements rather straightforwardly,

including most of the experimentally observed diffraction peak modulation. Fur-

thermore, even though the exposure time of each measurement was only about 75

minutes, at least 10 diffraction orders are resolvable at Qx = 0 (topmost row in

Figs. 6.9 and 6.10), along the (31)-direction, which corresponds to the covered Q

range being larger than in the rocking curves of chapter 5. This large range in Q

ensures sensitivity to the previously observed enhancement of the islands structure

factor coming as a result of island doming, although the exact shape of the mod-

ulated structure factor, of course, depends on the x-ray energy E, so that direct

comparison of the experimental data is not straightforward.

The major drawback of GISAXS in the context of patterned arrays, how-

ever, seems to mainly be a technical issue complicating measurements of magnetic

structures which would naturally be of great interest to experimenters studying pat-
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Figure 6.9: Simulation (a) and experimental data (b) of the scattering along the
(31)-direction of the patterned array under high coherence conditions corresponding
to ξ‖ = 1667 nm. Additionally, an empirically found (constant) diffuse background
of 2 × 10−6 times the maximum peak intensity of the pattern was added to the
simulation.

225



Figure 6.10: Simulation (a) and experimental data (b) of the scattering along the
(31)-direction of the patterned array under low coherence conditions corresponding
to ξ‖ = 607 nm. Additionally, an empirically found (constant) diffuse background
of 8 × 10−7 times the maximum peak intensity of the pattern was added to the
simulation.
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terned arrays. In order to gain magnetic sensitivity towards Palladium, the energy

of the synchrotron radiation had to be tuned to just below the Pd L3 edge, which

is located at

EPd−L3 = 3.1733 keV,

and falls into the tender x-ray regime. Unfortunately, standard experimental set-ups

on most synchrotron beamlines rely on beryllium windows in order to separate the

vacuum tube containing the beam from 2D-detectors, preventing the penetration

of soft x-rays at these energies. Possible solutions may consist in either using less

common custom made vacuum chambers that support usage of large area detectors

or to fall back on designing samples of magnetically active material, that obtain

adequate absorption edges at energies above roughly 5 keV, at which absorption of

the Be windows is significantly reduced.

6.4 Summary

This chapter introduced the GISAXS geometry as an experimental technique in

the context of studying patterned arrays. The anisotropic nature of patterned ar-

rays requires making a choice along which direction of the two-dimensional lattice

structure of the array a measurement of x-ray scattering is to be performed. In

practical considerations, it was discussed how proper alignment of the sample can

be maintained if azimuthal rotation of the array is used in order to change the lattice

direction of a measurement. It was further shown how a large x-ray beam coher-

ence, ξ⊥, perpendicular to the scattering plane is obtained by confining the beam

size by using a sufficiently small aperture slit perpendicular to the scattering plane.

Increasing ξ⊥ implies an increasing number of coherently scattering patterned ele-

ments. Apart from the higher sensitivity of the x-ray beam probing the patterned

array, the increased coherent scattering amplitude A(Q) may even compensate for

the flux reduction accompanying a narrow aperture of the incident beam, although

in the experimental practice of this experiment a factor in registered intensity of

≈ 10 in favour of the open-(1.6 mm) over the closed slit (0.1 mm) was observed, as

is apparent from the color scale of Fig. 6.5 as well as from the line scans presented

in Fig. 6.7 a) and b). It was demonstrated how, under laboratory conditions, ξ⊥

varied as a function of aperture size, finding that a slit width of 0.1 mm was sufficient

to obtain a perpendicular beam coherence (in units of the standard deviation of a

Gaussian distribution describing the correlation function of the beam) of more than

1.5 µm, significantly exceeding the lattice constant of the patterned array.

A peculiarity of the small scattering angles of the GISAXS geometry is that
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typical area detectors probe an obliquely shaped surface within reciprocal space that

is much wider in Qy (perpendicular to the scattering plane) than along Qx, again

stressing the importance of large ξ⊥. It was shown how the distorted view of recipro-

cal space provided by the pixelated grid of the area detector, can be transformed into

a more familiar view, obtained from projection of the measured intensity onto the

Cartesian Qx-Qy-plane. The Cartesian representation allows for a simpler analysis

of scattering data, for instance by allowing for easier indexing of diffraction peaks.

Another advantage lies in the more straightforward definition of regions of interest

of a fixed area, surrounding individual diffraction peaks. The latter is required for

the proper integration of the total scattered intensity contributing to a given grating

truncation rod.

Finally, it was demonstrated how the scattering framework, developed in the

earlier chapters, is compatible with the GISAXS geometry, leading to simulations

being visually almost indistinguishable from experiment. In more quantitative con-

siderations, it is believed that future studies will produce high quality fits of exper-

imental data, exploiting the high information content obtained from simultaneous

analysis of dozens of diffraction peaks a typical GISAXS measurement provides.
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Chapter 7

Spatially Resolved Magnetic

Vortex States

7.1 Magnetic Vortex States

Formation of magnetic vortex states is a well described phenomenon in magnetic

micron- and sub-micron sized disks. A magnetic vortex is characterised by the

magnetic moments of all the atoms within the disk forming closed loops around

the geometrical vortex core. Most of the magnetic moments are restricted to lie

within the plane of the disk, although moments close to the vortex core may exhibit

a significant component pointing out of the plane in order to avoid a singularity

occurring at the core. Hence, a vortex state is generally characterised by both its

chirality, i.e. the sense of rotation of the magnetic moments, and its polarity, i.e. the

direction of the out-of-plane component of magnetic moments close to the vortex

core. For perfectly symmetric disks the four states defined by these restrictions are

energetically equivalent and the vortex state is therefore considered four-fold degen-

erate. Magnetic vortices are being researched regarding geometrical control[31, 220–

222], vortex nucleation mechanism[31, 223, 224], magnetic resonance effects[225–

227], magnetisation reversal[26, 77, 228–230], and many more. The most prominent

investigation techniques include micromagnetic simulations[27, 28, 227, 231], real-

[53, 77, 221, 224, 227] and reciprocal space[28, 31, 53, 97, 232] visualisation.

Given that the sample temperature is below the magnetic ordering temper-

ature T < TC , the total magnetic energy, and hence the magnetic state, of the disk

is determined by three energy terms, which are all related to different magnetic

interactions:

1. The first type of interaction is of magnetostatic nature, which is related to the
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stray field of the disk. The magnetostatic energy[233] of an object is calculated

from integrating over the magnetic vector potential

Ems =
µ0

4πr2

∫∫
m(r)× (r− r′)

|r− r′|
dr dr′ (7.1)

of all magnetic moments within the internal magnetic field produced by the en-

tirety of the magnetic moments residing within the body. Integration by parts

and application of the divergence theorem on eq. 7.1 leads to the expression

for the total magnetostatic energy[27]

Ems =
1

2

∫∫
mantle

σ(r)σ(r′)

|r− r′|
dS dS′, (7.2)

where dS is the outwards-pointing surface normal of the disk, σ(r) = m(r) ·
n̂(r), and m(r) and n̂(r) being the local magnetic moment and surface normal

at positional vector r, respectively. Note that eq. 7.2 makes use of the fact

that the magnetic field in the bulk of the disk is assumed to be divergence-free,

hence ignoring the out-of-plane component of the magnetic moments within

the vortex core. Under these assumption, the surface integral of eq. 7.2 is

taken over the mantle of the disk only, since m · n̂ = 0 for all moments located

on the up- and down faces of the disk.

Since a magnetic vortex minimizes the component of the magnetic moments

normal to the surface of both the sides as well as top and bottom of the disk,

magnetostatic interaction is the main driving mechanism for the formation of

vortex states.

2. The second energy term to consider is the Zeeman energy, which describes the

potential energy of magnetic moments within an externally applied magnetic

field. It is described by[26]

EZ = −µ0

∫
m ·Hext dV. (7.3)

Obviously, the Zeeman energy is minimized by a co-parallel alignment of the

local magnetic moments with the external field Hext. Therefore, the Zeeman

energy is promoting a collinear magnetic state if the externally applied field

is sufficiently strong.

3. The last main contributor to the total energy is the exchange energy Eex,

mediated by the exchange coupling of magnetic ions[234]. It generally leads
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to either parallel or antiparallel alignment of neighbouring magnetic moments

even in the absence of externally applied fields. Hence, exchange interaction

is the reason for the polarity of vortex states; If the curl of magnetic mo-

ments exceeds a critical value close to the vortex core, exchange interaction

will locally dominate over magnetostatic interactions and force the magnetic

moments into an out-of-plane collinear state, pointing either up or down.

A magnetic vortex will generally be created if the magnetostatic interaction pro-

vides the dominant contribution to the overall energy state of the system, which is

generally related to three distinct conditions being fulfilled:

1. The disk does not include a strong magnetocrystalline anisotropy, so that the

local magnetic moments are provided sufficient flexibility in the choice of their

spatial orientation.

2. Similarly, the aspect ratio of radius and thickness of the disk has to be

large enough to prevent alignment of the magnetic moments along a shape

anisotropy axis of the disks.

3. The thickness of the dots has to exceed a critical value in order to overcome

the dominance of exchange coupling at small length scales.

Fig. 7.1 presents a phase diagram visualising the inter-relatedness of disk radius R

and thickness T as adopted from [27] summarises the previous discussion.

Without an external magnetic field applied, a rotationally symmetrical disk

will exhibit a magnetic vortex located in the centre of the disk. Upon application of

an external field, the vortex core shifts perpendicular to Hext. Through this shifting

of the vortex core, the Zeeman energy EZ is decreased because the magnetic moments

on the far side of the vortex are increasingly aligned with Hext. Simultaneously,

keeping most of the magnetic moments aligned within the sample plane minimizes

stray fields and keeps the magnetic curl low, therefore accommodating Eex. Hence,

the chirality of the magnetic vortex field in its ground state determines the direction

the vortex moves so as to ensure that the magnetic moments on the far side of the

vortex align with Hext. An example of a simple magnetic vortex with and without

an applied field Hext is given in Fig. 7.2 a) and b).

Accounting for the increasing Zeeman energy, the dislocation of the vortex

core increases with an increasing amplitude of Hext, a process which is reversible if

the vortex core does not annihilate upon reaching the edge of the disk, the latter

happening once the external field strength reaches the annihilation field Han. Above

231



Figure 7.1: Phase diagram of magnetic domain structures of Permalloy nano dots.
Adapted from [27].

|Han| the disk can be considered to be in a collinear state, which is, however, main-

tained purely by the external field, so that edge effects at the disk perimeter may

still prevent it from being uniformly magnetised.

Upon decreasing Hext a vortex will re-appear, albeit below |Han|, at the

nucleation field Hn. Note, however, that the former provides only a simplified

picture of the exact injection mechanism of the vortex. For instance, the two vortex

states of opposite chirality nucleating at opposite sides of the disk are energetically

degenerate. Hence it is not clear, at which end of the disk a vortex will nucleate,

and micromagnetic simulations suggest that, indeed, in general two vortices may

nucleate in frequently[223]. If the vortices have traversed far enough towards the

centre of the disk, attempting to accommodate the opposite chiralities of the two

competing vortices leads to frustration of the magnetic moments located at the

centre of the disk since the magnetic moments can not simultaneously be part of

both vortices. Either by chance or through geometrical imperfections of the disk,

one of the vortices will start to dominate over the other, the latter shrinking and

eventually disappearing completely. The remaining vortex core will reach the disks
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Figure 7.2: Visualisation of simple magnetic vortices using the rigid vortex model
discussed in section 7.3.1. Panels a) and b) show the orientation of the local mag-
netic moments of a vortex of counter-clockwise chirality subjected to no and finite
externally applied magnetic field Hext. The shift of the vortex core towards positive
y values in panel b) is a consequence of the applied external field Hext pointing in
positive x direction, therefore minimising the total Zeeman energy of the disk. Pan-
els c) and d) show the colour coded x-component of the local magnetic moments,
which is the quantity the x-rays are sensitive to if impinging along the x-direction.

centre at the (usually very small) coercive field strength Hc, from where on the

process repeats symmetrically on negative Hext.

Although the process of vortex formation is well understood, many details

are still rather elusive. For instance, analytical models for the vortex field gener-

ally provide, at most, qualitative agreement with experimental data and are often

restricted to small values of Hext[26]. On the other hand, direct measurements of a

particular vortex state are generally severely limited, even using the most frequently

developed techniques; PEEM-XMCD provides direct space imaging and magnetic

contrast, but is restricted to long measurement times and relatively low spatial

resolution[30, 235]. SQUID measurements provide information only about the aver-

age magnetisation of a sample[27, 31]. Micromagnetic simulations are well known to
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be able to reproduce magnetic vortex states, without the need to define an explicit

analytical expression describing the field. However, despite micromagnetic results

providing a detail rich distribution of magnetic moments[28, 224, 235], comparing

these results to experiments is often rather ambiguous and commonly limited to zero

T models as incorporating temperature is difficult[236, 237]. For instance, a lack of

quantitative agreement between diffraction experiments and simulations using mi-

cromagnetic results as an input, render it difficult to decide on the quality of either

or both of the micromagnetic results and quality of the simulation framework.

Therefore, the remaining part of this chapter will discuss the sensitivity of

resonant x-ray diffraction towards a non-uniform distribution of magnetic moment

of circular nano-disks and attempt to further refine the understanding of vortex

mediated magnetisation reversal.

7.2 Experimental Observations

To explore the effect of a non-homogeneous magnetic distribution within patterned

elements, small angle x-ray resonant scattering experiments have been performed at

the 4-ID-D beamline at the Advanced Photon Source (APS), Chicago, USA[211].

The sample is identical to the one discussed in chapter 5 and consists of nano-

dots 450 nm in diameter located on a square lattice of pitch 513 nm. The chemical

composition of each dot was amorphous Fe13.5Pd86.5 and the nominal height of the

disks was 10 nm, although it has been shown in the previous chapters how the pre-

patterning of the array led to an unintended doming of the islands. A more detailed

discussion of the sample properties can be found in chapter 5 and [77] while the

patterning procedure is discussed in detail in chapter 3.

Fig. 7.3 shows the difference signal Idiff = I+ − I− of two rocking curves

taken at opposite helicities of circularly polarised x-rays taken at different external

magnetic fields measured at 30 K, while Fig. 7.4 shows the corresponding asymmetry

ratio. The detector angle was 2θ = 8.12°, corresponding to Qz = 2.28 nm−1. The

data suggest a distinct modulation of the scattered intensity, depending on the

diffraction order and the applied strength of the external field.

In order to increase the magnetically sensitive resonant scattering factors

while simultaneously limiting the amount of photon absorption, the x-ray energy

was tuned to 3.174 keV, which is located just below the Pd L3 edge.

Fig. 7.5 and 7.6 show magnetic field loops of the asymmetry ratio taken at

temperatures 200 K and 30 K, respectively. At each temperature, measurements

were performed at multiple wavevector transfers Qx corresponding to diffraction
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orders n = Qx dlatt/2π, where dlatt = 513 nm is the lattice parameter defining the

lattice periodicity of the (10) direction along which the scattering plane was aligned.

The diffraction orders measured were -8, -1, 0, and 8.

Each magnetisation loop was measured independently by adjustment of the

diffractometer angles to specific values of Qx followed by scanning the external

field, which was applied along the (10) sample direction, therefore aligning with the

scattering plane. At each value of Hext, the two intensities I+ and I− under reversal

of the x-ray helicity were measured, thus enabling the calculation of the asymmetry

ratio A.R. under reversal of the x-ray beam helicity as discussed in section 2.1.4.

A qualitative difference between the loops taken at the two temperatures

is the formation of a distinct hysteresis found in the 30 K measurement, compared

to the field loops measured at 200 K, which lack any hysteresis. This observation

has been explained by Östman et al. [77], where it was found from PEEM-XMCD

measurements that, in fact, magnetisation reversal by formation of a vortex state

occurred at temperatures ranging from 20 K up to room temperature. The forma-

tion of a magnetic hysteresis occurs below the bifurcation temperature Te ≈ 212 K,
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Figure 7.3: Rocking curve difference signal obtained from swapping the x-ray beam
helicity, measured at three value of Hext and taken at E = 3.174 K. Panel a)
shows the measured signal at magnetic saturation, panel b) corresponds to magnetic
remanence, while panel c) corresponds to a magnetic vortex being dislocated from
its ground state in the centre of the disk.
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Figure 7.4: Rocking curve asymmetry ratio measured at three value of Hext and
taken at E = 3.174 K. Panel a) shows the measured signal at magnetic satura-
tion, panel b) corresponds to magnetic remanence, while panel c) corresponds to a
magnetic vortex being dislocated from its ground state in the centre of the disk.

which marks the point above which the thermal energy kBT is sufficient to overcome

the transition energy ∆E(H) necessary to reconfigure the distribution of magnetic

moments, therefore separating the vortex- and collinear state. Hence, the (apparent)

absolute value of the nucleation field Hn of a vortex decreases with decreasing tem-

perature, while above Te transitioning from collinear- to vortex state is essentially

instantaneous, once the latter becomes energetically favourable.

In other words, at T < Te and coming from magnetic saturation, the collinear

state is maintained deeper into the bistable state on varying Hext as the energy

barrier ∆E(Hext) has to decrease sufficiently in order to be overcome by thermal

activation according to the available energy kBT . Therefore, the nucleation field Hn

is a temperature dependent quantity, which marks the smallest external magnetic

field |Hext| at temperature T at which reconfiguration of the atomic magnetic mo-

ments from a collinear- into a vortex state becomes possible within the time-scale of

the experiment. However, at T < Te the equilibrium position of a newly nucleated

vortex lies well within the interior of the disk, as opposed to T > Te, where it nucle-

ates at the disk edge. Consequently, this means that at low temperatures the vortex

magnetisation |M| at nucleation is significantly smaller than the magnetisation of
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Figure 7.5: A.R. taken at multiple satellite orders measured at 200 K. Raw data
are presented in panel a), while normalised data are presented in b). Shaded re-
gions indicate the standard deviation obtained from averaging over increasing- and
decreasing field branches.

the collinear state, which explains the sharp increase of M around Hn, when the

disks transition from collinear- to vortex state.

The effect of performing the experiment at T > Te can be seen in Fig. 7.5:

The magnetisation tracks the same curve along the increasing- and decreasing field

branches, indicative of a smooth traversal of magnetic vortices nucleating at the disk

edges. Fig. 7.6 presents the opposite case T < Te: The rapid increase of magnetisa-

tion at Hn represents the statistical distribution of the magnetic reconfiguration of

the individual disks, followed by re-magnetisation via dynamical repositioning and

the final annihilation of the vortices according to the applied field Hext. As the

thermal energy kBT is insufficient to immediately nucleate the vortex state once it

becomes energetically favourable, the increasing- and decreasing field branches are

not identical and a magnetic hysteresis opens up.

Although probing the magnetic structure of a sample occurs only indirectly

via the charge-magnetism interference term, a significant advantage of small an-

gle XRMS is the opportunity to measure many Fourier components of the local
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Figure 7.6: A.R. taken at multiple satellite orders measured at 30 K. Raw data
are presented in panel a), while normalised data are presented in b). Shaded re-
gions indicate the standard deviation obtained from averaging over increasing- and
decreasing field branches.

magneto-chemical structure and therefore gain complementary information to tech-

niques like (non-diffractive) MOKE[47, 230, 238] or SQUID measurements[27, 239],

which are sensitive to the average magnetisation of the sample only. Analogously, the

zeroth order reflection in XRMS experiments, i.e. the specular reflection, is directly

proportional to the average magnetisation of the sample, as long as |Am(Q)| �
|Ac(Q)|, i.e. the magnetic scattering amplitude is much smaller than the charge

scattering amplitude. However, the sensitivity of higher order Fourier components

to the spatial distribution of the electronic charge and magnetic moment allows for

the direct evaluation of magnetisation dynamics and, in principal, the comparison

of spatial models of a local magnetic structure against experiment. The extraction

of higher order Fourier terms still constitutes a lateral averaging over the sample

and therefore complements direct space techniques like PEEM-XMCD[77] or MFM-

imaging[224, 226].

For easier visual comparison the corresponding field loops have been re-

centred to account for small differences in the amount of circular polarisation,
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cleaned from obvious statistical outliers, averaged over the increasing and decreasing

field branches and finally normalised to ±1 in saturation as seen in Figs. 7.5 b) and

7.6 b). The shaded regions around the average values indicate the standard devia-

tions calculated from the increasing and decreasing branches. The statistical noise

level of the 200 K measurement is found to strongly affect the A.R. of all scattering

orders, so that drawing definitive conclusions is not found to be possible. However,

the 30 K measurement shows some clearly resolved differences in between the A.R.

measured at the 0th, -1st and ±8th satellite orders, being subtle but nevertheless

significant. On increasing Hext the 0th and -1st order the A.R. resolvably increases

at about −3 mT, which is the same temperature at which the 200 K appears to be

entering the vortex state. Around 0.8 mT the 0th order branch basically mirrors

the ±8th order branches, while the -1st order crosses the other branches and re-

mains significantly lower than the other branches until the sample reaches magnetic

saturation at around 7.5 mT.

The branch splitting provides a direct indication of the sensitivity of the ex-

periment to the magnetic scattering amplitude Am(Q). It is hence potentially possi-

ble to fit simulated to experimental data under some assumption of the distribution

of the local magnetic moments mx(x, y). Furthermore, although much noisier the

data taken at 200 K indicates more qualitative differences between the magnetisation

reversal process compared to that at 30 K. Obviously, the magnetic configuration

of the disks at 200 K and 30 K is expected to vary below Hext ≈ 0 mT, because of

the opening of the hysteresis associated with the thermal activation barrier at the

30 K sample, impacting the switching from the collinear into the vortex state. How-

ever, it is clear from comparing Figs. 7.5 and 7.6 that the internal magnetic state

of the disks above Hn also differs significantly at the two temperatures. Despite

the higher noise level found at 200 K the A.R. found at different diffraction orders

does obviously not share the same field dependence. This is most pronouncedly

seen when comparing the +1st and −1st diffraction orders, which are found to be

identical after normalisation. While the −1st order is exhibiting a distinct dip at

30 K, the same dip is not present at the +1st diffraction order measured at 200 K,

which is therefore indicative of a qualitative difference in the vortex geometry at the

two temperatures.

7.3 Two-Dimensional Modelling of Magnetic Vortices

In order to gain insight into the specific configuration describing a magnetic vortex

at a given external field Hext, a model of the vortex has to be applied in calculating
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the asymmetry ratio, which is then fitted to the experimental data. Without falling

back to micromagnetic simulations[27, 28, 97, 235] an analytical model describing

the vortex geometry had to be formulated. It is believed that the exact spatial

chemical structure, that has been discussed in depth in chapter 5, is mainly acting

as an intensity modulation of the diffraction peaks. Consequently, this modulation

is cancelled in the normalised hysteresis loops, which are expected to be primarily

sensitive to the internal magnetic structure of the disk, rather than to the exact

chemical structure of the island hosting the vortex. It was therefore decided to utilise

a purely two-dimensional model of the disk, eliminating as many free parameters as

possible.

In order to investigate how different vortex models manifest within the scat-

tered signal, two similar but nevertheless distinct vortex models have been defined.

A rigid vortex model and a dynamic model creating an elliptical vortex shape have

been employed in order to investigate the ability of the XRMS-technique to resolve

spatial magnetic structures. Both models rely on calculating magnetic scattering

amplitudes from a specific spatial distribution of the local scattering length density

within the sample plane. The charge scattering length density SLDch is considered

to be constant within the whole disk, while the magnetic component of the scatter-

ing length density SLDmag depends on the x-component mx of the local magnetic

moment m. SLDmag will thus be proportional to mx, so that, for simplicity, it is

assumed that |m| = 1 holds, allowing the form

SLDmag = mx SLD
mag
0 (7.4a)

SLDmag
0 = χSLDch, (7.4b)

where χ is a proportionality factor relating the amplitudes of SLDch and SLDmag.

The magnetic amplitude is considered to be acting only as a small perturbation to

the charge amplitude, i.e. either slightly in- or decreasing |Ach|. Since the simulated

A.R. will be normalised, the only condition required for the magnetic scattering

length density is that SLDmag � SLDch. Hence, in the following the scaling factor

relating the scattering amplitudes was fixed to χ = 1× 10−3, while it was verified

that other values of χ ranging from 0.01 to 1× 10−5 provided virtually identical

results.

7.3.1 Rigid Vortex Model

The rigid vortex model assumes a perfectly circular vortex of magnetic moments

distributed symmetrically around a vortex core, yc, which is free to move along the
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y-direction, i.e. perpendicular to the scatting plane and the applied magnetic field

Hext. The model is particularly simple, but is generally limited in applicability to

small deviations of yc from the centre of the disk[26]. The local magnetic moments

are defined on a two-dimensional grid, representing the lateral coordinates of a single

disk. Further, magnetic moments are confined to lie within the boundaries given by

the radius R of the disk, i.e. for all radii r in polar coordinates that obey r < R.

Under these conditions, for all points (x, y) it holds that

r =
√
x2 + y2 (7.5a)

φ = arctan

(
y − yc
x

)
(7.5b)

mx =

∓ sin(φ) if r ≤ R

0 else
(7.5c)

my =

± cos(φ) if r ≤ R

0 else,
(7.5d)

with the respective signs in eqs. c) and d) referring to anticlockwise and clockwise

chirality.

7.3.2 Elliptical Vortex model

The rigid vortex model is obviously not providing the expected limiting behaviour

of merging into a collinear state as the vortex core approaches the edges of the disk.

Rather, in order to approximate a collinear magnetic state, the mathematical vortex

core has to shift far beyond the edge of the disk therefore rendering local magnetic

moments aligned parallel, clearly leading to unphysical behaviour.

In order to overcome this limitation, a model that is believed to be physically

more accurate consists of a more dynamic vortex shape, maintaining circular geom-

etry for vortices located in the centre of the disk, while taking on an increasingly

elliptical shape when the vortex core is approaching the edge of the disk, finally

resembling a linear domain wall just before merging the edge of the disk and anni-

hilating. If the vortex core does reach the edge, the eccentricity of the ellipse shall

become infinite, therefore rendering all magnetic moments within the disk to be

aligned in a perfectly collinear fashion.

Noting that each magnetic moment has to lie on a single, well defined ellipse

centred at a particular value yc, in order to achieve the limiting behaviour discussed

above, the choice was made to couple the long- and short axes, a and b, respectively,
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Figure 7.7: Visualisation of the rigid vortex model. Panels a) to d) show the vortices
of corresponding yc values 0, 100, 200, and 250 nm. The vortex keeps its geome-
try when moving over the disk, leaving behind a non-homogeneous distribution of
magnetic moments when the vortex core merges with the disk walls.

of each ellipse by

a =
b√

1− yc/R
, (7.6)

so that a diverges if yc approaches the edge of the disk and a = b for yc = 0, i.e. a

circular geometry is preserved if the vortex core is located in the middle of the disk.

Furthermore, for any point x the corresponding y value of the ellipse defined by a

and b is given by

y = ± b
a

√
a2 − x2. (7.7)

Rearranging eq. 7.7, inserting eq. 7.6 and including the shift of the vortex core by

yc provides

b =

√
(y − yc)2 +

x2(R− yc)
R

, (7.8)
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Figure 7.8: Visualisation of the elliptical vortex model. Panels a) to d) show the
vortices of corresponding yc values 0, 100, 200, and 250 nm. Being located in the
disk centre, the vortex is perfectly circular, while getting increasing elliptical when
approaching the island edges. Once the vortex merges with the edge, its eccentricity
diverges to infinity, leading to a fully magnetised disk.

so that it follows

φ = arctan

(
xb2

−(y − yc)a2

)
(7.9a)

mx =

∓ sin(φ) if r ≤ R

0 else
(7.9b)

my =

± cos(φ) if r ≤ R

0 else
. (7.9c)

Fig. 7.8 presents a visualisation of the vortex geometry for a vortex translating along
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the y-direction from the centre of the disk to its edge in this elliptical model.

7.3.3 Calculating Scattering Amplitudes

Once the vortex geometry has been defined, the charge- and magnetic scattering

amplitudes are calculated numerically via a Riemann sum over the product of the

product of the local SLD and the corresponding phase factors according to

Ach(Q) =
∑
x,y

SLDch(x, y) e−i(xQx+yQy) (7.10a)

Amag(Q) =
∑
x,y

SLDmag(x, y) e−i(xQx+yQy)

=
∑
x,y

SLDmag
0 mx(x, y) e−i(xQx+yQy).

(7.10b)

Once the scattering amplitudes are defined, the scattered intensity is calculated via

I± = (Ach ±Amag)(Ach ±Amag)∗ (7.11)

it is straightforward to calculate the asymmetry ratio according to eq. 2.33.

7.4 Fitting of the Experimental Data

In order to differentiate which vortex model reflects the magnetic structure of the

islands more closely, it was decided to fit the asymmetry ratio loops measured at

30 K. Unfortunately, after normalising the data as seen in Fig. 7.6 b), the A.R.

of the magnetisation loops looks relatively similar at each measured diffraction or-

der. However, it was still considered insightful to investigate in how far the two

vortex models would differ in reproducing the magnetisation loop at the respective

diffraction orders.

Note that neither in experiment or in simulating the scattered signal did

the chirality of the vortices have to be considered, since restricting to the scattering

plane (implying Qy = 0) rendered the scattered signal insensitive to the y component

of the scattering phase factor, as can be seen from inspection of eq. 7.10 b). Since

the projection onto the x-axis is identical for both vortex chiralities, they both lead

to identical scattering amplitudes. Consequently, all simulations of the vortex fields

were restricted to anticlockwise chirality for simplicity.

In the absence of a parametrisable expression relating the externally applied

field Hextto the vortex core position yc, the A.R. has to be fitted individually at all
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successive values of Hext. However, at each value of Hext the normalised A.R. will

always be accessible by some vortex core position yc, so that a magnetisation loop

corresponding to a specific diffraction order can necessarily be fitted by any vortex

model. The solution, of course, is to fit the A.R. of all experimentally determined

diffraction orders simultaneously for each individual value of Hext. This way, a

unique value yc of a vortex is fitted to simultaneously match the corresponding

A.R. of all diffraction orders, therefore adding specificity to the fit. In effect, the

quality of the fit is indicative of the resemblance of the used model and the real

vortex. As an additional result, yc is tracked as a function of the (experimental)

Hext, allowing to reproduce the traversal of the vortex over the disk. Fig. 7.9 present

the results from fitting the two vortex models to the experimental data. Panels a)

and b) show the direct fits of the experimentally determined A.R. by the rigid and

elliptical vortex models, respectively, while panels c) and d) show the corresponding

vortex core positions yc that fit the experimental data best. Both models are able

to reproduce the 0th and -8th diffraction orders reasonably well, but the elliptical

model is fitting the -1st diffraction order clearly better. In particular, unlike the

rigid vortex model, the elliptical vortex fits the dip around 40 mT. Furthermore, in

order to fit the data the rigid vortex core had to extent far beyond the disk edge in

order to obtain a reasonable collinear state of magnetic moments necessary to obtain

the saturation values of ±1, which constitutes a clearly unphysical behaviour.

In summary, the elliptical vortex model is (not unexpectedly) found to fit the

experimental observations better than the näıve rigid vortex, but more importantly,

this result shows that XRMS is principally providing sufficient spatial sensitivity

to local magnetic moments needed to resolve the internal magnetic structure of

patterned elements. Unfortunately, the diffraction orders that the magnetisation

loops were performed on turned out to not provide the highest degree of sensitivity

towards the underlying vortex geometry, since the Fourier components have to res-

onate with the characteristic length scales of the vortex geometry. Performing the

magnetisation loops on different diffraction orders is therefore believed to provide a

higher degree of specificity of experimental data, allowing a more detailed picture

of the internal magnetic structure of patterned elements as will be discussed in the

following section.

7.5 Proposal for Future Studies

In the previous sections it was demonstrated that XRMS does provide sufficient sen-

sitivity to differentiate internal magnetic states of nano-patterned elements. How-
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Figure 7.9: Fits (solid lines) and experimental data (symbols) of the normalised
asymmetry ratio following a magnetisation loop in panels and corresponding loca-
tion yc of the vortex core. Panels a) and c) correspond to the rigid vortex model,
while panels b) and d) correspond to the elliptical vortex model. Additionally to
the physically unreasonable values of yc in case of the rigid vortex (the physical
dimensions of the disk are indicated by the shaded region in panel c), the elliptical
vortex provides a better fit of the experimental data.
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ever, it remained unclear whether the choice of the diffraction orders used at which

the magnetisation loops were performed on was a good choice from the point of

view of maximising the specificity of the experimental data. Since the elliptical vor-

tex has been identified to match closer the experimental observations, the following

discussion will be limited to this model.

Fig. 7.10 shows simulations of the asymmetry ratio as a function of the vortex

core position yc. For clarity, Fig. 7.10 a) shows diffraction orders zero to four, while

panel b) shows orders five to nine. Obviously, the lower diffraction orders show a

much higher degree of variability and therefore provide more specificity towards the

exact vortex geometry, while starting with diffraction order five, the A.R. basically

lost any distinguishing features and essentially tracks the zero order A.R. again. The

zero order diffraction peak measures the average magnetisation of a disk and adding

too many Fourier components at high diffraction orders appears to basically restore

the magnetisation averaging by probing the disk at a length scale that is too small to

provide useful information. On the other hand, the fewer Fourier components of the

lower diffraction orders do provide sensitivity length scales relevant for resolving the

vortex geometry, and are therefore much more distinct from each other. Because of

the relatively little obtained information, it must therefore be considered unfortunate

to have performed the experimental measurements on orders 0, -l, and ±8. Keeping
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Figure 7.10: Asymmetry ratio of multiple diffraction orders in Qx, measured within
the scattering plane (Qy = 0). The low diffraction orders seen in panel a) are found
to exhibit a higher degree of specificity than diffraction orders ≥ 5 seen in panel b).
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Figure 7.11: Asymmetry ratio of multiple diffraction orders in Qx, measured out of
the scattering plane at the first out-of-plane diffraction order (Qy = 1 × 2π/dlatt).
The low diffraction orders seen in panel a) are found to exhibit a higher degree of
specificity than diffraction orders ≥ 5 seen in panel b).

in mind the additional complications in interpreting the consequences of the doming

of the patterned islands as discussed in chapter 5, identifying the optimal diffraction

orders for maximising the information content of the experimental data required

extended analysis and could not have been anticipated at the time of the experiment.

The situation is even clearer, when the signal is detected outside of the scat-

tering plane, i.e. Qy takes on finite values. As seen in Fig. 7.11 a), when measuring

multiple diffraction orders in Qx but fixing the component of the wavevector transfer

perpendicular to the scattering plane to the 1st diffraction order, i.e. Qy = 2π/dlatt,

the A.R. as obtained form the magnetisation loop shows distinct features, that

are found to be highly sensitive to to the exact distribution of magnetic moments,

whereas orders ≥ 5 seen in Fig. 7.11 b) are, again, not showing significant sensitiv-

ity but are found to essentially reproduce a linear dependency of the A.R. towards

scanning the vortex core over the disk. Since it was shown earlier that the detected

A.R. was already sufficiently sensitive in order to resolve the rather subtle differences

between the 0th and 1st diffraction order seen in Fig. 7.10, the immensely amplified

relative differences between the first five diffraction orders seen in Fig. 7.11 a) are

believed to be resolved well in experiment, while it was shown in chapter 6 that

non-zero diffraction orders in Qy are well resolvable using the GISAXS geometry if
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sufficient perpendicular beam coherence is ensured.

Obviously, on finite values of Qy the degeneracy of the clockwise and anti-

clockwise vortex chirality with respect to the A.R. is lifted, so that an equal distribu-

tion of both vortex chiralities has to be considered in the subsequent data analysis.

Alternatively, asymmetric island geometries that favour one island side for the nu-

cleation of a magnetic vortex[31, 240] might help in avoiding the problem of state

degeneracy similar to the approach taken by Lee et al. [28].

7.6 Summary

In this chapter the formation of magnetic vortices within a patterned array of

nanoscopic disks was discussed. Magnetically sensitive experiments utilising diffrac-

tive XRMS were performed exploiting the energy selectivity of synchrotron radia-

tion. Experimental results, detecting how magnetic vortices affect the asymmetry

ratio of rocking curves and magnetisation loops at fixed positions in reciprocal space,

indicated a principal sensitivity of the A.R. towards the vortex geometry depending

on the detected diffraction order of the array.

Two analytical vortex models were introduced, the first representing a rigid

vortex, while the second modelled the vortex in a dynamical way, taking on an in-

creasingly elliptical geometry the closer the vortex core approaches the edge of the

patterned elements. Fitting the experimental data using a numerical evaluation of

the charge- and magnetism induced scattering factors Ach and Amag, respectively,

the elliptical model has been found to reproduce the experimental findings more ac-

curately, although micromagnetic simulations strongly suggest a complex geometry

of the distribution of local magnetic moments, particularly around the nucleation

and annihilation field values Hn and Han.

As an important finding for future studies it was then shown how XRMS

measurements at diffraction orders outside the scattering plane are expected to

significantly improve the spatial resolution magnetic vortices can be resolved in. To

this end, the experimental design should ensure the measurement to non-zero but

low diffraction orders in both Qx and Qy, since at these orders the sensitivity of the

x-rays to the relevant length-scales of magnetic vortices is maximised.
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Chapter 8

Conclusion

Over last two decades, lithographically patterned arrays have become increasingly

interesting to researchers, specifically with respect to the magnetic interactions be-

tween individual patterned nano-islands. However, experiments have often been

limited to real-space analysis techniques. Arguably, one of the reasons for the lack

of research focussing on quantitative analysis of x-ray scattering of patterned ar-

rays, are the hardship often faced when applying reciprocal space analysis on three-

dimensional sample structures of mesoscopic structure sizes. This work provided

new insight into x-ray resonant magnetic scattering from patterned arrays. A mod-

elling framework for future application was developed and has been used on specific

experimental data, allowing one to resolve spatially the internal chemical- and mag-

netic structure of individual patterned elements.

Moreover, while it could be argued that diffraction of patterned arrays merely

constitutes an extension to classical x-ray diffraction and that theoretical frame-

works for dealing with x-ray scattering from patterned arrays already exist, these

frameworks have been found to be limited in practical applicability. Traditional

theoretical frameworks usually assume the sample model to be formulated in a fully

analytical fashion, allowing for the application of certain mathematical operations,

like advanced Fourier analysis etc. However, the high spatial sensitivity of resonant

x-rays may often be found to render such analytical models too simple, instead

requiring numeric modelling to allow for the often ill-defined geometry of real pat-

terned structures. Inclusion of magnetic sensitivity is furthermore rarely considered

within the previously developed body of work and is usually limited to comparatively

simple cases.

Furthermore, in a very practical way, so far no openly available software

packages exist that provide the necessary functionality to perform modelling of pat-
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terned arrays as well as fitting experimental data obtained from x-ray scattering.

Therefore, a huge amount of time and experience had to be devoted to the devel-

opment of a scattering framework incorporating all the peculiarities of patterned

arrays, while providing a modular structure that avoids the need of re-coding huge

parts of the project whenever demands change slightly, such as the introduction of a

new kind of scattering geometry. The latter requires restructuring of a very specific

part of the underlying computational logic. Without a clearly structured code-base,

as the one presented in Fig. 1.1, the high complexity and interrelatedness of different

kinds of data can quickly bring a stop to a project or demand many additional hours

of working out a particular code design. The structure of the framework developed

is believed to allow any investigator to avoid many of the pitfalls and hardships that

had to be faced before the empirically proved design eventually emerged.

The studies of chapter 4 focussed on the impact of x-ray coherence. The

large lateral dimensions of patterned arrays mean that coherence effects are more

likely to be relevant compared to, say, diffraction of atomic lattices. Following the

traditional (and often implicit) convention of assuming the beam coherence to be

large compared to the structure size of the scattering lattice, effectively renders

the beam coherence entering the expression of the scattered intensity as a constant

scaling factor, which is usually dropped or incorporated into other scaling factors.

However, this is not true under conditions of low beam coherence, i.e. when the

projection of the coherently scattering area onto the sample surface is of the order

of the array unit cell, either within or perpendicular to the scattering plane. Ne-

glecting coherence effects, the experimentally measured rocking curves could not be

reproduced. The reason, as was demonstrated, is that low beam coherence, espe-

cially perpendicular to the scattering plane, implies a softening of the diffraction

condition from being a two- to essentially a one dimensional problem, leading to

a significant widening of grating truncation rods into diffraction planes. There-

fore, most of the experimentally observed diffraction peaks could not be reproduced

when neglecting low-coherence effects, specifically because without the widening as-

sociated with a low spatial coherence, the well defined positions of the GTRs in

reciprocal space never intersected the detector resolution function R. It was further

shown how the convolution theorem was used in order to adapt classical diffraction

theory to a more generalised form, specifically incorporating arbitrary values of the

x-ray beam coherence. Using modifications of Bessel functions to approximate the

structure factor F (Q‖) of the circular and elliptical patterned islands, simulation

and experiment started to show resemblance of each other. However, only after

dropping the (so far very convenient) analytical expression of F (Q‖) in favour of a
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computationally much more demanding approach modelling the spatial structure of

the island surface on a numerical grid, satisfying agreement between simulation and

experiment has been obtained. The results are therefore found to be an important

proof of concept, highlighting both the importance of considering beam coherence

effects when conducting investigations of patterned arrays as well as the exceptional

spatial sensitivity of x-ray diffraction of patterned arrays.

In the studies concerning beam coherence, the relatively simple two-dimen-

sional model of the sample only allowed for simulating rocking curves, which are

naturally very insensitive to the depth profile of a patterned array. On the other

hand it is exactly these SLD depth profiles that x-ray reflectivity measurements are

sensitive to, therefore complementing rocking measurements. The modelling of the

SLD depth profile was conducted by using the freely available GenX software pack-

age, a tool originally designed for simulating x-ray reflectivity of stratified media.

The two very different sample models – the two-dimensional binary representation of

the lateral array structure and the one-dimensional SLD depth profile – were fitted

individually and provided consistent results. However, it was quickly realised how a

unified model of the sample, capturing the three-dimensional structure of patterned

elements on a sufficient spatial resolution, would open up the possibilities of fitting

arbitrary scans through reciprocal space.

Formulating this three dimensional model is at the core of chapter 5, incorpo-

rating the chemical- and magnetic structure of a patterned island. At the same time

the model had to be computationally fast enough to be used in a fitting procedure,

which often requires hundreds of thousands of simulation cycles. Experimenting

with different approaches, the final model was found to consist of a semi-analytical

approach, slicing the spatial model of the sample into arbitrarily thin slices parallel

to the sample surface. Each horizontal slice then consisted of an arbitrary number

of circular “shells”, exploiting the rotational symmetry of the islands, with each

shell representing the (rotationally invariant) local chemical and magnetic state of

the patterned element. Within this approach the sample is essentially disassembled

into the superposition of cylindrical sections, the individual scattering amplitudes

of which can be calculated analytically, before the total scattering amplitude is

calculated numerically from the superposition principle.

Simulation of single measurements was found to be reasonably fast (< 1 s),

yet fitting the highly complex inter-related parameter space turned out to regularly

require extended periods of time often found in the range of up to multiple days be-

fore parameter convergence. Only after performing a meta-analysis, optimising the

algorithmic fitting parameters of the underlying differential evolution framework,
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the fitting procedure was found to be of sufficient robustness to ensure avoiding

misconvergence of the fit into local minima of the (highly coupled) parameter space.

It was possible to determine the chemical structure and distribution of local mag-

netic moments of the patterned islands in a magnetically saturated state via the

simultaneous fitting of a combination of rocking curves and reflectivity data, re-

vealing detailed insights into the (unintentional) domed structure of the patterned

islands as well as the oxide layer forming on the surface of the islands, again high-

lighting the exceptional sensitivity of x-ray resonant magnetic scattering (XRMS)

in characterising patterned arrays.

Fitting of the experimental data of chapter 5 was somewhat hindered by

the limited amount of information found in the finite number of diffraction peaks

contained in a single rocking curve measurement. Each diffraction peak essentially

provides only a single sampling of the structure factor F (Q), therefore providing

only limited insight into the underlying structure of the scattering unit cell. Under

these conditions, it has to actually be considered fortunate that the rocking curve

measurements have been performed in the open detector geometry, since despite

significantly complicating the analysis, the Qz dependence of F (Q) encoded within

the tilt of the diffraction peaks provided additional information about the sample

structure. However, the same information could have been obtained more easily by

taking additional rocking curve measurements with a detector slit in place.

An alternative to this time-consuming data acquisition process has been

found by changing the scattering geometry to grazing-incidence small-angle x-ray

scattering (GISAXS) measurements, making use of the rapid integration of huge

volumes of reciprocal space associated with two-dimensional area detectors. It has

been shown in chapter 6 how the previously developed scattering framework is valid

for a wide range of scattering geometries, including grazing scattering angles, if the

Distorted Wave Born Approximation is employed, mainly in order to incorporate

refraction and multiple scattering related to x-rays reflected by the substrate. The

immense number of easily obtainable diffraction peaks measured simultaneously by

the GISAXS set-up provides a plethora of information to be used in data fitting.

As an additional benefit, the rigid scattering geometry of GISAXS significantly sim-

plifies data analysis, as it avoids many of the problems associated with the spatial

extent of the patterning in relation to the changing x-ray beam footprint on changing

scattering angles.

Finally, chapter 7 presents the basics regarding investigating the internal

magnetic structure of individual patterned elements, by utilising the previously ob-

served high resolution of XRMS measurements towards the spatial distribution of
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local magnetic moments. X-rays tuned to a magnetically sensitive resonance edge

of the island material are known to couple to the local atomic magnetic moment.

Therefore, measuring the asymmetry ratio of the scattered signals obtained from

flipping the helicity of circularly polarised x-rays, in principal allows one to resolve

explicit magnetic states like magnetic vortices that have been observed to constitute

a demagnetisation mechanism in nano disk geometries.

Fits of the hysteresis loops considering two competing models of magnetic

vortices have been compared, suggesting an elliptical deformation of the otherwise

circular magnetic vortices when close to the edges of the circular islands. Unfor-

tunately, the diffraction orders that the experiments were carried out on, did not

provide sufficient sensitivity in order to uniquely resolve the magnetic structure, and

the analysis therefore had to be kept at a rather basic level. It was, however, shown

how even subtle changes of the internal magnetic structure of patterned elements

lead to a noticeable impact upon the asymmetry ratio if diffraction orders outside of

the scattering plane are being measured. The latter, again, is most easily realisable

by turning towards the GISAXS geometry, although it has to be noted that the ad-

ditional information content comes at the cost of lifting the degeneracy of the vortex

chirality with respect to the scattered signal, which constitutes a complication that

has to be considered in any subsequent analysis.

In conclusion, this work formulated a general computational framework of

x-ray scattering of lithographically patterned arrays of nano- and microscopic dimen-

sions, including the incorporation of a theory of resonant magnetic x-ray scattering.

It was shown how x-ray beam coherence affects the scattered signal of patterned

arrays and how beam coherence can be controlled in order to obtain a diffracted

signal perpendicular to the scattering plane. It became clear how the spatial sensi-

tivity of x-rays can be exploited in order to resolve both the chemical- as well as the

magnetic structure of patterned arrays on nm resolution. The results of this work

further suggest that future investigations are preferentially to be conducted using

the GISAXS geometry, exploiting the high information density, rapid data acqui-

sition time and straightforward analysis procedure, enabling quantitative, element

specific, and spatially resolved insights into individual elements of patterned arrays

as well as any emergent inter-element structure of interacting magnetic moments.
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S. B. Wilkins, A. Mirone, and S. Lebègue. Spin polarization and exchange

coupling of Cu and Mn atoms in paramagnetic CuMn diluted alloys induced

by a Co layer. Physical Review B - Condensed Matter and Materials Physics,

82(18):6–8, 2010. ISSN 10980121. doi: 10.1103/PhysRevB.82.184412.

[79] Metin Tolan. X-Ray Scattering from Soft-Matter Thin Films. Springer-Verlag

Berlin Heidelberg, 1999.

[80] J. Daillant and M. Alba. High-resolution x-ray scattering measurements:

I. Surfaces. Reports on Progress in Physics, 63(10):1725–1777, 2000. ISSN

00344885. doi: 10.1088/0034-4885/63/10/203.

[81] R. Feidenhans’l. Surface structure determination by X-ray diffraction. Sur-

face Science Reports, 10(3):105–188, 1989. ISSN 01675729. doi: 10.1016/

0167-5729(89)90002-2.

264

http://openurl.ingenta.com/content/xref?genre=article{&}issn=2164-7542{&}volume=2{&}issue=1{&}spage=24
http://openurl.ingenta.com/content/xref?genre=article{&}issn=2164-7542{&}volume=2{&}issue=1{&}spage=24
http://link.aps.org/doi/10.1103/PhysRevB.86.064426
http://link.aps.org/doi/10.1103/PhysRevB.86.064426
http://cds.cern.ch/record/101813
http://cds.cern.ch/record/101813
http://stacks.iop.org/1367-2630/16/i=5/a=053002?key=crossref.bda3e459f77ec36311c2bd49a39759ae
http://stacks.iop.org/1367-2630/16/i=5/a=053002?key=crossref.bda3e459f77ec36311c2bd49a39759ae


[82] I. Pape, T. P.A. Hase, B. K. Tanner, and M. Wormington. Analysis of

grazing incidence X-ray diffuse scatter from Co-Cu multilayers. Physica

B: Condensed Matter, 253(3-4):278–289, oct 1998. ISSN 09214526. doi:

10.1016/S0921-4526(98)00395-0. URL http://linkinghub.elsevier.com/

retrieve/pii/S0921452698003950.
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[92] J. Stangl, V. Holý, and G. Bauer. Structural properties of self-organized

semiconductor nanostructures. Reviews of Modern Physics, 76(3 I):725–783,

2004. ISSN 00346861. doi: 10.1103/RevModPhys.76.725.

[93] Qun Shen, C. Umbach, B. Weselak, and J. Blakely. Lateral correlation in

mesoscopic structures on the silicon (001) surface determined by grating x-

ray diffuse scattering. Physical Review B - Condensed Matter and Materials

Physics, 53(8):R4237–R4240, 1996. ISSN 1550235X. doi: 10.1103/PhysRevB.

53.R4237.

[94] L. Tapfer, G. C. La Rocca, H. Lage, R. Cingolani, P. Grambow, A. Fischer,

D. Heitmann, and K. Ploog. Observation and analysis of quantum wire struc-

tures by high-resolution X-ray diffraction. Surface Science, 267(1-3):227–231,

1992. ISSN 00396028. doi: 10.1016/0039-6028(92)91126-V.

[95] Qun Shen, C. C. Umbach, B. Weselak, and J. M. Blakely. X-ray diffraction

from a coherently illuminated Si(001) grating surface. Physical Review B, 48

(24):17967–17971, 1993. ISSN 01631829. doi: 10.1103/PhysRevB.48.17967.

[96] M. Tolan and S. K. Sinha. X-ray scattering with partial coherent radiation:

The exact relationship between ”resolution” and ”coherence”. Physica B:

Condensed Matter, 248(1-4):399–404, 1998. ISSN 09214526. doi: 10.1016/

S0921-4526(98)00271-3. URL http://www.sciencedirect.com/science/

article/B6TVH-3W2532C-2F/2/dda9922d983fa631170e4f754f04e4da.

[97] M. Grimsditch, P. Vavassori, V. Novosad, V. Metlushko, H. Shima, H. Shima,

Y. Otani, Y. Otani, and K. Fukamichi. Vortex chirality in an array of ferro-

magnetic dots. Physical Review B - Condensed Matter and Materials Physics,

65(17):1724191–1724194, 2002. ISSN 01631829. doi: 10.1103/PhysRevB.65.

172419.

[98] Unnar B. Arnalds, Evangelos Th Papaioannou, Thomas P.A. Hase, Hossein

Raanaei, Gabriella Andersson, Timothy R. Charlton, Sean Langridge, and

Björgvin Hjörvarsson. Magnetic structure and diffracted magneto-optics of

patterned amorphous multilayers. Physical Review B - Condensed Matter and

Materials Physics, 82(14):144434, oct 2010. ISSN 10980121. doi: 10.1103/

PhysRevB.82.144434. URL http://link.aps.org/doi/10.1103/PhysRevB.

82.144434.

[99] Luiz Carlos De Campos, Carlos Benedicto Ramos Parente, and Vera Lucia

Mazzocchi. Determination of the β-quartz hexagonal cell parameters from a

266

http://www.sciencedirect.com/science/article/B6TVH-3W2532C-2F/2/dda9922d983fa631170e4f754f04e4da
http://www.sciencedirect.com/science/article/B6TVH-3W2532C-2F/2/dda9922d983fa631170e4f754f04e4da
http://link.aps.org/doi/10.1103/PhysRevB.82.144434
http://link.aps.org/doi/10.1103/PhysRevB.82.144434


00.1 neutron multiple diffraction Umweganregung pattern measured at 1003

K. Journal of Applied Crystallography, 43(6):1488–1494, 2010. ISSN 00218898.

doi: 10.1107/S0021889810037969.

[100] Marius Grundmann, Michael Scheibe, Michael Lorenz, Jürgen Bläsing, and
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[182] F. Peñuñuri, C. Cab, O. Carvente, M. A. Zambrano-Arjona, and J. A. Tapia. A

study of the Classical Differential Evolution control parameters. Swarm and

Evolutionary Computation, 26:86–96, 2016. ISSN 22106502. doi: 10.1016/

j.swevo.2015.08.003. URL http://dx.doi.org/10.1016/j.swevo.2015.08.

003.

[183] Deepak Dawar and Simone A. Ludwig. Differential evolution with dither and

annealed scale factor. IEEE SSCI 2014 - 2014 IEEE Symposium Series on

Computational Intelligence - SDE 2014: 2014 IEEE Symposium on Differen-

tial Evolution, Proceedings, 2015. doi: 10.1109/SDE.2014.7031528.

[184] Jani Rönkkönen, Saku Kukkonen, and Kenneth V. Price. Real-parameter

optimization with differential evolution. 2005 IEEE Congress on Evolutionary

Computation, IEEE CEC 2005. Proceedings, 1:506–513, 2005. doi: 10.1109/

cec.2005.1554725.

276

http://dx.doi.org/10.1016/j.swevo.2015.08.003
http://dx.doi.org/10.1016/j.swevo.2015.08.003


[185] Daniela Zaharie and Flavia Micota. Revisiting the analysis of population

variance in Differential Evolution algorithms. 2017 IEEE Congress on Evo-

lutionary Computation, CEC 2017 - Proceedings, (i):1811–1818, 2017. doi:

10.1109/CEC.2017.7969521.

[186] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolu-

tion: A survey of the state-of-the-art. IEEE Transactions on Evolutionary

Computation, 15(1):4–31, 2011. ISSN 1089778X. doi: 10.1109/TEVC.2010.

2059031.

[187] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evo-

lution. Natural Computing Series. Springer-Verlag, Berlin/Heidelberg,

2005. ISBN 3-540-20950-6. doi: 10.1007/3-540-31306-0. URL

http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=

intitle:No+Title{#}0http://www.springerlink.com/index/10.1007/

3-540-31306-0.

[188] Swagatam Das, Amit Konar, and Uday K. Chakraborty. Two improved

differential evolution schemes for faster global search. GECCO 2005 - Ge-

netic and Evolutionary Computation Conference, pages 991–998, 2005. doi:

10.1145/1068009.1068177.

[189] Matts Björck. Fitting with differential evolution: An introduction and eval-

uation. Journal of Applied Crystallography, 44(6):1198–1204, 2011. ISSN

00218898. doi: 10.1107/S0021889811041446.

[190] Daniela Zaharie. Influence of crossover on the behavior of Differential Evo-

lution Algorithms. Applied Soft Computing Journal, 9(3):1126–1138, 2009.

ISSN 15684946. doi: 10.1016/j.asoc.2009.02.012.

[191] James Montgomery. Differential evolution: Difference vectors and movement

in solution space. 2009 IEEE Congress on Evolutionary Computation, CEC

2009, pages 2833–2840, 2009. doi: 10.1109/CEC.2009.4983298.

[192] Anthony E. Siegman. Lasers university science books. Mill Valley, CA, 37

(208):169, 1986.

[193] R Gordon Gould. The LASER, light amplification by stimulated emission of

radiation. In The Ann Arbor conference on optical pumping, the University of

Michigan, volume 15, page 92, 1959.

277

http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0 http://www.springerlink.com/index/10.1007/3-540-31306-0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0 http://www.springerlink.com/index/10.1007/3-540-31306-0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0 http://www.springerlink.com/index/10.1007/3-540-31306-0


[194] Geoffrey Brooker. Modern classical optics, volume 8. Oxford University Press,

2003.

[195] Andrej Singer and Ivan A. Vartanyants. Coherence properties of focused X-ray

beams at high-brilliance synchrotron sources. Journal of Synchrotron Radia-

tion, 21(1):5–15, 2014. ISSN 09090495. doi: 10.1107/S1600577513023850.

[196] Leonard Mandel and Emil Wolf. Optical coherence and quantum optics. Cam-

bridge university press, 1995.

[197] Albert C. Thompson, Douglas Vaughan, David Attwood, Erik Gullikson, Mal-

colm Howells, Jeffrey Kortright, Arthur Robinson, and James Underwood. X-

ray data booklet, volume 8. Lawrence Berkeley National Laboratory, University

of California Berkeley, CA, 2001.

[198] Bruno Dorner and Andrew R. Wildes. Some considerations on resolution

and coherence length in reflectometry. Langmuir, 19(19):7823–7828, sep 2003.

ISSN 07437463. doi: 10.1021/la026949b. URL http://pubs.acs.org/doi/

abs/10.1021/la026949b.

[199] S. Sinha and M. Tolan. Effects of partial coherence on the scattering of x rays

by matter. Physical Review B - Condensed Matter and Materials Physics, 57

(5):2740–2758, feb 1998. ISSN 1550235X. doi: 10.1103/PhysRevB.57.2740.

URL http://link.aps.org/doi/10.1103/PhysRevB.57.2740.

[200] Tadashi Matsushita and H. Hashizume. X-ray monochromators. Handbook on

Synchrotron Radiation, 1:261–314, 1983.

[201] Wim H. De Jeu, Joseph D. Shindler, and Elisabeth A.L. Mol. The Resolution

Function in Diffuse X-ray Reflectivity. Journal of Applied Crystallography, 29

PART 5(5):511–515, 1996. ISSN 00218898. doi: 10.1107/s0021889896001550.

[202] Ariel Caticha and S. Caticha-Ellis. Dynamical theory of x-ray diffraction at

Bragg angles near 2. Physical Review B, 25(2):971–983, 1982. ISSN 01631829.

doi: 10.1103/PhysRevB.25.971.

[203] R. Høier and K. Marthinsen. Effective structure factors in many-beam X-

ray diffraction – use of the second Bethe approximation. Acta Crystallo-

graphica Section A, 39(6):854–860, 1983. ISSN 16005724. doi: 10.1107/

S0108767383001725.

[204] Science and technology facilities council. URL https://stfc.ukri.org/.

278

http://pubs.acs.org/doi/abs/10.1021/la026949b
http://pubs.acs.org/doi/abs/10.1021/la026949b
http://link.aps.org/doi/10.1103/PhysRevB.57.2740
https://stfc.ukri.org/


[205] Micro And Nanotechnology Centre. URL https://stfc.ukri.

org/about-us/where-we-work/rutherford-appleton-laboratory/

micro-and-nano-technology-centre/.

[206] National Synchrotron Light Source II (NSLS). URL https://www.bnl.gov/

ps/.

[207] Nico M. Temme. Special functions: An introduction to the classical functions

of mathematical physics. John Wiley & Sons, 2011.

[208] Matts Björck and Gabriella Andersson. GenX: An extensible X-ray reflec-

tivity refinement program utilizing differential evolution. Journal of Ap-

plied Crystallography, 40(6):1174–1178, 2007. ISSN 00218898. doi: 10.1107/

S0021889807045086.

[209] Martin Pärnaste, Moreno Marcellini, Erik Holmström, Nicolas Bock, Jonas

Fransson, Olle Eriksson, and Björgvin Hjörvarsson. Dimensionality crossover

in the induced magnetization of pd layers. Journal of Physics: Condensed

Matter, 19(24), 2007. doi: 10.1088/0953-8984/19/24/246213.

[210] Evangelos Th Papaioannou, Vassilios Kapaklis, Andrea Taroni, Moreno Mar-

cellini, and Björgvin Hjörvarsson. Dimensionality and confinement effects in

δ-doped Pd(Fe) layers. Journal of Physics Condensed Matter, 22(23), 2010.

ISSN 09538984. doi: 10.1088/0953-8984/22/23/236004.

[211] Advanced Photon Source (APS), . URL https://www.aps.anl.gov/.

[212] I. A. Vartanyants, I. K. Robinson, J. D. Onken, M. A. Pfeifer, G. J. Williams,

F. Pfeiffer, H. Metzger, Z. Zhong, and G. Bauer. Coherent x-ray diffraction

from quantum dots. Physical Review B - Condensed Matter and Materials

Physics, 71(24), 2005. ISSN 10980121. doi: 10.1103/PhysRevB.71.245302.

[213] Meh Pedersen. Good Parameters for Differential Evolution. Evolution,

pages 1–10, 2010. URL http://www.hvass-labs.org/people/magnus/

publications/pedersen10good-de.pdf.

[214] Xenocs Xeuss 3.0 Laboratory Beamline. URL http://www.xenocs.com/

products/xeuss-3-0/.

[215] Pilatus 300K Hybrid Photon Counting Detector. URL https:

//www.dectris.com/products/pilatus3/pilatus3-r-for-laboratory/

pilatus3-r-300k/.

279

https://stfc.ukri.org/about-us/where-we-work/rutherford-appleton-laboratory/micro-and-nano-technology-centre/
https://stfc.ukri.org/about-us/where-we-work/rutherford-appleton-laboratory/micro-and-nano-technology-centre/
https://stfc.ukri.org/about-us/where-we-work/rutherford-appleton-laboratory/micro-and-nano-technology-centre/
https://www.bnl.gov/ps/
https://www.bnl.gov/ps/
https://www.aps.anl.gov/
http://www.hvass-labs.org/people/magnus/publications/pedersen10good-de.pdf
http://www.hvass-labs.org/people/magnus/publications/pedersen10good-de.pdf
http://www.xenocs.com/products/xeuss-3-0/
http://www.xenocs.com/products/xeuss-3-0/
https://www.dectris.com/products/pilatus3/pilatus3-r-for-laboratory/pilatus3-r-300k/
https://www.dectris.com/products/pilatus3/pilatus3-r-for-laboratory/pilatus3-r-300k/
https://www.dectris.com/products/pilatus3/pilatus3-r-for-laboratory/pilatus3-r-300k/


[216] Thorlabs. URL https://www.thorlabs.com/.

[217] esa project. URL https://warwick.ac.uk/fac/cross_fac/xmas/other_

projects/esaproject/.

[218] Bernhard Rupp. Biomolecular crystallography: principles, practice, and ap-

plication to structural biology. Garland Science, 2009.

[219] Alexander McPherson. Introduction to macromolecular crystallography. John

Wiley & Sons, 2011.

[220] B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel,
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Hiroshi Kohno, André Thiaville, and Teruo Ono. Electrical switching of the

vortex core in a magnetic disk. Nature Materials, 6(4):270–273, 2007. ISSN

14764660. doi: 10.1038/nmat1867.

[222] Sangkook Choi, Ki Suk Lee, Konstantin Yu Guslienko, and Sang Koog Kim.

Strong radiation of spin waves by core reversal of a magnetic vortex and their

wave behaviors in magnetic nanowire waveguides. Physical Review Letters, 98

(8):98–101, 2007. ISSN 00319007. doi: 10.1103/PhysRevLett.98.087205.
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