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ABSTRACT

Three-dimensional Wavelet Monte Carlo dynamics simulations are used to study the dynamics of passive particles in the presence of
microswimmers—both represented by neutrally buoyant spheres—taking into account the often-omitted thermal motion alongside the hydrody-
namic flows generated by the swimmers. Although the P�eclet numbers considered are large, we find the thermal motion to have a significant effect
on the dynamics of our passive particles and can be included as a decorrelation factor in the velocity autocorrelation with a decay time propor-
tional to the P�eclet number. Similar decorrelation factors come from swimmer rotations, e.g., run and tumble motion, and apply to both entrain-
ment and far field loop contributions. These decorrelation factors lead to active diffusivity having a weak apparent power law close to Pe0:2 for
small tracer-like particles at P�eclet numbers appropriate for E. coli swimmers at room temperature. Meanwhile, the reduced hydrodynamic
response of large particles to nearby forces has a corresponding reduction in active diffusivity in that regime. Together, they lead to a non-
monotonic dependence of active diffusivity on particle size that can shed light on similar behavior observed in the experiments by Patteson et al.
[“Particle diffusion in active fluids is non-monotonic in size,” Soft Matter 12, 2365–2372 (2016)].

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0049386

I. INTRODUCTION

The influence of microswimmers, e.g., algae or bacteria, on the
dynamics of passive particles has received much attention since Wu
and Libchaber first observed enhanced diffusion of spherical beads
suspended in a soap film with E. coli.1 The subsequent research into
the swimmer-induced diffusion, often simply called “active diffusion,”
of colloids or infinitesimal tracer particles has spanned experi-
ments,2–10 simulations,6,11–18 and analytic calculations,7,10,19–27 each in
both 3 and (quasi-) 2 dimensions.

While the precise results vary with the details of each system, all
find the passive particles to exhibit enhanced motion over and above
their own thermally driven Brownian motion. This swimmer-induced
motion is superdiffusive on the time scales of interactions with passing
swimmers and diffusive thereafter.7,14

Until recently, the size of the passive particles has received little
attention, with a range of sizes used across the literature but typically a
constant size within a given study. Nevertheless, one can identify sev-
eral relevant properties that change with particle size: the thermal dif-
fusivity and, by extension, the P�eclet number Pe (defined as the ratio
of advective and diffusive transport rates); the range of steric interac-
tions with swimmers; and the near-field hydrodynamic response to
swimmers.28–31

The influence of P�eclet number was included in a theoretical
study by Kasyap et al.,32 which predicts a peak in swimmer-induced
diffusivities at moderate Pe, rising from 0 at Pe ¼ 0 (corresponding to
infinitesimal tracers) and limiting to a finite value as Pe!1. While
this work accounted for particle size in the passive particles’ thermal
motion, they were hydrodynamically coupled to the swimmers by the
(unregularized) Oseen tensor so that they were treated as point par-
ticles for hydrodynamic purposes. Their results might therefore not be
expected to quantitatively match real systems except when at small Pe.

Shum and Yeomans have performed detailed boundary element
simulations of single swimmer-passive interactions with a wide range
of passive particle sizes, neglecting all thermal motion.17 From these
results, they obtained the dilute limit active diffusivity by integrating
over impact parameters. In doing so, they found a non-trivial depen-
dence on the ratio of passive and active particle size, with a maximum
active diffusivity for similarly sized particles when using a squirmer
type swimmer model, but a minimum instead with bacteria models.

An experimental investigation of passive particle size active sys-
tems of E. coli was conducted by Patteson et al.,33 who found a non-
monotonic variation in active diffusivity, peaking when the swimmer
and passive particle sizes are similar. This runs counter to the results
for Shum and Yeomans’ bacterial model. This non-monotonicity
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suggests regimes where different particle sizes are dominated by differ-
ent physics. Since thermal diffusivity rises rapidly as particles get
smaller,D � R�1, we hypothesize this is important and will study sim-
ulations of analogous systems with this in mind.

It is notable that thermal fluctuations have usually been omitted
from simulations of microswimmers on the basis that swimmer P�eclet
numbers are generally much greater than unity. Work that has included
thermal motion has done so in a hydrodynamically decoupled way.15

While this can capture some of the physics, the hydrodynamic coupling
is required to provide the correct relative thermal motion.

To elucidate the potential importance of thermal fluctuations, we
draw parallels to Taylor dispersion in pipes containing a steady shear
flow.10,34 In the absence of thermal fluctuations, passive particles are
carried parallel to the pipe axis at constant speed, which is fastest at
the center of the pipe. Thermal fluctuations allow particles to cross
stream lines, with a corresponding change of advective velocity, lead-
ing to dispersion of particles in the stream direction. Although the
microswimmer flow fields are more complex, the crossing of stream
lines is still expected to disperse advective motion and will therefore
have some influence on the active diffusion of passive particles, even if
the Brownian motion itself is small. In the slightly more limited con-
text of particle entrainment, this effect has been seen to lead to a non-
monotonic distribution of entrainment jump sizes with particle size.10

Another reason for the limited microswimmer work including
thermal fluctuations is the great computational expense required to
include the correct hydrodynamics of thermal fluctuations, which is a
challenge well known to the polymer community where it has
spawned a wide range of simulation algorithms.35–37 Here, we make
use of the recently developed Wavelet Monte Carlo dynamics
(WMCD) algorithm to include hydrodynamically coupled thermal
fluctuations efficiently.37,38

After setting out the hydrodynamic theory and simulation details
in Secs. II and III, we will demonstrate the validity of using WMCD for
active systems in Sec. IV, where we use trajectories of passive particles in
the flow of a swimmer on an infinite straight path as a test case. We then
study the dynamics of passive particles in dilute mixtures of swimmers,
looking in detail at the role of particle size and temperature on the veloc-
ity autocorrelation and active diffusivity in Secs. V and VI, respectively.
In doing so, we find we can include the effect of all relevant time scales
through exponential decay factors in the velocity autocorrelation, allow-
ing us to construct an ansatz function that successfully captures the com-
plex behavior seen in the active diffusivity.

II. THEORY
A. Active diffusivity

The total diffusivity of a particle can be split into thermal and
active contributions as

D ¼ DT þ DA: (1)

The thermal diffusivity for a sphere of radius a in fluid at temperature
T and viscosity g is given by the well-known Stokes–Einstein relation,
which in a periodic cubic box of side length L is corrected to

DT ¼
kBT
6pga

1� 2:837
a
L

� �
; (2)

to first order,39 with kB being the Boltzmann constant.

Rather than thermal fluctuations, the active diffusivity DA is
driven by hydrodynamic and steric interactions with active particles in
the system and can itself be written as the sum of those contribu-
tions.40 To simplify data analysis, we will not include steric interac-
tions in this work so DA is purely hydrodynamic.

Regardless of its contributions, the active diffusivity can be
expressed in terms of the velocity autocorrelation,

CvvðtÞ ¼ hvðtÞ � vð0Þi; (3)

via the Green-Kubo relation41,42

DA ¼
1
3

ð1
0þ

dt CvvðtÞ: (4)

The lower limit 0þ denotes time t ! 0 from above, such that the ther-
mal contribution is excluded when working in the overdamped limit
(see Sec. II B). In practice, this means the t¼ 0 value we use in our
data is extrapolated back from data at small but finite t.

B. Equations of motion

Working on time scales where thermal fluctuations can be con-
sidered instantaneous, or equivalently on time scales longer than the
fluid relaxation time, leads to the overdamped Langevin equations for
translational (superscript T) and rotational (R) velocities,

vi ¼
X
j

GTTij � Fj þ
X
j

GTRij � Cj þ ni (5)

and

xi ¼
X
j

GRTij � Fj þ
X
j

GRRij � Cj þ Ni; (6)

where ni and Ni are thermal fluctuations of particle i, and Fj and Cj

denote the force and torque at position rj, which may or may not be
located on a particle. We will not apply any point torques in this work,
so Cj ¼ 0 for all j, but their inclusion here is useful for introducing the
rotational mobility tensors which will be needed for correlations
between n and N.

The Lorentz reciprocal theorem links the TR and RT mobility
tensors by the transpose43

GTRij ¼ GRTji
� �T

: (7)

For spheres, the unregularized versions of these tensors are to leading
order in 1=r,

GTTij ¼
dij

6pgai
Iþ 1� dij

8pgrij
ðIþ r̂ ij � r̂ ijÞ; (8)

GRTij ¼ dij 0�
1� dij
8pgr2ij

r̂ij
� �

�; (9)

GRRij ¼
dij

8pga3i
Iþ

1� dij
16pgr3ij

ð3r̂ ij � r̂ ij � IÞ; (10)

where ai is the radius of particle i, dij is the Kronecker-delta and ½r̂�� is
the skew-symmetric tensor expressed as eabcr̂ b in index notation. I is
the identity matrix, and 0 is the matrix of zeroes.
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The mobility tensors used in this work are those that appear in
Wavelet Monte Carlo dynamics (WMCD),37,38 described below, which
smoothly bridge the large r and dij terms. Although reached in a
completely different way, they closely approximate the tensors
obtained by using Fax�en’s laws to sum the fluid flow over the particle
surface.29

Finally, the fluctuation dissipation theorem gives44,45

hniðtÞ � njðt0Þi ¼ 2kBT GTTij dðt � t0Þ; (11)

hNiðtÞ � njðt0Þi ¼ 2kBT GRTij dðt � t0Þ; (12)

hNiðtÞ � Njðt0Þi ¼ 2kBT GRRij dðt � t0Þ (13)

as the correlations between noise terms.

III. SIMULATION DETAILS
A. Wavelet Monte Carlo dynamics

We use a smart WMCD simulation algorithm, for which the full
details can be found in Ref. 38. Only the physically important details
are listed here.

Systems in smart WMCD are evolved as per Eqs. (5) and (6)
using a sequence of wavelet and plane wave Monte Carlo moves,
which can displace between 1 and all particles depending on the cho-
sen move parameters. The distribution of these moves is biased by the
forces present, making the algorithm “smart” in the sense of smart
Monte Carlo.46 The bias on the move parameters supplies the causal
terms in the Langevin equations, while the variance supplies the ther-
mal fluctuations.

The hydrodynamic interactions, i.e., the mobility tensors, arise
implicitly by careful choice of parameter distributions and the possibil-
ity of single moves containing multiple particles. The smooth
approach to the r¼ 0 hydrodynamic tensors is achieved by setting
finite values for minimum wavelet radii, which is chosen separately for
both translations and rotations at each particle size to give the appro-
priate particle mobility at r¼ 0.

The end result is an efficient algorithm that includes long-ranged
hydrodynamic correlations for both causal and thermal forces with a
computational cost that rises with the total number of particles as
N lnN per unit of physical time. The price is that it is limited to the
mobility tensors for spheres and cannot currently handle lubrication
forces or no-slip boundary conditions on the sphere surface.
Nevertheless, the efficient inclusion of hydrodynamically coupled ther-
mal fluctuations means WMCD is well placed to investigate whether
these play a role in active–passive mixtures.

B. Particle models

Our systems contain two types of particle: passive particles and
swimmers. Our passive particles are neutrally buoyant spheres with
hydrodynamic radius ap. We neglect all steric interactions, so they pre-
sent no physical obstacle and only interact hydrodynamically, moving
with the fluid flow as determined by Eq. (5) at the center of the sphere.
The spherical symmetry of our passive particles allows us to ignore
their rotational motion.

Our swimmers are also neutrally buoyant and neglect steric inter-
actions. For their response to hydrodynamic flows, we model their
body as a sphere of radius as, and neglect their flagella. Hence, our

swimmers move and rotate according to the flow field at the center of
their spherical body.

To make these particles swim, we use a simple two-force pusher-
type model with a forward force Fs placed at the center of the body
and a tail force �Fs placed As ¼ 3as behind the swimmer, as depicted
in Fig. 1. Using the WMCDmobility tensor for our spherical particles,
these produce a swimming velocity of

vs � 0:5
1

6pgas
Fs: (14)

In the absence of steric interactions and buoyant forces, the sums over
forces in Eqs. (5) and (6) reduce to sums over pairs of swimmer forces.

The run and tumble motion exhibited by many microorganisms,
such as E. coli, is characterized by alternating phases of swimming and
stopping, with increased rotational motion during the stopped
“tumble” phase. This has previously been modeled in simulations by
instantaneous and random reorientations of swimmers at a Poisson
distributed frequency.15,47

In this work, the tumble phase is stretched out over a finite time
ttumble, during which the swimming forces are turned off so that the
swimmer temporarily becomes a passive particle. After each move, we
apply a small, random rotation to every swimmer in the tumbling
phase that was displaced in the move. In this way, we tumble the
swimmers by enhancing their rotational diffusion.

To reduce the number of variables and make the data easier to
decipher, we use fixed values of trun and ttumble rather than choosing
them from a Poisson distribution. Hence, each swimmer in the system
cycles between running and tumbling with the same period

FIG. 1. Cross-section of the two-force model for a pusher type swimmer and its
associated flow fields, as generated in WMCD. The swimmer’s spherical body is
indicated by the white disk, which moves in the positive x-direction as per the trans-
lational flow field (black arrows) at its center. The component of the translational
flow field in/out of the plane shown is zero. Red arrows indicate the position and
direction of the swimming forces, while the colored background shows the rotation
field which is always into/out of the plane with negative/positive xz respectively.
The full three-dimensional flow field is symmetric under rotations about the x-axis.
Field strengths are in arbitrary units.
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trun þ ttumble, although each is initialized at a different point in this
cycle.

Encounters of passive and swimmer particles are governed by
competition between the above swimming and the relative thermal
diffusivity characterized by its large separation value,

Drel ¼
kBT
6pg
ð1=as þ 1=apÞ: (15)

We can define a corresponding P�eclet number by using as as the rele-
vant length scale and comparing the advection rate vs=as to the diffu-
sion rate Drel=a2s , leading to

Perel ¼
asvs
Drel
¼ Pes

1þ as=ap
; (16)

where Pes � 0:5Fsas=kBT is the intrinsic P�eclet number of the swim-
mer alone.

C. Simulation parameters

Table I lists the values of the physical parameters used for the
results sections.

Swimmer parameters are appropriate for E. coli,47 with only the
run and tumble behavior changing between sections. Where tumbling
is present, the distance swum between tumbles compared to the swim-
mer radius is

k ¼ vstrun=as; (17)

equaling 40 in our simulations. These runs dominate the time elapsed,
so the active diffusion of the swimmers is well approximated by
DðsÞA � asvsk=6.

Because we have a finite ttumble we need to specify how much
swimmer orientations decorrelate when tumbling. This is done via48

hv̂ðttumbleÞ � v̂ð0Þi ¼ exp ð�2DRR
tumblettumbleÞ; (18)

which will be useful for relating tumble angles to decorrelation times in Sec.
V. In our simulations, we used htumble ¼ arccoshv̂ðttumbleÞ � v̂ð0Þi ¼ 70	,
inside the range of angles identified in Ref. 47. Reorientation from tumbling

and normal rotational diffusion are comparable when averaged over the
run and tumble cycle, with tumbling being dominant and sub-dominant at
the lower and higher temperatures respectively in Secs. V and VI. We note
that the small size of E. coli is important here, and thermal rotations would
be less significant if we were modeling a larger microswimmer.

The swimmer volume fraction in Secs. V and VI is
/s ¼ ð4p=3Þðas=LÞ3Ns � 0:42%. The volume fraction of passive par-
ticles is unimportant because it does not influence each other’s motion,
despite having correlated displacements. However, what is important
for good statistics is the product of the number of passive particles,
Np¼ 36, and total data collection time, which was a minimum of
1:85� 105trun of effective single particle tracking time per data point.

IV. LOW NOISE PARTICLE TRAJECTORIES

Our first results focus on interactions between individual
swimmers and passive particles in the idealized scenario where
swimmers move along an infinite straight path at constant speed. Such
simulations have been done with more sophisticated techniques previ-
ously,16,17,19,40,49 but are revisited here because they validate the use of
WMCD for active systems while helping to visualize behavior quanti-
fied in Secs. V and VI.

Swimming along a perfectly straight path is not possible in
WMCD, but a good approximation was achieved by switching off all
rotations and reducing the temperature to raise the swimmer P�eclet
number to 1:3� 108. This also makes the P�eclet number of relative
motion high enough that thermal diffusion has negligible role in parti-
cle encounters.

In these simulations, performed in an infinite box, a single swim-
mer was set swimming in a straight line between�40asx̂ andþ40asx̂ .
A single passive particle was placed an impact parameter q off the
swimmer’s path at rpðt ¼ 0Þ ¼ qŷ , and its position was traced out as
the swimmer passed by. The x-y components of these trajectories are
plotted in Fig. 2(a) for various q.

Qualitatively, these trajectories match expectations by forming
(almost) closed loops with cusps19 at large q, while at small q the cusps
become more rounded and the loops open up with a significant finite
net displacement. The details of how the loops change at small q are
sensitive to the near-field details of the hydrodynamic mobility tensors
and hence to passive particle radius ap, as evidenced by the clear differ-
ences between the loops for ap¼ as and 2as at same q. To demonstrate
this sensitivity to particle size, Fig. 3 shows the flow fields experienced
by passive particles of different sizes, as seen in the swimmer’s reference
frame. The most notable feature is the shaded recirculation zone (closed
stream lines) close to the swimmer body that appears for small ap, which
the passive particles do not enter as the swimmer passes by. The ap ¼
0:25as tile is very close to the flow field that would be produced using
the unmodified Oseen tensor, while the differences in the other three
tiles arise due to the near-field corrections in the WMCD tensor. These
corrections are therefore responsible for the differences in the trajecto-
ries in Fig. 2(a). This highlights the limitations of treating passive par-
ticles as infinitesimal tracers when near-field flows are important.

Figure 2(b) provides a more quantitative description of the loops
by plotting their size as measured by their maximal displacement par-
allel to the swimmer’s path. The unvarying loop shape at large q
means this choice is equivalent to the different measure used by Shum
and Yeomans.17 Indeed, the decrease in loops size with a power law
between q�1 and q�1:5 is consistent with their results.

TABLE I. System parameters in the results sections.

Parameter Symbol Section IV Sections V and VI

Box side length L 1 40 lm
Number of swimmers Ns 1 64
Swimmer radius as 1 lm 1 lm
Passive particle radius ap 0.5–2 lm 0.125–2 lm
Distance between
swimmer forces As 3 lm 3 lm
Swimmer speed vs 40 lms�1 40 lms�1

Temperature T 0.3 mK 30–3000K
Viscosity g 0.85 mPa s 0.85 mPa s
P�eclet number Perel 0.5-1� 108 2–1000
Run time trun 1 1 s
Tumble time ttumble n/a 0.1 s
Typical tumble angle htumble n/a 70	
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It is the total net displacements of the passive particles that are
key to their induced active diffusion, and these show a difference of
sign and magnitude between large and small q. The large q loops have
negative net parallel displacement corresponding to a back-flow effect,
and this can be estimated theoretically (see Appendix A and Ref. 49).
The two key lengths here are ap and the distance between the centers
of thrust and drag for our swimmer As ¼ 3as. When q > ap;As we
can work from the far field flow of a force dipole leading to the esti-
mate that DðqÞ � �q�3.

The trajectories for smaller q have positive net parallel displace-
ments. For the limited but relevant range ap < q < As we obtain theo-
retically the much weaker dependence DðqÞ � þq�1 by treating the
swimmer as two explicit point forces. In practice, the crossover from
positive to negative displacements can be seen in Fig. 2(a) to be sensi-
tive to the values ap=as ¼ 0:5; 1; 2 investigated, with larger ap chang-
ing sign at larger q, but then having a smaller net displacement: both
effects are consistent with larger passive particles tracking a wider scale
average of the advecting fluid flow.

So far, we have only considered trajectories with a well-defined
net displacement in the reference frame of the background fluid.
These correspond to moving along the open stream lines in Fig. 3. The
trajectories of particles inside the shaded recirculation zone around the
swimmer are instead well defined in the swimmer’s reference frame:
they have zero net displacement in this frame. The passive particle is
therefore displaced by vst in the fluid frame, if trapped in the recircula-
tion zone for time t. This behavior is akin to entrainment observed in
real systems,9,10 albeit driven by internal flows rather than steric repul-
sion and a non-slip boundary at the swimmer surface. We therefore
describe such trajectories as ‘entrained’ in Secs. V–VII.

V. VELOCITY AUTOCORRELATIONS

Next we discuss the velocity autocorrelation of passive particles
in active systems. The systems are now made periodic with cubic box,
we use a reference temperature T0 representative of 300K, and
swimmers are free to rotate by rotational diffusion, hydrodynamic
interactions, and tumbling. At time t¼ 0, both swimming and passive
particles are placed randomly (with uniform distribution) inside the
box. Similarly, the swimmers are all given a random orientation.

Note that in these simulations, we confirmed DA is proportional
to swimmer concentration, as demonstrated in Fig. 4 whose results
are discussed in detail in Sec. VI, so we are in the dilute limit where
swimmer–swimmer interactions can be neglected. We also note that
we find DA to vary roughly as ðap=asÞ0:2 at small ap. This power can-
not be explained by considering any one mechanism, and is a sign that
we are in a complex regime with many contributing factors. DA itself
has integrated out too much information to unpick these factors, moti-
vating our focus on velocity autocorrelations instead.

We begin with a qualitative discussion of these and will use this
as the basis for a quantitative discussion in Sec. VA. We will denote
passive particle and swimmer autocorrelations with CðpÞvv and CðsÞvv ,

respectively. Figure 5(a) shows the three forms of CðpÞvv we find in our

data, alongside an example CðsÞvv , which is a simple exponential decay
with some fine details coming from run and tumble motion which we
will ignore.

In curve 1, which is typical of systems with ap 
 as, we see nega-
tive tails compatible with the forward–backward movement in the
loop trajectories discussed in Sec. IV. In curve 2, with smaller ap at the
same temperature, this negative tail appears to have vanished, or at
least been reduced to the size of noise in our data.

Note the value of CðpÞvv ð0Þ has increased between these curves,
which is due to small particles having a larger response to the swimming
forces in the near-field. The size of the increase, at more than a factor of
2, is indicative of how much the near-field contributes to CðpÞvv ð0Þ, and
we anticipate a similar rise inDA. Importantly, however, CðpÞvv ð0Þ reaches
a maximum at around ap ¼ 0:5as, below which it is essentially con-
stant. This will be discussed in greater detail in Sec. VA2.

Finally, curve 3 in Fig. 5(a) shows that the reduction of temperature
reveals a long-time exponential tail. This tail is present in the all our T ¼
0:1T0 data with ap � as=

ffiffiffi
2
p

, although its amplitude is not always the
same. This tail runs almost parallel to CðsÞvv in curve 4, suggesting the pas-
sive particles are tracking the swimmer motion, that is, they are entrained.

This is further supported by the quantitative similarity between CðpÞvv ðtÞ
and /sC

ðsÞ
vv ðtÞ, which is expected if a fraction of order /s of passive par-

ticles are entrained at any one time. This entrainment is both initiated
and ended by crossing the boundary of the closed stream lines.

FIG. 2. (a): Example trajectories of passive particles at different impact parameters with a swimmer on a straight path from left to right. All trajectories are traveled in a clock-
wise sense, as indicated on the ap ¼ as; q ¼ as trajectory, starting on the vertical line and ending at the rings capping each trajectory. (b): Plots of the net displacement over
the whole trajectory, and the maximum displacement in the x-direction (inset). All data were averaged over 100 trajectories to smooth out thermal fluctuations.
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There is in fact a subtle but important difference in the gradients
of curves 3 and 4 at large times. First, tracing the long-time exponential

back to t¼ 0 leads to a value larger than /sC
ðsÞ
vv ð0Þ, fitting with the

entrainment volume around a swimmer being larger than the
swimmer’s own volume, as per Fig. 3. Second, this means the mid-time
section of the curve undershoots the long-time exponential, which is
consistent with there being a negative contribution akin to that seen in
curve 1. This too is expected as the loop trajectories should still be pre-
sent, and indeed the location of the peak of the negative (dashed) section
of curve 1 coincides with the depression in curve 3. We believe this story
applies to curve 2 as well, but in this case the negative contribution is
closely matched to the positive tail so they cancel each other out.

Our final comment on the qualitative features of CðpÞvv is that we
find curves at different temperatures but the same particle size can be
successfully mapped onto each other by introducing an exponential
decay factor between them. This is demonstrated in Fig. 5(b) and will
be central to our approach going forward.

A. Ansatz function

We now attempt to quantify the velocity autocorrelations, start-
ing with the swimmers since they have the simplest form, and we have
seen that the passive particles can pick up the same form.

FIG. 4. Plots of active diffusion of passive particles of different sizes, in systems
with different swimmer volume fractions, /s / Ns. The vertical axis is scaled by
/s, leading to the collapse of the data sets, thereby confirming DA / /s. The
dashed line gives a rough guide to the weak power law behavior seen on the small
ap=as side of the data.

FIG. 3. Translational flow fields relative to
the swimmer velocity (upward) as seen by
particles of different sizes. Vector lengths
across all plots have the same (arbitrary)
units and can be compared directly. The
disk, with radius as, indicates the swimmer
size, and the flow field everywhere outside
the plotted region is downward.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 051904 (2021); doi: 10.1063/5.0049386 33, 051904-6

# 2021 Author(s).

https://scitation.org/journal/phf


Ignoring some fine details seen in Fig. 5(a) that arise due to the
fixed times in the run and tumble cycle, it is clear we have a simple
exponential decay of the form

CðsÞvv ðtÞ ¼ v2s
trun

trun þ ttumble
e�t=ss ; (19)

where the run and tumble factors account for the time spent not
swimming and hence why the swimmer curve begins just below 1. The
exponential decay comes only from reorientations because transla-
tional diffusion does not change the swimming direction, and there-
fore does not affect CðsÞvv beyond the Brownian spike at t¼ 0, which we
are ignoring. Hence, we have

s�1s ¼ s�1r&t þ s�1rot ; (20)

where the decay time associated with normal rotational diffusion is

srot ¼ 2DRR
s

	 
�1 ¼ ð2=3ÞPesas=vs; (21)

and the decay time for run and tumble motion, spread across the
whole run and tumble cycle, is

sr&t ¼ 2DRR
tum

ttumble

trun þ ttumble

� ��1
¼ 1:02trun: (22)

Note the final expression uses Eq. (18) and our typical tumble angle of
70	. Together, these predict ssvs=as ¼ 39:2, in good agreement with
the decay time observed in curve 4 in Fig. 5(a).

We also expect the CðpÞvv to decay with ss. In the entrainment tail,
the reasoning is the same as for the swimmers—the decorrelation of the
direction of vðtÞ—but we also expect it to play a role in decorrelating
non-entrained loops where swimmer rotations effectively force the pas-
sive particles onto different stream lines, as well as rotating the flow field.
By similar reasoning, we expect an additional decorrelation time coming
from (translational) Brownian motion, sB. This should also feature in
the entrainment tail where it drives entry and escape of the entrained
volume. In higher density systems, we might expect a similar term for
swimmer–swimmer interactions, but we do not consider those here.

We express the total CðpÞvv as the sum of terms from entrainment
and non-entrained loops,

CðpÞvv ðtÞ ¼ CðEntÞvv ðtÞ þ CðLoopÞvv ðtÞ; (23)

which we now detail separately.

1. The entrainment term

Entrained particles follow swimmers; therefore, we expect CðEntÞvv

to be given by Eq. (19) modified to account for Brownian escape and
the actual entrained volume fraction /Ent. This implies that

CðEntÞvv ðtÞ ¼ /EntC
ðsÞ
vv ðtÞ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=sB;Ent

q� �
: (24)

The details of the decorrelation factor, including the perhaps unex-
pected square root, will be discussed after /Ent.

As Fig. 3 shows, /Ent varies with particle size, and has three
regimes of behavior. For ap > as, there is no entrainment as the
response to the swimming forces is always less than that of the swim-
mer. For ap � as the entrainment volume is constant and is approxi-
mately four times the swimmer volume for our model. As ap increases,
the volume begins to decrease when the hydrodynamic near-field of
the particle, i.e., the distance within which the hydrodynamic response
is different to the Oseen tensor, is comparable to the geometric size of
the swimmer, As. In our WMCD simulations, that hydrodynamic
range is 5:35ap, leading us to define the ratio,

R ¼
5:35ap
As

¼ 1:78
ap
as
; (25)

with which we would anticipate the regime change at R � 1.
Assuming a simple linear interpolation between the large and small ap
regimes, we have

/Ent � /s

4; R < 1;
0; ap > as;
9:12� 5:12R between:

8<
: (26)

FIG. 5. Example velocity autocorrelations exhibiting the distinct forms observed
across all data collected. (a) Data shown on a linear-log scale, with passive particle
sizes and temperatures as indicated on the legend. The swimmer data (4) include
a factor of /s relative to the passive particle data (1–3) so that it starts at
Cvvð0Þ=v2s � 1. The dashed line is a continuation of curve 1 with a negative sign
to see it on the log scale. (b): Re-plots curve 1 with a linear vertical scale alongside
data for the same ap at a higher temperature. The dot-dashed line demonstrates
there is an exponential decay factor between the two curves.
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We now address the Brownian decorrelation factor. This can be
estimated by the fraction of particles left inside a stagnant, entrained
sphere after diffusing for time t if we assume an initially uniform dis-
tribution and that they are swept away, without return, upon first pas-
sage across the boundary of the entrained volume. This calculation is
the same as the one leading to Eq. (6.19) in Ref. 50, which decays
approximately as exp ½�

ffiffi
t
p
� at small times. It is the asymmetry in this

first passage problem that leads to the square root rather than the sim-
ple exponential decay used in other decay factors.

That calculation gives us a handle on the form of the decay time
sB;Ent � a2s =Drel ¼ ðas=vsÞPerel. Using all the other parameters in

CðEntÞvv as described above, we set the numerical prefactor to match the
entrainment tail in Fig. 5(a) curve 3. This gives us

sB;Ent � 0:07Perelas=vs; (27)

corresponding to diffusing a distance of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6DrelsB;Ent

p
� 0:65as, which

is reassuringly less than as.

2. The loop term

The non-entrained loop contribution in Eq. (23) needs to provide
the negative tail seen in the ap ¼ 2as data in Fig. 5. The functional
form of this could in principle be calculated in the far-field where the
loop trajectory is known mathematically for a dipole swimmer,19 but
the near-field is not entirely absent in our expression so we would
expect model-dependent terms to enter. We therefore choose to take a
simpler route and use a functional form that has the correct features,

CðLoopÞvv ðtÞ ¼ c0ð1� c2ðt=sLÞ2Þexp � s�1L þ s�1s þ s�1B;Loop

� �
t

h i
:

(28)

The task is now to identify all the new parameters, starting with the
coefficients c0 and c2.c2 will not be explored in detail, but we note it
must satisfy 0 < c2 � 1=2 to ensure both a negative tail exists and

CðLoopÞvv has a positive integral. In Sec. VI, we will use two values to
show its effect on DA.

c0 sets the value at t¼ 0 and can be written as

c0 ¼ CðpÞvv ð0Þ � /EntC
ðsÞ
vv ð0Þ: (29)

The total CðpÞvv ð0Þ is most easy to access in our data by interpolating small
t values back to 0 assuming a simple exponential decay, thereby avoiding
the Brownian spike which overwhelms the zero-time data. Values
obtained by this procedure are shown in Fig. 6(a), where we see two dis-

tinct regimes: CðpÞvv is flat at small ap=as and decays at larger values.
The flat regime is simply the result of passive particles being small

compared to the distance between the swimming forces, As, so they act
like infinitesimal tracer particles. Indeed, the regime change occurs
close to R ¼ 1() ap=as ¼ 0:56, supporting this picture. What is
less easy to understand is the apparent dependence on temperature in
this regime, with the high temperature data being too small to be
accounted for by our error margins. We attribute this apparent
T-dependence to the assumption of a simple exponential decay when
interpolating back, which underestimates the contribution from
exp ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=sB;Ent

p
�. The corresponding error is largest at small Perel and

only when the entrainment term is present, both fitting with where the
difference occurs in Fig. 6(a).

The decay at larger ap=as can be understood using scaling argu-
ments, detailed in Appendix B, which use the fact our mobility tensor
can be written as a�1p Gðr=apÞ when ap 
 As, leading to c0 � a�1p . We
can capture both regimes with the piecewise function,

c0 � 24v2s/s
1; R < 1;

R�1; R 
 1;

(
(30)

where the front factor is read straight from our data, accounting for
the known entrainment contribution.

We now turn our attention to the as yet undetermined time
scales sL and sB;Loop. sL is a representative time scale for the loop tra-
jectories, which comes from an average over impact parameters. We
do not know its dependence on ap, but we do know it is independent
of temperature, as confirmed by Fig. 5(b) where the data at different
temperature change sign at the same time. Appendix C describes how
to use this fact to isolate sB;Loop in measurements of initial decay rates
knowing only srot. This approach finds

FIG. 6. (a) Plot of CðpÞvv ð0Þ against ap for our three different temperatures. (b) Plot of
the ansatz parameter sL against ap, with each marker showing the mean of the val-
ues for the three temperatures, whose individual values are marked with crosses at
low opacity. The dashed guidelines in both plots are only to indicate the rough
behavior.
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sB;Loop � 1:73Perelas=vs; (31)

proportional to Perel as expected, and associated with diffusion over a
distance close to As.

Before progressing, we note that this decorrelation appears as a
simple exponential because Brownian motion outside the entrained
volume lacks the asymmetry that provided the square root in the anal-
ogous factor in the entrainment term.

Finally, we can feed sB;Loop back into our fitted initial decay rates
and solve for sL. This leads to Fig. 6(b), where, similarly to CðpÞvv ð0Þ, we
find it to be constant below R�1, while it rises with an apparent
power law�a1=2p above.

While the small R behavior has the usual explanation that the
passive particles are behaving as infinitesimal tracers, the apparent
power law is harder to understand as it disagrees with the scaling argu-
ment in Appendix B, which predicts sL � a1p. This discrepancy could
come from the periodicity of our system, which was not accounted for
in our calculations, or could simply be a sign our data does not extend
to large enough ap to see the expected behavior. For the purposes of
this work, it is sufficient to write down the empirical form as

sL � 2
as
vs

1; R < 1;

R1=2; R 
 1:

(
(32)

With this, our ansatz form for CðpÞvv ðtÞ is fully defined up to the single
remaining free parameter c2.

VI. ACTIVE DIFFUSION

We now move from the velocity autocorrelation to the active dif-
fusivity, obtained by integrating CðpÞvv as per Eq. (4). We show this for
both numerical integration of the simulation data and analytical inte-
gration of our ansatz CðpÞvv using the approximate expressions for
parameters in Sec. VA. These are shown in Fig. 7.

Beginning with our data plotted against ap=as in Fig. 7(a), we
observe two main features: non-monotonicity with a turning point
just below ap=as ¼ 1 and a temperature dependence on the small ap
side. The non-monotonicity requires different physics to be dominat-
ing at different regimes. Using the understanding from Secs. IV and V,
the presence and absence of entrainment at small and large ap, respec-
tively, account for this behavior and are supported by the turning
point being close toR ¼ 1.

The quantitative behavior in the two regimes can also be under-
stood using our analysis of CðpÞvv . The decay on the large ap side comes
primarily from the decay of CðpÞvv ð0Þ, which is not fully compensated for
by the increase in sL, at least not over the range of our data. Note that
sL � sr&t � srot; sB;Loop in the T ¼ 0:1T0 data here, meaning the
attenuation of the negative tail in CðpÞvv ðtÞ is dominated by sL, allowing us
to neglect the other decorrelation times in this regime.

Work by Pushkin and Yeomans40 has argued that the contribu-
tion from far field loops truncated by run and tumble events leads to a
constant value of DA independent of the run length. We expect our
additional decorrelation mechanisms to fall under the same formalism
and hence would expect a constant term in DA that might be seen if
we extended our range of ap=as. However, feeding our parameters
into their calculation would put the value of this constant at
DA=asvs/s ¼ 20:25, which is clearly missing or greatly reduced in our
data. We believe our periodic boundaries are the cause of its absence
since it is an effect dominated by flow fields at impact parameters of

order the run length. In our case, the run length equals the side length
of our box, so there will be significant interference from the swimmer’s
periodic images.

Our final comment on the large ap regime is that the collapse of
the curves at different temperatures here is misleading. As Fig. 5(b)
shows, there is a significant difference in CðpÞvv here and the dynamics
truly are affected by the temperature. We believe our 10T0 data hap-
pened to have an equal loss of the negative tail and initial positive
decay, but this is not generally true and we expect an intermediate
temperature, e.g., 5T0, would have a higher DA here because it is nega-
tive tail will have been affected the most by the decorrelations. By the
same reasoning, a temperature larger than 10T0 would have smaller
DA because there is very little of the negative tail left to lose, leading to
a greater loss from the positive part.

The variation at small ap is driven primarily by diffusive pro-
cesses, so our CðpÞvv analysis predicts this behavior to be a function of
srot � Pes � T0=T and sB;Ent; sB;Loop � Perel, instead of a function of
ap=as. In practice, we find srot is large enough that it has a negligible

FIG. 7. (a) Active diffusivity calculated from simulation data, plotted against particle
size. Data points are joined here to highlight the non-monotonic behavior. Note the
T¼ T0 data are the same as the Ns¼ 64 data in Fig. 4. (b) The same data plotted
against Perel and accompanied by plots of DA calculated with our ansatz function
using c2 ¼ 0:22 (short dashes) and c2 ¼ 0:5 (long dashes). The solid line
above the data is included to indicate the apparent power law we find across our
ap � as=

ffiffiffi
2
p

data.
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influence, leading to our data falling onto a master curve when plotted
against Perel, as shown in Fig. 7(b). The apparent power law we observe

across our data is close to Pe0:2rel , not Pe
1
rel or Pe

1=2
rel as we might have

expected from the form of the two Brownian decorrelation factors.
Our ansatz function provides and explanation for this, although

we must first specify a value of c2. The first value we use in Fig. 7(b) is
c2 ¼ 0:22, which was chosen by a least squares fit of the ansatz to the
data, setting all other parameters as described in Sec. VA. Here, we see
good agreement with the data at all temperatures, including the
appearance of a shallow apparent power law. Extending the plot down
to smaller Perel finds the expected Pe1rel behavior does appear eventu-
ally. Importantly, the ansatz plots have undulations, which are made
extreme when using the largest allowed value of c2 ¼ 0:5. This results
from the two terms in the ansatz, with the loop term providing the
peak at small Perel and the entrainment providing the second rise.
These undulations are more subtle in our simulation data, but they are
still visible in the curvatures of the 10T0 and 1T0 data. Hence, we attri-
bute the small power law to a transitional regime between loop and
entrainment dominance.

All of our discussion in this paper has presumed that for
swimmers, the distance swum in a single run is much larger than the
typical displacement by Brownian motion in the same time. This
amounts to s�Pe
 1 where s� ¼ vstrun=As as introduced by Kasyap,
Koch, and Wu,32 so we are not in the lowest possible regime of P�eclet
number. The cited authors found DA � ðs�PeÞ1=2 for a slender-body
swimmer model with the validity conditions stated as Pe� 1 and
s� 
 Oð1Þ, whereas both terms in our anstaz lead to DA � Pe1 for the
regime 1=s� � Pe� 1. The resolution turns out to be that Kasyap,
Koch, and Wu’s low P�eclet number result requires s�Pe� 1, as we
outline in Appendix D.

Finally, we note that the properties of our swimmers, especially
the lack of steric interactions, will limit the applicability of our under-
standing to experimental systems. Our nono-monotonicity is never-
theless in qualitative agreement with the experiments of Patteson
et al.33 This encourages us to propose that the cause is to be found in
the transition between a regime dominated by entrainment events for
small passive particles, and one for larger particles where far field loops
are most important. We believe that this prediction could be testable
with the experimental trajectories already available from the experi-
ments in Ref. 33.

VII. CONCLUSIONS

We have looked at the effect of both particle size and temperature
on the active diffusion of spherical passive particles in 3D periodic sys-
tems of microswimmers. For this, we used a “smart” version of the
Wavelet Monte Carlo dynamics algorithm to simulate active systems
with hydrodynamically correlated rotations and translations, biased by
swimming force. This gave us an efficient algorithm that includes cor-
related thermally driven Brownian motion that is sensitive to particle
size.

Our first results were geared toward validating active, non-
thermal behavior in smart WMCD, for which we simulated the trajec-
tories of single passive particles at varying impact parameters from a
passing swimmer at very large P�eclet number. These results were con-
sistent with previous work, demonstrating the expected cusped-loop
trajectories at large impact parameter, whose net and maximum dis-
placements decayed with the expected power laws.

We then turned our attention to dilute mixtures of swimmers
and passive particles with thermal fluctuations present. By using a
range of temperatures and passive particle sizes, we were able to iden-
tify the physics driving active diffusion via the behavior of the velocity
autocorrelation. Analysis of this led to constructing an ansatz function
to unify the diverse forms of CðpÞvv observed. This function was
expressed as the sum of contributions from entrainment and non-
entrained loop trajectories, both subject to exponential decorrelation
factors coming from swimmer rotations and Brownian motion. More
generally, any mechanism causing passive particles to cross swimmer-
induced stream lines could be included in this way.

Most parameters in our ansatz fall under one of two categories:
decorrelation times that vary with the appropriate P�eclet number, and
parameters describing the Pe!1 limit governed by the comparison
between the hydrodynamic response of the passive particle and the
geometric size of the swimmer. By itself, the second category of param-
eters leads to DA having two regimes when plotted against ap, with a
decay away from the flat, small-ap regime where particles act as infini-
tesimal tracers. The decorrelation factors then introduce a gradient to
the small-ap regime, leading to non-monotonic behavior.

Plotting DA against Perel reveals a master curve for the small ap
regime. The behavior of this master curve over the range of P�eclet
numbers studied is made complicated by the entrainment and loop
contributions appearing and plateauing at different values, with their
sum leading to a weak apparent power law.

The simplicity of our swimmer model means it is not expected to
give quantitatively relevant results for comparison with experiment.
Instead, the strength of our results lies in the identification of the role
of particle size and P�eclet number(s) in the velocity autocorrelation. In
the process, we highlighted the importance of temperature and near-
field effects, both of which are often neglected in theoretical and com-
putational studies of similar systems.

One way to extend these simulations that we have not discussed
is to include non-zero point torques to capture the chiral swimming of
real microswimmers, including E. coli.51 Even in the simplest case of a
torque dipole akin to the pair of forces used in this work, we expect
this to have a significant effect on the passive particle velocity autocor-
relation, despite having no influence on the motion of our axially sym-
metric swimmers. For example, an entrained particle might orbit the
swimmer axis, adding oscillations to Cvv. How torques affect our anstaz
would therefore be an interesting and important question to address.
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APPENDIX A: LOOP SIZE CALCULATIONS

We first consider the noise-free transits as graphed in Fig. 2.
The displacement of a passive particle DðtÞ due to the passage of a
swimmer incident with impact parameter q and swimmer velocity
vsẑ obeys
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dD=dt ¼ vðDþ qq̂ � vstẑÞ; (A1)

where vðrÞ is the flow field established by the swimmer and q̂ is the
radial unit vector in cylindrical polar coordinates.

As constructed, the swimmer approaches from below so that
Dz � zs decreases from þ1, down to �1 for an orbit which does
not get entrained. It is then convenient to write vðrÞ ¼ vsgðqq̂;
z � zsÞ and vsdt ¼ dzs so zs is the vertical rise of the swimmer,
which leads to

D ¼
ðzs
�1

gðqq̂ þ Dq;Dz � z0sÞdz0s: (A2)

For the unentrained trajectories, we can follow earlier
work49 in expanding this for the total deflection as a series in
g. It is convenient then to parameterize in terms of z ¼ �zs,
which is to zeroth order the height of the passive above the
swimmer, giving

D ¼
ð1
z

gðqq̂ þ Dq;Dz þ z0Þdz0: (A3)

Expanding D in implied powers of g then gives D ¼ Dð1Þ þ Dð2Þ

þOðg3Þ, where

Dð1Þðqq̂; zÞ ¼
ð1
z

gðqq̂; z0Þdz0 (A4)

and

Dð2Þðqq̂; zÞ ¼
ð1
z

Dð1Þðz0Þ � rgðqq̂; z0Þdz0: (A5)

On the LHS, q and z parameterize the transit in terms of impact
parameter and time (as �z=vs) through it. However, on the RHS
they are simply cylindrical polar coordinates of the flow around the
swimmer.

We now focus on swimmers with azimuthal symmetry, so we
write

Dð1Þðqq̂; zÞ ¼ hðq; zÞ; (A6)

which can be thought of as a divergence free flow field. Moreover,
in the far field the swimmer flow is proportional to that of a force
dipole �@ðGTTO � ẑÞ=@z so we infer that in the far field h approaches
GTTO � ẑ, where GTTO is the Oseen tensor. It then follows that for any
force free swimmer the first order advective deflections of a point
passive particle form a closed loop ending up with

Dð1Þðq;�1Þ ¼ 0.
At second order, we now need

Dð2Þðq; zÞ ¼
ð1
z

hðq; z0Þ � r � @

@z0
hðq; z0Þ

� �
dz0: (A7)

As h is divergence free, we can rewrite the integrand as
r � ½hðq; z0Þð� @

@z0 hðq; z0ÞÞ� leading to

Dð2Þðq; zÞ ¼ hzðq; zÞ
@

@z
hðq; zÞ � 1

q
@

@q
q
ð1
z

hqðq; z0Þ
@

@z0
hðq; z0Þdz0:

(A8)

For the transverse displacement, we can now give a full result

Dð2Þq ðq; zÞ ¼ hzðq; zÞ
@

@z
hqðq; zÞ þ

1
2q

@

@q
q hqðq; zÞ2; (A9)

and note that this gives zero for the complete transit.
The longitudinal displacement is given by

Dð2Þz ðq; zÞ ¼ hzðq; zÞ
@

@z
hzðq; zÞ �

1
q
@

@q
q
ð1
z

hqðq; z0Þ
@

@z0
hzðq; z0Þdz0:

(A10)

The integrand here can be expressed using the divergence free prop-
erty of h as

hqðq; z0Þ �
1
q
@

@q
qhqðq; z0Þ

� �
¼ � 1

q
þ 1
2
@

@q

� �
hqðq; z0Þ2: (A11)

This then gives the deflection through a full transit as

Dð2Þz ðq;�1Þ ¼
1
q2

q
@

@q
1þ 1

2
q
@

@q

� � ð1
�1

hqðq; z0Þ2dz0: (A12)

In the far field, force dipole limit h is just given by the Oseen ten-

sor and we have
Ð1
�1 hqðq; z0Þ2dz0 / þ1=q and hence Dð2Þz / �1=q3,

where the negative sign signifies dominance by back-flow around
the swimmer. For a swimmer modeled as two opposed point forces
separated by As and with dipole strength j ¼ AsFs, near approaches

q� As lead to
Ð1
�1 hqðq; z0Þ2dz0 / þq=A2

s and hence Dð2Þz
/ þ1=ðqA2

s Þ, this time with a positive sign.
The full forms for a swimmer modeled by two point forces

separated by As can be found as follows. The transverse component

of the Oseen tensor is given by ðqz=8pgÞðq2 þ z2Þ�3=2 and integrat-

ing this with respect to z gives �ðq=8pgÞðq2 þ z2Þ�1=2, which then
leads to

hqðq; zÞ ¼
j

8pgAs
ð1þ ðf� aÞ2Þ�1=2�ð1þ ðfþ aÞ2Þ�1=2
h i

;

(A13)

where f ¼ z=q and a ¼ As=2q. In the limit of large a, the integral
over hqðq; z0Þ2 is then dominated by two well separated Lorentzians
each of width q and height / A�2s , leading to

Ð1
�1 hqðq; z0Þ2dz0 /

q=A2
s as used in the paragraph above.
To get the full result, we write

ð1
�1

hqðq; z0Þ2dz0 ¼
qj2

ð8pgAsÞ2
Ið0Þ � 2IðaÞ þ Ið0Þ½ �; (A14)

where
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IðaÞ ¼
ð1
�1

1þ ðf� aÞ2
	 
�1=2

1þ ðfþ aÞ2
	 
�1=2

df

¼ 1
p

ð1
�1

ð1
�1

ð1
�1

df dk dl exp �k2ð1þ ðf� aÞ2Þ
	 
�

�exp �l2ð1þ ðfþ aÞ2Þ
	 
�

¼ 1ffiffiffi
p
p

ð1
�1

ð1
�1

dk dl ðk2 þ l2Þ�1=2
h

�exp �ðk2 þ l2Þ � 4a2k2l2

k2 þ l2

 !#
: (A15)

Next, we change from k, l as a Cartesian coordinate pair to the
equivalent plane polars to give

IðaÞ ¼ 1ffiffiffi
p
p

ð1
0

ð2p
0

dr dh exp �r2ð1þ 4a2 sin2h cos2hÞ
	 


¼ 1
2

ð2p
0

dhð1þ a2 sin 22hÞ�1=2 ¼ 2KðiaÞ; (A16)

where KðxÞ ¼
Ð p=2
0 dhð1� x2 sin2hÞ�1=2 is the complete elliptic

integral of the first kind.

APPENDIX B: LARGE ap BEHAVIOR OF Cð0Þ AND sL

Here, we use scaling arguments to calculate the expected
behavior of Cvvð0Þ and sL in the large ap limit. We begin by consid-
ering the far field, where the swimmer looks like a dipole force that
produces a flow field given by the stresslet,40

vdðrÞ ¼ �jv̂ s � ðv̂ s � rÞGTTO ðrÞ

¼ j
r3
ð3ðv̂ s � r̂Þ2 � 1Þr; (B1)

where j ¼ AsFs=8pg includes the dipole strength and the numerical
factors from the Oseen tensor GTTO .

Although this is independent of ap, it only applies at distances
larger than order ap from the swimmer. This boundary can be
incorporated by expressing the velocity as

vdðrÞ ¼ a�2p v0ðr=apÞ: (B2)

This scaling relation can be extended to the near-field for particles
with ap 
 As because the mobility tensor in WMCD—which repla-

ces GTTO in Eq. (B1)—can be written as GTTWMCDðrÞ ¼ a�1p Gðr=apÞ.
The scaling of Cvvð0Þ is then easily calculated with

Cvvð0Þ ¼ a�4p /s

ð
d3r v0ðr=apÞ2

¼ a�1p /s

ð
d3r0 v0ðr0Þ2: (B3)

The remaining integral is now just a constant for fixed swimmer
parameters, so we have Cvvð0Þ � a�1p .

To predict the behavior of sL, we can take the relative speed to
be vs since the speed of the passive particle is everywhere less than
Fs=6pgap / ðas=apÞvs � vs. Alongside the length scale ap, this leads
to the relevant time scale for changes in the swimmer flow field
being sL ¼ ap=vs.

APPENDIX C: ANALYSIS OF sB

In this section, we demonstrate how to identify the behavior of
sB;Loop. Using the ansatz form in Eq. (28) and ignoring the entrain-

ment term on the grounds that /EntC
ðsÞ
vv ð0Þ � c0 in our simulations,

measuring the initial decay rate of Cvv gives the full decay rate

s�1tot ¼ s�1L þ s�1r&t þ s�1rot þ s�1B;Loop: (C1)

Note we included the quadratic term in the fit, with c2=s2L as a sec-
ond fitted variable, although we do not use those values in this
work.

The different terms in stot are all expected to have different
behaviors across our simulations: sr&t is a constant; with fixed
swimmer parameters, srot depends only on the temperature and sL
depends on particle sizes but not the temperature. By looking at the
difference of stot at different temperatures but the same ap, we can
remove the influence of both sr&t and sL. We then only need to
remove srot, which can be done by hand since we know its form,
leading us to consider

T �1 ¼ stotðap;TiÞ�1 � stotðap;TjÞ�1 �
kBðTi � TjÞ

4pga3s
¼ sB;Loopðap;TiÞ�1 � sB;Loopðap;TjÞ�1: (C2)

Assuming a power law sB;Loopðap;TÞ / Pearel, we would have

T /
Perelðap;TjÞa

Ti=Tj
	 
a � 1

; (C3)

FIG. 8. Plot of T , defined in Eq. (C2), against P�eclet number for our three combi-
nations of temperature. The 10T0 � 0:1T0 data are multiplied by 11 to account for
a their larger factor of ðTi=TjÞ1 � 1. Errors shown are 1 standard deviation and are
smaller than the plot markers for many data points.
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so we should still see the same power law if we are consistent with
which temperature we use in Perel. We have three combinations of
temperature: 10T0 and 1T0; 10T0 and 0:1T0; and 1T0 and 0:1T0. For
all combinations, we use the smaller temperature in Perel, giving the
results in Fig. 8. Here, we see T � Pe1rel, so hence so does sB;Loop,
which is consistent with other time scales increasing linearly with a
P�eclet number. Furthermore, Fig. 8 provides us with the constant of
proportionality, which is 9 times larger than the one for T due to
the factor of ðTi=TjÞ1 � 1. Hence, we have

sB;LoopðPerelÞ ¼ 1:73Perelas=vs: (C4)

APPENDIX D: DISTINCT LOW Pe REGIMES

In their appendix to Ref. 32, Kasyap, Koch, and Wu reduce DA

for Pe� 1 to the below form,

DA /
ðp
0

dh sin3h cos2h
ð1
0

dk s�

1þ iks� cos hþ s�
Pe k

2
; (D1)

which is their Eq. (A2) preserving the full denominator form their
(A1) and keeping explicit all dependence on Pe and s�. Dependence
on the combination s�Pe is apparent upon substituting ks� ¼ j to
obtain

DA /
ðp
0

dh sin3h cos2h
ð1
0

dj

1þ ij cos hþ j2

s�Pe

: (D2)

Once in this form, it is apparent that the imaginary term in the
denominator can only be neglected when s�Pe� 1.

Performing the integration numerically leads to Fig. 9, which
starts proportional to ðs�PeÞ1=2, but saturates to a constant as s�Pe
becomes large compared to unity. Our own simulations had
s� ¼ vstrun=As ¼ 13:3, and Pe 
 Oð1Þ, putting us in the regime
where DA is nearly constant in Fig. 9.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1X.-L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-dimensional bac-
terial bath,” Phys. Rev. Lett. 84, 3017–3020 (2000).

2G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle
tracking of correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).

3K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein,
“Dynamics of enhanced tracer diffusion in suspensions of swimming eukary-
otic microorganisms,” Phys. Rev. Lett. 103, 198103 (2009).

4G. Mi~no, T. E. Mallouk, T. Darnige, M. Hoyos, J. Dauchet, J. Dunstan, R. Soto,
Y. Wang, A. Rousselet, and E. Clement, “Enhanced diffusion due to active
swimmers at a solid surface,” Phys. Rev. Lett. 106, 048102 (2011).

5H. Kurtuldu, J. S. Guasto, K. A. Johnson, and J. P. Gollub, “Enhancement of
biomixing by swimming algal cells in two-dimensional films,” Proc. Natl.
Acad. Sci. 108, 10391–10395 (2011).

6C. Valeriani, M. Li, J. Novosel, J. Arlt, and D. Marenduzzo, “Colloids in a bac-
terial bath: Simulations and experiments,” Soft Matter 7, 5228–5238 (2011).

7G. L. Mi~no, J. Dunstan, A. Rousselet, E. Cl�ement, and R. Soto, “Induced diffu-
sion of tracers in a bacterial suspension: Theory and experiments,” J. Fluid
Mech. 729, 423–444 (2013).

8A. Jepson, V. A. Martinez, J. Schwarz-Linek, A. Morozov, and W. C. K. Poon,
“Enhanced diffusion of nonswimmers in a three-dimensional bath of motile
bacteria,” Phys. Rev. E 88, 041002 (2013).

9R. Jeanneret, D. O. Pushkin, V. Kantsler, and M. Polin, “Entrainment domi-
nates the interaction of microalgae with micron-sized objects,” Nat. Commun.
7, 12518 (2016).

10A. J. T. M. Mathijssen, R. Jeanneret, and M. Polin, “Universal entrainment
mechanism controls contact times with motile cells,” Phys. Rev. Fluids 3,
033103 (2018).

11P. T. Underhill, J. P. Hernandez-Ortiz, and M. D. Graham, “Diffusion and spa-
tial correlations in suspensions of swimming particles,” Phys. Rev. Lett. 100,
248101 (2008).

12J. J. Molina and R. Yamamoto, “Diffusion of colloidal particles in swimming
suspensions,” Mol. Phys. 112, 1389–1397 (2014).

13A. Morozov and D. Marenduzzo, “Enhanced diffusion of tracer particles in
dilute bacterial suspensions,” Soft Matter 10, 2748–2758 (2014).

14R. C. Krafnick and A. E. Garc�ıa, “Impact of hydrodynamics on effective interac-
tions in suspensions of active and passive matter,” Phys. Rev. E 91, 022308
(2015).

15D. Krishnamurthy and G. Subramanian, “Collective motion in a suspension of
micro-swimmers that run-and-tumble and rotary diffuse,” J. Fluid Mech. 781,
422–466 (2015).

16J. de Graaf and J. Stenhammar, “Lattice-Boltzmann simulations of
microswimmer-tracer interactions,” Phys. Rev. E 95, 023302 (2017).

17H. Shum and J. M. Yeomans, “Entrainment and scattering in microswimmer-
colloid interactions,” Phys. Rev. Fluids 2, 113101 (2017).

18J. Harder and A. Cacciuto, “Hierarchical collective motion of a mixture of
active dipolar Janus particles and passive charged colloids in two dimensions,”
Phys. Rev. E 97, 022603 (2018).

19J. Dunkel, V. B. Putz, I. M. Zaid, and J. M. Yeomans, “Swimmer-tracer scatter-
ing at low Reynolds number,” Soft Matter 6, 4268–4276 (2010).

20J.-L. Thiffeault and S. Childress, “Stirring by swimming bodies,” Phys. Lett. A
374, 3487–3490 (2010).

21B. Eckhardt and S. Zammert, “Non-normal tracer diffusion from stirring by
swimming microorganisms,” Eur. Phys. J. E 35, 96 (2012).

22A. J. T. M. Mathijssen, D. O. Pushkin, and J. M. Yeomans, “Tracer trajectories
and displacement due to a micro-swimmer near a surface,” J. Fluid Mech. 773,
498–519 (2015).

23J.-L. Thiffeault, “Distribution of particle displacements due to swimming
microorganisms,” Phys. Rev. E 92, 023023 (2015).

24A. Suma, L. F. Cugliandolo, and G. Gonnella, “Tracer motion in an active
dumbbell fluid,” J. Stat. Mech.: Theory Exp. 2016, 054029.

FIG. 9. Plot of DA calculated by numerical integration of Eq. (D2) (solid line). The
dashed line indicates the behavior at s�Pe� 1. The constant on the DA axis
includes swimmer parameters from Ref. 32.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 051904 (2021); doi: 10.1063/5.0049386 33, 051904-13

# 2021 Author(s).

https://doi.org/10.1103/PhysRevLett.84.3017
https://doi.org/10.1016/S0006-3495(03)75068-1
https://doi.org/10.1103/PhysRevLett.103.198103
https://doi.org/10.1103/PhysRevLett.106.048102
https://doi.org/10.1073/pnas.1107046108
https://doi.org/10.1073/pnas.1107046108
https://doi.org/10.1039/c1sm05260h
https://doi.org/10.1017/jfm.2013.304
https://doi.org/10.1017/jfm.2013.304
https://doi.org/10.1103/PhysRevE.88.041002
https://doi.org/10.1038/ncomms12518
https://doi.org/10.1103/PhysRevFluids.3.033103
https://doi.org/10.1103/PhysRevLett.100.248101
https://doi.org/10.1080/00268976.2014.903004
https://doi.org/10.1039/c3sm52201f
https://doi.org/10.1103/PhysRevE.91.022308
https://doi.org/10.1017/jfm.2015.473
https://doi.org/10.1103/PhysRevE.95.023302
https://doi.org/10.1103/PhysRevFluids.2.113101
https://doi.org/10.1103/PhysRevE.97.022603
https://doi.org/10.1039/c0sm00164c
https://doi.org/10.1016/j.physleta.2010.06.043
https://doi.org/10.1140/epje/i2012-12096-7
https://doi.org/10.1017/jfm.2015.269
https://doi.org/10.1103/PhysRevE.92.023023
https://doi.org/10.1088/1742-5468/2016/05/054029
https://scitation.org/journal/phf


25E. W. Burkholder and J. F. Brady, “Tracer diffusion in active suspensions,”
Phys. Rev. E 95, 052605 (2017).

26K. Yasuda, R. Okamoto, and S. Komura, “Anomalous diffusion in viscoelastic
media with active force dipoles,” Phys. Rev. E 95, 032417 (2017).

27P. Mueller and J.-L. Thiffeault, “Fluid transport and mixing by an unsteady
microswimmer,” Phys. Rev. Fluids 2, 013103 (2017).

28H. Fax�en, “Der Widerstand gegen die Bewegung einer starren Kugel in einer
z€ahen Fl€ussigkeit, die zwischen zwei parallelen ebenen W€anden eingeschlossen
ist,” Ann. Phys. 373, 89–119 (1922).

29L. Durlofsky, J. F. Brady, and G. Bossis, “Dynamic simulation of hydrodynami-
cally interacting particles,” J. Fluid Mech. 180, 21–49 (1987).

30J. Rotne and S. Prager, “Variational treatment of hydrodynamic interaction in
polymers,” J. Chem. Phys. 50, 4831–4837 (1969).

31H. Yamakawa, “Transport properties of polymer chains in dilute solution:
Hydrodynamic interaction,” J. Chem. Phys. 53, 436–443 (1970).

32T. V. Kasyap, D. L. Koch, and M. Wu, “Hydrodynamic tracer diffusion in sus-
pensions of swimming bacteria,” Phys. Fluids 26, 081901 (2014).

33A. E. Patteson, A. Gopinath, P. K. Purohit, and P. E. Arratia, “Particle diffusion
in active fluids is non-monotonic in size,” Soft Matter 12, 2365–2372 (2016).

34G. I. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a
tube,” Proc. R. Soc. Lond. A 219, 186–203 (1953).

35T. T. Pham, U. D. Schiller, J. R. Prakash, and B. D€unweg, “Implicit and explicit
solvent models for the simulation of a single polymer chain in solution: Lattice
Boltzmann versus Brownian dynamics,” J. Chem. Phys. 131, 164114 (2009).

36A. Jain, S. P. B. D€unweg, and J. R. Prakash, “Optimization of a Brownian-
dynamics algorithm for semidilute polymer solutions,” Phys. Rev. E 85, 066703
(2012).

37O. T. Dyer and R. C. Ball, “Wavelet Monte Carlo dynamics: A new algorithm
for simulating the hydrodynamics of interacting Brownian particles,” J. Chem.
Phys. 146, 124111 (2017).

38O. T. Dyer, “Wavelet monte Carlo dynamics,” Ph.D. thesis, University of
Warwick, 2019.

39B. D€unweg and K. Kremer, “Molecular dynamics simulation of a polymer
chain in solution,” J. Chem. Phys. 99, 6983–6997 (1993).

40D. O. Pushkin and J. M. Yeomans, “Fluid mixing by curved trajectories of
microswimmers,” Phys. Rev. Lett. 111, 188101 (2013).

41M. S. Green, “Markoff random processes and the statistical mechanics of time-
dependent phenomena. II. Irreversible processes in fluids,” J. Chem. Phys. 22,
398–413 (1954).

42R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General the-
ory and simple applications to magnetic and conduction problems,” J. Phys.
Soc. Jpn. 12, 570–586 (1957).

43J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff,
Leyden, 1973).

44R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29, 255–284
(1966).

45B. Noetinger, “Fluctuating hydrodynamics and Brownian motion,” Phys. A
163, 545– 558 (1990).

46P. J. Rossky, J. D. Doll, and H. L. Friedman, “Brownian dynamics as smart
Monte Carlo simulation,” J. Chem. Phys. 69, 4628–4633 (1978).

47H. Berg, Random Walks in Biology, Princeton Paperbacks (Princeton
University Press, 1993).

48J. Saragosti, P. Silberzan, and A. Buguin, “Modeling E. coli tumbles by rotational
diffusion. Implications for chemotaxis,” PLoS One 7, e35412–e35416 (2012).

49D. O. Pushkin, H. Shum, and J. M. Yeomans, “Fluid transport by individual
microswimmers,” J. Fluid Mech. 726, 5–25 (2013).

50J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University Press,
1975).

51Y. Hyon Marcos, T. R. Powers, R. Stocker, and H. C. Fu, “The wiggling trajectories
of bacteria,” J. Fluid Mech. 705, 58–76 (2012).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 051904 (2021); doi: 10.1063/5.0049386 33, 051904-14

# 2021 Author(s).

https://doi.org/10.1103/PhysRevE.95.052605
https://doi.org/10.1103/PhysRevE.95.032417
https://doi.org/10.1103/PhysRevFluids.2.013103
https://doi.org/10.1002/andp.19223731003
https://doi.org/10.1017/S002211208700171X
https://doi.org/10.1063/1.1670977
https://doi.org/10.1063/1.1673799
https://doi.org/10.1063/1.4891570
https://doi.org/10.1039/C5SM02800K
https://doi.org/10.1098/rspa.1953.0139
https://doi.org/10.1063/1.3251771
https://doi.org/10.1103/PhysRevE.85.066703
https://doi.org/10.1063/1.4978808
https://doi.org/10.1063/1.4978808
https://doi.org/10.1063/1.465445
https://doi.org/10.1103/PhysRevLett.111.188101
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1016/0378-4371(90)90144-H
https://doi.org/10.1063/1.436415
https://doi.org/10.1371/journal.pone.0035412
https://doi.org/10.1017/jfm.2013.208
https://doi.org/10.1017/jfm.2012.217
https://scitation.org/journal/phf

	s1
	s2
	s2A
	d1
	d2
	d3
	d4
	s2B
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	s3
	s3A
	s3B
	d14
	f1
	d15
	d16
	s3C
	d17
	d18
	s4
	t1
	s5
	f2
	s5A
	f4
	f3
	d19
	d20
	d21
	d22
	d23
	s5A1
	d24
	d25
	d26
	f5
	d27
	s5A2
	d28
	d29
	d30
	d31
	f6
	d32
	s6
	f7
	s7
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	dA6
	dA7
	dA8
	dA9
	dA10
	dA11
	dA12
	dA13
	dA14
	dA15
	dA16
	app2
	dB1
	dB2
	dB3
	app3
	dC1
	dC2
	dC3
	f8
	dC4
	app4
	dD1
	dD2
	s8
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	f9
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51

