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This paper focuses on the comparison of homogeneous and heterogeneous panel data estima-

tors, including partially heterogeneous ones, in presence of cross-sectional dependence gener-

ated by common factors and spatial error dependence. Our specifications allow us to con-

sider and contrast weak cross-sectional dependence and strong cross-sectional dependence in

a general linear heterogeneous panel data model. An overview of the estimation procedures,

including heterogeneous, homogeneous and partially heterogeneous estimators, is presented.

Then, an extensive Monte Carlo study is conducted using a general framework encompassing

recent contributions in the literature especially in terms of considering common factors and

spatial dependence simultaneously. Our simulation results show that, even for small individual

and time dimensions, heterogeneous estimators perform better in terms of bias, root mean

squared error, size and size adjusted power compared to homogeneous estimators. Last, the

superiority of the heterogeneous estimators is confirmed by an empirical application relating

fiscal decentralization and government size in 22 OECD countries over the period 1973-2017.
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Hétérogénéité et Dépendance Inter-Individuelle

sur Données de Panel :

Estimateurs Hétérogènes vs. Homogènes

Cet article se focalise sur les estimateurs hétérogènes versus homogènes sur données de panel,

y compris ceux partiellement hétérogènes, en présence de dépendances inter-individuelles via

une structure de dépendance spatiale des perturbations et/ou en présence de facteurs communs

observables/inobservables. Ces estimateurs sont liés à des spécifications qui permettent de

combiner et de distinguer les dépendances inter-individuelles faibles (reliées à une matrice spa-

tiale) des dépendances inter-individuelles fortes (i.e. les facteurs communs). Une présentation

générale des trois catégories d’estimateurs ci-avant mentionnées est d’abord faite. Ensuite, une

approche par simulation de Monte Carlo, plus générale que celles précédemment menées, est

retenue pour étudier les propriétés de ces estimateurs en présence de facteurs communs et de

dépendance spatiale. Les résultats montrent que, même pour des dimensions individuelle et

temporelle faibles, les estimateurs hétérogènes fournissent de meilleurs résultats en termes de

biais, de RMSE, de taille et de puissance des tests bilatéraux comparativement à ceux obtenus

sur la base des estimateurs homogènes. Enfin, une application empirique, qui s’intéresse à

l’impact de la décentralisation fiscale sur la taille des gouvernements de 22 pays de l’OCDE

sur la période 1973-2017, confirme cette supériorité.

Mots-clés : Modèles sur données de panel – hétérogénéité – homogénéité – dépendance inter-

individuelle – panel spatial – facteurs communs – prévision.

Classification JEL : C13, C23.



1 Introduction

The optimal estimation strategy for panels with heterogeneous slope coefficients is an open

question in the econometric literature. The presence of cross-sectional dependence (CD) makes

the choice between available estimators more difficult. In this paper our interest lies on identify-

ing the optimal estimation methods in linear panel data models with random slope coefficients

that display CD.

The main aim of the paper is to explore the impact of different types and strength of CD on

the performance of homogeneous (pooled) and heterogeneous estimators, including partially

heterogeneous ones, in presence of low and high degrees of slope heterogeneity using simulated

and real data. To this end, we first review the most recent contributions to the literature

on panel data models with CD, such as Pesaran (2006), Kapetanios and Pesaran (2007), Bai

(2009) and Song (2013). To investigate the role of heterogeneity on the optimal strategy, in

addition to fully heterogeneous and fully homogeneous estimators, we consider the partially

heterogeneous frameworks proposed by Bonhomme and Manresa (2015a) and Su et al. (2016a).

Our paper is the first in the literature to discuss this last class of estimators in a comparative

manner.

To evaluate the small sample properties of the estimators under consideration, we conduct

a Monte Carlo exercise using a general linear panel data model with CD where the correlations

among panel units arise from both common factors and spatial dependence. Our framework

allows us to study the impact of strong cross-sectional dependence (SCD) that results from

common factors and weak cross-sectional dependence (WCD), generated by spatial dependence

in the error terms, on the performance of heterogeneous and homogeneous estimators.

Our results indicate that heterogeneous estimators perform better than the homogeneous

and partially heterogeneous estimators in terms of estimation bias and root mean squared er-

ror (RMSE) as well as correct inference which we evaluate by size and size adjusted power of

hypothesis tests concerning the average slope coefficients. Contrary to the previous literature

comparing the heterogeneous and homogeneous estimators in the absence of CD, our result

on the dominance of the heterogeneous estimators is found to be valid even when time and

individual dimensions are small. This is found to be the case in low and high degrees of het-

erogeneity observed commonly in practice. Notably, we study the properties of the estimation

and inference procedures for heterogeneity degrees generally higher than the ones in previous

Monte Carlo studies in the literature. We apply the methods in an empirical model relating

the size of governments in OECD countries with their level of fiscal decentralization. This

illustration also documents the importance of taking into account heterogeneity among panel

units.

Motivation and related literature. It is now well known that pooling in presence of
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slope heterogeneity can produce misleading results on the magnitude of the average effects,

inference based on them and on predictive performance. In a random coefficients model,

average effects can be estimated consistently by pooled estimators with strictly exogenous

regressors. However, in a seminal paper Pesaran and Smith (1995) show that the pooled

estimators are not consistent for the average effect if the model contains weakly exogenous

regressors. A large literature compare the heterogeneous and homogeneous estimators, though

almost always in a setting which does not allow correlations among units. Some examples

are Garcia-Ferrer et al. (1987), Baltagi and Griffin (1997), Baltagi et al. (2000), Hoogstrate

et al. (2000), Baltagi et al. (2003), Baltagi et al. (2004), Mark and Sul (2012). These studies

mostly reach the conclusion that the pooled estimators outperform the heterogeneous ones

although some authors such as Hoogstrate et al. (2000) and Mark and Sul (2012) point out to

the fact that the dominance of pooled estimators is a result of limited number of time series

observations and the low degree of heterogeneity between units.

Depending on its strength and nature, CD can have similar consequences. Is it a result of

local interactions generating spatial spillover effects or common factors which affect different

units (see Chudik et al., 2011; Sarafidis and Wansbeek, 2012; Bailey et al., 2016b, and references

therein)? With the increasing availability of data, we have more panels where both N and

T are large. This offers new possibilities and challenges on the ways of characterizing CD.

Several papers have distinguished between WCD and strong SCD. In terms of their effects on

the statistical properties of conventional panel data estimators, the two types of CD can differ

dramatically, therefore it is necessary to analyze them in a comparative way. The literature

dealing with spatial interactions and common factors simultaneously is scarce, some exceptions

being Bai (2009), Pesaran and Tosetti (2011), Bailey et al. (2016a), Shi and Lee (2018) and

Kuersteiner and Prucha (2018).

However, as Sarafidis and Wansbeek (2012) underline, the literature does not provide a

unique definition of these terms. In this paper, we adapt the definition by Chudik et al. (2011)

where the former is a result of spatial interactions whereas the source of the latter is the

common factors (see also Bailey et al., 2016b, and references therein). The factor and spatial

econometric approaches tend to complement one another, with the factor approach being more

suitable for modeling SCD, and the spatial approach generally requiring WCD, as defined in

Chudik et al. (2011).

Organization. The paper is organized as follows. In Section 2, we present the heteroge-

neous panel data setup including simultaneously common factors and spatial error dependence.

In this section, the associated estimation procedures are described. Section 3 deals with the

Monte Carlo study including the design of experiments and the discussion of results. In Section

4, we present an empirical application using the methods described and compared in previ-

ous sections. Section 5 summarizes the main findings and provides some guidelines for future
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research.

2 The model and methods of estimation

2.1 Heterogeneous panel model with CD

We consider linear panel data models with random slope coefficients that display a CD struc-

ture in the disturbances. We use the following model with common factors and spatial error

dependence:

yit = α′idt + β′ixit + γ′ift + uit, (1)

xit = A′idt + Γ′ift + vit, (2)

with

uit = ρi

N∑
j=1

wijξjt + εit, (3)

where yit is the dependent variable for unit i = 1, 2, . . . , N at time t = 1, 2, . . . , T , xit =

(xi1t, xi2t, . . . , xikt)
′

is a (k × 1) vector of observed regressors, βi = (βi1, βi2, . . . , βik)
′

rep-

resents the corresponding (k × 1) slope parameters to be estimated. The regressors are as-

sumed to be strictly exogenous but we also discuss the possibility of having weakly exoge-

nous regressors. ft = (f1t, f2t, . . . , fmt)
′

is a (m× 1) vector of unobserved common factors,

γi = (γi1, γi2, . . . , γim)
′

is the associated (m× 1) vector of factor loadings, while dt is a (l × 1)

vector of observed common factors, αi = (αi1, αi2, . . . , αil)
′

is its (l × 1) vector of factor load-

ings. Ai is the (l × k) matrix of factor loadings of the observed common factors and Γi is the

(m× k) matrix of factor loadings of the unobserved common factors. The vector error process

vit is allowed to be autocorrelated and can exhibit spatial correlation. The number of unob-

served common factors, m, is assumed to be fixed relative to N , in particular m is assumed

to be strictly smaller than N . The error term uit is assumed to follow a spatial pattern with

ρi being its associated parameter. We assume that the slope coefficients are generated by a

random coefficients model as

βi = β + δi, δi ∼ IID(0,Ωδ), i = 1, 2, . . . , N, (4)

where β = (β1, β2, . . . , βk)
′
, δi = (δi1, δi2, . . . , δik)

′
, δi are distributed independently of γj , Γj ,

εjt, vjt and the common factors dt and ft for all j = 1, . . . , N , t = 1, 2, . . . , T . Throughout the

paper our interest lies on the expected value of the random coefficients over panel units, namely

β. We also report estimates of the unit-specific marginal effects in our empirical application.

The model in (3) contains as special cases all commonly used spatial processes like spatial

autoregression (SAR), spatial moving average (SMA), and spatial error components (SEC) as
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well as their higher order versions which can be obtained by alternating the definition of the

variable ξjt. In all cases, we assume that the usual boundedness of the row and column sums

of the spatial weights matrix defined by the double indexed sequence wij is satisfied (see, for

instance, Pesaran and Tosetti, 2011).

The structure of CD described above combines WCD and SCD as defined by Chudik et al.

(2011) where the former is a result of spatial error correlation whereas the source of the latter

is the common factors. These two types of CD differ importantly in terms of their effect on

parameter estimation. Unobserved common factors create an identification problem on the

estimation of the slope parameters due to their potential correlation with the explanatory

variables. Whereas spatial error dependence have an impact on the estimation efficiency and

on inference on the model parameters.

To illustrate the two dimensions, we may refer to cross country growth regressions. On one

hand, the SCD can be viewed as a result of a number of observed and or unobserved common

factors that may have different effects on total factor productivity across countries. These

include, for instance, aggregate technological shocks or oil price shocks that may affect total

factor productivity through their effects on production costs. On the other hand, WCD can be

viewed as a result of spatial spillover effects such as international technology diffusion which

can be related to geographical distance due to transport costs or geographical barriers.

2.2 Methods of estimation

In this section, we review the recent studies dealing with the problem of unobserved common

factors in heterogeneous and homogeneous linear panel data models as well as the partially het-

erogeneous estimators. Our main focus is on the common correlated effects (CCE ) estimators

proposed by Pesaran (2006), principal components (PC ) approaches advanced by Kapetanios

and Pesaran (2007), Bai (2009) and Song (2013), and partially heterogeneous estimators of

Bonhomme and Manresa (2015a) and Su et al. (2016a).

2.2.1 Heterogeneous and homogeneous estimators

Pesaran (2006) shows that cross-sectional averages of dependent variable and explanatory

variables can be used as observed proxies in order to estimate the slope parameters consistently

when the number of cross-sectional units is large. The author works on the estimation of the

model given in (1) and (2) using the cross-sectional averages of the explanatory variables and

the dependent variable as observed proxies for the unobserved common factors as N → ∞.

For the unit-specific slope coefficient, the CCE estimator is given by

β̂CCE,i =
(
X′i.M̄fXi.

)−1
X′i.M̄fyi., (5)
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with

M̄f = IT − H̄(H̄′H̄)−H̄′. (6)

where H̄ = (D, Z̄), D = (d′1,d
′
2, . . . ,d

′
T )′, Z̄ = (z̄′.1, z̄

′
.2, . . . , z̄

′
.T )′, z̄.t = N−1

∑N
i=1 zit and

zit = (yit,x
′
it)
′. Pesaran shows that the consistency of the estimator follows when (N,T )→∞

and if a rank condition on the factor loadings is satisfied given that the regressors are strictly

exogeneous.1 The estimator is asymptotically normal if
√
T/N → 0 as (N,T ) → ∞, with

convergence rate being
√
T . Chudik and Pesaran (2015) show that with weakly exogenous

regressors CCE estimation is still valid as long as a sufficient number of lags of the cross-

sectional averages z̄.t are used to construct the matrix M̄f .

Once the unit-specific parameters are estimated using (5), we can infer their mean from

these estimates as the unit-specific slope parameters follow the random coefficient model given

in (4). Pesaran considers a mean group estimator which is a simple average of the unit-specific

slope parameter estimates. It is given by

β̂CCEMG =
1

N

N∑
i=1

β̂CCE,i. (7)

The estimator does not require T →∞ for consistency; it is consistent for fixed T as N →∞.

As (N,T )→∞, its distribution converges to a normal distribution at the rate of
√
N and its

asymptotic variance is determined by the variance of the random slope parameters.

Alternatively, one can use a pooled estimator which treats the slope coefficients as if they

were the same across panel units. In particular, we can use

β̂CCEP =

(
N∑
i=1

X′i.M̄fXi.

)−1 N∑
i=1

X′i.M̄fyi., (8)

where M̄f is defined as in (6). If the regressors xit are strictly exogenous the estimator

is consistent. Although it imposes homogeneity of the slope parameters, the estimator is

asymptotically unbiased under (4). It is asymptotically normal with its convergence rate being√
N which is slower than the usual

√
NT of the homogeneous panel data estimators.

The CCE estimators are based on the fact that cross-sectional averages of zit can be used

to remove the effect of common factors asymptotically. In general, cross-sectional averages of

any subset of the elements of zit provide similar results given that this subset satisfies the rank

condition mentioned above. Moreover, additional exogenous variables can be used to improve

estimation efficiency. In particular we can consider the estimator (5) by replacing M̄f with

M̃f = IT − H̃(H̃′H̃)−H̃′, (9)

1See Pesaran (2006) and Karabiyik et al. (2017) for a discussion on the rank condition.
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with H̃ = (D,W̄), W̄ = (w̄′.1, w̄
′
.2, . . . , w̄

′
.T )′, w̄.t = N−1

∑N
i=1 wit where wit is a vector

of some exogenous variables which can include the explanatory variables themselves. This

projection matrix uses only exogenous variables to construct observed proxies for the common

factors. Its advantage is that the cross-sectional averages of wit are exogenous by assumption,

contrary to the cross-sectional averages of the dependent variable. In our paper, the pooled and

mean group CCE estimators using only exogenous variables are called CCEPX and CCEMGX,

respectively.

Another way to estimate the common factors is to apply principal component analysis

(PCA) to the observed variables in the data set to estimate the unobserved common factors.

Kapetanios and Pesaran (2007) suggest to use PCA to extract the common factors from zit.

As shown by the authors, the small sample properties of the estimators based on this method

are not satisfactory, potentially as a result of the PCA applied to the endogenous variable

yit. An alternative is to use only the exogenous variables to estimate the unobserved common

factors. For the unit-specific slope parameters we use

β̂PCX,i = (X′i.MpXi.)
−1

X′i.Mpyi., (10)

with

Mp = IT −G(G′G)−G′,

where G = (D, F̃) and F̃ being the matrix of observations on the principal components ex-

tracted from the matrix
∑N
i=1 Xi.X

′
i.. A mean group estimator can be computed from these

estimates as in the case of CCE estimators using

β̂PCMGX =
1

N

N∑
i=1

β̂PCX,i, (11)

and the pooled estimator is defined as

β̂PCPX =

(
N∑
i=1

X′i.MpXi.

)−1 N∑
i=1

X′i.Mpyi.. (12)

A related but different estimator is proposed by Bai (2009) in a homogeneous slope frame-

work. The model that the author considers is similar to the one in (1) but the estimator

proposed does not require the explanatory variables to be related to the unobserved common

factors as in (2). Also the author does not consider the observed common factors which is

taken into account in our implementation of the estimator. This estimator is the solution to

the following non-linear equations:

β̂IPCP =

(
N∑
i=1

X̃′i.X̃i.

)−1 N∑
i=1

X̃′i.(ỹi. − F̂γ̂i), (13)
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[
1

NT

N∑
i=1

(
ỹi. − X̃i.β̂IPCP

)(
ỹi. − X̃i.β̂IPCP

)′]
F̂ = F̂V̂NT ,

where γ̂i = T−1F̂′(ỹi. − X̃i.β̂IPCP ), X̃i. = MDXi., ỹi. = MDyi., V̂NT is a diagonal matrix

containing the m largest eigenvalues of the matrix in the brackets on the left hand side of the

equation and F̂ are the corresponding eigenvectors. To obtain the final estimator of the slope

parameters, one can iterate between these two equations until convergence is achieved.

Song (2013) generalizes this iterative estimation procedure to allow for heterogeneity in

slope parameters among units. Our implementation of this unit-specific estimator is given by

β̂IPC,i =
(
X̃′i.X̃i.

)−1
X̃′i.(ỹi. − F̃γ̃i), (14)[

1

NT

N∑
i=1

(
ỹi. − X̃i.β̂IPC,i

)(
ỹi. − X̃i.β̂IPC,i

)′]
F̃ = F̃ṼNT ,

with γ̃i = T−1F̃′(ỹi. − X̃i.β̂IPC,i), ṼNT is a diagonal matrix containing the m largest eigen-

values of the matrix in the brackets on the left hand side of the equation and F̃ are the

corresponding eigenvectors. The author does not consider the asymptotic distribution of a

pooled estimator of the average value of the heterogeneous slopes. However, a mean group

estimator based on the unit-specific estimates is used which is given by

β̂IPCMG =
1

N

N∑
i=1

β̂IPC,i. (15)

The advantage of the iterative PC estimators by Bai (2009) and Song (2013) is that they

assume that the factor loadings and the factors are fixed. Therefore, they do not require any

constraints on the correlation between the explanatory variables and the common factors. In

particular, the data generating process for the explanatory variables is left unrestricted and

does not have to be in the form of (2). For instance, the explanatory variables can be related to

the common factors in a non-linear manner. In this case, the estimators which uses explanatory

variables to estimate the common factors, e.g. CCE estimators or non-iterative PC estimators,

can fail to estimate the slope parameters consistently. A disadvantage of these estimators is the

fact that the number of common factors may not be known in practice. However, it is possible

to use information criteria proposed by Bai and Ng (2002) to consistently estimate the number

of common factors. Furthermore, Moon and Weidner (2015) show that the consistency of

the estimator of Bai (2009) does not require a consistent estimation of the number of factors.

In fact, as soon as the number of factors is not underestimated, the resulting estimators are

asymptotically equivalent to the estimator based on the true number of common factors.

It is important to note that the estimators by Bai (2009) and Song (2013) are iterative

estimators and in practice they need to be initialized by estimates of the slope parameters.
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Originally, Bai (2009) used several initial estimators for the slope parameters, such as OLS,

fixed effects (FE ) and two-way fixed effects (2WFE ) estimators. Jiang et al. (2017) show

that unless the initial estimator of the slope parameters is consistent, the consistency of these

iterative approaches are not guaranteed. In this paper, the iterative procedures are initialized

using the estimators PCPX and PCMGX. These estimators are consistent as soon as the

explanatory variables have the factor structure given in (2).

We consider some additional estimators based on the iterative PC methods. Using consis-

tent initialization, as with the estimators PCPX and PCMGX, an option is to stop after the

first iteration. This estimator is consistent and has the advantage of being computationally less

demanding than the iterative estimators. In addition, if the data generating process (DGP) of

the dependent variable contains common factors which do not appear in the process generating

the explanatory variables, our results underline that this procedure produce less bias and more

efficient estimates. These estimators are called PCPX2S and PCMGX2S.

2.2.2 Partially heterogeneous estimators

Recently, several papers have considered the possibility of having a grouped structure in the

slope parameters of a panel data model in contrast to the fully heterogeneous or fully homo-

geneous setting taken into consideration in the previous subsection. Here we discuss two main

approaches to the problem, namely the grouped fixed effects (GFE ) approach of Bonhomme

and Manresa (2015a) and the classifier Lasso (C-Lasso) approach of Su et al. (2016a). These

two papers assume that the slope parameters in model (1) satisfy

βi =

K∑
g=1

λg1{i ∈ Gg}, (16)

where K is the number of groups which is assumed here to be known and fixed, Gg is the set of

indexes of Ng units which belong to group g, λg 6= λg′ , φg 6= φg′ , ∀ g 6= g′ and Gg ∩Gg′ = ∅,
∀ g 6= g′.

In an extension of their original model, Bonhomme and Manresa (2015a) assume simulta-

neously grouped structures for slope parameters and factor loadings. Our implementation of

their GFE estimator is defined as the value which minimizes the objective function

QGFE =
1

NT

N∑
i=1

T∑
t=1

(
yit − ȳ.t − λ′gi(xit − x̄.t)− µgit

)2
, (17)

where gi ∈ {1, 2, . . . ,K} is a variable which states the group which ith panel unit belongs to

and µgit are the group-specific time effects. The estimation approach uses an algorithm based

on some initial values of the unknown parameters in (17) and iterates until convergence. More

precisely, the iterative algorithm consists of the following 4 steps:

8



Step 1: Select some starting values λ(0)
g and µ

(0)
gt , ∀g, t. Set s = 0.

Step 2: Compute for all i ∈ {1, 2, . . . , N}

g
(s+1)
i = argmin

g∈{1,2,...,K}

T∑
t=1

(
yit − ȳ.t − λ(s)

g
′(xit − x̄.t)− µ(s)

gt

)2
.

Step 3: Compute

(
λK(s+1),µ

K
(s+1)

)
= argmin

λN ,φN

N∑
i=1

T∑
t=1

(
yit − ȳ.t − λ′g(s+1)

i

(xit − x̄.t)− µg(s+1)
i t

)2
,

where λK and µK are matrices which contain all λg’s and µg’s, respectively.

Step 4: Set s = s+ 1 and go to step 2. Repeat the process until numerical convergence.

In practice, Bonhomme and Manresa suggest to select many starting values and choose

the final estimate as the one which gives the minimum of the objective function (17). They

propose also alternative algorithms which are more efficient in certain situations such as a big

number of groups, e.g. K > 10.2 In our simulations, we use small values of K. Therefore, the

iterative algorithm described above allows to save computing time.

As Bonhomme and Manresa highlight, the GFE estimator can be seen as an alternative to

the estimator of Bai (2009), developed for the case of unit-specific factor loadings whereas GFE

identifies homogeneity of these loadings within some groups. The IPC estimator is expected to

work in a DGP suitable for GFE but GFE should be biased in the case of fully heterogeneous

factor loadings. The GFE estimator uses time dummies within groups, therefore, it does not

restrict the number of the common factors to be known or even finite. This is not the case for

the IPC estimator.

The GFE estimator is a least squares estimator which selects the grouping index gi and the

parameters λgi , µgit such that the sum of squared residuals defined by (17) is minimized. To

have the intuition behind the estimation procedure, let us suppose that the group membership

index gi is known. In this case, the least squares estimate of the slope parameters λgi is the

usual two-way fixed effects (2WFE ) estimator applied to each group g = 1, 2, . . . ,K separately.

Bonhomme and Manresa show that the above algorithm chooses gi consistently and inference

can be drawn on the slope parameter estimates using this strategy in usual ways.

An alternative way to estimate the group membership and the slope parameters is pro-

posed by Su et al. (2016a), relying on group Lasso literature. They considered both linear and

non-linear panel data models. Importantly, they assumed that the cross-sectional units are

independent of each other. In our implementation of their estimator, we use the CCE trans-

formation on the dependent and explanatory variables to deal with the unobserved common

2See Bonhomme and Manresa (2015b) for alternative algorithms and their comparison.
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factors. The objective function defining the C-Lasso estimator is given by

QC-Lasso =
1

NT

N∑
i=1

T∑
t=1

(
ỹit − β′ix̃it

)2
+
φ

N

N∑
i=1

K∏
g=1

||βi − λg||, (18)

where ỹit is the tth element of M̄fyi., x̃it is the tth column of X′i.M̄f , and φ is a tuning

parameter. Su et al. (2016b) suggest an iterative algorithm similar to the one given above to

compute the C-Lasso estimates. They prove the asymptotic normality of their estimator under

general conditions but under cross-sectional independence. Here, we use CD-robust estimates

of the variances as explained in Appendix.

Some remarks comparing these two estimators with each other and with the estimators of

the previous subsection follow. First, the GFE estimator is obtained under a grouped structure

of the factor loadings in the DGP of the dependent variable whereas C-Lasso estimator is

robust under the usual factor structure with fully heterogeneous loadings. However, as long

as the factor loadings γi are independent of the explanatory variables xit both estimators

are consistent for the group specific slope parameters λg. Intuitively, the fact that the 2WFE

estimator is consistent under the assumption of uncorrelated loadings (Sarafidis and Wansbeek,

2012) implies the consistency of the GFE estimator, in the light of the connection between the

two estimators discussed above.

Second, an important difference exist between the heterogeneity patterns defined by (4)

and (16). For the former we assumed that the unit-specific coefficients are independent of the

explanatory variables whereas in the latter case the group-specific parameters are assumed to

be fixed. The fixed coefficients assumption is arguably more general than the random coeffi-

cients assumption as it allows for correlation between the group-specific parameters and the

explanatory variables. As shown by Breitung and Salish (2020) in the case of correlated coef-

ficients, homogeneous estimators are inconsistent for the expected values of the slope parame-

ters whereas the mean group estimators are generally consistent. As they impose homogeneity

within groups, it follows that the partially heterogeneous estimators are inconsistent as well if

the slope parameters are fully heterogeneous and correlated with the explanatory variables.
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3 Monte Carlo study

3.1 Design of the experiments

Our setup generalizes in several directions the framework in Pesaran (2006) and Pesaran and

Tosetti (2011). The dependent and the explanatory variables are generated by

yit = αi1d1t + βi1xi1t + βi2xi2t + γi1f1t + γi2f2t + uit, (19)

xijt = aij1d1t + aij2d2t + γij1f1t + γij3f3t + vijt, j = 1, 2, (20)

where i = 1, 2, . . . , N , t = 1, 2, . . . , T , xijt, j = 1, 2, are the observed explanatory variables, djt,

j = 1, 2, and fjt, j = 1, 2, 3, are the observed and unobserved common factors, respectively,

and αij , βij and γijk are their respective coefficients. The error term of the dependent variable

carries spatial dependence and it is generated as a SAR using

uit = ρi

N∑
j=1

wijujt + εit, with εit ∼ N (0, σ2
i ), σ2

i ∼ IIDU(0.5, 1.5),

where wij is the element of the spatial weight matrix WN in row i and column j. An SMA is

also considered as a generating process but the results are similar and they are not reported

here. A rook-type spatial weight matrix is used. We consider two different cases for ρi.

These two cases are based on Baltagi and Pirotte (2010), with the main difference being

heterogeneity of the parameters in the (first order) SAR (or SMA) models, where ρi = ρ =

(0.2, 0.8) which corresponds to low and high spatial dependence, respectively. Similarly, we

generate the heterogeneous coefficients using

ρi = ρ+ eρi , with ρ = {0.2, 0.8}, eρi ∼ U(−0.1, 0.1).

The observed and unobserved common factors are generated as follows

d1t = 1, d2t = ρdd2,t−1 + vdt, vdt ∼ N (0, 1− ρ2d), ρd = 0.5, d20 = 0,

fjt = ρfjfj,t−1 + vfjt, vfjt ∼ N (0, 1− ρ2fj), ρfj = 0.5, fj0 = 0, j = 1, 2, 3.

The disturbances associated to the explanatory variables are generated by a stationary AR(1)

process which is given by

vijt = ρvijvij,t−1 + εijt, εijt ∼ N (0, 1− ρ2d), ρvij ∼ IIDU(0.05, 0.95),

assuming that vij0 = 0, j = 1, 2. The first 10 observations are discarded to minimize the impact

of initial values. The slope coefficients βij are generated under two different assumptions

corresponding to high and low heterogeneity. They are given by

βij = βj + ηij , βj = 1, ηij ∼ IIDN (0, σ2
ηj ),

11



Table 1: Summary of Experiments

Cases Description Parametrization

- Case 1 Low Spatial & Low Factor Dependence ρ = 0.2, γi1, γi2 ∼ IIDN (1, 0.1)

- Case 2 Low Spatial & High Factor Dependence ρ = 0.2, γi1, γi2 ∼ IIDN (2, 0.4)

- Case 3 High Spatial & Low Factor Dependence ρ = 0.8, γi1, γi2 ∼ IIDN (1, 0.1)

- Case 4 High Spatial & High Factor Dependence ρ = 0.8, γi1, γi2 ∼ IIDN (2, 0.4)

where σ2
ηj = 0.15 and σ2

ηj = 0.3, j = 1, 2, correspond to low and high heterogeneity, respec-

tively. These heterogeneity levels in both cases are higher compared to those of Pesaran (2006)

and Pesaran and Tosetti (2011). The loadings of the observed factors are generated as follows:

αi1 ∼ IIDN (1, 1), (ai11, ai21, ai12, ai22)′ ∼ IIDN (0.5τ 4, 0.5I4),

where τ 4 = (1, 1, 1, 1)′ and I4, an identity matrix of dimension (4 × 4). The loadings of the

unobserved common factors in the equations for the explanatory variables are generated as(
γi11 γi13

γi21 γi23

)
∼

(
IIDN (0.5, 0.5) IIDN (0, 0.5)

IIDN (0, 0.5) IIDN (0.5, 0.5)

)
.

To calculate the CCE estimators which use only exogenous variables, an additional variable

xi3t is generated as

xi3t = ai31d1t + ai32d2t + γi31f1t + γi33f2t + vi3t,

where the factor loadings are given by

ai31, ai32 ∼ IIDN (1.5, 1.02), γi31, γi32 ∼ IIDN (1, 0.1).

The other terms in (3.1) are defined in the same way as those contained in explanatory variable

DGPs (20).

Contrary to the case of the factor loadings in the process generating the explanatory variable

xit, in this paper we follow Trapani and Urga (2009) and Phillips and Sul (2003) and draw

loadings to generate low and high CD. This is controlled as follows

γi1, γi2 ∼


IIDN (1, 0.1) for Low CD,

IIDN (2, 0.4) for High CD.

(21)

The chosen parameters in (21) induce average correlation coefficients among panel units of

0.5 and 0.8, respectively. Different cases considered are summarized in Table 1. We consider

12



(N,T ) = {20, 50, 100}. For each experiment, 2,000 replications are performed, and twelve

estimators are implemented: five heterogeneous estimators, five homogeneous ones and two

partially heterogeneous estimators. These are summarized below. For PC estimators, we as-

sume that the number of unobserved common factors are known. To summarize, the estimators

involved in our simulations are:

(i) CCEMG, CCEP : They are in (7) and (8) and are suggested by Pesaran (2006) which use

cross-sectional averages of the explanatory variables and the dependent variable to proxy

the unobserved common factors;

(ii) CCEMGX, CCEPX : The estimators are defined by the equation (9) which use the cross-

sectional averages of the explanatory variables and an additional exogenous variable to

proxy the unobserved common factors;

(iii) PCMGX, PCPX : They are in (11) and (12) which use PCA to extract the unobserved

common factors from the only explanatory variables in addition to the factors estimated

in the first stage;

(iv) IPCP, IPCMG : They are in (13) and (15). For these estimators we use PCMGX and

PCPX as initial slope parameter estimates, respectively;

(v) PCMGX2S, PCPX2S : They are the two-stage estimators which make use of the factor

estimates obtained from the residuals of the PCMGX and PCPX in addition to the

first-stage factor estimates of these respective estimators;

(vi) C-Lasso, GFE : They are defined as the argument which minimize the objective functions

in (17) and (18), respectively.

3.2 Results

In this paper, we focus on two cases which are found to be the most interesting ones in terms

of distinguishing between methodologies. These are Case 1 and Case 3 described in Table 1.

The main results for the heterogeneous and homogeneous estimators are summarized in Tables

2 and 3, whereas the results for the partially heterogeneous estimators are reported in Tables 4

and 5. The results for higher degree of heterogeneity are discussed briefly but are not reported

in order to save space. Each table reports bias and RMSE associated with the coefficient

estimates of the slope average β1. Full set of results which consider different combinations of

WCD and SCD, different types of spatial dependence, and additional estimators are available

from the authors upon request.
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3.2.1 Bias and RMSE results

Bias and RMSE results for the heterogeneous and homogeneous estimators are summarized in

Tables 2 and 3, whereas the results for the partially heterogeneous estimators are reported in

Tables 4 and 5 for the case of low heterogeneity.

Under the assumption of low heterogeneity of the slope coefficients, Tables 2 and 3 consider

low factor dependence and low factor dependence and high spatial dependence, respectively.

Let us first focus on the low factor dependence case in Tables 2. All estimators which control

for unobserved common factors, except PCMGX and PCPX, provide very small bias values

and their RMSEs decline steadily with the increase of either N or T . For PCMGX and IPCP,

the bias and RMSE values are only slightly higher and they also decline steadily when either

N or T is getting large. IPCP has generally the highest bias values.3 For instance, when

N,T = 20 its bias is 1% in absolute terms. For the largest sample size with N,T = 100 this

value is 0.05% which is negligible. Although more biased in small samples, for IPCP, RMSE

values stay in the same bounds as those of the other consistent estimators.

For example, when N,T = 20 its RMSE is 12.73. For N = 20 and T = 100 this value

equals 10.44 whereas for N = 100 and T = 20 it is 5.54. This shows that, for a fixed T , having

a larger N improves the performance of the estimator more than the increase in T for a fixed

N . Overall the best performer is CCEMG in terms of RMSE in this case. For this estimator

let us focus on the small number of units first, namely N = 20. As T increases, we obtain

11.55, 9.59 and 8.99 for T = 20, 50, 100, respectively. When we fix T = 20, we obtain 7.92 and

5.30 for T = 50 and T = 100. As in the case of IPCP, this means that the RMSE decreases

more rapidly when N gets large compared to T .

The RMSE values of the heterogeneous estimators are generally lower than that of the

homogeneous estimators. For instance when N,T = 20, the RMSE of CCEP equals 12 which is

slightly higher than that of CCEMG (11.55). This slight difference between the two estimators

exists for other sample sizes as well. Only exception to this finding is the PCMGX and its

homogeneous counterpart PCPX. Among these, although very slighyly, the RMSEs of PCPX

are lower for small and moderate values of T . For instance, when T,N = 50, their respective

RMSEs equal 6.78 and 6.77. For larger samples once again heterogeneous estimator dominates

the homogeneous one.

In Table 3, the case of high spatial dependence is considered. Compared to the previous

3For the IPCP estimator, we also tried to extract three common factors instead of two from the residuals

in the iterations. This framework allows to obtain higher size adjusted power values. This is possibly due to

the heterogeneity of the slope parameters such that extracting the common factors in the DGP for explanatory

variables reduces the variability of the error term. Nevertheless, we report the results obtained using two

common factors to be in line with the original literature. Moreover, we applied the bias correction proposed by

Bai (2009). The results did not improve significantly. Thus, we reported those without bias correction in the

tables.
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Table 2: Case 1 : Low Spatial Dependence & Low Factor Dependence

Heterogeneous Homogeneous

H
HHHH

HN

T
Bias (×100) RMSE (×100) Bias (×100) RMSE (×100)

20 50 100 20 50 100 20 50 100 20 50 100

CCEMG CCEP

20 -0.31 0.15 -0.20 11.55 9.59 8.99 20 -0.50 0.23 -0.19 12.00 10.25 9.46

50 0.34 -0.32 0.05 7.92 5.97 5.71 50 0.05 -0.22 0.00 7.76 6.21 5.89

100 -0.06 -0.18 0.09 5.30 4.31 4.00 100 -0.09 -0.25 0.10 5.38 4.49 4.16

CCEMGX CCEPX

20 -0.25 0.17 -0.20 11.69 9.63 9.00 20 -0.52 0.21 -0.18 12.02 10.25 9.45

50 0.31 -0.32 0.05 8.01 5.98 5.72 50 0.03 -0.22 0.01 7.79 6.20 5.90

100 -0.08 -0.19 0.09 5.31 4.32 4.00 100 -0.10 -0.25 0.09 5.38 4.49 4.16

IPCMG IPCP

20 -0.61 0.21 -0.20 12.42 9.69 9.00 20 -0.92 -0.50 -0.41 12.73 11.31 10.44

50 0.41 -0.26 0.05 7.82 5.90 5.67 50 -0.30 -0.58 -0.29 8.11 6.71 6.61

100 0.06 -0.16 0.09 5.06 4.21 3.96 100 -0.40 -0.45 -0.05 5.54 5.03 4.78

PCMGX PCPX

20 0.74 0.61 -0.13 14.78 11.13 9.40 20 0.49 0.49 -0.19 13.91 11.19 9.57

50 0.65 -0.09 0.14 10.15 6.78 5.99 50 0.39 -0.04 0.08 9.22 6.77 6.10

100 0.42 0.05 0.11 6.72 4.87 4.24 100 0.38 -0.04 0.12 6.40 4.87 4.35

PCMGX2S PCPX2S

20 -0.08 0.35 -0.19 12.78 9.84 8.94 20 -0.44 0.21 -0.25 12.58 10.36 9.26

50 0.34 -0.25 0.09 8.64 6.03 5.71 50 0.00 -0.25 0.00 8.15 6.25 5.89

100 -0.01 -0.16 0.11 5.58 4.32 3.99 100 -0.07 -0.24 0.11 5.53 4.52 4.13

Size (×100) Size Adj. Power (×100) Size (×100) Size Adj. Power (×100)

CCEMG CCEP

20 6.70 7.60 7.90 13.35 16.90 17.10 20 7.25 7.70 8.05 12.25 16.70 15.80

50 6.05 6.35 6.40 22.45 34.70 40.45 50 5.90 5.95 6.45 25.00 33.40 38.25

100 5.00 6.55 4.80 46.70 60.05 71.15 100 5.15 6.05 5.50 45.30 58.65 66.15

CCEMGX CCEPX

20 5.10 6.10 6.95 13.50 16.05 16.45 20 5.60 6.65 6.85 12.50 16.30 15.55

50 6.05 5.45 5.90 22.70 35.00 39.75 50 5.15 5.30 5.95 25.75 33.05 38.25

100 4.80 6.55 4.60 46.50 59.60 71.10 100 5.00 5.65 5.30 44.90 57.85 66.60

IPCMG IPCP

20 6.40 6.40 6.75 11.10 16.30 17.45 20 8.05 10.05 9.50 10.25 13.35 14.50

50 5.75 5.45 5.75 25.75 35.65 40.80 50 7.10 6.45 7.70 23.40 28.15 29.30

100 5.00 5.70 4.60 50.65 63.35 72.55 100 5.80 7.80 6.95 42.25 45.40 55.20

PCMGX PCPX

20 6.15 6.05 6.20 11.10 16.25 15.60 20 5.45 6.05 6.20 12.10 15.45 16.25

50 5.35 5.35 5.20 17.85 27.85 37.70 50 5.30 4.75 5.05 18.70 30.10 37.50

100 5.45 5.65 4.65 33.30 53.05 66.10 100 4.90 5.60 5.35 37.95 49.95 61.85

PCMGX2S PCPX2S

20 5.90 6.35 6.50 11.00 16.60 17.20 20 6.80 6.85 7.20 10.70 16.55 16.10

50 5.60 5.20 6.20 21.85 34.55 40.55 50 5.55 5.40 6.40 22.70 34.30 36.95

100 4.95 6.05 4.55 42.70 59.15 70.70 100 5.30 5.60 5.25 43.35 57.35 67.20

Notes: The individual slope coefficients are generated as βij = βj + ηij , βj = 1, ηij ∼ IIDN (0, σ2
ηj ) with σ2

ηj = 0.15, j = 1, 2,

which corresponds to the case of Low Heterogeneity. The results concern the average coefficient β1 of the DGP in (19).
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Table 3: Case 3 : High Spatial Dependence & Low Factor Dependence

Heterogeneous Homogeneous

HHH
HHHN

T
Bias (×100) RMSE (×100) Bias (×100) RMSE (×100)

20 50 100 20 50 100 20 50 100 20 50 100

CCEMG CCEP

20 -0.28 0.30 -0.26 14.24 10.41 9.25 20 -0.48 0.40 -0.25 13.65 10.88 9.70

50 0.33 -0.36 0.02 10.35 6.61 5.93 50 0.00 -0.25 -0.03 9.30 6.73 6.09

100 0.00 -0.15 0.08 6.79 4.80 4.19 100 -0.07 -0.22 0.07 6.37 4.90 4.34

CCEMGX CCEPX

20 -0.07 0.41 -0.21 15.23 10.62 9.28 20 -0.62 0.39 -0.21 13.72 10.80 9.67

50 0.30 -0.37 0.01 10.82 6.67 5.95 50 -0.01 -0.26 -0.02 9.26 6.72 6.09

100 -0.10 -0.18 0.07 6.88 4.80 4.19 100 -0.10 -0.23 0.06 6.35 4.87 4.32

IPCMG IPCP

20 -0.22 0.09 -0.34 12.48 10.20 9.44 20 -1.92 -1.51 -1.26 13.44 11.95 11.04

50 0.32 -0.19 0.07 8.90 6.47 6.02 50 -1.27 -1.45 -1.41 9.19 7.49 7.20

100 0.20 -0.02 0.26 6.01 4.70 4.26 100 -0.98 -0.92 -0.53 6.22 5.34 4.93

PCMGX PCPX

20 0.85 0.75 -0.08 19.59 12.62 9.91 20 0.44 0.59 -0.18 17.27 12.38 10.02

50 0.52 -0.11 0.11 12.84 7.54 6.26 50 0.23 -0.08 0.06 10.98 7.38 6.33

100 0.38 0.06 0.12 8.07 5.37 4.44 100 0.34 -0.03 0.11 7.26 5.30 4.52

PCMGX2S PCPX2S

20 0.06 0.40 -0.23 15.30 10.56 9.20 20 -0.30 0.30 -0.20 13.88 10.82 9.48

50 0.48 -0.21 0.06 11.18 6.62 5.89 50 -0.11 -0.21 0.00 9.50 6.71 6.05

100 0.10 -0.16 0.09 7.18 4.82 4.17 100 -0.04 -0.25 0.09 6.53 4.93 4.31

Size (×100) Size Adj. Power (×100) Size (×100) Size Adj. Power (×100)

CCEMG CCEP

20 6.30 7.85 7.80 11.65 15.05 16.80 20 6.90 7.00 8.10 10.80 15.85 16.30

50 5.75 5.95 6.25 16.30 28.25 37.75 50 5.75 5.15 6.10 18.15 30.10 36.65

100 5.05 6.60 4.55 31.25 49.95 67.70 100 5.25 6.35 5.25 34.20 48.40 62.10

CCEMGX CCEPX

20 3.05 5.05 5.70 10.45 14.65 17.20 20 3.35 5.00 6.10 10.45 14.95 15.85

50 4.85 4.70 5.50 15.10 29.30 37.30 50 3.70 4.40 4.85 18.30 28.90 38.00

100 4.10 6.15 4.30 31.70 50.50 66.90 100 4.30 5.85 5.20 35.00 49.05 61.85

IPCMG IPCP

20 6.55 6.45 6.45 10.20 15.25 16.40 20 8.65 7.75 8.40 9.10 12.60 12.50

50 6.30 6.00 5.00 21.10 30.15 38.60 50 7.35 7.10 6.85 16.25 20.70 21.45

100 4.95 6.35 5.05 41.25 53.55 65.65 100 6.60 7.50 6.05 30.85 39.55 49.05

PCMGX PCPX

20 6.10 6.45 6.10 8.40 12.55 14.95 20 5.45 6.45 5.95 8.85 12.85 14.60

50 5.90 5.45 5.15 12.25 23.80 35.55 50 5.90 5.05 5.15 12.40 25.85 34.20

100 4.95 5.65 4.85 26.00 44.80 61.10 100 4.70 5.75 5.10 29.60 43.30 59.65

PCMGX2S PCPX2S

20 5.50 7.15 6.90 10.20 13.70 16.30 20 5.85 6.45 6.85 9.50 14.80 15.65

50 5.00 5.70 5.50 16.80 29.80 38.85 50 5.45 5.30 6.00 17.20 30.30 35.40

100 5.25 6.35 4.75 28.90 51.80 66.60 100 4.85 6.35 5.25 33.80 48.30 62.85

Notes: See notes of Table 2.
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case, the first difference we notice concerns RMSE values which are higher for all estimators.

This is expected as the spatial dependence affects only the disturbances in (1). For instance

when N,T = 20 the RMSE of CCEMG is 14.24 which is almost 25% higher than the respective

value in the previous case. Similar conclusions apply to other estimators. Second important

finding is that in this case heterogeneous estimators which deal with common factors using

PC perform better than those using the CCE methodology. In terms of precision, the best

performing estimator is IPCMG in small to moderate samples. For instance, when N,T = 50

its RMSE equals 6.47 while that of the second best performer, CCEMG, is 6.61. Third finding

is on the comparison of the heterogeneous and the homogeneous estimators. In this case of

higher spatial dependence, the homogeneous estimators perform better than the heterogeneous

one in the smallest samples in general. For instance if we focus on the CCEMG and CCEP, we

see that their RMSEs are 14.24 and 13.65, respectively. This finding applies to other estimators

as well, with the exception of IPCMG and IPCP. Overall the best performer is still IPCMG

and for moderate to larger samples the dominance of heterogeneous estimators continue to be

valid.

Overall, a general feature that emerges is that the consistent heterogeneous estimators

perform better than their homogeneous counterparts, even if the results are more contrasted

when the degree of spatial dependence is high. Also we can conclude that the estimators using

the PC methodology are more robust to high degrees of spatial dependence.

We also simulated the model with a higher degree of heterogeneity in the slope coefficients,

namely with σ2
ηj = 0.3, j = 1, 2. In this case, all consistent heterogeneous estimators are

superior to homogeneous ones in all cases except when T = 20. Here again, IPCMG turns

out to be a better choice in terms of bias and RMSE than CCEMG in the case of high spatial

dependence. The results for this case are available upon request.

Tables 4 and 5 report the results on the partially heterogeneous estimators C-Lasso and

GFE estimators in the case of low heterogeneity. The two estimators are time consuming

compared to the others. For this reason, we perform for each experiment 1,000 replications

instead of 2,000. Two values are considered for the number of groups: K = 2 and K = 3.

The statistics of these estimators are computed by taking the averages of the values over the

groups.

As can be seen in Table 4 which concerns the case of low spatial dependence, C-Lasso is

more biased compared to the other estimators controlling for the unobserved common factors

discussed above. Whereas GFE shows very low biases. For instance, when N,T = 20 and

K = 2, the bias of C-Lasso is 1.62. Furthermore, the estimator does not seem to improve with

increases in the sample size or the number of groups: the corresponding value for N,T = 100

is 1.74 and for N,T = 20 and K = 3 is 2.16. In terms of RMSE, however, C-Lasso dominates

GFE for small values of N . For N,T = 20 and K = 2 the RMSE of C-Lasso is as small as
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Table 4: Partially Heterogeneous Estimators

Case 1 : Low Spatial Dependence & Low Factor Dependence

K = 2 K = 3

HHH
HHHN

T
Bias (×100) RMSE (×100) Bias (×100) RMSE (×100)

20 50 100 20 50 100 20 50 100 20 50 100

GFE

20 0.15 0.31 -0.16 12.33 10.68 10.18 0.11 0.55 -0.11 12.18 10.34 10.00

50 -0.28 -0.10 -0.38 7.27 6.72 6.64 -0.19 -0.19 -0.39 7.19 6.59 6.29

100 0.20 -0.17 -0.27 5.44 4.76 4.75 0.10 -0.11 -0.24 5.34 4.63 4.64

C-Lasso

20 1.62 2.27 1.71 11.17 10.45 10.05 2.16 3.01 2.53 11.24 10.69 10.26

50 1.84 2.03 1.75 7.27 6.89 6.41 2.90 3.05 2.68 7.52 7.22 6.80

100 2.15 1.45 1.74 5.88 4.91 4.78 3.10 2.70 2.70 6.04 5.28 5.08

Size (×100) Size Adj. Power (×100) Size (×100) Size Adj. Power (×100)

GFE

20 30.50 33.60 38.60 11.40 10.70 9.60 38.40 40.80 44.10 9.00 10.10 9.70

50 22.50 29.40 33.50 22.40 20.10 19.20 27.40 32.40 38.10 18.00 18.10 15.00

100 21.20 29.80 30.80 37.00 36.60 36.90 25.40 33.00 34.10 33.40 29.50 36.80

C-Lasso

20 18.80 20.80 21.50 11.50 12.30 13.70 31.40 34.10 38.70 11.00 11.20 9.40

50 13.20 13.20 12.90 22.80 28.40 25.10 22.60 27.20 27.30 16.60 18.20 17.40

100 12.60 11.50 13.30 36.20 38.80 35.00 23.50 24.50 25.20 31.00 28.70 26.50

Notes: See notes of Table 2.

11.17 whereas the corresponding value for GFE is 12.33. It is important to note that in this

case the RMSE of C-Lasso is lower than that of the best performing heterogeneous estimator,

namely CCEMG for which the corresponding number is 11.55. These results are confirmed

with the case of high spatial dependence for which the results are given in Table 5. In this

case biases are reinforced. For GFE, the absolute biases are similar to the heterogeneous and

homogeneous estimators discussed above. However the bias and RMSE of the estimator remain

higher than those of the well performing heterogeneous estimators.

3.2.2 Size and size adjusted power results

The size and size adjusted power constitute the second part of Tables 2-5. The nominal size is

set to 5% and the size is computed using a two-sided test under the null hypothesis H0 : β1 = 1.

The size adjusted power is investigated by testing H1 : β1 = 0.9.

The empirical sizes are very close to the nominal size for all values of N and T for most of

the estimators taking into account the unobserved common factors. Among these estimators,

it seems that the tests based on IPCP over-reject the null hypothesis. For instance, as seen
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Table 5: Partially Heterogeneous Estimators

Case 3 : High Spatial Dependence & Low Factor Dependence

K = 2 K = 3

H
HHH

HHN

T
Bias (×100) RMSE (×100) Bias (×100) RMSE (×100)

20 50 100 20 50 100 20 50 100 20 50 100

GFE

20 0.72 0.23 -0.15 13.40 11.34 10.79 0.39 0.36 -0.24 13.36 11.44 10.51

50 -0.39 -0.21 -0.48 7.90 6.95 6.81 -0.24 -0.31 -0.33 7.79 6.77 6.52

100 0.18 -0.20 -0.29 5.86 4.90 4.86 0.12 -0.18 -0.32 5.73 4.76 4.74

C-Lasso

20 2.33 2.14 0.60 13.29 10.75 9.82 2.04 2.96 1.59 13.36 10.86 9.97

50 2.20 1.58 1.38 8.23 6.98 6.54 2.92 2.68 2.43 8.17 7.26 6.72

100 2.58 1.54 1.40 6.77 5.36 4.93 3.20 2.80 2.53 6.76 5.57 5.32

Size (×100) Size Adj. Power (×100) Size (×100) Size Adj. Power (×100)

GFE

20 28.20 29.10 32.50 9.40 12.90 10.90 33.60 36.20 36.40 10.70 11.40 8.80

50 18.80 25.50 29.00 19.00 20.20 23.90 20.30 26.40 28.80 20.60 24.10 18.80

100 16.00 25.30 27.60 37.00 37.30 39.40 18.70 25.20 27.40 29.30 32.40 33.40

C-Lasso

20 19.50 19.70 17.70 10.60 11.50 9.70 30.90 35.80 33.60 9.50 10.70 10.20

50 15.40 11.70 12.50 20.90 21.90 19.20 20.40 23.50 27.90 15.80 17.30 16.50

100 13.30 13.70 14.10 28.20 38.20 38.30 18.70 24.80 24.30 27.20 27.40 26.50

Notes: See notes of Table 2.

19



in Table 2, its size is 8.05% when N,T = 20. Although it performs better than IPCP, tests

based on CCEP are over-sized as well in small samples. The corresponding number for this

estimator is 7.25%. The conclusions are similar in the case of high spatial dependence for

which the results can be seen in Table 3. Once more, most of the estimators are performing

well in small samples except IPCP which over-rejects the null hypothesis.

The tests based on C-Lasso and GFE are hugely over-sized. This is an expected result as

these estimators wrongly assume a grouped factor structure instead of taking into account the

heterogeneity in unit-specific coefficients.

Figure 1 reports the RMSE and size adjusted power of these estimators considering the

alternative hypothesis H1 : β1 = 0.7. When N = 50 as T increases, it is seen that the RMSEs

tend to 0 whatever the estimator considered, whereas the size adjusted power values tend

to 100. Compared to the tables we discussed above, this figure adds additional information

because we also consider T < 20. It appears that for T < 15, the homogeneous CCEP

and IPCP estimators have lower RMSE and higher size adjusted power compared to their

homogeneous counterparts CCEMG and IPCMG. As soon as T ≥ 15, CCEMG and IPCMG

tend to dominate all the other estimators, especially the homogeneous ones.

4 Empirical application

In this section, we present an empirical application which demonstrates the estimation pro-

cedures introduced in the previous sections. The main objective is to investigate the role of

heterogeneity and CD on the estimates of the effect of fiscal decentralization on government

size in OECD countries.

4.1 Empirical model and the data

Our empirical model is based on that of Jin and Zou (2002) where the dependent variable, which

we denote size, is one of the following measures of size of government: aggregate government

size, national government size, and subnational government size. They are defined as the total

tax revenue, tax revenue in central level, and tax revenue in state and local levels combined,

respectively. All these variables are measured as shares in GDP. The main focus is on the

effect on aggregate government, however, following Jin and Zou we also report some results

after disaggregating the government size. The main argument behind the relation between

the level of decentralization and government size is that decentralization would lead to fiscal

discipline such that, tax autonomy or local power on public spending decisions encourage local

governments’ fiscal responsibility (see Martinez-Vazquez et al., 2017, for a detailed survey of

the literature).
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We model government size as

size
(l)
it = αi1 + αi2t+ βi1decit + βi2infit + βi3grit + βi4urbit + βi5openit + eit, (22)

where l = 1, 2, 3 denotes aggregate government size, national government size, and subnational

government size, respectively, dec is the variable of interest denoting the degree of fiscal decen-

tralization measured as the ratio of the sum of tax revenue in state and local levels to total tax

revenue. Control variables are inf , the annual consumer price inflation, gr, the annual GDP

growth, urb, the urban population as a share of total population, and open, the openness index

defined as the ratio of the sum of imports and exports in GDP. In addition to these control

variables Jin and Zou use two time invariant variables (borrowing constraints and federal vs.

unitary indicator), an indicator for elected versus non-elected subnational governments and

an indicator for political central banks. As these variables rarely have statistically significant

effects on government size and because of their (nearly or completely) time invariant nature, we

do not consider them in our model. On the contrary, as will be discussed below, the variables

of interest follow some heterogeneous trends in our case. Hence, we added a trend in the model

as an observed common factor.

The data on fiscal variables size and dec come from the OECD Fiscal Decentralisation

Database. We collected the data on other variables from the World Development Indicators

database of the World Bank. Our final data set contains 10 variables on 22 OECD countries

between the years 1973 and 2017. The countries considered are AUS, AUT, BEL, CAN, CHE,

DEU, DNK, ESP, FIN, FRA, GBR, GRC, IRL, ITA, JPN, LUX, NLD, NOR, NZL, PRT, SWE

and USA. In addition to the variables in the model above, we have data on inv, investment

ratio, and pop, annual population growth. In the original data set there were occasional missing

values. In GRC, fiscal variables for the years 1973 and 1974, and in NZL pop were missing for

1991. Instead of dropping the countries from the data set, we extrapolated these values using

a linear trend.
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4.2 Preliminary analysis

In this subsection, we report a preliminary analysis of the variables in our data set. The

descriptive statistics of the variables are reported in Table 6.

Table 6: Descriptive Statistics

Variable Notation Mean Std. Dev. Min. Max.

Fiscal Variables

Aggregate Government Size size(1) 0.343 0.070 0.166 0.495

National Government Size size(2) 0.283 0.073 0.108 0.417

Subnational Government Size size(3) 0.060 0.046 0.000 0.167

Decentralization dec 0.175 0.135 0.000 0.502

Control Variables

Consumer Inflation inf 0.048 0.051 -0.045 0.310

GDP Growth gr 0.024 0.026 -0.091 0.252

Urbanisation urb 0.761 0.104 0.400 0.980

Openness open 0.741 0.514 0.131 4.084

Additional Variables

Investment Ratio inv 0.233 0.038 0.115 0.387

Population Growth pop 0.006 0.005 -0.019 0.038

We applied two tests of CD to each variable in the data set. These are the LM test of

Breusch and Pagan (1980) and a modified version of this test, the Modified BP Test. The first

test follows a χ2 distribution with N(N − 1)/2 degrees of freedom as T goes to infinity for

fixed N under the null hypothesis of no CD, and the second one is distributed as a standard

normal for large T and N (see Pesaran, 2015, for details). The results are reported in Table 7

where the statistics can be found for each original variable and their defactored versions. As

can be seen, for all variables in the data set the hypothesis of no CD can be rejected in any

significance level. Moreover, even when we remove the common factors which are discussed

in what follows, the no CD hypothesis can be rejected. This shows that allowing for common

factors is not sufficient to model the CD in these variables.

Following these CD test results, we estimated the common factors in fiscal variables aggre-

gate government size and decentralization. We extracted the first three PC s from these series

using the estimation methodology in Bai and Ng (2002) and Bai (2003). These time series are

shown in Figure 2 and their loadings are reported in Table 8. As is seen in the first graphs
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Figure 2: Common Factors in Fiscal Variables
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Table 7: CD Test Results

Variable size(1) size(2) size(3) dec inf gr urb open inv pop

Panel a: Original Data

Breusch-Pagan LM Test 2926.20 2543.30 3448.50 2845.50 6772.10 2253.20 7990.50 6005.80 2432.70 1546.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Modified BP Test 125.40 107.60 149.70 121.60 304.30 94.10 361.00 268.70 102.40 61.20

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel b: Defactored Data

Breusch-Pagan LM Test 87.82 89.52 83.25 85.11 84.34 72.43 167.22 130.96 111.08 86.29

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Modified BP Test 30.10 30.90 28.00 28.90 28.50 23.00 67.00 50.20 40.90 29.40

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: For each variable xit, the Breusch-Pagan LM Test statistics are computed as CDBP = T
∑N−1
i=1

∑N
j=i+1 κ̂

2
ij where κ̂ij is

the correlation coefficient between xit and xjt. Under the null of no CD, the asymptotic distribution of the test statistic is χ2
q with

q = N(N − 1)/2. The Modified BP Test statistics are computed as CDM = [N(N − 1)]−1/2
∑N−1
i=1

∑N
j=i+1(T κ̂2ij − 1) which is

distributed as N(0, 1) under the null of no CD. p-values are in parentheses. The test statistics given in Panel b are computed after

removing country fixed effects and the unobserved common factors estimated using PC methods. For each variable the number of

common factors are chosen using the information criterion ICp1 of Bai and Ng (2002).

of each panel, both variables have a strong trend component which is roughly linear in almost

the entire period under consideration. For government size, this trend breaks in 2000 and gets

flatter, whereas for decentralization such a change occurs after 2010. The loadings of the first

common factor of the government size series given in the first column of Table 8 show that, for

the majority of countries government size tended to increase over this period as the loadings

are positive. Three exceptions are GBR, IRL and NLD which have negative loadings. For the

countries where the loadings of the second factor is negative, this trend is compensated until

1990 as the second common factor has a downward trend until this year. Last common factor

of this series shows a more irregular behavior compared to the others. Overall, we can see

that the first common factor captures the long run movements whereas the last one shows the

higher frequency ones.

The results are very similar for decentralization. The loadings of the first common factor

are positive for roughly half of the countries for this variable. As the first common factor

is downward sloping, the countries with a positive factor loading experienced a decreasing

level of decentralization over the period. However, as in the previous case, the second factor

compensates this trend for some of the countries. Once again, the third common factor captures

the higher frequency component.

As a conclusion to this subsection, we can say that the fiscal variables show trends and they

are strongly cross-sectionally correlated in the sample in hand. As a result, we can expect to

be able to better model them using methods which take into account common factors.

25



Table 8: Factor Loadings for Fiscal Variables

Aggregate Government Size Decentralization

Country Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

AUS 0.76 -0.33 0.25 0.03 -0.36 -0.86

AUT 0.91 0.05 -0.04 0.87 -0.03 -0.10

BEL 0.87 0.16 0.21 -0.86 0.27 -0.06

CAN 0.57 -0.61 -0.30 -0.81 0.28 -0.19

CHE 0.87 0.35 0.12 0.91 0.17 -0.03

DEU 0.24 0.29 -0.29 0.46 0.65 0.18

DNK 0.90 -0.11 -0.07 0.25 -0.75 -0.09

ESP 0.94 -0.07 -0.03 -0.96 0.05 0.07

FIN 0.85 -0.13 -0.29 -0.09 0.72 -0.26

FRA 0.94 0.09 0.03 -0.91 0.01 -0.19

GBR -0.17 -0.02 0.74 0.80 0.31 0.28

GRC 0.85 0.44 -0.04 0.08 0.70 0.03

IRL -0.03 -0.81 0.21 0.57 0.53 -0.14

ITA 0.92 0.16 -0.07 -0.90 0.12 0.21

JPN 0.73 0.07 -0.05 0.12 -0.43 0.34

LUX 0.73 0.27 0.45 0.86 -0.24 -0.03

NLD -0.22 -0.56 -0.13 -0.91 -0.15 0.13

NOR 0.17 -0.22 0.82 0.86 -0.09 -0.40

NZL 0.48 -0.68 -0.10 0.29 0.82 -0.05

PRT 0.92 0.25 -0.04 -0.88 -0.25 -0.01

SWE 0.55 -0.66 0.18 -0.72 0.40 -0.21

USA 0.46 -0.42 -0.30 -0.43 0.28 -0.17
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4.3 Results

The results of estimation of the model (22) by heterogeneous and homogeneous estimators

using aggregate government size, size(1), as the dependent variable are reported in Table 9.

Whereas the results for the partially heterogeneous estimators are reported in Table 10.

Following Bresson et al. (2011), we compare the models and estimation methods by their

predictive performance. Hence, each table reports in-sample RMSE values averaged over coun-

tries. To calculate these RMSE values, we follow the Auxiliary Variables Approach by Akgun

et al. (2020). This method, originally developed for out-of-sample forecasting, is based on the

estimation of the unobserved common factors using the explanatory variables of the model as

well as some exogenous variables which do not enter into the estimation equation. The fore-

cast methodology consists of four steps. In the first step, the slope parameters are estimated

by any estimator robust to unobserved common factors. In the second step, the unobserved

common factors are estimated by PCA from a number of auxiliary variables which can include

the explanatory variables of the model. In the third step, the residuals from the first step are

regressed on these estimated common factors to estimate the factor loadings. In the final step,

the forecasts are computed using the estimated slope coefficients, common factors and factor

loadings.

In our application, we use investment ratio and annual population growth as additional

variables to estimate the unobserved common factors. These variables are used also for the

estimators Ind. CCEX, CCEMGX and CCEPX. For the calculation of RMSE, we use the

unit-specific estimates in the case that the related estimator assumes heterogeneity. In each

table concerning the estimation of the model, we report the estimates of the parameter β1 =

E(βi1), whereas the prediction RMSEs are computed using the unit-specific estimates for the

heterogeneous estimators. Standard errors reported are computed using the variance formulas

in Appendix.

In Table 9, the estimates of the parameter of decentralization are always negative, which is in

line with the existing literature. It varies between -0.08 for CCEMG and -0.37 for PCMGX. The

estimator which gives the smallest average RMSE is Ind. CCEX. The mean group estimator

based on this estimator, CCEMGX, provides an estimate equal to -0.24. This implies that,

on average, one percentage point increase in tax decentralization diminishes the government

size by 0.24 percentage points. When we compare this estimate and its respective RMSE with

the ones provided by homogeneous estimators we see that the latter ones always have larger

RMSEs and point out to a smaller effect in absolute terms. Based on in-sample prediction

precision measured by average RMSEs, in this analysis our preferred estimate is Ind. CCEX

and the mean group estimator based on it, CCEMGX.

In Figure 3 the country-specific estimates of the marginal effect of decentralization are

reported using the preferred estimator Ind. CCEX together with their 95% confidence bands

27



T
ab

le
9:

E
st

im
at

io
n

R
es

u
lt

s
fo

r
H

o
m

o
g
en

eo
u

s
a
n

d
H

et
er

o
g
en

eo
u

s
E

st
im

a
to

rs

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

C
C

E
M

G
C

C
E

P
C

C
E

M
G

X
C

C
E

P
X

P
C

M
G

X
P

C
P

X
IP

C
M

G
IP

C
P

P
C

P
2
S

X
P

C
M

G
X

2
S

D
ec

en
tr

al
is

a
ti

on
-0

.0
8

-0
.1

4
-0

.2
4

-0
.1

2
-0

.1
5

-0
.1

4
-0

.3
7

-0
.2

2
-0

.3
3

-0
.1

5

(0
.2

3
4)

(0
.0

78
)

(0
.2

09
)

(0
.1

0
4)

(0
.2

3
5
)

(0
.0

83
)

(0
.1

5
1)

(0
.1

2
7)

(0
.1

56
)

(0
.1

12
)

C
on

su
m

er
In

fl
at

io
n

0
.1

0
0.

01
0.

0
6

-0
.0

1
-0

.0
2

-0
.0

3
0.

0
6

0
.0

3
0
.0

6
0
.0

5

(0
.0

4
5)

(0
.0

48
)

(0
.0

46
)

(0
.0

4
7)

(0
.0

3
6
)

(0
.0

34
)

(0
.0

4
8)

(0
.0

4
)

(0
.0

38
)

(0
.0

23
)

G
D

P
G

ro
w

th
-0

.0
9

-0
.1

1
-0

.1
2

-0
.1

1
-0

.0
8

-0
.1

2
-0

.1
5

-0
.1

6
-0

.1
6

-0
.1

1

(0
.0

4
4)

(0
.0

32
)

(0
.0

51
)

(0
.0

3
3)

(0
.0

3
1
)

(0
.0

44
)

(0
.0

3
9)

(0
.0

3
5)

(0
.0

33
)

(0
.0

33
)

U
rb

an
is

a
ti

on
-0

.1
6

-0
.2

0
-0

.0
6

-0
.1

6
-0

.4
4

0.
3
7

0
.5

8
0.

3
3

0.
4
4

0
.2

2

(0
.2

3
4)

(0
.2

33
)

(0
.4

22
)

(0
.3

8
2)

(0
.4

5
3
)

(0
.4

44
)

(0
.4

2
9)

(0
.4

1
4)

(0
.3

13
)

(0
.3

6
)

O
p

en
n
es

s
-0

.0
1

-0
.0

4
0.

0
3

-0
.0

4
-0

.0
4

0
.0

1
0
.0

4
-0

.0
4

0
.0

3
-0

.0
4

(0
.0

2
5)

(0
.0

2)
(0

.0
31

)
(0

.0
4
8)

(0
.0

2
7
)

(0
.0

27
)

(0
.0

4
4)

(0
.0

3
1)

(0
.0

38
)

(0
.0

26
)

A
ve

ra
ge

R
M

S
E

(x
10

0
)

0
.8

3
1

0.
94

6
0
.8

0
3

0
.9

5
1

0
.9

68
0
.9

5
8

1
.1

6
6

0
.9

5
7

1
.1

1
1

0.
9
55

N
ot

es
:

S
ta

n
d
a
rd

er
ro

rs
in

p
ar

en
th

es
es

ar
e

co
m

p
u
te

d
u
si

n
g

th
e

fo
rm

u
la

s
in

A
p
p

en
d
ix

.
“
A

ve
ra

ge
R

M
S
E

”
d
en

ot
es

in
-s

a
m

p
le

R
M

S
E

va
lu

es

av
er

ag
ed

ov
er

co
u
n
tr

ie
s.

28



computed using the Newey and West (1987) estimator in (A.1). This figure also decomposes

the effect of decentralization into the size of different levels of government. First of all, in all

panels we see that a considerable amount of heterogeneity exists among countries in terms of

the effect of decentralization. Shown in part (a), all country-specific coefficient estimates are

positive, except USA, and they range between roughly zero for USA and 0.6 for DEU and FIN.

The average of these estimates is 0.31 which is much larger than the estimate of Jin and Zou,

0.12. The effect on national government size, reported in part (b) is the source of the negative

effect of decentralization on total government size. Here, there are two countries which have

estimated coefficients much larger than unity in absolute terms. For some countries we also

see positive effects although they are statistically insignificant. This is similar for the effect on

total government size shown in part (c). Once again, we see countries with very large negative

effects, some with small negative effects and some with positive effects. In what follows we

report the results on partially heterogeneous estimators to see if these groups can be identified

by GFE and C-Lasso.

The estimation results for each group selected by GFE and C-Lasso are reported in Table

10. As we have a relatively small number of panel units, we chose small numbers of groups

K = 2 and K = 3. These are also the numbers of groups we used in the Monte Carlo

simulations.

We see from the estimation of the model that the RMSE values are smaller for K = 3

using any estimator. The smallest average RMSE is reached by C-Lasso in this sample. The

estimator identified the countries with negative effects, some with smaller negative effects

and some with positive effects. The first group of countries has a coefficient of -0.66 which

is more than twice as big as the average effect estimated by the homogeneous estimators.

This group has seven countries which are reported in Table 11. All countries in this group

have the same sign as estimated by the unit-specific estimators except GRC which had a

positive but insignificant coefficient when estimated with Ind. CCEX. The second group also

contains seven countries and their estimated coefficient is 0.53. All of these countries had

positive coefficients estimated by Ind. CCEX except IRL. The last group is the countries with

moderate negative effect which is estimated as -0.20. This group has eight countries for half of

which the coefficients are statistically significant when estimated by Ind. CCEX. Overall, we

can see that C-Lasso groups the countries reasonably with respect to the estimates provided by

the unit-specific estimator. The average estimated coefficient over groups equals -0.11 which is

smaller in absolute terms compared to the estimates provided by the heterogeneous estimator

CCEMGX.

When we compare the partially heterogeneous estimators with the fully heterogeneous ones,

we see that the in-sample predictions of the latter are better compared to those of the former.

The in-sample RMSE of C-Lasso is 0.854 with K = 3. The corresponding value for the Ind.
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Figure 3: Estimated Marginal Effects of Decentralization on Government Size and 95% Con-

fidence Bands
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CCEX is 0.803 as mentioned above. To conclude, we see that the optimal heterogeneous

estimators outperform the homogeneous and partially heterogeneous ones.

5 Conclusion

In this paper, we evaluated the performance of alternative homogeneous, heterogeneous and

partially heterogeneous panel data estimators. The comparison was performed by Monte Carlo

simulations as well as real data using several models with cross-sectional dependence modeled

by spatial error dependence and common factors. These specifications allowed us to compare

and contrast the case of weak cross-sectional dependence with the case of strong cross-sectional

dependence. We revisited the recent literature on alternative estimation procedures accounting

for the nature and the degree of cross-sectional dependence. We compare the performance

of twelve estimators using an extensive Monte Carlo exercise under low and high levels of

heterogeneity as well as weak and strong cross-sectional dependence generated by spatial error

dependence and unobserved common factors structures, respectively.

Our main results can be summarized as follows: (i) Even for small T and N , heterogeneous

estimators, especially CCEMG of Pesaran (2006) and IPCMG Song (2013), outperform their

homogeneous counterparts. However, most of the estimators considered show desirable small

sample properties. (ii) The dominance of the heterogeneous estimators are more pronounced

for the case of high heterogeneity, as expected. This main result holds for different degrees of

spatial dependence and factor dependence. (iii) The main difference on the performance of the

two methods of dealing with unobserved common factors, namely common correlated effects

(CCE ) and principal components (PC ), occurs when we change from low to high spatial de-

pendence whereas changing from low to high factor dependence does not make a big difference

in their comparative performance. The estimators based on PC methods are found to be more

robust to spatial dependence compared to those based on CCE. This result shows that both

methodology work equally good against unobserved factors. (iv) Among the two partially het-

erogeneous estimators assuming a grouped structure of heterogeneity, the GFE of Bonhomme

and Manresa (2015a) performs well in terms of bias and RMSE whereas C-Lasso of Su et al.

(2016a) based on CCE transformation gives less satisfactory results. The performance of GFE

improves as we increase the number of groups assumed in the estimation.

Finally, we applied the methods to the estimation of the effect of fiscal decentralization on

the size of government using data from 22 OECD countries over the period 1973-2017. These

findings are confirmed using real data. We documented that a considerable amount of hetero-

geneity exists among countries with respect to the estimated effect of fiscal decentralization on

the size of government which is an important finding from a policy perspective. Though, our

findings are in line with the previous literature in terms of the estimated average effect over
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Table 11: Country Groups Selected by C-Lasso

Groups Coefficients Countries

Group 1 -0.66 CHE GRC NLD NOR NZL SWE USA

Group 2 0.53 DEU ESP FIN FRA GBR IRL LUX

Group 3 -0.20 AUS AUT BEL CAN DNK ITA JPN PRT

countries. The result show that, heterogeneous estimators outperform the homogeneous and

heterogeneous ones in terms of in-sample prediction precision.

The main findings in this paper suggest some interesting further developments. First, in our

Monte Carlo simulations we assumed that the number of factors is known. If this is not the case,

the number should be estimated and investigated from the sample. Second, CCE estimators

require a rank condition to hold. As Westerlund and Urbain (2013) show CCE methods can

even turn inconsistent in this case, it would be interesting to study the consequences of rank

deficiency. Third, we evaluated the performance of the estimators assuming grouped structure

of heterogeneity. It will be interesting to extend our analysis to the case of shrinkage estimators

that can be considered as a hybrid solution between homogeneous and heterogeneous estimators

(see Maddala et al., 1994, 1997; Hsiao et al., 1999). This is an ongoing research agenda.
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Appendix Variance formulas

For unit-specific estimates that we report in our empirical application, we use Newey and West

(1987)’s heteroskedasticity and autocorrelation consistent (HAC) covariance estimator defined

as

V̂ ar(β̂H,i) =
1

T 2

T∑
t,s=1

kT

(
|t− s|
p+ 1

)
x̃itx̃

′
isûitûis, (A.1)

where kT (·) is the kernel function with p being its associated bandwidth, x̃it is the tth col-

umn of X′i.MH , ûit = yit − α̂′idt + β̂H,ixit, α̂i = (D′D)−1D′(yi. − Xi.β̂i) and β̂H,i =

(X′i.MHXi.)
−1

X′i.MHyi. being a generic estimator defined by the matrix MH . For instance,

for CCE estimator in (5), we have MH = M̄f , for PCX in (10) we have MH = Mp etc. For the

iterative estimator (14), the matrix MH is defined by the common factor estimates achieved

after numerical convergence. To implement this estimator we use the Bartlett kernel with a

bandwidth equal to b2T 1/2c where b·c denotes the largest integer smaller than its argument.

In presence of heterogeneous slopes and an error term which contains common factors and

spatial effects, Pesaran and Tosetti (2011) show that the non-parametric variance estimators

proposed by Pesaran (2006) are valid and can be used to obtain robust standard errors for the

slope coefficient estimates. In our Monte Carlo simulations, we use similar variance formulas
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for heterogeneous and homogeneous estimators. For the mean group and pooled estimators we

respectively use

V̂ ar(β̂H,MG) =
1

N (N − 1)

N∑
i=1

β̂
H,i
β̂
′
H,i
, (A.2)

and

V̂ ar(β̂H) =
1

N
Q−1H ΛHQ−1H , (A.3)

with

QH =
1

N

N∑
i=1

(
X′i.MHXi.

T

)
,

ΛH =
1

N − 1

N∑
i=1

(
X′i.MHXi.

T

)
β̂
H,i
β̂
′
H,i

(
X′i.MHXi.

T

)
,

where β̂
H,i

= β̂H,i− β̂H,MG, β̂H,i = (X′i.MHXi.)
−1

X′i.MHyi. and β̂H,MG = N−1
∑N
i=1 β̂H,i.

The matrix MH is defined differently for different estimators as explained above.

If the slope parameters are in fact homogeneous, these variance estimators are not valid.

Pesaran and Tosetti (2011) propose non-parametric variance estimators that combine Newey

and West (1987)’s HAC and spatial HAC procedure of Kelejian and Prucha (2007). They are

computed as

V̂ ar(β̂H,MG) =
1

(NT )2

N∑
i,j=1

T∑
t,s=1

kS

(
φij
φN

)
kT

(
|t− s|
p+ 1

)
x˜itx˜′jsûitûjs, (A.4)

V̂ ar(β̂H) = Q−1H

 1

(NT )2

N∑
i,j=1

T∑
t,s=1

kS

(
φij
φN

)
kT

(
|t− s|
p+ 1

)
x̃itx̃

′
jsûitûjs

Q−1H , (A.5)

where kS(·) is the cross-section kernel function, φij is the distance between the units i and

j, φN is the threshold distance which is an increasing function of N , x˜it is the tth column of

X˜ ′i. =
(
T−1X′i.MHXi.

)−1
X′i.MH and ûit = yit− α̂′idt + β̂′xit with β̂ being β̂H,MG or β̂H for

the respective estimator.

As suggested by Bonhomme and Manresa (2015a), when heterogeneity follows a grouped

pattern, one can use the estimator defined in (A.5) to estimate the covariance matrix of the

GFE estimator. If the interest lies on inference concerning the group specific parameters λg

we can apply this formula to each group in the panel to compute the covariance matrices of

the GFE and C-Lasso estimators. To calculate the variance of these estimators, within each

group g, we set kT

(
|t−s|
p+1

)
= 1 if t = s, zero otherwise and kS

(
φij

φN

)
= 1 for all i, j.
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