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Abstract The principle of biological autonomy, introduced by Francisco J. Varela, 
addresses the dilemma of Cartesian mind-body dualism by re-casting mind and body, or 
subject and object, observer and observed, not as irreconcilable categories, but as 
complementary perspectives on the same biological phenomena. Indeed, this distinction 
between self and non-self may be seen as a necessary pre-condition for autonomy. An 
autonomous system is self-governing in that it is concerned with preserving its unique 
character, or unity. Furthermore, an autonomous system is operationally closed in that it 
forms a self-referential network without reference to an external world. This paper 
develops these ideas in relation to thinking about embodied, enactive robotics. As well 
as being constructed artefacts, what is it to look at robots as truly autonomous agents? 
In this context we begin to explore the concept of operational closure analytically. We 
utilise natural connectivity as a quantitative measure of the cyclicity of these 
operationally closed internal processes. In doing so we discover that increased natural 
connectivity of an autonomous system confers a greater behavioural robustness when it 
is coupled with the external world. 
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0. Introduction 
Varela’s enactivism (Varela et al. 1991) is an approach to understanding how robots can 
operate autonomously in the human environment. The approach is rooted in the 
existentialist philosophy of Martin Heidegger (Heidegger 1962) and his ideas of the 
nature of human existence as being thrown into the world. These ideas were taken 
further by Maurice Merleau-Ponty (Merleau-Ponty 1962) who described the self as a 
unification of mind and body, with all the physical needs that entails. Where a 
disembodied computer has no real needs, a mobile robot has very real power 
requirements to satisfy; an autonomous robot is thrown into this world just as we are. 
On a practical level a mobile robot must be able to find a power source and charge its 
batteries to remain viable. While this may not count as a lived experience, for robots are 
not alive, can we speak in terms of a robot being an autonomous agent? 
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Varela’s Principles of Biological Autonomy (Varela 1979) emerged alongside Maturana 
and Varela’s Autopoiesis (Maturana, Varela 1980). Autopoiesis addresses the question of 
what it means to be alive and is concerned primarily with the physical self-production of 
living beings as characterized by the dynamic process of cellular regeneration. Living 
beings are autonomous by virtue of their autopoietic nature; an organism faces the 
world on its own terms, driven by the need to find sustenance. It would be a mistake to 
apply autopoiesis to our current technologies as conventional computers and robotics 
clearly do not have this regenerative capability. While autopoiesis implies autonomy, the 
reverse is not the case. Varela’s (Varela 1979) definition of autonomy focuses instead on 
the unity brought about by self-organization. This refers to the self-organization of 
processes within the organism that ultimately produce observable visible behaviours. By 
behaviour we mean goal-oriented activity produced by an organism or agent, rather than 
the motion of a passive object. This choice is influenced by Merleau-Ponty in The 
Structure of Behaviour (Merleau-Ponty 1942: 36), «the motor devices appear as the means 
of re-establishing an equilibrium, the condition s of which are given in the sensory 
sector of the nervous system». These behaviours constitute a closed homeostatic loop 
with the goal of ensuring continued survival. This latter theory is far more pertinent to 
AI and autonomous robotics; whilst not alive, an autonomous robot must protect its 
own existence; its identity, as realised by a complex set of behaviours. 
 
 
1. Robot and environment 
We are interested in autonomous behaviours that enable robots to function semi-
independently of humans. Organisms and robots are structurally coupled with their 
environments through sensorimotor activity; this is their interface with the 
environment. One advantage of working with robots is that it is straightforward to 
record their behaviour, capturing not just movement but also incoming sensor data. 
The working example used throughout this paper is W. Grey Walter's ELSIE robot 
(Walter 1953). The name is an acronym for Electro-mechanical Light-Sensing robot 
with Internal and External stability. It has a functional simplicity that lends itself well to 
experimentation, and yet it is also an autonomous robot in that its behaviour exhibits a 
long term viability as it is also able to periodically recharge its batteries, much like a 
modern robotic vacuum cleaner. These Machina Speculatrix, as Walter called his family of 
robots, were not digital computers, but were analogue electronic creatures. It wasn’t 
simply that stored-program digital computers didn’t physically exist until 1948, the same 
year ELSIE was built, but according to Walter, no «variety of programming endow a 
machine with the autonomous qualities of a true mimicry of life». Whatever the truth of 
this, we can explore the behaviour of these creatures by simulating them in software. 
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Fig 1.  

ELSIE simulation: the scanning turret (direction in green) contains a single photo-cell, and the shell 
senses obstacles through mechanical contact. As the characteristic epicyclic path of the robot is traced 

out, it can be seen that this path is an orbit around the light-source at the centre of the figure. 

 
In order to understand ELSIE’s behaviour, a software simulation was constructed. This 
is not a deep simulation of the electronics, but is a rule-based behavioural model 
coupled with a two-dimensional kinematic simulation of the robot hardware. The 
simulated environment is populated by random obstacles and a single source of light 
and power. A screen-capture of the ELSIE simulation can be seen in Fig 1. The output 
includes a trace of the robot’s path displaying the characteristic epicyclic trajectory. 
ELSIE has separate drive and steering motors both ingeniously connected to the front 
wheel. These run at different speeds according to the current state. The front drive 
wheel is fixed to a rotating turret, topped by a photocell aligned with the forward 
direction of the drive wheel. The photocell is directional and this direction is indicated 
in the simulation by a green line emanating from the turret. As this scanning photo-cell 
sweeps across the light source, its circuitry is stimulated by the increasing light level to 
increase the speed of the drive motors, while simultaneously reducing the scanning 
speed. This behaviour gradually brings the robot closer to the light where the battery 
charger resides. 
On encountering an obstacle, the movement of the outer shell pressing against it 
activates a ‘trembler’ switch. When this happens the robot enters an oscillatory state that 
flips rapidly between pushing and turning, «The steering-scanning motor is alternately 
on full- and half-power and the driving motor at the same time on half- and full-power» 
(ibid.). This enables ELSIE to wriggle free of the offending obstacle both in reality and 
in simulation, as shown in Fig. 2. 
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Fig. 2 

ELSIE simulation: obstacle detection is simulated by detecting the intersection of the robot's bounding 
box with that of an obstacle; the square box. As in the real system, the contact signal persists for a short 

period after breaking contact. 

 
Even though this behaviour is continuous and analogue, it may be classified 
symbolically. The classifications used here are the set of symbols (E, P, N, O, R) and 
this classification captures both sensor data and motor activity. This combination of 
sensor and motor activity is deliberate. Merleau-Ponty teaches us that «the sensorium 
and motorium function as parts of a single organ» (Merleau-Ponty 1942: 36). If it were 
like anything to be a robot, then this combined sensorimotor activity might be said to 
constitute its subjective phenomenological experience.  
ELSIE’s usual mode of behaviour is to explore (E) the environment driving forward 
slowly with a rapidly scanning turret searching for the light source. As it encounters 
obstacles (O), ELSIE wriggles free of them with the oscillatory motion described above. 
ELSIE is attracted to light from afar – positive phototaxis (P), stopping the scanning 
motor to keep the light source in view for as long as possible. As it approaches a light 
source on a full battery it is repelled from the bright light – negative phototaxis (N), 
turning slowly away from it. Only when the battery is low is its repulsion to bright light 
overcome, allowing it to approach the light source and recharge (R), at which point both 
motors are disconnected until she is fully recharged. These behaviours are summarised 
in Table 1. This simulation is used to generate data for both training and testing. 
 
behaviour pattern collision light level scan/drive 
E - Exploration no low fast/slow 
P - Positive phototropism no medium stop/fast 
N - Negative phototropism no high slow/fast 
O - Obstacle avoidance yes ANY 1Hz oscillation 
R - Recharge no ANY stop/stop 
 

Table 1.  
ELSIE behavioural patterns 
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From an enactive perspective, this is sensorimotor data only from an external observer’s 
perspective (Varela et al. 1991). By definition, an enactive system has no direct 
input/output, but of course a robot does have sensors and actuators. While there is no 
place for external data within an operationally closed autonomous system, external 
perturbations may push an autonomous system from one state into another. The 
behaviour patterns in Table 1 form a so-called domain of interactions; the domain of all 
perturbations/actions the system may undergo without loss of autonomy. 
The behavioural data define a simple language formed of sequences of symbols 
produced by the robot embedded within its environment. These symbols are arranged 
in a string where the left-to-right order represents observable behaviour in the world as 
time passes. We record only changes in state, so no pairs of neighbouring symbols are 
alike. To emphasise viable behaviours, the simulation includes a virtual battery that 
rapidly runs down as ELSIE explores the environment. As the battery runs down 
ELSIE must seek to recharge or else it will cease to function. Table 2 shows a small 
sample of this data. For simple autonomous systems we assume that this is a Chomsky 
Type 3 regular grammar which can be accepted by a finite state automaton. This is 
sufficient to explore a wide range of viable autonomous behaviours.  
 

EPEPEPNPEPNPE… 

EPEPEPNPEPNPE… 

EPEOEPONOEOPEPEPE… 

EPEPOPNPEPRNPE… 

⋮ 
Table 2. Samples of observed behaviour 

 
 
2. Autonomous systems 
While the analogue behaviour of robots like ELSIE can be described as dynamical 
systems, Varela sought alternative approaches that could be used to understand the 
cyclic and closed nature of autonomous systems. In Principles of Biological Autonomy (1979) 
Varela explores the ‘logic of distinctions’ expounded by G. Spencer-Brown (1969) using 
this to discover autonomous recurrent states. In this paper, Finite State Machines serve 
a similar role and may be more familiar to a modern audience. This enables us to analyse 
cyclic behaviours in terms stable dynamics known as eigenbehaviours (von Foerster 2003). 
This eigenbehaviour is the signature of the autonomous system, constituting its very 
identity. 
Each node of a state-machine represents a distinct, separate state, which is a simple and 
effective technique for primitive robots, but with increased complexity the method 
would quickly get out of hand due to combinatorial explosion. As an autonomous 
system a state-machine satisfies the requirement for organizational closure. With no 
input/output to consider, the transitions of the state-machine are unlabelled and simply 
connect one state to another forming a closed graph. It is state-driven and finite, and is 
therefore capable of generating cyclic behaviour. For this analysis we are interested in 
the fundamental ‘loopiness’ of the autonomous process. 
The nature and number of states is not to be identified with the externally observable 
classes of behaviour described in the section above. The states are hidden, in that the 
states that the autonomous system passes through are not directly observable. State is 
hidden in the same sense that it is hidden in a Hidden Markov Model, but for the 
analysis of the autonomous system used here we do not require the probabilistic 
parameters (transition and output probabilities) of the HMM. 
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A state-machine in the form of a directed graph can be represented as a square 
adjacency matrix, where a one at the intersection of a particular row and column 
represents a possible transition from the current state (row) to the next state (column). 
The coupling between the autonomous system and its environment, or at least a 
symbolic description of it, is provided by another matrix that relates the hidden states of 
the autonomous system to the behavioural sensorimotor symbols. This is an incidence 
matrix relating hidden states to output symbols. The sensorimotor symbol can be 
described as a function of the current state, permitting multiple states to emit the same 
symbol but without the additional variability that HMMs allow for with a vector of 
output probabilities associated with each state. 

 
Fig. 3 

A 6-state machine produced by generating a Hidden Markov Model and discarding the transition 
probabilities has more edges than necessary to accept the sample behaviours. The graph shows each node 

number and emission symbol. 
 

The adjacency matrix can be constructed using the tools for training Hidden Markov 
Models. Given one or more symbol sequences (emissions) it is possible to estimate the 
transition probabilities for a hidden Markov model using the Baum-Welch algorithm 
(Baum et al. 1970), a hill-climbing search that will converge to a local maximum from an 
initial randomised HMM (using the MATLAB function hmmtrain). The emission matrix 
can be initialised to a random incidence matrix with a functional mapping from states to 
emission symbols (a single one in each row). The transition probabilities it returns may 
be converted into possibilities by mapping all positive probabilities > 0, to 1. However, it 
seems wasteful to calculate the full transition matrix and then discard the probabilities in 
this way. There is a further issue with this approach. In addition to this wastage, graphs 
generated in this way have more edges than necessary to capture the behaviours in the 
training set, see Fig. 3 for an example. An alternative edge-removal algorithm shown in 
Table 3 is able to generate the adjacency matrix directly.  
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edge_removal(trials, m: side of square matrix) 
 score = 0 
 for i = 1:trials 

 % adjacency matrix a, emission matrix e 
 a = ones matrix - leading diagonal of size m 
 e = random emission matrix (single 1 on each row) 
 x = random permutation of indices in a (excluding leading diagonal) 
 for j = 1:length(x) 

 a[x[j]] = 0 
 if a is no longer a connected graph 
   break outer loop 
 if not all observations can be generated by a,e 
          a[x[j]] = 1 % reverse edge removal 

  
 % natural connectivity 
 n = log(trace(expm(a))/m) 
 if a is connected graph and n > score 

 adjacency = a 
 emission = e 
 score = n  

 
 return adjacency, emission, score 
 

 
Table 3 

Edge-removal algorithm finds the smallest viable graph with the maximum natural connectivity. The 
inner loop starts with a fully connected graph and removes edges one-by-one at random leaving the 

smallest graph that remains viable. 

 
 
 
 
from/to 1 2 3 4 5 6 

1 0 1 0 1 0 1 

2 1 0 0 0 1 0 

3 0 1 0 1 1 1 

4 1 1 1 0 0 1 

5 0 0 1 0 0 0 

6 0 0 1 1 0 0 
 

Fig. 4 
Square adjacency matrix corresponding to the 

graph in Fig. 7, showing transitions from states 
in rows 1-6 to states in cols 1-6.  

This represents the autonomous system  
independent of input/output. 

 
 E P N O R 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

6 0 1 0 0 0 
 

Fig. 5 
 Incidence Matrix representing the functional 

‘emission matrix’ for the graph in  
Fig. 7, mapping states 1-6 to the sensorimotor 

classifications E,P,N,O,R.
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The intuition here is that we can begin with a matrix of ones, and then knock-out the 
edges (flipping matrix elements from 1 to 0) at random, subject to a check that this 
hasn’t eliminated the potential for some observed behaviour; the graph must remain 
viable. In fact, as the graph is not reflexive the main diagonal can be knocked out from 
the start. At each step the training set is consulted to ensure that all observed behaviours 
remain a possibility. If the adjacency matrix fails the test, then the change is reversed. 
This process continues until no more elements can be changed without failing the test. 
As before, the emission matrix is generated randomly and is held constant throughout. 
The square adjacency matrix in  
Fig. 4 represents the edges in the graph representing the autonomous system 
independent of any input/output, while the matrix in  
Fig. 5 represents the sensorimotor coupling between the autonomous system and the 
environment. This is graphically illustrated in the leaner graph of Fig. 6. 

 
Fig. 6 

 This 6-state machine generated by edge-removal captures nodes emitting identical symbols, ‘P’, but in 
different contexts after reaching states 2 or 6. 

 
To test that a state-machine can potentially generate a behaviour, it must be treated as a 
non-deterministic finite-state-machine. At any given time it can be in multiple states; all 
the states that potentially may have been reached. In the initial configuration, any and all 
of the states are a possibility. As each behavioural symbol is consumed, some states are 
knocked out that cannot make that transition, and others are added as all valid 
transitions are followed. If at any point the state configuration is empty, then the state-
machine fails the test. 
For a given graph size, the edge-removal algorithm produces many candidate graphs 
each with a different random emission matrix as a starting point. How might we select 
among them? A measure is required that enables us to maximise the potential for cyclic 
behaviour.  
With an autonomous system captured in this form it is possible to carry out an analysis 
based on the number of walks that can be made from any node back to itself. From a 
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range of graph centrality measures, subgraph centrality (Estrada, Rodríguez-Velázquez 
2005) emphasises the cyclic, oscillatory patterns of behaviour that are the hallmark of 
autonomy.  
Subgraph centrality is based on the number of closed walks from a node back to itself, a 
closed walk being a succession of edges starting and ending at the same node. The 
number of walks of length k between any two nodes in the graph can be computed by 
raising the adjacency matrix to the power k, or Ak. Subgraph centrality (ibid.) is defined 
as the weighted sum of the closed walks of length k starting and finishing at a given 
node. The subgraph centrality, SC, of A for node i is defined in equation 1 below. To 
achieve convergence a weighting of 1/k! is applied, with the effect that short walks have 
more influence on the centrality of the node than long walks. 
The subgraph centrality, defined in Equation 1, is equivalent to the diagonal entry of the 
matrix exponential of the adjacency matrix, eA (Estrada, Higham, 2008). 
 

 
Equation 1. Subgraph centrality 

 

The Estrada index (Peña et al. 2007), defined in Equation 2 below, is the sum of the 
elements of the subgraph-centrality. This is equivalent to the trace (sum of the diagonal) 
of the adjacency matrix exponential. 
 

 
Equation 2. Estrada index 

 
The natural connectivity of an autonomous system can be understood as the degree of 
redundancy in the number of closed walks from any node back to itself. If one walk 
should be unavailable, then another may be taken in its place. The Estrada index grows 
quickly for large numbers of nodes, so the natural logarithm of the averaged Estrada 
index may be used as a measure of the natural connectivity of a graph (Wu et al. 2009), 
defined in Equation 3 below, where n is the number of nodes (hidden states). 
 

 
Equation 3. Natural connectivity 

 

The natural connectivity of the graph has the nice feature that it changes monotonically 
with the removal (or addition) of edges (Wu et al. 2009). As the graphs produced by 
edge-removal have fewer edges than those derived from the Hidden Markov Model, 
they have correspondingly lower indices. 
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Fig. 7 

 A 9-state machine generated by edge-removal with minimal natural connectivity (min-connectivity). 

 
During the edge-removal search, the natural connectivity index falls monotonically with 
each edge removal. As this index is independent of the emission matrix and depends 
only on the adjacency matrix, it allows us to compare alternative solutions. It is worth 
re-iterating that this gives us a measure of the robustness of an autonomous system, 
without regard to its behaviour. The focus is entirely on a system's ability to maintain its 
organisation seen as a recurring process. Non-connected graphs are eliminated at this 
stage as the Estrada index depends only on the Estrada indices of its connected nodes 
(Du 2013). Of all the remaining minimal graphs, it allows us to discover the most robust 
solution with maximal natural connectivity. The 6-state solution of Fig. 6 was found 
within 1000 independent trials.  
The interesting thing about the graphs of both Fig. 3 and Fig. 6 is that in both cases the 
search appears to have ‘discovered’ the underlying ‘EPNPE’ cycle that occurs while the 
robot, ELSIE, is orbiting around the light source. As the turret rotates it transitions 
from a low light-level (E) facing away from the light, through an intermediate spike of 
medium level light (P), to bright light (N), and then back again (P) as it veers away from 
the light. These state-sequences are primarily a feature of its electro-mechanical 
construction, rather than its electronic circuitry. As two of the hidden states map to ‘P’, 
more of the different contexts of these two ‘P’ emitting states is captured in the graph. 
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Fig. 8 

A 9-state machine generated by edge-removal with maximal natural connectivity (max-connectivity). 

 
What does it mean in practice to maximise natural connectivity? The edge-removal 
algorithm destroys a huge amount of robustness and potential behaviour, so we’re 
working at the fringes with resource limited systems having a fixed set of states and only 
a minimal number of state-transitions. What is the virtue of maximising natural 
connectivity – retaining whatever potential the system has – rather than further 
minimisation of natural connectivity at this stage? An example of a graph with minimal 

natural connectivity ( =0.3836) is shown in Fig. 7; call this the minimal graph. This is a 
graph with 9 nodes mapping onto the same set of 5 behavioural patterns, so we see 
more nodes mapped to the same output. Contrast this with the 9-node graph with 

maximal natural connectivity ( = 0.9059) in Fig. 8. There’s no discernible difference 
between the in or out-degree of either graph. The minimal graph has mean in and out-
degrees of 2.11 (they are equivalent in this respect), while the maximal graph has mean 
in and out-degrees of 2.33. 
The clearest difference between these graphs is in the number of short-cycles evident in 
their structure. This should come as no surprise as this is precisely what the Estrada 
index measures, and indeed it gives more weight to these shorter cycles. As we saw 
above, the number of walks of length k between any two nodes in the graph can be 
computed by raising the adjacency matrix to the power k, or Ak. The trace of A2 divided 
by 2 is the number of directed digons (2-sided directed polygons in the graph), while the 
trace of A3 divided by 3, is the number of directed triangles. The division is necessary as 
we can walk the path starting at any of its vertices. The tr(A2 )/2 = 3 digons in Fig. 7, 
and tr(A2 )/2 = 6 digons in Fig. 8, may easily be counted. The pattern doesn’t 
straightforwardly extend to squares as digons also produce 4-cycles. However, the 
Estrada index is not concerned with whether such 4-cycles are generated by squares or 
combinations of digons. Table 4 informally summarises short 2, 3, 4, 5 & 6-cycles found 
in these examples of minimally and maximally connected directed graphs. It can be seen 
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that the tendency in maximally connected graphs over minimally connected graphs is 
towards these cycles. Both graphs are sufficient to produce the observed behaviours in 
the training set, so it is plausible that the reduced performance of the minimal graph is 
due to over-fitting to the training data. 
 
 
 
 

graph tr( A2 ) tr( A3 ) tr( A4 ) tr( A5 ) tr( A6 ) 
min-connectivity 6 0 22 20 72 
max-connectivity 12 15 64 140 435 
 

Table 4 
n-cycles in minimally and maximally connected directed graphs. 

 
 

3. Experimental results 
To validate the autonomous system against the symbolic data of recorded test 
behaviours, we may evaluate the state-machines produced by the edge-removal 
algorithm against the test-set of behaviours. As in the algorithm itself, we test for the 
possibility that the test sequences could be produced by the state-machine. The 
hypothesis is that there is a correlation between the natural connectivity of an 
autonomous system, and the corresponding success rate when evaluated against the test 
set of behaviours. It isn’t immediately obvious that this should be the case, as natural 
connectivity is a function of the graph topology of the autonomous system alone. We 
are really asking if the qualitative features of the graph favoured by natural connectivity 
support generalisation from the training data to the test data. 
The output of the edge-removal algorithm is a set of connected graphs that are 
consistent with the training data. Each graph is minimally sufficient to generate the 
observed data such that the removal of any one edge would result in a failure to match 
at least one of the observations. However, while the number of nodes is constant, the 
graphs produced don’t always have the same number of edges. Intuitively, the more 
edges there are in a graph, the more likely it is to be effective. Fig. 9 shows the 
distribution of edges for an 8-node graph produced by edge-removal, which can be seen 
to be normally distributed. These are normally distributed as indicated by the R-Square 
statistic (0.9988), which being close to 1 indicates that the fitted Gaussian model 
accounts for over 99% of the variation. 
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Fig. 9 

 Bar-chart of the number of edges produced by 1000 iterations of the edge-removal algorithm for an 8-
node graph. 86% of the graphs were eliminated as non-connected. The count of the remaining graphs are 

plotted against the number of edges. 

 
A confounding factor is that the probability of passing a test is correlated with the 
number of remaining edges. In Fig. 10 we see a clear linear correlation between the 
number of edges and the probability of passing a test. With a p-value < 0.001 we reject 
the null hypothesis of no correlation in favour of the alternative hypothesis of a linear 
correlation. Clearly, the more edges a graph has, all the better for matching a novel 
behaviour in the test set. The number of edges is factored into natural connectivity, as 
we saw that removing an edge results in a monotonic decrease in natural connectivity. 
However, we must show that any effect is not simply down to the number of edges, but 
is a result of the cyclicity of the graph. 
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Fig. 10 

Plot of the number of edges produced by 10K iterations of the edge-removal algorithm for an 8-node 
graph. 85% of the graphs were eliminated as non-connected. The plot shows the average number of tests 

passed for each given edge count. 

 
To eliminate the effect of the number of edges on the probability of passing a test, we 
must hold the number of edges constant. We select the median value (in the case of an 
8-node graph, the median is 17) to maximise the number of samples. In Fig. 11 we see 
that even after eliminating the effect of the number of edges, that there is a strong 
correlation between the natural connectivity and the probability of passing a test. The 
binomial number of tests passed or failed over 100K trials are summed across 50 bins, 
each representing a range of values of the natural connectivity. The averaged natural 
connectivity of the graphs is plotted against the probability of passing a test. The y axis 
is normalised to the range [0,1] and a logistic model is fitted. With a p-value = 0.0173 
the fit is significant at the 5% level. We reject the null hypothesis of no correlation in 
favour of the alternative hypothesis of a generalised linear (logistic) correlation. If 
natural connectivity has no bearing on this then we would expect the passes and failures 
to be evenly distributed. This effect must be attributable to the cyclicity of the graph as 
described by operational closure. 
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Fig. 11 

The effect of the number of edges on the probability of passing a test can be eliminated by holding the 
number of edges constant. In this case, we explore an 8-node graph and select only solutions containing 

the median number of edges (17). 

 
We conclude that graphs with high natural connectivity (cyclicity) confer a built-in 
redundancy, or robustness that lends itself to generalisation from the training data to the 
test data. 
 
 
4. Conclusion 
Starting with Varela’s definition of an autonomous system as an operationally closed 
system, we utilise state-machines to represent processes in which stable eigenbehaviours 
exist and can be analysed using a graph centrality measure known as natural connectivity. 
This is a good measure of the kind of cyclic behaviour we associate with autonomous 
systems. An edge-removal algorithm allows us to generate state-machines from robot 
simulation data which maximise natural connectivity for any given number of nodes and 
edges. It is important to reiterate that the evaluation of natural connectivity is made 
purely on the basis of the internal dynamics of the autonomous system – the coupling 
with the external world is not a factor. The sensorimotor coupling between the 
autonomous system and the world is represented by an incidence matrix that defines a 
function from each internal, hidden state to an external sensorimotor classification. By 
selecting state-machines that maximise natural connectivity, we minimise the chances of 
over-fitting to the training data. In other words, increased natural connectivity of an 
autonomous system confers a greater behavioural robustness when it is coupled with 
the external world. It is perhaps surprising that a test applied to an operationally closed 
system has any relevance to the robustness of the coupling of that same system with the 
external world. This result provides an interesting test of Varela’s concept of operational 
closure and its real-world implications. 
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