
                                                                          

University of Dundee

DOCTOR OF PHILOSOPHY

Patterns and Fronts in Cross-Diffusion Systems

Aldandani, Mohammed

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. May. 2021

https://discovery.dundee.ac.uk/en/studentTheses/e63bdcfa-c6f6-4bcd-8f37-80034bbd3f7c


Patterns and Fronts in Cross-Diffusion
Systems

By

Mohammed Aldandani

A Thesis submitted for the degree of Doctor of Philosophy

Division of Mathematics

University of Dundee

Dundee

May 2021



Contents

Acknowledgements xiii

Declaration xiv

Certification xv

Abstract xvi

1 Introduction 1

1.1 Cross-Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Derivation of Reaction-Diffusion Equations / Conservation of Mass . 4

1.3 Derivation of Cross-Diffustion from Random Walk . . . . . . . . . . 5

1.3.1 Derivation of Cross-Diffusion from a Continuous in Time, Dis-

crete in Space Master Equation . . . . . . . . . . . . . . . . . 13

1.4 Pattern Formation in Reaction-Diffusion Equations . . . . . . . . . . 18

1.4.1 Linear Stability Analysis for Diffusion-Driven Instability . . . 21

i



1.4.2 Cross-Diffusion and Pattern Formation . . . . . . . . . . . . 26

1.5 Background of Travelling Wave . . . . . . . . . . . . . . . . . . . . 29

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Inverse Problem 34

2.1 Shigesada, Kawasaki, and Teramoto Cross-Diffusion System . . . . . 35

2.2 A Simple Cross-Diffusion System . . . . . . . . . . . . . . . . . . . 37

2.3 New Non-linear Cross-Diffusion System . . . . . . . . . . . . . . . . 47

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Effect of Cross-Diffusion on Pattern Formation 55

3.1 Stability for a Class of Cross-Diffusion Models . . . . . . . . . . . . 56

3.1.1 Linear Stability Analysis for Diffusion-Driven Instability . . . 57

3.2 Kinetics Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Patterns Are Not Generated by Self-Diffusion . . . . . . . . . . . . . 62

3.4 A Simple Cross-Diffusion Model . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Instability Conditions for the Simple Cross-Diffusion Model . 64

3.4.2 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . 65

3.5 Pattern Formation Induced by Non-linear Cross-Diffusion . . . . . . . 69

3.5.1 Instability Conditions for Non-Linear Cross-Diffusion Model 70

ii



3.5.2 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . 71

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Travelling Fronts in a Non-Linear Cross-Diffusion Model for Tightly Packed

Populations 74

4.1 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Moving Fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 A Simplified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Travelling Wave Analysis of the Scalar Equation . . . . . . . . . . . 81

4.5 Sign of the Wave Speed . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Proving Heteroclinic Connection via Shooting Method . . . . . . . . 89

4.7 Uniqueness of the Wave Speed . . . . . . . . . . . . . . . . . . . . . 95

4.7.1 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Moving and Standing Front Solution for Full Cross-Diffusion System 100

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Conclusions and Future Work 104

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A Appendix A 109

iii



A.1 More Background of Travelling Wave . . . . . . . . . . . . . . . . . 109

A.1.1 Classes of Travelling Waves . . . . . . . . . . . . . . . . . . 109

A.1.2 Fisher’s and Nagumo’s Equations . . . . . . . . . . . . . . . 111

A.2 Predator-Prey System with Allee Effect . . . . . . . . . . . . . . . . 114

A.2.1 Linear Stability Analysis of the Associates ODE . . . . . . . 116

A.2.2 Standard Diffusion Does Not Generate Patterns . . . . . . . . 117

A.3 Calculation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B Numerical Simulations: MATLAB Codes 120

B.1 Matlab Code to Solve Equation (1.3.10) . . . . . . . . . . . . . . . . 120

B.2 Matlab Code to Solve Equation (1.3.2) . . . . . . . . . . . . . . . . . 125

B.3 Matlab Code to Plot the Dispersion Relation . . . . . . . . . . . . . 128

B.4 PDEPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.5 Pplane Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iv



List of figures

1.1 Schematic of movement of biomass between neighbouring lattice cells.

The probability for biomass to move from cell xk into cell xk±1 is de-

noted by τ
±
k etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Comparing the diffusion equation (1.3.8) and random walk. This figure

shows the solution to the diffusion equation, in red. To obtain the teal

histogram, 5000 walkers with random walk were simulated for 100

time steps. As a result, each bar represents the number of walkers

whose final position was in that bin : (a) At time t=25; (b) At time

t=50; (c) At time t=75; and, (d) At time t=100. Parameter values are

shown in Table 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Comparing the advection-diffusion equation (1.3.9) and random walk..

This figure shows the solution to the advection-diffusion equation, in

red with I.C = (5000)e(−x2). To obtain the teal histogram, 5000 walk-

ers with random walk were simulated for 100 time steps. As a result,

each bar represents the number of walkers whose final position was in

that bin : (a) At time t=25; (b) At time t=50; (c) At time t=75; and, (d)

At time t=100. Parameter values are shown in Table 1.2. . . . . . . . 12

v



2.1 (a) Solution of u in SKT model (2.1.1) with initial condition I.C =

(100)e−1(x−20)2
. (b) Solution of u in master equation (1.3.10) using

jump probabilities (2.1.3) with initial condition I.C = (100)e−1(i−20)2
.

(c) Comparing u in SKT model with master equation at time t = 0.5.

(d) Comparing u in SKT model with master equation at time t = 1.

Parameter values are shown in Table 2.1. . . . . . . . . . . . . . . . 36

3.1 Plots of (a) H(k2) and (b) Re(λ (k2)) in (3.1.9) with parameter values

β = 0.1, δ = 0.6, γ = 1, dv = 0, du = 0 and d = 1. . . . . . . . . . . 65

3.2 Plots of (a) H(k2) and (b) Re(λ (k2)) in (3.1.9) with parameter values

β = 0.1, δ = 0.6, γ = 1, dv = 0.313, du = 0.313 and d = 0.1. . . . . 66

3.3 Numerical simulations of (a) species u and (b) species v in system

(3.4.1). Figure (a) The initial condition u(x,0) = 0.6+ .01cos(πx).

Figure (b) The initial condition v(x,0) = 0.2 + .01cos(πx). Times

shown are t = 0 (blue), t = 10 (orange), t = 20 (yellow), t = 30 (pur-

ple), t = 40 (green). Parameter values are shown in Table 3.1. . . . . 67

3.4 Numerical simulations of (a) species u and (b) species v in system

(3.4.1). Figure (a) The initial condition u(x,0) = 0.6− .0001cos(2πx).

Figure (b) The initial condition v(x,0) = 0.2− .0001cos(2πx). Times

shown are t = 0 (blue), t = 50 (orange), t = 100 (yellow), t = 150

(purple), t = 200 (green). Parameter values are shown in Table 3.1. . . 67

3.5 Numerical simulations of (a,c,e) species u and (b,x,f) species v in sys-

tem (3.4.1). Figure (a) The initial condition u(x,0)= 0.6−.0001cos(2πx).

Figure (b) The initial condition v(x,0) = 0.2− .0001cos(2πx). Param-

eter values are shown in Table 3.1. . . . . . . . . . . . . . . . . . . . 68

vi



3.6 Plots of (a) H(k2) and (b) Re(λ (k2)) calculated from (3.1.9). Reaction

parameter values γ = 0.2, δ = 0.6, β = 0.4, Du = 0.0007, and Dv = 6 71

3.7 Solution of species u as computed by solving (3.5.1), (a) 1st mode:

pattern occur, times shown are t = 0 (blue), t = 38 (orange), t = 76

(yellow), t = 114 (purple), t = 152 (green). (b) 2nd modes: pattern

occur, times shown are t = 0 (blue), t = 47 (orange), t = 94 (yellow),

t = 141 (purple), t = 188 (green). (c) 3rd modes: pattern occur, times

shown are t = 0 (blue), t = 65 (orange), t = 130 (yellow), t = 195

(purple), t = 260 (green). Initial condition I.C= 0.6+01cos(nπx), n=

1,2,3.. (d) Solution of species v as computed by solving (3.5.1) with

same paramter value we use for u and the initial condition I.C= 0.04+

.001cos(πx). times shown are t = 0 (blue), t = 175 (orange), t =

350 (yellow), t = 525 (purple), t = 700 (green). Parameter values are

shown in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 (a) Solution of species u as computed by solving (3.5.1). Times shown

are t = 0 (blue), t = 100 (orange), t = 200 (yellow), t = 300 (purple),

t = 400 (green). (b) Solution of species v as computed by solving

(3.5.1). Times shown are t = 0 (blue), t = 4 (orange), t = 8 (yellow),

t = 12 (purple), t = 16 (green). Parameter values are shown in Table 4.1. 79

4.2 An illustration of the trajectories T0. . . . . . . . . . . . . . . . . . . 91

4.3 An illustration of the trajectories T1. . . . . . . . . . . . . . . . . . . 93

4.4 An illustration of the trajectories T0 and T1 . . . . . . . . . . . . . . . 94

vii



4.5 Phase portrait for system (4.4.7) with Du = 8.15 and β = 0.2. Red

circles denote equilibrium points. (a) c = .7 there is heteroclinic con-

nection between two steady state (1,0) and (0,0). (b) c = .8 there is

no heteroclinic connection between two steady state (1,0) and (0,0).

(c) c = .6 there is no heteroclinic connection between two steady state

(1,0) and (0,0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 (a) Solution of species u in (4.3.1) with step function as initil condition,

times shown are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60

(purple), t = 80 (green), t = 100 (sky blue). (b) Selected level point

(u = 0.5) on the solution profile. Parameter values are shown in Table

4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 (a) Solution of species u in (4.3.1) with I.C = exp((−.1x2)), times

shown are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60 (pur-

ple), t = 80 (green), t = 100 (sky blue). (b) Selected level point (u =

0.5) on the solution profile. Parameter values are shown in Table 4.4. . 98

4.8 (a) Solution of species u in (4.3.1) with IC = 1− (x2/((5) + x2)),

times shown are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60

(purple), t = 80 (green), t = 100 (sky blue). (b) Selected level point

(u = 0.5) on the solution profile. Parameter values are shown in Table

4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 Solution of species u in (4.3.1). Times shown are t = 0 (blue), t = 30

(orange), t = 60 (yellow), t = 90 (purple), t = 120 (green), t = 150

(sky blue). Parameter values are shown in Table 4.5. . . . . . . . . . . 99

4.10 Phase portrait for system (4.4.7) with c = 0 , Du = 8.15 and β = 0.4.

Red circles denote equilibrium points. . . . . . . . . . . . . . . . . . 100

viii



4.11 Solution of species (a) u and (b) v in the full system (3.5.1). Times

shown are t = 0 (blue), t = 100 (orange), t = 200 (yellow), t = 300

(purple), t = 400 (green). Parameter values are shown in Table 4.6. . 101

4.12 Solution of species (a) u and (b) v in the full system (3.5.1). Times

shown are t = 0 (blue), t = 50 (orange), t = 100 (yellow), t = 150

(purple), t = 200 (green). Parameter values are shown in Table 4.7. . . 102

5.1 Phase portrait for system (4.4.7) with c=−0.3, Du = 8.15 and β = 0.5.

The green highlighted curve is heteroclinic connection between two

steady state (1,0) and (0,0). Red circles denote equilibrium points. . 107

5.2 Solution of species u in (4.3.1). Times shown are t = 0 (blue), t = 30

(orange), t = 60 (yellow), t = 90 (purple), t = 120 (green), t = 150

(sky blue). Parameter values are shown in Table 5.1. . . . . . . . . . . 107

A.1 Forms of travelling waves: (a) wave front, (b) pulse and (c) Periodic

travelling wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.2 (a) Solution of species u for Fisher’s equation with a step function

as initial condition, Times shown are t = 0 (blue), t = 12 (orange),

t = 24 (yellow), t = 36 (purple). (b) Phase portrait for Fisher’s equation

with c = 3 where the green highlighted curve shows the heteroclinic

connection between (1,0) and (0.0) and red circles denote equilibrium

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



A.3 (a) Solution of species u for Nagumo’s equation with a step function

as initial condition, times shown are t = 0 (blue), t = 20 (orange),

t = 40 (yellow), t = 60 (purple), t = 80 (green), t = 100 (sky blue). (b)

Phase portrait for Nagumo’s equation with c = .426 where the green

highlighted curve shows the heteroclinic connection between (1,0) and

(0.0) and red circles denote equilibrium points. Reaction parameter

values β = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.4 (a) The solution u(t) of system (A.2.4) with parameter values γ =

0.2, δ = 0.6 and β = 0.1 which shows that the steady states (u0,v0) =

(δ ,γ(δ −β )(1−δ )) is stable. (b) The solution u(t) of system (A.2.4)

with parameter values γ = 0.2, δ = 0.6 and β = 0.7 which shows that

the steady states (u0,v0) = (δ ,γ(δ −β )(1−δ )) is unstable. . . . . . 117

A.5 Solution of species u in (A.2.3). Times shown are t = 0 (blue), t = 0.1

(red), t = 0.2 (yellow), t = 0.3 (purple). Reaction parameter values

γ = 0.2, δ = 0.6, β = 0.1 and d = .7, with initial condition I.C =

0.6+ .1cos(πx). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



List of tables

1.1 Table showing the parameter values that used to solve diffusion equa-

tion (1.3.8) and master equation (1.3.2). . . . . . . . . . . . . . . . . 11

1.2 Table showing the parameter values that used to solve diffusion equa-

tion (1.3.9) and master equation (1.3.2). . . . . . . . . . . . . . . . . 12

2.1 Table showing the parameter values that used to solve SKT model

(2.1.1) and master equation (1.3.10) with jump probabilities (2.1.3). . 37

3.1 Table showing the parameter values that used to solve system (3.4.1). 69

3.2 Table showing the parameter values that used to solve system (3.5.1). 73

4.1 Table showing the parameter values that used to solve system (3.5.1). 80

4.2 Table showing the value I1, I2 and I3 with varying Du to see the effect

on c that calculated in equation (4.5.5) with β = 0.4. . . . . . . . . . 88

4.3 Table showing the value I1, I2 and I3 with varying Du to see the effect

on c that calculated in equation (4.5.5) with β = 0.2. . . . . . . . . . 88

4.4 Table showing the parameter values that used to solve equation (4.3.1). 98

xi



4.5 Table showing the parameter values that used to solve equation (4.3.1). 99

4.6 Table showing the parameter values that used to solve system (3.5.1). 101

4.7 Table showing the parameter values that used to solve system (3.5.1). 102

5.1 Table showing the parameter values that used to solve equation (4.3.1). 108

xii



Acknowledgements

My sincere and profound gratitude goes first and foremost to my supervisor, Prof.

Fordyce Davidson for his valuable suggestions, inspired guidance, insightful criticism,

extraordinary patience and constant encouragement and support throughout the entire

period of my PhD study. The profound and invaluable knowledge that I gained from

him will benefit me in my future life and career.

I want to thank the members of the Division of Mathematics at the University of

Dundee for their support and kindness.

I sincerely thank my father Mutrib, mother Aminh, brothers, sisters and friends for

their encouragement and support all through my studies. My sincerest thanks to my

wife, Rahaf, for being so understanding and for tolerating me through my research.

I also would like to thank my lovely son, Abdullah, who joined us when I was working

on this PhD thesis, for giving me unlimited happiness and pleasure.

Furthermore, my deepest gratitude is extended to Jouf University, whose funding has

graciously allowed me to study in Scotland.

xiii



Declaration

I declare that the following thesis is my own composition and that it has not been

submitted before in application for a higher degree.

Mohammed Aldandani

xiv



Certification

This is to certify that Mohammed Aldandani has complied with all the requirements

for the submission of this Doctor of Philosophy thesis to the University of Dundee.

Prof. Fordyce Davidson

xv



Abstract

Reaction-diffusion systems continue to attract increasing attention from the scientific

community, with investigators seeking insights into the patterns that occur in living

organisms, in ecological systems, in geochemistry, and in physiochemical systems.

Cross-diffusion is a special case of reaction-diffusion system and refers to the phe-

nomenon in which a gradient in the concentration of one species induces a flux of

another species.

Pattern formation is a sub-area of complexity science, where non-linear spatial process

dynamics are studied. Reaction-diffusion systems are at the core of the mathematical

analysis of pattern formation and appear as relevant models for such processes.

A travelling wave is a solution of a partial differential equation with a constant profile

(shape) and a constant propagation speed. A key precursor of a developmental process

seems to be the appearance of a travelling wave front of chemical concentration in

many phenomena in biology.

The aim of this thesis is to better understand how cross-diffusion influences the for-

mation and characteristics of patterns and fronts in reaction-diffusion systems. In par-

ticular, we are interested in the mechanism of pattern formations and wave fronts in

cross-diffusion systems. We do this by taking an approach that combines mathemat-

ical modelling, analysis, and numerical simulations. First, we discuss the derivation

xvi



of a cross-diffusion system; in particular, we investigate whether all cross-diffusion

systems of two interacting species can be derived from the microscopic master equa-

tion. Next, we consider the impact of cross-diffusion on the stability of a spatially

uniform equilibrium. Then, we derive a new non-linear cross-diffusion system based

on mathematical modelling for tightly packed biomass, and we study the travelling

wave solution for this model. Using mathematical modelling, analysis, and numerical

simulations, we conclude that cross-diffusion plays a key role in forming spatial pat-

terns for competitive model, and we show that the cross-diffusion model gives rise to

the travelling wave solution. The cross-diffusion can generate patterns and can change

the sign of travelling fronts speed comparing to standard diffusion.

xvii



Chapter 1

Introduction

In this chapter, we begin with a brief mathematical background of topics relating to the

project to motivate the work undertaken. We then present an outline of the thesis.

1.1 Cross-Diffusion Models

The reaction-diffusion equation is the mathematical model representation that demon-

strates the dispersion of substance concentration under the influence of local reactions

and diffusion processes. Diffusion is the movement of particles from a region of higher

concentration to a region of lower concentration until equilibrium is reached [3]. There

are also number of other physical factors which influence the movement of particles

other than diffusion process such as advection, chemotaxis and haptotaxis for more

details see [9, 12, 16, 20, 22, 22, 56, 61, 64, 73, 78, 87, 90, 91, 95]. In local reactions,

the interaction of substances with each other takes place while in diffusion process,

substances disperse in space.

Cross-diffusion, the phenomenon in which a gradient in the concentration of one species

1



induces a flux of another chemical species [95]. Cross-diffusion can arise in genuinely

practical models. For examples see [43, 65, 75]. In general, the cross-diffusion co-

efficient can be positive, negative, or zero. The positive means that the movement of

the species in the direction of lower concentration of another species, and the nega-

tive means that one species tends to diffuse in the direction of higher concentration of

another species.

The general macroscopic model consisting of two partial differential equations with

cross-diffusion has been derived in [39, 72]. They derived macroscopic models for

ecological or biological systems in which two interacting species occupy the same

spatial environment. They start with micro-level assumptions about the probability of

individuals moving from one discrete site into another one, depending on the current

population densities of both species in both sites.

These days the investigation of pattern formation is very interested topic in chemistry,

physics, and biology. Patterns occur in population dynamics, and are usually investi-

gated through reaction-diffusion models, which consider the diffusion of each species

depends only on the gradients of the concentration of the species itself [5, 6, 11, 19,

36, 52]. On the contrary, when a gradient in the concentration of one species induces

a flux of another species, one must take into account also the cross-diffusion terms.

Cross-diffusion plays an important role in patterns formation of reaction-diffusion sys-

tems, and large attention has recently been given to studying the stability behaviour of

a system of interacting populations, taking into account the effects of self and cross-

diffusion [31, 55]. We will present some existing models for which pattern formation

has been shown.

The principal ingredients of reaction-diffusion models are equation of the form

ut = ∇ · (D(u)∇u)+ f(u), (1.1.1)

2



where f can be associated with the representation of death and/or birth process, while

u can be associated with representation of population density. D(u) in equation (1.1.1)

denotes the matrix of diffusion coefficients (a diagonal matrix if no cross-diffusion).

Since, ∇u in equation (1.1.1) is a tensor, therefore, ∇ ·D(u)∇u will be a vector, see

[59]. In the case D is space-dependent are more often observed within the biomedical

modelling domain such as organisms diffusion within heterogeneous environments and

growth of brain tumors; more details in [84, 85, 86].

In special case, we can have diffusion matrix as a diagonal matrix. For instance, in the

case of a two-species model, self-diffusion matrix takes the form

 D11 0

0 D22

 . (1.1.2)

We note that cross-diffusion will be discussed in much more depth later, which refers

to the fact that the flux of one species is triggered by the concentration gradient of

another species. The cross-diffusion coefficients are the diffusion matrix elements

that are not diagonal, meaning that a minimum of one non-diagonal diffusion matrix

element in a cross-diffusion setting is different from zero [95]. We can have a diffusion

matrix as a full constant matrix. For instance, in special case of a two-species model,

cross-diffusion matrix takes the form D11 D12

D21 D22

 . (1.1.3)

3



1.2 Derivation of Reaction-Diffusion Equations / Con-

servation of Mass

Towards the derivation of the reaction-diffusion equation following [22, 64], let us ac-

count for diffusion in three-dimension space with an arbitrary surface (S) with volume

(V ). As per the definition of conservation equation, the overall rate of change of mate-

rial within volume V will be the same as the rate of flow of material across the surface

S plus any new material created within the volume V . Mathematically, this can be

expressed as presented in equation (1.2.1).

∂

∂ t

∫
V

u(x, t)dV =−
∫

S
J ·dS+

∫
V

f dV, (1.2.1)

where J denotes the material flux and f denotes the source of material, which may

be a function of u,x and t. Considering that u(x, t) is continuous and implementing

divergence theorem to the surface integral, equation (1.2.1) will transform into

∫
V

[
∂u
∂ t

+∇ ·J− f (u,x, t)
]

dV = 0. (1.2.2)

As it is known that volume V is arbitrary, therefore, the integrand must result in zero.

As a result, conservation equation for u can be expressed as the following

ut =−∇ ·J+ f (u,x, t). (1.2.3)

Equation (1.2.3) is valid for any general value of J. For instance, in case of classical

transport process, J is
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J =−D∇u, (1.2.4)

which called Fickian diffusion.

Hence, equation (1.2.3) with (1.2.4) will become

ut = ∇ · (D∇u)+ f (u,x, t), (1.2.5)

where D might be a function of x and u or t.

Let us now generalize the equation (1.2.5) for multiple interacting substances. In that

case, ui(x, t), i = 1, . . . ,m will represent the concentration of the interacting substances

and Di will represent the diffusion coefficient of each substance. Equation (1.2.5) will

now transform into equation (1.2.6) for the multiple interacting substances.

ut = ∇ · (D(u)∇u)+ f(u), (1.2.6)

1.3 Derivation of Cross-Diffustion from Random Walk

In this section, we show an alternative method of derivation of PDEs particularly cross-

diffusion models. We derive PDEs from a random walk. This derivation can lead to the

same equation we derive in section 1.2. Our goal is to derive a cross-diffusion system

based on a continuous in time, discrete in space master equation that has done before

in [39, 72]. We re-derive it because we use this derivation as start point of our work in

Chapter 2. We will investigate whether all cross-diffusion systems of two interacting

species can be a special case of this derivation. Khassehkhan in [72] showed that some

examples of cross-diffusion systems are special case of this derivation, however we
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will continue this investigation by considering other examples. Before that, we show

the derivation of a continuous in time, discrete in space master equation.

We will only consider the spatial case 1-D in space for simplicity, although we could

use this method for the case n-D. To start the derivation, we first derive a scalar PDEs,

where the jump probabilities are simple. Let the variable p(x, t) be defined as the

probability of a randomly chosen individual being found on the interval (x,x+∆x) at

the time t [46], where ∆x is a small space interval, Thus, for a population size N with

population density u(x, t),

p(x, t) =
1
N

∫ x+∆x

x
u(ξ , t)dξ −→ ∆x u(x, t)

N
as ∆x−→ 0. (1.3.1)

During time interval ∆t an individual may move ∆x to the right with probability q+(x, t),

∆x to the left with probability q−(x, t), and may remain stationary with probability

1−q+(x, t)−q−(x, t). If there are no births and deaths then then p(x, t +∆t) satisfies

p(x, t +∆t) =p(x, t)+q+(x−∆x, t)p(x−∆x, t)

+q−(x+∆x, t)p(x+∆x, t)− (q+(x, t)+q−(x, t))p(x, t).
(1.3.2)

Expanding L.H.S in (1.3.2) only in time t yields

p(x, t)+
∂

∂ t
p(x, t) M t +H.O.T =p(x, t)+q+(x−∆x, t)p(x−∆x, t)

+q−(x+∆x, t)p(x+∆x, t)− (q+(x, t)+q−(x, t))p(x, t).
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Cancelling p(x, t) from both sides, we have

∂

∂ t
p(x, t)∆t = q+k−1 p(x−∆x, t)+q−k+1 p(x+∆x, t)− (q+k +q−k )p(x, t),

where q±k = q±(x, t) and q±k∓1 = q±(x∓∆x, t).

Taking the appropriate limit as ∆t converge to zero (∆t −→ 0 so that q±k
∆t −→ τ

±
k ), and

using (1.3.1) gives the continuous in time, discrete in space master equation which

defined over an infinite domain grid in the unbounded domain is

duk

dt
= τ

+
k−1uk−1 + τ

−
k+1uk+1− (τ+k + τ

−
k )uk. (1.3.3)

 
 

!!! !!! 
 
 
 

!!!!  !! !!!!        
 
 

!!!!!  !!!!!
 

 
 

Figure 1.1: Schematic of movement of biomass between neighbouring lattice cells.
The probability for biomass to move from cell xk into cell xk±1 is denoted by τ

±
k etc.

Note that xk−1 = xk−∆x and xk+1 = xk +∆x.

uk, uk−1 and uk+1 are the biomass density of species u, at the locations xk, xk−1 and xk+1

respectively. Here a biomass of u in the location kk can move to the left or to the right

to exit, with the transfer rate τ
−
k or τ

+
k , respectively. The biomass in a neighbouring

location (xk−1 or xk+1) can move into location xk either from the left with transfer rate

τ
+
k−1 or from the right with τ

−
k+1. Note that τ

±
k = lim∆t→0

q±k
∆t , and q±k represents the

probability of a jump from location xk to location xk±1. Equation (1.3.3) is a lot used
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in mathematical biology [1, 39, 51, 65, 68, 70, 72, 72, 83, 94], to derive population-

level macroscopic partial differential equation models from microscopic behavioural

rules.

If uk is interpreted as a quantity in the cell center xk, the grid function uk can be inter-

polated with a smooth function u with u(t,xk) = uk(t) and similarly, q±(xk) = q±k . For

given t we expand u(t,xk±1) and q±(xk±1) by Taylor series:

u(t,xk±1) = u(t,xk)±∆x
∂u(t,xk)

∂x
+

(∆x)2

2
∂ 2u(t,xk)

∂x2 +H.O.T, (1.3.4)

and

q±(xk±1) = q±k ±∆x
∂q±k
∂x

+
(∆x)2

2
∂ 2q±k
∂x2 +H.O.T. (1.3.5)

Substituting these expressions into (1.3.3) and dropping H.O.T, we obtain:

∂u
∂ t

=
∆x
∆t

[
(q−−q+)

∂u
∂x

+u(
∂q−

∂x
− ∂q+

∂x
)
]

+
(∆x)2

∆t

[
(
1
2

q−+
1
2

q+)
∂ 2u
∂x2 +(

∂ 2q−

∂x2 +
∂ 2q+

∂x2 )
∂u
∂x

+u(
1
2

∂ 2q+

∂x2 +
1
2

∂ 2q−

∂x2 )
]
.

(1.3.6)

q+ and q− are probabilities. In this section, we investigate simplest case where q+ and

q− are constants. However we can choose q+ and q− as functions which lead to more

complex PDEs, we will investigate this case in section 1.3.1.

We investigate possible cases for q+ and q− which end up with scalar equations such

as diffusion and advection-diffusion equation.
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Constant Jump Probability

For q+ and q− as constants, (1.3.6) will be

∂u
∂ t

=
∆x
∆t

[
(q−−q+)

∂u
∂x

]
+

(∆x)2

∆t

[
(
1
2

q−+
1
2

q+)
∂ 2u
∂x2

]
.

(1.3.7)

We have the following cases for q+ and q− :

1. Unbiased random walk q+ = q− = 1
2 ,

∂u
∂ t

=
(∆x)2

∆t

[
(
1
2
.
1
2
+

1
2
.
1
2
)
∂ 2u
∂x2

]
,

if we take

lim
∆x→0

(∆x)2

2∆t
= D > 0.

Thus, we obtain the diffusion equation

∂u
∂ t

= D
∂ 2u
∂x2 . (1.3.8)

2. Biased random walk q+ 6= q−,

∂u
∂ t

=
∆x
∆t

[
(q−−q+)

∂u
∂x

]
+

(∆x)2

2∆t

[
∂ 2u
∂x2

]
,

if we take

lim
∆x→0
∆t→0

[q−−q+]
∆x
∆t

= v, lim
∆x→0
∆t→0

(∆x)2

2∆t
= D.
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Thus, we obtain advection-diffusion equation:

∂u
∂ t

= v
∂u
∂x

+D
∂ 2u
∂x2 . (1.3.9)

We compare the diffusion and advection-diffusion equations (1.3.8) and (1.3.9) (con-

tinuous) with a random walk (discrete) (1.3.2) numerically in Figures 1.2 1.3. Clearly,

after several steps, the probability distribution spreads out and becomes approximately

PDEs solution. We solve PDEs in MATLAB (PDEPE) with zero flux boundary condi-

tion, and we solve (1.3.2) in MATLAB (see code in Appendix B.2).
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(a) (b)

(c) (d)

Figure 1.2: Comparing the diffusion equation (1.3.8) and random walk. This figure
shows the solution to the diffusion equation, in red. To obtain the teal histogram, 5000
walkers with random walk were simulated for 100 time steps. As a result, each bar
represents the number of walkers whose final position was in that bin : (a) At time
t=25; (b) At time t=50; (c) At time t=75; and, (d) At time t=100. Parameter values are
shown in Table 1.1.

Parameter Value
D 0.5
q+ 0.5
q− 0.5

Table 1.1: Table showing the parameter values that used to solve diffusion equation
(1.3.8) and master equation (1.3.2).
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(a) (b)

(c) (d)

Figure 1.3: Comparing the advection-diffusion equation (1.3.9) and random walk..
This figure shows the solution to the advection-diffusion equation, in red with I.C =

(5000)e(−x2). To obtain the teal histogram, 5000 walkers with random walk were
simulated for 100 time steps. As a result, each bar represents the number of walkers
whose final position was in that bin : (a) At time t=25; (b) At time t=50; (c) At time
t=75; and, (d) At time t=100. Parameter values are shown in Table 1.2.

Parameter Value
D 0.5
v 0.4

q+ 0.3
q− 0.7

Table 1.2: Table showing the parameter values that used to solve diffusion equation
(1.3.9) and master equation (1.3.2).
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1.3.1 Derivation of Cross-Diffusion from a Continuous in Time,

Discrete in Space Master Equation

In theoretical ecology and other areas of mathematical biology, a continuous in time,

discrete in space master equation is commonly used for single-species communities to

derive population-level macroscopic partial differential equation models from micro-

scopic behavioral rules [1, 51, 65, 68, 70, 83, 94, 97]. In Khassehkhan paper [39] , it

was demonstrated that a single-species biofilm model could be derived as the macro-

scopic limit of a microscopic continuous in time, discrete in space master equation

in which biomass movement from one site to another is governed by microscopic be-

havioural rules that account for biomass already present in both sites. This modelling

approach is based on a strategy commonly used in spatially structured populations or

directed cell movement, such as chemotaxis [1, 51, 65, 68, 94, 97]. For general dual-

species systems with spatially interacting populations, this was worked out in Ostran-

der [67]. Rahman in [72] extend Ostrander derivations to dual-species biofilm systems,

following the same master equation approach. A simpler dual-species model was pre-

viously derived in [71], where it was implicitly assumed that individual movement is

not restricted by the presence of others and that interaction between species takes place

through reactions, in which case one obtains a semi-linear model with Fickian diffu-

sion. In Rahman work, they account for the effect that the presence of other cells has

on individual movement. In a biofilm, where cells are often packed tightly, this is an

important aspect.

In section 1.3, we showed the derivation of a scalar PDE with a simple jump proba-

bilities which are constants. jump probabilities can be functions that lead to different

PDEs. In this thesis, we interested two-species cross-diffusion system. So, the deriva-

tion of cross-diffusion system must be from two continuous in time, discrete in space

master equations. Note a scalar master equation leads to a scalar PDE. The constant
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jump probabilities will not lead to cross-diffusion system. For cross-diffusion, jump

probabilities need to functions that depend on densities of the two-species.

A derivation of cross-diffusion from a continuous in time, discrete in space master

equations is summarized here, using the same approach as outlined in [39, 72], to

obtain a better understanding of the origin of cross-diffusion terms in a two-species

model, and what they mean in relation to the movement of individuals.

For two interacting species u and v, the continuous in time, discrete in space master

equation which defined over an infinite domain grid in the unbounded domain is

duk

dt
= τ

+
k−1uk−1 + τ

−
k+1uk+1− (τ+k + τ

−
k )uk,

dvk

dt
= β

+
k−1vk−1 +β

−
k+1vk+1− (β+

k +β
−
k )vk.

(1.3.10)

Note that equation for v can be derived in similar way we did for u in (1.3.3). uk,

uk−1 and uk+1 are the biomass density of species u, at the locations xk, xk−1 and xk+1

respectively. Similarly for v equation. The master equation (1.3.10) describes the

population change in a particular site in a particular species.

In general, the transfer rate τ
±
k , β

±
k can depend on the density of both populations in

sites xk and xk±1. One choice of τ
±
k , β

±
k , motived by Eberl [72] is

τ
±
k = γq1(uk,vk)p1(uk±1,vk±1),

β
∓
k = µq2(uk,vk)p2(uk±1,vk±1), (1.3.11)

that is a separation of variable approach. Functions q1, p1, q2 and p2 are the ”jump

probabilities”. q1 and p1 are non-negative and continuous functions with 0≤ q1, p1≤ 1

that control the local movement from one site to a neighbouring site for species u.
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Similarly, q2 , p2 for species v. The incentive for species u and v to leave lattice site

k is measured by the functions q1,2(uk,vk). The function p1,2(uk,vk) represent how

suitable the lattice site k is for incoming individuals of species u and v.

Functions q1, p1, q2 and p2 can be understood as probabilities for an individual to

move between sites xk and xk±1. The coefficient γ is a scaling factor that depends on

length-scale and time-scale, i.e. distance between two sites ∆x. More specifically, for

diffusion problems γ scales with(∆x)2 , such that lim∆x→0 γ(∆x)2 = γ0 > 0, Similarly,

for β .

We first introduce two continuous functions u(t,x) and v(t,x) that interpolate the grid

functions u(t,xk) = uk(t), v(t,xk) = uk(t), in order to make the transition from a spa-

tially discrete to a continuous model.

To express u(t,xk±1) and v(t,xk±1), we will use the expansion of the Taylor series.

u(t,xk±1) = u(t,xk)±∆x
∂u(t,xk)

∂x
+

(∆x)2

2
∂ 2u(t,xk)

∂x2 +H.O.T,

v(t,xk±1) = v(t,xk)±∆x
∂v(t,xk)

∂x
+

(∆x)2

2
∂ 2v(t,xk)

∂x2 +H.O.T,
(1.3.12)

where H.O.T. represents higher order terms and ∆x is the small distance between grid

points.

Also, we can use the Taylor series to describe q1,2(uk±1,vk±1), p1,2(uk±1,vk±1) as fol-

lows
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q1,2(uk±1,vk±1) = q1,2(uk,vk)+(uk±1−uk)
∂q1,2(uk,vk)

∂uk
+(vk±1− vk)

∂q1,2(uk,vk)

∂vk

+
1
2

[
(uk±1−uk)

2 ∂ 2q1,2(uk,vk)

∂u2
k

+(vk±1− vk)
2 ∂ 2q1,2(uk,vk)

∂v2
k

+ 2(uk±1−uk)(vk±1− vk)
∂q1,2(uk,vk)

∂uk∂vk

]
+H.O.T, (1.3.13)

and

p1,2(uk±1,vk±1) = p1,2(uk,vk)+(uk±1−uk)
∂ p1,2(uk,vk)

∂uk
+(vk±1− vk)

∂ p1,2(uk,vk)

∂vk

+
1
2

[
(uk±1−uk)

2 ∂ 2 p1,2(uk,vk)

∂u2
k

+(vk±1− vk)
2 ∂ 2 p1,2(uk,vk)

∂v2
k

+ 2(uk±1−uk)(vk±1− vk)
∂ p1,2(uk,vk)

∂uk∂vk

]
+H.O.T. (1.3.14)

Substituting these expressions in the equation (1.3.10) the previously calculated Taylor

expansions and taking the limits as ∆t→ 0 and ∆x→ 0, a continuous equation describ-

ing the rate of change of u can be found, without taking into account higher order

terms. Thus,

ut = γ(∆x)2

[
q1 p1 +u

(
p1

∂q1

∂u
−q1

∂ p1

∂u

)]
∂ 2u
∂x2 + γ(∆x)2

[
u
(

p1
∂q1

∂v
−q1

∂ p1

∂v

)]
∂ 2v
∂x2

+ γ(∆x)2

2
∂ 2q1

∂u
p1 +u

(
p1

∂ 2q1

∂v2 −q1
∂ 2 p1

∂v2

)(∂u
∂x

)2

+ γ(∆x)2

[
up1

∂ 2q1

∂v2 −uq1
∂ 2 p1

∂v2

](
∂v
∂x

)2

+ γ(∆x)2

2
∂q1

∂v
p1 +2u

(
p1

∂ 2q1

∂u∂v
−q1

∂ 2 p1

∂u∂v

) ∂u
∂x

∂v
∂x

, (1.3.15)
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passing to continuous limit, ∆x→ 0 such as lim∆x→0 γ(∆x)2 = γ0 > 0 rearranging the

order of term we obtain

ut = γ0∇ ·

(q1 p1 +u
(

p1
∂q1

∂u
−q1

∂ p1

∂u

))
∇u+u

(
p1

∂q1

∂v
−q1

∂ p1

∂v

)
∇v

 ,
(1.3.16)

which is now recognisable as a cross-diffusion equation, where

D11 = q1 p1 +u
(

p1
∂q1

∂u
−q1

∂ p1

∂u

)
, D12 = u

(
p1

∂q1

∂v
−α1

∂ p1

∂v

)
. (1.3.17)

In an analogous way, we can apply the same methodology to calculate ∂v/∂ t.

vt = µ0∇ ·

(q2 p2 + v
(

p2
∂q2

∂v
−q2

∂ p2

∂v

))
∇v+ v

(
p2

∂q2

∂u
−q2

∂ p2

∂u

)
∇u


(1.3.18)

D21 = v
(

p2
∂q2

∂u
−q2

∂ p2

∂u

)
, D22 = q2 p2 + v

(
p2

∂q2

∂v
−q2

∂ p2

∂v

)
. (1.3.19)

This derivation has been investigated before in [39, 66, 72]. The question is, can any

cross-diffusion system can be a special case of this derivation. Ostrander shows that

some examples of cross-diffusion systems are special case of this derivation such as

the cross diffusion model of Shigesada, Kawasaki, and Teramoto (SKT) and the cross

diffusion model of Chattopadhyay and Chatterjee in [66]. They conclude that their
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approach in the inverse problem could likely be used to find jump probabilities which

recover many other reaction-diffusion systems. Therefore, we extend their work to

recover two different systems in Chapter 2, which are the simplest cross-diffusion and

new non-linear cross-diffusion system in similar way. By considering these examples,

we try to answer whether all cross-diffusion system can be special case of this deriva-

tion. In addition, we extend their work on SKT model by comparing the solution of

SKT with the solution of the master equation (1.3.10).

1.4 Pattern Formation in Reaction-Diffusion Equations

Chapter 3 deals with the effect of pattern formation on cross-diffusion models, so we

introduce pattern formation in this section. In biological sciences, there are number of

phenomena and mechanisms which result in temporal or spatial patterns. Furthermore,

in terms of variability, these processes occur in different scales among a different range

of species for different purposes [102]. Although, there are number of differences and

variations in different biological pattern formation mechanisms [33], however, they can

be collectively represented through a mathematical expression. The reaction-diffusion

equation is the key in developing the mathematical relationship since it represents the

evolution of spatio-temporal densities of materials forming the patterns [18, 21, 34,

35, 40, 41, 95]. Each equation includes the diffusion term (Fickian diffusion, porous

diffusion) and reaction term (interaction among substance) [64].

Let us assume that diffusion is standard Fickian, then, system can be expressed math-

ematically as given follows

ut = ∇ · (D∇u)+ f (u),
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where u = (u1, . . . ,un)
T ∈ Rn

+ is the representation of chemical substance concentra-

tions and bifurcations on the system eigenvalues.

There are three principle type of instabilities including wave, Turing and Hopf in such

kind of diffusion-reaction systems [7, 57].

• Wave bifurcation: Generates time oscillatory and spatially periodic type of pat-

terns.

• Turing bifurcation: Generated time stationary and spatially periodic type of

patterns.

• Hopf bifurcation: Generates time oscillatory and spatially homogeneous type

of patterns.

However, the combination of instabilities may increase the wealth of patterns. There

is the possibility of having a periodic pattern in space and time without having a wave

instability, as when both Turing and Hopf instabilities are present, leading to oscillatory

Turing patterns [34, 107].

The Turing mechanism discovered 1952 has been considered the most common to-

wards mathematically describing biological pattern formation mechanism under con-

stant diffusion coefficients [93] .

Typically, it is assumed that the diffusion process influences the system differential

equations towards making it stable. However, in the case of Turing pattern forma-

tion, the opposite is true. Process of Turing pattern formation occurs when a system

(previously stable in the absence of diffusion) becomes spatially unstable under the

diffusion process. This process is referred to as diffusion-driven instability and results

in non-homogeneous pattern formation. For the sake of mathematical representation,

this process must need to involve two substances with different diffusion constant; an
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activator with DA and an inhibitor with DI . Non-linear reaction terms corresponding

to these diffusion constants will become F(A, I) and G(A, I), respectively. Overall, the

system will be transformed as follows

At = ∇ · (DA∇A)+F(A, I),

It = ∇ · (DI∇I)+G(A, I).

For the case of diffusion-drive instability, the reaction-diffusion equations can be ex-

pressed accordingly in their non-dimensional form as given in system (1.4.1).

ut = ∇ · (∇u)+ γ f (u,v),

vt = ∇ · (d∇u)+ γg(u,v),
(1.4.1)

where γ ∈R+ is the term added by scale length and is the representation of domain size,

and d = DI
DA

is the ratio between two diffusion coefficients. In [93], Alan Turing showed

how a reaction-diffusion system could exhibit such instabilities to form patterns. For

a two-component reaction-diffusion system, a key requirement for diffusion-driven

instability is the concept of long-range inhibition and short-range activation (Gierer and

Meinhardt 1972). This implies that one of the species (the inhibitor DI) must diffuse

faster (typically much faster) than the autocatalytic species (activator DA) (DI > DA⇒

d > 1), thereby fulfilling one of the necessary condition for the formation of spatial

structure. In summary, Turing instability means that a stable steady state of ODE

become unstable (can generate patterns) in the presence of diffusion with d > 1.
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1.4.1 Linear Stability Analysis for Diffusion-Driven Instability

Now, we consider the linear stability analysis for the reaction-diffusion system (Turing

Instability). For any steady state to be driven unstable in the presence of diffusion,

certain conditions must be satisfied. To formulate the problem mathematically, we

need to specify initial conditions and boundary conditions. We take these to be given

initial conditions (which will be small perturbations about the steady state) and zero

flux boundary conditions. Therefore the mathematical problem is

ut = ∇ · (∇u)+ γ f (u,v),

vt = ∇ · (d∇v)+ γg(u,v),

(n.∇)

 u

v

= 0, r on ∂Ω; u(r,0), v(r,0) given,

(1.4.2)

where ∂Ω is the closed boundary of the reaction-diffusion domain Ω and n is the unit

outward normal to ∂Ω.

The relevant homogeneous steady state (u0,v0) of (1.4.2) is the positive solution of

f (u,v) = 0, g(u,v) = 0.

In the absence of diffusion, any homogeneous (positive) steady state must be linearly

stable since we are concerned with diffusion-driven instability. It is only in the pres-

ence of diffusion that we want this steady state to be driven unstable. With no diffusion

terms, we have
du
dt

= γ f (u,v),
du
dt

= γg(u,v). (1.4.3)
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We consider the following perturbations to the steady state (u0,v0)

u(x, t) = u0 + û(t), v(x, t) = v0 + v̂(t). (1.4.4)

where |û(t)|<< 1 and |v̂(t)|<< 1 are small perturbations.

Substitute these into equation (1.4.3), we have

du
dt

= γ f (u0 + û,v0 + v̂),
du
dt

= γg(u0 + û,v0 + v̂), (1.4.5)

and using a Taylor expansion of f and g about (u0,v0) we obtain the linearised system

wt = γJw,

where

J =

 f o
u f o

v

go
u go

v

 , w =

 û(t)

v̂(t)

 .

(1.4.6)

The subscripts u and v denote differentiation with respect to u and v respectively, and

o indicates evaluation at the equilibrium (u0,v0).

We look for solution w ∝ eλ t , where λ is the eigenvalue. If Reλ < 0, the steady state

w = 0 is linearly stable since in this case the perturbation w−→ 0 as t −→ ∞.

Substituting the form of solution into (1.4.6) determines the characteristic equation

λ
2− γtr(J)λ + γ

2det(J) = 0,

so

λ1,λ2 =
γ

2
[tr(J)±

√
tr(J)2−4det(J)].
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It can be derived that the linear stability of reaction equations is guaranteed if Reλ < 0,

that is

tr(J) = f o
u +go

v < 0, (1.4.7)

det(J) = f o
u go

v− f o
v go

u > 0. (1.4.8)

We now consider the whole system, including diffusion (1.4.2), and we consider the

following perturbations to the steady state (u0,v0)

u(x, t) = u0 + û(x, t), v(x, t) = v0 + v̂(x, t), (1.4.9)

where |û|<< 1 and |v̂|<< 1 are small perturbations.

Substitute equation (1.4.9) into (1.4.2) and apply a Taylor expansion about (u0,v0) to

f (u,v) and g(u,v) to obtain the linearised problem

û(x, t)t = ∇ · (û(x, t)∇û(x, t))+ γ( f o
u û(x, t)+ f o

v v̂(x, t)),

v̂(x, t)t = ∇ · (dv̂(x, t)∇v̂(x, t))+ γ(go
uû(x, t)+go

v v̂(x, t)),

(n.∇)

 û(x, t)

v̂(x, t)

= 0, r on ∂Ω.

(1.4.10)

System (1.4.10) can be written in the form

wt = ∇ · (Dw∇w)+ γJw, w =

 û(x, t)

v̂(x, t)

 ,

where

J =

 f o
u f o

v

go
u go

v

 , D =

 1 0

0 d

 .

(1.4.11)
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We define W(r) to be the time-independent solution of the spatial eigenvalue problem

defined by

4W+ k2W = 0 on Ω,

(n.∇)W = 0 on ∂Ω.
(1.4.12)

For example, in the one-dimensional domain (e.g. 0≤ x≤ a) with zero flux boundary

conditions, W ∝ cos(nπx
a ) (n integer) and (k = nπx

a , k is called the wavenumber). We

define the wavelength as ω = 2π

k = 2a
n .

Since n is an integer, there is a discrete set of possible wavenumbers in a finite do-

main. Let Wk(r) be the eigenfunction corresponding to the wavenumber k. Each

eigenfunction Wk satisfies zero flux boundary conditions. Since the problem is linear,

the solutions w(r, t) of (1.4.11) in the form

w(r, t) = ∑
k

ckeλ tWk(r), (1.4.13)

where the constant ck are determined by Fourier expansion of the initial conditions

in term of Wk(r) and λ is the eigenvalue which for temporal growth. Substituting

(1.4.13) into (1.4.11) with (1.4.12) and cancelling eλ t , we get, for each k

λWk =γJWk +D4Wk,

=γJWk−Dk2Wk.

Wk are required to be non-trivial solutions, thus we determine λ as roots of the char-

acteristic polynomial

det(λ I− γJ+Dk2) = 0,
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we have

λ
2 +G(k2)λ +H(k2) = 0, (1.4.14)

where

G(k2) = k2tr(D)− γtr(J),

and

H(k2) = det(D)k4− γqk2 + γ
2det(J), (1.4.15)

with

q := [d f o
u +go

v ].

We require Re(λ ) > 0 for exponential growth and hence for steady state to now be

unstable. For the case k = 0 we are back to the diffusionless system, and we already

imposed the constraints that the steady state is stable in the absence of any spatial

effect. For the steady state to be unstable when we add diffusion we require Re(λ )> 0

for some k 6= 0. This can happen if either G(k2) < 0 or H(k2) < 0. Since we have

( f o
u +go

v)< 0 and k2[1+d]> 0, then we have G(k2)> 0. Therefore, h must be negative

to have Re(λ )> 0, and since d > 0 and |J|> 0, the only possibility for H(k2)< 0 is if

d f o
u +go

v > 0 Thus, further requirement for instability is

d f o
u +go

v > 0 =⇒ d 6= 1, (1.4.16)

(1.4.16) is necessary but not sufficient for Re(λ ) > 0. For H(k2) to be negative for

non-zero k2, the minimum H(k2)min must be negative

H(k2)min = γ
2[det(J)− (d f o

u +go
v)

2

4d
],
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thus,

(d f o
u +go

v)
2 > 4ddet(J), (1.4.17)

note 4ddet(J) > 0. Now we have (1.4.7), (1.4.8), (1.4.16) and (1.4.17) conditions for

diffusion driven instability. Here we derive all the necessary condition for diffusion

driven instability in general. In next section, we will check these condition for our

specific system.

1.4.2 Cross-Diffusion and Pattern Formation

Recently, cross-diffusion effects have been recently considered in [25, 26, 49, 76, 88,

89, 108]. The effects of cross-diffusion on models for pattern formation have been

studied in many theoretical papers [4, 13, 14, 27, 28, 30, 31, 38, 42, 45, 48, 50, 55, 69,

74, 76, 79, 88, 95, 105, 109]. When linear cross-diffusion terms are introduced into

the Schnakenberg model, the constant steady state is destabilized even if the diffusion

constant of the inhibitor is smaller or equal to the diffusion constant of the activator,

as shown in [55]. Cross-diffusion has been shown to be the cause of Turing instability

in a large class of predator-prey or competitive kinetics term ”cross-diffusion induced

instability ” [29, 30, 69, 79, 92, 95]. However, other cross-diffusion models that have

not been investigated yet. The purpose of Chapter 3 is to further explore Turing’s

diffusion-induced instability for a class of cross-diffusion systems. Assume that there

is a spatially homogeneous stable steady state in the absence of self-diffusion and

cross-diffusion; this steady state remains stable in the presence of self-diffusion. We

investigate how this can be affected by cross-diffusion. Hence, it does not belong to

the classical Turing instability scheme; however, it may become unstable when cross-

diffusion enters the system; thus, it is a cross-diffusion induced instability. Here, we

present some examples of work on pattern formation for cross-diffusion models related

to the work in this thesis.
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Shigesada, Kawasaki, and Teramoto (SKT) proposed original Cross-diffusion models

to model the spatial segregation of two competing species [81]. SKT model has been

studied extensively for the last three decades ( see for example [15, 38, 44, 53, 58, 60,

103, 104, 106]), and the model has the following form

ut = ∇.(d1∇u+dαu∇u+dβ u∇v)+u(r1− rau− rvv),

vt = ∇.(d2∇v+dγv∇v+dδ v∇u)+ v(r2− rcv− rdu),
(1.4.18)

where u(x, t) and v(x, t) are the population densities of the two competing species, d j

( j = 1,2) are positive, and constants dα ,dγ ,dβ ,dδ are non-negative. d1 and d2 are the

random diffusion rates, dα and dγ are the self-diffusion rates which represent intra-

specific population pressures, and dβ ,dδ are the so-called cross-diffusion rates which

represent the inter-specific population pressures. The constant ri,ra,rc,rb,rd are all

positive.

The main feature of such a model is that the movement rate of each species depend

on the density of both species, and one key underlying biological assumption is that

the transition probability from one place to its neighbourhood depends solely on the

arrival spot and is independent of the departure spot. The goal of Shigesada was to

show that heterogeneity of the environment and the non-linear dispersive movements

raise a spatial segregation of the populations of two similar and competing species.

In the context of biological interactions of bacterial species, such a non-linear cross-

diffusion model (1.4.18) was investigated in [30, 32]. These are systems consisting of

two or more bacterial species exhibiting both competitive interaction for nutrients and

also diffusion that is mediated by the presence of another species and the presence of its

own species. They are interested in pattern formation in reaction-diffusion equations

with non-linear diffusion terms. The main interest in that paper is to understand how

cross-diffusion leads to pattern formation; their emphasis is less on the modelling and
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more on identifying conditions under which patterns are formed.

Many many researchers consider liner cross-diffusion flux which we called it ”A Sim-

ple Cross-diffusion” with different kinetics [27, 45, 54], one example is Madzvamuse

in [55] investigated Turing instability with the effect of linear cross diffusion for the

following model

ut = ∇ . (∇u+dv∇v)+a−u+u2v,

vt = ∇ . (d∇v+du∇u)+b−u2v,
(1.4.19)

where u(x, t) and v(x, t) are of two chemical concentrations, and d is the ratio of the

diffusion coefficients only (without cross-diffusion), and du and dv are the ratios of the

cross-diffusion and the diffusion coefficients, respectively. The constants aand b are

all positive .

They showed in the presence of cross diffusion, it is no longer necessary to enforce

that one of the species diffuse much faster than the other, so (Du = Dv⇒ d = 1).

In the previous studies, the effects of linear cross-diffusion on pattern formation has

been investigated for example [27, 45, 54]. None of these focused for the case where

steady state of the kinetic is stable to self-diffusion with any ratio of the coefficients

and see how this can be affected by linear cross-diffusion.

Yahong propose a mathematical model for a spatial predator-prey system with Allee

effect in [69]. They investigate the Turing instability and the phenomena of pattern

formation of the following system

ut = ∇.(a1u∇u+b1u∇v)+ γu(u−β )(1−u)−uv,

vt = ∇.(a2v∇v+bv∇u)+uv−δv,
(1.4.20)
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where u(x, t) is the prey density, v(x, t) is the predator density. a1 > 0, a2 > 0, b1 and

b are diffusion and cross-diffusion coefficients, respectively. The constants γ,β ,δ are

all positive.

They showed that non-linear cross-diffusion could induce instability that pattern can

form in case where the standard diffusion can not. There are still many cross-diffusion

models can be investigated to understand how cross-diffusion can affect a stable steady

state with standard-diffusion, and how cross-diffusion can affect pattern formation. In

Chapter 3, we extend the work in this area to have a better understand of the effect

of cross-diffusion on pattern formation and investigate this case for a class of cross-

diffusion systems where the non-dimensional form of this class of cross-diffusion sys-

tems is

ut = ∇.[D11(u,v)∇u+D12(u,v)∇v]+ γ f (u,v),

vt = ∇.[D21(u,v)∇u+D22(u,v)∇v]+ γg(u,v).

We then consider two examples, the first one is the (simple) linear cross-diffusion

(1.4.19), and the other one is a new non-linear cross-diffusion model that we derive

in Chapter 4. We also focus on a class of kinetics term where uniform steady state

is stable with standard-diffusion, and one example of kinetic is predator-prey system

with Allee effect [69].

1.5 Background of Travelling Wave

In Chapter 4, we consider travelling wave solution, so we give introduction of what

is the travelling wave in this section. Travelling wave means the shape and speed of

propagation of the front continually changed. Customarily a travelling wave is taken
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to be a wave which travels without change of shape. So, if a solution u(x, t) represents

a travelling wave, the shape of the solution will be the same for all time and the speed

of propagation of this shape is a constant, which we denote by c. If we look at this

wave in a travelling frame moving at speed c it will appear stationary. A mathematical

way of saying this is that if the solution

u(x, t) = u(x− ct) = u(z), where z = x− ct, (1.5.1)

then u(x, t) is a travelling wave, and it moves at constant speed c. If c > 0 then, we

have a right travelling wave, and If c < 0 then, we have a left travelling wave. The

wavespeed c generally has to be determined. The dependent variable z is sometimes

called the wave variable. When we look for travelling wave solutions of an equation

or system of equations in x and t in the form (1.5.1), we have ∂u
∂ t =−cdu

dz and ∂u
∂x =

du
dz .

So partial differential equations in x and t become ordinary differential equations in z.

To be physically realistic u(z) has to be bounded for all z and non-negative with the

quantities with which we are concerned, such as chemicals, populations, bacteria and

cells. For more details, see [64].

1.6 Thesis Outline

The aim of this thesis is to better understand how cross-diffusion influences the for-

mation and characteristics of patterns and fronts in reaction-diffusion systems. In par-

ticular, we are interested in the mechanism of pattern formations and wave fronts in a

cross-diffusion system. The structure of the thesis is as follows.

In Chapter 2, we investigate whether all cross-diffusion system of two interacting
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species can be derived from the following microscopic master equation [39, 72]

duk

dt
= τ

+
k−1uk−1 + τ

−
k+1uk+1− (τ+k + τ

−
k )uk,

dvk

dt
= β

+
k−1vk−1 +β

−
k+1vk+1− (β+

k +β
−
k )vk,

where uk is a biomass of u in the location xk, and the biomass can move to the left or

to the right to exit, with the transfer rate τ
−
k or τ

+
k , similarly for vk.

In Chapter 3, our goal is to follow the ideas of Turing about diffusive instability but to

consider the impact of cross-diffusion on the stability of a spatially uniform equilib-

rium. We perform a stability analysis for a class of cross-diffusion system

ut = ∇.[D11(u,v)∇u+D12(u,v)∇v]+ γ f (u,v),

vt = ∇.[D21(u,v)∇u+D22(u,v)∇v]+ γg(u,v).

We investigate the possibility of pattern formation. Particularly, we investigate one

case which is can cross-diffusion induce pattern where standard-diffusion can not. We

then consider two examples which are

ut = ∇ . (∇u+dv∇v)+ γ f (u,v),

vt = ∇ . (d∇v+du∇u)+ γg(u,v),

and

ut = ∇ . (Du(1−u)∇u−Dvu∇v)+ γ f (u,v),

vt = ∇ . (Dv(1− v)∇v−Duv∇u)+ γg(u,v).

In Chapter 4, we are interested in a non-linear cross-diffusion system used to model

tightly packed populations [72]. We first derive the model from a mass-conservation
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perspective

ut = ∇ . (Du(1−u)∇u−Dvu∇v)+ γ f (u,v),

vt = ∇ . (Dv(1− v)∇v−Duv∇u)+ γg(u,v).

We investigate moving front solutions of this model. For ease of analysis and numeric

investigation, we take v = 0. Thus, the system is reduced to a scalar equation, and we

seek a travelling wave solution of

ut = ∇ . (Du(1−u)∇u)+ γu(1−u)(u−β ). (1.6.1)

By studying this scalar equation, we try to understand the travelling wave solution In

particular, (1.6.1) is similar to Nagumo’s equation, so we also focus on the effect of

the non-linear diffusion term and what difference the non-linear diffusion term makes

to the travelling wave solution.

In Chapter 5, we summarise the important points presented in the thesis, and discuss

possible future work.

Throughout the thesis models are formulated as systems set in physically relevant spa-

tial domains Ω⊂ R3. These domains are either considered to be unbounded or to have

smooth boundary ∂Ω. In the latter case, boundary conditions are assumed to be of

no-flux type. For ease of computation, much of the analysis and all the numerical

simulations are conducted with Ω⊂ R.

In this thesis, the simulations of PDEs including cross-diffusion carried out using MAT-

LAB’s pdepe B.4solver with (zero-flux) Neumann boundary conditions, we plot the

dispersion relations in Chapter 3 using MATLAB (see the code in Appendix B.3), we

also use MATLAB function pplane to develop the phase portraits ( see the description
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of pplane in Appendix B.5).

Note that we are interested in processes and mechanisms and the underlying mathe-

matical structures with no direct applications considered. Hence, we do not provide a

dimensional analysis and all systems in this thesis are non-dimensional.
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Chapter 2

Inverse Problem

We discussed in Chapter 1 that cross-diffusion models could be derived from random

walk arguments. This chapter investigates whether all cross-diffusion systems of two

interacting species can be derived from the microscopic master equation (1.3.10). The

general proof does not seem an easy. Therefore, we illustrate that there is no proof by

two examples. The first one is the classical cross-diffusion model (SKT) investigated

in [66], and the second example is the simplest cross-diffusion. Since the analysis of

SKT model has been done before we will not go in details. In addition, since the jump

probabilities are simple for SKT, we compare the solution of SKT with the solution of

the master equation numerically, which has not been done before. Later, we recover

the non-linear cross-diffusion which is relevant to our work in this thesis.
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2.1 Shigesada, Kawasaki, and Teramoto Cross-Diffusion

System

The first example we investigate is the cross-diffusion model of Shigesada, Kawasaki,

and Teramoto. The partial differential equation we investigate without the environ-

mental potential function is

ut = ∇ · (D11∇u+2D12u∇u+D13v∇u+D13u∇v),

vt = ∇ · (D21∇v+2D23v∇v+D22v∇u+D22u∇v),
(2.1.1)

where D are positive coefficients. The model (2.1.1) is known as the cross-diffusion

model of Shigesada, Kawasaki, and Teramoto (SKT). To recover (2.1.1) from (1.3.16)

and (1.3.18), the equations that must be satisfied are

D11 +2D12u+D13v = p1q1 +u(p1q1u−q1 p1u),

D13 = p1q1v−q1 p1v,

D21 +D22u+2D23v = p2q2 + v(p2q2v−q2 p2v),

D22 = p2q2u−q2 p2u.

(2.1.2)

By choosing p1, p2,q1,q2 as

p1(u,v) = a1,

q1(u,v) =
1
a1

(D11 +D12u+D13v),

p2(u,v) = a2,

q2(u,v) =
1
a2

(D21 +D22u+D23v).

(2.1.3)

Where a1, a2 are constants. As a result, system (2.1.1) can be recoved from (1.3.16)
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and (1.3.18). For more details see [66].

We compare the solution of master equation (1.3.10) using jump probabilities (2.1.3)

with solution of the SKT model (2.1.1) in Figure 2.1. Clearly, we can see that the

simulation of master equation match the solution of the SKT model. We solve PDEs

in MATLAB (PDEPE) with zero flux boundary condition, and we solve the master

equation in MATLAB (ODE45) (see code in Appendix B.1).
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Figure 2.1: (a) Solution of u in SKT model (2.1.1) with initial condition I.C =

(100)e−1(x−20)2
. (b) Solution of u in master equation (1.3.10) using jump probabilities

(2.1.3) with initial condition I.C = (100)e−1(i−20)2
. (c) Comparing u in SKT model

with master equation at time t = 0.5. (d) Comparing u in SKT model with master
equation at time t = 1. Parameter values are shown in Table 2.1.
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Parameter Value
D11 0
D12 0
D21 0
D23 0
D13 1
D22 1
a1 10
a2 1
γ 1

Table 2.1: Table showing the parameter values that used to solve SKT model (2.1.1)
and master equation (1.3.10) with jump probabilities (2.1.3).

Using analysis and numerical simulations, we can conclude that SKT cross-diffusion

model commonly used to model dual species interaction can be derived from the ran-

dom walk.

2.2 A Simple Cross-Diffusion System

In the following, we consider the simplest cross-diffusion system given by the equa-

tions
ut = ∇ · (∇u+dv∇v),

vt = ∇ · (d∇v+du∇u).
(2.2.1)

Our next goal is to recover (2.2.1) from (1.3.16) and (1.3.18). We complete this trying

to find appropriate jump probabilities functions p1,q1, p2,q2. In doing this, we match

the right hand side of (2.2.1) with the right hand side of (1.3.16) and (1.3.18), we get

that the following equations must be satisfied for the functions p1,q1, p2,q2,
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ā = p1q1 +u(p1q1u−q1 p1u),

d̄v = u(p1q1v−q1 p1v),

d̄ = p2q2 + v(p2q2v−q2 p2v),

d̄u = v(p2q2u−q2 p2u).

(2.2.2)

We have included γ0 and µ0 in the coefficients ā, d̄v, d̄, d̄u s.t. ā = 1
γ0
, d̄v =

dv
γ0
, d̄ =

d
µ0
, d̄u =

du
µ0

. Note that the first and second equations in (2.2.2) represent the first equa-

tion in the cross-diffusion system for the species u and the third and fourth equations

represent the second equation in cross-diffusion system for the species v.

The following lemma holds.

Lemma 1. It is not possible to recover the linear cross-diffusion system (2.2.1) in the

following cases.

1. If p1,q1, p2,q2 are constants.

2. If p1, or q1, or p2, or q2 is a constant.

Proof. 1. If all of the jump probability functions p1,q1, p2,q2 are constants, substi-

tuting in the equations (2.2.2), all is reduced to zero and therefore it is impossible

to recover (2.2.1).

2. If we suppose that one of the jump probabilities is constant for example p1, that

is

p1(u,v) = c, (2.2.3)

where c is constant.
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Substituting (2.2.3) into (2.2.2) we have

ā = cq1 +u(cq1u), (2.2.4a)

d̄v = cq1v. (2.2.4b)

The equation (2.2.4a) is a first order linear ordinary differential equation with

non-constant coefficients for the variable q1 and its solution is given by

q1(u,v) =
ā
c
+

1
u

f (v), (2.2.5)

for some function f (v). If we substitute (2.2.5) into (2.2.4b) we have

d̄v = c(
1
u

f ′(v)) =⇒ f ′(v) =
d̄vu
c

. (2.2.6)

Clearly, this produces a contradiction to the previous assumption that f is a func-

tion only of v. Note that, we can proceed in the same way in the case that we

suppose that the jump probability q1 is constant.

In order to try to recover (2.2.1) from (1.3.16) and (1.3.18), we change the strategy

assuming that the jump probabilities can be separated into independent functions of u

and of v. In this case, we have the following proposition.

Proposition 2.2.1. Suppose that the jump probabilities can be separated in the follow-

ing way:
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p1(u,v) = f1(u)g1(v),

q1(u,v) = h1(u) j1(v),

p2(u,v) = f2(u)g2(v),

q2(u,v) = h2(u) j2(v).

(2.2.7)

In that case we can recover (2.2.1) from (1.3.16) and (1.3.18), and we have that the

jump probability functions are given by

f1(u) = (
d̄v

λ1(c1e
āλ1u

2λ2d̄v )

), g1(v) = (
λ2

c1e
λ1v
2λ2

), h1(u) = (
c̄1

u
e

āλ1u
2λ2d̄v ), j1(v) = (c̄1e

λ1v
2λ2 ),

f2(u) = (
λ4

c2e
λ3u
2λ4

), g2(v) = (
d̄u

λ3(c2e
d̄λ3v

2λ4d̄u )

), h2(u) = (c̄2e
λ3u
2λ4 ), j2(v) = (

c̄2

v
e

d̄λ3v
2λ4d̄uu ),

(2.2.8)

so that,



p1(u,v) = f1(u)g1(v) = ( d̄v
λ1c1

e− āλ1u
2λ2d̄v

)(λ2
c1

e− λ1v
2λ2

),

q1(u,v) = h1(u) j1(v) = ( c̄1
u e

āλ1u
2λ2d̄v )(c̄1e

λ1v
2λ2 ),

p2(u,v) = f2(u)g2(v) = (λ4
c2

e− λ3u
2λ4

)( d̄u
λ3c2

e− d̄λ3v
2λ4d̄u

),

q2(u,v) = h2(u) j2(v) = (c̄2e
λ3u
2λ4 )( c̄2

v e
d̄λ3v

2λ4d̄u ).

where c1, c̄1,c2, c̄2,λ1,λ2,λ2,λ4 are constants.

Proof. We proceed substituting (2.2.7) into (2.2.2), in doing this we denote by ′ as

derivative with respect u or v but taking care of what variable the function is depending,

thus we have
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ā = f1g1h1 j1 +u( f1g1(h1 j1)′−h1 j1( f1g1)
′),

d̄v = u( f1g1(h1 j1)′−h1 j1( f1g1)
′),

d̄ = f2g2h2 j2 + v( f2g2(h2 j2)′−h2 j2( f2g2)
′),

d̄u = v( f2g2(h2 j2)′−h2 j2( f2g2)
′),

(2.2.9)

since g and j are function only of v, the derivatives of these functions with respect to u

are zero. Similarly, since f , h are function only of u, the derivatives with respect to v

are zero, thus we can rewrite (2.2.9) in the following way

ā = g1 j1[ f1h1 +u( f1h′1−h1 f ′1)],

d̄v = u f1h1(g1 j′1− j1g′1),

d̄ = f2h2[g2 j2 + v(g2 j′2− j2g′2)],

d̄u = vg2 j2( f2h′2−h2 f ′2).

(2.2.10)

Note that from the first and the second equations in (2.2.10) we can recover the first

equation in (2.2.1), and from the third and fourth equations we can recover second

equation in (2.2.1). We are now going to solve the first two equation in (2.2.10) in order

to find g1, j1, f1,h1 which implies that the following must hold for arbitrary constants

λ1 and λ2

g1 j′1− j1g′1 = λ1, (2.2.11a)

g1 j1 = λ2, (2.2.11b)

f1h1 =
d̄v

uλ1
, (2.2.11c)

f1h1 +u( f1h′1−h1 f ′1) =
ā
λ2

. (2.2.11d)
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Now we are going to calculate the functions g1(v) and j1(v). Note that the functions

g1 and g′1 can be obtained from the equation (2.2.11b), that is

g1 =
λ2

j1
, g′1 =

−λ2 j′1
j2
1

. (2.2.12)

Substituting the values given by (2.2.12) into (2.2.11a) we get

j′1 =
λ1

2λ2
j. (2.2.13)

Equation (2.2.13) is an ordinary differential equation of the first order which solution

is given by

j1(v) = c1e
λ1v
2λ2 , (2.2.14)

where c1 is a constant. Substituting (2.2.14) into the relation found for g1 in (2.2.12),

we have

g1(v) =
λ2

c1e
λ1v
2λ2

. (2.2.15)

Now we are going to calculate the functions f1(u) and h1(u). Proceeding as before

note that the functions f1 and f ′1 can be obtained from the equation (2.2.11c), in this

case we have

f1 =
d̄v

uh1λ1
, f ′1 =

−d̄v

u2h1λ1
−

d̄vh′1
uh2

1λ1
. (2.2.16)

Substituting the values given by (2.2.16) for f1 and f ′1 into (2.2.11d), we have

(
d̄v

uh1λ1
)h1 +u((

d̄v

uh1λ1
)h′1−h1(

−d̄v

u2h1λ1
−

d̄vh′1
uh2

1λ1
) =

ā
λ2

, (2.2.17)
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thus,

h′1 = h1(
kλ1

2d̄vλ2
− 1

u
). (2.2.18)

Equation (2.2.18) is an ordinary differential equation of first order with solution given

by

h1(u) =
c̄1

u
e

kλ1u
2λ2d̄v , (2.2.19)

where c̄1 is constant. Substituting (2.2.19) into the relation founded for f1 in (2.2.16),

we have

f1(u) =
d̄v

uλ1(
c̄1
u e

āλ1u
2λ2d̄v )

=
d̄v

λ1(c̄1e
āλ1u

2λ2d̄v )

. (2.2.20)

Thus we get that the solutions for the first two equations of (2.2.10) are given by

f1(u) =
d̄v

λ1(c̄1e
āλ1u

2λ2d̄v )

,

h1(u) =
c̄1

u
e

āλ1u
2λ2d̄v ,

g1(v) =
λ2

c1e
λ1v
2λ2

,

j1(v) = c1e
λ1v
2λ2 ,

(2.2.21)

where c1, c̄1 are constants. Next, we are going to proceed in a similar way as before to

find the functions f2,h2,g2, j2 solving the last two equation in (2.2.10) which implies
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that the following must hold for arbitrary constants λ3 and λ4

f2h′2−h2 f ′2 = λ3, (2.2.22a)

f2h2 = λ4, (2.2.22b)

g2 j2 =
d̄u

vλ3
, (2.2.22c)

g2 j2 + v(g2 j′2− j2g′2) =
d̄
λ4

. (2.2.22d)

As we can see the functions f2 and f ′2 can be obtained from (2.2.22b). Thus we have

f2 =
λ4

h2
, f ′2 =

−λ4h′2
h2

2
. (2.2.23)

Substituting this values for f2 and f ′2 given by (2.2.23) into (2.2.22a), we have

h′2 =
λ3

2λ4
h. (2.2.24)

This is a linear ordinary differential equation of first order with solution given by

h2(u) = c2e
λ3u
2λ4 , (2.2.25)

where, c2 is a constant. Now substituting the value of h2 given by (2.2.25) into the

relation given by (2.2.23) for the function f2, we have

f2(u) =
λ4

c2e
λ3u
2λ4

. (2.2.26)

We are going now to calculate the values of the functions g2(v) and j2(v). As we can
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see the values of the functions g2 and g′2 that can be obtained from (2.2.22c), in this

case we have

g2 =
d̄u

v j2λ3
, g′2 =

−d̄u

v2 j2λ3
−

d̄u j′2
v j2

2λ3
. (2.2.27)

Substituting the values of g2 and g′2 given by (2.2.27) into the relation (2.2.22d) we

have

(
d̄u

v j2λ3
) j2 + v((

d̄u

v j2λ3
) j′2− j2(

−d̄u

v2 j2λ3
−

d̄u j′2
v j2

2λ3
) =

d̄
λ4

, (2.2.28)

we have

j′2 = j2(
d̄λ3

2d̄uλ4
− 1

v
). (2.2.29)

The equation given by (2.2.29) is a linear ordinary differential equation of the first

order with solution given by

j2(v) =
c̄2

v
e

d̄λ3v
2λ4d̄u , (2.2.30)

where c̄2 is constant. Substituting the value of j2 given by (2.2.30) in the relation

obtained for g2 in (2.2.27) we get

g2(v) =
d̄u

vλ3(
c̄2
v e

d̄λ3v
2λ4d̄u )

=
d̄u

λ3(c̄2e
d̄λ3v

2λ4d̄u )

, (2.2.31)
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and thus, we obtain the solutions

h2(u) = c2e
λ3u
2λ4 ,

f2(u) =
λ4

c2e
λ3u
2λ4

,

g2(v) =
d̄u

λ3(c̄2e
d̄λ3v

2λ4d̄u )

,

j2(v) =
c̄2

v
e

d̄λ3v
2λ4d̄u ,

(2.2.32)

where c2, c̄2 are constants. Gathering all above leads us to the following jump proba-

bility functions



p1(u,v) = f1(u)g1(v) = ( d̄v
λ1c1

e− āλ1u
2λ2d̄v

)(λ2
c1

e− λ1v
2λ2

),

q1(u,v) = h1(u) j1(v) = ( c̄1
u e

āλ1u
2λ2d̄v )(c̄1e

λ1v
2λ2 ),

p2(u,v) = f2(u)g2(v) = (λ4
c2

e− λ3u
2λ4

)( d̄u
λ3c2

e− d̄λ3v
2λ4d̄u

),

q2(u,v) = h2(u) j2(v) = (c̄2e
λ3u
2λ4 )( c̄2

v e
d̄λ3v

2λ4d̄u ).

(2.2.33)

Clearly with these functions, we can recover the simple cross-diffusion system (2.2.1)

from the relations given by (1.3.16) and (1.3.18).

From p1,q1 as defined in (2.2.33), the dispersal strategy of species u depends on both

densities of its own and v in the arrival and target site. Therefore, cross-diffusion effects

are introduced. The jump probability p1(u,v), which describes the wish or need of the

particles u to join its neighbouring position is an exponentially decreasing function,

and it is separated into two decreasing functions that one depends on u. The other

depends on v. The jump probability q1(u,v), which describes the incentive for that the

particles u leave their original position, is an exponentially increasing function, and it

is separated into two increasing functions that one depends on u and the other depends

46



on v, indicating that species u preferentially seeks location with lower concentrations

of both species u and v.

As we can see, p1(u,v) and q1(u,v) are complex and do not seem to have a specific

meaning. In contrast to the SKT model where the flux is more complex, but the jump

probabilities (2.1.3) are simpler. As a result , the simple flux does not mean that the

jump probabilities are simple and the complex flux does not mean that the jump proba-

bilities are complex. Therefore, it is not easy to prove that all cross-diffusion systems of

two interacting species can be derived from the microscopic master equation (1.3.10).

Similarly for jump probabilities p2(u,v) and q2(u,v) which are for species v.

2.3 New Non-linear Cross-Diffusion System

Here, we investigate the final example that is relevant to our work in this thesis

ut = ∇ · (Du(1−u)∇u−Dvu∇v),

vt = ∇ · (Dv(1− v)∇v−Duv∇u).
(2.3.1)

We will leave the details of the derivation for Chapter 4; however, our next goal is to re-

cover the non-linear cross-diffusion system (2.3.1) from (1.3.16) and (1.3.18). In other

words, we investigate now whether this model can be derived from our microscopic

master equation. We achieve this by trying to find appropriate jump probabilities func-

tions p1,q1, p2,q2. In doing this, we match the right hand side of (2.3.1) with the right

hand side of (1.3.16) and (1.3.18); we get that the following equations must be satisfied

for the functions p1,q1, p2,q2
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D̄u− D̄uu = p1q1 +u(p1q1u−q1 p1u),

− D̄v = u(p1q1v−q1 p1v),

D̄v− D̄vv = p2q2 + v(p2q2v−q2 p2v),

− D̄u = (p2q2u−q2 p2u),

(2.3.2)

we have included γ0 in the coefficients D̄u, D̄v s.t. D̄u =
Du
γ0
, D̄v =

Dv
γ0

. Note that the

first and second equations in (2.3.2) represent the first equation in the cross-diffusion

system for the species u and the third and fourth equations represent the second equa-

tion in the cross-diffusion system for the species v.

In order to recover (2.3.1) from ((1.3.16) and (1.3.18), we assume that the jump proba-

bilities can be separated into independent functions of u and of v. In this case, we have

the following proposition.

Proposition 2.3.1. Suppose that the jump probabilities can be separated in the follow-

ing way:

p1(u,v) = f1(u)g1(v),

q1(u,v) = h1(u) j1(v),

p2(u,v) = f2(u)g2(v),

q2(u,v) = h2(u) j2(v).

(2.3.3)

In that case, we can recover (2.3.1) from (1.3.16) and (1.3.18), and we will notice that

the jump probability functions are given by
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f1(u) =
D̄v

λ1(
c1√

ue
D̄uλ1(−u+lnu)

2D̄vλ2 )

, h1(u) =
c1√

u
e

D̄uλ1(−u+lnu)
2D̄vλ2 ,

g1(v) =
λ2

c1e
−λ1v
2λ2

, j1(v) = c1e
λ1v
2λ2 ,

(2.3.4)

so that, 
p1(u,v) = f1(u)g1(v) =

(
D̄v

λ1(
c1√

u e
D̄uλ1(−u+lnu)

2D̄vλ2 )

)(
λ2

c1e
−λ1v
2λ2

)
,

q1(u,v) = h1(u) j1(v) =
(

c1√
ue

D̄uλ1(−u+lnu)
2D̄vλ2

)(
c1e

λ1v
2λ2

)
,

where c1, λ1, λ2 are constants.

Proof. We proceed by substituting (2.3.3) into (2.3.2) which we denote by ′ as the

derivative with respect to u or v with taking care of what variable the function depends

on. Thus we have

D̄u− D̄uu = f1g1h1 j1 +u( f1g1(h1 j1)′−h1 j1( f1g1)
′),

− D̄v = ( f1g1(h1 j1)′−h1 j1( f1g1)
′),

(2.3.5)

since g and j are function only of v, the derivatives of these functions with respect to u

are zero. Similarly f , h are function only of u, so the derivatives with respect to v are

zero. We rewrite (2.3.5) in the following way

D̄u− D̄uu = g1 j1[ f1h1 +u( f1h′1−h1 f ′1)],

− D̄v = u f1h1(g1 j′1− j1g′1),
(2.3.6)

and we solve (2.3.6) to recover only the first equation in (2.3.1). We will now solve

(2.3.6) in order to find g1, j1, f1,h1 which implies that the following must hold for
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arbitrary constants λ1 and λ2

g1 j′1− j1g′1 = λ1, (2.3.7a)

g1 j1 = λ2, (2.3.7b)

f1h1 =
−D̄v

λ1
, (2.3.7c)

f1h1 +u( f1h′1−h1 f ′1) =
D̄u− D̄uu

λ2
. (2.3.7d)

Now we are going to calculate the functions g1(v) and j1(v). Note that the functions

g1 and g′1 can be obtained from the equation (2.3.7b), that is

g1 =
λ2

j1
, g′1 =

−λ2 j′1
j2
1

. (2.3.8)

Substituting the values given by (2.3.8) into (2.3.7a), we have

j′1 =
λ1

2λ2
j1. (2.3.9)

Equation (2.3.9) is an ordinary differential equation of the first order which solution is

given by

j1(v) = c1e
λ1v
2λ2 , (2.3.10)

where c1 is a constant. Substituting (2.3.10) into the relation found for g1 in (2.3.8),

we get
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g1(v) =
λ2

c1e
λ1v
2λ2

, (2.3.11)

where c1 is a constant. Now we are going to calculate the functions f1(u) and h1(u).

Proceeding as before note that the functions f1 and f ′1 can be obtained from the equa-

tion (2.3.7c), in this case we have

f1 =
−D̄v

h1λ1
, f ′1 =

D̄vh′1
h2

1λ1
. (2.3.12)

Substituting the values given by (2.3.12) for f1 and f ′1 into (2.3.7d), we get

(
−D̄v

h1λ1
)h1 +u((

−D̄v

h1λ1
)h′1−h1(

D̄vh′1
h2

1λ1
) =

D̄u− D̄uu
λ2

, (2.3.13)

we have

− D̄v +u((
−D̄v

h1
)h′1− (

D̄vh′1
h1

) =
λ1(D̄u− D̄uu)

λ2
, (2.3.14)

which is

− D̄v−2u
−D̄v

h1
h′1 =

λ1(D̄u− D̄uu)
λ2

, (2.3.15)

thus, we get

h′1 = h1(
λ1D̄u(1−u)

2D̄vuλ2
− 1

2u
). (2.3.16)

Equation (2.3.16) is an ordinary differential equation of first order with solution given

by (steps of the solution are in Appendix A.3)
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h1(u) =
c1√

u
e

D̄uλ1(−u+lnu)
2D̄vλ2 . (2.3.17)

Substituting (2.3.17) into the relation founded for f1 in (2.3.12), we have

f1(u) =
D̄v

λ1(
c1√

ue
D̄uλ1(−u+lnu)

2D̄vλ2 )

, (2.3.18)

Thus we get that the solutions for the first two equations of (2.3.6) are given by

f1(u) =
D̄v

λ1(
c1√

ue
D̄uλ1(−u+lnu)

2D̄vλ2 )

,

h1(u) =
c1√

u
e

D̄uλ1(−u+lnu)
2D̄vλ2 ,

g1(v) =
λ2

c1e
λ1v
2λ2

,

j1(v) = c1e
λ1v
2λ2 ,

(2.3.19)

where c1 is constant. Gathering all above leads us to the following jump probability

functions 
p1(u,v) = f1(u)g1(v) = ( D̄v

λ1(
c1√

u e
D̄uλ1(−u+lnu)

2D̄vλ2 )

)( λ2

c1e
λ1v
2λ2

),

q1(u,v) = h1(u) j1(v) = ( c1√
ue

D̄uλ1(−u+lnu)
2D̄vλ2 )(c1e

λ1v
2λ2 ).

(2.3.20)

Clearly with this functions, we can recover the first equation in a cross-diffusion system

(2.3.1) for species u from the relations given by (1.3.16) and (1.3.18). In a similar way

as before we can find the functions f2,h2,g2, j2 to recover equation for v in (2.3.1).
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2.4 Conclusions

In Chapter 1, it was outlined how the spatially discrete master equations

duk

dt
= τ

+
k−1uk−1 + τ

−
k+1uk+1− (τ+k + τ

−
k )uk,

dvk

dt
= β

+
k−1vk−1 +β

−
k+1vk+1− (β+

k +β
−
k )vk,

could be used to derive a macro scale cross diffusion model. This chapter investigated

whether all cross-diffusion system of two interacting species can be derived from these

microscopic master equations. First, we presented Ostrander’s result that the micro-

scopic master equation can be recovered from the SKT cross-diffusion model [66].

Next, we compared the solution of SKT with the solution of master equation numeri-

cally. Then, we also showed that the microscopic master equation could be recovered

from the linear cross-diffusion model. Finally, we showed that the microscopic master

equation can be recovered from the new non-linear cross-diffusion model. We found

out that recovering a system with complex flux does not imply that the jump prob-

abilities are complex. As we see for the SKT cross-diffusion model, where the flux

is complex, but jump probabilities are simple. In addition, recovering a system with

simple flux does not mean that the jump probabilities are simple. As we see for the

linear cross-diffusion model, where the flux is simple, but jump probabilities are com-

plex. Therefore , we conclude that it is not easy to prove that the microscopic master

equation (1.3.10) can be derived from all cross-diffusion systems of two interacting

species.

Note that the validity of the form of the jump probabilities given in (2.2.33) and

(2.3.20) could be verified by comparing numerical solutions of master equation with

those for the related PDE models (2.2.1) and (2.3.1), respectively (as is done for the
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SKT model and shown in Figure 2.1). Due to the complex form of the jump probabil-

ities we were unable to formulate a stable numerical code for the master equation that

would allow such a comparison. The construction of a stable numerical code would

form useful future work.
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Chapter 3

Effect of Cross-Diffusion on Pattern

Formation

In this chapter, we focus on pattern formation for cross-diffusion systems. Our goal

is that to follow the ideas of Turing about diffusive instability but to consider the im-

pact of cross-diffusion on the stability of a spatially uniform equilibrium. Suppose we

have kinetic where the steady state is stable to all self-diffusions. Can cross-diffusion

destabilize it?

A Turing instability arises when a steady state, stable in the absence of diffusion, can

be driven unstable in the presence of self-diffusion. It is also known that if cross-

diffusion terms are added to the system, the stability of the steady state of the reaction-

diffusion system with self-diffusion terms can be reversed. In other words, a steady

state, which is stable, either in the absence of any diffusion terms or in the presence

of self-diffusion alone can be destabilized when cross-diffusion terms are added to the

system. This is called a ’cross-diffusion induced instability’ [80], and can also induce

pattern formation [10, 101]. On the contrary, a stable steady state that becomes unsta-

ble in the presence of self-diffusion (Turing instability) can once again become stable
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in the presence of cross-diffusion. This is known as ’cross-diffusion induced stability’

[79] and prevents pattern formation. ’cross-diffusion induced stability’ investigated for

example of models, one example we presented in Chapter 1. However, there are still

models where this case has not investigated.

The main purpose of this chapter is that we investigate cross-diffusion induced insta-

bility in a class of problems, then we consider two examples. One example is the new

non-linear cross-diffusion model which we derive in Chapter 4. We focus in pattern

formation for this new model. In particular, we investigate the case of where self-

diffusion cannot destabilize the steady state. Thus, we investigate how the non-linear

cross-diffusion can affect the steady state. Before investigating the possible pattern for

this new model, we investigate an example which is a (simple) linear cross-diffusion

with the same kinetic to see how it can affect a stable steady state with self-diffusion.

3.1 Stability for a Class of Cross-Diffusion Models

To investigate the possibility of pattern formation for cross-diffusion systems, we set

up a two-species cross-diffusion model and carry out stability analysis. We consider a

class of cross-diffusion systems where the general non-dimensional form is

ut = ∇.[D11(u,v)∇u+D12(u,v)∇v]+ γ f (u,v),

vt = ∇.[D21(u,v)∇u+D22(u,v)∇v]+ γg(u,v),
(3.1.1)

where u and v represent densities of two-species, f (u,v) and g(u,v) are general reac-

tion terms, D12(u,v) and D21(u,v) are cross-diffusion terms, D11(u,v) and D22(u,v)

are self-diffusion terms.
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3.1.1 Linear Stability Analysis for Diffusion-Driven Instability

Now, we consider the linear stability analysis for a cross-diffusion system. For any

steady state to be driven unstable in the presence of diffusion, certain conditions must

be satisfied. To formulate the problem mathematically, we need to specify initial con-

ditions and boundary conditions. We take these to be given initial conditions (which

will be small perturbations about the steady state) and zero flux boundary conditions.

Therefore the mathematical problem is

ut = ∇.[D11(u,v)∇u+D12(u,v)∇v]+ γ f (u,v),

vt = ∇.[D21(u,v)∇u+D22(u,v)∇v]+ γg(u,v),

(n.∇)

 u

v

= 0, r on ∂Ω; u(r,0), v(r,0) given,

(3.1.2)

where ∂Ω is the closed boundary of the reaction-diffusion domain Ω and n is the unit

outward normal to ∂Ω.

The relevant homogeneous steady state (u0,v0) of (3.1.2) is the positive solution of

f (u,v) = 0, g(u,v) = 0.

Note that in Chapter 1 we derived the conditions for diffusion driven instability. For

ease of exposition, we rewrite the conditions here (see Chapter 1 for details of the cal-

culations). Linear stability of steady state (u0,v0) without any diffusion is guaranteed

if Reλ < 0 where λ satisfy λ 2− γ( f o
u +go

v)λ + γ2( f o
u go

v− f o
v go

u) = 0, that is

f o
u +go

v < 0, (3.1.3)
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f o
u go

v− f o
v go

u > 0. (3.1.4)

Instability of steady state (u0,v0) with self-diffusion is guaranteed if Reλ > 0 where λ

satisfy λ 2 +G(k2)λ +H(k2) = 0,

where

G(k2) = k2tr(D)− γtr(J),

and

H(k2) = det(D)k4− γqk2 + γ
2det(J),

with

q := [d f o
u +go

v ].

Thus, the necessary conditions for self-diffusion-driven instability are

f o
u +go

v < 0, (3.1.5a)

f o
u go

v− f o
v go

u > 0, (3.1.5b)

det(D)> 0, (3.1.5c)

q := [d f o
u +go

v ]> 0 =⇒ d 6= 1, (3.1.5d)

(q)2−4 det(J)det(D)> 0, (3.1.5e)

where D =

 1 0

0 d

 is the self-diffusion matrix and the positive constant d = Dv
Du

is

the ratio between two self-diffusion coefficients.
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Next we consider the following perturbations to the steady state (u0,v0)

u(x, t) = u0 + û(x, t), v(x, t) = v0 + v̂(x, t). (3.1.6)

where |û|<< 1 and |v̂|<< 1 are small perturbations.

Substitute equation (3.1.6) into (3.1.2) and apply a Taylor expansion about (u0,v0) to

f (u,v), g(u,v) and Di j(u,v) to obtain the linearised problem

∂ û(x, t)
∂ t

= ∇.[Do
11∇û(x, t)+Do

12∇v̂(x, t)]+ γ( f o
u û(x, t)+ f o

v v̂(x, t)),

∂ v̂(x, t)
∂ t

= ∇.[Do
21∇û(x, t)+Do

22∇v̂(x, t)]+ γ(go
uû(x, t)+go

v v̂(x, t)),

(n.∇)

 û(x, t)

v̂(x, t)

= 0, r on ∂Ω,

(3.1.7)

where Do
i j = Di j(u0,v0). The subscripts u and v denote differentiation with respect

to u and v respectively, and o indicates evaluation at the equilibrium (u0,v0). System

(3.1.7) can be written in the form

wt = ∇ · (Dcw∇w)+ γJw, w =

 û(x, t)

v̂(x, t)

 ,

where

J =

 f o
u f o

v

go
u go

v

 , Do
c =

 Do
11 Do

12

Do
21 Do

22

 .

(3.1.8)

Following the same method in used in Chapter 1, the dispersion relation is

59



λ
2 +G1(k2)λ +H1(k2) = 0, (3.1.9)

where

G1(k2) = k2tr(Do
c)− γtr(J),

and

H1(k2) = det(Do
c)k

4− γq1k2 + γ
2det(J), (3.1.10)

with

q := [Do
22 f o

u +Do
11go

v−Do
21 f o

v −Do
12go

u].

For cross-diffusion driven instability, we require Re(λ )> 0. It is assumed that tr(J)< 0

and tr(Do
c)> 0 and so G1(k2)> 0. Therefore Re(λ )> 0 if and only if H1(k2)< 0. The

minimum of H(k2) occurs at

k2
c :=

q1

2det(Do
c)
, and H1(k2

c) = det(J)− (q1)
2/[4det(Do

c)].

If this minimum is positive, then Re(λ )< 0. Hence the critical case occurs if H1(k2
c) =

0, i.e.

det(J) =
q2

1
4det(Do

c)
.

Now, it is assumed that det(J) > 0 hence the only way this equality can hold is if

det(Do
c)> 0 (third condition).

We also require the critical value of k2
c > 0 (k real). A necessary condition for this is

q1 > 0 (fourth condition).

For diffusively-driven instability to occur, the critical case is when k2
± such that H1(k2

±)=

0, and these can be easily shown to occur when
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k2
± =

q1±
√

(q1)2−4 det(J)det(Do
c)

2det(Do
c)

. (3.1.11)

Thus, requiring H1(k2)< 0 entails (q1)
2−4 det(J)det(Do

c)> 0 (fifth condition), thereby

yielding the fifth and last condition for cross-diffusion-driven-instability.

In summary, the necessary conditions for cross-diffusion-driven instability for system

(3.1.1) are given by

f o
u +go

v < 0, (3.1.12a)

f o
u go

v− f o
v go

u > 0, (3.1.12b)

det(Do
c)> 0, (3.1.12c)

q1 = [Do
22 f o

u +Do
11go

v−Do
21 f o

v −Do
12go

u]> 0, (3.1.12d)

(q1)
2−4 det(J)det(Do

c)> 0. (3.1.12e)

To see how cross-diffusion affects diffusion-driven instability conditions, clearly in the

present of cross-diffusion the self-diffusion coefficients can be equal where it is a nec-

essary condition (3.1.5d) to be not equal in absence of cross-diffusion (self-diffusion-

driven instability conditions).

Next, we will investigate the choice of kinetics term.

3.2 Kinetics Term

We focus on the effect of cross-diffusion on pattern formation. particularly, can cross-

diffusion destabilize a steady state that is stable to all self-diffusion, so cross-diffusion
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can induce pattern. Therefore, we need to specify the kinetic term. There are more than

one class of kinetic where self-diffusion cannot destabilize the steady state; however,

we focus only in one class where Jacobian matrices of kinetic model is

J :=

 f o
u f o

v

go
u go

v

=

 − −

+ 0

 . (3.2.1)

The other classes of kinetics might be discussed in future.

3.3 Patterns Are Not Generated by Self-Diffusion

Here, we check can the conditions (3.1.5) be hold with kinetic (3.2.1) where f o
u <

0, f o
v < 0, go

u > 0 and go
v = 0. Thus in this case the conditions become

f o
u < 0,

− f o
v go

u > 0,

det(D) = d > 0,

d f o
u < 0.

Hence, conditions (3.1.5) are not satisfied. Thus, we conclude that self-diffusion can

not destabilize the uniform steady state , and pattern formation could not rise in pres-

ence of self-diffusion only.

However, if we look for conditions (3.1.12) in the presence of cross-diffusion system,
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f 0
u < o,

− f o
v go

u > 0,

det(Do
c) = (Do

11Do
22−Do

12Do
21)> 0,

q1 = [Do
22 f o

u +Do
11go

v−Do
21 f o

v −Do
12go

u]> 0,

(q1)
2−4 det(J)det(Do

c)> 0.

Clearly, in the presence of cross-diffusion, these conditions can be satisfied. Next, we

focus on examples of cross-diffusion systems to investigate the role of cross-diffusion

in stability and pattern formation.

3.4 A Simple Cross-Diffusion Model

In this section, we investigate the first example of cross-diffusion systems to see how it

affects the pattern formation. We consider the non-dimensional cross-diffusion system

ut = ∇.[∇u+dv∇v]+ γ f (u,v),

vt = ∇.[du∇u+d∇v]+ γg(u,v),
(3.4.1)

where d is the ratio of the linear diffusion coefficients, du and dv are cross-diffusion

coefficients and the ratio γ is a positive constant. f (u,v) and g(u,v) are kinetics term.
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The above system is supplemented with initial conditions and Neumann boundary con-

ditions. The Jacobian of flux coefficients evaluated at steady state is

Do
c :=

 1 dv

du d

 .

3.4.1 Instability Conditions for the Simple Cross-Diffusion Model

We check now the conditions (3.1.12) for system (3.4.1), to see can this example of

flux induce instability.

f o
u +go

v < 0, (3.4.2a)

f o
u go

v− f o
v go

u > 0, (3.4.2b)

det(Do
c) = d−dudv > 0, (3.4.2c)

q1 = d f o
u −du f o

v −dvgo
u > 0, (3.4.2d)

(γq1)
2−4γ

2det(J)(d−dudv)> 0. (3.4.2e)

It follows trivially that conditions (3.4.2c), (3.4.2d) and (3.4.2e) can be satisfied by

choosing small positive d and dv and large positive du. Note that there are other pos-

sibilities for these conditions to be hold, such as negative cross-diffusion. Since all

instability conditions can hold, the patterns can form. Next, we investigate system

(3.5.1) numerically.
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3.4.2 Numerical Simulation

For numerical simulation we consider the following model of predator-prey interaction

in a homogeneous environment. This is an example of reaction kinetics for which it

satisfies our conditions on kinetics (3.2.1). The model of predator-prey with cross-

diffusion is

ut = ∇
2u+dv∇

2v+ γu(u−β )(1−u)−uv,

vt = d∇
2v+du∇

2u+uv−δv,
(3.4.3)

where u(x, t) and v(x, t) are the densities of prey and predator, respectively. γ, β and δ

are positive constant. The above system is supplemented with initial conditions and

Neumann boundary conditions.

The only non-trivial steady state of the reaction term in system (3.4.3) is (u0,v0) =

(δ ,γ(δ −β )(1−δ )), it can be shown that this is stable to standard-diffusion (for more

details see Appendix A), and we discuss the outline result here.
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Figure 3.1: Plots of (a) H(k2) and (b) Re(λ (k2)) in (3.1.9) with parameter values
β = 0.1, δ = 0.6, γ = 1, dv = 0, du = 0 and d = 1.
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Note that the dispersion relation as calculated in (3.1.9) is in the general form, in

this section we just substitute the diffusion coefficients partial derivatives from system

(3.4.3).

Figure (3.1) shows the dispersion relation for system (3.4.3) with self-diffusion only.

We observed no instability for any mode, and Re(λ (k2)) remained negative for any

value of the diffusion coefficient d. So, self-diffusion can not destabilize the uniform

steady state where standard-diffusion.
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Figure 3.2: Plots of (a) H(k2) and (b) Re(λ (k2)) in (3.1.9) with parameter values
β = 0.1, δ = 0.6, γ = 1, dv = 0.313, du = 0.313 and d = 0.1.

Figure (3.2) shows the dispersion relation for system (3.4.3) with self and cross-diffusion.

We observed instability in the first and second modes. Next we show the numerical

simulation for cross-diffusion system (3.4.1). We test the first mode and the second

mode, which are indeed shown to be unstable grow, forming patterns (see Figures 3.3,

3.4).
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Figure 3.3: Numerical simulations of (a) species u and (b) species v in system (3.4.1).
Figure (a) The initial condition u(x,0) = 0.6+ .01cos(πx). Figure (b) The initial con-
dition v(x,0)= 0.2+ .01cos(πx). Times shown are t = 0 (blue), t = 10 (orange), t = 20
(yellow), t = 30 (purple), t = 40 (green). Parameter values are shown in Table 3.1.
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Figure 3.4: Numerical simulations of (a) species u and (b) species v in system (3.4.1).
Figure (a) The initial condition u(x,0) = 0.6− .0001cos(2πx). Figure (b) The initial
condition v(x,0) = 0.2− .0001cos(2πx). Times shown are t = 0 (blue), t = 50 (or-
ange), t = 100 (yellow), t = 150 (purple), t = 200 (green). Parameter values are shown
in Table 3.1.
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Figure 3.5: Numerical simulations of (a,c,e) species u and (b,x,f) species v in system
(3.4.1). Figure (a) The initial condition u(x,0) = 0.6− .0001cos(2πx). Figure (b) The
initial condition v(x,0) = 0.2− .0001cos(2πx). Parameter values are shown in Table
3.1.
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Parameter Value
β 0.1
δ 0.6
γ 1
dv 0.313
du 0.313
d 0.1

Table 3.1: Table showing the parameter values that used to solve system (3.4.1).

To understand the behaviour of the solution, we increase the time t, and numerical

simulation confirm that the large scale patterns continue to evolve (see Figure 3.5).

We conclude linear cross-diffusion can induce the instability where standard-diffusion

can not, and that large scale spatio-temporal patterns form. Our numerics suggest that

under the effect of cross-diffusion, these patterns continue to evolve.

3.5 Pattern Formation Induced by Non-linear Cross-

Diffusion

In previous section, it was shown that a linear cross-diffusion can destabilize the uni-

form steady state where standard-diffusion can not. Here, we investigate another ex-

ample of flux. We consider the non-linear cross-diffusion with same predator-prey

kinetics as used above. The details of derivation of system (3.5.1) will be in Chapter

4. The full cross-diffusion system is
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ut = ∇ . (Du(1−u)∇u−Dvu∇v)+ γu(u−β )(1−u)−uv,

vt = ∇ . (Dv(1− v)∇v−Duv∇u)+uv−δv,
(3.5.1)

where Du and Dv are non-negative constants. The above system is supplemented with

initial conditions and Neumann boundary conditions. The Jacobian of flux coefficients

evaluated at steady state is

Do
c :=

Du(1−u0) −Dvu0

−Duv0 Dv(1− v0)

 .

3.5.1 Instability Conditions for Non-Linear Cross-Diffusion Model

Here, we investigate the conditions (3.1.12) for system (3.5.1), to see whether this

example of flux can derive instability.

f o
u +go

v < o, (3.5.2a)

f o
u go

v− f o
v go

u > 0, (3.5.2b)

det(Do
c) = DuDv(1− v0−u0)> 0, (3.5.2c)

q1 =−(Du(1−u0)go
v +Dv(1− v0) f o

u +Dvu0go
u +Duv0 f o

v )< 0, (3.5.2d)

q2
1 > 4det(J)DuDv(1− v0−u0). (3.5.2e)

It follows trivially that condition (3.5.2d) can be satisfied by choosing Dv large and Du
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small, since f o
u >, f o

v < 0, go
u > 0 and go

v = 0. The conditions (3.5.2e) become

q∗
2
=(Duv0 f o

v )
2 +(Dv[(1− v0) f o

u +u0go
u])

2 +2(Duv0 f o
v )(Dv[(1− v0) f o

u +u0go
u])

> 4DuDv(1− v0−u0)(− f o
v go

u).

This can be satisfied by choosing either Du or Dv sufficiently small whilst the other is

set to be O(1).

We therefore conclude that the non-linear cross-diffusion can induce instability where

standard-diffusion can not.

3.5.2 Numerical Simulation

A plot of the dispersion relation of system (3.5.1) is shown in Figure 3.6. We can

observe that there is instability in the first, second and third modes.

0 50 100 150

 k
2

-10

-5

0

5

10

H
(k

2
)

(a)

0 50 100 150

k
2

-0.06

-0.04

-0.02

0

0.02

0.04

R
e

 λ
(k

2
)

(b)

Figure 3.6: Plots of (a) H(k2) and (b) Re(λ (k2)) calculated from (3.1.9). Reaction
parameter values γ = 0.2, δ = 0.6, β = 0.4, Du = 0.0007, and Dv = 6

Note that the dispersion relation as calculated in (3.1.9) is in the general form. In this

section we just substitute the diffusion coefficients partial derivatives from the system

(3.5.1).
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We test the 1st, 2nd and 3rd modes to confirm our result summarised in Figure 3.6.

Numerical test confirms that the 1st (a) 2nd (b) and 3rd (c) modes are unstable (see

Figure 3.7). In addition, the standing front pattern in Figure 3.7 (a,b,c) was formed by

small perturbation for species u. We observe that v≈ 0 (d) when we test the 1st mode,

and similar behaviour is observed for the other modes.
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Figure 3.7: Solution of species u as computed by solving (3.5.1), (a) 1st mode: pattern
occur, times shown are t = 0 (blue), t = 38 (orange), t = 76 (yellow), t = 114 (purple),
t = 152 (green). (b) 2nd modes: pattern occur, times shown are t = 0 (blue), t = 47
(orange), t = 94 (yellow), t = 141 (purple), t = 188 (green). (c) 3rd modes: pattern
occur, times shown are t = 0 (blue), t = 65 (orange), t = 130 (yellow), t = 195 (purple),
t = 260 (green). Initial condition I.C= 0.6+01cos(nπx), n = 1,2,3.. (d) Solution of
species v as computed by solving (3.5.1) with same paramter value we use for u and
the initial condition I.C= 0.04+ .001cos(πx). times shown are t = 0 (blue), t = 175
(orange), t = 350 (yellow), t = 525 (purple), t = 700 (green). Parameter values are
shown in Table 3.2.
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Parameter Value
β 0.4
δ 0.6
γ 0.2

Du 0.0007
Dv 6

Table 3.2: Table showing the parameter values that used to solve system (3.5.1).

We conclude that non-linear cross-diffusion can induce pattern formation where standard-

diffusion can not. In addition, numerical simulation confirm that the staple pattern can

not generated by the linear cross-diffusion.

3.6 Conclusions

In this chapter, we focused on pattern formation and how it could be affected by cross-

diffusion. We found out that cross-diffusion induces patterns where standard-diffusion

can not. We have considered the stability analysis for a class of cross-diffusion sys-

tems. We focus on one type of kinetics where f o
u >, f o

v < 0, go
u > 0 and go

v = 0, with

two examples of flux. We derived conditions for linear instability induced by cross-

diffusion. Using predator-prey kinetics, we observed that a stable pattern occurs for the

non-linear model while for a linear model, the large scale pattern continues to evolve.

We conclude that cross-diffusion can induce instability where standard-diffusion can

not. In the next chapter, we will discuss the derivation of the non-linear cross-diffusion

model.
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Chapter 4

Travelling Fronts in a Non-Linear

Cross-Diffusion Model for Tightly

Packed Populations

In this chapter, we are interested in a non-linear cross-diffusion system used to model

tightly packed populations [72]. We first derive the model from a mass-conservation

perspective. We investigated the pattern formation process for this model in the pre-

vious chapter, and we observed that the stationary front pattern formed. Here, we

investigate moving front solutions of this model.

4.1 Model Derivation

Suppose that a biomass can be segregated into three components. Denote the volume

fraction of these components by v = v(x, t), u = u(x, t) and s = s(x, t), respectively,
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x ∈Ω⊂ R3. We assume that the fractions are subject to the following constraint:

v(x, t)+u(x, t)+ s(x, t) = 1 ∀x ∈Ω, t ≥ 0. (4.1.1)

The model we derive below is generic, but for ease of exposition and conception, we

have in mind a simple model of a bacterial biofilm - a densely packed community of

cells encased in a self-produced extracellular matrix [17, 63]. This volume fraction

approach is indeed a common method for dealing with such problems and represents

the realistic situation where the depth of the biofilm (in the direction orthogonal to the

plane of growth) is nutrient limited and hence the fractions defined above are simply

scaled population densities [110]. The components u and v can be considered to repre-

sent separate cell populations with s representing the extra cellular polymeric matrix.

In the absence of any other processes, conservation of mass demands that the following

relationship holds:

ut =−∇.Ju; vt =−∇.Jv; st =−∇.Js for (x, t) ∈Ω×R+, (4.1.2)

and we consider this system to be augmented with zero flux boundary conditions:

Ju.n = Jv.n = Js.n = 0, for x ∈ ∂Ω, (4.1.3)

where n is the outward pointing normal on ∂Ω. Clearly any one of the variables could

be computed directly from the other two by invoking (4.1.1), but for clarity, we write

the system out in full in the first instance. Moreover, adding the equations in (4.1.2)

results in

(u+ v+ s)t = 0 =−∇.(Ju + Jv + Js).
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Let us consider the u-subpopulation. Similar arguments hold for the other variables.

The conservation equation (4.1.1) combined with the boundary conditions (4.1.3) en-

sures that a unit of volume in the u-subpopulation e.g. a u−cell can move from one

spatial location to another only if its place is taken by an equivalent volume. Note

that this replacement could be from the u−, v− or s−populations with only the latter

two representing a change in the distribution of the volume fraction (swapping u for

u has no net effect on the volume fraction). As a first step suppose that the self-flux

Js
u is proportional to ∇u, i.e. in isolation, the u−population exhibits ”Fickian-like” be-

haviour. However, the populations are constrained by (4.1.1) and hence, as outlined

above the probability of a change in the u-fraction at a given spatial location is in fact

proportional to 1−u (i.e. ”not u”). Hence, unlike the standard case where the coeffi-

cient of proportionality is a positive constant (leading to Fickian diffusion), we set the

coefficient of proportionality to be Du(u) := Du(1−u), for some positive constant Du

and thus

Js
u =−Du(1−u)∇u =−Du(v+ s)∇u.

In the absence of other processes, (4.1.1), (4.1.3) demand that this flux of u must be

balanced by a flux of v and s. Hence, the terms Duv∇u and Dus∇u must appear in the

flux functions for v and s, respectively. Applying similar arguments to v, it follows

that the self-flux Js
v =−Dv(1− v)∇v and this component induces the balancing terms

Dvu∇v and Dvs∇v in Ju and Js, respectively. Finally, the self-flux Js
s contains the term

−Ds(1− s)∇s and this component induces the balancing terms Dsu∇s and Dsv∇s in Ju

and Jv, respectively. Hence, the flux terms in system (4.1.2) are

Ju =−Du(1−u)∇u+Dvu∇v+Dsu∇s,

Jv =−Dv(1− v)∇v+Duv∇u+Dsv∇s,

Js =−Ds(1− s)∇s+Dus∇u+Dvs∇v.

(4.1.4)
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It is easy to confirm that Ju + Jv + Js = 0. Note also that in the special case Du = Dv =

Ds = D, then the fluxes collapse to

Ju =−D∇u; Jv =−D∇v; Js =−D∇s.

Therefore, the fluxes decouple and standard Fickian diffusion is recovered. We con-

sider this not to be the case as discussed below.

Now that the form of the flux terms has been established, we invoke (4.1.1) to elim-

inate one of the variables and without loss of generality set s = 1− (u + v) with

Ds ≤min{Du, Dv}. Thus, (4.1.4) becomes

Ju =−(Du− (Du−Ds)u)∇u+Dvu∇v,

Jv =−(Dv− (Dv−Ds)v)∇v+Duv∇u

From (4.1.1) and the choice of Ds it follows that the coefficients of the self- and cross-

gradient terms are negative and positive, respectively. In what follows, for ease of cal-

culation, it is therefore assumed that Ds = 0. This choice does not affect the qualitative

output of the system. Moreover, If we consider s to represent the sticky extracellular

matrix, it may be reasonable to assume this generic self-diffusion rate to be much lower

than that of the cell-components.

In summary, we arrive at the flux-driven system

ut = ∇ . (Du(1−u)∇u+Dvu∇v),

vt = ∇ . (Dv(1− v)∇v+Duv∇u),
(4.1.5)
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for (x, t) ∈Ω×R+ with boundary conditions

(−Du(1−u)∇u+Dvu∇v).n = 0,

(−Dv(1− v)∇v+Duv∇u).n = 0,
(4.1.6)

for x ∈ ∂Ω.

With the flux terms established, reactions terms f (u,v) and g(u,v) can be added to the

right hand side of u− and v− equations in (4.1.5). Note that in general (4.1.1) does

not demand that f + g = 0. Rather, defining h = −( f + g) and adding h to the right

hand side of the s−equation in (4.1.2) yields the appropriate conservation equation.

[The case s≡ 0 would demand h≡ 0 and then f =−g. In this case, the system would

collapse even further to scalar in u, with v = 1−u.]

We note that the derivation given above clearly describes the application we have in

mind and allows for the possibility of explicitly including the effects of the third vari-

able. Moreover, despite the fact that we reduce the problem to two equations and

consider the case Ds = 0, this case could not have been derived via the route of con-

sidering only the u and v populations for which the conditions u+ v≤ 1 and u+ v 6≡ 1

hold. Here, the remaining volume fraction is implicitly defined as 1− (u+ v) 6≡ 0. As

such, it is not possible to partition the relevant component of the fluxes to the ”not X”

population where X = u or v as we have done using the explicit three variable model.

Finally, we recall that the mass conservation arguments given above are supported

by the random walk formulation given in Chapter 2. There, it was shown that jump

probabilities could be selected that connect the partial differential equation (4.1.5) with

the relevant master equation.
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4.2 Moving Fronts

We observed in the previous chapter that with the chosen parameters, the standing front

pattern was formed. However if we start with different parameters we have moving

front solution. We do numerical simulation for system (3.5.1) with different parame-

ters. As we observed in previous chapter that population u tended to standing front and

v tended to small constant. Here, we investigate the same system numerically with a

step function as initial condition for species u, and constant initial condition for species

v.
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Figure 4.1: (a) Solution of species u as computed by solving (3.5.1). Times shown are
t = 0 (blue), t = 100 (orange), t = 200 (yellow), t = 300 (purple), t = 400 (green). (b)
Solution of species v as computed by solving (3.5.1). Times shown are t = 0 (blue),
t = 4 (orange), t = 8 (yellow), t = 12 (purple), t = 16 (green). Parameter values are
shown in Table 4.1.
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Parameter Value
β 0.2
δ 0.6
γ 0.2

Du 0.0007
Dv 6

Table 4.1: Table showing the parameter values that used to solve system (3.5.1).

Clearly, the model can exhibit a moving front solution for u with certain parameter

choices, and v≈ 0 (see Figure 4.1). Therefore, in next section, to understand the front

formation, we consider the related problem where v≡ 0.

4.3 A Simplified Model

The moving front solution appears for species u while species v is essentially uniform

in space and tends to a constant. We observe in Figure 4.1 (b) that v≈ 0, thus for ease

of analysis and numeric investigation in the following, we take v≡ 0. Thus, the system

is reduced to scalar equation as expressed in equation (4.3.1).

ut = ∇ . (Du(1−u)∇u)+ γu(1−u)(u−β ). (4.3.1)

We seek a travelling wave solution of above equation, so we try to understand how

the travelling wave solution occur. Two highlighting features of equation (4.3.1) are

non-linear diffusion and bistability of the kinetics term. In addition, the kinetic term of

equation (4.3.1) is the same as in Nagumo’s equation, thus we also focus on the effect

of non linear diffusion term and what difference the non-linear diffusion term makes
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to the travelling wave solution.

4.4 Travelling Wave Analysis of the Scalar Equation

We consider the reaction-diffusion equation (4.3.1). The stability of steady states of

the associated ODE is the same as that in Nagumo’s equations (see Appendix A.1.2).

Rewriting equation (4.3.1)

ut =−Du

(
∂u
∂x

)2
+Du(1−u)

∂ 2u
∂x2 + f (u). (4.4.1)

Considering the travelling wave ansatz u(x, t) =W (z) =W (x− ct), it follows that the

W (z) is required to satisfy

− c
dW
dz

=−Du

(dW
dz

)2
+Du(1−W )

d2W
dz2 + f (W ). (4.4.2)

We restrict our attention for the case where c > 0. The case where c < 0 will be

investigated in the future work. Equation (4.4.2) can be re-written as a first order

system of ODEs as follows

dW
dz

= P,

Du(1−W )
dP
dz

= DuP2− cP− f .
(4.4.3)

When W = 1, clearly the left hand side of the second equation is zero. This degeneracy
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can be removed by introducing the parameter τ such that

dτ

dz
=

1
Du(1−W (z))

⇒ τ(z) =
∫ z

0

ds
Du(1−W (s))

. (4.4.4)

Except at W = 1 where dτ

dz is not defined, dτ

dz > 0 [2, 77].

Thus τ has an inverse τ−1, which in principle can be obtained from (4.4.4). Thus we

have

W (z) =W (τ(z)) and P(z) = P(τ(z)), (4.4.5)

and we obtain

dW
dz

=
dW
dτ

(τ)
1

Du(1−W (z))
and

dP
dz

=
dP
dτ

(τ)
1

Du(1−W (z))
. (4.4.6)

Clearly, for 0 <W (z) < 1, sign(dW
dz ) = sign(dW

dτ
) and therefore W (z) is monotone de-

creasing⇔W (τ) is monotone decreasing.

Substituting (4.4.6) into (4.4.3) we have a system without the singularity as follows

Ẇ = Du(1−W )P,

Ṗ = DuP2− cP− f ,
(4.4.7)

where ”.” denotes derivative with respect to τ .

Note that systems (4.4.3) and (4.4.7) are topologically equivalent in the slab {(W,P) |
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0 <W < 1, −∞ < P < ∞}. This is because (4.4.5) defines a re-parametrization of the

trajectories which, according to (4.4.6), preserves their orientation.

The steady states of (4.4.7) are (W1,P1) = (0,0) , (W2,P2) = (1,0), (W3,P3) = (β ,0)

and (W4,P4) = (1, c
Du
).

The Jacobian matrix for system (4.4.7) is given by

J(W,P) :=

 −DuP Du(1−W )

− f ′(w) 2DuP− c.

 .

At steady states (Wj,Pj), the eigenvalues of J(Wj,Pj) are solution of the characteristic

polynomial

det(J(Wj,Pj)−λ I) =

 −DuPj−λ Du(1−Wj)

− f ′(Wj) 2DuPj− c−λ .

= 0,

⇒ λ
2 +λ [c+DuPj−2DuPj]+ cDuPj−2D2

uPj +Du f ′(Wj)−DuWj f ′(Wj) = 0.

(4.4.8)

Therefore:

λ
±
j =
−[c−DuP]±

√
[c−DuP]2−4Du[cP−DuP+ f ′(Wj)−W f ′(Wj)]

2
. (4.4.9)

We can obtain the eigenvectors associated with the eigenvalues by solving

(J−λ I)W = 0. (4.4.10)
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At the steady state (W1,P1) = (0,0),

λ
±
1 =

−c±
√

c2−4Du f ′(0)
2

. (4.4.11)

Since f ′(0) < 0, we obtain λ
−
1 < 0 < λ

+
1 and it is a saddle point. Using (4.4.10), the

equations representing the eigenvectors are

Ψ
±
1 =

 1
λ
±
1

Du

 . (4.4.12)

At the steady state (W2,P2) = (1,0),

λ
+
2 = 0, λ

−
2 = −c, so it is non-hyperbolic point for which stability can not be deter-

mined using linearisation. However, we look close to (W2,P2) = (1,0) with W ∗ . 1

and P∗ . 0, we see from system (4.4.7)

Ẇ = Du(1−W )P < 0,

Ṗ = DuP2− cP− f < 0 if DuP2− cP < f (W ).
(4.4.13)

Therefore, the trajectory starting at (W ∗,P∗) moves away from (W2,P2) and hence

(W2,P2) = (1,0) is unstable.

Using (4.4.10), the equations representing the eigenvectors are

for λ
+
2 = 0, Ψ

+
2 =

 c
γ(1−β )

1

 , for λ
−
2 =−c, Ψ

−
2 =

0

1

 . (4.4.14)
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At the steady state (W3,P3) = (β ,0),

λ
±
3 =

−c±
√

c2−4Du f ′(β )− f ′(β )
2

. (4.4.15)

Recall f ′(β )> 0. Hence,

(β ,0)−


focus if c2 < 4Du f ′(β )− f ′(β ) and is stable if c > 0, unstable if c < 0,

node if c2 ≥ 4Du f ′(β )− f ′(β ) and is stable if c > 0, unstable if c < 0,

centre if c = 0.

Using (4.4.10), the equations representing the eigenvectors are

Ψ
±
3 =

 1
λ
±
3

Du(1−β )

 . (4.4.16)

At the steady state (W4,P4) = (1, c
Du
),

λ
+
4 = c, λ

−
4 =−c, so it is a saddle point. Using (4.4.10), the equations representing

the eigenvectors are

for λ
+
4 = c, Ψ

+
4 =

0

1

 , for λ
−
4 =−c, Ψ

−
4 =

 2c
f ′(w)

1

 . (4.4.17)

To see what effect the non-linear term makes on Nagumo’s equation, we compare the

eigenvalues λ
±
j in (4.4.9) with the eigenvalues for Nagumo’s equation, which are (see

e.g. [99])

σ
±
j =
−c±

√
c2−4 f ′(Wj)

2
. (4.4.18)
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So, for the steady states (0,0), (β ,0) and (1,0) equation (4.4.9) become:

λ
±
j =
−c±

√
c2−4Du[ f ′(Wj)−W f ′(Wj)]

2
. (4.4.19)

DuW f ′(Wj) under square root in (4.4.19) is difference between (4.4.19) and (4.4.18)

and that is because of non-linear diffusion term in our equation; however, since 0 <

W < 1 the stability of the steady state should be same in our equation and Nagumo’s

equation. In summary, the non-linear diffusion term does not affect the stability of

steady state and it is similar to Nagumo’s equation.

4.5 Sign of the Wave Speed

Let us return to the original formulation (4.4.2), taking the product of equation (4.4.2)

and dW
dz , and integral over (−∞,+∞):

∫ +∞

−∞

Du(1−W )
d2W
dz2

dW
dz

dz+c
∫ +∞

−∞

∣∣∣∣dW
dz

∣∣∣∣2 dz−Du

∫ +∞

−∞

∣∣∣∣dW
dz

∣∣∣∣3 dz+
∫ +∞

−∞

f (W )
dW
dz

dz= 0.

(4.5.1)

Using integration by parts to calculate first integral in (4.5.1)

∫ +∞

−∞

Du(1−W )
d2W
dz2

dW
dz

dz =Du

[
dW
dz

(1−W )
dW
dz

]+∞

−∞

= Du

∫ +∞

−∞

dW
dz

(
− dW

dz
dW
dz

+(1−W )
d2W
dz2

)
dz

= Du

∫ +∞

−∞

∣∣∣∣dW
dz

∣∣∣∣3− (1−W )
d2W
dz2

dW
dz

dz.

(4.5.2)
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Substituting (4.5.2) into (4.5.1), we obtain

−
∫ +∞

−∞

Du(1−W )
d2W
dz2 dW + c

∫ +∞

−∞

∣∣∣∣dW
dz

∣∣∣∣2 dz+
∫ W (+∞)

W (−∞)
f (W )dW = 0. (4.5.3)

We can rewrite

∫ +∞

−∞

Du(1−W )
d2W
dz2 dW =

∫ 0

1
Du(1−W )

d2W
dz2 dW =−

∫ 1

0
Du(1−W )

d2W
dz2 dW.

(4.5.4)

Hence,

c =

I1︷ ︸︸ ︷
−
∫ 1

0
Du(1−W )

d2W
dz2 dW +

I2︷ ︸︸ ︷∫ 1

0
f (W )dW∫ +∞

−∞

∣∣∣∣dW
dz

∣∣∣∣2 dz︸ ︷︷ ︸
I3

. (4.5.5)

The sign of c depends on the integrals I1 and I2 since I3 > 0, so it can be positive

(right wave), negative (left wave) and zero (standing wave). With the chosen parameter

values the sign of I1 is negative (we shall show this case in our numerical investigation

), then if I2 is zero or negative the sign of c is negative thus we have left wave, but if I2

is positive and I2 >−I1 we get right wave. If I2 =−I1 we have standing wave.

Comparing expression of c in equation (4.5.5) for non-linear diffusion bistable equa-

tion with expression of c in equation (A.1.4) for Nagumo’s equation, it can be seen

that I1 does not appear for Nagumo’s equation case, which come from non-linear dif-

fusion term in (4.5.5). Thus, I1 can affect the sign of c. For example with the chosen

parameter values taking β = 0.4 result I2 > 0 which gives right wave for Nagumo’s
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equation but in non-linear case gives standing wave since I1 =−I2. Furthermore, tak-

ing β = 0.2 result I2 > 0 which gives right wave for Nagumo’s equation and in the

non-linear case gives right wave as well since I1 < I2. In addition, in the case where

β = 0.2 which result right travelling wave for both non-linear and stranded diffusion,

the right travelling speed slowed down because of I1.

As Du changes, the value of I1 does not affect or it just have a little effect since the Du

scales z and we integrate −∞ < z < ∞; however, as Du increase, I3 decrease which re-

sult c→+∞ for right wave (see Tables 4.2, 4.3). In summary, the diffusion coefficient

Du can increase or decrease the wave speed, but it can not change the sign of speed

wave.

β = 0.4 Standing wave
Case Du I1 I2 I3 c

1 1 -0.016 0.016 0.16 0
2 10 -0.016 0.016 0.53 0
3 20 -0.016 0.016 0.37 0
4 200 -0.016 0.016 0.01 0

Table 4.2: Table showing the value I1, I2 and I3 with varying Du to see the effect on c
that calculated in equation (4.5.5) with β = 0.4.

β = 0.2 Right wave
Case Du I1 I2 I3 c

1 1 -0.012 0.05 0.14 0.025
2 10 -0.012 0.05 0.04 0.81
3 20 -0.012 0.05 0.32 1.14
4 100 -0.012 0.05 0.041 2.69

Table 4.3: Table showing the value I1, I2 and I3 with varying Du to see the effect on c
that calculated in equation (4.5.5) with β = 0.2.
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We conclude that the sign of c is affected by I1 which comes from the non-linear

diffusion term, in contrast to the classic case (Nagumo’s equation) where sign of c

depends on I2 only.

4.6 Proving Heteroclinic Connection via Shooting Method

In order for a travelling wave to exist, it is required that W (z) approaches constant

states as z −→ ±∞. In other words, trajectory leaves one fixed point at τ = −∞ and

joins another fixed point at τ = ∞. Therefore, we use the shooting method to prove

existing of the travelling wave, and we use MATLAB function pplane to develop the

phase portraits.

As above, we restrict our attention for the case where c > 0. Assume
∫ 1

0 ( f u)du > 0,i.e.

c > 0. For the trajectory T0 entering (0,0) see Figure 4.2, from the equations in (4.4.7)

and the assumptions on f we have

1. If W ∈ (0,β ), we have


dW
dz = Du(1−W )P < 0,

dP
dz = DuP2− cP− f (W )> 0,

this implies for W ∈ (0,β ), dP
dW < 0, since f (W ) < 0 and P < 0. Thus P(W ) is

always deceasing.

2. If W = β , we have 
dW
dz = Du(1−W )P < 0,

dP
dz = DuP2− cP > 0,

this implies for W = β , dP
dW < 0, since f (W ) = 0 and P< 0. Thus P(W ) is always
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deceasing.

3. If W ∈ (β ,1), we have


dW
dz = Du(1−W )P < 0,

dP
dz = DuP2− cP− f (W )< 0 or > 0,

this implies for W ∈ (β ,1), dP
dW > 0 for small P, and dP

dW < 0 for large P, since

f (W )> 0 and P < 0.

Let γ0 be the first value of W ∈ (β ,1) such that dP
dz = 0, then we have


dP
dz > 0 for all W ∈ (0,γ0),

dP
dz |W=γ0= 0,

this implies


dP
dW < 0 for all W ∈ (0,γ0),

dP
dW = 0 for W = γ0.
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Figure 4.2: An illustration of the trajectories T0.

Now, for the trajectory T1 leaving (1,0) see Figure 4.3, with similar calculation from

the equations in (4.4.7) and the assumptions on f we have

1. If W ∈ (0,β ), we have


dW
dz = Du(1−W )P < 0,

dP
dz = DuP2− cP− f (W )> 0,

this implies for W ∈ (0,β ), dP
dW < 0, since f (W ) < 0 and P < 0. Thus P(W ) is

always deceasing.

2. If W = β , we have 
dW
dz = Du(1−W )P < 0,

dP
dz = DuP2− cP > 0,

this implies for W = β , dP
dW < 0, since f (W ) = 0 and P< 0. Thus P(W ) is always
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deceasing.

3. If W ∈ (β ,1), we have


dW
dz = Du(1−W )P < 0,

dP
dz = DuP2− cP− f (W )< 0 or > 0,

this implies for W ∈ (β ,1), dP
dW > 0 for small P, and dP

dW < 0 for large P, since

f (W )> 0 and P < 0.

Let γ1 be the first value of W ∈ (β ,1) such that dP
dz = 0, then we have


dP
dz > 0 for all W ∈ (0,γ1),

dP
dz |W=γ1= 0,

this implies


dP
dW < 0 for all W ∈ (0,γ1),

dP
dW = 0 for W = γ1.
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Figure 4.3: An illustration of the trajectories T1.

We now investigate that either γ0 = γ1 or γ0 6= γ1 , we have from system (4.4.7)

dP
dW

=
DuP2− cP− f (W )

Du(1−W )P
= 0, (4.6.1)

thus,

DuP2− cP− f (W ) = 0,

we get

P(W ) =
c±
√

c2 +4Du f (W )

2Du
.

For W ∈ (β ,1) and since f (W )> 0, thus this defines a unique value

P(W ) =
c−
√

c2 +4Du f (W )

1Du
,

for each value of c. Thus, γ0 = γ1 and we rename this point as m.
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Figure 4.4: An illustration of the trajectories T0 and T1

Therefore, there is a travelling wave⇔ T0 and T1 are the same trajectory. Next, we are

going to show that trajectories T0 and T1 join. From (4.4.12), the eigenvector for T0 at

(0,0) (see Figure 4.4) is

Ψ
−
1 =

 1
λ
−
1

Du

 , (4.6.2)

where

λ
−
1 =

−c−
√

c2−4Du f ′(0)
2

, (4.6.3)

which clearly vary as c varies. A little algebra shows that

λ
−
1 →−∞ as c→ ∞,

and

λ
−
1 → 0 as c→−∞.
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The eigenvector for T1 at (1,0) is

Ψ2 =

 c
γ(1−β )

1

 . (4.6.4)

Fix m ∈ (0,1) and let P0, P1 be the values of P at which T0 , T1 hit the line W = m.

Then,

as c→ ∞, λ
−
1 →−∞, thus P0→−∞ and P1→ ∞,

and

as c→−∞, λ
−
1 → 0, thus P0→ ∞ and P1→−∞.

Therefore, P0 and P1 are the same for exactly one value of c =⇒ there is a travelling

wave for this speed only.

4.7 Uniqueness of the Wave Speed

In this section, we investigate the uniqueness of wave speed. We investigate the nu-

merical solution for equation (4.3.1) with different initial condition, and phase plane

for system (4.4.7).
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Figure 4.5: Phase portrait for system (4.4.7) with Du = 8.15 and β = 0.2. Red circles
denote equilibrium points. (a) c = .7 there is heteroclinic connection between two
steady state (1,0) and (0,0). (b) c = .8 there is no heteroclinic connection between
two steady state (1,0) and (0,0). (c) c = .6 there is no heteroclinic connection between
two steady state (1,0) and (0,0).

As it can be seen in phase plane for system (4.4.7) in Figure 4.5 (a), there is trajectory
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connection from (1,0) to (0,0) where c = 0.7, which mean travelling wave solution

exist, and it shall be investigated numerically. From phase plane if c is increased or

decreased, there is no trajectory connection from (1,0) to (0,0) (see Figure 4.5 (c,b)).

4.7.1 Numerical Result

Taking β = 0.2 which implies
∫ 1

0 f (W )dW = 0.05> 0 and it bigger than−
∫+∞

−∞
Du(1−

W )d2W
dz2

dW
dz dz = −(−0.0125) = 0.0125 ( numerically calculated), thus we have right

waves c > 0. For this case we do simulation with different initial conditions using

MATLAB (PDEPE). We start with step function Figure 4.6 (a).

By computing the position of a selected level point (u = 0.5) on the solution profile

and the velocity of moving boundary position Figure (b) in (4.6, 4.7,4.8), the speed is

approximately c = 0.7, which is the slope of the line, and it is the same as the speed

given by equation (4.5.5).

0 50 100 150

 x

0

0.2

0.4

0.6

0.8

1

1.2

u
(x

,t
) 

t=0

t=20

t=40

t=60

t=80

t=100

(a)

0 20 40 60 80 100 120

 t

0

50

100

150

x
u
=

0
.5

 

(b)

Figure 4.6: (a) Solution of species u in (4.3.1) with step function as initil condition,
times shown are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60 (purple), t = 80
(green), t = 100 (sky blue). (b) Selected level point (u = 0.5) on the solution profile.
Parameter values are shown in Table 4.4.

We solve equation (4.3.1) numerically with different initial condition (Figure 4.7,

4.8,(a)).
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Figure 4.7: (a) Solution of species u in (4.3.1) with I.C = exp((−.1x2)), times shown
are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60 (purple), t = 80 (green),
t = 100 (sky blue). (b) Selected level point (u = 0.5) on the solution profile. Parameter
values are shown in Table 4.4.
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Figure 4.8: (a) Solution of species u in (4.3.1) with IC = 1− (x2/((5)+ x2)), times
shown are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60 (purple), t = 80 (green),
t = 100 (sky blue). (b) Selected level point (u = 0.5) on the solution profile. Parameter
values are shown in Table 4.4.

Parameter Value
β 0.2
γ 1

Du 8.15

Table 4.4: Table showing the parameter values that used to solve equation (4.3.1).
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From all numerical investigations as we started with different initial conditions we end

up with same wave speed c = 0.7. This support the conjecture that the wave speed is

unique.

With chosen parameters, if we take β = 0.4 implies
∫ 1

0 f (W )dW = 0.0166 and it is

equal −
∫+∞

−∞
Du(1−W )d2W

dz2
dW
dz dz = −(−0.0166) = 0.0166 (numerically calculated),

so c = 0 (standing wave) ( Figure 4.9). However, since the sign of c determine by∫ 1
0 f (W )dW in Nagumo’s equation, thus taking β = 0.4 implies c > 0 (right wave).

Phase plane for ODE system (4.4.7) with c = 0 is shown in Figure 4.10. We conclude

that the non-linear diffusion affect the speed of travelling wave.
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Figure 4.9: Solution of species u in (4.3.1). Times shown are t = 0 (blue), t =
30 (orange), t = 60 (yellow), t = 90 (purple), t = 120 (green), t = 150 (sky blue).
Parameter values are shown in Table 4.5.

Parameter Value
β 0.4
γ 1

Du 8.15

Table 4.5: Table showing the parameter values that used to solve equation (4.3.1).
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Figure 4.10: Phase portrait for system (4.4.7) with c = 0 , Du = 8.15 and β = 0.4. Red
circles denote equilibrium points.

4.8 Moving and Standing Front Solution for Full Cross-

Diffusion System

We have done a simple calculation for the scalar equation, and we compared equation

(4.3.1) with Nagumo’s equation. We showed that the sign of the travelling wave speed

was affected by non-linear diffusion term in (4.3.1). We use this information in full

system and solve tit numerically using step function as initial condition, taking β = 0.2

is resulting right travelling wave solution for species u see Figure 4.11, and taking

β = 0.4 is resulting standing travelling wave solution for species u see Figure 4.12.

We observe that species v is essentially uniform in space and tends to a constant v≈ 0

.
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Figure 4.11: Solution of species (a) u and (b) v in the full system (3.5.1). Times shown
are t = 0 (blue), t = 100 (orange), t = 200 (yellow), t = 300 (purple), t = 400 (green).
Parameter values are shown in Table 4.6.

Parameter Value
β 0.2
δ 0.6
γ 0.2

Du 0.0007
Dv 6

Table 4.6: Table showing the parameter values that used to solve system (3.5.1).
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Figure 4.12: Solution of species (a) u and (b) v in the full system (3.5.1). Times shown
are t = 0 (blue), t = 50 (orange), t = 100 (yellow), t = 150 (purple), t = 200 (green).
Parameter values are shown in Table 4.7.

Parameter Value
β 0.4
δ 0.6
γ 0.2

Du 0.0007
Dv 6

Table 4.7: Table showing the parameter values that used to solve system (3.5.1).

4.9 Conclusions

In this chapter, we derived a new non-linear cross-diffusion system for tightly packed

particles based on mathematical modelling. An important feature of this model is

that it leads to pattern formation where standard diffusion does not (see Chapter 3).

We found out that this model can exhibit a moving front solution for u with certain

parameter choices.
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Then, the system was reduced to scalar equation (4.3.1) which is:

ut = ∇ . (Du(1−u)∇u)+ γu(1−u)(u−β ).

We investigated the travelling wave solution of this equation. Two highlighting fea-

tures of this equation were non-linear diffusion and bistability of the kinetics term. We

tried to understand how the travelling wave solution could be affected. In addition, it is

similar to Nagumo’s equation, so we also focused on the effect of non-linear diffusion

term and what difference the non-linear diffusion term made to the travelling wave so-

lution. It was proved by shooting method that there exists a travelling wave solution.

We calculated the speed of travelling wave, and we established the uniqueness of the

wave speed numerically. Most of the analysis showed similarity to Nagumo’s equa-

tion, but the differences was in the wave speed . The wave speed for equation (4.3.1)

depended on
∫+∞

−∞
Du(1−W )d2W

dz2
dW
dz dz and

∫ 1
0 f (W )dW in contrast to Nagumo’s equa-

tion, where it depended only in
∫ 1

0 f (W )dW . Therefore, the non-linear diffusion could

change the speed. Using analysis and numerical simulations, we conclude that the

non-linear diffusion affected the travelling wave solution and could change the speed’s

sign of travelling fronts compared to the standard diffusion in Nagumo’s equation.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis investigated cross-diffusion systems to better understand how they impact

the formation and characteristics of patterns and fronts in reaction-diffusion systems.

In particular, the mechanism of pattern formation and wave fronts. We discussed the

derivation of cross-diffusion systems. We discussed the effect of cross-diffusion on

pattern formation. In addition, we derived a new cross diffusion model, and we inves-

tigated the possible pattern formation and travelling waves solution for that model.

In Chapter 2, we investigated whether all cross-diffusion system of two interacting

species can be derived from the following microscopic master equations

duk

dt
= τ

+
k−1uk−1 + τ

−
k+1uk+1− (τ+k + τ

−
k )uk,

dvk

dt
= β

+
k−1vk−1 +β

−
k+1vk+1− (β+

k +β
−
k )vk,

where uk is a biomass of u in the location xk, and the biomass can move to the left or

to the right to exit, with the transfer rate τ
−
k or τ

+
k , similarly for vk. We considered
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examples of cross-cross-diffusion models, and we found out that it is not easy to prove

that the microscopic master equation (1.3.10) can be derived from all cross-diffusion

systems of two interacting species.

In Chapter 3, We derived conditions for linear instability induced by cross-diffusion.

We considered a class of cross- diffusion systems which has the form

ut = ∇.[D11(u,v)∇u+D12(u,v)∇v]+ γ f (u,v),

vt = ∇.[D21(u,v)∇u+D22(u,v)∇v]+ γg(u,v).

We also focused on one type of kinetics where f o
u >, f o

v < 0, go
u > 0 and go

v = 0. We

considered two examples of the cross-diffusion system, and we found out that cross-

diffusion can induce instability where standard-diffusion could not, thus patterns can

generate by cross-diffusion.

In Chapter 4, We derived a new non-linear cross-diffusion system for tightly backed

particles from a mass-conservation perspective:

ut = ∇ . (Du(1−u)∇u−Dvu∇v),

vt = ∇ . (Dv(1− v)∇v−Duv∇u).

An important feature of this model is that it led to pattern formation. We found out that

this model can exhibit a moving front solution for u with certain parameter choices.

Then, the system was reduced to a scalar equation which is:

ut = ∇ . (Du(1−u)∇u)+ γu(1−u)(u−β ). (5.1.1)

Two highlighting features of this equation were non-linear diffusion and bistability of

the kinetics term. We investigated a travelling wave solution of the scalar equation. We
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showed that the sign of travelling wave speed was affected by the non-linear diffusion

term. We conclude that the non-linear diffusion can affect the travelling wave solution

and could alter the speed of travelling fronts compared to the standard case.

5.2 Future Work

In Chapter 2, we found out that it is not easy to prove that the microscopic master

equation can be derived from all cross-diffusion system of two interacting species.

However the approach in the inverse problem could likely be used to find jump prob-

abilities which recover many other cross-diffusion systems. Also, the validity of the

form of the jump probabilities given in (2.2.33) and (2.3.20) could be verified by com-

paring numerical solutions of master equation with those for the related PDE models

(2.2.1) and (2.3.1), respectively (as is done for the SKT model and shown in Figure

2.1). The construction of a stable numerical code would form useful future work.

In Chapter 3, we found out that our new non-linear cross-diffusion model can induce

patterns where standard-diffusion can not. In the future, we can investigate other

cases, such as how the non-linear cross-diffusion affects unstable steady state with

self-diffusion (Turing instability).

In Chapter 4, we proved that the right travelling wave solution exits via a shooting

method. However, we did not investigate the left travelling wave case. It would be

interesting to attempt to prove this case. We obtain some numeric results of the left

travelling wave solution as follows.
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Figure 5.1: Phase portrait for system (4.4.7) with c = −0.3, Du = 8.15 and β = 0.5.
The green highlighted curve is heteroclinic connection between two steady state (1,0)
and (0,0). Red circles denote equilibrium points.

In the Phase plane of ODE system (4.4.7) with c < 0 (see Figure 5.1), we observe that

the trajectory that connect steady states (1,0) and (0,0) go through the steady state

(1, c
Du
) which form non-smooth front, this can be observed in Figure 5.2).

We do numerical simulation where β = 0.5 so
∫ 1

0 f (W )dW = 0 and since
∫+∞

−∞
Du(1−

W )d2W
dz2

dW
dz dz =−0.0200 < 0 (numerically calculated for chosen parameters), so c < 0

we get left wave (see Figure 5.2).
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Figure 5.2: Solution of species u in (4.3.1). Times shown are t = 0 (blue), t =
30 (orange), t = 60 (yellow), t = 90 (purple), t = 120 (green), t = 150 (sky blue).
Parameter values are shown in Table 5.1.
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Parameter Value
β 0.5
γ 1

Du 8.15

Table 5.1: Table showing the parameter values that used to solve equation (4.3.1).
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Appendix A

Appendix A

A.1 More Background of Travelling Wave

By definition, a travelling wave moves in a certain direction while retaining a fixed

shape. Furthermore, the speed of the travelling wave remains constant through out the

duration of its propagation. Examples of travelling waves can be found in models for

a range of applications such as combustion [98], movement of species [64] and fluid

dynamics [82].

Definition 1. (See e.g. [64]) A travelling wave is a solution of a partial differential

equation with a constant profile (shape) and a constant propagation speed.

A.1.1 Classes of Travelling Waves

• Travelling pulse: u(x, t)→ a as x→±∞

• Travelling front : u(x, t)→ a as x→−∞,u(t,x)→ b as x→+∞, and a 6= b

• Periodic travelling wave. (See Figure A.1.)
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(a) (b)

(c)

Figure A.1: Forms of travelling waves: (a) wave front, (b) pulse and (c) Periodic
travelling wave.

A PDE’s travelling wave solution can be presented in the form u(x, t) = W (z), where

z = x−ct, and c > 0, depicts a wave travelling from left to right. The partial derivative

of u can calculated as following

∂u
∂ t

=
dW
dz

∂ z
∂ t

=−c
dW
dz

, (A.1.1)

and

∂u
∂x

=
dW
dz

∂ z
∂x

=
dW
dz

,

∂ 2u
∂x2 =

d2W
dz2

(
∂ z
∂x

)2
+

dW
dz

∂ 2z
∂x2 =

d2W
dz2 .

(A.1.2)
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A.1.2 Fisher’s and Nagumo’s Equations

This section covers some well-known properties of simpler reaction-diffusion (R-D)

systems. Simplest form of R-D equation in one dimension that represents the travelling

wave behaviour can be expressed mathematically as

ut = uxx + f (u), (A.1.3)

where u is the concentration, f (u) = ru(1−u) represents the kinetics.

Equation (A.1.3) with f (u) = ru(1−u) is called Fisher’s equation, which is known to

have monotone travelling wave solution joining u = 1 at x =−∞ to u = 0 at x = ∞ for

wave speeds of c ≥ c0 = 2 ( in terms of the original dimensional equation, the range

of wavespeeds satisfies c0 = 2
√

rD). It is known that rapidly decaying initial data as

x −→ ∞ results asymptotically to a wave with minimum speed c0. Figure A.2 (a) is

a solution of Fisher’s equation which shows right travelling wave solution, and (b) is

phase plane with trajectory connecting (1,0) and (0,0) (phase plane for ODE system

obtained by travelling wave analysis for Fisher’ equation see [64]. Note two features

of Fisher’s equation; first that the wave moves the system from unstable to a stable

state as expected, second the minimum speed of wave is the function of D, which is

the motility parameter. For more details on the analysis of Fisher’s equation see [64].
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Figure A.2: (a) Solution of species u for Fisher’s equation with a step function as
initial condition, Times shown are t = 0 (blue), t = 12 (orange), t = 24 (yellow), t = 36
(purple). (b) Phase portrait for Fisher’s equation with c= 3 where the green highlighted
curve shows the heteroclinic connection between (1,0) and (0.0) and red circles denote
equilibrium points.

Supposing now that f (u)= u(1−u)(u−β ), 0< β < 1, transforms the equation (A.1.3)

into Nagumo’s equation or bistable Fisher equation. It is called bistable because the as-

sociate ODE du
dt = u(1−u)(u−β ) has two uniform stable steady states u = 0,1, while

u = β is an unstable state. Figure A.3 (a) is a solution of Nagumo’s shows right trav-

elling wave solution. Phase plane with trajectory connecting (1,0) and (0,0) (phase

plane for ODE system obtained by travelling wave analysis for Nagumo’s equation) is

shown in Figure A.3(b). It is an established and well known fact that in the bistable

case, there exists a unique travelling wave with speed c. The sign is determined by the
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sign of the integral of reaction function over a certain interval (see [23]). For Nagumo’s

equation, a formula provides the unique wave speed value and the sign from which the

direction of wave can be determined, namely, (see e.g. [99]),

c =
∫ 1

0 f (U)dU∫
∞

−∞
[U ′]2dz

. (A.1.4)

Since
∫

∞

−∞
[U ′]2dz > 0, we conclude that

∫ 1
0 f (U)dU determines the sign of c

∫ 1
0 f (u)du > 0 =⇒ c > 0,∫ 1
0 f (u)du = 0 =⇒ c = 0,∫ 1
0 f (u)du < 0 =⇒ c < 0,

which means we can have right c > 0, left c < 0 or standing c = 0 travelling wave.
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Figure A.3: (a) Solution of species u for Nagumo’s equation with a step function as
initial condition, times shown are t = 0 (blue), t = 20 (orange), t = 40 (yellow), t = 60
(purple), t = 80 (green), t = 100 (sky blue). (b) Phase portrait for Nagumo’s equation
with c = .426 where the green highlighted curve shows the heteroclinic connection
between (1,0) and (0.0) and red circles denote equilibrium points. Reaction parameter
values β = 0.2.

A.2 Predator-Prey System with Allee Effect

We consider the following model of predator-prey interaction in a homogeneous envi-

ronment, and it is just example of reaction kinetics for which it is known that they are

stable to standard-diffusion. The model of predator-prey with standard-diffusion is
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∂H(X ,T )
∂T

= D1
∂ 2H
∂X2 +F(H)− f (H,P),

∂P(X ,T )
∂T

= D2
∂ 2P
∂X2 +κ f (H,P)−MP.

(A.2.1)

Here, H and P are the densities of prey and predator, respectively, at time T and posi-

tion X . D1 and D2 are diffusivities and is the food utilization coefficient. The function

F(H) describes prey multiplication, f (H,P) describes predation, and the term MP

stands for predator mortality. To keep the model as simple as possible, we assume

that f (H,P) = AHP, where A is the predation rate, which corresponds to the classical

Volterra scheme. Assuming Allee dynamics for the prey population, its growth rate

can be written as (see [47, 62, 69]).

F(H) =
4ω

(K−H0)2 H(H−H0)(K−H). (A.2.2)

Equations (A.2.1) and (A.2.2) contain a large number of parameters, which makes their

numerical investigation cumbersome. However, by choosing appropriate scales for

the variables following [62], the number of parameters can be lessened. Considering

dimensionless variables u = H/K, v = P/(κK), t = aT , x = X(a/D1)
1/2, where a =

AκK.

From equations (A.2.1) and (A.2.2), we obtain

∂u(x, t)
∂ t

=
∂ 2u
∂x2 + γu(u−β )(1−u)−uv,

∂v(x, t)
∂ t

= d
∂ 2v
∂x2 +uv−δv,

(A.2.3)

where β = H0/K, γ = 4ωK(Aκ(K−H0)
2), δ = M/a and d = D2/D1.
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A.2.1 Linear Stability Analysis of the Associates ODE

In this section, we would like to do stability analysis of system (A.2.3). First, we

consider the associate ODE:

du
dt

= γu(u−β )(1−u)−uv,

dv
dt

= uv−δv,
(A.2.4)

where u(t) is the prey density, v(t) is the predator density; 0 < β < 1 corresponds to

the strong Allee effect, and assume γ > 0 and δ > 0.

The steady states (u0,v0) of system (A.2.4), are solutions of du
dt =

dv
dt = 0 which are

(u0,v0) = (0,0), (u0,v0) = (1,0), (u0,v0) = (β ,0), (u0,v0) = (δ ,γ(δ −β )(1−δ )).

(A.2.5)

Following standard theory (see e.g. [8, 64, 96, 100]), the linear asymptotic stability of

the steady states (A.2.5) is determined by the eigenvalues of the Jacobian matrix we

have:

(u0,v0) = (0,0) is stable, (u0,v0) = (1,0) is unstable, (u0,v0) = (β ,0) is unstable and

(u0,v0) = (δ ,γ(δ −β )(1−δ )) is stable if 0 < β < δ < 1 and β+1
2 < δ < 1,

The only nontrivial steady state is (u0,v0) = (δ ,γ(δ − β )(1− δ )) of kinetic system

(A.2.4). We test the stability numerically to support the analysis, we start around the

steady state (u0,v0) = (δ ,γ(δ−β )(1−δ )) and observe that the solution return back to

steady state which support our analytical result that the steady state is stable see Figure

A.4 (a). This is just an example, and similar behaviour is observed with different initial

data. In addition, we start around the steady state (u0,v0) = (δ ,γ(δ −β )(1−δ )) with

different parameter value where the condition 0 < β < δ < 1 is not hold and observe
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that the steady state is unstable see Figure A.4 (b). Next, we investigate the effect of

standard diffusion.
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Figure A.4: (a) The solution u(t) of system (A.2.4) with parameter values γ = 0.2, δ =
0.6 and β = 0.1 which shows that the steady states (u0,v0) = (δ ,γ(δ −β )(1− δ )) is
stable. (b) The solution u(t) of system (A.2.4) with parameter values γ = 0.2, δ =
0.6 and β = 0.7 which shows that the steady states (u0,v0) = (δ ,γ(δ −β )(1− δ )) is
unstable.

A.2.2 Standard Diffusion Does Not Generate Patterns

In previous section, we showed that the steady state of ODE system (A.2.4) (u0,v0) =

(δ ,γ(δ −β )(1−δ )) is stable. In this section, we investigate it with standard diffusion

and see the pattern can occur or not.

By the similar calculation in previous chapter, the dispersion relation associated with

the standard diffusion (A.2.3) is

λ
2 +λ

c︷ ︸︸ ︷[
k2[1+d]− [ fu +gv]

]
+

h(k2)︷ ︸︸ ︷
dk4− (d fu +gv)k2 + |A|= 0. (A.2.6)
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We already go through stability analysis for reaction-diffusion system in Chapter 3,

and we introduce necessary conditions for diffusion driven instability. We show that

one of necessary condition ((d fu +gv)> 0) which does not hold for kinetic (A.2.4) :

(d fu +gv) =−dγu0(2u0− (β +1)) =−dγδ (2δ − (β +1)).

Since β+1
2 < δ < 1, we have

(d fu +gv)< 0.

We conclude that linear instability does not occur with standard diffusion. We solve

system (A.2.3) numerically and it supports our analytical result that the steady state is

stable (see Figure A.5). Here, the first mode is tested, and similar behaviour is observed

for any modes.
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Figure A.5: Solution of species u in (A.2.3). Times shown are t = 0 (blue), t = 0.1
(red), t = 0.2 (yellow), t = 0.3 (purple). Reaction parameter values γ = 0.2, δ =
0.6, β = 0.1 and d = .7, with initial condition I.C = 0.6+ .1cos(πx).
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A.3 Calculation Steps

Solution’s step for equation (2.3.16).

h′1 = h1(
λ1D̄u(1−u)

2D̄vuλ2
− 1

2u
). (A.3.1)

∫ dh1

h1
=
∫
(
λ1D̄u(1−u)

2D̄vuλ2
− 1

2u
)du. (A.3.2)

lnh1 =
∫
[

λ1D̄u

2D̄vλ2

(1−u
u

)
−
( 1

2u

)
]du. (A.3.3)

lnh1 =
λ1D̄u

2D̄vλ2
(lnu−u)− 1

2
lnu+ lnc1. (A.3.4)

Note that 1
2 lnu = lnu

1
2 = ln

√
u.

ln
(h1
√

u
c1

)
=

λ1D̄u

2D̄vλ2
(lnu−u). (A.3.5)

h1
√

u
c1

= e

(
λ1D̄u
2D̄vλ2

(lnu−u)
)
. (A.3.6)

h1(u) =
c1√

u
e

D̄uλ1(−u+lnu)
2D̄vλ2 , (A.3.7)
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Appendix B

Numerical Simulations: MATLAB

Codes

B.1 Matlab Code to Solve Equation (1.3.10)

We use this code in section 2.1 to plot Figure 2.1.

% Computes the right -hand side

function dx = RHS1(t,x, gamma ,n)

%x=x';

% n = length(x) /2;

% % Split the vector x into u and v

% u = x(1:n);

% v = x(1,n+1:2*n);

% p1 = @(u,v) 1;

% p2 = @(u,v) 0.7071;
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% q1 = @(u,v) 0.7071*v;

% q2 = @(u,v) 0.7071*u;

q1=1; p1=1; q2=1; p2=1;

% Initialize derivative vectors , tau 's and beta 's

du = zeros(n,1);

dv = zeros(n,1);

tm = zeros(n,1); % tau^-

tp = zeros(n,1); % tau^+

bm = zeros(n,1); % beta^-

bp = zeros(n,1); % beta^+

% tau 's and beta 's as in (2.2.2)

for k=1:n

% Boundary values

if k==1

tp(k) = gamma * q1 * x(n+k) * p1;

tm(k) = 0; % is tau^-_0

bp(k) = gamma * q2 * x(k) * p2;

bm(k) = 0; % is beta^-_0

elseif k == n

tp(k) = 0; % is tau^+_n

tm(k) = gamma * q1 * x(k) * p1;

bp(k) = 0;

bm(k) = gamma * q2 * x(k) * p2;

else

121



tp(k) = gamma * q1 * x(n+k) * p1;

tm(k) = gamma * q1 * x(n+k) * p1;

bp(k) = gamma * q2 * x(k) * p2;

bm(k) = gamma * q2 * x(k)* p2;

end

end

% Computation of the derivatives by (2.2.1)

for k=1:n

if k==1 % Since tau^-_1 = 0, the first term

is missing

du(k) = tm(k+1)*x(k+1) -(tm(k)+tp(k))*x(k);

dv(k) = bm(k+1)*x(n+k+1) -(bm(k)+bp(k))*x(n+

k);

elseif k == n % Since tau^+_{n+1} = 0, the

second term is missing

du(k) = tp(k-1)*x(k-1) -(tm(k)+tp(k))*x(k);

dv(k) = bp(k-1)*x(n+k-1) -(bm(k)+bp(k))*x(n

+k);

else

du(k) = tp(k-1)*x(k-1) + tm(k+1)*x(k+1) -(tm

(k)+tp(k))*x(k);

dv(k) = bp(k-1)*x(n+k-1) + bm(k+1)*x(n+k+1)

-(bm(k)+bp(k))*x(n+k);

end

end
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dx = [du ; dv];

%size(dx)

end

% parameters

close

gamma = 1;

n =301;

m = (n-1) /2+1;

% functions p1, q1 , p2 , q2

% To test I take them constants

% p1 = @(u,v) 0.7071;

% p2 = @(u,v) 0.7071;

% q1 = @(u,v) 0.7071*v;

% q2 = @(u,v) 0.7071*u;

% Starting values u_i=0 v i-(n+1)/2

u0 = zeros(n,1);

v0 = zeros(n,1);

for i=1:n

u0(i) =floor (100* exp(-1*(i-20) ^2));

v0(i)=u0(i);

end

% Starting values v_i=0, except v_m =100

% u0 = zeros(n,1);

% v0 = zeros(n,1);

% v0(m) =100;
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x0 = [u0 ; v0];

% Final time

tmax = 1;

% Produce the solution

[t,x] = ode45 (@(t,x) RHS1(t,x, gamma ,n), [0,tmax], x0);

% % Plot u an v

% figure (1)

% plot(t,x);

% Plot u

figure (1)

plot(x(1,1:n),'LineWidth ' ,5)

hold on

plot(x(98,1:n),'LineWidth ' ,5)

hold on

plot(x(132 ,1:n),'LineWidth ' ,5)

hold on

plot(x(157 ,1:n),'LineWidth ' ,5)

hold on

plot(x(end ,1:n),'LineWidth ' ,5)

xlim ([5 35])

xlabel('k','Color ','k')

ylabel('u(t)','Color ','k')

set(gca ,'FontSize ' ,20)
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% Plot v

% figure (3)

% plot(x(1,n+1:2*n));

% Plot u

figure (4)

plot(x(end ,1:n),'LineWidth ' ,7)

xlim ([5 35])

xlabel('k','Color ','k')

ylabel('u(t)','Color ','k')

set(gca ,'FontSize ' ,20)

B.2 Matlab Code to Solve Equation (1.3.2)

We use this code in section 1.3 to plot Figures 1.2, 1.3.

close all;clear;

n=100; %number of time steps;

nwalks =5000; % number of particles
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%Define an array of uniformly distributed jumps at

each time step for each particle.

%x = sing(x) ensures that x is an

%array of +1 and -1 (right and left jumps resp). Each

column represents a

%walker and each row is the jump made by that walke

rat the specified time

%step

alpha = .7;

x = (rand(n,nwalks) - alpha.*ones(n,nwalks));

x=sign(x); %if sign of x postive give 1 if it negative

give -1

% % At t=0, all particles are at 0.

x=[zeros(1,nwalks);x(1:end -1,:)];

% Take the cumulative sum of x in the "row" direction

(i.e. down each

% column) z is now an array the columns of which

contain the location of

% each particle at all times reading from t=0 at the

top to t= n at the

% bottom

126



z=cumsum(x,1);

% Compute the average value

z_mean=mean(z,2);

% plot all walks

figure (1)

h=plot(z,0:n-1,'Color ', [0.7 0.7 0.7]);

hold on;

% plot the mean walk

hmean=plot(z_mean ,0:n-1,'b','LineWidth ' ,1.5);

% hold on;0

% h1=plot((z(1,:)) ,1:100,'k');

hold on;

h2=plot((z(:,50)) ,0:n-1,'r');

legend ([hmean ,h2],'Mean','Example Trajectory ')

ylabel('Time t')

hold off
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%Generate histogram at time 50

figure (3)

histogram(z(50,:));

%

B.3 Matlab Code to Plot the Dispersion Relation

We use this code to plot the dispersion relations in this thesis, and the parameters values

generate Figure (3.2) in section 3.4.

dd1= [1];%1

dd2 =[.313]; % dv

dd3 =[.313];% du

dd4= [.1];% d

% paramters

delta =.6;

gam =1;

beta =.1;

% steady statee

ustar=delta; %u0

vstar=gam*(delta -beta)*(1-delta); %v0
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%Jacupain

fu= -gam*ustar *(2* ustar -(beta +1));

fv=-ustar;

gu= vstar;

gv=0;

ddc =[8.5 ,1.5625 ,1.565];

k=linspace (0 ,100 ,10000);

for j=1: length(dd4)

d4=dd4(j);

d3=dd3(j);

d2=dd2(j);

d1=dd1(j);

dc=ddc(j);

% lab{j}= sprintf('d1=%.2f,d2=%.2f,d3=%.3f,d4=%.2f,dc

=%.2f',d1 ,d2,d3,d4,dc);

G=@(k)k^2*(d1+d4)-gam*(fu+gv);

h=@(k)k^4*(d1*d4-d3*d2)-gam*(d4*fu+d1*gv-d3*fv -d2*

gu)*k^2+ gam ^2*(fu*gv-fv*gu);
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pc=@(k)roots ([1,(k^2*(d1+d4)-gam*(fu+gv)),k^4*(d1*

d4 -d3*d2)-gam*(d4*fu+d1*gv -d3*fv-d2*gu)*k^2+ gam

^2*(fu*gv-fv*gu)]);

%Compute some values for plotting

for i=1: length(k)

lam_k(j,i)=max(real(pc(k(i))));

h_k(j,i)=h(k(i));

G_k(j,i)=G(k(i));

end

end

cond1=fu+gv;

cond2=fu*gv -fv*gu;

cond3=(d1*d4 -d3*d2);

cond4=(d4*fu+d1*gv-d3*fv-d2*gu)

cond5=(d4*fu+d1*gv-d3*fv-d2*gu)^2-4*(fu*gv -fv*gu)*(d1*

d4 -d3*d2);

figure (1);

plot(k.^2,lam_k ,k([1,end]) ,[0,0],'k--','LineWidth ' ,3)

% ylim ([-10 30])

xlim ([0 80])

% legend(lab {:})

% legend('d<dc ','d=dc ','d>dc ');

xlabel('k^2','FontSize ' ,16)

ylabel('Re \lambda(k^2)','FontSize ' ,16)
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% title('Plot of the eigenvalue Re\lambda(k^2) ')

set(gca ,'FontSize ' ,20)

figure (2)

plot(k.^2,h_k ,k([1,end]) ,[0,0],'k--','LineWidth ' ,3)

% ylim ([-10 65])

xlim ([0 80])

% legend(lab {:});

% legend('d<dc ','d=dc ','d>dc ');

xlabel(' k^2','FontSize ' ,16)

ylabel('H(k^2)','FontSize ' ,16)

% title('Plot of H(k^2).')

set(gca ,'FontSize ' ,20)

B.4 PDEPE

PDEPE is MATLAB function that solve initial-boundary value problems for parabolic-

elliptic PDEs in 1-D. We use it to solve all the partial differential equations in this

thesis. For example this code used to solve the new non-linear cross-diffusion system.

function []= CDpde()

m=0;

xmax =1;

tmax =152;

xstep =200;

tstep =5;

x=linspace(0,xmax ,xstep);
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t=linspace(0,tmax ,tstep);

%parameters

global d1;

global d2;

global d3;

global d4;

global ri;

global di;

global dm,

global rm;

global beta;

global alpha;

global A;

global B;

global C;

global D;

global kk;

global a;

global b;

global cc;

global gam;

global sig;

global mu;

global rho;
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global p;

%%Yahong model a

global delta;

global gam;

global beta;

% %%pp with alle effect

delta =.6;

gam =.2;

beta =.4;

d1 =0.0007; %du

d2=6; %dv

d3=6; %dv

d4 =0.0007 ; %du

options=odeset('RelTol ',1e-6,'AbsTol ',1e-6);

sol=pdepe(m,@CDfun ,@CDinitial ,@CDbc ,x,t,options);

u=sol(:,:,1);

v=sol(:,:,2);
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% plot u

figure (1);

plot(x,u,'LineWidth ' ,3);

lgd = legend (['t=' num2str(t(1))],['t=' num2str(t(2))

],['t=' num2str(t(3))],['t=' num2str(t(4))],['t='

num2str(t(5))]);

xlabel('x','Color ','k')

ylabel('u(x,t)','Color ','k')

set(gca ,'FontSize ' ,20)

% plot v

figure (2);

plot(x,v,'LineWidth ' ,3);

lgd = legend (['t=' num2str(t(1))],['t=' num2str(t(2))

],['t=' num2str(t(3))],['t=' num2str(t(4))],['t='

num2str(t(5))]);

xlabel('x','Color ','k')

ylabel('v(x,t)','Color ','k')

set(gca ,'FontSize ' ,20)

% % annotation('arrow ', [.2 .2], [.25 .45]);

% annotation('arrow ', [.5 .5], [.8 .6]);
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% % plot of derivative of soln

% figure (5)

% plot(x,dif_1 ,'LineWidth ',3)

% xlabel(' x')

% ylabel ('^{du}/_{dx}','Color ','k')

% set(gca ,'FontSize ',20)

%

%

% figure (6)

% plot(x,dif_2 ,'LineWidth ',3)

% xlabel(' x')

% ylabel ('^{du}/_{dx}','Color ','k')

% set(gca ,'FontSize ',20)

%

% figure (7)

% plot(x,dif_3 ,'LineWidth ',3)

% xlabel(' x')

% ylabel ('^{du}/_{dx}','Color ','k')

% set(gca ,'FontSize ',20)

%

% figure (8)

% plot(x,dif_4 ,'LineWidth ',3)

% xlabel(' x')

% ylabel ('^{du}/_{dx}','Color ','k')

% set(gca ,'FontSize ',20)

function [c,f,s]=CDfun(x,t,u,DuDx)
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%function

global d1;

global d2;

global d3;

global d4;

global beta;

global alpha;

global A;

global B;

global C;

global D;

global kk;

global a;

global b;

global cc;

%%%shi model

global gam;

global sig;

global mu;

global rho;

global p;

%%Yahong model a

global delta;

136



global gam;

global beta;

c=[1;1];

%simple c-d flux

% f=[d1*DuDx (1)+d2*DuDx (2);d4*DuDx (2)+d3*DuDx (1)];

%non -linear c-d flux

f=[d1*(1-u(1))*DuDx (1)-d2*u(1)*DuDx (2);d3*(1-u(2))*DuDx

(2)-d4*u(2)*DuDx (1)];

%reaction term

s=[gam*u(1)*(u(1)- beta)*(1-u(1))-u(1)*u(2);u(1)

*u(2)-delta*u(2)];

function value=CDinitial(x)

% % % % small pret

u0 =.6+.1*( cos(1*pi*x));

v0 =.0160+.0001*( cos (1*pi*x));
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value=[u0;v0];

% step function

% value =[1;.1];

% if ((x >.5) && (x>.7));

% value = [0 ,.1];

% end;

function [pl,ql,pr ,qr]=CDbc(xl ,ul,xr,ur ,t)

%no flux

pl =[0;0];

ql =[1;1];

pr =[0;0];

qr =[1;1];

B.5 Pplane Tool

The pplane [24] is software that allows the user to utilize a graphical interface to plot

direction fields for differential equations. Instead of defining array vectors of all points

in the range of the desired differential equation graph, a user can simply enter their

equations in the software, determine the desired range to graph, and the shape of the

arrow. This MATLAB package was written and developed by the professor of Rice
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University John C. Polking. He made this software free for use in educational institu-

tions [37].
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