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Abstract

In Bayesian phylogenetics, the coalescent process provides an informative framework for1

inferring changes in the effective size of a population from a phylogeny (or tree) of2

sequences sampled from that population. Popular coalescent inference approaches such as3

the Bayesian Skyline Plot, Skyride and Skygrid all model these population size changes4

with a discontinuous, piecewise-constant function but then apply a smoothing prior to5

ensure that their posterior population size estimates transition gradually with time. These6

prior distributions implicitly encode extra population size information that is not available7

from the observed coalescent data i.e., the tree. Here we present a novel statistic, Ω, to8

quantify and disaggregate the relative contributions of the coalescent data and prior9

assumptions to the resulting posterior estimate precision. Our statistic also measures the10

additional mutual information introduced by such priors. Using Ω we show that, because it11

is surprisingly easy to over-parametrise piecewise-constant population models, common12

smoothing priors can lead to overconfident and potentially misleading inference, even13

under robust experimental designs. We propose Ω as a useful tool for detecting when14

effective population size estimates are overly reliant on prior assumptions and for15

improving quantification of the uncertainty in those estimates.16

c© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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The coalescent process models how changes in the effective size of a target20

population influence the phylogenetic patterns of sequences sampled from that population.21

First derived in (Kingman, 1982) under the assumption of a constant sized population, the22

coalescent process has since been extended to account for temporal variation in the23

population size (Griffiths and Tavare, 1994), structured demographics (Beerli and24

Felsenstein, 1999) and multi-locus sampling (Li and Durbin, 2011). Inference under these25

models aims to statistically recover the unknown effective population size (or26

demographic) history from the reconstructed phylogeny (or tree) and has provided insights27

into infectious disease epidemiology, population genetics and molecular ecology (Shapiro28

et al., 2004; Wakeley, 2008; Pybus et al., 2003). Here we focus on coalescent processes that29

describe the genealogies of serially-sampled individuals from populations with30

deterministically varying size. These are widely applied to study the phylodynamics of31

infectious diseases (Griffiths and Tavare, 1994; Rodrigo and Felsenstein, 1999).32

Early approaches to inferring effective population size from coalescent phylogenies33

used pre-defined parametric models (e.g. exponential or logistic growth functions) to34

represent temporal demographic changes (Kuhner et al., 1998; Pybus et al., 2003). While35

these formulations required only a few variables and provided interpretable estimates,36

selecting the most appropriate parametric description could be challenging and risk37

underfitting complex trends (Minin et al., 2008). This motivated the introduction of the38

classic skyline plot (Pybus et al., 2000), which, by proposing an independent,39

piecewise-constant demographic change at every coalescent event (i.e at branching times in40

the phylogeny), maximised flexibility and removed parametric restrictions. However, this41

flexibility came at the cost of increased estimation noise and potential overfitting of42

changes in effective population size (Ho and Shapiro, 2011).43
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Efforts to redress these issues within a piecewise-constant framework subsequently44

spawned a family of skyline plot-based methods (Ho and Shapiro, 2011). Among these, the45

most popular and commonly-used are the Bayesian Skyline Plot (BSP) (Drummond et al.,46

2005), the Skyride (Minin et al., 2008) and the Skygrid (Gill et al., 2013) approaches. All47

three attempted to regulate the sharp fluctuations of the inferred piecewise-constant48

demographic function by enforcing a priori assumptions about the smoothness (i.e. the49

level of autocorrelation among piecewise-constant segments) of real population dynamics.50

This was seen as a biologically sensible compromise between noise regulation and model51

flexibility (Parag and Donnelly, 2020; Strimmer and Pybus, 2001).52

The BSP limited overfitting by (i) predefining fewer piecewise demographic changes53

than coalescent events and (ii) smoothing noise by asserting a priori that the population54

size after a change-point was exponentially distributed around the population size before55

it. This method was questioned by (Minin et al., 2008) for making strong smoothing and56

change-point assumptions and stimulated the development of the Skyride, which embeds57

the flexible classic skyline plot within a tunable Gaussian smoothing field. The Skygrid,58

which extends the Skyride to multiple loci and allows arbitrary change-points (the BSP59

and Skyride change-times coincide with coalescent events), also uses this prior. The60

Skyride and Skygrid methods aimed to better trade off prior influence with noise61

reduction, and while somewhat effective, are still imperfect because they can fail to recover62

genuinely abrupt demographic changes such as bottlenecks (Faulkner et al., 2019).63

As a result, studies continue to explore and address the non-trivial problem of64

optimising this tradeoff, either by searching for less-restrictive and more adaptive priors65

(Faulkner et al., 2019) or by deriving new data-driven skyline change-point grouping66

strategies (Parag and Donnelly, 2020). The evolution of coalescent model inference thus67

reflects a desire to understand and fine-tune how prior assumptions and observed68

phylogenetic data interact to yield reliable posterior population size estimates.69

Surprisingly, and in contrast to this desire, no study has yet tried to directly and70
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rigorously measure the relative influence of the priors and data on these estimates.71

Here we develop and present a novel information theoretic statistic, Ω, to formally72

quantify and disaggregate the contributions of both priors and data on the uncertainty73

around the posterior demographic estimates of popular skyline-based coalescent methods.74

Using Ω we show how widely-used smoothing priors can result in overconfident population75

size inferences (i.e. estimates with unjustifiably small credible intervals) and provide76

practical guidelines against such circumstances. We illustrate the utility of this approach77

on well-characterised datasets describing the population size of HCV in Egypt (Pybus78

et al., 2003) and ancient Beringian steppe Bison (Shapiro et al., 2004).79

To our knowledge, Ω, which in theory can be adapted to any prior-data comparison80

problem, is new not only to the field of phylogenetics but also across statistics and data81

science. While inference that is strongly driven by prior assumptions can be beneficial, for82

example when a prior encodes expert knowledge or salient dynamics, having a measure of83

the relative information introduced by data and prior distributions can improve the84

reproducibility and interpretability of analyses. Our statistic will help to detect when prior85

assumptions are inadvertently and overly influencing demographic estimates and will86

hopefully serve as a diagnostic tool that future methods can employ to optimise and87

validate their prior-data tradeoffs.88

Materials and Methods89

Coalescent Inference90

We provide an overview of the coalescent process and statistical inference under91

skyline plot-based demographic models. The coalescent is a stochastic process that92

describes the ancestral genealogy of sampled individuals or lineages from a target93

population (Kingman, 1982). Under the coalescent, a tree or phylogeny of relationships94

among these individuals is reconstructed backwards in time with coalescent events defined95

as the points where pairs of lineages merge (i.e. coalesce) into their ancestral lineage. This96
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tree, T , is rooted at time T into the past, which is the time to the most recent common97

ancestor (TMRCA) of the sample. The tips of T correspond to sampled individuals.98

The rate at which coalescent events occur (i.e. the rate of branching in T ) is99

determined by and hence informative about the effective size of the target population. We100

assume that a total of n > 2 samples are taken from the target population at ns > 1101

distinct sampling times, which are independent of and uninformative about population size102

changes (Drummond et al., 2005). We do not specify the sample generating process as it103

does not affect our analysis by this independence assumption (Parag and Pybus, 2019). We104

let ci be the time of the ith coalescent event in T with 1 6 i 6 n− 1 and cn−1 = T (n105

samples can coalesce n− 1 times before reaching the TMRCA).106

We use lt to count the number of lineages in T at time t > 0 into the past; lt then107

decrements by 1 at every ci and increases at sampling times. Here t = 0 is the present. The108

effective population size or demographic function at t is N(t) so that the coalescent rate109

underlying T is
(
lt
2

)
N(t)−1 (Kingman, 1982). While N(t) can be described using110

appropriate parametric formulations (Parag and Pybus, 2017), it is more common to111

represent N(t) by some tractable p-dimensional piecewise-constant approximation (Ho and112

Shapiro, 2011). Thus, we can write N(t) :=
∑p

j=1 Nj1(εj−1 6 t < εj), with p > 1 as the113

number of piecewise-constant segments. Here Nj is the constant population size of the jth
114

segment which is delimited by times [εj−1, εj), with ε0 = 0 and εp > T and 1(x) is an115

indicator function. The rate of producing new coalescent events is then116 ∑p
j=1 N

−1
j

(
lt
2

)
1(εj−1 6 t < εj). Kingman’s coalescent model is obtained by setting p = 1117

(constant population of N1).118

When reconstructing the population size history of infectious diseases, it is often of119

interest to infer N(t) from T (Ho and Shapiro, 2011), which forms our coalescent data120

generating process. If N = [N1, ..., Np] denotes the vector of demographic parameters to be121

estimated then the coalescent data log-likelihood `(N ) := log P(T |N ) can be obtained122
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from (Parag and Pybus, 2019) (Snyder and Miller, 1991) as123

`(N ) =

p∑
j=1

mj logN−1
j −N−1

j Aj + logBj, (1)

with Aj and Bj as constants that depend on the times and lineage counts of the mj124

coalescent events that fall within the jth segment duration [εj−1, εj), and
∑p

j=1 mj = n− 1.125

Eq. (1) is equivalent to the standard serially-sampled skyline log-likelihood in (Drummond126

et al., 2005), except that we do not restrict N(t) to change only at coalescent event times.127

In Bayesian phylogenetic inference, skyline-based methods such as the BSP, Skyride128

and Skygrid combine this likelihood with a prior distribution P(N ), which encodes a129

priori beliefs about the demographic function. This yields a population size posterior, from130

Bayes law, which depends on both the prior and coalescent data-likelihood as:131

P(N | T ) ∝ P(T |N )P(N ). (2)

Here we assume that the phylogeny, T , is known without error. In some instances, only132

sampled sequence data, D, are available and a distribution over T must be reconstructed133

from D under a model of molecular evolution with parameters θ. Eq. (2) is then embedded134

in the more complex expression P(T ,θ,N |D) ∝ P(D | T ,θ)P(T |N )P(N )P(θ), which135

involves inferring both the tree and population size (Drummond et al., 2002).136

While we do not consider this extension here we note that results presented here are137

still applicable and relevant. This follows because the output of the more complex Bayesian138

analysis above (i.e. when sequence data D are used directly) is a posterior distribution139

over tree space. We can sample from this posterior and treat each sampled tree effectively140

as a fixed tree. Consequently, we expect any summary statistic that we derive here, under141

the assumption of a fixed-tree will be usable in studies that incorporate genealogical142

uncertainty by computing the distribution of that statistic over this covering set of143

sampled posterior trees.144
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Information and Estimation Theory145

We review and extend some concepts from information and estimation theory as146

applied to skyline-based coalescent inference. We consider a general parametrisation of the147

effective population size ψ = [ψ1, . . . , ψp], where ψi = φ(Ni) for all i ∈ {1, ..., p} and φ (·)148

is a differentiable function. Popular skyline-based methods usually choose the identity149

function (e.g. BSP) or the natural logarithm (e.g. the Skyride and Skygrid) for φ. Eq. (1)150

and Eq. (2) are then reformulated with `(ψ) = log P(T |ψ) as the coalescent data151

log-likelihood and P(ψ) as the demographic prior. The Bayesian posterior, P(ψ | T )152

combines this likelihood and prior, and hence is influenced by both the coalescent data and153

prior beliefs. We can formalise these influences using information theory.154

The expected Fisher information, I(ψ), is a p× p matrix with (i, j)th element155

I(ψ)ij := −ET [∇ij`(ψ)] (Lehmann and Casella, 1998). The expectation is taken over the156

coalescent tree branches and ∇ij := ∂2/∂ψi∂ψj. As observed in (Parag and Pybus, 2019),157

I(ψ) quantifies how precisely we can estimate the demographic parameters, ψ, from the158

coalescent data, T . Precision is defined as the inverse of variance (Lehmann and Casella,159

1998). The BSP, Skyride and Skygrid parametrisations all yield160

I(N) = [m1N
−2
1 , . . . , mpN

−2
p ] Ip and I(logN ) = [m1, . . . , mp] Ip , with Ip as a p× p161

identity matrix (Parag and Pybus, 2019). These matrices provide several useful insights162

that we will exploit in later sections. First, I(ψ) is orthogonal (diagonal), meaning that163

the coalescent process over the jth segment [εj−1, εj) can be treated as deriving from an164

independent Kingman coalescent with constant population size Nj (Parag and Pybus,165

2017). Second, the number of coalescent events in that segment, mj, controls the Fisher166

information available about Nj. Last, working under logNj removes any dependence of this167

Fisher information component on the unknown parameter Nj (Parag and Pybus, 2019).168

The prior distribution, P (ψ), that is placed on the demographic parameters can

alter and impact both estimate bias and precision. We can gauge prior-induced bias by

comparing the maximum likelihood estimate (MLE), ψ̂ = arg maxψ{log P(T |ψ)} with the
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maximum a posteriori estimate (MAP), ψ̃ = arg maxψ{log P(T |ψ) + log P(ψ)} (van

Trees, 1968). The difference ψ̃ − ψ̂ measures this bias. We can account for prior-induced

precision by computing Fisher-type matrices for the prior and posterior as

P(ψ)ij = −∇ij log P(ψ) and J (ψ)ij = −ET [∇ij log P(ψ | T )] (Tichavsky et al., 1998;

Huang and Zhang, 2018). Combining these gives

J (ψ) = I(ψ) + P(ψ). (3)

Eq. (3) shows how the posterior Fisher information matrix, J (ψ), relates to the169

standard Fisher information I(ψ) and the prior second derivative P(ψ). We make the170

common regularity assumptions (see (Huang and Zhang, 2018) for details) that ensure171

J (ψ) is positive definite and that all Fisher matrices exist. These assumptions are valid172

for exponential families such as the piecewise-constant coalescent (Lehmann and Casella,173

1998; Parag and Pybus, 2019). Eq. (3) will prove fundamental to resolving the relative174

impact of the prior and data on the best precision achievable using P(N | T ). We also175

define expectations on these matrices with respect to the prior as J 0, I0 and P0, with176

J 0 = E0 [J (ψ)] =
∫
J (ψ)P(ψ) dψ, for example. These matrices are now constants177

instead of functions of ψ. Eq. (3) also holds for these matrices (Tichavsky et al., 1998).178

These Fisher information matrices set theoretical upper bounds on the precision179

attainable by all possible statistical inference methods. For any unbiased estimate of ψ, ψ̄,180

the Cramer-Rao bound (CRB) states that181

ET
[
(ψ̄ −ψ)(ψ̄ −ψ)ᵀ |ψ

]
= var(ψ̄ |ψ) > I(ψ)−1 with ᵀ indicating transpose. If we relax182

the unbiased requirement and include prior (distribution) information then the Bayesian or183

posterior Cramer-Rao lower bound (BCRB) controls the best estimate precision (van184

Trees, 1968). If ψ̄ is any estimator of ψ then the BCRB states that185

E0

[
ET
[
(ψ̄ −ψ)(ψ̄ −ψ)ᵀ |ψ

]]
> J−1

0 . This bound is not dependent on ψ due to the186

extra expectation over the prior (Tichavsky et al., 1998).187

The CRB describes how precisely we can estimate demographic parameters using188

just the coalescent data and is achieved (asymptotically) with equality for skyline189
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(piecewise-constant) coalescent models (Parag and Pybus, 2019). The BCRB, instead,190

defines the precision limit for the combined contributions of the data and the prior. The191

CRB is a frequentist bound that assumes a true fixed ψ, while the BCRB is a Bayesian192

bound that treats ψ as a random parameter. The expectation over the prior connects the193

two formalisms (Ben-Haim and Eldar, 2009). Given their importance in delimiting194

precision, the J (ψ) and I(ψ) Fisher matrices will be central to our analysis, which195

focuses on resolving the individual contributions of the data versus prior assumptions.196

Results197

The Coalescent Information Ratio, Ω198

We propose and derive the coalescent information ratio, Ω, as a statistic for199

evaluating the relative contributions of the prior and coalescent data to the posterior200

estimates obtained as solutions to Bayesian skyline inference problems (see Materials and201

Methods). Consider such a problem in which the n-tip phylogeny T is used to estimate the202

p-element demographic parameter vector ψ. Let ψ̂ be the MLE of ψ given the coalescent203

data T . Asymptotically, the uncertainty around this MLE can be described with a204

multivariate Gaussian distribution with covariance matrix I(ψ)−1. The Fisher205

information, I(ψ) then defines a confidence ellipsoid that circumscribes the total206

uncertainty from this distribution. In (Parag and Pybus, 2019) this ellipsoid was found207

central to understanding the statistical properties of skyline-based estimates.208

The volume of this ellipsoid is V1 = C det [I(ψ)]−
1
2 , with C as a p-dependent

constant. Decreasing V1 increases the best estimate precision attainable from the data T

(Lehmann and Casella, 1998). In a Bayesian framework, the asymptotic posterior

distribution of ψ also follows a multivariate Gaussian distribution with covariance matrix

of J (ψ)−1. We can therefore construct an analogous ellipsoid from J (ψ) with volume

V2 = C det [J (ψ)]−
1
2 that measures the uncertainty around the MAP estimate ψ̃

(Tichavsky et al., 1998). This volume includes the effect of both prior and data on
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estimate precision. Accordingly, we propose the ratio

Ω :=
V2

V1

=

√
det [I(ψ)]

det [I(ψ) + P(ψ)]
, (4)

as a novel and natural statistic for dissecting the relative impact of the data and prior on209

posterior estimate precision.210

From Eq. (4), we observe that 0 6 Ω 6 1 with Ω = 1 signifying that the information

from our prior distribution is negligible in comparison to that from the data and Ω = 0

indicating the converse. Importantly, we find

Ω2 6
1

2
⇐⇒ det [I(ψ)] 6

1

2
det [P(ψ) + I(ψ)] . (5)

At this threshold value P(ψ) contributes at least as much information as the data.211

Moreover, limn→∞Ω = 1 since the prior contribution becomes negligible with increasing212

data and Ω is undefined when ψ is unidentifiable from T (i.e. when I(ψ) is singular213

(Rothenburg, 1971)). Consequently, we posit that a smaller Ω implies the prior provides a214

greater contribution to estimate precision.215

We define Ω as an information ratio due to its close connection to both the Fisher

and mutual information. The mutual information between ψ and T , I(ψ; T ), measures

how much information (in bits for example) T contains about ψ (Cover and Thomas,

2006). This is distinct but related to I(ψ), which quantifies the precision of estimating ψ

from T (Brunel and Nadal, 1998). Recent work from (Huang and Zhang, 2018) into the

connection between the Fisher and mutual information has yielded two key approximations

to I(ψ; T ). These can be obtained by substituting either I or J for X in

I(X ) = H(ψ) + E0

[
log
√

det [X (ψ)]− p log
√

2πe
]
, (6)

with H(ψ) := E0 [− log P(ψ)] as the differential entropy of ψ (Cover and Thomas, 2006).216

For a flat prior or many observations, I(ψ; T ) ≈ I(I) ≈ I(J ), as the prior217

contributes little or no information (Brunel and Nadal, 1998). For sharper priors,218

I(ψ; T ) ≈ I(J ) as the prior contribution is significant – using I(I) would lead to large219
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errors (Huang and Zhang, 2018). Eq. (6) is predicated on (i) regularity assumptions for the220

distributions used (i.e. that the second derivatives exist), (ii) conditional dependence of the221

observed data given ψ and (iii) that the likelihood is peaked around its most probable222

value (Lehmann and Casella, 1998; Brunel and Nadal, 1998; Huang and Zhang, 2018). The223

skyline-based inference problems that we consider here automatically satisfy (i) and (ii) as224

these models belong to an exponential family. Condition (iii) is satisfied for moderate to225

large trees (and asymptotically) (Lehmann and Casella, 1998; Parag and Pybus, 2019).226

Using the above approximations, we derive the interesting expression

∆I = I(I + P)− I(I) = E0 [− log Ω] , (7)

which suggests that our ratio directly measures the excess mutual information introduced227

by the prior, providing a substantive link between how sharper estimate precision is228

attained with extra mutual information. Observe that both sides of Eq. (7) diminish when229

P(ψ)� I(ψ). Because the mutual information and its approximations (see Eq. (6)) are230

invariant to invertible parameter transformations (Huang and Zhang, 2018), our coalescent231

information ratio does not depend on whether we infer N , its inverse, or its logarithm.232

Moreover, we can use normalising transformations to make Ω valid at even small233

tree sizes. In (Slate, 1994) several such transformations for exponentially distributed234

models like the coalescent are derived. Among them, the log transform can achieve235

approximately normal log-likelihoods for about 7 observations and above (n > 8). Thus,236

logN , which is also optimal for experimental design (Parag and Pybus, 2019), ensures the237

validity of Ω on small trees. This is the parametrisation adopted by the Skyride and238

Skygrid methods (Minin et al., 2008). Other (cubic-root) parametrisations under which Ω239

would be valid at even smaller n also exist (Slate, 1994).240

Eq. (4)–Eq. (7) are not restricted to coalescent inference problems and are generally

applicable to statistical models that involve exponential families (Lehmann and Casella,

1998). We now specify Ω for skyline-based models, which all possess piecewise-constant

population sizes and orthogonal I(ψ) matrices (Parag and Pybus, 2019). These properties
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permit the expansion (Ipsen and Rehman, 2008):

det [I(ψ) + P(ψ)] = det [I(ψ)] + det [P(ψ)] +

p−1∑
j=1

γj,

with γj =
∑

di1 . . . dij det
[
P(ψ)ī1...̄ij

]
,

where dk are the diagonal elements of I(ψ) with 1 6 i1 < . . . < ij 6 p, and P(ψ)ī1...̄ij is241

the sub-matrix formed by deleting the (i1, . . . , ij)
th rows and columns of P(ψ).242

This allows us to formulate a prior signal-to-noise ratio

r =

p∏
j=1

d−1
j

(
det [P(ψ)] +

p−1∑
k=1

γk

)
=⇒ Ω =

√
1

1 + r
, (8)

which quantifies the relative excess Fisher information (the ‘signal’) that is introduced by243

the prior. This ratio signifies when the prior contribution overwhelms that of the data i.e.244

r > 1 ⇐⇒ Ω2 < 1
2
. Having derived theoretically meaningful metrics for resolving245

prior-data precision contributions, we next investigate their ramifications.246

The Kingman Conjugate Prior247

Kingman’s coalescent process (Kingman, 1982), which describes the phylogeny of a248

constant sized population N1, is the foundation of all skyline model formulations.249

Specifically, a p-dimensional skyline model is analogous to having p Kingman coalescent250

models, the jth of which is valid over [εj−1, εj) and describes the genealogy under251

population size Nj. Here we use Kingman’s coalescent to validate and clarify the utility of252

Ω as a measure of relative data-prior precision contributions.253

We assume an n-tip Kingman coalescent tree, T and initially work with the inverse254

parametrisation, N−1
1 . We scale T at t by

(
lt
2

)
as in (Parag and Pybus, 2017) so that255 (lci−1

2

)
(ci − ci−1) ∼ exp(N−1

1 ) for 1 6 i 6 n− 1 with c0 = 0. If y defines the space of N−1
1256

values, and has prior distribution P(y), then, by (Snyder and Miller, 1991), its posterior is257

P(y | T ) =
Ayn−1e−yT̄P(y)∫∞

0
Ayn−1e−yT̄P(y) dy

with A =
n∏
i=2

(
i

2

)
,
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where A is a constant and T̄ is the scaled TMRCA of T .258

The likelihood function embedded within P(y | T ) is proportional to a shape-rate259

parametrised gamma distribution, with known shape n. The conjugate prior for N−1
1 is also260

gamma (Fink, 1997) i.e. N−1
1 ∼ Gam

(
m0, T̄0

)
with shape m0 and rate T̄0. The posterior261

distribution is then N−1
1 | T ∼ Gam

(
m+m0, T̄ + T̄0

)
with m = n− 1 counting coalescent262

events in T (Robert, 2007). Transforming to N1 implies N1 | T ∼ Gam−1
(
m+m0, T̄ + T̄0

)
.263

This is an inverse gamma distribution with mean T̄+T̄0

m+m0−1
, shape m+m0 and inverse rate264

T̄ + T̄0. If x describes the space of possible N1 values and Γ(s) :=
∫∞

0
zs−1e−z dz then265

P(x | T ) =
(T̄ + T̄0)

(m+m0)

Γ(m+m0)
x−(m+m0+1)e−

T̄+T̄0
x .

We can interpret the parameters of the gamma posterior distribution as involving a266

prior contribution of m0 − 1 coalescent events from a virtual tree, T0, with scaled TMRCA267

T̄0. This is then combined with the actual coalescent data, which contributes m coalescent268

events from T , with scaled TMRCA of T̄ (Robert, 2007). This offers a very clear269

breakdown of how our posterior estimate precision is derived from prior and likelihood270

contributions, and suggests that if T0 has more tips than T then we are depending more on271

the prior than the data. We now calculate Ω to determine if we can formalise this intuition.272

The Fisher information values of N−1
1 are I(N−1

1 ) = mN2
1 and

J (N−1
1 ) = (m+m0 − 1)N2

1 . The information ratio and mutual information difference, ∆I,

which hold for all parametrisations, then follow from Eq. (4), Eq. (7) and Eq. (8) as

Ω2 =
1

1 + r
≈ 1− r, ∆I =

1

2
log(1 + r) ≈ 1

2
r, (9)

with r = m0−1
m

, as the signal-to-noise ratio. The approximations shown are valid when273

r � 1. Interestingly, when m0 − 1 = m so that r = 1, we get Ω2 = 1/2 (see Eq. (5)). This274

exactly quantifies the relative impact of real and virtual observations described previously.275

At this point we are being equally informed by both the conjugate prior and the likelihood.276

Prior over-reliance can be defined by the threshold condition of r > 1 =⇒ Ω2 < 1/2.277

The expression of ∆I confirms our interpretation of r as an effective signal-to-noise278
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ratio controlling the extra mutual information introduced by the conjugate prior. This can279

be seen by comparison with the standard Shannon mutual information expressions from280

information theory (Cover and Thomas, 2006). At small r, where the data dominates, we281

find that the prior linearly detracts from Ω2 and linearly increases ∆I. We also observe that282

T̄0, the gamma rate parameter, has no effect on estimate precision or mutual information.283

Fig. 1: Effect of conjugate prior on Kingman coalescent estimation. We examine
the relative impact on estimate precision of a conjugate Kingman prior that contributes
m0 − 1 = 5 virtual observations. We work in logN1 for convenience. We compare this prior
to posteriors, which are obtained under observed trees with m = 10 (red) and m = 100
(yellow) coalescent events. The true value is in black. The prior contribution decays as Ω2

increases towards 1.

Our ratio Ω therefore provides a systematic decomposition of the posterior284

population size estimate precision and generalises the virtual observation idea to any prior285

distribution. In essence, the prior is contributing an effective sample size, which for the286

conjugate Kingman prior is m0 − 1. We summarise these points in Fig. 1, which shows the287

conjugate prior and two posteriors together with their corresponding Ω2 values.288
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Skyline Smoothing Priors289

In this section, we tailor Ω for the BSP, Skyride and Skygrid coalescent inference290

methods. These popular skyline-based approaches couple a piecewise-constant291

demographic coalescent data likelihood with a smoothing prior to produce population size292

estimates that change more continuously with time. The smoothing prior achieves this by293

assuming informative relationships between Nj and its neighbouring parameters294

(Nj−1, Nj+1). Such a priori correlation implicitly introduces additional demographic295

information that is not available from the coalescent data T . While these priors can296

embody sensible biological assumptions, we show that they may also engender297

overconfident statements or obscure parameter non-identifiability. We propose Ω as a298

simple but meaningful analytic for diagnosing these problems.299

We first define uniquely objective (i.e. uninformative) reference skyline priors,

which we denote P∗(ψ). Finding objective priors for multivariate statistical models is

generally non-trivial, but (Berger et al., 2015) state that if I(ψ) has form

[f1(ψ1)g1(ψ−1), . . . , fp(ψ1)gp(ψ−p)] Ip then P∗(ψ) ∝
∏p

j=1

√
fj(ψj). Here fj and gj are

some functions and ψ−j symbolises the vector ψ excluding ψj. Following this, we get

P∗(ψ = N ) = Z−1
1

p∏
j=1

N−1
j and P∗(ψ = logN ) = Z−1

2 ,

with Z1, Z2 as normalisation constants. Given its optimal properties (Parag and Pybus,300

2019), we only consider ψ = logN , and drop explicit notational references to it. Under301

this parametrisation, I and its expectation with respect to the prior are equal, i.e.302

E0 [I] = I0. In addition, the reference prior in this case is P∗ = 0p, with 0p as a matrix of303

zeros. This yields Ω = 1 by Eq. (4). A uniform prior over log-population space is hence304

uniquely objective for skyline inference.305

Other prior distributions, which are subjective by this definition, necessarily306

introduce extra information and contribute to posterior estimate precision. This307

contribution will be reflected by an Ω < 1. The two most widely-used, subjective, skyline308
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plot smoothing priors are:309

(i) the Sequential Markov Prior (SMP) used in the BSP (Drummond et al., 2005), and310

(ii) the Gaussian Markov Random Field (GMRF) prior employed in both the Skyride311

and Skygrid methods (Minin et al., 2008) (Gill et al., 2013).312

As the SMP and GMRF both propose nearest neighbour autocorrelations among elements313

of ψ, tridiagonal posterior Fisher information matrices result. We represent these as J SMP314

and J GMRF, respectively.315

The SMP is defined as: P(N ) = 1/N1

∏m
j=2

1/Nj−1 e
Nj/Nj−1 (Drummond et al., 2005).

It assumes that Nj ∼ exp(N−1
j−1) with a prior mean of Nj−1. An objective prior is used for

N1. To adapt this for logN , we define uj = elogNj+1−logNj = Nj+1/Nj for j ∈ {1, . . . , p− 1}.

In the Appendix we show how this expression yields Eq. (A1) and hence the transformed

prior P(logN ) =
∏p−1

j=1 uje
−uj . We then take relevant derivatives to obtain J SMP, which

for the minimally representative p = 3 case is written as:

J SMP =

m1 + N2

N1
−N2

N1
0

−N2

N1
m2 + N2

N1
+ N3

N2
−N3

N2

0 −N3

N2
m3 + N3

N2

 . (10)

The p > 3 matrices simply extend the tridiagonal pattern of Eq. (10).316

An issue with the SMP is its dependence on the unknown ‘true’ demographic317

parameter values. We cannot evaluate (or control) a priori how much information is318

contributed by this smoothing prior. Rapidly declining populations could feature319

Nj+1/Nj > mj, for example, which would result in prior over-reliance. Conversely,320

exponentially growing populations would be more data-dependent. This likely reflects the321

asymmetry in using sequential exponential distributions. The only control we have on322

smoothing implicitly emerges from choosing the number of segments, p. Some recent323

implementations of the BSP include an alternative log-normal prior that links Nj with324

Nj−1 (Bouckaert et al., 2019), which is conceptually similar to the GMRF below.325

The possibility of strong or inflexible prior assumptions under the BSP motivated326
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the development of the GMRF for the Skyride and Skygrid methods (Minin et al., 2008).327

The GMRF works directly with logN and models the autocorrelation between328

neighbouring segments with multivariate Gaussian distributions. The GMRF prior is329

defined as P(logN ) = Z−1τ
p−2

2 e−
τ
2

∑p−1
j=1 δ

−1
j (logNj+1−logNj)

2

(Minin et al., 2008). In this330

model, Z is a normalisation constant, τ a smoothing parameter, to which a gamma prior is331

often applied, and the δj values adjust for the duration of the piecewise-constant skyline332

segments. Usually either (i) δj is chosen based on the inter-coalescent midpoints in T or333

(ii) a uniform GMRF is assumed with δj = 1 for every j ∈ {1, . . . , m− 1}.334

Similarly, we calculate J GMRF for the p = 3 case, which is:

J GMRF =

m1 + τ
δ1

− τ
δ1

0

− τ
δ1

m2 + τ
δ1

+ τ
δ2

− τ
δ2

0 − τ
δ2

m3 + τ
δ2

 . (11)

The Appendix provides the general derivation for any p > 3. As τ is arbitrary and the δj335

depend only on T , the GMRF is insensitive to the unknown parameter values. This336

property makes it more desirable than the SMP and gives us some control (via τ) of the337

level of smoothing introduced. Nevertheless, the next section demonstrates that this model338

still tends to over-smooth demographic estimates.339

We diagonalise J GMRF and J SMP to obtain matrices of form J = SQSᵀ. Here S340

is an orthogonal transformation matrix (i.e. |det [S]| = 1) and Q = [λ1, . . . , λp] Ip with λj341

as the jth eigenvalue of J . Since det[J ] = det[Q], we can use Eq. (4) to find that342

Ω =
∏p

j=1

√
mj/λj. This equality reveals that λj acts as a prior perturbed version of mj.343

When objective reference priors are used we recover mj = λj and Ω = 1. We can use the S344

matrix to gain insight into how the GMRF and SMP encode population size correlations.345

The principal components of our posterior demographic estimates (which are obtained from346

P(logN | T )) are the vectors forming the axes of the uncertainty ellipsoid described by J .347

These principal component vectors take the form348

{e1, . . . , ep} = {(logN1, 0, . . . , 0)ᵀ, . . . (0, 0, . . . , logNp)
ᵀ} when we apply the reference349

prior P∗(logN ). Thus, as we would expect, our uncertainty ellipses are centred on the350
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parameters we wish to infer. However, if we use the GMRF prior these axes are instead351

transformed to {Se1, . . . , Sep}. These new axes are linear combinations of logN and352

elucidate how smoothing priors share information (i.e. introduce autocorrelations) about353

logN across its elements. These geometrical changes also hint at how smoothing priors354

influence the statistical properties of our coalescent inference problem.355

-0.8 -0.4 0 0.4 0.8

x1 − logN1

-0.8

-0.4

0

0.4

0.8

x
2
−
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g
N

2

Ω = 1
√

2

Fig. 2: Uncertainty ellipses for SMP and GMRF. We show the improvement in asymp-
totic precision rendered by use of a smoothing prior for a p = 2 segment skyline inference
problem. The prior informed ellipse (red) is smaller in volume and has skewed principal
axes relative to the purely data informed one (blue). All ellipses represent 99% confidence
with the xj indicating coordinate directions about their means, which are the log population
sizes, logNj. The covariance that smoothing introduces controls the skew of these ellipses.
Here Ω2 = 1/2, m = 40 (total coalescent event count) and a = 10 (this controls the prior
influence see Eq. (12)). Larger a values lead to over-reliance on the smoothing prior.

To solidify these ideas, we provide a visualisation of Ω and an example of S. We

consider the simple p = 2 case, where the posterior Fisher information and Ω for the

GMRF and SMP both take the form:

J =

[
m1 + a −a
−a m2 + a

]
=⇒ Ω2 =

1

1 + am1+m2

m1m2

, (12)

with a = τ/δ1 for the GMRF and a = N2/N1 for the SMP. The signal-to-noise ratio is356

r = am1+m2

m1m2
(see Eq. (9)) and performance clearly depends on how the m coalescent events357
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in T are apportioned between the two population size segments.358

We can lower bound the contribution of these priors to Ω under any (m1, m2)359

settings by using the robust coalescent design from (Parag and Pybus, 2019). This360

stipulates that we define our skyline segments such that m1 = m2 = m/2 in order to361

optimise estimate precision under T . At this robust point we also find that max{mj}Ω2 (or362

min{mj} r) is attained. Fig. 2 gives the uncertainty ellipses for this robust p = 2 model at363

a = m/4. These are constructed in coordinates x = [x1, . . . , xp] centred about population364

size means logN as (x− logN )ᵀX (x− logN ) = c with c controlling the confidence level.365

Here X is either I or J . Because I is diagonal the data-informed confidence ellipse

has principal axes aligned with logN . The covariance among population size segments in

J , which is induced by the smoothing prior, skews these principal axes. We can see this by

diagonalising J at m1 = m2 = m/2 and for every r to obtain:

Q =

[
m
2

0

0 m
2

+ 2a

]
and S =

[
cos(π

4
) − sin(π

4
)

sin(π
4
) cos(π

4
)

]
. (13)

Applying S, we find that the axes of our uncertainty ellipse (as visible in Fig. 2) have366

changed from {
(

logN1
0

)
,
(

0
logN2

)
} to {

(
logN1−logN2

0

)
,
(

0
logN1+logN2

)
}. Sums and differences367

of log-populations are now the parameters that can be most naturally estimated under the368

SMP and GMRF. The reduction in the area of the ellipses of Fig. 2 is a proxy for Ω.369

The Dangers of Smoothing370

Having defined ratios for measuring the contribution of smoothing priors to the371

precision of estimates, we now use them to explore and expose the conditions under which372

prior over-reliance is likely to occur in practice. We assume that skyline segments are373

chosen to satisfy the robust design mj = m/p for 1 6 j 6 p (Parag and Pybus, 2019), with p374

as the total number of skyline segments. We previously proved that robust designs, at375

p = 2, minimise dependence on the prior (maximise Ω). While this is not the case for376

p > 2, in Fig. A1 of the Appendix we illustrate that the maximal Ω point is generally well377
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approximated by this robust setting. The Ω values computed here are therefore378

conservative for most {mj} settings. Other experimental designs rely more on the prior.379

As in Eq. (5), we use the Ω2 = 1/2 threshold to diagnose when the coalescent data T380

(likelihood) and prior are equally influencing demographic posterior estimate precision. At381

Ω2 = 1/2 the total Fisher information doubles since det[J ] = 2 det[I]. We previously382

uncovered the importance of this threshold in the Kingman conjugate prior problem,383

where it signified an equality between the number of pseudo and real samples contributed384

by the prior and data, respectively. As Ω2 = 1
1+r

(see Eq. (8)), this setting is also385

meaningful because it achieves a unit signal-to-noise ratio for any skyline-based model.386

We first reconsider the p = 2 case of Eq. (12), where a controls the prior387

contribution to J . Here Ω2 = 1/2 suggests a = m/4, which implies that we are overly-reliant388

on smoothing when a is larger than 1/4 of the total observed coalescent events. This occurs389

when N2 > m/4N1 or τ > m/4 δ1, for the SMP and GMRF respectively. The improved390

precision due to the prior at this m/4 threshold is shown in Fig. 2. The relative ellipse area391

(and hence Ω) will shrink further as we deviate from robust designs.392

As the number of skyline segments, p, increase, smoothing becomes more influential

and can promote misleading conclusions. For the p > 2 cases, we will only examine the

GMRF, since the SMP has the undesirable property of dependence on the unknown Nj

values. To better expose the impact of the smoothing parameter τ , we will assume a

uniform GMRF ({δj} = 1) so that J GMRF then only depends on {mj} and τ . We compute

r and hence Ω, at various p. For example we find that

r | p=3 = (27/m2) τ 2 + (12/m) τ and

r | p=4 = (256/m3) τ 3 + (160/m2) τ 2 + (24/m) τ,

under the robust design. Interestingly, the order of the polynomial dependence of r (and393

hence Ω) on τ increases with p. We find that this trend holds for any {mj} design. We will394

use the term robust Ω for when Ω is calculated under a robust design.395

Fig. 3 plots the robust Ω against τ and p for the uniform GMRF. A key feature of396



ASSESSING THE IMPACT OF SKYLINE SMOOTHING PRIORS 21

Fig. 3 is the steep p-dependent decay of Ω relative to the Ω2 = 1/2 threshold, which exposes397

how easily we can be unduly reliant on the prior, as p increases. Given a phylogeny T ,398

increasing the complexity of a skyline-based model enhances the dependence of our399

posterior estimate precision on the smoothing prior. This pattern is intuitive as fewer400

coalescent events now inform each demographic parameter (Parag and Pybus, 2019).401

However, Ω decays with surprising speed. For example, at p = 20 (the lowest curve in402

Fig. 3) we get Ω < 0.1 for τ = 1 and m = 100. Usually, τ has a gamma-prior with mean of403

1 (Minin et al., 2008). We show the corresponding mutual information increases due to404

these GMRF priors in Fig. A2 of the Appendix.405
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Fig. 3: The impact of smoothing priors increases with skyline complexity. For the
GMRF, we find that for a fixed τ/m (ratio of smoothing parameter to total coalescent event
count), Ω significantly depends on the complexity, p, of our skyline. The coloured Ω curves
are (along the arrow) for p = [2, 4, 5, 10, 20] at m = 100 with mj = m/p as the number of
coalescent events per skyline segment. The dashed Ω2 = 1/2 line depicts the threshold below
which the prior contributes more than the coalescent data to posterior estimate precision
(asymptotically). For a given tree and τ , the larger the number of demographic parameters
we choose to estimate, the stronger the influence of the prior on those estimates.

While Fig. 3 might seem specific to the uniform GMRF, it is broadly applicable to406
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the BSP, Skyride and Skygrid methods. We now outline the implications of Fig. 3 for each407

of these skyline-based approaches.408

(1) Bayesian Skyline Plot. This method uses the SMP, which depends on the unknown Nj409

values. However, the results of Fig. 3 are valid if we set τ to min{16j6p−1} Nj+1/Nj, which410

results in the smallest non-data contribution to Eq. (10). This follows as J GMRF and411

J SMP have similar forms. While this choice underestimates the impact of the SMP, it still412

cautions against high-p skylines and confirms suspected BSP issues related to poor413

estimation precision when skylines are too complex, or the coalescent data are not414

sufficiently informative (Ho and Shapiro, 2011). However, good use of the BSP grouping415

parameter (Drummond et al., 2005), which sets p < m, could alleviate these problems.416

(2) Skyride. When this method uses the uniform GMRF, all results apply exactly. In its417

full implementation, the Skyride employs a time-aware GMRF that sets δj based on T and418

estimates τ from the data (Minin et al., 2008). However, even with these adjustments, the419

GMRF can over-smooth, and fail to recover population size changes (Ho and Shapiro,420

2011; Faulkner et al., 2019). Our results provide a theoretical grounding for this421

observation. The Skyride constrains p = m and then smooths this noisy piecewise model.422

Consequently, it constructs a skyline which is too complex by our measures (the lowest423

curve in Fig. 3 is at p = m/5). By rescaling the smoothing parameter to min{16j6p−1} τ/δj,424

the Ω curves in Fig. 3 upper bound the true Ω values of the time-aware GMRF.425

(3) Skygrid. This method uses a scaled GMRF. For a tree with TMRCA T , the Skygrid426

assumes new population size segments every T/p time units (Gill et al., 2013). As a result,427

every δj = T/p and the time-aware GMRF becomes uniform with rescaled smoothing428

parameter τ/p. Therefore, the conclusions of Fig. 3 hold exactly for the Skygrid, provided429

the horizontal axis is scaled by p. This setup reduces the rate of decay but the Ω curves430

still caution strongly against using skylines with p ≈ m. Unfortunately, as its default431

formulation sets p to 1 less than the number of sampled taxa (or lineages) (Gill et al.,432
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2013), the Skygrid is also be vulnerable to prior over-reliance.433

The popular skyline-based coalescent inference methods therefore all tend to434

over-smooth, resulting in population size estimates that can be overconfident or misleading.435

This issue can be even more severe than Fig. 3 suggests since in current practice p is often436

close to m and non-robust designs are generally employed. Further, skylines are only437

statistically identifiable if every segment has at least 1 coalescent event (Parag and Pybus,438

2019; Parag et al., 2020). Consequently, if p > m is set, smoothing priors can even mask439

identifiability problems. We recommend that m
p
> κ > 1 must be guaranteed and in the440

next section derive a model rejection guideline for finding κ, the suggested minimum441

number of coalescent events per skyline segment, and diagnosing prior over-reliance.442

Prior Informed Model Rejection443

We previously demonstrated how commonly-used smoothing priors can dominate444

the posterior estimate precision when coalescent inference involves complex, highly445

parametrised (large-p) skyline models. Since data are more influential than the prior when446

Ω2 > 1/2, we can use this threshold to define a simple p-rejection policy to guard against447

prior over-reliance. Assume that the J matrix resulting from our prior of interest is448

symmetric and positive definite. This holds for the GMRF and SMP. The standard449

arithmetic-geometric mean inequality, det [J ] 6 (1/p tr [J ])p, then applies with tr denoting450

the matrix trace. Since tr [J ] = m+ tr [P ] we can expand this inequality and substitute in451

Eq. (4) to get Ω2 > (1/p (m+ tr [P ]))−p
∏p

j=1 mj.452

Since this inequality applies to all {mj}, we can maximise its right hand side to get

a tighter lower bound on Ω2. This bound, termed ω2, is achieved at the robust design

mj = m/p and is given by

ω2 =

(
m

m+ tr [P ]

)p
=⇒ p∗ = arg max

p6m
ω2 > b. (14)

We define b > 1/2 as a conservative model rejection criterion with ω2 > b implying that453

Ω2 > b. If p∗ is the largest p satisfying these inequalities (see Eq. (14), arg indicates454
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argument), then any skyline with more than p∗ segments is likely to be overly-dependent455

on the prior and should be rejected under the current coalescent tree data.456

Alternatively, we recommend that skylines using a smoothing prior (with matrix P)457

should have at least κ = m/p∗ events per segment to avoid prior reliance. The p 6 m458

condition in Eq. (14) ensures skyline identifiability (Parag and Pybus, 2019) and generally459

p∗ 6 m/2 (i.e. κ > 1). The dependence of ω2 on tr[P ] means that additions to the diagonals460

of P necessarily increase the precision contribution from the prior. This insight supports461

our previous analysis, which used τ from the uniform GMRF to bound the performance of462

the SMP and time-aware GMRF. In the Appendix (see Eq. (A2)) we derive analogous463

rejection bounds based on the excess mutual information, ∆I, from Eq. (7). There we find464

that p acts like an information-theoretic bandwidth, controlling the prior-contributed465

mutual information.466

Eq. (14), which forms a key contribution of this work, can be computed and is valid467

for any smoothing prior of interest. For the uniform GMRF where tr [P ] = 2τ(p− 1), we468

get ω2 =
(

m
m+2τ(p−1)

)p
. Note that ω2 = 1 here whenever p = 1 or τ = 0, as expected (i.e469

there is no smoothing at these values). In Fig. A4 of the Appendix, we confirm that ω2 is a470

good lower bound of Ω2. We enumerate ω2 across τ and p, for an observed tree with471

m = 100, to get Fig. 4, which recommends using no more than p∗ = 19 segments (κ ≈ 5.3).472

In Fig. A5 we plot p∗ curves for various m and τ , defining boundaries beyond which473

skyline estimates will be overly-dependent on the GMRF.474

In the Appendix we further analyse Eq. (14) for the uniform GMRF to discover475

that Ω2 is bounded by curves with exponents linear in τ and quadratic in p (see Eq. (A3)).476

This explains how the influence of smoothing increases with skyline complexity and yields477

a simple transformation τ → τ/2p(p−1), which can negate prior over-reliance. For478

comparison, the Skyride implements τ → τ/p. The marked improvement, relative to Fig. 3,479

is striking in Fig. A3. Other revealing prior-specific insights can be obtained from Eq. (14),480

reaffirming its importance as a model rejection statistic.481
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Fig. 4: Bounding skyline complexity using the prior-data tradeoff. For the GMRF
with uniform smoothing, we show how the maximum number of recommended skyline seg-
ments, p∗ (red), decreases with prior contribution (level of smoothing i.e. increasing τ/m).
Hence the minimum recommended number of coalescent events per segment, κ = m/p∗ (blue),
rises. Here we use the ω2 > b = 1/2 boundary (Eq. (14)), which approximates Ω2 and provides
a more easily computed measure of prior-data contributions. At larger b the p∗ at a given
τ/m decreases. The p∗ measure provides a model rejection tool, suggesting that models with
p > p∗ should not be used, as they would risk being overly informed by the prior.

Our model rejection tool of Eq. (14) can serve as a useful diagnostic for skyline482

over-parametrisation, and as a precaution against prior over-reliance. However, we do not483

propose p∗ as the sole measure of optimal skyline complexity; because while p∗ warns484

against the prior being too relatively influential, it does not guarantee any absolute485

estimate precision e.g. a small (m, τ) pair might produce the same p∗ as a larger pair.486

Choosing an optimal p in a data-justified manner is an open problem that is still under487

active study (Parag and Donnelly, 2020). We next illustrate how Ω2, via its more easily488

computed approximation, ω2, can be practically applied to detect and reject489

over-smoothed skyline plot models, using datasets that are commonly employed to490

evaluate the performance of coalescent demographic inference.491
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Illustrative Examples: Egyptian HCV and Beringian Bison492

We validate the practical utility of ω2 (and hence Ω2), as a diagnostic of prior493

over-dependence, by investigating changes in effective population size inferred from the494

well-studied Egyptian HCV-4 (Pybus et al., 2003) and Beringian steppe bison Shapiro495

et al. (2004) datasets. The first consists of 63 partial sequences of HCV genotype 4 and496

was previously analysed in (Pybus et al., 2003) using a coalescent model with a parametric497

demographic function that featured periods of constant population size separated by a498

phase of exponential growth. The second dataset comprises 152 modern and partial499

mtDNA and was investigated in Shapiro et al. (2004), where skyline plot models confirmed500

a demographic history of exponential growth then decline (boom-bust) with an additional501

bottleneck dynamic (Drummond et al., 2005). These two datasets have since been502

re-examined under various alternate models in (Minin et al., 2008; Gill et al., 2013; Parag503

et al., 2020) and several other studies.504

We simulated 100 trees with m+ 1 = n = 63 and 152 tips, using the software505

package MASTER (Vaughan and Drummond, 2013), according to inferred HCV and bison506

population size trends respectively. The HCV population size trend that we simulated from507

is provided in (Pybus et al., 2003). We inferred the population size trend of the bison508

dataset using the BSP (with sequential Markovian prior) in accordance with published509

analyses (Drummond et al., 2005). We used 20 population groups and the optimal design510

from (Parag and Pybus, 2019) to ensure that we captured complex bison population511

dynamics reliably. As our focus is on exploring the behaviour of skylines and ω2 given a512

particular underlying population size trend and not the uncertainty associated with that513

trend, we used the posterior mean (HCV) or median (bison) of these inferred trends for514

simulating trees and do not consider genealogical uncertainty.515

The simulated set of coalescent trees from each dataset provide an approximate516

measure of the coalescent variance that could arise from the inferred underlying population517

size trends. We then estimated logN from every simulated tree using various skyline518
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models with time-aware GMRF smoothing priors, as in (Minin et al., 2008). We varied the519

relative contributions of the coalescent data and GMRF to our posterior log-population520

size estimates by changing either the skyline dimension, p, or the GMRF smoothing521

parameter τ . As m is fixed for a given dataset and robust designs are applied, increasing522

the number of coalescent events in each segment, mj, reduces p.523

We analysed every tree over all combinations of mj ∈ {1, 2, 4, 8} across a wide524

range of τ . For comparison, we also generated purely data-informed estimates of logN , for525

the same mj, by replacing the subjective GMRF with a uniform, objective prior. We526

computed ω2 from Eq. (14) for these settings in Fig. 5 and observe that, as expected, it527

decreases with both τ and p (i.e. ω2 increases with mj). Practical analyses of these528

datasets using Skyride or Skygrid approaches, would choose or infer a τ value and set529

p ≈ m. However, Fig. 5 shows κ = m/p∗ > 1 and hence mj > 1 events per skyline parameter530

are often necessary to achieve ω2 > 1/2. This raises questions about the validity of the531

common practice of applying these methods using their default settings.532
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Fig. 5: Model rejection statistics for the HCV and bison datasets The metric ω2

is calculated for each tree (see Eq. (14)) under a time-aware GMRF for various combina-
tions of its smoothing parameter τ and mj, the number of coalescent events per skyline
segment. The box-plots summarise the resulting ω2 over 100 simulated trees that represent
the demographic histories of the (A) Egyptian HCV and (B) Beringian bison datasets. The
solid lines link the median values across boxes for a given mj and hence skyline dimension
p (mj = m/p). We discourage the use of skyline models with ω2 < 1/2.
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Fig. 5 confirms that the recommended maximum skyline dimension p∗ falls and533

hence the minimum allowable number of coalescent events per segment mj grows as the534

smoothing parameter τ increases. We demonstrate the qualitative difference in535

skyline-based estimates between p values on either side of the p∗ criterion for a single536

simulated HCV and bison tree in Fig. 6. In panels A and C we present the Skyride537

estimate, which uses mj = 1 and implements p > p∗, at the chosen τ values (0.05 and 1).538

Contrastingly, in B and D, we illustrate an equivalent skyline with a different mj, which539

achieves p < p∗ at this same τ , according to our ω2 metric (see the mj = 4 and mj = 2540

curves at τ = 0.05 and 1 in panels A and B of Fig. 5) respectively). We overlay the541

corresponding skyline (with the same mj) obtained with an objective uniform prior, to542

visualise the uncertainty engendered from the coalescent data alone.543

At mj = 1 (panels A and C of Fig. 6), the uniform prior produces a skyline that544

infers more rapid demographic fluctuations through time than that estimated with the545

GMRF prior. Further, the 95% HPD intervals from the uniform prior (red) are546

substantially wider than those from the GMRF prior (blue) in both examples, highlighting547

the marked contribution of the time-aware GMRF prior to posterior estimate precision.548

While this smoothed trajectory looks reliable we argue that, because p > p∗ (and hence549

ω2 < 1
2
), it is difficult to justify using the data alone and that the prior is responsible for550

too much of the estimate precision. In contrast, at mj = 4 and mj = 2 (panels B and D of551

Fig. 6), which apply p < p∗, both prior distributions yield more similar skylines, implying552

that GMRF smoothing has not substantially inflated posterior estimate precision.553

Under these settings we have fewer demographic fluctuations than for mj = 1554

because 4 and 2 times more coalescent events are informing each parameter or skyline555

segment, respectively. We achieve smaller uncertainty than mj = 1 with a uniform prior556

(which is overfitted) but without excessively relying on the GMRF smoothing, which at557

mj = 1 is likely underfitting. The ω2 metric and hence p∗ criterion help us better balance558

data, noise and our prior assumptions. In contextualising these results it is important to559
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Fig. 6: HCV and bison demographic estimates under GMRF and uniform priors.
We analyse demographic estimates under time-aware GMRF priors (blue) and objective
uniform priors (red) for a single tree simulated under the demographic scenarios inferred
from the Egyptian HCV (A and B) and Beringian bison (C and D) datasets. In panels A
and C we present Skyride estimates, which use mj = 1 and τ = 0.05 (A) and 1 (C). These
skylines have dimension p that is larger than our maximum recommended dimension p∗,
which is computed from Fig. 5. In panels B and D we re-estimate population size at mj = 4
(B) and 2 (D). These groupings of coalescent events achieve p < p∗ as justified by our ω2

metric (see Eq. (14)). Solid lines are posterior medians while semi-transparent blocks are
the 95% HPD intervals.
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note that skyline plots provide harmonic mean and not point estimates of population size560

(Pybus et al., 2000). Consequently, we are inferring sequences of means from our coalescent561

data, which a priori may not need to conform to a smooth pattern.562

The HCV example shows that for times beyond t > 100 years there are so few563

events that it is more sensible to estimate a single mean (panel B), which we are confident564

in across this period, as opposed to several less certain and overfitted means (panel A). In565

contrast, for the bison example, the bottleneck over 104 < t < 2× 104 years is566

oversmoothed (panel C), despite many coalescent events occurring in that region. The567

simple correction of extending our harmonic mean over 2 events (panel D) restores the568

necessary fall in population size. Deciding on how to balance uncertainty with model569

complexity is non-trivial and, as shown in these examples, caution is needed to avoid570

misleading conclusions. We posit that ω (and hence Ω) can help formalise this571

decision-making and improve our quantification of the uncertainty across skyline plots.572

Having confirmed Ω as a credible measure of relative uncertainty, we briefly explore573

how it relates to more easily ascertained measures of uncertainty. For each simulated574

coalescent tree in the HCV example above we computed Ω (via Eq. (4)) and two ancillary575

statistics based on the 95% highest posterior density (HPD) intervals of the logN576

estimates. These are the median HPD ratio q 0.5 and the relative HPD product (across the577

skyline segments) Hτ,m, which are formulated as:578

q 0.5 = medj

{
Hj
τ,m :=

Hj
τ,m

Hj
m

}
and Hτ,m =

∏m
j=1 Hj

τ,m,

with med indicating the median value of a set. Here Hj
τ,m is the 95% HPD interval of579

logNj under a GMRF with smoothing parameter τ and Hj
m is the equivalent HPD when580

the objective uniform prior is applied instead.581

The 95% HPD interval is closely connected to the inverse of the Fisher information582

matrices that define Ω and, further, describes the most visually conspicuous representation583

of the uncertainty present in skyline plot estimates. Comparing Ω to these ancillary584

statistics, which evaluate the median and total 95% uncertainty of a skyline plot, allows us585
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to contextualise Ω against more relatable (though different) and obvious visualisations of586

posterior performance. We present these comparisons in Fig. A6 of the Appendix. There587

we find that all statistics monotonically decay with τ i.e. as the time-aware GMRF588

becomes more informative. The sharpness of this decay is highly sensitive to mj. Larger mj589

means that more coalescent data are informing each estimated parameter (smaller p).590

The reduced decay with mj supports our assertion that p acts as an exponent591

controlling prior over-reliance (see Fig. 3). The gentler decay of q 0.5 (relative to Ω and592

Hτ,m), which largely does not account for p, confirms that we could be misled in our593

understanding of the impact of smoothing if we neglected skyline dimension. In contrast Ω594

and Hτ,m, which both measure, in some sense, the relative volumes of uncertainty across595

the entire skyline-plot due to the data alone and the data and prior, fall more significantly596

and consistently. At mj = 1 (p = m), which is the most common setting in the Skyride and597

Skygrid methods, both statistics are markedly below 1
2

and posterior estimates will often598

be too dependent on the prior. This high-p behaviour is also indicative of model599

over-parametrisation Parag and Donnelly (2020). Our metric Ω therefore relates sensibly600

to visible and common proxies of uncertainty.601

Discussion602

Popular approaches to coalescent inference, such as the BSP, Skyride and Skygrid603

methods, all rely on combining a piecewise-constant population size likelihood function604

with prior assumptions that enforce continuity. This combination, which is meant to605

maximise descriptive flexibility without sacrificing the smoothness that is expected to be606

exhibited by real population size curves over time, has led to many insights in607

phylodynamics (Ho and Shapiro, 2011). However, it has also spawned concerns related to608

over-smoothing and lack of methodological transparency (Minin et al., 2008) (Faulkner609

et al., 2019). In this work we attempted to address these concerns by deriving metrics for610

diagnosing and clarifying the existing assumptions present in current best practice.611
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Detecting and correcting for underfitting or over-smoothing is crucial if reliable and612

meaningful assessments of the effective population size changes of a species or pathogen of613

interest are to be made from sequence data. Abrupt changes in effective population size are614

not only biologically plausible but may also signal key events that have shaped the615

demographic histories of populations (Pyron and Burbink, 2013). In ecology, identifying616

rapid extinctions and bottlenecks in diversity might signify the impact of environmental617

change or anthropogenic influences (e.g., hunting or changes in land use) (Stiller et al.,618

2010; Thomas et al., 2019). Similarly, in epidemiology, sharp fluctuations in the prevalence619

of an infection might support hypotheses about emergence in novel populations,620

seasonality, the effect of interventions, vaccines, or drug treatments. Further, rapid621

exponential growth of any population may, when observed over a longer timescale, appear622

as a near-stepwise transition in population size.623

Underfitting these changes would limit understanding of the dynamics of the study624

population and could affect conclusions about the potential causative factors that625

influenced those dynamics. However, recognising when commonly used methods for626

inferring these demographic trends are over-smoothing is difficult. By capitalising on627

(mutual) information theory and (Fisher) information geometry we formulated the novel628

coalescent information ratio, Ω, which provides a rigorous means of solving this629

over-smoothing problem. This ratio describes both the proportion of the asymptotic630

uncertainty around our posterior estimates that is due solely to the data and the631

additional mutual information that the prior assumptions introduce.632

We derived analytic expressions for Ω for the BSP, Skyride and Skygrid estimators633

of effective population size, which combine piecewise skyline likelihoods with either SMP634

or GMRF smoothing priors. We also showed that Ω has an exact and intuitive635

interpretation as the ratio of real coalescent events to the sum of real and virtual636

(prior-contributed) ones in a Kingman coalescent model. Using Ω2 = 1/2 as a threshold637

delimiting when the prior contributes as much information as the coalescent data, we638
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found that it is easy to become overly dependent on prior assumptions as the skyline639

dimension, p, increases (for a fixed tree size). This central result emerges from the drastic640

reduction in the number of coalescent events informing on any population size parameter641

as p rises. Per parameter, the BSP and Skyride use only a few or one event respectively642

(Minin et al., 2008; Drummond et al., 2005), while the Skygrid may have no events643

informing some parameters (Gill et al., 2013).644

These issues can be obscured by current Bayesian implementations, which can still645

produce apparently reasonable population size estimates, at least visually, as illustrated in646

our simulated HCV and bison case studies. Our simulations indicate that analyses that647

combine maximally parametrised skylines (one event per segment or parameter) with648

GMRF smoothing can lead to errors in population size inference. For trees simulated649

according to the HCV demographic scenario, estimates were likely overfitted in the far650

past, inflating HPDs, but oversmoothed towards the present. The resulting skyline651

uncertainty contrasted that from the original Pybus et al. (2003) and later (Parag and652

Pybus, 2017) analyses. In the bison example, we found evidence for underfitting. The653

inferred skyline there emphasised a smoother boom-bust trend with concentrated HPDs.654

However, this underestimated the depth of a bottleneck during which coalescent events655

were concentrated.656

These mismatches between data and smoothing can be difficult to diagnose and657

problematic, not just for prior over-dependence. Low coalescent event counts, for example,658

can lead to poor statistical identifiability (Rothenburg, 1971) which might manifest in659

spurious MCMC mixing. Consequently, we proposed a practical p∗ rejection criterion for660

ensuring that coalescent data is the main source of inferential information. This criterion,661

which was based on an approximation to Ω2, provided a way of regularising skyline662

complexity. When applied to our examples it recommended a 4-event skyline grouping that663

resulted in demographic reconstructions that were more consistent with the above664

mentioned HCV studies. It also suggested a simple 2-event grouping that recovered the665
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bison bottleneck dynamic without generating too much estimate noise.666

This p∗ criterion bounds the maximum recommended skyline dimension for a given667

dataset (tree) size and provides a usable means of defining the minimum number of668

coalescent events, κ, which we should allocate to each skyline segment to guard against too669

much prior influence. Since κ only requires our computing the sum of the diagonals of the670

prior Fisher matrix, it can serve as a simple rule-of-thumb for sensibly balancing the671

prior-data tradeoff in skyline plots (e.g. in the BSP, the grouping parameter might be set to672

a value above κ to ensure well-regularised estimates). As we found Ω2 to be lower-bounded673

by more visible measures of skyline uncertainty, such as the product of relative HPD674

widths, useful approximations to p∗ and κ may also be computed from these measures.675

Our Ω metric also provides insight into how we can alleviate the dramatic impact of676

skyline complexity on prior over-reliance. When specialised to the GMRF, for example, it677

reveals that we can negate over-smoothing by scaling the smoothing parameter τ with a678

quadratic of p. Moreover, it shows that only by increasing the information available from679

the sampled phylogeny can we reasonably allow for more complex piecewise-constant680

functions under a given prior. Recent methods, such as the epoch sampling skyline plot681

(Parag et al., 2020), which can double the Fisher information extracted from a given682

phylogeny by exploiting the informativeness of sampling times, would support higher683

dimensional skylines. Such approaches have the potential to increase the contribution of684

the data without elevating the influence of the smoothing prior.685

While in this paper we have applied Ω to non-parametric, skyline inference686

problems in population genetics, ecology and epidemiology, its general formulation in687

Eq. (4) is more widely applicable. It can be also applied to coalescent inference problems688

where specific parametric models (e.g., exponential/logistic growth) are used, in order to689

disentangle the contributions of observed data and the prior distributions over these690

parameters, though numerical solutions will likely be necessary. More generally, our691

approach is valid for any statistical problem, provided the Hessian matrices necessary for692
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deriving the prior and data Fisher information terms are valid and computable. This is not693

limited to prior-data tradeoffs. Similar ratio metrics should be derivable by comparing694

Fisher information terms from different sources (e.g. to test whether one source of data is695

more informative than another).696

Thus, we have devised and validated a rigorous means of better understanding,697

diagnosing and preventing prior over-dependence. We hope that our statistic, which698

clarifies and quantifies the often inscrutable impact of the prior and data, will help699

researchers make more active and considered design decisions when adapting popular700

skyline-based techniques. Our work also aligns with recent studies, which have started to701

re-examine both model selection and prior definition (Parag and Donnelly, 2020; Faulkner702

et al., 2019) in an attempt to derive more reliable effective population size estimates from703

coalescent trees. While we believe that data-driven conclusions are generally the most704

justifiable we note that, in the context of skyline plots, this can be open to interpretation705

and the choice of prior is far from trivial.706
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Appendix785

Smoothing Prior Fisher Information Matrices786

Here we derive the prior-informed Fisher information matrices for the SMP and

GMRF smoothing priors. We start by finding the log-population size transformed version

of the SMP smoothing prior. We then calculate its Hessian to get P , and so obtain the

general form of Eq. (10). The SMP is given in (Drummond et al., 2005) as

f(N ) = 1/N1

∏m
j=2

1/Nj−1 e
Nj/Nj−1 . We define η = ρ(N ) := logN so that its inverse

ρ−1(η) = eη. These expressions are in vector form so

η = [η1, . . . , ηp] = [logN1, . . . , logNp]. We want the transformed prior g(η). Applying the

multivariate change of variables formula gives g(η) = f(eη)|det [∆ρ−1]|, with

∆ρ−1 = [eη1 , . . . , eηp ] Ip as the Jacobian of ρ−1. This implies that |det [∆ρ−1]| = e
∑p
j=1 ηj .
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Substituting and expanding gives the SMP log-prior:

log g(η) = ηp − η1 +

p∑
j=2

−eηj−ηj−1 . (A1)

We can then obtain P = −∇G, with G = log g(η). The diagonals of P are:787

∂2G/∂η2
j = −eηj−ηj−1 − eηj+1−ηj for 2 6 j 6 p− 1, ∂2G/∂η2

1 = −eη2−η1 and ∂2G/∂η2
p = −eηp−ηp−1 .788

The non-zero off-diagonal terms are: ∂2G/∂ηjηj+1 = eηj+1−ηj and ∂2G/∂ηjηj−1 = eηj−ηj−1 . The789

result is a symmetric tridiagonal matrix that has zero row and column sums. The P790

matrix is then added to the Fisher information matrix I = [m1, . . . , mp] Ip (with mj as the791

number of coalescent events informing on the jth parameter), to get J SMP.792

We now compute J GMRF, which is given in the main text as Eq. (11). For the793

GMRF g(η) = Z−1τ
p−2

2 e−
τ
2

∑p−1
j=1 δ

−1
j (ηj+1−ηj)2

(Minin et al., 2008) and so794

G = − logZ + m−2
2

log τ − τ
2

∑p−1
j=1

(ηj+1−ηj)2

δj
. Taking second derivatives we get diagonal795

terms of the Hessian, ∇G, as: ∂2G/∂η2
j = −τ (1/δj + 1/δj−1) for 2 6 j 6 p− 1, ∂2G/∂η2

1 = −τ/δ1796

and ∂2G/∂η2
p = −τ/δp−1. The non-zero off diagonal terms are: ∂2G/∂ηjηj+1 = τ/δj and797

∂2G/∂ηjηj−1 = τ/δj−1. The GMRF also gives a symmetric tridiagonal P with row and column798

sums of zero. Adding −∇G to the diagonal I matrix yields J GMRF.799

Further Smoothing Results800

In the main text we asserted that the Ω computed at the robust point of mj = m/p801

(Parag and Pybus, 2019) generally upper bounds the achievable Ω values at other mj802

settings. Here we provide evidence for this assertion. While strictly arg max{mj}Ω 6= m/p803

(except for p = 2), we numerically find that max{mj}Ω ≈ Ω|{mj=m
p
}. We show this for the804

GMRF under uniform smoothing in Fig. A1. This makes sense as while (for fixed805

smoothing parameters) arg max{mj} det [I] = m/p and arg max{mj} det [J ] = m/p, there is no806

reason to believe that this also maximises their ratio. The sawtooth Ω curves in Fig. A1807

reflect changes in the other {mj} values, given a fixed m1.808

Hence we used the robust design point in our calculation of the Ω2 curves for the809
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GMRF in Fig. 3. The corresponding additional mutual information (∆I) curves for this810

case are provided in Fig. A2. These show how larger values of the smoothing parameter, τ ,811

directly lead to increases in the relative mutual information contribution from the prior.812

Observe that ∆I is highly sensitive to the skyline complexity, p, thus clarifying how813

estimates from over-parametrised skyline plots can be dominated by prior information.814

Interestingly, we can largely negate the impact of skyline complexity by making τ a815

function of p. In the main text we explained how the Skyride implicitly implements the816

scaling τ → τ/p. While this reduces some of the effect of p shown in Fig. 3, it still leads to817

decaying curves that can, for a given τ , be deceptively dependent on smoothing. Here we818

propose the key transformation τ → τ/2p(p−1), as a means of reducing our smoothing in line819

with our skyline complexity. This transformation was inspired by the dependence of a820

lower bound on Ω2, which we derive in Eq. (A3) later in the Appendix. Its striking impact821

on the spread of curves from Fig. 3 is given in Fig. A3.822

Further Model Selection Bounds823

In the the main text we derived lower bounds on Ω2, which led to the model824

rejection parameter, p∗ (see Eq. (14)). Here we extend and support those results. In825

Fig. A4 we first show that the bound of Eq. (14) is a good measure of the true Ω2 value,826

for a skyline with uniform GMRF smoothing. We used this bound to define a maximum p,827

p∗, above which the skyline would be over-parametrised and susceptible to prior induced828

overconfidence. We explore p∗ over τ and m for this GMRF in Fig. A5 and observe that p∗829

becomes more restrictive with fewer observed data (coalescent events) or increased830

smoothing. This supports Ω as a useful measure of prior-data contribution.831

Lower bounds on Ω2 imply upper bounds on the excess mutual information, ∆I (see

Eq. (7)). We manipulate Eq. (14) (under a robust design) to obtain the first inequality in
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Fig. A1: Robust and Ω optimal designs. For the GMRF smoothing prior with δj = 1
for all j and τ = 1, we show that the optimal Ω design point is not always the same as
the robust design point, at which m1

m
= 1

p
. The coloured Ω curves are (along the dashed

arrow) for p = [2, 3, 5, 6, 10] at m = 60, and computed across all partitions for any given
m1 (hence the zig-zagged form). The grey vertical lines mark the robust point for each Ω
curve, and the black circles give the optimal Ω points. While these lines and circles do not
always match, both generally feature approximately the same Ω values. We found this to be
the case across several m and τ values.

Eq. (A2), with q = tr[P]/m as follows

∆I 6
1

2
p log (1 + q) 6

1

2
pq. (A2)

This expression reveals that p is akin to a signal bandwidth (by comparison with standard832

Shannon-Hartley theory (Cover and Thomas, 2006)) and is therefore a key controlling833

factor in defining how much additional information the prior will introduce. This supports834

our proposed p∗ rejection criterion.835

Under the logN parametrisation, I and J are symmetric, positive definite836

matrices. For such matrices we can apply a theorem from (Huang and Zhang, 2018), which837

states that ∆I 6 ζ/2, with ζ = tr[I−
1
2PI−

1
2 ]. At the robust point, we get ζ = tr[I−1P ],838

which leads to the second inequality in Eq. (A2). Thus, our bound is tighter than that in839

(Huang and Zhang, 2018), and useful for broader, future mathematical analyses of ∆I. This840
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Fig. A2: Prior mutual information increases with skyline complexity. For the uni-
form GMRF, we show that under fixed smoothing (and hence τ/m), the additional mu-
tual information introduced by the prior, ∆I = E0[− log Ω], significantly increases with
the complexity, p, of our skyline. The coloured Ω curves are (along the grey arrow) for
p = [2, 4, 5, 10, 20] at m = 100 with mj = m/p (robust design point). The dashed Ω2 = 1/2

threshold is also given for comparison. Clearly, the more skyline segments we have for a
given tree, the more likely we are being overly informed by our prior.

inequality also clarifies why m/p is often important for characterising performance here.841

We can also use the bound of (Huang and Zhang, 2018) to derive alternate (but

slacker) lower bounds on Ω2. This gives the first inequality in Eq. (A3). Applying this to

the uniform GMRF gives the second inequality:

Ω2 > e−pq =⇒ Ω2 > e−
2
m
p(p−1)τ . (A3)

Interestingly, Eq. (A3) shows that the dependence of Ω2 on the smoothing parameter τ is842

at most only linear, while the dependence on complexity p can be quadratic. This provides843

further theoretical backing for the use of p∗ to reject models and emphasises how844

smoothing can play a deceptively prominent role in the resulting estimate precision845

produced under complex (high-dimensional) skyline plots.846
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Fig. A3: Negating the impact of skyline dimension. We show how an appropriate
quadratic scaling of the GMRF precision parameter, τ , can remove the complexity (p) in-
duced smoothing contribution portrayed in Fig. 3 of the main text. This scaling significantly
compresses the coloured Ω curves shown, which are for p = [2, 4, 5, 10, 20] at m = 100 with
mj = m/p (robust design point). The resulting Ω2 values are now all comfortably above the
1/2 threshold and justified by our information theoretic metrics.

Ancillary Uncertainty Statistics847

In the Egyptian-HCV simulated example we defined two 95% HPD based ancillary848

statistics for characterising the visual uncertainty present in a skyline plot demographic849

estimate. In Fig. A6 we plot these statistics and Ω2 for various τ and mj values under a850

time-aware GMRF. We discuss the implications of Fig. A6 in the main text but observe851

here that trends between the more common (and more easily visualised) HPD based852

measures and our novel statistic are largely consistent.853
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Fig. A4: Lower bounds on Ω2. For the GMRF smoothing prior with δj = 1 for all j and
m = 200, we compare the lower bound on Ω2 (red, dashed, see Eq. (14)) with the actual
value of Ω2 (cyan) at the robust design point of mj = m/p. We examine all integer p values
that are factors of m, and find that qualitatively similar comparisons hold for different τ
and m settings. In general the lower bound (ω2) is a good approximation to Ω2.
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Fig. A5: Maximum p model selection boundary. For the GMRF smoothing prior with
δj = 1 for all j and at the robust point mj = m/p, we compute the maximum allowed number
of skyline segments, p∗, such that Ω2 > 1/2. These curves increase with m and decrease with
τ , indicating how the prior-data contribution can be used to define model rejection regions.
Skylines with p > p∗ would be overly informed by the prior and hence should not be used.
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Fig. A6: Trends in HPD-based statistics and Ω2 under various time-aware GMRF
settings. The Ω2 (panel A), median HPD ratio of logNj (panel B) and HPD product (panel
C) statistics are computed across logNj over various combinations of mj and τ . Box-plots
summarise our results over 100 observed coalescent trees simulated from previously inferred
demographic trends found for the Egyptian HCV dataset. Analyses with mj = 1 are in dark
green, mj = 4 in yellow and mj = 8 in orange. The solid lines link the median values across
boxes for a given mj value. The dashed line is positioned at the threshold Ω2 = 1/2.
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