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We study theAp-calculus, extended with explicit substitution, and deineompositional output-
based interpretation into a variant of thecalculus with pairing that preserves single-step explici
head reduction with respect to weak bisimilarity. We defioerfnotions of weak equivalence for
Au — one based on weak reductieryg,, two modelling weak head-reduction and weak explicit
head reductionywy and~wxy respectively (all considering terms without weak headsmediform
equivalent as well), and one based on weak approximatipn- and show they all coincide. We
will then show full abstraction results for our interpréatfor the weak equivalences with respect
to weak bisimilarity on processes.

Introduction

The research presented in this paper is part of an ongoirmgtigation into the suitability of classical
logic in the context of programming languages with contrBather than looking at how to encode
known control features into calculi like the-calculus [9] 7], Parigot's u-calculus [21], orAu [13], as
has been done in great detail by others, we focus on tryingdenstand what is exactly the notion of
computation that is embedded in calculi likg; we approach that problem here by presenting a fully
abstract interpretation for that calculus into the (pesghagtter understoodj-calculus [20].

In the past, many researchers investigated interpretatign thesr-calculus of various calculi that
have their foundation in classical logic. From these pajiarsght seem that the interpretation of such
‘classical’ calculi comes at a great expense; for examplentodeypedAy, [15] defines an extension
of Milner's encoding and considers a strongly typedaalculus; [3] shows preservation of reduction in
X [4] only with respect ta_, the contextual ordering (so not with respectig, contextual equivalence,
nor with respect to weak bisimilarity); [10] defines a nomapmsitional interpretation ot uji [11] that
strongly depends on recursion, and does not regard thealagpect.

In [6] we started our investigations by presenting an imteggion for de Groote’s varianky into
the rt-calculus [20] and proved a soundness result; here we staivthils interpretation is fully abstract,
but have to limit the interpretation tdu terms. We study an output-based encoding\gfinto the
rr-calculus that is an extension of the one we defined forAttoalculus [5] and is a natural variant of
that for Ay in [6]. In those papers, we have shown that our encoding cespmgle-step explicit head
reduction(which only ever replaces the head variable of a term) modwo

We will here address the natural question that arises nextiwa terms that are equal under the in-
terpretation also operational equivalerg,: is the interpretatiorully abstrac®? We answer that question
positively, using a new approach to showing full abstractior our interpretation of\ u-terms (rather
than Ay as used in[[6]) and thereby also for the stand&rchlculus. Following the approach of [6] we
can show that our interpretation respects single-stepaixpkad reduction—y,; moduloweak bisim-
ularity ~ (rather than~. as used in[[6]; we omit the details here). We extend this tésul, the
equivalence relation generated by, that equates also terms without (weak) normal form witheesp
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34 A fully-abstract semantics ofyu in the-calculus

to —y. The main proof of the full abstraction result is then ach@through showing that,, equates
to ~wg,, the equivalence relation generated by standard redutttairalso equates terms without weak
head normal form.

This technique is considerably different from the one usge&éngiorgi, who has shown a full ab-
straction result[23, 24] for Milner's encodiridVl | a of the lazyA-calculus[[20]. To achieve full abstrac-
tion, Sangiorgi proves thatM 2 ~ [N a if and only if M = N, where= is theapplicative bisimularity
on A-terms [2]. However, this result comes at a price, sinceiegiple bisimulation equates terms that
are not weakly bisimilar unddr- j' -: in order to achieve full abstraction, Sangiorgi had to edtklilner’s
encoding toA., a A-calculus enriched with constants and by exploiting a mésract encoding into
theHigher Order rz-calculus, a variant of the-calculus with higher-order communications. Sangiorgi’s
result then essentially states that the interpretatiormosbdA .-termsM andN are contextually equiv-
alent if and only ifM andN are applicatively bisimilar; in[23] he shows that the iptetation of terms
in A in the standardr-calculus is weakly bisimilar if and only if they have the sabevy-Longo tree.

We would like to stress that in order to achieve full abstomctor our interpretationye did not need
to extend the interpreted calculus, and use a first ordetalculus In fact, the main contribution of
this paper and novelty of our proof is tegucture of the proobf the fact that our interpretation gives a
fully abstract semantics. To wit, we define a choice of openat equivalences for theu-calculus, both
with and without explicit substitution. We define tiaeak explicit head equivalence,y; and show
that this is exactly the relation that is naturally repréable in ther-calculus; we defineveak head
equivalence~yy, and show that fol u-terms without explicit substitutiomvyyy corresponds tevyy.
The relation~y, essentially equates terms that have the same Lévy-Loergohiut of course defined
for Ap, which gets shown through a notion of weak approximation.thée show that the relation4,,,,
which expresses that terms have the same set of weak apirusiavyy, and~yg, all correspond.

The combined results of [[5) 6] and the full abstraction rssule present here stress that the
calculus constitutes a very powerful abstract machinedddalthough the notion of structural reduction
in Au is very different from normaB-reduction, no special measures had to be taken in orderablbe
to express it through our interpretation. In fact, the distive character of application iy, and of
both term and context substitution is dealt with by congoeein 7r, and both naming ang-binding are
dealt with entirely statically by the interpretation.

Organisation of this paper: We start with revisiting the\-calculus in Sectioqll and define a notion
of head-reduction—. In Sectior 2 we revisit ther-calculus, enriched witpairing. In Section 8 we
defineAux, a version ofAyn with explicit substitutionas well as a notion aéxplicit head reductiomand

in Sectior 4 define oupgical interpretationof Aux in to 7.

Working towards our full abstraction result, in Sectidn 5wi# define notions of weak reduction,
in particularweak head reductioandweak explicit head reductionWe then define the two notions
of equivalence these induce, also equating terms withoakwead-normal form and show that these
notions coincide on purgyu terms {.e. without explicit substitutions). We also define the equévale
~wgpy induced by—>ﬁ}, on pureAu terms, that also equates terms without weak head-normail. fém
Sectiori 6, we define a notion wieak approximatioffior Ay, and show the semantics this inducesg,,, is
fully abstract with respect to bothy,, and~y,s,. We show that our logical interpretation is fully abstract
with respect to weak bisimilarityz on processes andhwxn, ~wr, ~4y, @nd~yp, ON pureA-terms.

Notation: We will use a vector notation” as abbreviation for any sequence: for exampjestands for
X1,...,Xy, for somen, or for {xy,...,x, }, and(a; := N; - B;) for (a1 :=Nj-B1) - (a,:=Ny-By), etc.
When possible, we will drop the indices.
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1 The Au calculus and explicit substitution

In this section, we will briefly discuss Parigot\g:-calculus [21]; we assume the reader to be familiar
with the A-calculus and its notion of reductior 5 and equality=g.

Au is a proof-term syntax for classical logic, expressed irungtDeduction, defined as an extension
of the Curry type assignment system for thealculus by adding the conceptridmederms, and adding
the functionality of acontext switchallowing arguments to be fed to subterms.

Definition 1.1 (Syntax ofAi) TheAu-termswe consider are defined over the setvafiables(Roman
characters) anchamesor contextvariables (Greek characters), through:

M,N == x|Ax.M|MN | pa.[p]|M
We will occasionally writeC for the pseudo-ternf] M.

As usual,Ax.M binds x in M, and u«.C bindsa in C, and the notions of free variablég(M)
and name$n(M) are defined accordingly; the notion @fconversion extends naturally to bound names
and we assume Barendregt’'s convention in that we assumidbaind bound variables and names are
always distinct, using-conversion when necessary. As usidl,N /x| stands for the substitution of all
occurrences of in M by N, and M[N-+y/«], thestructural substitutionfor the term obtained frolM
when every (pseudo) sub-term of the fofmM’ is replaced byy|M’N. (We omit the formal definition
here; see Def._3|1 for the variant wigplicit structural substitution.)

Definition 1.2 (A reduction) Reduction omyu-terms is defined as the contextual closure of the rules:

logical (B) : (Ax. M\)N — MIN/x]
structural (p) : (ua.C)N —  u7y.(C[N-v/a])
renaming:  ud.[B] (uy.[a] M) —  ué.[a| M[B/7]
erasing: paalM — M (e & fn(M))

We use— 4, for the pre-congruence based on these rules,, for the congruence, writé/1 —>g; N if

M —4, N andN is in normal form,M —>E;}fN if M —, N andN is in head-normal form | if there
exists a finite reduction path starting frolf, and M 1! if this is not the case; we will use these notations
for other notions of reduction as well.

That this notion of reduction is confluent was shownri in [22]w&e have:
Proposition 1.3 If M =4, N andM —p, P, then there exist®) such that? —z, Q andN —3, Q.

Definition 1.4 (Head reduction for Ay (cf. [19])) 1. We defindead reduction-, as the restriction
of — By by removing the contextual ruleM - N = LM — LN

2. TheAu head-normal form§-NF) are defined through the grammar:

H Ax.H

:| xMip---M, (n>0)
| pa[B]H (B#aora € H, andH # uvy.[0]H')

The following is straightforward:

Proposition 1.5 (— implements Ay’s head reduction) If M —, N with N in HNF (S0 M — ' N),
then there existsf such thatM —} H (soH is in —-normal form) andH —>;§y N without using—.
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2 The synchronousrt-calculus with pairing

The notion ofrz-calculus that we consider in this paper was already coreidm [5] and is different
from other systems studied in the literature|[14] in thatditispairing and uses &t-construct to deal
with inputs of pairs of names that get distributed, simitathtat defined in1]; in contrast to|[3] 5], we
do not consider the asynchronous version of this calculus.

Definition 2.1 (Processes)Channel nameand dataare defined by:
a,b,c,d,x,y,z names p == al(ab) data
Processes are defined by:
P,Q == 0|P|Q|!P|(va)p|a(x).P|ap.P|let(x,y)=pinP

We see, as usual,as a binder, and call the nameboundin (vn) P, x bound ina(x).p andx,y bound
in let (x,y)=p in P; we write br(P) for the set of bound names in n is freein P if it occurs inP but
is not bound, and we writtn(P ) for the set of free names in

Notice that data occurs only in two cases: andlet (x,y) =p in P, and that them is either a single
name, or a pair of names; we therefore do not allg\,y)).P, nora ((b,c),d).P, nor (b,c) p.P, nor
(v{(a,b))P, norlet ((a,b),y)=p in P, etc.

We abbreviater (x).let (y,z) =xin P by a(y,z).P, (vm) (vn) P by (vmn)P, and writeap for ap.0.
As in [24], we writea-b for theforwardera(x).bx .

Definition 2.2 (Structural Congruence) The structural congruencis the smallest congruence gener-
ated by the rules:

Plo = P (PIQ)|IR = P|(Q]|R)

PIQ = QP (vm) (vn)p = (vn)(vm)P
P = PJ!IP (vn)(P|Q) = P|(¥n)Q (ngfn(P))

(vn)o = o0 let (x,y)=(ab)inP = Pla/x,b/y]

As usual, we will consider processes modulo congruencexanahversion: this implies that we will
not deal explicitly with the processt (x,y) = (a,b) in P, but rather withP [a/x,b/y]|. Because of rule
(P|Q)|R=P]|(Q]|R), we will not write brackets in a parallel composition of ma¢hen two processes.

Computation in ther-calculus with pairing is expressed via the exchangédash

Definition 2.3 (Reduction) Thereduction relatiorover the processes of thecalculus is defined by the
following (elementary) rules:

ap.Pla(x).Q —x P|Q[p/x]
P—=,P = (vn)P —;(vn)P’
P—P = P|Q—zP'|Q
P=Q&Q—;Q &Q' =P = PP

Notice that the first rule is only allowed @ [p /x| is a well-defined process.
There are several notions of equivalence defined forttealculus: the one we consider here, and
will show is related to our encoding, is that of weak-bisgmily.

Definition 2.4 (Weak-bisimilarity) 1. We writep |77 and say thatP outputs onn (or P exhibits
an output barb om) if P = (vb) (7p.Q | R), wheren ¢ b, andP | n (P inputs onn) if P =
(vb) (n(x).Q |R), wheren & b.
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2. We writer |} 7 (P will output onn) if there existsQ such that —} Q andQ | 7, andp | n (P will
input onn) if there exist such thatr —7 Q andQ | n.

3. Abarbed bisimilarity=: is the largest symmetric relation such tlrat: Q satisfies:
e for every nameu: if P |7 thenQ || 77, and ifP | n thenQ | ;
e forall P/, if P =% P/, then there exist®’ such thay —* Q" andpP’ =~ Q’;

4. Weak-bisimilarityis the largest relatiorrs defined by:P ~ Q if and only ifC[P] & C[Q] for any
contextC[-].

3 Aux: Au with explicit substitution

One of the main achievements 6f [5] is that it establishesangtlink between reduction in the-
calculus and step-by-stegxplicit substitutior8] for the A-calculus, by formulating a result with respect
to explicit head reduction and the spine interpretationngefithere.

In view of this, for the purpose of our interpretation it wastural to study a variant oy in [6]
with explicit substitution as well; since here we work with, we present hergux, as a variant of\px
as presented in that paper. Explicit substitution treabstiution as a first-class operator, both for the
logical and the structural substitution, and describethallhecessary steps to effectuate both.

Definition 3.1 (Aux) 1. The syntax of thexplicit Au calculus Aux, is defined by:
M,N == x|AxM|MN|M(x:=N) | pa.[p]M | M (a:=N-7)

We consider the occurrencesxoh M bound inM (x:= N), and those of in M in M (x:= N-7);
by Barendregt’s convention, anda do not appear outsid@/.

2. The reduction relation-y on Aux is defined as the contextual closure of the following rules:

(a) Main reduction rules:

(Ax.M)N — M(x:=N)
(ux.C)N — uy.C(a:=N-y) (v fresh
up.lpIM — M (B & f(M))
[Bluy.C — C[B/7]
(b) Term substitution rules:
x{(x:=N) — N
M({x:=N) — M (x € fv(M))
(Ay-M) (xi=N) = Ay.(M(xi=N))
(PQ)(x:=N) — (P{x:=N))(Q{(x:=N))
(pa.[p]M) (x:=N) — pa.[f](M(x:=N))
(c) Structural rules:
(no.C){a:=N-y) — pé.(C{a:=N-7))
([f]M) (@:=N-y) — [y](M{a:=N-7))N
([B]M){a:=N-y) — [Bl(M(a:=N-7)) (a # B)
M(a:=N-vy) — M (a & fn(M))
(Ax.M){a:=N-y) — Ax.M{(a:=N-y)
(PQ){a:=N-y) — (P{a:=N-7))(Q{a:=N-7))

3. We use— - for the notion of reduction where only term substitution atdictural rules are used
(so not the main reduction rules).
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Notice that since reduction itux is formulated via term rewriting rules [L6], reduction isoaled
to take place also inside the substitution term. The foltgns straightforward:

Proposition 3.2 A\ ux implements Au-reduction) 1. M=y N=M —x N.
2 MeAu& M-« N=3JLeAu [N —LL].

In the context of head reduction and explicit substitutime,can economise further on how substi-
tution is executed, and perform only those that are es$datithe continuation of reduction. We will
therefore limit substitution to allow it tonly replacethe head variable of a term. (This principle is also
found in Krivine’s machine[[17].) The results of/[5] show thhis is exactly the kind of reduction that
the rt-calculus naturally encodes.

Definition 3.3 (Explicit head reduction) Thehead variablef M, hv(M), is defined as expected, adding
ho(M(x:=N)) = hv(M) if hv(M) # x, and thehead namén (M) is defined byan(ua.[f]H) = B,
hn(M (x:=N)) = hn(M), andhn(M (a:=N-7)) = hn(M) if hn(M) # a.

We defineexplicit head reductior-y, on Aux as —y, but change and add a few rules (we only give
the changes):

1. We replace the term substitution rule for application add side-conditions:
(Ay.M)(x:=N) — Ay.(M(x:=N)) (x =hv(Ay.M))
(PQ)(x:=N) — (P{x:=N)Q)(x:=N) (x=hv(PQ))
(ue.[pIM) (x:=N) — pa.[p](M(x:=N)) (x = hv(pe. []M))
2. There are only two structural rules:
(uB.[a]M) (a:=N-7) — up.[y](M(a:=N-7))N
M{a:=N-y) — M (a & fn(M))
3. We remove the following contextual rules:
LM — LN
M—N = L{x:=M) — L{x:=N)
(:=M-y) — L{a:=N-y)

~

4. We add four substitution rules:

M(x:=N) (y:=L)

M {a:=N-B)(y:=L)
M (a:=N-7v) (B:=L-6)
M (x:=N) (B:=L-9)

— M(y:=L) (x:=N) (y:=L) (y (M))
— M(y:=L) {(a:=N-B)(y:=L) (y =hv(M))
— M(B:=L-5) (w:=N-7) (B:=L-5) (B )
— M{B:=L-5)(x:=N) (B:=L-5) (

Notice that, for example, in cabé 1, the clause postponesutbeitution(x:=N) on Q until such time
that an occurrence of the variabtein Q becomes the head-variable of the full term, and that we no
longer allow reduction inside the substitution or inside tight-hand side of an application.

The following proposition states the relation between iexphead reduction, head reduction, and
explicit reduction.

Proposition 3.4 1. If M —{ N, then there exists € Aux such thatM —x, L andL —< N.
2. If M =3, N with M € Ay, then there existé € Ay such thatN —M L, andM —I L.
3. M —>ﬁy N if and only if there exist& € Aux such thatM —% L andL —3'N.

This result gives that we can show our main resultsi\fex for reductions that reduce tonF.
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4 Alogical interpretation of Aux-terms to rr-processes

We will now define our Iogicam output-based interpretatioiM|a of the Aux-calculus into ther-
calculus (where\ is aAu-term, andz is the name given to its (anonymous) output), which is essgnt
the one presented in![6], but no longer consideld/ to be a term. The reason for this change is the
following: using the interpretation of [6],

T Ax.xja = (vs)((vab) (x(u).lu-=b|s(x,b)))

is in normal form, and all inputs and outputs are restrictedreby, it is weakly bisimilar to and to
T(Ax.xx)(Ax.xx)ja. So using that interpretation, we cannot distinguish betw#ockedandlooping
computations, which clearly affects any full-abstractiesult. When restricting our interpretationig,
this problem disappears: since naming has to folleabstractionyax.Ax.x is not a term indp. Since
Ay is a subcalculus of\y, this change clearly does not affect the results shown|ithig all hold for
the interpretation we consider here as well.

The main idea behind the interpretation, as in [5], is to giveme to the anonymous output of terms;
it combines this with the inherent naming mechanism\pf As shown in[[6], this encoding naturally
represents explicit head reduction; we will need to consickak reduction later for the full abstraction
result, but not for soundness, completeness, or termmatio

Definition 4.1 (Logical interpretation [6]) The interpretation of\ux terms into therr-calculus is de-
fined by:

xja 2 x(u).'u-a (u fresh)
Ax.Mja 2 (vxb)(TMb |a(x,b)) (b fresh)
TMNja £ (vc)(TMjc|'c(v,d).(To:=Ny |!d-a)) (c,v,d fresh)
M{x:=N)ja & (vx)(TMja|lx:=N))

fx:=Nj 2 !x(w).INjw (w fresh)
Tuy.Cla A (vs)ICysla/v] (s fresh)

TelMja & My

M(B:=N-y)ja 2 (vB)(TMya|TB:=N-v|)
lo: =My 2 la(v,d).(To:=Nj|!d+7) (v,d fresh)
Notice that uy.[8]Mja 2 (vs)[[B]M|sla/y] £ (vs)TMyBla/y] = TM|Bla/~] whichim-

plies that we can adfy.[8]Mja £ TM| B[a/] to our encoding.
Observe the similarity between

TMNja 2 (vc)(TMyc|!c(v,d).(To:=N| |!d-a)) and
M{c:=N-y)ja 2 (vc)(TMja|Tc:=N-y|)
2 (ve)(TMya|'tc(od).(To:=Ny | ld-7))

The first communicateN via the output channelof M (which might occur more than once inside | c,

so replication is needed), whereas the second communieéteall the sub-terms that haveas output
name, and changes the output name of the procegsltoother words, application is just a special case
of explicit structural substitution; this allows us to veritvc) (TMjjc | fc := N-aj ) for TMNja. This
stresses that the-calculus constitutes a very powerful abstract machineeédd although the notion
of structural reduction inyu is very different from normapB-reduction, no special measures had to be
taken in order to be able to express it; the component of dargretation that deals with pufeterms

1itis calledlogical because it has its foundation in the relation between nadegction and Gentzen's sequent calculus.
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is almost exactly that of [5] (ignoring for the moment thabstitution is modelled using a guard, which
affects also the interpretation of variables), but for the af replication in the case for application.

We can now show a reduction-preservation result for exphiead reduction foAux, by showing
that"- | - preserves—y up to weak bisimularity, stated usinrgc in [6].

Theorem 4.2 (Operational Soundness [6]) 1. M —xy N = TMja~TNja.
2. If MTTXH thenﬂMﬂ ﬂﬂ.

The proof in [6] shows thag-reduction is implemented it by at least one synchronisation.
We can also show that equality with explicit substitutiesy, is preserved under our encoding by
weak bisimulation.

Theorem 4.3 If M =, N, thenTMa ~ N a.

Proof: By induction on the definition of=y. O
Now the following is an immediate consequence:

Theorem 4.4 (Semantics)if M =g, N, thenTMja = TN a.

Proof: By induction on the definition of=4,. The caseV —>2§y N follows from the fact that then, by
Propositiod 3.2, alsd/ —x N, so by Theorerh 413, we hai@1 2 ~ TN a. The steps to an equivalence
relation follow directly from=-. U

Notice that it is clear that we cannot prove the exact reVerfdhis result, since terms without head-
normal form are all interpreted ly(see also Leni. 56), but are not all related throagy). Using weak
equivalence, we can deal with the reverse part, and will do e last sections of this paper.

5 Weak equivalences for\y and Aux

Since AA and Q) (where A = Ax.xx and () = Ay.yyy) are closed terms that do not interact with
any context, they are contextually equivalent; any weflraal interpretation of these terms into the
rt-calculus, be it input based or output based, will therefop those to processes that are weakly
bisimilar to 0, and therefore to weakly bisimilar processes. Abstractmmthe other hand, enables
interaction with a context, and therefore the interpretaof Az.AA will not be weakly bisimilar t.

We therefore cannot hope to model standémeequality in therr-calculus in a fully-abstract way; rather,
we need to consider a notion of reduction that consid#rabstractions meaningful; therefore, the only
kind of reduction om-calculi that can naturally be encoded into tihecalculus isweakreduction.

Definition 5.1 We define the notiomwﬁy of weakpu-reductionas in Def[ 1.2, the notior+, of weak

head reductidfon Ay as in Def[ L4, and the notiorsy of weak explicit head reductioon Apux as
in Def.[3.3, by (also) eliminating the rules:

(Ay.M)(x:=N) — Ay.(M(x:=N))
(Ax.M){a:=N-y) — Ax.(M(a:=N-7))
M—N = Ax.M— Ax.N

2This notion is also known dszy reduction; for the sake of keeping our terminology consistere prefer to call it weak
head reduction.
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We define the notion of weak head-normal forms, the normah$owith respect to weak head-
reduction:

Definition 5.2 (Weak head-normal forms for Au) 1. TheAu weak head-normal formSvHNF) are
defined through the grammar:

= Ax.M
| xMy---M, (n>0)
| pe[BlHw (a7 Boraefn(Hw), Hw 7# 1. [6] Hi)

2. We say thaM has awHNF if there existsH,, such thatM — ., Hy,.

Hw

The main difference betweaiNFs andwHNFS is in the case of abstraction: where the definition of
HNF only allows for the abstraction overraF, for WHNFs any term can be the body. Moreover, notice
that bothAz.AA andAz.Q() are iINnWHNF.

Since =y € —xu, We can show the equivalent of Ldm 1.5 and Thm] 4.2 alsoveak explicit
head reduction

Theorem 5.3 (cf.[6]) 1. f M —4xy N, thenTMja ~Nja.

2. If M —4, N with N in WHNF, then there exists$fy, such thatM 0 Hux and Hux —% N
without using— -

We also define weak explicit head-normal forms.

Definition 5.4 (Weak explicit head-normal forms) 1. TheAux weak explicit head-normal forms
(WEHNF) are defined through:

Hwx

| xMye--M, [yi=N) (0=Q1) (1>0,x¢7)
| pa[B]Hwx (y:=N) (c:=Q-1)
(BE T, a# Boruacfn(Hw), andHwx # u7y.[0]Hix)

2. We say thaM € Aux has anWEHNF if there existsHyy such thatM —yxy Huwx.

Remark 5.5 In the context of reduction (normal and weak), when starfrogh pure terms, the substi-
tution operation can be left inside terms in normal form, s i

(Ax.yM)NL —yy yM(x:=N) L.

However, since, by Barendregt's conventiorgoes not appear free ih, the latter term is operationally
equivalent toyML (x:=N); in fact, these two are equivalent undery, (see Def[5.10), and also
congruent when interpreted as processes. Since in weaktiedithe reductionAx.M) (y:=N) for
Ax.(M(y:=N) ) is not allowed, also this substitution can be consideredap at the outside. Therefore,
without loss of generality, for readability and ease of d&bn we will use a notation for terms that
places all explicit substitutions on the outsiflo actual terms can have substitutions inside, but they
are written as if they appear outside. To ease notation, viersg Sfor a set of substitutions of the shape
(x:=N) or («:=N-7v) when the exact contents of the substitutions is not relewveatwrite x € Sif
(x:=N) € Sand similarly forx € S.

3This is exactly the approach of Krivine’s machine, wherdieisubstitutions are calledosuresthat form an environment
in which a term is evaluated.



42 A fully-abstract semantics ofyu in the-calculus

We can show that the interpretation of a term withewtNF is weakly bisimilar too.
Lemma 5.6 If M has noweEHNF (so M also has novHNF), thenTMa ~ 0.

Proof: If M has noweHNF, thenM has no leading abstractions and all terms generated bytreduc
have a weak explicit head redex. M = ua.[B]N, then[Mja & TN | B[a/a] ~ 0, so also'N | ~ 0;
therefore we can assum itself does not start with a context switch.

We reason by coinduction on the explicit weak head reductenuence fronM and analyse the
cases of weak explicit head reduction. For example,

T(Ax.Py) PPy (y:=Q) (a:=R-B) ja 2
(ve) (vxb) (TP b | €1 (x,b)) | ey :=Prrcil | Ty:=0) | Tar=R-By )
wherec,, 1 =a. Since a synchronisation overis possible, the process is not in normal form. Observe

that all outputs are over bound names or under guard, and giecesult of the reduction has no head
variable, no input is exposed. $&1ja ~ 0. U

We can show the following property.

Lemma5.7 Let M and N be pureAu-terms; thenM —>{,‘JH N if and only if there exist®\/, Ssuch that
M =M. N'S andN’' S—T N.

We will now define equivalencesg, and ~y between terms ofy, and ~y, between terms
of Aux (the last two are defined coinductively as bisimulationsat are based on weak reduction, and
show that the last two equate the same pyreterms. These notions all consider terms withaNF
equivalent. This is also the case for the approximation séicgawe present in the next section.

First we define a weak equivalence generated by the reduetiation —z,,.

Definition 5.8 We definev, as the smallest congruence that contains:
M, N have NnOWHNF = M ~yg, N
(Ax.M)N  ~yp; M[N/x]
(a.C)N  ~wgu py-.C[N-v/a] (y fresh)
pec [Blpy-[6]M -~y pe([]M[B/7])
po [ ] M ~pg M (a & M)
Since reduction is confluent, the following is immediate.

Proposition 5.9 If M ~, N andM —>§Vﬁy Hw, then there existsly, such thatHy ~yg, Hy and N —>§Vﬁy
Hy.

The other two equivalences we consider are generateddak head reductioandweak explicit
head reductionWe will show in Theorerh 5.13 that these coincide for purésstution-free terms.

Definition 5.10 (Weak head equivalence)The relation ~,,, is defined co-inductively as the largest
symmetric relation such thatM ~,, N if and only if eitherM and N have both nowHNF, or both
M —0 M and N —0f, N, and either:

o if M'=xMy---M, (n>0),thenN’ = xNj---N,, and M; ~wy N; forall 1<i<wn;or
o if M' = Ax.M", thenN' = Ax.N" and M" ~y N"; or

o if M' = pa.[B]M", thenN’ = pa.[B|N" (soa # B ora € fn(M"), M" # uvy.[6]R, and similarly
for N"), and M" ~y N”'.
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Notice thatAz.AA ~yy Az.QQ) becauseAA ~y,, Q) since neither has\&@HNF.
We will now define a notion of weak explicit head equivalenit&t, in approach, corresponds the
weak head equivalence but for the fact that now explicit uit®ns are part of terms.

Definition 5.11 (Weak explicit head-equivalence)The relation~yy, is defined co-inductively as the
largest symmetric relation such thatl ~.x, N if and only if eitherM and N have both no— .-
normal form, or bothM —f ., M’ Sand N —f,, N’ S/, and either:

o if M =xM;---M, (n>0),thenN' =xN;---N, (sox ¢ S, x € S') and M; S~y N; S for all
1<i<n;or
o if M/ = Ax.M", thenN' = Ax.N" and M"” S~y N S'; or

o if M' = pa.[B|M", thenN’ = pa.[B]N" (soa # B or & € fTn(M"), M" # u~v.[6]R, soB & S,
B ¢ S, and similarly forN”) and M" S ~yxy N” S'.

Notice thatua.[B]AA ~uxn AA.
The following results formulate the strong relation betwee,,; and ~.x,, and therefore between
—wh and— . We first show that pure terms that are equivalent uadgy, are also so undet,.

Lemma 5.12 Let M and N be pureAu-terms; thenM ~,, N if and only if there areM’, N’ such that
M ="M MandN' =Y N, and M’ ~yxn N'.
Proof: only if: By co-induction on the definition efy,,. If M ~uy N, then either:

o M —0 xM;---M, and N —{ xN;---N,, and M; ~uy Nj, for all 1<i<n. Then, by
LemES_T'V, there aré/I! such that

M —>“f xM---M, S =% xMp---M,
N —Mw xN/---N, S —%L xNp---N,

ButthenM! S—Y M, andN! S’ =2 N, for all 1 <i < n; then by inductionM! S~y N/ S’
for all 1<i<n. ButthenM ~yxy N.

The other cases are similar.

if : By co-induction on the definition efy.. If there areM’, N’ such thatM’ — M and N’ —% N,
and M’ ~yy N/, then either:

o M I w XMj---M;, S, N/ —nf w XNj---N;, S and M!S~y N/ S'. Let, for all1<z<n
M’S—>”fM andN’S—>”fN then bymductlonm Notlce that we hava/’ —1h .,
xM’ M, S—>”f le ‘M,. LetM’ = M" S", soM" S" =1 wxMj---M;, §'S", Where
S= S’ S". LetM" S" —" M, then by LenEil? we also haMé—>WXH xM -M"S —>WH

xMj---M,. Then, again by Leni. 8.7\ —0 xM;---M,; likewise, we haveN —{i
xNi---N,. But thenM ~,; N.

The other cases are similar. O
Notice that this lemma in fact shows:

Theorem 5.13 Let M, N € Ay, thenM ~yyy N <= M ~yyy N.
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6 Full abstraction for the logical interpretation

In this section we will show our main result, that the logieakoding is fully abstract with respect to
weak equivalence between purg-terms. To achieve this, we show in THmM.]6.9 thif)a ~ TN a iff
M ~wn N. We are thus left with the obligation to show thielt ~yxy N iff M ~yg, N. In Thm.[5.18
we have shown thad ~yxy N iff M ~wy N, for pure terms; to achievl ~w, N iff M ~yg, N,
we go through a notion olveak approximationbased on Wadsworth’s approach [26], we defing,
that expresses that terms have the same weak approximahshaw thatM ~yy, N iff M ~y,, N iff
M ~yp, N.

We can show that if the interpretation &f produces an output, thevl reduces by head reduction to
an abstraction; similarly, if the interpretation &f produces an input, theMl reduces by head reduction
to a term with a head variable.

Lemma6.1 1. IfTMjalla, then there exist, N and Ssuch thattMa ~ TAx.N S| a, and M o
Ax.NS
2. IfTMyalle, witha # c, then there exist, ¢, x, N and Ssuch that™M | a ~ ua.[c]Ax.N Sja, and
M —0 ua.[c]Ax.N S.
3. If IMja| x, then there existj, x, N;,c and Swith x ¢ z;, m > 0, andn > 0 such that
o TMja~TAzy---z4.xNy-- Ny §c;
o M —M Azy- -2.xN;---N, Sif a = c;
o M0, pe.[c]Azy -+ zy. XNy - - -Ny[a/a] S, if a # c.
Proof: Straightforward. U
As to the reverse, we can show:

Lemma6.2 1. If M =0, Ax. NS thenfMa|a.
2. 1f M =9k pa.[B]Ax.N S, thenTMa |} B.
3. TMjal x if M —0hy xNi---N, Sor M —fh pa.[]xN;---N,, S,

Proof: Straightforward. U

Essentially following[[26], we now definewaeak approximation semantiésr Ay. Approximation
for Au has been studied by others as well [25, 12]; however, se¢mvthare mainly interested wweak
reduction here, we will definereakapproximants, which are normally not considered.

Definition 6.3 (Weak approximation for Ap) 1. The set of\p’'s weak approximantsdy, is defined
through the grammar:

Ay = L|AxAy|xAL---AL  (n>0)
| pa[BlAw (a # porac Aw, Aw # 1y.[0] A, Aw # L)

2. TherelationC C Ay, x Au is the smallest preorder that is the compatible extensiah &f M.

3. Ay(M) 2 {Aw€ Aw|3IN€Au[M —>;§VN&AW C N]}.

4. Weak approximation equivalencedefined through: M ~4, N 2 Ay(M) = Aw(N).
Notice that, in paiti3, the approximants are weak, not theatsoh.

The relationship between the approximation relation addeton is characterised by:
Lemma6.4 1. IfA,C MandM —>§y N, thenA, C N.
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2. If Aw € Aw(N) andM — 5, N, then alsoAy, € Aw(M).
3. IfAy € Aw(M) and M — gy N, then there exists such thatN —>;y LandA, C L.
4. M is awHNF if and only if there existg\,, # | such thatA,, C M.

As is standard in other settings, interpretingig-term M through its set of weak approximants
Aw(M) gives a semantics.

Theorem 6.5 (Weak approximation semantics)if M =pu N, thenM ~y4,, N.
Proof: Using Prop[ 1.8 and Lerh. 6.4. O

The reverse implication of this result does not hold, simeens withoutwHNF (which have only L
as approximant) are not all related by reduction. But we taavghe following full abstraction result:

Theorem 6.6 (Full abstraction of~yg, versus~y,,) M ~yg, N if and only if M ~4,, N.

Proof: if: By co-induction on the definition of the set of weak approxintsa
only if: As the proof of Theorem 6.5, but using Proposifiod 5.9 rathen[1.3. O

We can also show that weak head equivalence and weak ap@tiinequivalence coincide:
Theorem 6.7 M ~yy N if and only if M ~4,, N.

Proof. Straightforward, by coinduction. U

We can definé M| 4, = U{Aw | Aw € Aw(M) }, with LI the least-upper bound with respectio
then'.j 4, corresponds to the\f; variant of) Lévy-Longo trees. Combined with the resultevsh in
the previous section, we now also have the following re$it states that all equivalences coincide:

Corollary 6.8 LetM,N € Ay, thenM ~yuy N <= M ~yy N <= M~y N <= M ~yp, N.

We now come to the main result of this paper, where we showl alistraction result for our logical
interpretation. First we show the relation between wealigkpead equivalence and weak bisimilarity.

Theorem 6.9 (Full abstraction of~ versus~yy,) ForanyM,N € Aux: [Mja ~ TN a if and only if
M ~WXH N

Proof: if: By co-induction on the definition of . Let M ~uxu N, then eithetM and N have both
no —ux-Normal form, so, by Leni. 5.6, their interpretations arenbweakly bisimilar to the process
or bothM —ik M’ SandN —0k, N’ S' (let S= (y:=P) (a:=Q-B), andS' = (y:=P') (x:=Q"-B)),
and either:
M' =xM;---M, (n>0), N=xN;j---N, andM; S~yxy N; S, forall 1<i<n:
We have’M ja ~ TxM;---M, Sja andTN ja ~ [xN;---N,, S’ a by Corollary{5.8. Notice that
IxMi---M,Sja = (veya) (x(u).lu-cy |Te;:=M;ci1] | 1S])
wherec,, = a and

1§ = Iy=P) |la=Qp)
fe;:=Mj-cir1] = !ci(v,d).(!ﬁ(w).ﬂMiﬂw| !d»Cl‘+1)
lag:=Qx-Prl = !ak(v,d).(!ﬁ(w).ﬂQkﬂw ’ !d»ﬁk)

and similar forfxNj - --N,, S'ja. By induction,
(vyR) (IM;jw |TS)) 2 M;Sjw =~ [N;Sjw 2 (vya)(TNjw|lS))
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Since~ is a congruence, also
tei(0,d).("o(w).TMjw | 'd-ci1) | 1S =~ lci(vd).(19(w).TN;yw | 'd-ciyq1) | TSy
forall 1<i<mn, soalsdxM;---M, Sja ~[xN;---N,, S'|a but then alsd M|a ~ TN a.
M' =Ax.M" or M' = pyy.[6]M" : Similar.

only if: We distinguish the following cases.

1. TMja can never input nor output; thdMja ~ 0 =~ [N ja. AssumeM has a weak head-normal
form, then by Lem_6]2IM  a is not weakly bisimilar t@; therefore M andN both have no weak
head-normal form.

2. [Myallc, then by Lem611[Ma ~ (vxb) (TM'|b|c{x,b) |TS]), andM —yxy Ax.M'S. Since
TMja~[Nja, alsolNjal¢, solNja~ (vxb) (IN'jb|c(x,b) | 1S)) and N —uxu Ax.N'S.
Then alsdM'|b| TS ~ N’ b | S, so[M’'Sja ~ [N’'S'|a and by inductionM’ S~yxy N’ S';
S0 alsoM ~yxy N by definition.

3. IffMya e, buttMjal x, thenby LemL 61[Ma ~xM---M, Sja’ andM —jy xM;---M, S.
We have

IxMy---M,Sja’ = (vey) (x(u).!u-cy | Tc;:=Mi-cii1y |TS))
with ['S), Te;:=M;-ciy14, Ty;:= Pjil, andlla:= Qi Bx) are defined as above.
SinceMja ~ TN a, again by Lem[6]1{Nja ~ [xN;---N, S'ja” andN —yxy xNy---N,, S'.
Notice that

IxNi---N, Sja" = (veyd) (x(u).!u-cy | Te;:=Niciiq) | 1S'))
with Sy, le;:=Nj-ciy1], ﬂyj::P]-’j , andlla:=Q;-Bry similar to above. Then we have

Ule' M, S a =~ UXNl' Ny S’ﬂ a”,

soa’ =a" andIM! S| w ~ [[N! §'jw; then by inductionM! S~y N/ S, andM ~yy N. O

We now obtain our main result:

Theorem 6.10 (Full abstraction) Let M, N € Ay, then[Mja ~ [N ja if and only if M ~y, N.

Conclusions and future work

We have studied the output based, logic-inspired intesijoet of untyped\u with explicit substitution
into the rt-calculus and shown that this interpretation is fully adbstwith respect to weak equivalence
between terms and weak bisimilarity between processes.

We have defined the weak equivaleneegs,, ~w, ~wxn, and~y,, on Ay terms, and shown that
these all coincide. We then proved tdt~uxy N <= TMja =~ TN a, which, combined with our other
results, essentially shows tHat - respects equality between Lévy-Longo treesXpr

We will investigate the relation between our interpretatéod thecpstranslation of Lafont, Reus,
and Streicher [18].
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