
Paulo Oliva (Ed.): Classical Logic and Computation 2014
EPTCS 164, 2014, pp. 33–47, doi:10.4204/EPTCS.164.3

c© van Bakel and Vigliotti
This work is licensed under the
Creative Commons Attribution License.

A fully-abstract semantics ofλµ in the π-calculus

Steffen van Bakel
Department of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2BZ, UK

s.vanbakel@imperial.ac.uk

Maria Grazia Vigliotti
Adelard LLP Exmouth House,

3-11 Pine Street London EC1R 0JH, UK

mgv@adelard.com

We study theλµ-calculus, extended with explicit substitution, and definea compositional output-
based interpretation into a variant of theπ-calculus with pairing that preserves single-step explicit
head reduction with respect to weak bisimilarity. We define four notions of weak equivalence for
λµ – one based on weak reduction∼wβµ, two modelling weak head-reduction and weak explicit
head reduction,∼wH and∼wxH respectively (all considering terms without weak head-normal form
equivalent as well), and one based on weak approximation∼A – and show they all coincide. We
will then show full abstraction results for our interpretation for the weak equivalences with respect
to weak bisimilarity on processes.

Introduction

The research presented in this paper is part of an ongoing investigation into the suitability of classical
logic in the context of programming languages with control.Rather than looking at how to encode
known control features into calculi like theλ-calculus [9, 7], Parigot’sλµ-calculus [21], orΛµ [13], as
has been done in great detail by others, we focus on trying to understand what is exactly the notion of
computation that is embedded in calculi likeλµ; we approach that problem here by presenting a fully
abstract interpretation for that calculus into the (perhaps better understood)π-calculus [20].

In the past, many researchers investigated interpretations into theπ-calculus of various calculi that
have their foundation in classical logic. From these papersit might seem that the interpretation of such
‘classical’ calculi comes at a great expense; for example, to encodetypedλµ, [15] defines an extension
of Milner’s encoding and considers a strongly typedπ-calculus; [3] shows preservation of reduction in
X [4] only with respect to⊑c, the contextual ordering (so not with respect to∼C, contextual equivalence,
nor with respect to weak bisimilarity); [10] defines a non-compositional interpretation ofλµµ̃ [11] that
strongly depends on recursion, and does not regard the logical aspect.

In [6] we started our investigations by presenting an interpretation for de Groote’s variantΛµ into
theπ-calculus [20] and proved a soundness result; here we show that this interpretation is fully abstract,
but have to limit the interpretation toλµ terms. We study an output-based encoding ofλµ into the
π-calculus that is an extension of the one we defined for theλ-calculus [5] and is a natural variant of
that for Λµ in [6]. In those papers, we have shown that our encoding respects single-step explicit head
reduction(which only ever replaces the head variable of a term) modulo∼C.

We will here address the natural question that arises next: are two terms that are equal under the in-
terpretation also operational equivalent,i.e.: is the interpretationfully abstract? We answer that question
positively, using a new approach to showing full abstraction, for our interpretation ofλµ-terms (rather
thanΛµ as used in [6]) and thereby also for the standardλ-calculus. Following the approach of [6] we
can show that our interpretation respects single-step explicit head reduction→xH moduloweak bisim-
ularity ≈ (rather than∼C as used in [6]; we omit the details here). We extend this result to ∼wxH, the
equivalence relation generated by→xH that equates also terms without (weak) normal form with respect

http://dx.doi.org/10.4204/EPTCS.164.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

34 A fully-abstract semantics ofλµ in theπ-calculus

to→xH. The main proof of the full abstraction result is then achieved through showing that∼wxH equates
to ∼wβµ, the equivalence relation generated by standard reductionthat also equates terms without weak
head normal form.

This technique is considerably different from the one used by Sangiorgi, who has shown a full ab-
straction result [23, 24] for Milner’s encodingM M a of the lazyλ-calculus [20]. To achieve full abstrac-
tion, Sangiorgi proves thatM M a ≈ N M a if and only if M =∼ N, where=∼ is theapplicative bisimularity
on λ-terms [2]. However, this result comes at a price, since applicative bisimulation equates terms that
are not weakly bisimilar under· M ·: in order to achieve full abstraction, Sangiorgi had to extend Milner’s
encoding toΛc, a λ-calculus enriched with constants and by exploiting a more abstract encoding into
theHigher Orderπ-calculus, a variant of theπ-calculus with higher-order communications. Sangiorgi’s
result then essentially states that the interpretations ofclosedΛc-termsM andN are contextually equiv-
alent if and only ifM andN are applicatively bisimilar; in [23] he shows that the interpretation of terms
in Λc in the standardπ-calculus is weakly bisimilar if and only if they have the same Lévy-Longo tree.

We would like to stress that in order to achieve full abstraction for our interpretation,we did not need
to extend the interpreted calculus, and use a first orderπ-calculus. In fact, the main contribution of
this paper and novelty of our proof is thestructure of the proofof the fact that our interpretation gives a
fully abstract semantics. To wit, we define a choice of operational equivalences for theλµ-calculus, both
with and without explicit substitution. We define theweak explicit head equivalence∼wxH and show
that this is exactly the relation that is naturally representable in theπ-calculus; we defineweak head
equivalence∼xH and show that forλµ-terms without explicit substitution,∼wxH corresponds to∼xH.
The relation∼wxH essentially equates terms that have the same Lévy-Longo tree, but of course defined
for λµ, which gets shown through a notion of weak approximation. Wethen show that the relation∼Aw,
which expresses that terms have the same set of weak approximants,∼wxH, and∼wβµ all correspond.

The combined results of [5, 6] and the full abstraction results we present here stress that theπ-
calculus constitutes a very powerful abstract machine indeed: although the notion of structural reduction
in λµ is very different from normalβ-reduction, no special measures had to be taken in order to beable
to express it through our interpretation. In fact, the distributive character of application inλµ, and of
both term and context substitution is dealt with by congruence inπ, and both naming andµ-binding are
dealt with entirely statically by the interpretation.

Organisation of this paper: We start with revisiting theλµ-calculus in Section 1 and define a notion
of head-reduction→H. In Section 2 we revisit theπ-calculus, enriched withpairing. In Section 3 we
defineλµx, a version ofλµ with explicit substitution, as well as a notion ofexplicit head reductionand
in Section 4 define ourlogical interpretationof λµx in to π.

Working towards our full abstraction result, in Section 5 wewill define notions of weak reduction,
in particularweak head reductionand weak explicit head reduction. We then define the two notions
of equivalence these induce, also equating terms without weak head-normal form and show that these
notions coincide on pureλµ terms (i.e. without explicit substitutions). We also define the equivalence
∼wβµ induced by→βµ on pureλµ terms, that also equates terms without weak head-normal form. In
Section 6, we define a notion ofweak approximationfor λµ, and show the semantics this induces,∼Aw, is
fully abstract with respect to both∼wH and∼wβµ. We show that our logical interpretation is fully abstract
with respect to weak bisimilarity≈ on processes and∼wxH, ∼wH, ∼Aw, and∼wβµ on pureλµ-terms.

Notation: We will use a vector notation· as abbreviation for any sequence: for example,xi stands for
x1, . . . , xn, for somen, or for {x1, . . . , xn}, and〈αi := Ni · βi〉 for 〈α1 :=N1·β1〉 · · · 〈αn :=Nn·βn〉 , etc.
When possible, we will drop the indices.

van Bakel and Vigliotti 35

1 The λµ calculus and explicit substitution

In this section, we will briefly discuss Parigot’sλµ-calculus [21]; we assume the reader to be familiar
with theλ-calculus and its notion of reduction→β and equality=β.

λµ is a proof-term syntax for classical logic, expressed in Natural Deduction, defined as an extension
of the Curry type assignment system for theλ-calculus by adding the concept ofnamedterms, and adding
the functionality of acontext switch, allowing arguments to be fed to subterms.

Definition 1.1 (Syntax ofλµ) Theλµ-termswe consider are defined over the set ofvariables(Roman
characters) andnames, or contextvariables (Greek characters), through:

M, N ::= x | λx.M | MN | µα.[β]M

We will occasionally writeC for the pseudo-term[α]M.

As usual,λx.M binds x in M, and µα.C binds α in C, and the notions of free variablesfv(M)
and namesfn(M) are defined accordingly; the notion ofα-conversion extends naturally to bound names
and we assume Barendregt’s convention in that we assume thatfree and bound variables and names are
always distinct, usingα-conversion when necessary. As usual,M[N/x] stands for the substitution of all
occurrences ofx in M by N, andM[N·γ/α], thestructural substitution, for the term obtained fromM
when every (pseudo) sub-term of the form[α]M′ is replaced by[γ]M′N. (We omit the formal definition
here; see Def. 3.1 for the variant withexplicit structural substitution.)

Definition 1.2 (λµ reduction) Reduction onλµ-terms is defined as the contextual closure of the rules:

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.C)N → µγ.(C[N·γ/α])

renaming: µδ.[β](µγ.[α]M) → µδ.[α]M[β/γ]
erasing: µα.[α]M → M (α 6∈ fn(M))

We use→∗
βµ for the pre-congruence based on these rules,=βµ for the congruence, writeM →nf

βµ N if

M →∗
βµ N andN is in normal form,M →βµ

hnf N if M →∗
βµ N andN is in head-normal form,M⇓ if there

exists a finite reduction path starting fromM, andM⇑ if this is not the case; we will use these notations
for other notions of reduction as well.

That this notion of reduction is confluent was shown in [22]; so we have:

Proposition 1.3 If M =βµ N and M →∗
βµ P, then there existsQ such thatP →∗

βµ Q and N →∗
βµ Q.

Definition 1.4 (Head reduction for λµ (cf. [19])) 1. We definehead reduction→H as the restriction
of →βµ by removing the contextual rule:M → N ⇒ LM → LN

2. Theλµ head-normal forms(HNF) are defined through the grammar:

H ::= λx.H
| xM1· · ·Mn (n ≥ 0)
| µα.[β]H (β 6= α or α ∈ H, andH 6= µγ.[δ]H ′)

The following is straightforward:

Proposition 1.5 (→H implementsλµ’s head reduction) If M →∗
βµ N with N in HNF (so M →βµ

hnf N),

then there existsH such thatM →H
nf H (soH is in →H-normal form) andH →∗

βµ N without using→H.

36 A fully-abstract semantics ofλµ in theπ-calculus

2 The synchronousπ-calculus with pairing

The notion ofπ-calculus that we consider in this paper was already considered in [5] and is different
from other systems studied in the literature [14] in that it addspairing and uses alet-construct to deal
with inputs of pairs of names that get distributed, similar to that defined in [1]; in contrast to [3, 5], we
do not consider the asynchronous version of this calculus.

Definition 2.1 (Processes)Channel namesanddataare defined by:

a,b, c,d, x,y,z names p ::= a | 〈a,b〉 data

Processes are defined by:

P ,Q ::= 0 | P |Q | !P | (νa)P | a(x).P | a p .P | let 〈x,y〉=p in P

We see, as usual,ν as a binder, and call the namen boundin (νn)P , x bound ina(x).P and x,y bound
in let 〈x,y〉=p in P ; we write bn(P) for the set of bound names inP ; n is free in P if it occurs inP but
is not bound, and we writefn(P) for the set of free names inP .

Notice that data occurs only in two cases:a p andlet 〈x,y〉=p in P , and that thenp is either a single
name, or a pair of names; we therefore do not allowa(〈x,y〉).P , nor a 〈〈b,c〉,d〉.P , nor 〈b,c〉 p .P , nor
(ν〈a,b〉)P , nor let 〈〈a,b〉,y〉=p in P , etc.

We abbreviatea(x).let 〈y,z〉=x in P by a(y,z).P , (νm) (νn)P by (νmn)P , and writea p for a p .0 .
As in [24], we writea b for theforwarder a(x).b x .

Definition 2.2 (Structural Congruence) Thestructural congruenceis the smallest congruence gener-
ated by the rules:

P | 0 ≡ P

P | Q ≡ Q | P

!P ≡ P | !P

(νn)0 ≡ 0

(P | Q) | R ≡ P | (Q | R)
(νm) (νn)P ≡ (νn) (νm)P

(νn) (P | Q) ≡ P | (νn)Q (n 6∈ fn(P))
let 〈x,y〉= 〈a,b〉 in P ≡ P [a/x,b/y]

As usual, we will consider processes modulo congruence andα-conversion: this implies that we will
not deal explicitly with the processlet 〈x,y〉=〈a,b〉 in P , but rather withP [a/x,b/y]. Because of rule
(P |Q) |R ≡ P | (Q | R), we will not write brackets in a parallel composition of morethan two processes.

Computation in theπ-calculus with pairing is expressed via the exchange ofdata.

Definition 2.3 (Reduction) Thereduction relationover the processes of theπ-calculus is defined by the
following (elementary) rules:

a p .P | a(x).Q →π P | Q [p/x]
P →π P’ ⇒ (νn)P →π (νn)P ′

P →π P ′ ⇒ P | Q →π P ′ | Q

P ≡ Q & Q →π Q ′ & Q ′ ≡ P ′ ⇒ P →π P ′

Notice that the first rule is only allowed ifQ [p/x] is a well-defined process.
There are several notions of equivalence defined for theπ-calculus: the one we consider here, and

will show is related to our encoding, is that of weak-bisimilarity.

Definition 2.4 (Weak-bisimilarity) 1. We writeP ↓n and say thatP outputs onn (or P exhibits
an output barb onn) if P ≡ (νb) (n p .Q | R), wheren 6∈ b, and P ↓n (P inputs onn) if P ≡
(νb) (n(x).Q | R), wheren 6∈ b.

van Bakel and Vigliotti 37

2. We writeP ⇓n (P will output onn) if there existsQ such thatP →∗
π Q andQ ↓n, andP ⇓n (P will

input onn) if there existsQ such thatP →∗
π Q andQ ↓n.

3. Abarbed bisimilarity≈· is the largest symmetric relation such thatP ≈· Q satisfies:

• for every namen: if P ↓n thenQ ⇓n, and ifP ↓n thenQ ⇓n;
• for all P ′, if P →∗

π P ′, then there existsQ ′ such thatQ →∗
π Q ′ andP ′ ≈· Q ′;

4. Weak-bisimilarityis the largest relation≈ defined by:P ≈ Q if and only ifC[P] ≈· C[Q] for any
contextC[·].

3 λµx: λµ with explicit substitution

One of the main achievements of [5] is that it establishes a strong link between reduction in theπ-
calculus and step-by-stepexplicit substitution[8] for the λ-calculus, by formulating a result with respect
to explicit head reduction and the spine interpretation defined there.

In view of this, for the purpose of our interpretation it was natural to study a variant ofΛµ in [6]
with explicit substitution as well; since here we work withλµ, we present hereλµx, as a variant ofΛµx
as presented in that paper. Explicit substitution treats substitution as a first-class operator, both for the
logical and the structural substitution, and describes allthe necessary steps to effectuate both.

Definition 3.1 (λµx) 1. The syntax of theexplicit λµ calculus, λµx, is defined by:

M, N ::= x | λx.M | MN | M 〈x :=N〉 | µα.[β]M | M 〈α :=N·γ〉

We consider the occurrences ofx in M bound inM 〈x :=N〉 , and those ofα in M in M 〈α :=N·γ〉 ;
by Barendregt’s convention,x andα do not appear outsideM.

2. The reduction relation→x on λµx is defined as the contextual closure of the following rules:

(a) Main reduction rules:
(λx.M)N → M 〈x :=N〉

(µα.C)N → µγ.C 〈α :=N·γ〉 (γ fresh)
µβ.[β]M → M (β 6∈ fn(M))
[β]µγ.C → C[β/γ]

(b) Term substitution rules:
x 〈x :=N〉 → N

M 〈x :=N〉 → M (x 6∈ fv(M))
(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
(PQ) 〈x :=N〉 → (P 〈x :=N〉)(Q 〈x :=N〉)

(µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉

(c) Structural rules:
(µδ.C) 〈α :=N·γ〉 → µδ.(C 〈α :=N·γ〉)
([α]M) 〈α :=N·γ〉 → [γ](M 〈α :=N·γ〉)N
([β]M) 〈α :=N·γ〉 → [β](M 〈α :=N·γ〉) (α 6= β)

M 〈α :=N·γ〉 → M (α 6∈ fn(M))
(λx.M) 〈α :=N·γ〉 → λx.M 〈α :=N·γ〉
(PQ) 〈α :=N·γ〉 → (P 〈α :=N·γ〉)(Q 〈α :=N·γ〉)

3. We use→:= for the notion of reduction where only term substitution andstructural rules are used
(so not the main reduction rules).

38 A fully-abstract semantics ofλµ in theπ-calculus

Notice that since reduction inλµx is formulated via term rewriting rules [16], reduction is allowed
to take place also inside the substitution term. The following is straightforward:

Proposition 3.2 (λµx implementsλµ-reduction) 1. M →βµ N ⇒ M →∗
x N.

2. M ∈ λµ & M →x N ⇒ ∃L ∈ λµ [N →∗
:= L].

In the context of head reduction and explicit substitution,we can economise further on how substi-
tution is executed, and perform only those that are essential for the continuation of reduction. We will
therefore limit substitution to allow it toonly replacethe head variable of a term. (This principle is also
found in Krivine’s machine [17].) The results of [5] show that this is exactly the kind of reduction that
theπ-calculus naturally encodes.

Definition 3.3 (Explicit head reduction) Thehead variableof M, hv(M), is defined as expected, adding
hv(M 〈x :=N〉) = hv(M) if hv(M) 6= x, and thehead namehn(M) is defined byhn(µα.[β]H) = β,
hn(M 〈x :=N〉) = hn(M), andhn(M 〈α :=N·γ〉) = hn(M) if hn(M) 6= α.

We defineexplicit head reduction→xH on λµx as→x, but change and add a few rules (we only give
the changes):

1. We replace the term substitution rule for application andadd side-conditions:

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉) (x = hv(λy.M))
(PQ) 〈x :=N〉 → (P 〈x :=N〉 Q) 〈x :=N〉 (x = hv(PQ))

(µα.[β]M) 〈x :=N〉 → µα.[β](M 〈x :=N)〉 (x = hv(µα.[β]M))

2. There are only two structural rules:

(µβ.[α]M) 〈α :=N·γ〉 → µβ.[γ](M 〈α :=N·γ〉)N
M 〈α :=N·γ〉 → M (α 6∈ fn(M))

3. We remove the following contextual rules:

M → N ⇒







LM → LN
L 〈x :=M〉 → L 〈x :=N〉

L 〈α :=M·γ〉 → L 〈α :=N·γ〉

4. We add four substitution rules:

M 〈x :=N〉 〈y := L〉 → M 〈y := L〉 〈x :=N〉 〈y := L〉 (y = hv(M))
M 〈α :=N·β〉 〈y := L〉 → M 〈y := L〉 〈α :=N·β〉 〈y := L〉 (y = hv(M))

M 〈α :=N·γ〉 〈β := L·δ〉 → M 〈β := L·δ〉 〈α :=N·γ〉 〈β := L·δ〉 (β = hn(M))
M 〈x :=N〉 〈β := L·δ〉 → M 〈β := L·δ〉 〈x :=N〉 〈β := L·δ〉 (β = hn(M))

Notice that, for example, in case 1, the clause postpones thesubstitution〈x :=N〉 on Q until such time
that an occurrence of the variablex in Q becomes the head-variable of the full term, and that we no
longer allow reduction inside the substitution or inside the right-hand side of an application.

The following proposition states the relation between explicit head reduction, head reduction, and
explicit reduction.

Proposition 3.4 1. If M →∗
H N, then there existsL ∈ λµx such thatM →∗

xH L and L →∗
:= N.

2. If M →nf
xH N with M ∈ λµ, then there existsL ∈ λµ such thatN →nf

:= L, andM →H
nf L.

3. M →nf
βµ N if and only if there existsL ∈ λµx such thatM →nf

xH L and L →nf
x N.

This result gives that we can show our main results forλµx for reductions that reduce toHNF.

van Bakel and Vigliotti 39

4 A logical interpretation of λµx-terms to π-processes

We will now define our logical,1 output-based interpretationM a of the λµx-calculus into theπ-
calculus (whereM is aλµ-term, anda is the name given to its (anonymous) output), which is essentially
the one presented in [6], but no longer considers[α]M to be a term. The reason for this change is the
following: using the interpretation of [6],

µα.λx.x a = (νs) ((νxb)(x(u).!u b | s〈x,b〉))

is in normal form, and all inputs and outputs are restricted;thereby, it is weakly bisimilar to0 and to
(λx.xx)(λx.xx) a. So using that interpretation, we cannot distinguish between blockedand looping

computations, which clearly affects any full-abstractionresult. When restricting our interpretation toλµ,
this problem disappears: since naming has to followµ-abstraction,µα.λx.x is not a term inλµ. Since
λµ is a subcalculus ofΛµ, this change clearly does not affect the results shown in [6]that all hold for
the interpretation we consider here as well.

The main idea behind the interpretation, as in [5], is to givea name to the anonymous output of terms;
it combines this with the inherent naming mechanism ofλµ. As shown in [6], this encoding naturally
represents explicit head reduction; we will need to consider weak reduction later for the full abstraction
result, but not for soundness, completeness, or termination.

Definition 4.1 (Logical interpretation [6]) The interpretation ofλµx terms into theπ-calculus is de-
fined by:

x a =∆ x(u).!u a (u fresh)
λx.M a =∆ (νxb)(M b | a〈x,b〉) (b fresh)

MN a =∆ (νc) (M c | !c(v,d).(v :=N | !d a)) (c,v,d fresh)
M 〈x :=N〉 a =∆ (νx)(M a | x :=N)

x := N a =∆ ! x(w). N w (w fresh)
µγ.C a =∆ (νs) C s[a/γ] (s fresh)
[β]M a =∆ M β

M 〈β :=N·γ〉 a =∆ (νβ)(M a | β :=N·γ)
α := M·γ a =∆ !α(v,d).(v :=N | !d γ) (v,d fresh)

Notice that µγ.[β]M a =∆ (νs) [β]M s[a/γ] =∆ (νs) M β[a/γ] ≡ M β[a/γ] which im-
plies that we can addµγ.[β]M a =∆ M β[a/γ] to our encoding.

Observe the similarity between

MN a =∆ (νc) (M c | !c(v,d).(v :=N | !d a)) and
M 〈c :=N·γ〉 a =∆ (νc)(M a | c :=N·γ)

=∆ (νc)(M a | !c(v,d).(v :=N | !d γ))

The first communicatesN via the output channelc of M (which might occur more than once insideM c,
so replication is needed), whereas the second communicateswith all the sub-terms that havec as output
name, and changes the output name of the process toγ. In other words, application is just a special case
of explicit structural substitution; this allows us to write (νc) (M c | c := N·a) for MN a. This
stresses that theπ-calculus constitutes a very powerful abstract machine indeed: although the notion
of structural reduction inλµ is very different from normalβ-reduction, no special measures had to be
taken in order to be able to express it; the component of our interpretation that deals with pureλ-terms

1It is calledlogical because it has its foundation in the relation between natural deduction and Gentzen’s sequent calculus.

40 A fully-abstract semantics ofλµ in theπ-calculus

is almost exactly that of [5] (ignoring for the moment that substitution is modelled using a guard, which
affects also the interpretation of variables), but for the use of replication in the case for application.

We can now show a reduction-preservation result for explicit head reduction forλµx, by showing
that · · preserves→xH up to weak bisimularity, stated using∼C in [6].

Theorem 4.2 (Operational Soundness [6]) 1. M →∗
xH N ⇒ M a ≈ N a.

2. If M⇑xH then M a⇑.

The proof in [6] shows thatβ-reduction is implemented inπ by at least one synchronisation.
We can also show that equality with explicit substitution,=x, is preserved under our encoding by

weak bisimulation.

Theorem 4.3 If M =x N, then M a ≈ N a.

Proof: By induction on the definition of=x.

Now the following is an immediate consequence:

Theorem 4.4 (Semantics)If M =βµ N, then M a ≈ N a.

Proof: By induction on the definition of=βµ. The caseM →∗
βµ N follows from the fact that then, by

Proposition 3.2, alsoM →∗
x N, so by Theorem 4.3, we haveM a ≈ N a. The steps to an equivalence

relation follow directly from≈.

Notice that it is clear that we cannot prove the exact reversal of this result, since terms without head-
normal form are all interpreted by0 (see also Lem. 5.6), but are not all related through=βµ. Using weak
equivalence, we can deal with the reverse part, and will do soin the last sections of this paper.

5 Weak equivalences forλµ and λµx

Since∆∆ and ΩΩ (where∆ = λx.xx and Ω = λy.yyy) are closed terms that do not interact with
any context, they are contextually equivalent; any well-defined interpretation of these terms into the
π-calculus, be it input based or output based, will thereforemap those to processes that are weakly
bisimilar to 0 , and therefore to weakly bisimilar processes. Abstraction, on the other hand, enables
interaction with a context, and therefore the interpretation of λz.∆∆ will not be weakly bisimilar to0 .
We therefore cannot hope to model standardβµ-equality in theπ-calculus in a fully-abstract way; rather,
we need to consider a notion of reduction that considersall abstractions meaningful; therefore, the only
kind of reduction onλ-calculi that can naturally be encoded into theπ-calculus isweakreduction.

Definition 5.1 We define the notion→wβµ of weakβµ-reductionas in Def. 1.2, the notion→wH of weak
head reduction2 on λµ as in Def. 1.4, and the notion→wxH of weak explicit head reductionon λµx as
in Def. 3.3, by (also) eliminating the rules:

(λy.M) 〈x :=N〉 → λy.(M 〈x :=N〉)
(λx.M) 〈α :=N·γ〉 → λx.(M 〈α :=N·γ〉)

M → N ⇒ λx.M → λx.N

2This notion is also known aslazy reduction; for the sake of keeping our terminology consistent, we prefer to call it weak
head reduction.

van Bakel and Vigliotti 41

We define the notion of weak head-normal forms, the normal forms with respect to weak head-
reduction:

Definition 5.2 (Weak head-normal forms forλµ) 1. Theλµ weak head-normal forms(WHNF) are
defined through the grammar:

Hw ::= λx.M
| xM1· · ·Mn (n ≥ 0)
| µα.[β]Hw (α 6= β or α ∈ fn(Hw),Hw 6= µγ.[δ]H ′

w)

2. We say thatM has aWHNF if there existsHw such thatM →∗
wH Hw.

The main difference betweenHNFs andWHNFs is in the case of abstraction: where the definition of
HNF only allows for the abstraction over aHNF, for WHNFs any term can be the body. Moreover, notice
that bothλz.∆∆ andλz.ΩΩ are inWHNF.

Since→wxH ⊆ →xH, we can show the equivalent of Lem 1.5 and Thm. 4.2 also forweak explicit
head reduction:

Theorem 5.3 (cf. [6]) 1. If M →∗
wxH N, then M a ≈ N a.

2. If M →∗
βµ N with N in WHNF, then there existsHwx such thatM →nf

wxH Hwx and Hwx →∗
x N

without using→wxH.

We also define weak explicit head-normal forms.

Definition 5.4 (Weak explicit head-normal forms) 1. Theλµx weak explicit head-normal forms
(WEHNF) are defined through:

Hwx ::= λx.M 〈y :=N〉 〈σ :=Q·τ〉

| xM1· · ·Mn 〈y :=N〉 〈σ :=Q·τ〉 (n ≥ 0, x 6∈ y)

| µα.[β]Hwx 〈y :=N〉 〈σ :=Q·τ〉

(β 6∈ σ, α 6= β or α ∈ fn(Hwx), andHwx 6= µγ.[δ]H ′
wx)

2. We say thatM ∈ λµx has anWEHNF if there existsHwx such thatM →∗
wxH Hwx.

Remark 5.5 In the context of reduction (normal and weak), when startingfrom pure terms, the substi-
tution operation can be left inside terms in normal form, as in

(λx.yM)NL →xH yM 〈x :=N〉 L.

However, since, by Barendregt’s convention,x does not appear free inL, the latter term is operationally
equivalent toyML 〈x :=N〉 ; in fact, these two are equivalent under∼wH (see Def. 5.10), and also
congruent when interpreted as processes. Since in weak reduction the reduction(λx.M) 〈y :=N〉 for
λx.(M 〈y :=N〉) is not allowed, also this substitution can be considered to stay at the outside. Therefore,
without loss of generality, for readability and ease of definition we will use a notation for terms that
places all explicit substitutions on the outside.3 So actual terms can have substitutions inside, but they
are written as if they appear outside. To ease notation, we will useS for a set of substitutions of the shape
〈x :=N〉 or 〈α :=N·γ〉 when the exact contents of the substitutions is not relevant; we write x ∈ S if
〈x :=N〉 ∈ S and similarly forα ∈ S.

3This is exactly the approach of Krivine’s machine, where explicit substitutions are calledclosuresthat form an environment
in which a term is evaluated.

42 A fully-abstract semantics ofλµ in theπ-calculus

We can show that the interpretation of a term withoutWHNF is weakly bisimilar to0 .

Lemma 5.6 If M has noWEHNF (so M also has noWHNF), then M a ≈ 0 .

Proof: If M has noWEHNF, thenM has no leading abstractions and all terms generated by reduction
have a weak explicit head redex. IfM = µα.[β]N, then M a =∆ N β[a/α] ≈ 0 , so also N β ≈ 0;
therefore we can assumeM itself does not start with a context switch.

We reason by coinduction on the explicit weak head reductionsequence fromM and analyse the
cases of weak explicit head reduction. For example,

(λx.P1)P2· · ·Pn 〈y :=Q〉 〈α :=R·β〉 a =∆

(νc)((νxb)(P1 b | c1〈x,b〉) | ci−1 :=Pi·ci | y :=Q | α :=R·β)

wherecn−1 = a. Since a synchronisation overc1 is possible, the process is not in normal form. Observe
that all outputs are over bound names or under guard, and since the result of the reduction has no head
variable, no input is exposed. SoM a ≈ 0 .

We can show the following property.

Lemma 5.7 Let M and N be pureλµ-terms; thenM →nf
wH N if and only if there existsN′, S such that

M →nf
wxH N′ S, andN′ S→nf

:= N.

We will now define equivalences∼wβµ and∼wH between terms ofλµ, and∼wxH between terms
of λµx (the last two are defined coinductively as bisimulations), that are based on weak reduction, and
show that the last two equate the same pureλµ-terms. These notions all consider terms withoutWHNF

equivalent. This is also the case for the approximation semantics we present in the next section.
First we define a weak equivalence generated by the reductionrelation→wβµ.

Definition 5.8 We define∼wβµ as the smallest congruence that contains:

M, N have noWHNF ⇒ M ∼wβµ N
(λx.M)N ∼wβµ M[N/x]
(µα.C)N ∼wβµ µγ.C[N·γ/α] (γ fresh)

µα.[β]µγ.[δ]M ∼wβµ µα.([δ]M[β/γ])
µα.[α]M ∼wβµ M (α 6∈ M)

Since reduction is confluent, the following is immediate.

Proposition 5.9 If M ∼wβµ N andM →∗
wβµ Hw, then there existsH ′

w such thatHw ∼wβµ H ′
w andN →∗

wβµ

H ′
w.

The other two equivalences we consider are generated byweak head reductionandweak explicit
head reduction. We will show in Theorem 5.13 that these coincide for pure, substitution-free terms.

Definition 5.10 (Weak head equivalence)The relation∼wH is defined co-inductively as the largest
symmetric relation such that:M ∼wH N if and only if eitherM and N have both noWHNF, or both
M →nf

wH M′ and N →nf
wH N′, and either:

• if M′ = xM1· · ·Mn (n ≥ 0), thenN′ = xN1· · ·Nn and Mi ∼wH Ni for all 1≤ i≤n; or

• if M′ = λx.M′′, thenN′ = λx.N′′ and M′′ ∼wH N′′; or

• if M′ = µα.[β]M′′, thenN′ = µα.[β]N′′ (soα 6= β or α ∈ fn(M′′), M′′ 6= µγ.[δ]R, and similarly
for N′′), andM′′ ∼wH N′′.

van Bakel and Vigliotti 43

Notice thatλz.∆∆ ∼wH λz.ΩΩ because∆∆ ∼wH ΩΩ, since neither has aWHNF.
We will now define a notion of weak explicit head equivalence,that, in approach, corresponds the

weak head equivalence but for the fact that now explicit substitutions are part of terms.

Definition 5.11 (Weak explicit head-equivalence)The relation∼wxH is defined co-inductively as the
largest symmetric relation such that:M ∼wxH N if and only if eitherM and N have both no→wxH-
normal form, or bothM →nf

wxH M′ S and N →nf
wxH N′ S′, and either:

• if M′ = xM1· · ·Mn (n ≥ 0), thenN′ = xN1· · ·Nn (sox 6∈ S, x 6∈ S′) and Mi S∼wxH Ni S′ for all
1≤ i≤n; or

• if M′ = λx.M′′, thenN′ = λx.N′′ and M′′S∼wxH N′′ S′; or

• if M′ = µα.[β]M′′, thenN′ = µα.[β]N′′ (so α 6= β or α ∈ fn(M′′), M′′ 6= µγ.[δ]R, so β 6∈ S,
β 6∈ S′, and similarly forN′′) and M′′S∼wxH N′′ S′.

Notice thatµα.[β]∆∆ ∼wxH ∆∆.
The following results formulate the strong relation between ∼wH and∼wxH, and therefore between

→wH and→wxH. We first show that pure terms that are equivalent under∼wxH are also so under∼wH.

Lemma 5.12 Let M and N be pureλµ-terms; thenM ∼wH N if and only if there areM′, N′ such that
M′ →nf

:= M and N′ →nf
:= N, andM′ ∼wxH N′.

Proof: only if : By co-induction on the definition of∼wH. If M ∼wH N, then either:

• M →nf
wH xM1· · ·Mn and N →nf

wH xN1· · ·Nn and Mi ∼wH Ni, for all 1≤ i≤n. Then, by
Lem. 5.7, there areM′

i such that

M →nf
wxH xM′

1· · ·M
′
n S →∗

:= xM1· · ·Mn

N →nf
wxH xN′

1· · ·N
′
n S′ →∗

:= xN1· · ·Nn

But thenM′
i S→nf

:= Mi andN′
i S′ →nf

:= Ni, for all 1≤ i≤n; then by induction,M′
i S∼wxH N′

i S′

for all 1≤ i≤n. But thenM ∼wxH N.

The other cases are similar.

if : By co-induction on the definition of∼wxH. If there areM′, N′ such thatM′ →nf
:= M and N′ →nf

:= N,
and M′ ∼wxH N′, then either:

• M′ →nf
wxH xM′

1· · ·M
′
n S, N′ →nf

wxH xN′
1· · ·N

′
n S′ and M′

i S∼wxH N′
i S′. Let, for all 1≤ i≤n,

M′
i S→nf

:= Mi andN′
i S→nf

:= Ni then by induction,Mi ∼wH Ni. Notice that we haveM′ →nf
wxH

xM′
1· · ·M

′
n S→nf

:= xM1· · ·Mn. Let M′ = M′′S′′, soM′′ S′′ →nf
wxH xM′

1· · ·M
′
n S′ S′′, where

S= S′ S′′. Let M′′S′′ →nf
:= M, then by Lem. 5.7, we also haveM →nf

wxH xM′′
1 · · ·M

′′
n S′ →nf

wH

xM1· · ·Mn. Then, again by Lem. 5.7,M →nf
wH xM1· · ·Mn; likewise, we haveN →nf

wH

xN1· · ·Nn. But thenM ∼wH N.

The other cases are similar.

Notice that this lemma in fact shows:

Theorem 5.13 Let M, N ∈ λµ, thenM ∼wxH N ⇐⇒ M ∼wH N.

44 A fully-abstract semantics ofλµ in theπ-calculus

6 Full abstraction for the logical interpretation

In this section we will show our main result, that the logicalencoding is fully abstract with respect to
weak equivalence between pureλµ-terms. To achieve this, we show in Thm. 6.9 thatM a ≈ N a iff
M ∼wxH N. We are thus left with the obligation to show thatM ∼wxH N iff M ∼wβµ N. In Thm. 5.13
we have shown thatM ∼wxH N iff M ∼wH N, for pure terms; to achieveM ∼wH N iff M ∼wβµ N,
we go through a notion ofweak approximation; based on Wadsworth’s approach [26], we define∼Aw
that expresses that terms have the same weak approximants and show thatM ∼wH N iff M ∼Aw N iff
M ∼wβµ N.

We can show that if the interpretation ofM produces an output, thenM reduces by head reduction to
an abstraction; similarly, if the interpretation ofM produces an input, thenM reduces by head reduction
to a term with a head variable.

Lemma 6.1 1. If M a⇓ a, then there existx, N andS such that M a ≈ λx.N S a, andM →nf
wxH

λx.N S.

2. If M a⇓ c, with a 6= c, then there existα, c, x, N andS such that M a ≈ µα.[c]λx.N S a, and
M →nf

wxH µα.[c]λx.N S.

3. If M a⇓ x, then there existzj, x, Ni, c andS with x 6∈ zj, m ≥ 0, andn ≥ 0 such that

• M a ≈ λz1· · ·zm.xN1· · ·Nn S c;

• M →nf
wxH λz1· · ·zm.xN1· · ·Nn S if a = c;

• M →nf
wxH µα.[c]λz1· · ·zm.xN1· · ·Nn[a/α]S, if a 6= c.

Proof: Straightforward.

As to the reverse, we can show:

Lemma 6.2 1. If M →nf
wxH λx.N S, then M a⇓ a.

2. If M →nf
wxH µα.[β]λx.N S, then M a⇓ β.

3. M a⇓ x if M →nf
wxH xN1· · ·Nn S or M →nf

wxH µα.[β]xN1 · · ·Nn S.

Proof: Straightforward.

Essentially following [26], we now define aweak approximation semanticsfor λµ. Approximation
for λµ has been studied by others as well [25, 12]; however, seen that we are mainly interested inweak
reduction here, we will defineweakapproximants, which are normally not considered.

Definition 6.3 (Weak approximation for λµ) 1. The set ofλµ’s weak approximantsAw is defined
through the grammar:

Aw ::= ⊥ | λx.Aw | xA1
w· · ·A

n
w (n ≥ 0)

| µα.[β]Aw (α 6= β or α ∈ Aw, Aw 6= µγ.[δ]A ′
w, Aw 6= ⊥)

2. The relation⊑ ⊆ Aw × λµ is the smallest preorder that is the compatible extension of⊥ ⊑ M.

3. Aw(M) =∆ {Aw ∈ Aw | ∃N ∈ λµ [M →∗
βµ N & Aw ⊑ N]}.

4. Weak approximation equivalenceis defined through: M ∼Aw N =∆ Aw(M) =Aw(N).

Notice that, in part 3, the approximants are weak, not the reduction.
The relationship between the approximation relation and reduction is characterised by:

Lemma 6.4 1. If Aw ⊑ M and M →∗
βµ N, thenAw ⊑ N.

van Bakel and Vigliotti 45

2. If Aw ∈ Aw(N) and M →∗
βµ N, then alsoAw ∈ Aw(M).

3. If Aw ∈ Aw(M) and M →βµ N, then there existsL such thatN →∗
βµ L andAw ⊑ L.

4. M is a WHNF if and only if there existsAw 6= ⊥ such thatAw ⊑ M.

As is standard in other settings, interpreting aλµ-term M through its set of weak approximants
Aw(M) gives a semantics.

Theorem 6.5 (Weak approximation semantics)If M =βµ N, thenM ∼Aw N.

Proof: Using Prop. 1.3 and Lem. 6.4.

The reverse implication of this result does not hold, since terms withoutWHNF (which have only⊥
as approximant) are not all related by reduction. But we can show the following full abstraction result:

Theorem 6.6 (Full abstraction of∼wβµ versus∼Aw) M ∼wβµ N if and only if M ∼Aw N.

Proof: if : By co-induction on the definition of the set of weak approximants.

only if : As the proof of Theorem 6.5, but using Proposition 5.9 ratherthan 1.3.

We can also show that weak head equivalence and weak approximation equivalence coincide:

Theorem 6.7 M ∼wH N if and only if M ∼Aw N.

Proof: Straightforward, by coinduction.

We can defineM Aw = ⊔{Aw | Aw ∈ Aw(M)}, with ⊔ the least-upper bound with respect to⊑;
then · Aw corresponds to the (λµ variant of) Lévy-Longo trees. Combined with the results shown in
the previous section, we now also have the following result that states that all equivalences coincide:

Corollary 6.8 Let M, N ∈ λµ, thenM ∼wxH N ⇐⇒ M ∼wH N ⇐⇒ M ∼Aw N ⇐⇒ M ∼wβµ N.

We now come to the main result of this paper, where we show a full abstraction result for our logical
interpretation. First we show the relation between weak explicit head equivalence and weak bisimilarity.

Theorem 6.9 (Full abstraction of≈ versus∼wxH) For any M, N ∈ λµx: M a ≈ N a if and only if
M ∼wxH N.

Proof: if : By co-induction on the definition of∼wxH. Let M ∼wxH N, then eitherM andN have both
no→wxH-normal form, so, by Lem. 5.6, their interpretations are both weakly bisimilar to the process0;
or bothM →nf

wxH M′SandN →nf
wxH N′ S′ (let S= 〈y :=P〉 〈α :=Q·β〉 , andS′ = 〈y :=P′〉 〈α :=Q′·β〉),

and either:

M′ = xM1· · ·Mn (n ≥ 0), N = xN1· · ·Nn and Mi S∼wxH Ni S′, for all 1≤ i≤n :

We have M a ≈ xM1· · ·Mn S a and N a ≈ xN1· · ·Nn S′ a by Corollary 5.3. Notice that

xM1· · ·Mn S a = (νcyα) (x(u).!u c1 | ci :=Mi·ci+1 | S)

wherecn = a and
S = y :=P | α :=Q·β

ci :=Mi·ci+1 = !ci(v,d).(!v(w). Mi w | !d ci+1)
yj :=Pj = !yj(w). Pj w

αk :=Qk·βk = !αk(v,d).(! v(w). Qk w | !d βk)

and similar for xN1· · ·Nn S′ a. By induction,

(νyα) (Mi w | S) =∆ Mi S w ≈ Ni S′ w =∆ (νyα) (Ni w | S′)

46 A fully-abstract semantics ofλµ in theπ-calculus

Since≈ is a congruence, also
!ci(v,d).(!v(w). Mi w | !d ci+1) | S ≈ !ci(v,d).(!v(w). Ni w | !d ci+1) | S′

for all 1≤ i≤n, so also xM1· · ·Mn S a ≈ xN1· · ·Nn S′ a but then alsoM a ≈ N a.

M′ = λx.M′′ or M′ = µγ.[δ]M′′ : Similar.

only if : We distinguish the following cases.

1. M a can never input nor output; thenM a ≈ 0 ≈ N a. AssumeM has a weak head-normal
form, then by Lem. 6.2,M a is not weakly bisimilar to0; therefore,M andN both have no weak
head-normal form.

2. M a⇓ c, then by Lem. 6.1,M a ≈ (νxb) (M′ b | c〈x,b〉 | S), andM →∗
wxH λx.M′ S. Since

M a ≈ N a, also N a⇓ c, so N a ≈ (νxb) (N′ b | c〈x,b〉 | S′) and N →∗
wxH λx.N′ S′.

Then also M′ b | S ≈ N′ b | S′ , so M′ S a ≈ N′ S′ a and by induction,M′ S∼wxH N′ S′;
so alsoM ∼wxH N by definition.

3. If M a 6⇓ c, but M a⇓ x, then by Lem. 6.1,M a ≈ xM1· · ·Mn S a′ andM→∗
wxH xM1· · ·Mn S.

We have
xM1· · ·Mn S a′ = (νcyα) (x(u).!u c1 | ci :=Mi·ci+1 | S)

with S , ci :=Mi·ci+1 , yj :=Pj , and αk :=Qk·βk are defined as above.
Since M a ≈ N a, again by Lem. 6.1,N a ≈ xN1· · ·Nn S′ a′′ and N →∗

wxH xN1· · ·Nn S′.
Notice that

xN1· · ·Nn S′ a′′ = (νcyα) (x(u).!u c1 | ci :=Ni·ci+1 | S′)

with S′ , ci :=Ni·ci+1 , yj :=P′
j , and αk :=Q′

k·βk similar to above. Then we have

xM1· · ·Mn S a′ ≈ xN1· · ·Nn S′ a′′,

soa′ = a′′ and M′
i S w ≈ N′

i S′ w; then by induction,M′
i S∼wxH N′

i S′, andM ∼wxH N.

We now obtain our main result:

Theorem 6.10 (Full abstraction) Let M, N ∈ λµ, then M a ≈ N a if and only if M ∼wβµ N.

Conclusions and future work

We have studied the output based, logic-inspired interpretation of untypedλµ with explicit substitution
into theπ-calculus and shown that this interpretation is fully abstract with respect to weak equivalence
between terms and weak bisimilarity between processes.

We have defined the weak equivalences∼wβµ, ∼wH, ∼wxH, and∼Aw on λµ terms, and shown that
these all coincide. We then proved thatM ∼wxH N ⇐⇒ M a ≈ N a, which, combined with our other
results, essentially shows that· · respects equality between Lévy-Longo trees forλµ.

We will investigate the relation between our interpretation and theCPS-translation of Lafont, Reus,
and Streicher [18].

References

[1] M. Abadi & A. Gordon (1997):A Calculus for Cryptographic Protocols: The Spi Calculus. In: 4th CCS, pp.
36–47, doi:10.1145/266420.266432.

[2] S. Abramsky & C.-H.L. Ong (1993):Full Abstraction in the Lazy Lambda Calculus. Information and Com-
putation105(2), pp. 159–267, doi:10.1006/inco.1998.2740.

http://dx.doi.org/10.1145/266420.266432
http://dx.doi.org/10.1006/inco.1998.2740

van Bakel and Vigliotti 47

[3] S. van Bakel, L. Cardelli & M.G. Vigliotti (2008):FromX to π; Representing the Classical Sequent Calculus
in theπ-calculus. In: CL&C’08, arXiv:1109.4817.

[4] S. van Bakel & P. Lescanne (2008):Computation with Classical Sequents. Mathematical Structures in
Computer Science18, pp. 555–609, doi:10.1017/S0960129508006762.

[5] S. van Bakel & M.G. Vigliotti (2009): A logical interpretation of theλ-calculus into the π-
calculus, preserving spine reduction and types. In CONCUR’09, 5710, Springer, pp. 84 – 98,
doi:10.1007/978-3-642-04081-87.

[6] S. van Bakel & M.G. Vigliotti (2012): An Output-Based Semantics ofλµ with Explicit Substitu-
tion in the π-calculus - Extended Abstract. In IFIP-TCS 2012, LNCS 7604, Springer, pp. 372–387,
doi:10.1007/978-3-642-33475-726.

[7] H. Barendregt (1984):The Lambda Calculus: its Syntax and Semantics, revised edition. North-Holland.

[8] R. Bloo & K.H. Rose (1995):Preservation of Strong Normalisation in Named Lambda Calculi with Explicit
Substitution and Garbage Collection. In: CSN’95, pp. 62–72, doi:10.1.1.51.5026.

[9] A. Church (1936):A Note on the Entscheidungsproblem. JSL1(1), pp. 40–41, doi:10.2307/2269326.

[10] M. Cimini, C. Sacerdoti Coen & D. Sangiorgi (2010):Functions as Processes: Termination and theλµµ̃-
Calculus. In TGC’10, LNCS 6084, Springer, pp. 73–86, doi:10.1007/978-3-642-15640-3 5.

[11] P.-L. Curien & H. Herbelin (2000):The Duality of Computation. In: ICFP’00, ACM Sigplan Notices35.9,
ACM, pp. 233–243, doi:10.1145/351240.351262.

[12] U. de’Liguoro (2014):The Approximation Theorem for theΛµ-Calculus. To appear in MSCS.

[13] Ph. de Groote (1994):On the Relation between theλµ-Calculus and the Syntactic Theory of Sequential
Control. In: LPAR’94, LNCS 822, Springer, pp. 31–43, doi:10.1007/3-540-58216-927.

[14] K. Honda & M. Tokoro (1991):An Object Calculus for Asynchronous Communication. In ECOOP’91, LNCS
512, Springer, pp. 133–147, doi:10.1007/BFb0057019.

[15] K. Honda, N. Yoshida & M. Berger (2004):Control in theπ-Calculus. In: Proceedings of Fourth ACM-
SIGPLAN Continuation Workshop(CW’04).

[16] J.W. Klop (1992): Term Rewriting Systems. In Handbook of Logic in Computer Science, chapter 1, 2,
Clarendon Press, pp. 1–116.

[17] J-L. Krivine (2007):A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation
20(3), pp. 199–207, doi:10.1007/s10990-007-9018-9.

[18] Y. Lafont, B. Reus & Th. Streicher (1993):Continuation Semantics or Expressing Implication by Negation.
Report 9321, Ludwig-Maximilians-Universität, München.

[19] S.B. Lassen (2006):Head Normal Form Bisimulation for Pairs and theλµ-Calculus. In: LICS’06, pp.
297–306. Available athttp://doi.ieeecomputersociety.org/10.1109/LICS.2006.29.

[20] R. Milner (1992):Functions as Processes. Mathematical Structures in Computer Science2(2), pp. 269–310,
doi:10.1017/S0960129500001407.

[21] M. Parigot (1992):An algorithmic interpretation of classical natural deduction. In: LPAR’92, LNCS 624,
Springer, pp. 190–201, doi:10.1007/BFb0013061.

[22] W. Py (1998):Confluence enλµ-calcul. Phd thesis, Université de Savoie.

[23] D. Sangiorgi (1994):The Lazy Lambda Calculus in a Concurrency Scenario. I&C 111(1), pp. 120–153,
doi:10.1006/inco.1994.1042.

[24] D. Sangiorgi & D. Walker (2001):The Pi-Calculus. Cambridge University Press.

[25] A. Saurin (2010):Standardization and B̈ohm Trees forλµ-calculus. In M. Blume, N. Kobayashi & G. Vidal,
editors:FLOPS’10, LNCS 6009, Springer, pp. 134–149, doi:10.1007/978-3-642-12251-4 11.

[26] C.P. Wadsworth (1976):The Relation Between Computational and Denotational Properties for Scott’s
Dinfty-Models of the Lambda-Calculus. SIAM JoC5(3), pp. 488–521, doi:10.1137/0205036.

http://dx.doi.org/10.1017/S0960129508006762
http://dx.doi.org/10.1007/978-3-642-04081-8_7
http://dx.doi.org/10.1007/978-3-642-33475-7_26
http://dx.doi.org/10.1.1.51.5026
http://dx.doi.org/10.2307/2269326
http://dx.doi.org/10.1007/978-3-642-15640-3_5
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1007/3-540-58216-9_27
http://dx.doi.org/10.1007/BFb0057019
http://dx.doi.org/10.1007/s10990-007-9018-9
http://doi.ieeecomputersociety.org/10.1109/LICS.2006.29
http://dx.doi.org/10.1017/S0960129500001407
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1006/inco.1994.1042
http://dx.doi.org/10.1007/978-3-642-12251-4_11
http://dx.doi.org/10.1137/0205036

	1 The semcolour`l`m calculus and explicit substitution
	2 The synchronous -calculus with pairing
	3 semcolour`l`msemcolourx: semcolour`l`m with explicit substitution
	4 A logical interpretation of -terms to -processes
	5 Weak equivalences for semcolour`l`m and semcolour`l`msemcolourx
	6 Full abstraction for the logical interpretation

