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24 Abstract:

25 Phenology of arctic plants is an important determinant of the pattern of carbon uptake and may 

26 be highly sensitive to continued rapid climate change. Eriophorum vaginatum has a 

27 disproportionate influence over ecosystem processes in moist acidic tundra, but it is unclear 

28 whether its growth and phenology will remain competitive in the future. We asked whether 

29 northern tundra ecotypes of E. vaginatum could extend their growing season in response to direct 

30 warming and transplanting into southern ecosystems. At the same time, we asked whether 

31 southern ecotypes could adjust their growth patterns in order to thrive further north, should they 

32 disperse quickly enough. Detailed phenology measurements across three reciprocal transplant 

33 gardens and two years showed that some northern ecotypes were capable of growing for longer 

34 when conditions were favourable, but their biomass and growing season length was still shorter 

35 than the southern ecotype. Southern ecotypes retained large leaf length when transplanted north 

36 and mirrored the growing season length better than the others, mainly due to immediate green-up 

37 after snowmelt. All ecotypes retained the same senescence timing, regardless of environment, 

38 indicating a strong genetic control. E. vaginatum may remain competitive in a warming world if 

39 southern ecotypes can migrate north. 

40

41

42 Key Words: Phenology, Tundra, Eriophorum vaginatum, Ecotype, Climate Change
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43 Introduction

44 The Arctic is warming at twice the global average, resulting in profound changes in not only 

45 temperature but also precipitation and growing season lengths (Mudryk et al. 2019). Biological 

46 processes in the Arctic are closely tuned to environmental cues and as such are showing signals 

47 of change in response to a changing climate (Post et al. 2009). This is important because living 

48 organisms hold critical control over biogeochemical, energy, and hydrological fluxes with huge 

49 potential to further exacerbate climate change (Wookey et al. 2009). Plant communities across 

50 the Arctic have shown particularly striking changes in response to warming as they grow taller 

51 (Bjorkman et al. 2018), increase cover, and undergo shifts in dominance with mosses often in 

52 decline and deciduous shrubs in ascendance (Elmendorf et al. 2012b).  Natural observations of 

53 change are supported by experimental evidence that shows that there are clear winners and losers 

54 in the plant community as the climate continues to change (Elmendorf et al. 2012a). 

55

56 The direct effects of warming on arctic plant community composition and growth have been 

57 well studied through a circumpolar network of open-top chamber (OTC) experiments 

58 (Elmendorf et al. 2012a). These generally show that plant growth increases with warming and 

59 that deciduous shrubs increase in dominance but also that responses are mediated by site 

60 conditions such as local climate and soil moisture (Elmendorf et al. 2012a). Wider observation 

61 networks are detecting ‘greening’ signals with increases in height and cover at the plot level 

62 (Bjorkman et al. 2018) and increases in Normalised Difference Vegetation Index (NDVI) at 

63 satellite levels (Epstein et al. 2012). Observations of the expansion of deciduous shrub cover are 

64 consistent with these trends (Myers-Smith et al. 2011). One of the key findings is that certain 

65 groups in the community such as mosses decrease in cover as the community responds to 

66 warming, while the response of other groups such as sedges is mixed (Elmendorf et al. 2012a). It 

67 is important to understand how all constituents of the plant community will change in the future 
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2

68 because they all contribute significantly to ecosystem processes such as primary productivity, 

69 reflectance, and phenology, among others (Myers-Smith et al. 2019). 

70

71 Climate change in the Arctic is multifaceted and will affect aspects of plant performance in 

72 different ways (Post et al. 2009; Box et al. 2019). For example, summer growing seasons are 

73 extending in the Arctic due to reductions in snow cover duration (SCD) (Box et al. 2019). Model 

74 projections indicate that SCD over much of the Arctic will decline by about 10-30% by the end 

75 of this century as a consequence of delayed onset of snow cover as well as earlier snowmelt 

76 (Brown et al. 2017). The projected decrease in SCD implies that the potential growing season 

77 should lengthen, as found by Park et al. (2016), who used the normalized difference vegetation 

78 index (NDVI) to analyze changes in growing season length in boreal and arctic vegetation. 

79 Broadly speaking, plant phenology in the Arctic has been shown to be sensitive to abiotic 

80 conditions (Assmann et al. 2019; Prevéy et al. 2017). At the beginning of the growing season, 

81 earlier snowmelt should result in earlier green-up, as abundant sunshine and the disappearance of 

82 snow produces good growing conditions. Many studies have documented the importance of 

83 snowmelt timing for controlling the phenology of arctic plants with earlier snowmelt, which 

84 usually results in earlier onset of growth (Høye et al. 2007; Bjorkman et al. 2015; Khorsand Rosa 

85 et al. 2015; Semenchuk et al. 2016; May et al. 2020). Once the growing season is underway, it is 

86 less clear whether higher average temperatures will affect plant phenology in part because of 

87 interactions with snowmelt timing (Oberbauer et al. 2013). Geographical patterns in phenology 

88 further complicate the response of arctic plants to climate change.  Across the Arctic, phenology 

89 of plants from more northern sites exhibited greater sensitivity to warming temperatures than 

90 plants from sites at more southern latitudes (Prevéy et al. 2017). 

91

Page 4 of 34Arctic Science (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

86
.1

58
.1

98
.1

5 
on

 0
5/

21
/2

1
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



3

92 Increasing temperatures in autumn (Box et al. 2019) may offer an opportunity to plant 

93 communities to grow for longer, but it is difficult to forecast the effect of mid- and late-season 

94 growing conditions on phenology in the autumn. If autumn temperatures increase, it is not clear 

95 that arctic plants will respond by extending their growing season (Parker et al. 2017). Many 

96 species start to turn yellow in August when temperatures are still warm (Shaver and Laundre 

97 1997). This may be because, in the Arctic, harsh winter conditions may appear suddenly, which 

98 could result in the loss of valuable resources through frost damage to live aboveground biomass 

99 that hasn’t fully senesced. Some functional groups, notably some graminoids, may be able to 

100 delay senescence in response to warming conditions, while other functional groups may have 

101 fixed leaf life spans which are correlated with average growing season lengths (Oberbauer et al. 

102 2013). Manipulation of the timing of green-up by removing snow or adding it with snow fences 

103 has shown that the length of phenological stages such as growth, flowering, or seed setting 

104 remained invariant even though the dates of start-up varied greatly (Khorsand Rosa et al. 2015; 

105 Semenchuk et al. 2016). Semenchuk et al. (2016) concluded that a range of herbaceous and shrub 

106 species in their study are periodic, meaning that the duration of phenological periods is 

107 genetically fixed. By extension, therefore, even if the end of season environment is suitable for 

108 continued growth, tundra plants may senesce early if their green-up was early. 

109

110 While many studies have focused on variation at the species and community level of 

111 organization, few studies have looked at intraspecific variation in phenology of tundra plants. 

112 Since most arctic plants have widespread distributions, local adaptations are likely to be 

113 important for many species (Linhart and Grant 1996). Local adaptation is widespread in plant 

114 populations, especially those with many individuals covering a wide geographic range (Leimu 

115 and Fischer 2008; Hereford et al. 2009). Wagner and Simons (2009) reported differences 

116 between arctic and alpine populations in phenology of the annual Koenigia islandica, where the 
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4

117 arctic population flowered earlier than the alpine population. Bjorkman et al. (2017) reported that 

118 southern populations of the arctic plants Oxyria digyna and Papaver radicatum were slower to 

119 leaf out and to initiate senescence than northern (local) populations. Likewise, Parker et al. 

120 (2017) showed that senescence of Eriophorum vaginatum grown in a common garden occurs 

121 later for populations from the southern portions of a latitudinal gradient in the Alaskan Arctic. 

122 Although growth rates were the same, the southern populations were able to accumulate more 

123 biomass because of the longer growing season (Parker et al. 2017). Thus, it is important to base 

124 models of phenology on not only a generalized phenotype but also to consider the variation 

125 within species across their range where local dynamics may vary, although the assemblage 

126 remains the same.

127

128 Many arctic plant species are distributed along the latitudinal gradient from Low to High 

129 Arctic, which provides ample scope for locally adapted populations or ecotypes. Strong 

130 adaptation to local climates may render arctic plants vulnerable to rapid climate change in their 

131 locales if they are not able to respond quickly enough (McGraw et al. 2015). The degree of 

132 phenotypic plasticity of ecotypes of arctic plants may determine their potential to take advantage 

133 of, or survive, warmer conditions. Eriophorum vaginatum is a foundational species of moist 

134 acidic tundra, meaning that it strongly dictates the system’s physical structure as well as its 

135 process rates (Chapin and Shaver 1985). E. vaginatum demonstrates clear ecotypic 

136 differentiation in phenotypes (Shaver et al. 1986; Fetcher and Shaver 1990) and gene expression 

137 (Mohl et al. 2020) across its South-North distribution in Alaska which reflects a wide range in 

138 growing season conditions. McGraw et al. (2015) showed that the optimal environment for 

139 tussock survival and tiller population growth in E. vaginatum had shifted northwards, meaning 

140 that this important species may suffer from ‘adaptational lag’ and not keep pace with current 

141 rates of climate change. To address the lag in the performance of local populations, they may 
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5

142 need to be supplemented by gene flow from the south (McGraw et al. 2015). Performance of the 

143 northern ecotypes of E. vaginatum is less flexible than the southern ecotypes in both net 

144 ecosystem exchange (NEE) (Curasi et al. 2019) and leaf growth (Fetcher and Shaver 1990). But 

145 as previously stated, changes in growing season length offer new opportunities to grow for 

146 longer and remain competitive in their environment. 

147

148 Here we investigate the role of genetic background and environmental conditions as they 

149 affect the phenology of E. vaginatum growing in a reciprocal transplant experiment in northern 

150 Alaska. We use this system to ask:

151 1. Can the phenology of E. vaginatum ecotypes match growing conditions when 

152 transplanted into warmer ecosystems with longer growing seasons?

153 2. Do southern populations retain their growth patterns when transplanted north?

154 3. Do local ecotypes increase growth and growing season length when experimentally 

155 warmed in situ?

156 4. Does E. vaginatum exhibit a fixed periodicity in its phenology, i.e. if it starts growing 

157 early will it senesce early?

158

159

160 Materials and methods.

161 Site description and experimental design.

162 Eriophorum vaginatum L. (Cyperaceae) is a tussock-forming sedge that has a strong 

163 influence on tundra microclimate and carbon cycling potential (Chapin et al. 1979, Curasi et al. 

164 submitted).  It covers large areas of northeastern Siberia (Walker et al. 2005) and is also found in 

165 wetlands and moorlands throughout the circumpolar region (Wein 1973).  In Alaska, full-sized 
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6

166 adult tussocks can consist of 300–600 live tillers (Fetcher and Shaver 1982). Tussocks can live 

167 for well over 100 years (Mark et al. 1985) and can vary widely in size (Shaver et al. 1986).

168

169 Three common gardens of reciprocally transplanted tussocks of E. vaginatum were 

170 established at Sagwon (SG; 69.42°N, 148.72°W, elev. 300 m), Toolik Lake (TL; 68.63°N, 

171 149.36°W, elev. 760 m) and Coldfoot (CF; 67.26°N, 150.17°W, elev. 331 m) along the Dalton 

172 Highway in Alaska, USA. CF is approximately 4 °C warmer than the other sites during the 

173 summer months of June and July and average temperature stays above freezing for 2 more 

174 months during Spring and Autumn, resulting in more thawing degree days (Fig S1, 

175 Supplementary Figure S2). Although SG is further north, it is at a lower elevation than TL, 

176 resulting in similar overall temperature regimes (Fig S1, Supplementary Figure S2). Tussocks of 

177 E. vaginatum dominate all three sites with deciduous (Betula nana L., Salix spp., and Vaccinium 

178 uliginosum L.) and evergreen shrubs (Vaccinium vitis-idaea L, Rhododendron tomentosum 

179 Harmaja), mosses, and lichens growing in between the tussocks. The northern ecotypes of E. 

180 vaginatum are found at Sagwon, which is on the northern edge of moist acidic tundra and may 

181 not have been glaciated during the Pleistocene, and at Toolik Lake, which is in moist acidic 

182 tundra near the Brooks Range and was most recently glaciated in the Late Wisconsinian 

183 (~20,000 yr BP) (Hamilton 2003, Kaufman and Manley 2004, Kaufman et al. 2011, Walker et al. 

184 2005). One of the southern ecotypes is found at Coldfoot, which is in muskeg with encroaching 

185 trees (Picea mariana (Mill.) Britton, Sterns & Poggenb.) that were not present in 1982 when 

186 previous common gardens were established (Shaver et al. 1986). Coldfoot was glaciated during 

187 the Early Wisconsinian (~70,000 - ~40,000 yr BP), but probably not during the Late 

188 Wisconsinian (Kaufman and Manley 2004, Kaufman et al. 2011). The three sites were likely 

189 colonised by E. vaginatum at different times and therefore were differentiating as ecotypes for 
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7

190 different amounts of time, nonetheless they have all had at least 20,000 years to potentially 

191 develop traits that reflect their home environments.   

192

193 In August 2014 mature tussocks were transplanted between the three sites with tussocks 

194 from each home site transplanted into their home site to act as controls according to methods 

195 specified in Bennington et al. (2012) and Schedlbauer et al. (2018). Briefly, a serrated knife was 

196 used to sever the rhizomes from roots and soil at a tussock’s base and remove it from the tundra. 

197 Tussocks were then placed in the vacant positions at the common garden where local tussocks 

198 had been removed. This method has a high success rate because of E. vaginatum’s deciduous 

199 rooting habit; although roots are severed during transplanting, new roots grow in each 

200 subsequent year, restoring full root function (Bennington et al. 2012). Tussocks were planted in 

201 clusters of three, approximately 0.5 m apart from each other. Clusters were paired at SG and TL 

202 where one cluster of each pair was passively warmed using open-top chambers (OTC) 

203 (Schedlbauer et al. 2018). Ten pairs of clusters of the three populations were arranged in an 

204 approximately 25 m x 30 m grid. Open-top chambers were placed on the selected clusters from 

205 11 July until 28 August in 2015,  from 2 June until 28 August  in 2016,  and from 30 May until 

206 26 August in 2017 causing a mean hourly air temperature increase of 1.16°C and 1.04°C at 

207 Sagwon in 2016 and 2017, respectively. At Toolik Lake, the respective temperature increases 

208 were 0.60°C and 1.01°C. At CF, where there was no warming treatment, clusters were arranged 

209 as singletons in a smaller grid (25 m x 15 m). At each site, 10 non-transplanted tussocks were 

210 identified next to the transplant garden in order to assess the effect of transplanting on measured 

211 response variables. 

212 Leaf Measurements

213 Through the growing seasons of 2016 and 2017 (early June - mid-September), leaf growth 

214 and senescence were monitored on transplanted tussocks. Growing season air temperatures at 
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8

215 each transplant garden during the measurement years were representative of typical climatic 

216 conditions of each site (Supplementary Table S1). A tiller from one tussock of each cluster was 

217 tagged and monitored according to Shaver and Laundre (1997) and Parker et al. (2017). A small 

218 zip tie was secured around the base of the tiller, so as to include all leaves with any visible green 

219 portions while excluding any previously senesced leaves from previous growth. The total leaf 

220 length and the length of the green portions were measured to the nearest 5 mm approximately 

221 once a week for each leaf in a tiller, from oldest to youngest.

222 Tiller Phenology Data Processing

223 The senesced portions of leaves were fragile and sometimes broke off; since this occurred 

224 after leaves had reached their full length, the total length was corrected to match the last 

225 measurement of the unbroken leaf. Where lengths of single leaves were missing for a time point 

226 due to human error, they were replaced with the mean of the previous and following time points. 

227 Only leaves that were growing during the season of measurement were measured, thereby 

228 excluding leaves that were grown in the previous year and were senescing as well as leaves that 

229 had been initiated for the next year but were not elongating. A double logistic phenology model 

230 (Busetto et al. 2010) was fit using non-linear least squares regression to green leaf growth pattern 

231 over the growing season on every tiller in each year (See Fig.1 for example fits):

232   Equation 1.𝐺(𝑑) = (𝐺𝑀𝑖𝑛 + (𝐺𝑀𝑎𝑥 ― 𝐺𝑀𝑖𝑛)) (
1

1 +  𝑒 ―𝑚𝑆(𝑑 ― 𝑆) +  
1

1 +  𝑒 ―𝑚𝐴(𝑑 ― 𝐴) ― 1)

233 where G(t) is the green leaf length (cm) at day of the year (d), GMax is the maximum green leaf 

234 length observed, GMin is the minimum green leaf length over the year (here set to 1 cm because 

235 E. vaginatum retains a small amount of green biomass over winter (Shaver & Laundre, 1997)), 

236 mS is the spring growth rate, and mA is the autumn senescence rate at time-points S and A, which 

237 are found halfway on the increase and decrease curves, respectively. 
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238 Phenology metrics specified by Busetto et al. (2010) as significant points on the phenology 

239 curve were extracted from each curve (Fig. 1). S1, S5, A1, and A5 are the time points at which 

240 changes in curvature are at their maximum or minimum (Busetto et al. 2010). S2, S4, A2, and 

241 A4 are dates at which the double logistic curve transitions from linear to non-linear (or vice 

242 versa), and S3 and A3 are the points of maximum increase or decrease of the curve (Busetto et 

243 al. 2010). The tiller growing season (S1A1) was calculated as the number of days between 

244 metrics S1 and A1, which represents the period between the beginning of peak growth rate and 

245 the end of peak biomass (before senescence) and therefore when the majority of primary 

246 productivity takes place. 

247 Poorly fitting models for individual tillers were removed from the dataset if they made 

248 biologically unrealistic estimates of Spring (onset of growth (S1) before April 1st, growth rate 

249 (mS) above 0.4 cm day -1) and peak growing season (S5A1) phenology (metric A1-S5 less than 

250 0). Additionally, if the any phenology model had a particularly poor fit to the extent that it was 

251 an outlier compared to other fit models (RMSE higher than 95 % percentile of all model fits), it 

252 was discarded. After this process, 130 curves from the three gardens could be analyzed in 2016 

253 and 113 in 2017 (20 total removed). The curves were split relatively evenly between populations 

254 (SG, TL, or CF), sites (SG, TL, or CF) and treatments (OTC or control), resulting in even 

255 replication across all combinations (Supplementary Figure S1).

256
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257

258 Figure 1: Example of double logistic model (Equation 1) fit to the growth pattern of a tiller 

259 over a growing season and metrics that can be calculated from this curve (in red, left panel) 

260 and fit to two other example datasets (in black, right panel).

261

262 Environmental data processing

263 Air temperatures for Coldfoot and Sagwon were extracted and calculated from daily average 

264 data from the SNOTEL database (http://www.wcc.nrcs.usda.gov/snow/) and from the Toolik 

265 Field Station Environmental Data Center (EDC) of the University of Alaska, Fairbanks 

266 (Environmental Data Center Team) for the Toolik Lake site. Snowmelt timing was extracted 

267 from the SNOWTEL database for Sagwon and Coldfoot and from the Environmental Data 

268 Center for the Toolik site (Environmental Data Center, University of Alaska, Fairbanks; 

269 https://toolik.alaska.edu/edc/index.php). The end of the growing season was defined as the first 

270 day in autumn that the prior seven-day running average minimum daily air temperature returned 

271 to 1°C; consequently, the potential growing season length was determined as the number of days 

272 between snowmelt and a return to consistently low temperatures, We used a seven-day running 
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273 average temperature because cold-snaps can happen at any time in the season and we chose 1 °C 

274 because the seven-day running average of 0 °C did not occur until long after all plant activity had 

275 ceased (October). Note that this was the authors’ judgement of a ‘potential growing season 

276 length’ for the purpose of this paper, to our knowledge there is no recognised definition in this 

277 system.  Late season temperature was defined as the average air temperature at each site between 

278 1 August and 14 August in any given year. This was deemed a period of time when plants are 

279 green but potentially receptive to phenological cues for senescence.

280 Statistical Analysis

281 Linear mixed effects models (Pinheiro et al. 2017) were used to test whether phenology 

282 variables (onset of growing season (S1), onset of senescence (A1), and growing season length 

283 (S1-A1)) were significantly affected by fixed effects: population source, common garden site, or 

284 sampling year using the ‘nlme’ package in R (R Development Core Team, 2016, Pinheiro et al. 

285 2017). The tussock ID was used as a random intercept term. Models were simplified by 

286 removing interaction terms if they did not have a significant effect in order to get best estimates 

287 of main fixed effects (Crawley 2007). The effect of each factor in the final model was assessed 

288 relative to the null model (intercept only) by ANOVA (Crawley 2007). Linear mixed effects 

289 models (tussock ID as random intercept term) were used to assess the effect of population and 

290 environmental factors: potential growing season length and the effect of snowmelt date and late 

291 season temperature on the onset of growth, and onset of senescence, respectively. The number of 

292 days between the onset of growth and onset of senescence was used to determine actual growing 

293 season length. All analyses were carried out with R v3.3.3 (R Development Core Team, 2016).

294
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295 Results

296 Across all populations, tillers of E. vaginatum initiated growth earlier at Coldfoot than the 

297 other two sites (Table 1, Fig. 2) but there was no significant difference between populations 

298 across all gardens (P = 0.195, Table 1). However, the CF population responded to differences in 

299 site growing conditions more than the other populations, resulting in a significant interaction 

300 between populations and site (Table 1). The CF population started to senesce later than the 

301 northern ecotypes as represented by the TL and SG populations at all of the sites (Fig. 2). But the 

302 onset of growth at Toolik Lake and Sagwon was significantly delayed after snowmelt in 2016, 

303 which had low temperatures in early June (Table 1, Supplementary Figure S1). Thus, early June 

304 temperatures appeared to exert some control on the initiation of growth. 

305

306 Figure 2: Summary of growing season of Coldfoot (yellow) Toolik Lake (green) and 

307 Sagwon (blue) populations across all three common gardens and over two years. Points on 

308 the left signify mean (+/- 1 standard error) onset of growing season (metric S1) and points 

309 on the right signify mean (+/- 1 standard error) onset of senescence (metric A1). The 

310 number of days between these (colored line) signifies the length of the growing season 

311 (metric A1S1). Statistics testing the effect of population, transplant garden (site) and year 

312 are found in Table 1, for model details, see Supplementary Table S5.  
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2

314 Table 1: Test statistics from linear mixed effects models showing the effect of fixed factors 

315 on growth patterns in E. vaginatum. Data are divided into an analysis of transplant only 

316 tussocks (no warming treatment, three common gardens) and an analysis that includes the 

317 effect of warming with open-top chambers (Sagwon and Toolik sites only). For model 

318 details, see Supplementary Table S5.  

Non-warmed transplanted tussocks 

Response variable Fixed effect d.f F P
S1 (Onset of Growth) Population 2, 81 1.7 0.195

Site 2, 81 21.6 < 0.001
Year 1, 57 7.0 0.011
Population x Site 4, 81 4.0 0.005

A1 (Onset of Senescence) Population 2, 85 32.4 < 0.001
Site 2, 85 3.4 0.038
Year 1, 57 40.7 < 0.001

S1A1 (Growing Season) Population 2, 81 12.5 < 0.001
Site 2, 81 13.1 < 0.001
Year 1, 57 42.3 < 0.001
Population x Site 4, 81 3.7 0.008

Maximum Green length Population 2, 87 19.2 < 0.001
Site 2, 87 10.1 < 0.001

 Year 1, 68 33.9 < 0.001

Warmed and non-warmed transplant tussocks

Response variable Fixed effect d.f F P
A1 (Onset of Senescence) Population 2, 112 18.4 < 0.001

Site 1, 112 0.4 0.552
Year 1, 79 58.4 < 0.001
Warming 1, 112 2.4 0.125

S1A1 (Growing Season) Population 2, 112 10.6 < 0.001
Site 1, 112 3.7 0.056
Year 1, 79 38.3 < 0.001
Warming 1, 112 6.0 0.016

Maximum Green length Population 2, 115 13.4 < 0.001
Site 1, 115 10.8 0.001
Year 1, 91 38.3 < 0.001
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3

 Warming 1, 115 1.8 0.184
319

320 The southern ecotype had significantly longer leaves than the northern ecotypes (P < 0.001, 

321 Table 1), although this difference was less pronounced at Toolik Lake than at the other two sites 

322 (Table 1, Supplementary Figure S3). Warming with OTCs had no effect on leaf length (Table 1), 

323 but on average, over the two years, it did result in a significantly (P < 0.05) longer growing 

324 season, defined by the number of days between S1 and A1 (Table 1, Fig. 2). Warming did not 

325 affect spring phenology or autumn phenology in a statistically detectable way, but the combined 

326 effects may have increased the overall season length slightly. 

327 The effect of transplanting was analysed by comparing tussocks that were transplanted into 

328 their ‘home’ site with non-transplanted ‘control’ tussocks. Across all sites transplanting did not 

329 affect onset of growth (metric S1 (Supplementary Figure S4, Supplementary Figure S5, 

330 Supplementary Table S3)) but on average make onset of senescence marginally earlier (metric 

331 A1 (P = 0.066, Supplementary Figure S4, Supplementary Figure S5, Supplementary Table S3)), 

332 although this pattern was not consistent and depended on population. Growing season length was 

333 not affected by transplanting (metric S1A1 (Supplementary Figure S4, Supplementary Figure S5, 

334 Supplementary Table S3)), but transplanting did significantly reduce maximum green length 

335 compared to non-transplanted controls (P = 0.01, Supplementary Figure S4, Supplementary 

336 Figure S5, Supplementary Table S3).

337 There was no significant relationship between the date of growth onset and the date of 

338 senescence onset across populations and no interaction between onset of growth and population 

339 (Fig. 3, Supplementary Table S4). CF populations consistently senesced later than the others, but 

340 this was unrelated to the onset of growth. Over the whole growing season, the actual growing 

341 season of leaves (Metric S1A1) of all populations was positively affected by potential growing 

342 length but the CF tussocks responded particularly strongly. This resulted in a statistically 

343 significant effect of potential growing season, population origin (CF was highest on average), 
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4

344 and an interaction between the two (Fig. 4, Supplementary Table S4). The onset of growth in 

345 spring was positively related to the day of snowmelt across all populations but the CF population 

346 was particularly responsive, with initiation of growth closely tracking the loss of snow at any 

347 given site (Fig. 5, Supplementary Table S4). In autumn, none of the populations in either year 

348 were responsive to differences in late season environmental conditions, in this case, temperature 

349 in the first half of August. Instead, the populations maintained a significant difference in 

350 senescence timing regardless of the garden they were present in with CF senescing particularly 

351 late (Fig. 6, Supplementary Table S4). There were significant differences between years with 

352 most tussocks senescing later in 2017 than 2016. 

353

354
355 Figure 3: The day of onset of growth and the day of onset of senescence of leaves of E. 

356 vaginatum across all gardens populations in 2016 (squares) and 2017 (triangles). A linear 
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357 mixed effects model (Supplementary Table S4) showed no effect of onset of growth on onset 

358 of senescence (P = 0.388) but significant effect of population (P < 0.001). Modelled marginal 

359 effects (with 95 % confidence intervals) of onset of growth and population on the onset of 

360 senescence are displayed, for model details, see Supplementary Table S5.  

361

362

363 Figure 4: Relationship between the potential growing season (snowmelt - return of cold 

364 temperatures) and the actual growing season (S1A1) for three populations in 2016 

365 (squares) and 2017 (triangles). See Supplementary Table S4 for linear mixed effects models 

366 showing a significant effect of population (P < 0.001), a significant positive effect of 

367 potential growing season (P < 0.001) and a significant interaction between the two (P = 

368 0.002). Modelled marginal effects (with 95 % confidence intervals) of potential growing 
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369 season and population on actual growing season are displayed, for model details, see 

370 Supplementary Table S5.  

371

372

373 Figure 5: Relationship between snowmelt timing and onset of growth (S1) for three 

374 populations in 2016 (squares) and 2017 (triangles. See Supplementary Table S4 for linear 

375 mixed effects models showing no significant effect of population (P = 0.188), positive effect 

376 of snowmelt day (P < 0.001) and a significant interaction between the two (P < 0.001). 

377 Modelled marginal effects (with 95 % confidence intervals) of snowmelt day and 

378 population on onset of growth are displayed, for model details, see Supplementary Table 

379 S5.  

380
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381

382 Figure 6: Relationship between late season temperature and onset of senescence (A1) for 

383 three populations in 2016 (squares) and 2017 (triangles). See Supplementary Table S4 for 

384 linear mixed effects models showing a significant effect of population (P < 0.001) but no 

385 effect late season temperature (P = 0.575). Modelled marginal effects (with 95 % confidence 

386 intervals) of late season temperature and population on onset of senescence are displayed, 

387 for model details, see Supplementary Table S5.  

388
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389 Discussion

390 Response of northern ecotypes to warming

391 Climate change is progressing rapidly in arctic ecosystems so it is essential for tundra 

392 plants, which are adapted to cold environments, to respond in kind. For the foundational species 

393 of moist acidic tundra, Eriophorum vaginatum, there is evidence that these long-lived species are 

394 already growing outside of their optimal climates (McGraw et al. 2015). To better understand 

395 how this species will respond to climate change, we measured phenology and growth in 

396 reciprocal transplant experiment combined with warming using OTCs. Firstly, we asked whether 

397 the phenology of the northern ecotypes can match longer growing seasons when transplanted 

398 south. The Sagwon population did grow for longer when transplanted south to Coldfoot, 

399 managing to take advantage of earlier snowmelt, followed by warm temperatures. Although the 

400 length of the growing season of the Toolik population did not change when moved southward, 

401 the initiation of growth following snowmelt was earlier in 2017 compared to its home site. When 

402 experimentally warmed with OTCs, there was a general pattern across all populations to slightly 

403 increase their growing season length, but they did not grow any larger. Taken together, 

404 phenology of the northern ecotypes showed some responsiveness to climate change simulation, 

405 but the effects were mixed and relatively small. This is consistent with the lack of change in tiller 

406 size when northern populations from Sagwon, Toolik Lake, and Prudhoe Bay were moved south 

407 in an earlier experiment (Fetcher and Shaver 1990, Souther et al. 2014). 

408

409 Effects of transplanting on phenology of Eriophorum vaginatum

410 By comparing phenology leaf growth of tussocks transplanted into their ‘home’ site with 

411 non-transplanted tussocks, we show that there is a minimal effect of the physical disturbance on 

412 measured phenology traits (Supplementary Figure S4, Supplementary Figure S5). This is an 

413 effect that often assumed in such experiments (Parker et al. 2017, Curasi et al. 2018, Walker et 
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414 al. 2018) but rarely tested.  One of the advantages of E. vaginatum for reciprocal transplants is its 

415 deciduous root system and lack of mycorrhizal symbiosis, which means that tussocks can be 

416 transplanted without disturbing the belowground environment (Shaver et al 1986, Parker et al. 

417 2017, Schedlbauer et al. 2108). To this feature, we can now add the relative lack of response of 

418 phenology to transplanting. The timing of onset of growth and the length of the growing season 

419 was not different. The timing of senescence was overall marginally earlier, and the maximum 

420 length of leaves was slightly shorter which perhaps reflects a less well established connection 

421 between rhizomes and the soil resulting in less effective nutrient uptake. These data further 

422 underline the usefulness of E. vaginatum as a model species to study ecotypic variation of traits 

423 in mature plants.

424

425 Tussock competitiveness in a warming tundra

426 Eriophorum vaginatum will need to contend with changing temperature regimes as well 

427 as increasing competition from plant functional types that respond well under warming.  The 

428 Arctic is warming rapidly (Mudryk et al. 2019) and there is only limited evidence as to how well 

429 E. vaginatum will fare in these warmer conditions. Parker et al. (2017) were not able to detect a 

430 response to simulated warming but Sullivan and Welker (2005) showed that warming to similar 

431 levels as in our experiments initiated early season growth of E. vaginatum in the tundra. Our 

432 study showed that tussocks across all populations stayed green for 3.76 days longer in response 

433 to direct warming but little else was responsive, therefore it is not clear whether the response of 

434 E. vaginatum to a gradual temperature increase will have tangible ecosystem effects. OTC 

435 experiments have recently shown that tundra plant communities (including moist acidic tundra, 

436 dominated by E. vaginatum) extend their growing season when warmed (May et al. 2020). This 

437 suggests that contemporary plant communities can take advantage of milder growing conditions, 

438 at least in the short term. In the long term, however, the future success of E. vaginatum may 
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439 depend more on the performance of its fellow community members than on its own. Many areas 

440 of tundra are becoming more productive and taller in response to climate change (Bjorkman et al. 

441 2018) and deciduous shrubs are often the plants that increase growth the most as climate warms 

442 (Elmendorf et al. 2012a). If deciduous shrubs overgrow tussocks, which are more limited in their 

443 ability to grow taller, then the foundation species of moist acidic tundra may suffer declines. 

444 However, if tussocks remain green for longer in extended growing seasons (Park et al. 2016), 

445 and extend beyond that of shrubs, they may retain an important place in northern ecosystems. E. 

446 vaginatum remains photosynthetically active as long as it holds green leaves into August (Curasi 

447 et al. 2019), hence tussocks that can delay senescence may continue to accumulate carbon later 

448 into the season, after other species have dropped their leaves. 

449

450 Plasticity and competitiveness of southern ecotypes 

451 If the northern populations of E. vaginatum have only limited potential to respond to 

452 climate warming, can tussock tundra be maintained if southern populations or their genes move 

453 northward? In our study, the Coldfoot ecotype from the warmer site, south of the treeline (CF) 

454 did show plasticity in spring because the timing of green-up varied with the time of snowmelt. At 

455 the same time, senescence of the southern ecotype occurred later than that of the northern 

456 ecotypes across all environments, resulting in an apparent plasticity of growing season length in 

457 the CF ecotype. Parker et al. (2017) showed, using a single common garden in moist acidic 

458 tundra, that the southern ecotype grows later into the season and suggested that this trait is driven 

459 by adaptation to their warmer home site in the south. We show here that the southern ecotype 

460 maintains green leaves on average longer than the northern ecotypes (16 days longer than SG 

461 and 9 days longer than TL), regardless of which common garden they are growing in (700 

462 thawing degree days difference between CF and SG gardens). Green leaves in E. vaginatum 

463 retain active photosynthetic tissue late into August (Curasi et al. 2019), therefore if southern 
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464 ecotypes can migrate north in sync with climate warming they may increase the fitness of a 

465 species which is currently suffering in situ (McGraw et al. 2015). Southern ecotypes grow taller 

466 leaves (Fetcher and Shaver 1990) and maintain green tissue later in the season than northern 

467 ecotypes, therefore they may have a greater capacity for C fixation (Shaver et al. 2007). 

468 Dependent on dispersal by wind and suitable ecosystem disturbance for establishment (McGraw 

469 et al. 2015), northward migration of southern ecotypes could potentially have ecosystem-level 

470 impacts by influencing net ecosystem exchange. This needs to be tested by explicitly considering 

471 tussocks (transplanted and non-transplanted) in ecosystem analyses. Further, studies that measure 

472 ecosystem processes are currently limited by peak season-only measurements (Souther et al. 

473 2014, Walker et al. 2018, Curasi et al. 2019), to integrate ecotypes into ecosystem gas exchange, 

474 the whole growing season needs to be considered.

475 The pattern of greater spring phenological plasticity in the southernmost E. vaginatum 

476 population stands in contrast to results from that of the community-wide large-scale synthesis of 

477 phenology (Prevéy et al. 2017). The results from this synthesis extended over 21 degrees of 

478 latitude and over 10 degrees further north than our most northern site (SG). At very high 

479 latitudes, in the harsh growing conditions of High Arctic desert, the benefit of earlier spring 

480 green-up may outweigh the risk of damage by variation in early season weather (cold-snaps) 

481 (Prevéy et al. 2017), thus more northern sites had higher plasticity. In the present experiment, the 

482 southern ecotypes showed more plasticity in the timing of green-up.  At Coldfoot, there may be 

483 less environmental risk to greening-up as soon as the snow melts, whereas in the tundra there is a 

484 high risk that harsh growing conditions will return post snowmelt (Supplementary Table S2, 

485 Parker et al. 2017). 

486

487 Environmental vs genetic controls on phenology
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488 Because snowmelt in the tundra is getting earlier and causing earlier plant green-up (Park 

489 et al. 2016; Assmann et al. 2019), one of the next questions is how does this affect biological 

490 processes later in the growing season and how does this compare with other important controls 

491 on late season phenology? Our Question 4 arose from the hypothesis that some arctic plant 

492 species are periodic (Semenchuk et al. 2016),  Under this hypothesis, early green-up would result 

493 in early senescence due to genetic control over the length of E. vaginatum’s growing season. We 

494 found no evidence to support this hypothesis. In contrast to other authors (Khorsand Rosa et al. 

495 2015; Semenchuk et al. 2016) we found no relationship between timing of early season and late 

496 season phenology. Instead, we find that timing of senescence is best predicted by the population 

497 origin of the tussock. This is postulated as the result of genetic adaptations to past environmental 

498 conditions, which genotype-environment association studies support as a driver in forming 

499 population structure conditions and patterns of E. vaginatum in north central Alaska (glaciation 

500 (Elizabeth Stunz, pers. comm.). Senescing at the right time is particularly important in the Arctic 

501 where the abrupt start of winter can be harsh and damaging to exposed tissues (McGraw and et 

502 al. 1983). Therefore, it is plausible that genetic control over average timing of the return of cold 

503 temperatures at each of the home sites has a role in shaping the observed phenology patterns in 

504 the three populations studied. 

505 While previous selection pressure clearly has a part to play in shaping contemporary late 

506 season phenology, it is important to consider the plastic response of phenology to environmental 

507 factors. Cold-snaps and frost can cause senescence in multiple species (McGraw et al. 1983) and 

508 a warm late season can delay senescence (May et al. 2017). We observed later senescence at the 

509 northern sites in 2017 compared with 2016 when late season temperatures were significantly 

510 warmer (Fig. 6) but more years of measurements at the same sites would be needed to start to 

511 determine the driving factors behind this variation. Temperatures towards the end of the growing 

512 season are quite variable, but photoperiod or the quality of light could be a more reliable cue for 
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513 triggering senescence. The length of photoperiod was shown to be critical for growth cessation in 

514 Salix pentandra, with northern populations requiring a shorter dark period to stop growth 

515 (Juntilla and Kaurin 1985). This is consistent with the need to cease growing before an early 

516 frost occurs, which is more likely at higher latitudes. Another potentially important but equally 

517 understudied light cue for senescence in arctic plants is the ratio of red:far red light as monitored 

518 by the phytochrome photoreceptors (Buchanan et al. 2015). As discussed by Parker et al. (2017) 

519 research into the sensitivity of tundra plants to light quality should remain a priority for research 

520 in the future. 

521

522 Conclusions

523 In the tundra ecosystem dominated by E. vaginatum, the growing season of the northern 

524 ecotypes had a limited response to longer, more favorable growing conditions when transplanted 

525 south and therefore limited the potential to sequester C during warm shoulder seasons. The 

526 Arctic is warming faster than any other biome on Earth (Park et al. 2018) and warming is 

527 particularly pronounced at the shoulder seasons, resulting in longer growing seasons (Park et al. 

528 2016). Our results support a hypothesis that the southern ecotype of E. vaginatum is better 

529 adapted to take advantage of this warming through having more plasticity in phenological 

530 response, but the northern ecotypes are more constrained, therefore would be unable to take 

531 advantage of a lengthened growing season (Fetcher and Shaver 1990). If the Arctic continues to 

532 become more productive (Epstein et al. 2012) and grow taller (Bjorkman et al. 2019), locally 

533 adapted ecotypes lacking the ability extend growth in height or phenology in the northern part of 

534 their range, as found for E. vaginatum, may need to rely on gene flow from southern populations 

535 to maintain a competitive balance in the ecosystem. At the present rate of climate change, the 

536 northern ecotypes already appear to be poorly adapted if the climate warms to the temperatures 

537 currently encountered by the southern ecotype (McGraw et al. 2015). Given the slow growth and 
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538 longevity of tussock forming plants in the arctic, the chances for establishment of southern 

539 ecotypes in the north seem unlikely, outside of assisted gene flow or migration (Borrell et al. 

540 2020). 

541
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