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1. Introduction
Using an Earth system model (ESM), we focus on two climate-relevant feedbacks, the biological pump and 
the phytoplankton light absorption feedback to study their relative importance for the climate system. In-
creasingly more marine ecosystem processes, particularly related to the food web, are included in models, 
but it is unclear whether a higher degree of complexity has a greater impact on the climate system compared 
to other climate relevant mechanisms that are often ignored, such as phytoplankton light absorption.

State-of-the-art marine ecosystem models include several nutrients and different plankton functional 
types (PFTs) such as diatoms, coccolithophores, picoeukaryotes, and zooplankton (Laufkötter et al., 2015). 
These PFT-models are embedded within ESMs to study biogeochemical cycles (Ilyina et al., 2013; Le Quéré 

Abstract We investigate the relative importance of ecosystem complexity and phytoplankton light 
absorption for climate studies. While the complexity of Earth System models (ESMs) with respect to 
marine biota has increased over the past years, the relative importance of biological processes in driving 
climate-relevant mechanisms such as the biological carbon pump and phytoplankton light absorption is 
still unknown. The climate effects of these mechanisms have been studied separately, but not together. 
To shed light on the role of biologically mediated feedbacks, we performed different model experiments 
with the EcoGENIE ESM. The model experiments have been conducted with and without phytoplankton 
light absorption and with two or 12 plankton functional types. For a robust comparison, all simulations 
are tuned to have the same primary production. Our model experiments show that phytoplankton light 
absorption changes ocean physics and biogeochemistry. Higher sea surface temperature decreases the 
solubility of CO2 which in turn increases the atmospheric CO2 concentration, and finally the atmospheric 
temperature rises by 0.45°C. An increase in ecosystem complexity increases the export production of 
particulate organic carbon but decreases the amount of dissolved organic matter. These changes in 
the marine carbon cycling, however, hardly reduces the atmospheric CO2 concentrations and slightly 
decreases the atmospheric temperature by 0.034°C. Overall we show that phytoplankton light absorption 
has a higher impact on the carbon cycle and on the climate system than a more detailed representation of 
the marine biota.

Plain Language Summary Climate models are used to evaluate how climate will continue 
to change on timescales relevant for human beings. However, they are complex and need to be simplified 
to run them even on supercomputers. Usually physical processes are very well resolved while biological 
processes gain less attention. We focus on biological processes and investigate which of them turn out to 
be particularly important for the climate system so that they should be included in climate models. We 
are aware that phytoplankton changes the optical properties, redistributing the heat in the ocean. We have 
also known for a long time that the marine organisms remove carbon from the system by CO2-uptake and 
downward transport of organically bound carbon by migration or sinking. Yet, the relative importance of 
these two processes are unknown. Our study suggests that phytoplankton light absorption has a higher 
impact on the climate system than increasing ecosystem complexity. Phytoplankton light absorption 
should thus be included by default in models carrying out climate change scenarios.
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et al., 2005) with a focus on the carbon cycle. Indeed marine biota play an essential role in the carbon cycle 
through the biological pump, defined as the uptake of carbon dioxide at the surface of the ocean and the 
sinking of the organic carbon to the abyssal ocean. Over geological time the biological pump has shaped 
ocean chemistry, biogeochemical cycling and ecosystem structure (Meyer et  al.,  2016). Additionally the 
biological pump has contributed to past variations of atmospheric CO2, influencing the glacial/interglacial 
episodes during the ice ages of the Pleistocene period (Turner, 2015). Watson and Liss (1998) used a simple 
model of Sarmiento & Toggweiler, (1984) to determine the importance of the biological pump on atmos-
pheric CO2. Their study suggests that if all marine life were to die, atmospheric CO2 would increase by ca 
450 ppm after a few hundred years.

Marine biota have not only an impact on the climate system through the carbon cycle but also affect, for 
example, the ocean's thermal, optical, and mechanical properties via biogeophysical mechanisms (Hense 
et al., 2013). Among these biogeophysical mechanisms, phytoplankton light absorption is particularly im-
portant. Previous observations between 1972 and 2006 reveal that during spring, when large blooms occur 
in coastal mid-latitude regions, 31%–42% of the light can be absorbed by the phytoplankton (Fleming-Leht-
inen & Laamanen, 2012). The heat distribution in the upper ocean is then altered (Lewis et al., 1990; Sonn-
tag & Hense, 2011), changing the sea surface temperature (SST) (Kahru et al., 1993; Patara et al., 2012), an 
important climate variable to understand interactions between the ocean and the atmosphere. Indeed, the 
SST affects atmospheric temperature, atmospheric humidity content, precipitation, as well as heat transfer 
between the ocean and the atmosphere (Jang et al., 2016; Lim et al., 2016). These changes in atmospheric 
physics and chemistry can even alter the Walker and Hadley circulation (Gnanadesikan & Anderson, 2009; 
Paulsen et  al.,  2018). A recent study (Patara et  al., 2012) shows that phytoplankton light absorption in-
creases the SST, enhancing evaporation, and atmospheric humidity, and therefore the greenhouse effect. 
Changes in SST, in turn impact the oceanic circulation (Manizza et al., 2008). These changes in ocean phys-
ics will cause feedbacks on the climate system. For instance, Manizza et al. (2005) used an Ocean General 
Circulation Model (OGCM) to show that phytoplankton light absorption intensifies the seasonal cycle of 
temperature, mixed layer depth, and ice cover by roughly 10%, leading to an increase in phytoplankton 
biomass and thus to an amplification of the initial physical perturbations. But these feedbacks depend on 
the spatial and seasonal scale (Oschlies, 2004). Finally, previous model studies focusing on phytoplankton 
light absorption report a strengthening (Marzeion et al., 2005; Paulsen et al., 2018) or weakening (Anderson 
et al., 2007; Jochum et al., 2010) of El Niño-Southern Oscillation as well as changes in its oscillation periods 
(Zhang et al., 2009).

None of these model studies have quantified the climate response to biologically-driven feedback mecha-
nisms combined. In particular, the relative importance of ecosystem complexity and the effect on carbon 
export production compared to SST changes induced by phytoplankton light absorption has not been in-
vestigated. Additionally the climate response has been only evaluated for a specific climate. The potential 
of marine biota in altering the climate system, in which atmospheric CO2 is allowed to evolve freely, has 
not been demonstrated. To investigate these aspects we use an ESM of intermediate complexity (EMIC) 
(Claussen et al., 2002), EcoGENIE (Ward et al., 2018). For this purpose, we have modified the model by 
implementing phytoplankton light absorption.

2. Model Description
We used the GENIE model (Lenton et al., 2007), consisting of several modules describing the dynamics of 
the individual Earth system components (Figure 1). GENIE is widely used for past climate and carbon-cycle 
studies (Gutjahr et al., 2017; Ödalen et al., 2018). The new ecosystem component (ECOGEM) and GENIE 
form the recent EcoGENIE model (Ward et al., 2018). We use the simplified atmosphere and carbon-centric 
version (cGENIE) that has been previously applied to analyze interactions between marine biological pro-
ductivity, biogeochemistry, and climate (Gibbs et al., 2016; Meyer et al., 2016; Tagliabue et al., 2016). Eco-
GENIE contains different Earth system components and related processes including ocean circulation and 
marine biogeochemistry, atmospheric circulation, the marine ecosystem component, and sea-ice dynamics. 
We modified the ecosystem (ECOGEM) and ocean component (GOLDSTEIN) to account for phytoplankton 
light absorption.
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10.1029/2020MS002110

2 of 17



Journal of Advances in Modeling Earth Systems

2.1. Modules
2.1.1. Ocean Physics Component

The GOLDSTEIN component describes the ocean physics. It is a 3-D frictional-geostrophic ocean model 
(Edwards & Marsh, 2005; Marsh et al., 2011) based on the reduced physics of the thermocline equations, de-
scribed for a single-basin configuration in Edwards et al. (1998). This model is similar to general circulation 
models, except that it neglects momentum advection and acceleration but incorporates eddy-induced and 
isopycnal mixing. This oceanic component includes a surface mixed layer scheme based on the scheme by 
Kraus and Turner (1967). The parameters for GOLDSTEIN are calibrated against annual mean climatologi-
cal observations of temperature, salinity, surface air temperature, and humidity using the ensemble Kalman 
filter (EnKF) methodology (Annan et al., 2005; Hargreaves et al., 2004).

2.1.2. Sea-Ice Component

The GOLDSTEINSEAICE component describes the sea-ice dynamics. It is a 2-D model and solves the equa-
tions for part of the ocean surface covered by ice (Edwards & Marsh, 2005). A diagnostic equation is solved 
for the ice surface temperature. The sea-ice growth or decay depends on the net heat flux into the ice. The 
sea-ice dynamic consists of advection by surface currents and diffusion. The sea-ice component acts as a 
coupling module between the ocean and the atmosphere.

2.1.3. Atmospheric Component

The Energy and Moisture Balance Model (EMBM) describes the atmospheric dynamics (Edwards & 
Marsh, 2005). EMBM is based on the UVic ESM (Weaver et al., 2001). It is a vertically integrated 2-D at-
mospheric model with air temperature and specific humidity as prognostic variables. Heat and moisture 
are advected by winds and mixing. Precipitation instantaneously removes all moisture corresponding to 
the excess above a relative humidity. Atmosphere, ocean, and sea-ice exchange moisture and heat fluxes.

2.1.4. Ocean Biogeochemistry Component

The BIOGEM module considers marine biogeochemical processes (Ridgwell et al., 2007). This module cal-
culates the transformations and spatial redistribution of biogeochemical quantities, plus the sea-air gas 
exchange of CO2 and O2. In this model, the state variables are the inorganic resources and the dead organic 
matter. The biological pump is parametrized by an implicit biological community: Biological uptake is lim-
ited by light, temperature, and nutrient availability. Any uptake returns instantly to exported particulate 
organic matter (POM) or dissolved organic matter (DOM) in the ocean interior. DOM is converted back to 
nutrients in the upper four oceanic layers (0–590 m) while POM turns into nutrients in the deeper layers 
(590 m-seafloor). Eventually all organic matter is remineralized back to nutrients.

The model includes iron (Fe) and phosphate (PO4) as limiting nutrients which is sufficient to realistically 
describe the distribution pattern of phytoplankton and zooplankton, nitrate (NO3

�) is not considered here.

ASSELOT ET AL.

10.1029/2020MS002110

3 of 17

Figure 1. Schematic representation of EcoGENIE Earth system model modules used for this study. Black arrows represent the links between the different 
components. The addition of ECOGEM to the previous GENIE components forms the EcoGENIE Earth system model.
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2.1.5. Ecosystem Component

The ECOGEM component represents the marine plankton community and associated interactions with-
in the ecosystem (Ward et  al.,  2018). The state variables are not subject to physical transport, there are 
only local sources and sinks. Biological uptake is limited by light, temperature, and nutrient availability 
replacing the BIOGEM formulation and ECOGEM also considers iron-light co-limitation. The ecosystem 
community is composed of different plankton populations, so-called PFTs. They are described by their 
size, their taxonomic position, and thus by a set of specific and size-dependent traits. We consider different 
degrees of ecosystem complexity where the community is divided in two classes of PFTs: phytoplankton 
and zooplankton. The number of phytoplankton or zooplankton is not fixed and can be subdivided into 
different size classes with size-dependent traits. The phytoplankton populations are characterized by nutri-
ent uptake and photosynthesis traits whereas the zooplankton populations by predation traits. Moreover, 
all populations are subject to respiration, mortality, and internal trophic interactions. Plankton mortality 
and grazing are the two sources of organic matter, with a partitioning between non-sinking dissolved and 
sinking POM. According to Ward et al. (2018) the partitioning of organic matter is a size-based sigmoidal 
function following Equation 1:

E EE E
E

�
 �

�1 / [ ]
a b

a
c ESD (1)

where, β is the parameter of partitioning between DOM and POM, ESD is the equivalent spherical diameter 
used to calculate the plankton cell volume, βa is the maximum fraction to DOM as ESD approaches zero, 
βb is the minimum fraction to DOM as ESD approaches infinity and βc is the size at which the partitioning 
is 50:50 between DOM and POM. Please note that for the simulations with different numbers of PFTs, 
the average ESD for the entire population is the same but β will still be different, because of the nonlinear 
equation.

2.1.6. Coupling Between BIOGEM and ECOGEM

The calculation in BIOGEM are performed 48 times per model year while the calculation in ECOGEM takes 
20 time-steps for each BIOGEM time-step (Ward et al., 2018). At the beginning of each ECOGEM time-step 
the concentration of inorganic matter and important properties of the physical environment are imported 
from BIOGEM. The marine biota through photosynthesis transforms the inorganic compounds into living 
biomass. The rate of change in living biomass is used only to update the living biomass concentrations in 
ECOGEM (Ward et al., 2018). At the end of each ECOGEM time-step, the rates of change in inorganic and 
dead organic matter are passed back to BIOGEM and is used to update dissolved inorganic carbon (DIC), 
DOM, PO4, Fe, oxygen, and alkalinity. POM is instantly remineralized at depth using the standard export 
production functions.

2.2. Model Modifications
2.2.1. Grid Resolution

The horizontal grid (36 × 36) is constructed to be uniform in longitude and uniform in sine latitude, giv-
ing ∼3.2° latitudinal increments at the equator increasing to 19.2° in the highest latitude. This horizontal 
mesh has been widely used for very large ensembles (Marsh et al., 2004) and biogeochemical simulations 
(Cameron et al., 2005) with focus on the carbon cycle (Colbourn, 2011). To better resolve the light absorp-
tion effect on ocean physics by biota, we use a higher vertical resolution than previous configurations with 
BIOGEM or EcoGENIE (e.g., Ward et al., 2018). We consider 32 vertical layers that increase logarithmically 
from 29.38 m for the surface layer to 456.56 m for the deepest layer. All physical and biological parameters 
in the model are unchanged from the tuning of Ward et al. (2018) with exceptions of βa in Equation 1 (see 
below for an explanation) and the Atlantic-Pacific moisture (APM) flux correction parameter. We increase 
the APM flux correction parameter from 0.8  to 1.53 Sv in order to simulate a realistic Atlantic meridional 
overturning circulation (AMOC) of 14.2 Sv. This flux correction is required because the atmospheric com-
ponent is too simple to transport moisture across the American continent, and this parameter adjusts the 
salt balance between the different ocean basins. We need to validate the ocean circulation of our newly 
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configured model against observations. We first focus on the AMOC because it is the main driver of the 
worldwide oceanic circulation.

The increase in vertical resolution improves the representation of the AMOC (Figure 2). The AMOC is 
closer to observations (based on World Ocean Circulation Experiment (WOCE), Lumpkin and Speer (2007)) 
and model results of Atmosphere-OGCMs (AOGCMs) with a higher spatial resolution (e.g., Boulton 
et al., 2014). In our new model setup the clockwise overturning cell in the upper ocean is more condensed 
and thus more realistic (Figures 2b and 2c). In addition, the model now reproduces a deeper counterclock-
wise overturning cell which was absent in the coarse resolution setup (Figure 2a). A change in AMOC and 
thus ocean circulation affects also the distribution and magnitude of the biogeochemical quantities. While 
in some regions, such as the subtropical ocean, the model representation is improved, there are other re-
gions, for example, the Arctic Ocean with less agreement between the model and observations. Overall, the 
biogeochemical fields are different between the model runs with a coarse and a finer vertical resolution. 
Note that we are mainly interested in resolving the effects of light absorption and the relative differences 
between our selected experiments (see below); therefore the absolute values are less relevant. The compar-
ison of the biogeochemical quantities between the coarse, the finer vertical resolution and observations are 
presented in the appendix (Supporting information S1).

ASSELOT ET AL.
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Figure 2. Modeled and observed Atlantic meridional overturning circulation (AMOC) stream function (Sv). Positive values represent clockwise overturning 
and negative values represent counter-clockwise overturning. Simulated AMOC for 1P1Z with the model configuration with: (a) 16 oceanic layers and (b) 32 
oceanic layers. (c) Mean AMOC estimated from hydrographic sections from the World Ocean Circulation Experiment (Lumpkin & Speer, 2007). The gray line 
indicates the crest of the Mid-Atlantic Ridge and the white line represents the climatological mixed layer depth (Figure from Buckley and Marshall (2016)).
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2.2.2. Light Absorption in the Ocean

The incoming short-wave radiation is taken from the climate compo-
nent of the model and varies seasonally (Edwards & Marsh, 2005; Marsh 
et al., 2011). The model takes into account the inhibition of light pen-
etration due to the presence of organic and inorganic particles as well 
as dissolved molecules. The vertical light attenuation is described by the 
scheme Equation 2:

 � � � � � ³ �0 0
( ) exp( ( ) )

z

w ChlI z I k z k Chl z dz (2)

where I(z) is the radiation at depth z, I0 is the radiation at the surface of the ocean, kw is the light absorption 
by water (0.04 m−1), kChl is the light absorption by chlorophyll (0.03 m−1(mg Chl)−1) and Chl(z) is the chloro-
phyll concentration at depth z. The values for kw and kChl are adopted from Ward et al. (2018). In our model, 
I0 is always negative because it is a downward flux from the sun to the surface of the ocean. Solar radiation 
decreases exponentially with depth through attenuation; maximum absorption occurs in the upper ocean 
layer and the minimum absorption takes place in the lowest ocean layer. In the standard model (Ward 
et al., 2018), all of this solar energy is absorbed in the surface layer while we allow light to penetrate until 
the sixth oceanic layer (221.84 m deep).

Phytoplankton changes the optical properties of the ocean (Sonntag & Hense, 2011) through phytoplankton 
light absorption. The absorption process can cause a radiative heating and change in ocean temperature. 
We implemented the warming of water by light absorption of phytoplankton into the model following, for 
example, Hense (2007) and Patara et al. (2012) Equation 3:

U
w w

 
w � w

1
p

T I
t c z (3)

∂T/∂t denotes the temperature changes, cp is the specific heat capacity of water, ρ is the ocean density, I is the 
solar radiation incident at the ocean surface, and z is the depth. We assume that the whole light absorption 
leads to heating of the water.

2.3. Model Setup and Experiments

We performed four different model experiments (Table 1) to study the impact of varying ecosystem complex-
ity and phytoplankton light absorption on the climate. We performed a BIOGEM spin-up for 10,000 years 
to allow for a realistic nutrient distribution in the ocean. The spin-up is run with a constant atmospheric 
CO2 concentration of 278 ppm. The experiments restart after this period for 1,000 years with ECOGEM, 
meaning that all experiments consider zooplankton and phytoplankton. Furthermore, in the simulations 
the atmospheric CO2 is not fixed and can evolve freely over time. After 700 years of simulation the model 
reaches a steady-state but we analyze the outputs after model runs of 1,000 years. The model setup we used 
is very similar to the existing model setup used by Ward et al. (2018) to describe ECOGEM, but with five 
differences between the model setups:

First we use a different grid than Ward et al.  (2018). They used the “worlg4″ topography, while we use 
the topography “ra32lv”. In “worlg4″ the Torres strait between Australia and Papua New Guinea is open, 
permitting an oceanic connection between the Pacific and Indian ocean, while in “ra32lv” the Torres strait 
is closed. The main difference between these two configurations, however, is the vertical resolution of the 
oceanic component. Indeed, in this study the ocean has 32 layers with a surface layer of 29.38 m while Ward 
et al. (2018) have 16 oceanic layers with a surface layer of 80.84 m. For a comparison of the biogeochemical 
quantities between both configurations the reader is referred to the appendix (Supporting Information S1).

Second, Ward et al. (2018) used 17 oceanic tracers while we only use 14 oceanic tracers relevant for the 
climate; we remove SO4, H2S, Mg and the atmospheric tracer pH2S.

ASSELOT ET AL.
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Experiment Description

1P1Z Simulation with 1 phyto- and 1 zooplankton species
1P1ZLA Simulation with additional phytoplankton light absorption
6P6Z Simulation with 6 phyto- and 6 zooplankton species
6P6ZLA Simulation with additional phytoplankton light absorption

Table 1 
Name and Description of the Four Simulations Conducted
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Third, we modify the ecosystem community to conduct our simula-
tions. Our ecosystem community is based on the community used by 
Ward et  al.  (2018) to describe the ECOGEM model (Supporting Infor-
mation S2). We run ECOGEM with different complexity of one and six 
phytoplankton and zooplankton species depending on the specific exper-
iment. We additionally account for the phytoplankton light absorption 
for our selected simulations.

Fourth, we modify the vertical light attenuation scheme and apply 
Equation 2 and 3 for all the experiments. With this change, the absorp-
tion of the solar radiation can occur in all the layers of the ocean and 
not only in the uppermost layer as in the standard setup used by Ward 
et  al.  (2018). But for the experiments without phytoplankton light ab-
sorption kChl = 0 m−1 (mg Chl)−1, so the light is attenuated only by kw (see 
Equation 2).

Fifth and last, Ward et al. (2018) allow primary production (PP) only in 
their surface layer, from the surface to 80.84 m deep while we allow PP 
until the sixth oceanic layer, from the surface to 221.84 m deep.

We assume a closed carbon cycle for all the model runs. Thus, there is 
no input of carbon through volcanic fluxes or anthropogenic activities 
and only the relative size of the reservoirs (atmospheric CO2, oceanic 
CO2, particulate organic carbon (POC), DIC…) can vary, not their total. 
We therefore allow that different climates can develop. Depending on the 

strength of the ecosystem response in the respective experiment more or less CO2 might be emitted into 
the atmosphere leading to altered air temperature. Thus, our setup allows changes in the atmospheric CO2 
concentrations and Earth's energy budget.

All experiments are forced with the same constant flux of dissolved iron into the ocean surface (Mahowald 
et al., 2006). The incoming shortwave radiation varies seasonally but no trend is considered. The longwave 
radiation emitted by the surface of the planet is absorbed by the atmosphere and re-emitted upward and 
downward (Weaver et al., 2001). The re-emission depends on the greenhouse gases concentration in the 
atmosphere.

3. Comparable State of the Experiments
In this study, we are interested in the relative importance of the processes regarding phytoplankton light 
absorption and ecosystem complexity. Thus, a common basis is needed to compare our suite of experiments. 
In Earth system modeling this is often achieved by tuning the export production or the nutrients to obtain 
comparable model simulations. But since we are more interested in the climate impact, we make sure that 
the primary production (PP) is comparable.

We are aware that PP is much less constrained by observations than for example nutrients. However, first 
we are more interested in the relative differences between the experiments and not in the absolute values. 
Second, adjusting the nutrients fields (e.g., DIC) would automatically adjust the carbon fluxes and will 
mask any change in carbon dynamics among the experiments.

For a robust comparison of the climate system between the different experiments, we adjusted the param-
eter βa (see Equation 1) in the partitioning function to obtain the same values for PP (Supporting Informa-
tion S1). The parameter βa is used to tune the model because it is not constrained by observation and has 
already been changed between different studies (Ward & Follows, 2016; Ward et al., 2018). PP determines 
the two variables that drive the climate relevant feedback mechanisms we are interested in. First, PP de-
termines the amount of phytoplankton biomass, and this biomass affects phytoplankton light absorption 
and thus the sea surface and air temperature. Second, PP is directly and indirectly the source of all different 
forms of organic biomass of which a part is sinking, leading to carbon export or carbon production and thus 
changes in atmospheric CO2 concentrations and air temperature (Figure 3).

ASSELOT ET AL.

10.1029/2020MS002110

7 of 17

Figure 3. Schematic representation of the different links between 
the climate variables we analyze. The global atmospheric temperature 
is impacted by a biogeophysical mechanism (left, red color) and a 
biogeochemical mechanism (right, green color). Phytoplankton light 
absorption impacts directly sea surface temperature, biogeochemical 
properties and atmospheric CO2 concentration, leading indirectly to 
changes in chlorophyll biomass and global atmospheric temperature. 
Increasing ecosystem complexity affects directly the export production 
of particulate organic carbon and thus the biogeochemical pump. As 
a consequence, atmospheric CO2 concentrations and therefore global 
atmospheric temperature can be altered.
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After tuning the model, the values of our adjusted PP show only mi-
nor differences from an average value of 35.51  ±  0.61  Gt/yr (Table  2). 
The standard deviation is only 0.61 Gt/yr. We consider this value small 
enough to compare the climate systems between the experiments.

Please note that we evaluate the total climate impact encompassing 
changes in the heat budget and in the carbon cycle due to the biogeo-
physical or biogeochemical feedbacks.

4. Biogeochemical Properties
To compare the biogeochemical effects of phytoplankton light absorp-
tion and increasing ecosystem complexity on the climate system, we look 

at changes in biogeochemical properties. We first present the changes in surface phytoplankton biomass 
due to phytoplankton light absorption. Second, we compare the changes in the downward flux of organic 
matter. Third, we look at changes in the atmospheric CO2, that is allowed to evolve freely, and is strongly 
determined by the environmental conditions at the air-sea interface (partial pressure of CO2, sea surface 
temperature, the downward flux of organic matter, and the air-sea flux of CO2).

4.1. Surface Phytoplankton Biomass

We first compare phytoplankton concentration in chlorophyll units of the different simulations (Fig-
ures 4a and 4b) as this variable affects phytoplankton light absorption and thus heat distribution. Despite 
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Experiment PP (Gt/yr)

1P1Z 35.97
1P1ZLA 35.39
6P6Z 34.46
6P6ZLA 36.22

Abbreviation: PP, primary production.

Table 2 
Global Values of Primary Production (Gt/Yr) for the Four Simulations

Figure 4. Chlorophyll biomass (mgChl/m3) for the model runs (a) 1P1ZLA and (b) 1P1Z. (c) Chlorophyll biomass difference between the two simulations; blue 
colors indicate lower while red colors indicate higher chlorophyll concentrations in the model run with light absorption.
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comparable PP, the chlorophyll concentrations of the model runs with 
and without light absorption are different (1P1ZLA and 1P1Z: Figure 4c, 
6P6ZLA and 6P6Z: Supporting Information S1). The general patterns be-
tween the simulations with low and high ecosystem complexity are sim-
ilar except in the equatorial region (Supporting Information S1) where 
chlorophyll is lower; globally chlorophyll concentration differences are 
slightly lower between the simulations 6P6ZLA-6P6Z compared to 1P1Z-
LA-1P1Z. Overall, the chlorophyll concentration is higher of 0.014 mg-
Chl/m3 in the model simulation 1P1ZLA compared to 1P1Z, similar to 
Manizza et  al.  (2005) but there are pronounced regional differences. 
The largest differences occur in the northern and southern polar regions 
where changes in sea-ice lead to a strong response in phytoplankton con-
centration. The presence or absence of sea-ice and thus light availability 

as well as the coarse resolution explain the rather sharp patterns of chlorophyll concentrations. In 1P1ZLA, 
the global averaged sea-ice thickness is reduced by ∼0.02 m and the sea-ice cover is diminished by 4.73% 
due to higher sea surface temperature (Figure 8c. As a consequence, light availability increases, stimulating 
the growth of phytoplankton. Moreover, the upwelling and mid-latitude regions show higher chlorophyll 
concentration in the simulation with phytoplankton light absorption in contrast to subtropical gyres where 
almost no differences occur. These regional patterns of higher chlorophyll concentration are controlled by 
the vertical velocity and the distribution of the nutrients. For instance, the upward vertical velocity in the 
upwelling regions along the western African coast and the south-western American coast are enhanced 
by 0.11 m/yr and by 0.54 m/yr, respectively (Supporting Information S1). These local increases of vertical 
velocity bring more nutrients to the surface and reduce the phosphate limitation in these regions (Support-
ing Information S1). The reduced phosphate limitation in 1P1ZLA permits an increase of phytoplankton 
growth and therefore a higher phytoplankton biomass.

4.2. Downward Flux of Organic Matter
4.2.1. Phytoplankton Light Absorption

To compare the downward flux of organic matter between our different simulations, we apply the approach 
by Toggweiler et al. (2003). In their approach, the two water masses North Atlantic Deep water (NADW) 
and Antarctic Bottom Water (AABW) are used as indicators for the nutrient “turnover” and thus the down-
ward flux of organic matter. In models, this flux has upper and lower limits, constrained by the initial PO4 
concentrations in the deep water that is formed in the North Atlantic and Southern Ocean. The downward 
flux of organic matter can vary between these two limits via changes in deep water formation. The initial 
PO4 concentration of the modeled AABW of 2.09 µmol/kg is slightly lower compared to average observed 
PO4 concentrations in the deep water of 2.28 µmol/kg (World Ocean Atlas 2001, Conkright et al., 2002) and 
we use the AABW as the lower limit. The initial PO4 concentration of the modeled NADW of 1.78 µmol/
kg is even lower and therefore the NADW represents the upper limit. Setting the “remineralization trajec-
tories” for NADW and AABW (black diagonal lines) and plotting the DIC versus PO4 concentrations of all 
grid points in the deep water (2,823 m) for the model runs 1P1ZLA and 1P1Z indicate the differences of 
the downward flux of organic matter at this specific depth. Figure 5a shows that in 1P1ZLA all points are 
significantly closer to the AABW remineralization trajectory, pointing toward a shallower downward flux of 
organic matter. On average, at 2,823 m depth, the PO4 concentration decreases by 0.0318 µmol/kg and the 
DIC concentration decreases by 11.75 µmol/kg in 1P1ZLA compared to the reference simulation.

A closer look at the global DIC concentrations in the water column confirms a more shallower downward 
flux of organic matter in the simulation with phytoplankton light absorption. The concentration of DIC is 
higher in the surface ocean and the DIC gradient between surface and deep ocean ocean is smaller in 1P1Z-
LA compared to 1P1Z (Table 3). While our parameter changes (βa) in Equation 1 calculating the partitioning 
between dissolved and POM do not explain the differences in DIC (see Supporting Information S1), changes 
in the dynamics associated with phytoplankton light absorption are responsible for the higher DIC concen-
tration at the surface. As a result of a positive feedback, the atmospheric and oceanic CO2 concentrations 
increase in 1P1ZLA (see below). Additional effects contribute to the higher DIC concentration in 1P1ZLA. 
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Experiment
Surface DIC 
(mmol/kg)

Benthic DIC 
(mmol/kg)

∆DIC 
(mmol/kg)

1P1Z 1.790 2.297 0.507
1P1ZLA 1.814 2.287 0.474
6P6Z 1.804 2.314 0.510

Note. The third column represents surface-to-deep gradient of DIC.
Abbreviation: DIC, dissolved inorganic carbon.

Table 3 
Concentration of DIC (mmol/kg) at the Surface and Benthic ocean



Journal of Advances in Modeling Earth Systems

The upward vertical velocity, specifically in the upwelling regions is enhanced which reduces the penetra-
tion depth of sinking material and “traps” organic matter closer to the surface. This process strengthen the 
“short” near-surface loop of carbon cycling (“microbial loop”). The deeper carbon cycling is weaker and 
less carbon is stored in the nonliving carbon pools and more in the living organic carbon pools. Not only 
phytoplankton but also zooplankton biomass is higher in the surface ocean; the latter is increased by ∼4%. 
Interestingly, a higher zooplankton biomass does not result in higher (deeper) export production of fecal 
pellets which would lead to higher DIC concentrations in the deep ocean. Instead, zooplankton respiration 
is higher and together with the overall increase in atmospheric CO2 concentrations, this leads to higher 

ASSELOT ET AL.

10.1029/2020MS002110

10 of 17

Figure 5. Dissolved inorganic carbon (DIC) versus PO4 (µmol/kg) composition for all grid cells at the ocean depth level 
26 (2,823 m depth) showing the influence of North Atlantic deep water (NADW) and Antartic bottom water (AABW) 
on the composition of the deep water. The gray horizontal line gives the surface equilibrium of DIC for the simulations. 
The black diagonal lines show the phosphorus trajectories of NADW and AABW and as such, they define the upper 
and lower limits of the downward flux of organic matter. The results shown here are exclusively for the oceanic depth 
level 26 (2,823 m depth) but same results can be shown from depth level 24 to 29. (a) Red points indicate the simulation 
1P1ZLA and blue points indicate the simulation 1P1Z. (b) Red points indicate the simulation 6P6Z and blue points 
indicate the simulation 1P1Z.
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DIC concentrations in the surface ocean. In our steady state system with a closed carbon cycle, carbon that 
is higher in one pool is lower in another pool. Accounting for light absorption clearly accelerates carbon 
turnover.

4.2.2. Increasing Ecosystem Complexity

Differences also occur in the distribution of the points between the model runs 1P1Z and 6P6Z (see Fig-
ure 5b). For 6P6Z, several points are closer to the NADW remineralization trajectory while others are closer 
to the AABW remineralization trajectory. We therefore calculate the average distance between all the points 
of 6P6Z and the remineralization trajectories. The average distance between the AABW limit and the points 
is 0.1807 µmol/kg while the average distance between the NADW limit and the points is 0.1486 µmol/kg. Our 
results show that the points of 6P6Z are slightly closer to the NADW remineralization trajectory, pointing to-
ward a deeper downward flux of organic matter compared to 1P1Z. Along with the higher export production 
of POC (see Table 4) and lower dissolved organic phosphorus (Supporting Information S1), the concentration 
of DIC increases by 0.0123 µmol/kg because all organic matter is eventually remineralized close to the seafloor 
(see also [Ward et al., 2018], [Ridgwell et al., 2007]). The higher export production of POC is due to the differ-
ent number of plankton groups and the different surface to volume ratio between 1P1Z and 6P6Z. Although 
the average equivalent spherical diameter for the entire population is the same between both simulations, the 

fraction that goes into DOM is higher for smaller organisms and lower for 
larger organisms. Due to the nonlinearity of the system (see Equation 1), 
a higher proportion of organic matter ends up in POC in the model run 
6P6Z (Table 4). Again, our changes in the parameter (βa) in Equation 1 
that calculates the partitioning between DOM and POM do not explain the 
differences (see Supporting Information S1).

Since the changes in ocean circulation are negligible in the simulations 
with different ecosystem complexity, we additionally compute the Ap-
parent Oxygen Utilization (AOU) to further study the downward flux of 
organic matter on a global scale. AOU is a measure for biological activ-
ities of a water parcel since the last time it has been in contact with the 
atmosphere. It is computed as the oxygen saturation minus the oxygen 
concentration under the same temperature and salinity (Weiss,  1970). 
The higher the AOU, the greater the amount of oxygen removed by het-
erotrophic biological processes (respiration and remineralization). Since 
there is no sediment layer in the model, all organic matter is eventually 
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Experiment
Export prod. POC 

(Gt/yr) DOC (µmolC/kg)
Fraction to 
DOM (%)

1P1Z 4.02 1.05 63.3
1P1ZLA 3.97 1.02 63.2
6P6Z 4.50 0.98 62.6

Note. The third column is the partition of organic matter going into the 
dissolved phase.
Abbreviations: DOC, dissolved organic carbon; DOM, dissolved organic 
matter; POC, particulate organic carbon.

Table 4 
Global Mean (Vertically and Horizontally-Integrated) Export Production 
of Particulate Organic Carbon (Gt/Yr) and Global Mean Concentration of 
Dissolved Organic Carbon (µmolC/Kg) After 1,000 Years-simulation

Figure 6. Vertical profile of Apparent Oxygen Utilization (µmol/kg) for the different simulations. The red curve 
represents the vertical profile of the simulation 1P1Z. The gray curve represents the vertical profile of the simulation 
6P6Z.
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remineralized back to nutrients albeit at different depth levels depending 
on the organic matter form; DOM is remineralized in the upper ocean 
while POM is remineralized in the deeper ocean. We thus calculate the 
AOU in such a way that we take the difference between the oxygen sat-
uration minus the oxygen concentration of the respective oceanic layer. 
At the surface, the AOU is similar between the simulations 1P1Z and 
6P6Z but from 1,000 m depth downwards the AOU distribution diverge 
(Figure 6). At depth, a higher ecosystem complexity increases the AOU, 
indicating a deeper downward flux and a greater amount of oxygen being 
removed by biological processes.

4.3. Atmospheric CO2 Concentration

Atmospheric CO2 concentration is significantly higher in 1P1ZLA compared to 1P1Z (Table 5). A closer look 
at the spin-up phase reveals the mechanisms behind. Phytoplankton light absorption immediately affects 
the stratification, increases SST, reduces the solubility of gases and therefore increases the air-sea CO2 flux. 
To estimate the effect of the reduced CO2 solubility on the air-sea CO2 flux we used the values of 1P1Z for 
our calculations. The CO2 fluxes are a function of several factors including solubility, atmospheric CO2, 
DIC, and the proportion of sea ice cover. By adopting the values for these factors from 1P1Z except for one, 
for which we take the value from 1P1ZLA, we are able to separate the individual effects during the spin-
up time. We find that by far the solubility has the largest effect on CO2 fluxes and that the air-sea CO2 flux 
increases from the beginning onwards with roughly 10% increase already after 500 years. As a consequence, 
the atmospheric CO2 concentration rises and thereby generates a positive feedback, leading to a global 
temperature rise (see below). The changes in solubility and hence CO2 fluxes are the immediate response of 
light absorption that increases the stratification and SST; other second order effects with changes in ocean 
physics arise during the course of the simulation. Yet, these changes such as a reduced sea-ice cover and en-
hanced upwelling only slightly modify the global CO2 fluxes during the spin-up phase (<1% after 500 years). 
Finally, in steady state the difference in the atmospheric CO2 concentrations between 1P1ZLA and 1P1Z is 
18 ppm (Table 5), corresponding to 38 GtC. The largest contribution is due to the changes in solubility but 
an altered biogeochemistry additionally contribute to changes in atmospheric CO2 concentration. As shown 
above, the downward flux of organic matter is shallower with phytoplankton light absorption, affecting the 
carbon cycle. Together with a shallower remineralization and zooplankton respiration, the surface concen-
tration of DIC increases (Table 3). Taking the difference of the vertically-integrated DIC between 1P1ZLA 
and 1P1Z, the changes are equivalent to 35 Gt of CO2. This decrease in DIC inventory is mainly responsible 
for the higher atmospheric concentration in 1P1ZLA. Compared to solubility changes, the changes in the 
downward flux of organic matter, however, may explain a smaller part of the climate system's response.

In contrast, in the model runs with a higher ecosystem complexity changes in atmospheric concentrations 
are caused exclusively by biogeochemistry. Increasing the ecosystem complexity leads to a deeper down-
ward flux of organic matter. Since all organic matter is remineralized at depth, the concentration of DIC 
increases at depth as well (see Figure 5b; Table 3). However, the changes are rather small and so the atmos-
pheric CO2 concentration only slightly decreases with a higher ecosystem complexity, as also suggested by 
the preformed PO4 nutrients analysis (Supporting Information S1). The small decrease in atmospheric CO2 
concentration drives the small heat loss in the heat budget when ecosystem complexity increases (Table 6).

5. Temperature Effects
5.1. Phytoplankton Light Absorption

The changes in atmospheric CO2 concentration significantly affect the system's heat budget (Table 6). The 
global surface atmospheric temperature (SAT) is higher by 0.45°C in the model runs with phytoplankton 
light absorption (Figure  7d). Along with a higher SAT, the ocean temperature increases globally in the 
model runs with phytoplankton light absorption as well (Figure 8d). Thus, the well-known effects of phy-
toplankton light absorption on ocean stratification (e.g., Manizza et al., 2008; Sonntag & Hense, 2011) are 
not visible as such. Yet, within the first 100 years of our simulations, we indeed find in the simulation with 
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Experiment Atm. CO2 (ppm)

1P1Z 165.87
1P1ZLA 183.75
6P6Z 165.43
6P6ZLA 173.69

Table 5 
Atmospheric CO2 Concentration (ppm) After 1,000 years-Simulation for 
the Four Experiments With and Without Phytoplankton Light Absorption
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phytoplankton light absorption that the upper surface ocean is warmer and the deeper part cooler (Support-
ing Information S1), because phytoplankton absorbs light and shades the water column below. During the 
course of the model simulation into steady state, however, the decrease in the temperature-dependent sol-
ubility of CO2 and changes in biogeochemistry (see above) lead to a rise of atmospheric CO2 concentration 
in 1P1ZLA. In steady state, we see the greenhouse effect with more longwave radiation being trapped in the 
atmosphere (Supporting Information S1). The higher greenhouse gas concentration changes therefore the 
overall heat budget of the climate system leading to global warming of the atmosphere and ocean.

The maximum difference of SAT between 1P1ZLA-1P1Z is 1.08°C in the Southern Ocean (Figure 7d). This 
value is slightly higher compared to previous model studies that show maximum values between 0.5–1K 
in model runs with phytoplankton light absorption compared to those without (Patara et al., 2012; Shell 
et al., 2003). However, in contrast to our model setup, Shell et al. (2003) use an ocean general circulation 
model with an uncoupled atmospheric model, thereby neglecting any interaction between the atmosphere 

and the ocean. Patara et al. (2012) use a coupled ocean-atmosphere gen-
eral circulation model with a constant and prescribed atmospheric CO2 
concentration for their simulations. We argue that this strong response in 
SAT in our results is due to our experimental setup. We use a fully two-
way coupled ocean-atmosphere model and assume a closed carbon cycle 
in which CO2 is allowed to evolve freely.

The general pattern of differences in SST between 1P1ZLA-1P1Z is sim-
ilar to SAT (Figures  7d and  8c) and we also find the same features in 
6P6ZLA-6P6Z although the magnitude is lower in the latter (Supporting 
Information S1). Here the SST is strictly speaking not SST but the mean 
temperature in the upper surface layer, from the surface to 29.38 m depth, 
which for practical purposes is called SST. The global average heating of 
the ocean surface is 0.33°C between 1P1ZLA and 1P1Z, which is in ac-
cordance with previous modeling studies (Lengaigne et al., 2009; Man-
izza et al., 2005; Patara et al., 2012; Wetzel et al., 2006). We find a higher 
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Increasing ecosystem 
complexity (6P6Z-1P1Z)

Phytoplankton 
light absorption 
(1P1ZLA-1P1Z)

Biomass (mgChl/m3) −0.004 0.014
SST (°C) −0.014 0.33
Atm. CO2 (ppm) −0.44 18
SAT (°C) −0.034 0.45

Note. The values represent the average differences between the 
biogeophysical and biogeochemical scenarios.

Table 6 
Summary of the Impact of Phytoplankton Light Absorption and 
Increasing Ecosystem Complexity on the Different Climate Variables 
Described previously

Figure 7. Surface air temperature (°C) for the model runs (a) 1P1ZLA, (b) 1P1Z and (c) 6P6Z. Surface air temperature difference for the biogeophysical 
scenario: (d) Difference between 1P1ZLA and 1P1Z. Dark/brown colors indicate large while white/yellow colors represent small differences. Note that the 
differences between these two simulations are always positive. Surface air temperature difference for the biogeochemical scenario: (e) Difference between 6P6Z 
and 1P1Z. Blue colors indicate a higher surface air temperature for the model run 1P1Z while red/yellow colors indicate a higher surface air temperature for the 
model run 6P6Z.
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SST even in the regions where differences in chlorophyll are small (Figure 4). This missing spatial coinci-
dence between the chlorophyll and SST patterns can be explained by the model setup. Chlorophyll biomass 
is not subject to physical transport, but heat is transported by ocean currents, explaining why the patterns of 
the physical quantities are more smooth. Regional differences in SST are hardly visible. Both polar regions 
are characterized by minor changes in SST because the sea-ice dynamics limit the redistribution of heat. 
The maximum local increase in SST is 0.47°C and is close to reported values in previous modeling studies 
(Lengaigne et al., 2007; Patara et al., 2012; Wetzel et al., 2006). On the other hand, observations show a 
local heating effect of 1.5–4°C caused by the absorption of light by phytoplankton surface blooms (Kahru 
et al., 1993; Sathyendranath et al., 1991); thus our model underestimates the local heating effect due to 
phytoplankton light absorption.

5.2. Increasing Ecosystem Complexity

An increase in ecosystem complexity (6P6Z-1P1Z) results in a global SAT decrease by 0.034°C (Figure 7e). 
This slight change is driven by the small decrease in atmospheric CO2 concentration. The changes in 
SAT are less pronounced than the changes in SAT in the simulation with phytoplankton light absorption. 
The Southern Ocean is characterized by the largest SAT fluctuations with a local cooling of 1.64°C when 
ecosystem complexity increases (Figure 7e). The other world regions show a less pronounced cooling effect 
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Figure 8. Sea surface temperature (°C) for the simulations (a) 1P1ZLA and (b) 1P1Z. Blue colors indicate low while red colors represent high ocean 
temperatures. (c) Differences of sea surface temperature between the two simulations. White color indicates small and orange/brown colors represent large 
differences. Note that the differences between the model simulations are always positives. (d) Variation of the oceanic temperature with depth. The red line 
corresponds to the model run with phytoplankton light absorption. The blue line represents the model run without. The green line represents the difference 
between the model simulation with and without phytoplankton light absorption.
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with a higher ecosystem complexity. Only a few grid cells in the Southern Ocean and in the North Atlantic 
show an increase in SAT. The global and regional changes in SST between 6P6Z-1P1Z follow the SAT pat-
terns but are almost negligible (Supporting Information S1).

6. Summary and Conclusions
To study the relative importance of biogeophysical and biogeochemical climate relevant mechanisms, we 
implemented phytoplankton light absorption in the EcoGENIE model (Ward et al., 2018), and varied the 
complexity of the ecosystem by increasing the number of phytoplankton and zooplankton groups. In our 
simulations, the atmospheric CO2 can evolve freely, affecting therefore the global heat budget. To obtain 
comparable primary productivity in all model runs, it was necessary to adjust the partitioning between the 
labile and refractory organic matter. We show that the climate system responds differently to our modifica-
tions in adding phytoplankton light absorption or increasing ecosystem complexity (Table 6).

A higher ecosystem complexity affects the plankton community, influencing the partitioning of organic 
matter going into the dissolved and particulate phase. Changes in the surface-to-volume ratio reduce the 
part of organic matter going into the dissolved phase and increase the part going into the particulate phase. 
As a result, the export production of POC increases while DOC decreases in 6P6Z. These changes in the 
downward flux of organic matter slightly affect the carbon cycle and with it the air-sea CO2 flux. Hence, 
the atmospheric CO2 concentration slightly decreases and the atmosphere cools down by 0.034°C when the 
ecosystem complexity increases. These small changes in atmospheric temperature and carbon cycle slightly 
reduces the sea surface temperature and slightly decreases the chlorophyll biomass.

Phytoplankton light absorption affects the climate system in various ways. Most notably, we find enhanced 
stratification, a higher SST and a reduced solubility of CO2 that increases the air-sea CO2 flux during the 
spin-up phase leading to higher atmospheric CO2 concentration in steady state. In addition, the downward 
carbon flux is shallower with a stronger “microbial loop”, contributing to higher atmospheric CO2 concen-
tration. Reduced sea-ice cover and enhanced upwelling only slightly affect the climate system. The sensitiv-
ity analysis indicate that by far the changes in CO2 solubility have the largest effect on the climate system. 
All these changes lead to an increase by 0.45°C of the SAT with phytoplankton light absorption.

This study shows clearly that phytoplankton light absorption has a higher impact on the climate system 
than a higher ecosystem complexity. Therefore, we conclude that ESMs should include phytoplankton light 
absorption by default for climate change scenarios.

Data Availability Statement
The code for the model is hosted on GitHub and can be obtained by cloning or downloading: https://doi.
org/10.5281/zenodo.4084583. The configuration file is named “RA.ECO.ra32lv.FeTDTL.36 × 36 × 32″ and 
can be found in the directory “EcoGENIE_LA/genie-main/configs”. The user-configuration files to run the 
experiments can be found in the directory “EcoGENIE_LA/genie-userconfigs/RA/Asselotetal2019”. Details 
of the code installation and basic model configuration can be found on a PDF file (https://www.seao2.info/
cgenie/docs/muffin.pdf). Finally, Section 9 of the manual provides tutorials on the ECOGEM ecosystem 
model.
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